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Intra-leaf modeling of Cannabis leaflet shape produces leaf
models that predict genetic and developmental identities
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Summary

� The iconic, palmately compound leaves of Cannabis have attracted significant attention in

the past. However, investigations into the genetic basis of leaf shape or its connections to

phytochemical composition have yielded inconclusive results. This is partly due to prominent

changes in leaflet number within a single plant during development, which has so far pre-

vented the proper use of common morphometric techniques.
� Here, we present a new method that overcomes the challenge of nonhomologous land-

marks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corre-

sponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a

function of leaflet to create continuous polynomial models, bypassing the problems associated

with variable number of leaflets between leaves.
� We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591

pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet num-

ber, and relative node number.
� Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions,

making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly che-

mical content analysis and sex identification, in addition to permitting the morphometric ana-

lysis of leaves in any species with variable numbers of leaflets or lobes.

Introduction

Cannabis sativa L. (hereafter referred to as Cannabis) is a versatile
crop plant used by humans for a variety of purposes throughout
history. Although today it is commonly associated with its psy-
choactive properties, traditional medicine has relied heavily on
Cannabis, and it is also a valuable source of food and fibers
(Clarke & Merlin, 2013). Genetic and archeological evidence
suggests that Cannabis was domesticated c. 12 000 yr ago in East
Asia, initially serving as a multipurpose crop before separate selec-
tions for fiber and drug production emerged c. 4000 yr ago (Ren
et al., 2021). Since then, widespread cultivation has facilitated its
global distribution. Throughout the 20th century, Cannabis use
was largely abandoned due to its illegal status in many parts of
the world. However, recent legalization for recreational and/or
medicinal purposes in many countries world-wide has led to a
surge in the cannabis industry (Prohibition Partners, 2022).

Extensive Cannabis use has resulted in the development of
numerous cultivars and strains that are well-suited to diverse uses

and climates (Small, 2015). This significant morphological and
phytochemical diversity within the Cannabis genus poses chal-
lenges for taxonomic classification. Over the past two centuries,
various taxonomic approaches based on genetics, morphology,
and phytochemistry have been proposed (McPartland &
Small, 2020). Some scientists advocated for a polytypic classifica-
tion, recognizing the presence of two (Lamarck & Poiret, 1783;
Zhukovskii, 1971; Hillig, 2005a) or three (Emboden, 1974;
Schultes et al., 1974; Hillig, 2005b; Clarke & Merlin, 2013) spe-
cies with multiple subspecies, while others argued for a monoty-
pic genus, considering only a single species, C. sativa (Small &
Cronquist, 1976; Sawler et al., 2015; Small, 2015; McPartland,
2018; McPartland & Small, 2020; Ren et al., 2021). Hillig
(2005a) introduced a classification system based on biotypes,
considering molecular, morphological, and phytochemical data.
He proposed dividing Cannabis into two species, C. sativa and
C. indica Lam., and six biotypes: C. indica as narrow-leaflet
drug, wide-leaflet drug, hemp and feral biotype, and C. sativa
as hemp and feral biotype. Recently, Lapierre et al. (2023)
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conducted a comprehensive taxonomic review of the Cannabis
genus and based on available genetic data, strongly supported the
theory that Cannabis is a highly diverse monotypic species.

Apart from taxonomic classification, Cannabis is often cate-
gorized based on its cultivation purpose, morphology, and che-
mical composition. Fiber-type plants, commonly known as
hemp, are primarily grown for fiber and seed production. These
plants contain < 0.3% of the psychoactive compound
Δ9-tetrahydrocannabinol (THC), while drug-type plants, often
referred to as marijuana and medicinal cannabis, can contain
higher levels of THC (Hurgobin et al., 2021). Cannabis plants
can also be separated based on the ratio of two major cannabi-
noids THC and cannabidiol (CBD) into Type I (THC domi-
nant), Type II (balanced CBD : THC ratio), and Type III plants
(CBD dominant) (Small & Beckstead, 1973). In the medicinal
and recreational cannabis industries, plants are normally categor-
ized as ‘sativa’, ‘indica’, or ‘hybrid’. Taller plants with narrow
leaflets and high THC percentage are called ‘sativa’, while shorter
and bushier plants with wider leaflets and high percentages of
both CBD and THC are called ‘indica’. Plants with intermediate
characters are called ‘hybrids’ (McPartland & Guy, 2017). While
the classification of Cannabis into ‘indica’ and ‘sativa’ is not sup-
ported by genetic data, the visible differences in leaflet width have
long been a significant characteristic used to visually discriminate
different types of Cannabis.

Cannabis arguably possesses one of the most iconic leaves
among all plants. Its palmately compound leaves with a varying
number of leaflets are a popular culture symbol. Cannabis exhi-
bits a remarkable degree of phenotypic plasticity, further accentu-
ated by selection pressure during the domestication process
(Small, 2015). Extensive variability in leaf morphology has
already been described by Quimby et al. (1973) and later Ander-
son (1980), who was the first to quantify the width, length, and
ratio of the central leaflet. This or similar methods were then
commonly used in studies investigating the morphological char-
acteristics of Cannabis species, subspecies, cultivars, biotypes, and
chemotypes (Small et al., 1976; de Meijer et al., 1992; de Meijer
& Keizer, 1996; Hillig, 2005a; Clarke & Merlin, 2013; Lynch
et al., 2016; Karlov et al., 2017; Parsons et al., 2019; McPartland
& Small, 2020; Carlson et al., 2021; Islam et al., 2021; Jin
et al., 2021a; Vergara et al., 2021; Buzna & Sala, 2022; Chen
et al., 2022; Murovec et al., 2022), often with contradictory
results. Leaf shape has therefore played an important and some-
times controversial role in Cannabis taxonomy. While researchers
in previous Cannabis studies were aware of enormous plasticity
and the effect the environment has on leaf shape (Vergara
et al., 2021; Murovec et al., 2022), they very rarely paid attention
to the effects of developmental processes, even though heteroblas-
tic changes (differences in leaf shape arising from juvenile-to-
adult phase transitions in the meristem) profoundly affect the
arrangement and shape of Cannabis leaves along the shoot. While
some studies briefly mention the developmental changes in leaves
(Hillig, 2005a; Carlson et al., 2021; Jin et al., 2021b;
Spitzer-Rimon et al., 2022), the only two studies focusing on het-
eroblastic phase changes in leaves along the plant axis were done
by Heslop-Harrison & Heslop-Harrison (1958) and Hesami

