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Abstract—Despite the substantial success of deep learning for
modulation classification, models trained on a specific transmitter
configuration and channel model often fail to generalize well
to other scenarios with different transmitter configurations,
wireless fading channels, or receiver impairments such as clock
offset. This paper proposes Contrastive Learning with Self-
Reconstruction called CLSR-AMC to learn good representations
of signals resilient to channel changes. While contrastive loss
focuses on the differences between individual modulations, the
reconstruction loss captures representative features of the signal.
Additionally, we develop three data augmentation operators
to emulate the impact of channel and hardware impairments
without exhaustive modeling of different channel profiles. We
perform extensive experimentation with commonly used datasets.
We show that CLSR-AMC outperforms its counterpart based on
contrastive learning for the same amount of labeled data by sig-
nificant average accuracy gains of 24.29%, 17.01%, and 15.97%

in Additive White Gaussian Noise (AWGN), Rayleigh+AWGN,
and Rician+AWGN channels, respectively.

I. INTRODUCTION

RF Sensing will be an integral part of future wireless

networks (6G and beyond), enabling the learning and building

of intelligence in the network to support emerging applica-

tions such as autonomous vehicles, smart homes, and human-

computer interaction. A recent research direction, Integrated

Sensing And Communication (ISAC), has attempted to effi-

ciently unify sensing and communication systems so that they

can share the same frequency band and hardware, and also

benefit from each other, i.e., communication-assisted sensing

and sensing-assisted communication [1,2]. Adopting Auto-

matic Modulation Classification (AMC), as an intermediate

step between signal detection and signal demodulation, in the

ISAC receiver would benefit in further improving spectral ef-

ficiency and reducing receiver complexity [1] in a similar way

as it is done in cognitive radios [3,4]. Besides cognitive radios,

AMC has been crucial for many spectrum monitoring and

security applications. Thus, a reliable and robust modulation

classifier is essential to support those applications.

AMC has been studied for more than four decades. In

general, three methodological streams can be distinguished:

(1) Likelihood-Based (LB), Feature-Based (FB), and Deep

Learning (DL). LB methods define AMC as a multi-hypothesis

testing problem and can reach the optimal classification accu-

racy under the assumption of the perfect knowledge of the

signal and channel models [5,6], but at the cost of high com-

putational cost as the number of modulation classes increases

[5]. On the other hand, FB methods are developed ad-hoc,

which does not guarantee optimality [7]–[9]. The hand-crafted

discriminative features are extracted from underlying raw data

(e.g., In-phase/Quadrature (I/Q)). Their discriminative power

heavily relies on expert experience. However, the hand-crafted

features may have different values under different transmitter

and channel parameters leading to performance degradation

[10]. In contrast to LB, FB is more favorable to deploy in

practical systems due to its relatively easy implementation and

lower complexity. Due to its ability to automatically extract

discriminative features and perform classification under lower

computational cost, DL has been preferred over the other two

[6,11].

The great successes of DL for AMC are achieved under

the assumption that the training dataset (source/reference do-

main) and test dataset (target domain) share the same data

distribution [12]–[15]. In other words, transmitter configu-

ration parameters (signal shaping and sampling frequency)

and channel conditions are assumed to be known as a-priori.

However, this assumption is too strong and does not hold

in practice. DL-based AMC only learns to model existing

signals as accurately as possible. However, it cannot make

predictions with high-level confidence about signals coming

from unknown channel conditions or with unknown trans-

mitter configurations [10]. The wireless channel is inherently

dynamic, with infinite possible channel realizations. Moreover,

wireless communications systems are constantly evolving,

and each new release/generation aims to increase spectral

efficiency either by introducing new modulation formats (e.g.,

256/1024 Quadrature Amplitude Modulation (QAM) in Wi-Fi

6, up to 256 Amplitude Phase Shift Keying (APSK) in satellite

systems) or adopting self-optimization algorithms which adapt

transmitter configuration parameters (e.g., bandwidth, coding

rate, center frequency) according to the current channel condi-

tions [16,17]. Furthermore, for AMC applications such as sig-

nal interception in the military, there is no cooperation between

transmitter and interceptor to obtain transmitter configuration

parameters. Thus, the question arises: How to perform robust

modulation classification when training on all target scenarios

is impossible?