et al. (2023). In the lower part of the shoot, Cannabis leaves exhi-
bit opposite phyllotaxy and one to three leaflets, transitioning to
alternate phyllotaxy and leaves with up to 11 or 13 leaflets in the
upper section (Hillig, 2005a; Clarke & Merlin, 2013; Small,
2015). Additionally, the changes in leaflet number are not uni-
form between different Cannabis accessions (Hillig, 2005a).
These changes during development not only complicate categori-
zation of plant accessions based on leaf shape but also prevent the
use of morphometric techniques.

Morphometrics is the quantitative analysis of shape. It includes
a wide range of methods, from measuring allometric differences
in dimensions such as lengths, widths, and angles in relation to
size (Niklas, 1994) to geometric techniques that measure shape
comprehensively, such as elliptical Fourier (EFDs; Kuhl & Giar-
dina, 1982) and landmark-based analyses (Bookstein, 1997). It
can be used to classify species and to separate effects on shape
arising from genetic, developmental, and environmental mechan-
isms (Chitwood & Sinha, 2016). Historically, the field of ampe-
lography (ἄlpekος, ‘vine’ + cqάφος, ‘writing’; Ravaz, 1902;
Galet, 1952; Galet & trans. Morton, 1979) relied heavily on leaf
shape to distinguish grapevine varieties. Unlike Cannabis, grape-
vine leaves have a consistent number of lobes, sinuses, and other
associated homologous points that can be used for both
landmark-based and EFD morphometric analysis (Chitwood et al.,
2014; Chitwood, 2021) to disentangle genetic (Demmings et al.,
2019), developmental (Chitwood et al., 2016a; Bryson et al., 2020;
Migicovsky et al., 2022), and environmental effects (Chitwood
et al., 2016b, 2021) embedded in leaf shapes.

The variable number of leaflets in Cannabis (and several other
species with lobed, pinnate, and palmate compound leaves) pre-
cludes analysis methods that rely on homologous, comparable
points to measure shape comprehensively. Methods to automati-
cally isolate individual leaflets (Failmezger et al., 2018) or to
model developmental trajectories, such as heteroblastic series
(Biot et al., 2016), were proposed previously for morphometrical
analysis in such cases. In Cannabis, Vergara et al. (2021) used a
landmark-based approach but were limited to analyzing the cen-
tral and two most distal leaflets on each side, features that all
Cannabis leaves except single-leaflet leaves possess, but which
excludes most of the shape variation within a leaf.

Here, we seek to build on these works and conceptually extend
our framework of continuously modeling leaflets within a pal-
mate leaf. We model corresponding pseudo-landmarks for each
leaflet as angle-radius coordinates relative to the petiolar junction
and model angle and radius as a function of leaflet number to cre-
ate continuous polynomial models that bypass the problems asso-
ciated with variable numbers of leaflets between leaves. This
enabled us to compare leaves with different numbers of leaflets
within a plant and to discern differences between genotypes
rather than the heteroblastic series. Analyzing over 300 Cannabis
leaves, we model theoretical leaves with nine leaflets and 3591
comparable pseudo-landmarks. Linear discriminant analysis
(LDA) predicts accession, leaflet number, and relative node num-
ber with high accuracy. Intra-leaf modeling allows the application
of morphometric techniques to comprehensively measure leaf
shape in Cannabis, enabling future taxonomic and developmental
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studies, cultivar recognition, and possibly chemical content ana-
lysis and sex identification, in addition to permitting the mor-
phometric analysis of leaves in any species with variable numbers
of leaflets or lobes.

Materials and Methods

Plant material and growing conditions

This study includes 24 individuals from nine accessions of C. sativa
L. (Table 1; Fig. 1), encompassing both wild/feral accessions and
cultivated varieties with a wide distribution area. The plants were
grown from seeds in a growth chamber (D1200PLL; Fitoclima,
Aralab, Portugal) to minimize the influence of the environment.
Before sowing, the seeds were sterilized overnight in a 5% of H2O2

solution with the addition of Inex-A solution (Cosmocel, Zaragoza,
Spain) at room temperature. Sterilized seeds were then transferred
to Petri dishes and placed in the growth chamber for germination.
Once the first leaves emerged, the seedlings were transferred to
small peat pots with a pre-fertilized soil substrate (Kilomix Atami,
Oldbury, UK). During this phase, the environmental conditions
were set to 25°C, with an 18 h : 6 h, day : night photoperiod,
and a light intensity of 50 lmol m�2 s�1 (Master PL-L 55W; Phi-
lips, Amsterdam, the Netherlands). After 2 wk, the surviving plants
were transplanted to 3.5-l pots with the same soil substrate. The
light intensity was gradually increased to 300 lmol m�2 s�1 over
the following week, without changing the photoperiod and tem-
perature. The onset of flowering in some Cannabis accessions is
photoperiod-dependent; therefore, after 4 wk, the photoperiod was
changed to 12 h of daylight and 12 h of darkness, and the light
intensity was gradually increased to 700 lmol m�2 s�1 over the
following week, while keeping the temperature at 25°C. The plants
remained in these environmental conditions until the flowering
stage. Plants received daily irrigation with tap water, without any
application of nutrient or phytosanitary control.

Leaf sampling and imaging

A total of 461 leaves were sampled during the flowering stage, with
the exception of individuals from the accession IK, which did not
begin to flower during the 2-month cultivation period. Leaves

along the main axis of the plants were collected and immediately
scanned using a flatbed photograph scanner (Epson Perfection
V370, Suwa, Japan) at 1200 dpi resolution. A piece of velvet fabric
was placed between the leaf and the scanner cover to avoid any sha-
dows. No adjustments to the angle of individual leaflets were made
before scanning. Each leaf was scanned with a scale and a label indi-
cating the node it originated from, followed by a sequential lower-
case letter, since typically two leaves are present per node. Starting
at the base of the plant, the first two leaves were labeled as leaves ‘a’
and ‘b’ from node number 1, and so on, until the shoot apex.

Cannabis leaves display a marked heteroblastic, or juvenile-to-
adult, leaf shape progression. Mature, juvenile leaves located on
the first node at the base of the plant usually have a simple, ser-
rated leaf. As node number increases so does the leaflet number,
reaching a maximum of 9–13 leaflets in young, adult leaves at the
growing tip. Eventually, leaves transition into an inflorescence
type. During this transition, the number of leaflets per leaf starts
to decrease again until the top of the inflorescence. Leaves at the
shoot base have opposite phyllotaxy and transition to alternate
phyllotaxy in the upper section on the stem and inflorescence
(Heslop-Harrison & Heslop-Harrison, 1958; Hillig, 2004; Pot-
ter, 2009; Spitzer-Rimon et al., 2022). To ensure that only stem
leaves were included in our analysis, we separated the two types
(i.e. stem and inflorescence leaves) based on the point where the
decrease in the number of leaflets appeared. This point deter-
mined the ‘total node number’, the number of nodes per plant
used for further analysis. Total node number varied among indi-
viduals. To compare node positions, a relative node number was
calculated, which was defined by the node position divided by
the total node number for the individual plant, where zero is at
the plant base and one at the last node included in the analysis
(Fig. 1). Because of the nature of plant growth, the leaves at the
base of the plant were frequently too senesced to be incorporated
into the analysis or were entirely lost. Nevertheless, the nodes
could still be identified, which allowed them to be taken into
account in the calculation of relative node number.

Image analysis and landmarking

After eliminating damaged and deformed leaves (39), simple
leaves (4), leaves with even leaflet numbers (3), and leaves with

Table 1 Accession details and number of Cannabis leaves collected and analyzed in the study.

Accession ID Accession type Location/cultivar name
No. of
individuals

No. of leaves
collected

No. of leaves
analyzed

AM15 Wild/feral Armenia, Sjunik marz, Goris town 5 90 74
BNG Wild/feral Bangladesh, Rangpur, Carmichael

College Campus
1 14 10

FUT75 Cultivar Futura 75 2 45 30
HU1 Wild/feral Hungary, Ny�ırvasv�ari 4 83 68
IK Landrace India, Kerala 4 92 53
IKL Landrace India, Kullu 4 69 47
MAR Landrace Morocco, North Morocco 1 18 15
MN9 Wild/feral Mongolia, Selenge aimag,

Baruunburen sum
1 14 10

RO1 Wild/feral Romania, Mangalija 2 36 34

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024)
www.newphytologist.com

New
Phytologist Methods Article Research 3

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19817, W

iley O
nline Library on [09/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



relative node values above one (57), a total of 358 Cannabis
leaves were used for image analysis and landmarking. PHOTOSHOP

was used to separate petioles and leaflets smaller than 1 cm from
the rest of the leaf. The leaf outlines were then extracted and
saved using PYTHON modules NumPy (Harris et al., 2020),

Matplotlib (Hunter, 2007), and OpenCV (Bradski, 2000). The
code for extracting and plotting the leaf outlines can be found on
GitHub (https://github.com/BalantM/Cannabis_leaf_morpho_
updated). The x and y coordinates of blade outlines and land-
marks were extracted using IMAGEJ (Abr�amoff et al., 2004). The

Fig. 1 Changes in the leaf shape and leaflet number during the development in nine Cannabis accessions. (a) Median values for all available leaflet number
for each relative node number for the nine Cannabis accessions. (b) Changes in leaf shape between different developmental stages in different Cannabis
accessions.
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outline was extracted using the wand tool (setting tolerance to 20
and including ‘smooth if thresholded’ option), and the land-
marks were placed using the multi-point tool.

Initially, landmarks were placed at the beginning and end of
each leaflet, starting from the lower left side, and continuing to
the lower right side of the leaf outline. Subsequently, landmarks
were placed in the same order on the tips of the leaflets. The final
landmark was positioned at the center of the petiolar junction
(Fig. 2, second column). These landmarks delimit the boundaries
of the leaflets so that equidistant pseudo-landmarks can later be
placed along the contour. The number of landmarks per leaf ran-
ged from 10 to 28, depending on the leaflet number. The raw
data containing the coordinates for leaf outlines and landmarks
can be accessed on GitHub (https://github.com/BalantM/
Cannabis_leaf_morpho_updated).