Unsupervised Domain Adaptation (DA) is a relatively new

branch in DL, which aims to align the data distributions



of source and target domains. It has achieved great success

in image processing [18,19], and a few methods have been

adopted for AMC [20]–[22]. Those methods assume that a

large amount of labeled data exists for the source domain

while there is a large amount of unlabeled data for the target

domains. Although unsupervised DA can boost the classifica-

tion performance for target unknown domains, it requires re-

training the whole Deep Neural Network (DNN) architecture

every time a new domain arises. Moreover, a domain detector

is necessary to prevent the out-dating of the trained classifier.

Further, unsupervised DA assumes that the unlabeled data are

class-balanced. However, it may not hold for data collected

in the wild. As there are infinite combinations of transmitter

and channel parameters, it is impossible to guarantee that

within such a large amount of unlabeled data, each class

has a balanced and sufficient amount of high-quality data for

each combination of transmitter and channel parameters. In

this paper, we propose data augmentation by using simple

spatial transformations of the signal constellations to generate

high-quality data from a large amount of labeled data from

one source domain. Note that the domain denotes one com-

bination of transmitter and channel parameters in this paper.

As the source domain, we choose a simple AWGN with a

Signal-Noise Ratio (SNR) of 18 dB. Unlike more complex

channel models such as Rayleigh and Rician, the collection of

labeled data for AWGN is cheaper as it does not have many

hyperparameters. We choose 18 dB as it specifies the wireless

environment (e.g., Wi-Fi and LTE) with good data speeds and

can be easily set up in real scenarios without requiring an

expensive isolation chamber. Spatial transformation operators

emulate the impact of channel and hardware impairments

on the signal constellations. We adopt contrastive learning

to learn good feature encodings that are robust on applied

spatial transformations. Contrastive learning [23] achieves it

by minimizing the distances between signal pairs that belong

to the same modulation class (positive pairs) and maximizing

the distances between signal pairs with different modulations

(negative pairs). Additionally, we add self-reconstruction to

learn the representative features that can reconstruct the orig-

inal signal from its spatial transformed version. Our proposed

framework is Contrastive Learning with Self-Reconstruction

for AMC, referred to as CLSR-AMC.

The contributions of this work are summarized as follows:

• We are the first to evaluate the robustness of contrastive

loss in cross-channel scenarios, which denote cases where

the source and target domains have different channel

parameters.

• We show that the weighted sum of contrastive, recon-

struction, and cross-entropy losses as loss function pro-

vides a better classification performance than in cases

when losses are treated independently.

• We show that the proposed data augmentation signifi-

cantly improves the supervised classification performance

up to cc. 40% in unknown channel conditions when the

amount of labeled data is large.

• We identify channel conditions in which the contrastive

and reconstruction losses mainly contribute to the accu-

racy gains of CLSR-AMC.

• We confirm that the strength of contrastive learning is

learning under limited labeled data. The classifier does

not benefit from contrastive loss if a large amount of

labeled data is available.

II. RELATED WORK

There are three possible directions to construct a reliable

and robust AMC: (1) labeling, (2) blind estimation of unknown

transmitter and channel parameters, and (3) unsupervised DA.

Below we summarize the pros and cons of each direction. As

the proposed CLSR-AMC relies on contrastive learning, we

summarize its applications for AMC to date.

A. Labeling

Fully supervised State-of-the-Art (SoA) DL-based AMC

models [12]–[15] perform well only with sufficient training

data that covers all possible combinations of channel and

transmitter parameters. Two techniques can be adopted to

improve classification performance in cases where a small

(but not sufficient) amount of labeled data exists: (1) Transfer

Learning (TL) and (2) DL-based data augmentation. TL trains

a DNN on one or multiple scenarios with sufficient labeled

data and then uses a smaller amount of labeled data from

other scenarios to retrain only a tiny part of the DNN [10].

In contrast, DL-based data augmentation methods generate

additional high-quality labeled data required for AMC training

from a small amount of seed data [24]–[26]. However, all those

techniques are unrealistic due to: (1) the labeling process,

which is, even for a small amount of data, costly, time-

consuming and tedious and usually requires the participation

of human experts; (2) the fact that the number of possible

combinations of transmitter and channel parameters is infinite.