Reconstruction of the new modeled leaves

To analyze leaves with different numbers of leaflets, pseudo-
landmarks of each leaflet were modeled as second-degree polynomial

models of angles and radius as functions of leaflet number within a
leaf, in order to use the models to construct a modeled theoretical
leaf with a desired number of leaflets. The PYTHON code, presented
as a Jupyter notebook with detailed description, is available
on GitHub (https://github.com/BalantM/Cannabis_leaf_morpho_
updated). The x and y coordinates of the leaf outline were first inter-
polated to create an arbitrarily high number of coordinates to
increase resolution of the leaf outline. The coordinates of manually
selected landmarks were then compared against the high-resolution
coordinates of the leaf outline, and the nearest neighboring point of
the high-resolution coordinates to each original landmark was identi-
fied and specified as the new landmark point. Next, the outline and
new landmark coordinates were rotated, translated, and scaled so
that the central leaflet had a length of one and pointed in the same
direction. The transformed points were then interpolated to generate
200 pseudo-landmarks on each side of each leaflet (from the land-
mark at the bottom until the tip of the leaflet), sharing the landmark
on the tip of the leaflet (i.e. a total of 399 pseudo-landmarks per leaf-
let). These pseudo-landmarks were then converted to polar coordi-
nates, where each point was defined by a radius and angle relative to

Fig. 2 Process of modeling theoretical Cannabis leaves for a leaf with (a) three leaflets from accession AM15, (b) five leaflets from accession IKL, (c) seven
leaflets from accession FUT75, and (d) nine leaflets from accession IK. The first column shows the scans of the leaves, which we use to extract the outline
and place the landmarks on the tip, start, and end of each leaflet and on the petiolar junction (second column). These coordinates are used to generate 200
equidistant pseudo-landmarks on each side of each leaflet, sharing the landmark on the tip of the leaflet for a total of 399 pseudo-landmarks. These
coordinates are then converted into polar coordinates. Each transformed leaflet is defined with 399 equidistant pseudo-landmarks, with three landmarks,
two at the base and one at the tip. Large points are placed every 25 pseudo-landmarks to emphasize that leaflet outlines are defined by points (third
column). Second-degree polynomials for angles and for radius from petiolar junction are then fitted through these 399 pseudo-landmarks (fourth column).
A modeled theoretical leaf with nine leaflets defined by 3591 pseudo-landmarks can then be modeled using the collection of 798 polynomial models for
each leaf (399 polynomial models for angles and 399 for radius from petiolar junction) (fifth column) and visualized in the Cartesian coordinate system
(sixth column).
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the landmark of the petiolar junction and tip of the central leaflet
(Fig. 2, third column).

Using the polar coordinates of each leaflet, second-degree poly-
nomial models for x (angle) and y (radius from petiolar junction)
values were fit through each of the 399 corresponding
pseudo-landmarks for each leaflet using the PYTHON scipy.optimize.
curve_fit function (Virtanen et al., 2020), modeling angle and
radius as a function of leaflet number (Fig. 2, fourth column).
Using the coefficients for second-degree polynomial models, we
then model each pseudo-landmark as a function of leaflet number
to reconstruct the new theoretical leaf with an arbitrary number of
leaflets. Meaning that for each leaflet, each of the 399 x and y
pseudo-landmarks (i.e. angle and radius from petiolar junction
coordinates) was calculated using the second-degree polynomial
function, with coefficients obtained from the previous step, and the
newly defined leaflet number (9 in this case). The optimal number
of reconstructed leaflets was tested for the best prediction accuracy
in LDA modeling, and the highest accuracy was achieved by recon-
structing nine leaflets (Supporting Information Table S1). It is
important to note that the reconstructions start with the first real
leaflet and end with the last real leaflet. These nine reconstructed
leaflets are then equally divided between these two points.

Nine leaflets were reconstructed using the collection of coeffi-
cients of 798 second-degree polynomial models for each leaf; the
399 models for angle were used to model theoretical x (i.e. angle)
and 399 models for radius were used to model theoretical y (i.e.
radius from petiolar junction) pseudo-landmarks as a function of
nine leaflets.

The coordinates defining the 3591 pseudo-landmarks for each
of the modeled leaves (399 pseudo-landmarks for each of the nine

reconstructed leaflets) were then plotted and visually inspected. We
detected 17 inaccurately modeled leaves, most likely caused by the
position of the petiole landmark compared with the landmark
marking the start and end landmarks of the leaflet. A total of 341
Cannabis leaves were then used in the analysis.

Validation of the leaf modeling approach

To validate our modeling approach, we extracted the polar coor-
dinates of the original central leaflets (Fig. 3a) and central leaflets
of the modeled leaves (Fig. 3b) and used them in Procrustes ana-
lysis using Procrustes function from scipy.spatial module (Virtanen
et al., 2020). Procrustes analysis minimizes the distance between
all points for a set of landmarks/pseudo-landmarks between two
samples through translation, rotation, and scaling, and returns
new points of the two sets, superimposed to each other (Fig. 3c).
We then calculated the Procrustes distance between the original
central leaflet (angle and radius coordinates) to its corresponding
modeled reconstruction, a measure of their similarity. The mean
distance was calculated and compared with that of simulated
bootstrapped mean values by resampling (10 000 resamples)
through randomly sorting original leaflet coordinates against coor-
dinates of reconstructed leaflets.

Morphometric analysis of the central leaflet shape using
previously established methodologies

The width : length ratio (W : L ratio), first described by Ander-
son (1980), was frequently used to describe the shape of Cannabis
leaves or even differentiate between different Cannabis taxa. With

Fig. 3 Modeling approach validation using Procrustes analysis and bootstrap resampling. The (a) original and (b) modeled central leaflets in polar
coordinate system were superimposed (c) and Procrustes distances calculated. (d) The resampled mean was plotted as a distribution (green histogram)
against the actual Procrustes mean (gray vertical line).
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previously established morphometric methods, the shape analysis
of central leaflets (that all leaves share) would also be possible,
using EFDs or pseudo-landmark approach. To evaluate the effec-
tiveness of these two previous methods for the shape analysis of
Cannabis leaves, we first extracted the Cartesian coordinates
of central leaflets (Fig. 4a), which were previously scaled, rotated,
and translated so that they were all pointing in the same direction

and had the length of one. We then interpolated 200
pseudo-landmarks on each side of each leaflet, sharing the land-
mark on the tip of the leaflet (i.e. a total of 399
pseudo-landmarks per leaflet).