B. Blind estimation of transmitter/channel parameters

Blind estimation of unknown transmitter and channel pa-

rameters helps to recover signals and reduce channel im-

pairments. Modulation classification and blind estimation of

channel and transmitter parameters can be done separately

[27] or jointly [28,29]. In [27], signal recovery utilizes

the cyclostationary features for carrier frequency offset and

symbol rate estimation. Afterward, the modulation classifier

extracts statistical features of the recovered signal and adopts

a decision tree as a classifier. The main drawback of cy-

clostationary features is that they cannot distinguish higher-

order modulations belonging to the same family, such as

QAM, PSK, and APSK. Further, a high number of samples is

required, which results in high computational costs. A costly

LB approach that jointly considers modulation classification

and symbol decoding under the assumption of perfect syn-

chronization in an AWGN channel with high SNR values

is presented in [28]. In contrast, [29] does not have such

an assumption and combines the features learned from both

raw and recovered signals. Signal recovery is made by linear



signal processing operations where frequency offset, noise,

and fading are compensated sequentially. Frequency offset,

noise filter parameters, and equalization filter parameters for

fading compensation are estimated using a fully supervised

DNN; thus, their estimation accuracy heavily depends on

available labeled datasets. Finally, [30] considers the dynamic

optimization of the transmit filter to adapt the signal to new

and unseen channel conditions while keeping the modulation

classifier fixed. However, this approach is not applicable to

ours as it assumes full cooperation between transmitter and

receiver.

C. Unsupervised DA

Unsupervised DA has been actively studied in image pro-

cessing, and generally, three research streams can be identified:

discrepancy-based, adversarial-based and reconstruction-based

[18,19].

1) The discrepancy-based DA: uses a certain criterion,

such as Maximum Mean Discrepancy (MMD) (measures the

distance between feature means), to fine-tune the DNN with

unlabeled target data to diminish the shift between source

and target domains. Although the discrepancy-based DA tech-

niques have been widely applied in image processing [31,32],

to our knowledge, none has been adopted for AMC.

2) The adversarial-based DA: adopts a domain discrimina-

tor, which minimizes the distance between source and target

distributions through an adversarial objective. In [22], Domain-

Adversarial Neural Network (DANN) is proposed for AMC

cross-channel scenario. DANN consists of a modulation clas-

sifier, a domain classifier, and a shared feature encoder. DANN

integrates a Gradient Reversal Layer (GRL), which treats

domain invariance as a binary classification problem while

simultaneously maximizing domain confusion loss. In contrast

to DANN, Adversarial Discriminative Domain Adaptation

(ADDA) [21] and Adversarial Transfer Learning Architecture

(ATLA) [20] separately train feature encoders for source and

target domains. ADDA addressed the cross-channel scenario

with a large amount of unlabeled target data, while ATLA

addressed the cross-sampling rate scenario (different sampling

frequencies have been adopted in source and target domains)

with a small amount of labeled target data. ATLA is a

supervised method but utilizes an adversarial-based adaptation

approach. In contrast to GRL, ADDA and ATLA are more

flexible, allowing more domain-specific features to be learned.

3) The reconstruction-based DA: assumes that the data

reconstruction of the source or target samples can help improve

the performance of DA. One example is Deep Reconstruc-

tion Classification Network (DRCN) [33], which combines a

shared encoder with two pipelines. The first pipeline connects

the encoder with a supervised classifier trained with source

labels. The second pipeline connects the encoder with a

decoder which minimizes the reconstruction error of source

and target data in an unsupervised fashion. A Long-Short Term

Memory (LSTM)-based DRCN for AMC is given in [34],

while a Convolutional Neural Network (CNN)-based DRCN

for AMC is given in [35].

D. Contrastive learning and AMC

Contrastive learning always comes with Siamese networks

[36]. There have been a few approaches for AMC based

on Siamese networks and contrastive learning [37]–[39]. In

[37], contrastive loss is used to measure the similarity of

weights at different levels of CNN. Fully supervised CNN-

based Siamese networks with contrastive loss were presented

in [38]. In contrast, in [39], pre-training the feature encoder is

done through self-supervised contrastive training (Semi-CLR)

using a large amount of unlabeled data. The pairs for Siamese

networks are made by utilizing the random rotation of the input

I/Q data sample. Thus, the contrastive loss function maximizes

the similarity between the encoded mapping of differently

augmented views for the same data sample. Afterward, the

feature encoder is frozen, and the classifier is trained using

a small amount of labeled data. Both [38] and [39] showed

that Siamese networks with contrastive loss outperform the

supervised approaches for the same amount of labeled training

data. However, both consider only one signal and channel

realization without evaluating the robustness of the feature

encoder to unseen signal and channel realizations. Moreover,

the Siamese networks and classifier are trained independently,

while this paper shows that their joint training ensures bet-

ter classification performance. Further, Semi-CLR does not

consider the correlation between samples in the same class.

Semi-CLR considers only augmented versions of one sample

as positive pairs, while all other samples in the training batch

are treated as negative pairs. However, it is highly likely that

the batch contains the samples belonging to the same class

and should be treated as positive pairs. To solve this problem,

CLSR-AMC uses class information to create correct pairs. In

sum, CLSR-AMC extends the Semi-CLR framework by (1)

adding a self-reconstruction task, (2) adopting a weighted sum

of reconstruction, classification, and contrastive losses as a loss

function, and (3) employing supervised contrastive learning.

III. METHODOLOGY

This section describes the core of CLSR-AMC, including

the signal model fed to the input of AMC, preliminaries, the

proposed structure, and the optimization process.

A. Signal model

Assume that one active transmitter sends a vector of com-

plex symbols s ∈ C
Ns . The symbols are encoded by adopting

modulation format m from a pool of known modulations M.

The encoded symbols are shaped with a pulse of duration T
and upconverted to center frequency fc, forming the trans-

mitted signal s(t). This signal is transmitted over a dynamic

wireless fading channel modeled with an impulse response h.

Assuming one antenna at the receiver, after down-conversion,

the distorted and noise-corrupted received signal, r(t), is given

as

r(t) = ej(φ0−2π∆ft)s(t−∆t)⊛ h(t, τ) + v(t), (1)

where ∆t is the timing offset, ∆f is the common frequency

offset, φ0 is the phase offset, v(t) is AWGN with mean 0 and



variance 2σ2
v , and τ represents the delays of the multipath

wireless channel. The received signal, r(t), is sampled in

the time domain with Nyquist frequency 1/Tr. The sampling

instance at timestep k is given as tk = ∆t + k · Tr. Thus,

the length of source samples Ns and received samples Nr are

related as Nr = Ns · ⌈
T
Tr

⌉.

The Nr raw I/Q samples are referred to as an instance,

represented as a matrix S with dimensions 2 − by − Nr,

where the first row holds I values, and the second row holds

the corresponding Q values. The AMC’s task is to select a

modulation format m̂ correctly from M by examining the

received signal, r(t) represented by the Nr complex samples

in matrix S.

B. Problem definition

This paper focuses on the DA setting, where only one source

domain has a large amount of labeled data. There are multiple

target domains with unlabeled data. The unlabeled target data

is not available during training. The source domain, denoted by

Ds, is composed of ns labeled instances {sj ,mj}
ns

j=1, where

sj ∈ Ss and mj ∈ Ms denote the raw input space and label

space of the source domain, respectively. Note that the raw

input space Ss is set of ns matrices S, Ss = {Si|i = 1, ..., ns}.

Similarly, the target domains, denoted by Dt, contain nt

instances {sj ,mj}
nt

j=1, where sj ∈ St and mj ∈ Mt. In this

paper, only homogeneous classification tasks are considered.

Therefore, there is Ms = Mt = M = {1, 2, ...,M}, where

M is the number of modulation classes.

Given the labeled source domain Ds, the objective of a

deep DA network is to learn a functional mapping g : S −→
M, where S = Ss ∪ St. The functional mapping g can be

decomposed into a feature encoder and a label predictor. The

feature encoder maps the instances to a latent feature space

Z . The label predictor maps the latent features to the label

space. The details of how the functional mapping g is found

are explained in the following text.