To measure the W : L ratio, we calculated width of the leaf (as
the leaves were already normalized to length of one), calculating
the minimum bounding rectangle. The distribution of widths

Fig. 4 Analysis of Cannabis leaf shape using the
approach adapted from Anderson (1980). (a)
Visualization of the 341 central leaflets used in
the analysis. Width : length ratios plotted by (b)
accession, (c) leaflet number, and (d) relative
node number.

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024)
www.newphytologist.com

New
Phytologist Methods Article Research 7

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19817, W

iley O
nline Library on [09/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



was then plotted using PYTHON package seaborn.kdeplot. To see
whether the analyzed accessions differed significantly in their
W : L ratios, Kruskal–Wallis test was calculated using stats.krus-
kal function from the scipy.stats module. To see which of the
accessions differ in W : L ratio, we calculated Dunn’s multiple
comparison test with SCIKIT_POSTHOCS package in PYTHON

(Terpilowski, 2019), using the posthoc_dunn function.
Linear discriminant analysis was applied to model accession,

leaflet number, and relative node number as the function of cen-
tral leaflet coordinate values, using the LinearDiscriminantAnaly-
sis function from the scikit-learn module in PYTHON (Pedregosa
et al., 2011). To test the performance of the LDA model, the
dataset was divided into two parts. Since most of the analyzed
leaves exhibit opposite phyllotaxy, wherein the nodes were repre-
sented by two leaves (a and b) in the same developmental phase
with the same number of leaflets, the dataset was split into a
training dataset (leaf a) comprising 180 leaves and a test dataset
(leaf b) containing 161 leaves. The predict function from Linear-
DiscriminantAnalysis in the scikit-learn module was used to

predict the accession identity, leaflet number, and relative node
number, based on the central leaflet coordinate values. The accu-
racy of the LDA model was calculated and visualized using the
function confusion_matrix from scikit-learn. Spearman’s rank
correlation was calculated for true and predicted results for rela-
tive node number with spearmanr function from the scipy.stats
module.

Data analysis of modeled leaves

A principal component analysis (PCA) was performed on the
coordinates of the modeled leaves using scikit-learn module in
PYTHON and proportions of explained variance for each principal
component and the cumulative variance was calculated. Points
representing the leaves were colored by the accession identity,
leaflet number, or relative node number (Fig. 6). To see which of
the first two PCs explains most of the leaf shape variation for
accessions, leaflet number, and relative node number, Kruskal–
Wallis test was calculated using stats.kruskal function from the

Fig. 5 Accession, leaflet number, and relative node numbers prediction of Cannabis leaves using the outline of central leaflets. Linear discriminant analysis
(LDA) plots for (a) accession, (b) leaflet number, and (c) relative node number. In the lower row, the confusion matrices show the true and predicted
identities for (d) accessions, (e) leaflet number, and (f) relative node number using the LDA model on the split test and train dataset.
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scipy.stats module. To visualize an average leaf for each accession,
leaflet number, and relative node number, the average coordinate
values of modeled leaves were calculated for each of the categories
and plotted using the Matplotlib module in PYTHON (Fig. 6).

To see whether the modeled leaves can be used to model acces-
sion, leaflet number, and relative node number, we followed the
same steps as before for shape analysis of central leaflet. Linear
discriminant analysis was applied to model accession, leaflet
number, and relative node number. The dataset was again split
into a training and test dataset to see whether we were able to pre-
dict accession, leaflet number, and relative node number identity,
based on the coordinates of modeled leaves. The same was done
on a combined dataset with 3990 coordinates, created by conca-
tenating coordinates of modeled leaves and the coordinates of the
original central leaflets.

Results

Heteroblastic changes in leaflet number along the main axis

Over 460 C. sativa leaves were collected, scanned, and their leaf-
let number recorded. The leaves exhibited a profound heteroblas-
tic juvenile-to-adult progression along the axis, but the changes
were not uniform between the accessions (Fig. 1). In the few rare
cases where the leaves in the lower nodes were present, the first
nodes always started with a simple serrated leaf. The second leaf
usually had three leaflets, and the most frequent leaflet number in
the third node was five. However, the leaflet number in the nodes
above varied dramatically between accessions. The number of
nodes before the transition into the inflorescence in each of the
plants also varied. We therefore calculated relative node number,
a fractional number between 0 at the shoot base to 1 at the inflor-
escence transition, to compare the node leaves between plants.

Validation of the leaf modeling approach

The modeling approach was validated by calculating the mean
Procrustes distance of modeled central leaflet coordinates to ori-
ginal central leaflet coordinates using 10 000 bootstrap replicas,
assessing resampled means against the actual Procrustes mean
value. None of the 10 000 resamples yielded a mean lower than
the observed Procrustes value, confirming the robustness of the
novel modeling approach (Fig. 3d).

Width : length ratio and central leaflet shape analysis

Our results indicate that the W : L ratio of central leaflets is
not able to differentiate well between different Cannabis leaf

accessions based on this information alone (Fig. 4). While the
Kruskal–Wallis test did show overall significance between acces-
sions (Table S2), Dunn’s post hoc test indicated significance in
leaf morphology for just one accession (Table S3). The W : L
ratio significantly differs from the rest only for the IK accession,
characterized by particularly narrow leaves (Table S3). The
Kruskal–Wallis test was also significant for leaflet numbers and
relative node numbers (Table S2). Dunn’s post hoc test revealed
that while we can differentiate between leaflet numbers based on
the W : L ratio of central leaflet, we can only separate the lower
and higher relative nodes (Table S3).

To test whether the outline of the central leaflet can better pre-
dict the genetic and developmental identity of Cannabis leaves,
we used LDA to model each factor as a function of 399
pseudo-landmark points defining the shape of central leaflet
(Fig. 5a–c). To evaluate model accuracy, accession was treated as
a categorical variable, as was leaflet number, as it not only has a
small number of levels (3, 5, 7, and 9 leaflets) but each level is
well-separated from the others. To evaluate the accuracy of rela-
tive node number, we treated it as a continuous variable, due to a
high number of levels (9) that continuously overlap with each
other. Models revealed low accuracy, as the accession was cor-
rectly determined only in 47.20% (Table 2). The LDA model for
the shape of central leaflet showed no overlap for the accessions
IK and MN9, but the remaining accessions showed significant
overlap (Fig. 5a). The confusion matrix revealed that only two
accessions were correctly identified more than half the time
(AM15 – 53.13% and IK – 71.43% prediction accuracy)
(Fig. 5d). The LDA model showed better success when identify-
ing the leaflet number (57.76% overall accuracy) and relative
node number, where the true and predicted values show signifi-
cant, but moderate correlation (rho = 0.629, P < 0.0001)
(Fig. 5b,c,e,f; Table 2).

Principal component analysis on modeled leaves

Using the outline and landmark coordinates of 341 leaves, we
modeled new theoretical leaves, all with nine leaflets. Each leaf is
defined by 3591 pseudo-landmarks, which overcomes the pro-
blems associated with variable leaflet numbers and permits
dimension reduction using PCA (Fig. 6a–c) and the visualization
of average Cannabis leaves (Fig. 6d–f). The first and second PCs
account for 85.85% and 7.25% of the shape variation, respec-
tively (Fig. 6a–c). Examining the PC1 and PC2 with Kruskal–
Wallis test reveals that accession, leaflet number, and relative
node number all vary significantly along the first PC axis. The
variation along the PC2 for accession and leaflet number is less
pronounced, however still significant, while PC2 values for

Table 2 Predictive power of genetic and developmental identities using the LDA model on the central leaflet shape of Cannabis leaves.

Correct prediction (n) False prediction (n) Prediction accuracy (%) Correlation coefficient (rho) P value

Accession 76 85 47.20 NA NA
Leaflet number 93 68 57.76 NA NA
Relative node number NA NA NA 0.629 < 0.0001

NA, data not analyzed.
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relative node numbers do not vary significantly (Fig. 6; Table 3).
This indicates that the changes in leaf shape between accessions
are not independent from developmental variation. That is, a
facet of variation in accession leaf shape covaries with develop-
mental variation across the shoot in leaflet, and relative node
number suggests a heterochronic mechanism by which accession
differences in leaf shape arise from changes in developmental

timing and contrasts with the historical focus on changes in tim-
ing arising from plasticity (Goebel, 1908; Ashby, 1948).

The average modeled leaf shapes show that the most pro-
nounced change in leaf shape between the accessions and during
the development corresponds to narrow vs wide leaflets that are
stereotypical descriptions of sativa vs indica or wide- vs narrow-
leaflet drug varieties. Furthermore, the leaves with the lower

Fig. 6 Principal component analysis (PCA) of the Cannabis accessions performed on modeled leaves using the 3591 pseudo-landmarks (a–c). The first PC
explains 85.85% and the second 7.25% of variation. The images on the right show the average modeled leaf shapes for each of the (d) nine analyzed
accessions, (e) leaflet number, and (f) relative node number.
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number of leaflets have more acute leaflet tips, which slowly tran-
sition into acuminate. Additionally, the outer leaflets in the leaves
from lower nodes (and in certain accessions) are longer, than the
central leaflet, and become shorter higher up (Fig. 6d,e).

Linear discriminant analysis and prediction of genetic and
developmental identities on modeled leaves

As in the analysis of central leaflet shape before, we used LDA to
model accession, leaflet number, and relative node number as a

function of all 3591 pseudo-landmark points defining the com-
plete modeled leaves (Fig. 7). Accuracy of the model was calcu-
lated on the split dataset, treating accession and leaflet number as
categorical and relative node number as continuous variable. Lin-
ear discriminant analysis models for both accession and leaflet
number were highly accurate (73.29% and 99.38%, respectively)
(Table 4), significantly improving the results obtained by analyz-
ing solely the outline of the central leaflet (Table 2). The model
for relative node number is highly accurate as well, as inferred by
a highly significant Spearman’s rank correlation coefficient value

Table 3 Kruskal–Wallis test was used to test the Cannabis leaf shape variation along PC1 and PC2 for accessions, leaflet number, and relative node
number.

PC1 PC2
H P value H P value

Accession 112.64 < 0.0001 18.57 < 0.05
Leaflet number 204.36 < 0.0001 10.75 < 0.05
Relative node number 49.73 < 0.0001 2.98 > 0.05

The bold font indicates the values that are statistically significant.

Fig. 7 Accession, leaflet number, and relative node numbers of Cannabis leaves can be predicted independently of each other using modeled leaves.
Linear discriminant analysis (LDA) plots for (a) accession, (b) leaflet number, and (c) relative node number. In the lower row, the confusion matrices show
the true and predicted identities for (d) accessions, (e) leaflet number, and (f) relative node number using the LDA model on the split test and train dataset.
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between actual and predicted values (rho = 0.747, P < 0.0001)
(Table 4).

A confusion matrix reveals that the LDA model in most cases
had a high accuracy for predicting accession identity (Fig. 7d;
Table 4), much higher, as compared to the accuracy achieved by
using only the outline of the central leaflet (Fig. 5d; Table 2).
Accessions IK, RO1, and MN9 show practically no overlap in
LDA space, while AM15, BNG, FUT75, HU1, IKL, and MAR
show more overlap (Fig. 7a). The model showed an almost
100% success rate in determining leaflet number, again, much
higher than before.