C. Contrastive Learning with Self-Reconstruction for AMC

CLSR-AMC framework includes data augmentation and

DNN architecture. Both are detailed below. Additionally, the

definitions of losses adopted for optimizing the weights are

given. The optimization of DNN architecture and its hyperpa-

rameters is detailed, as well.

1) Data augmentation: Data augmentation aims to imper-

sonate low or high channel impact on signal constellations

such as rotation and distortion. CNN-based AMCs learn spatial

features [10], and any spatial transformation of the signal con-

stellations may help the feature encoder to learn better feature

encodings. Adding Gaussian noise and rotation of the signal

constellations have been widely used for data augmentation

in AMC [39,40]. In addition, we add a novel augmentation

method named Concatenation and downsampling. We briefly

summarize each of them below.

1) Adding Gaussian noise: The received signal is distorted

by adding Gaussian noise with zero mean value and

random variance σ2.

Figure 1: Augmentations of BPSK constellation (SNR=18 dB)

2) Rotation of the signal constellation: Rotation emulates

the impact of phase offset. The phase offset might

be introduced by fading channels or local oscillators.

Augmented I/Q values by rotation with random angle θ
are calculated as

sr =

[

Î

Q̂

]

=

[

cos θ − sin θ

sin θ cos θ

]

·

[

I

Q

]

. (2)

3) Concatenation and downsampling (CaD): One signal

is augmented twice by using previous operations. The

augmented signal versions are first downsampled by

factor 2 and then concatenated. This operation imperson-

ates the impact of Rician fading with one Line-Of-Sight

(LOS) signal path.

The allowed ranges for σ and θ define the type of aug-

mentation: (1) weak or (2) strong. Weak augmentation adds a

small amount of white Gaussian noise with σ ∈ [0.006, 0.02]
and small rotation with θ ∈ [−30 : 10 : 30]

◦

. On the other

hand, strong augmentation adds a bit higher amount of white

Gaussian noise with σ ∈ [0.02, 0.05] and a rotation with θ ∈
[−90 : 30 : 90]

◦

. Data augmentation is run for each instance in

the source domain. One run of data augmentation on a certain

instance outputs four new augmented instances: (1) pure weak

augmented instance, (2) pure strong augmented instance, (3)

concatenation of two weakly augmented instances, and (4)

concatenation of one weakly augmented instance and one

strongly augmented instance. Fig. 1 shows the output of

data augmentation for a simple BPSK signal at SNR = 18
dB. Generated augmented instances are merged with non-

augmented instances, forming the new labeled dataset used for

the training of CLSR-AMC. Each augmented instance tracks

its corresponding non-augmented instance, which is used for

reconstruction loss.

2) Architecture overview: The DNN architecture of CLSR-

AMC is illustrated in Fig. 2. The architecture consists of three

branches: (1) contrastive learning, (2) classification, and (3) re-

construction. Contrastive learning and reconstruction branches

are used only for training, while the classification branch

operates alone in the testing stage. Each branch shares the

same feature encoder but with different inputs. The contrastive

learning branch uses both inputs to force the feature encoder

to learn features invariant to augmentations. The classification

branch uses the first input, while the reconstruction branch



Figure 2: CLSR-AMC framework. The classification branch consists of blocks shaded in green. The reconstruction branch consists of blocks shaded in blue.
The contrastive learning branch consists of blocks shaded in orange. All branches are used in the training stage, while only the classification branch is used
in the testing stage.

uses the second input. However, each branch contributes

to the loss function as described below. The structure and

hyperparameters optimization of each branch are given below.

3) Loss function: The weights of the feature encoder are

updated over training epochs to minimize the loss function,

which is given as a weighted sum of contrastive loss Lc,

reconstruction loss Lr and cross-entropy loss Lce.

L = αcLc + αrLr + αceLce, (3)

where αc, αr and αce are positive weights coefficients for

contrastive loss, reconstruction loss and cross-entropy loss,

respectively. The weight coefficient values range between 0

and 1 such that αc + αr + αce = 1.

a) Cross-entropy loss: Categorical cross-entropy [41]

measures the difference between two probability distributions.

Softmax is utilized to convert the learned classification embed-

dings into the probability of the input signal belonging to each

candidate modulation. When used as a loss function, the two

underlying distributions are the predictions and the true classes

of the samples. Categorical cross-entropy can be written as:

Lce = −
1

NB

NB
∑

i=1

M
∑

j=1

yi,j · log(ŷi,j), (4)

where yi,j represents the ground truth, ŷi,j is the prediction,

M is the number of modulation classes, and NB is the training

batch size.

b) Reconstruction loss: This paper defines reconstruc-

tion loss as Mean-Squared Error (MSE) between the non-

augmented instance and the consequent reconstructed instance

by decoder. It can be expressed as

Lr =
1

NB

NB
∑

i=1

(si − ŝi)
2, (5)

where NB is the training batch size.

c) Contrastive loss: Contrastive loss, originally proposed

in [23], runs over pairs of samples, unlike loss functions that

sum over samples, such as cross-entropy loss. Mathematically,

contrastive loss is given below:

Lc =
1

2NB

NB
∑

i=1

(1− yi) · (dci)
2 + (yi) · {max(0, q − dci)}

2,

(6)

where NB is the training batch size, the value of yi is the

true label (0 for positive pairs, 1 for negative pairs), dc is

the distance measure between feature embeddings of the input

samples, and q > 0 is the hyperparameter called margin, which

controls whether the distance of negative pairs contributes to

the loss [23].

As in [39], this paper adopts a cosine distance to measure

the similarity between feature embeddings of input samples,

si, sj , and is given as follows:

dc(zi, zj) =
zTi zj

∥zi∥
2
∥zj∥

2 , (7)

where ∥·∥ denotes the l2 norm.

4) Optimization: CLSR-AMC framework adopts Aggre-

gated Residual Transformations for Deep Neural Net-

works (ResNeXt)-based architecture for the feature encoder.

ResNeXt is CNN-based architecture that adds identity short-

cuts to remove the vanishing gradient problem in CNNs [42].

The ResNeXt-based methods outperform traditional CNN-

based AMC, as shown in [10,13]. The decoder shares the

same structure as the feature encoder, where Pooling layers

are replaced with Upsampling layers, and Convolutional layers

are replaced with Convolutional transpose layers. The clas-

sification head consists of a few Dense layers. The number

of ResNeXt blocks in the feature encoder and decoder, and





Table I: CLSR-AMC average accuracy (%) for different weight values in the
loss function (Eq. 3).

Weights
Baseline dataset

AWGN Rayleigh Rician

GA optimized 81.65 68.76 61.06

αce = 1, αr = αc = 0 80.95 68.93 59.71

αc = 1, αr = αce = 0 55.95 52.01 45.84

αr = 1, αc = αce = 0 41.41 37.75 34.51

αce = 0, αc = αr = 0.5 62.30 57.50 50.87

A. Impact of loss function weights on performance

CLSR-AMC adopts the loss function as the weighted sum

of contrastive αc, reconstruction αr, and cross-entropy αce

losses. The weight values are optimized by GA[43] and the

resulting values are αc = 0.75, αr = 0.11 and αce = 0.14.

Note that these values are optimal for the best-found feature

encoder’s DNN architecture (see Fig. 3). They may differ for

the other architectures. To justify gains due to the GA-found

weight values, we run four experiments with manually set

values: (1) αce = 1, αr = αc = 0, (2) αc = 1, αr = αce = 0,

(3) αr = 1, αc = αce = 0, and (4) αce = 0, αr = αc = 0.5.

In the last three experiments, CLSR-AMC is first trained

with defined weight values. Afterward, the feature encoder is

frozen, and the classification head is re-trained with the labeled

dataset. All presented results are on the baseline dataset. The

accuracies are averaged for the entire SNR range of [−6, 20]
dB and summarized in Table I.

Table I shows that CLSR-AMC with GA-optimized weights

achieves the best results. CLSR-AMC behaves as the super-

vised classifiers with the augmented dataset when the cross-

entropy loss is only active. Contrastive loss learns better

classification features than reconstruction loss by achieving

14.54%, 14.26%, and 11.33% higher accuracy in the AWGN,

Rayleigh, and Rician channels, respectively. For a case when

CLSR-AMC is trained jointly for contrastive and reconstruc-

tion losses, it achieves higher accuracy by 6.35%, 5.49%, and

5.03% in AWGN, Rayleigh, and Rician channels, respectively,

than in the case when it is trained only with contrastive loss.