Results of both methods revealed that leaves with only three
leaflets are markedly different from the rest, and the prediction
model on theoretical leaves consistently classified them correctly
(Fig. 7e). Leaves with five to nine leaflets showed less pronounced
differences in shape, resulting in a slightly lower accuracy of the
prediction model for these cases. However, an examination of
the confusion matrix revealed that misclassifications only
occurred once between leaves with neighboring leaflet numbers
(7 and 9 leaflets) (Fig. 7e). The marked difference in shape of
leaves with three leaflets from the rest may suggest that this devel-
opmental mechanism is biased toward variation at the base of the
shoot. Similar to leaflet number, the confusion matrix for the
relative node model reveals high rates of misclassification between
the neighboring relative node numbers, as is expected, and leaves
from lower nodes were very rarely classified as those from higher
nodes (Fig. 5f). A pronounced change in leaf shape occurs
between the relative nodes 0.3 and 0.4, while the shape changes
in later relative nodes are more gradual (Fig. 7c).

Compared with only using the modeled leaves, the accuracy of
the LDA model did not improve significantly when using a com-
bined dataset. A confusion matrix revealed that the LDA model
(Fig. S1) was slightly less successful in accession identity classifi-
cation (71.43%) but was higher for leaflet number (100%). The
Spearman’s rank correlation coefficient was slightly higher and
highly significant (rho = 0.787, P < 0.0001) (Table 5).

Discussion

Like grapevines, striking variation in leaf shape (Fig. 1) has histori-
cally played a significant role in taxonomic classification of Canna-
bis. Leaf shape and differences in phyllotaxy were among the
characters Lamarck used to describe a new Cannabis species
(Lamarck & Poiret, 1783). Anderson (1980) introduced a quanti-
tative approach by quantifying the length : width ratio of the cen-
tral leaflet. Further studies using different characters – including
plant height, stem diameter, achene shape, and phytochemical pro-
files – to characterize accessions have only confirmed the impor-
tance of leaf characteristics (Small et al., 1976; Hillig, 2005a). The
central leaflet W : L ratio has been adopted by researchers as
one of the main characters for determining species, subspecies, bio-
types, and chemotypes of Cannabis (Hillig, 2005a; Clarke & Mer-
lin, 2013; McPartland & Small, 2020). However, this method is
only able to capture a limited aspect of leaf shape variation,
neglecting other important characteristics that we measure in this
study, such as leaflet outlines, serrations, angles, and relative
changes in leaflet shape across the leaf. By modeling leaflet shape as
a function of leaflet number, we model theoretical leaves with the
same number of leaflets for which high densities of corresponding
pseudo-landmarks capture high-resolution shape features (Fig. 2).
To validate the modeling approach, we have compared the outline
of the original central leaflet and the outline of the modeled theo-
retical central leaflet. The Procrustes analysis showed that the two
leaflets are very similar in shape and that the modeling is even able
to preserve the serration pattern to some degree (Fig. 3c). The
modeling approach validated using 10 000 bootstrap replicas con-
firmed the robustness of the novel modeling approach (Fig. 3d).
This method can be applied not only on palmately composed
leaves as in Cannabis but also on pinnate and lobed leaves. To
demonstrate the proof of concept, we applied the method to a pin-
nate leaf of Cardamine flexuosa With. and lobate leaf of Quercus
macrocarpa Michx. (Fig. 8), showing the method could be applied
in other leaf types. However, the method needs to be improved

Table 4 Predictive power of genetic and developmental identities using the LDA model on the modeled Cannabis leaves.

Correct prediction (n) False prediction (n) Prediction accuracy (%) Correlation coefficient (rho) P value

Accession 118 43 73.29 NA NA
Leaflet number 160 1 99.38 NA NA
Relative node number NA NA NA 0.747 < 0.0001

NA, data not analyzed.

Table 5 Predictive power of genetic and developmental identities using the LDA model on a combined dataset created by concatenating coordinates of
modeled Cannabis leaves and the coordinates of the original central leaflets.

Correct prediction (n) False prediction (n) Prediction accuracy (%) Correlation coefficient (rho) P value

Accession 115 46 71.43 NA NA
Leaflet number 161 0 100 NA NA
Relative node number NA NA NA 0.787 < 0.0001

NA, data not analyzed.
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before being applied to other species but shows the possible utility
of intra-leaf modeling.

The method presented in this study can accurately determine
accession based on leaf shape, regardless of its developmental
stage (Fig. 7a,d). The method works effectively not only on stabi-
lized or cloned cultivar accessions but also on wild or feral acces-
sions cultivated from seed that can exhibit distinct plant
phenotypes (Table 1), indicating its robustness and potential
value in future germplasm classification. Compared with the low
accuracy and prediction ability of the previously known methods
(W : L ratio and shape analysis of central leaflets), the newly pro-
posed method demonstrates significantly improved results
(Tables 2, 4, S2, S3). The combined dataset of both, data for
modeled leaves and outline of the central leaflet, did not return
significantly better results, further confirming the effectiveness of
the new modeling approach (Table 5).

When observing the shape changes between averaged leaves for
accessions and between developmental stages, the most obvious are
changes in leaflet widths, similar to stereotypical classifications of
sativa and indica plants or wide- vs narrow-leaflet drug varieties.
However, other important changes in shape occur, such as transi-
tion from acute to acuminate leaflet tip and changes in the relative
length of outer most leaflets compared with the central leaflet that
previous methods could not successfully capture (Fig. 6d–f). The
reliance on the non-quantitative leaf shape descriptors in previous
methods has led to numerous cultivars with unreliable names,
inconsistent genetic origins, and phytochemical profiles (Sawler
et al., 2015; Schwabe & McGlaughlin, 2019; Jin et al., 2021a;
Watts et al., 2021). For example, Jin et al. (2021b) conducted a
study on clones of 21 cultivars and found a strong negative correla-
tion between the width and length ratios of central leaflets and
CBD, and a positive correlation with THC; however, Vergara
et al. (2021) and Murovec et al. (2022) were unable to confirm

these findings. All three studies used low-resolution morphometric
approaches. Sex of the plants also plays a crucial role in the canna-
bis industry, where the presence of male plants and inevitable polli-
nation leads to decreases in cannabinoid production as plants shift
the use of energy into seed development. Several methods have
been employed to differentiate between male and female plants at
early stages, but only genetic methods were successful so far (Pre-
ntout et al., 2020; Toth et al., 2020; Campbell et al., 2021; Balant
et al., 2022; Torres et al., 2022). Our results quantify the variation
in leaf shape between accessions that can potentially be used to
classify accessions and predict chemical profiles and plant sex faster
and more accurately.

Unlike grapevine, where developmental variance is orthogonal
and separate from genetic variance, in Cannabis, these two factors
are correlated. That is, the developmental source of variation is
colinear with accession identity suggests that part of the differ-
ences between accession leaf shape is explained by shifts in devel-
opmental timing, or heterochrony.

Cannabis plants demonstrate extreme phenotypic plasticity
depending on the environmental conditions in which they grows
(Small, 2015). Some Cannabis accessions are photoperiod-
dependent and can remain in vegetative phase for longer periods
of time under long-day conditions (typically 18 h : 6 h, dark-
ness : light), until the transition to short-day (12 h : 12 h, dark-
ness : light) induces the formation of the apical inflorescence.
Previous investigations showed that other morphological changes,
such as decrease in leaf area, number of leaflets per leaf, and
serration number, occur after the change in the environmental
conditions one or two nodes after (Heslop-Harrison & Heslop-
Harrison, 1958; Hesami et al., 2023). However, differences,
especially in flowering time and growth rates between cultivars,
have been observed before (de Meijer & Keizer, 1996;
Hillig, 2005a; Spitzer-Rimon et al., 2019; Carlson et al., 2021;

Fig. 8 Intra-leaf modeling of leaflets and lobes
extended to pinnate leaves: Leaves from (a)
Cardamine flexuosa and (b)Quercus
macrocarpa. Leaflets and lobes are defined by
100 equidistant pseudo-landmarks on each side,
each defined by three landmarks, two at the base
and one at the tip. Large points are placed every
20 pseudo-landmarks to emphasize that leaflet
outlines are defined by points. The landmarks
defining the base of each leaflet or lobe are
aligned to the rachis or midvein and the
transformed leaflets and lobes have been
oriented parallel to the rachis, as defined by the
landmarks at their base. The modeled leaflets and
lobes are created from second-degree polynomial
models for each x and y coordinate value for
each pseudo-landmark as a function of leaflet or
lobe number. From these models, an equivalent
number of modeled leaflets or lobes can be
reconstructed (in this case, five), permitting
morphometric analysis.
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Naim-Feil et al., 2021; Stack et al., 2021; Chen et al., 2022) and
differences in cannabinoid profiles, leaflet index, and phenological
development were proposed as characteristics to discriminate
between them (de Meijer & Keizer, 1996). Heterochronic shifts
are apparent in the differential rates in which accessions increase
leaflet number across nodes, as well as maximum and average
leaflet counts across accessions (Fig. 1). Remarkably, stages in
developmental timing are conserved despite being shifted. For
example, a significant shape change exhibited between the leaves
with three and leaves with five leaflets, with leaflets becoming
more acuminate and narrower. By contrast, changes in shape
between leaves with a higher number of leaflets were more gra-
dual. Additionally, we observed a similar shift in leaf shape
between the Nodes 0.3 and 0.4, potentially indicating a transition
between the juvenile and adult phases of leaf development. Simi-
lar results were obtained in previous research. Spitzer-Rimon
et al. (2022) demonstrated that flowering buds were initiated at
Node 7, while Moliterni et al. (2004) analyzing a different culti-
var found developing flower buds in the fourth node, suggesting
that transitions in growth phases are conserved but not synchro-
nized across cultivars. Due to the differences in developmental
timing between accessions, the use of continuous models along
the shoot could further improve the success predicting accession
identity, as was the case in grapevine (Bryson et al., 2020).

Conclusions

In grapevine, leaf shape has long been utilized for variety identifi-
cation. However, in the case of Cannabis, previous attempts were
hindered by the variability in leaflet numbers. In this study, we
present a pioneering method that successfully addresses this issue.
By generating theoretical leaves with customizable leaflet counts,
we can now employ high-resolution morphometric techniques to
accurately classify different wild/feral and cultivated Cannabis
accessions. Through the use of 3591 densely placed pseudo-
landmarks, we were able to predict the accession identity with
almost 74% accuracy. The method works well not only on stabi-
lized cultivars but also on phenotypically more variable wild/feral
accessions grown from seed. Unifying the number of leaflets
allowed us, for the first time, to make comparisons among several
leaves along the main axis, enabling us to investigate developmen-
tal changes in leaf shape and detect heterochronic mechanisms
influencing the leaf shape in Cannabis. The implications of this
new high-resolution method in both the cannabis industry and
research extend beyond its role in determining Cannabis acces-
sions. It also offers a promising tool for developmental studies,
and for studying the correlation between leaf shape and phyto-
chemical profiles and the sex of the plants, where lower resolution
methods provided inconclusive results so far. The method pre-
sented here offers a fast, effective, robust, and low-cost tool that
can aid the future classification of Cannabis germplasm. Further-
more, the use of this methodology extends beyond Cannabis and
can be applied to numerous other plant species with palmate,
pinnate, and lobate leaves with varying numbers of lobes and
leaflets where the use of geometric morphometrics methods was
not previously possible to this extent.
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Fig. S1 Accession, leaflet number, and relative node numbers
prediction of Cannabis leaves using the combined dataset.

Table S1 Prediction accuracy in Linear discriminant analysis
modeling for accession, leaflet, and relative node number using
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Table S2 Results of Kruskal–Wallis test for accession, leaflet, and
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