B. Impact of the amount of augmented data on performance

One run of data augmentation per instance outputs four

augmented instances. We choose the four augmentations per

instance to ensure that each instance in the source domain has

its weak and strong augmentations for both operations rotation

and CaD. To assess whether CLSR-AMC achieves better

classification performance if the number of data augmentation

runs per instance increases, we run three experiments with

(1) 8, (2) 12, and (3) 16 runs of data augmentation per

instance. The accuracies are averaged over the entire SNR

range, SNR = [−6, 20] dB, and the results are presented in

Table II.

Table II shows that accuracy values differ by a maximum of

2% in each channel and for each considered number of data

augmentation runs. Four runs per instance are enough if there

is a large amount of labeled data. However, a larger number

of runs might be needed for a small amount of labeled data,

as shown later.

Table II: CLSR-AMC average accuracy for different number of data augmen-
tation run per instance

Number
Baseline dataset

AWGN Rayleigh Rician

4 81.65 68.76 61.06

8 81.88 69.30 62.10

12 80.98 70.53 61.17

16 81.72 70.36 63.34

C. CLSR-AMC vs baselines for cross-channel scenarios

As CSLR-AMC includes both data augmentation and

weighted loss function, it is necessary to identify performance

gain due to the data augmentation and performance gain

due to the weighted loss function. To assess the benefit of

the proposed weighted loss function, we compare CLSR-

AMC with Semi-CLR and supervised baselines (1D-CNN and

ResNeXt-STN) for different amounts of available labeled data.

On the other hand, to assess the benefit of data augmentation,

we compare CLSR-AMC with supervised baselines (1D-CNN,

LSTM-DRCN, ResNeXt-STN) when we borrow data augmen-

tation them. The comparison is made for both datasets.

1) CLSR-AMC: Performance gain due to the loss function:

Semi-CLR originally assumes that it has two labeled signal

samples for each SNR/modulation pair and a large amount

of class-balanced unlabeled data. In contrast, CLSR-AMC

assumes that it has only a large amount of labeled data for

each modulation at SNR of 18 dB. Semi-CLR includes a ro-

tation as data augmentation. First, we will evaluate Semi-CLR

robustness to channel model changes. Second, we will evaluate

the benefits of the proposed weight loss function in CLSR-

AMC under a limited amount of labeled data. Hence, we run

three experiments depending on which data are available to

Semi-CLR for training: (1) only labeled data for SNR = 18
dB in AWGN, (2) labeled data for SNR = 18 dB and

unlabeled data for the entire SNR range, SNR = [−6, 20] dB

in AWGN, (3) two labeled signal samples for each modulation

and SNR combination and unlabeled data for the entire SNR

range, SNR = [−6, 20] dB in AWGN. For the first two

experiments, CLSR-AMC is trained with its original settings,

while for the third experiment, CLSR-AMC is trained under

the same settings as Semi-CLR but without the usage of

unlabeled data. For each experiment, 1D-CNN and ResNeXt

are trained with available labeled data plus augmented data as

the output of one run of data augmentation per each instance in

the labeled dataset. The classification accuracies are averaged

for the entire SNR range and summarized in Table III.

CLSR-AMC significantly outperforms Semi-CLR for each

experiment and both datasets. CLSR-AMC and supervised

classifiers perform better when a large amount of labeled

data is available just for one SNR value than when there

are only two labeled signal samples per each SNR value. As

data augmentation provides instances for other SNR values

and channel models, they can generalize well for the entire

SNR range in each channel. In contrast, one run of data

augmentation is not enough when there are only two samples

per SNR value. The supervised classifiers are overfitting,

and for the baseline dataset their performance significantly



Table III: Average classification accuracy (%) for CLSR-AMC vs baselines in different cross-channel scenarios.

Exp.
Tested for

Baseline dataset Extended dataset

CLSR-AMC Semi-CLR 1D-CNN ResNeXt-
STN

CLSR-AMC Semi-CLR 1D-CNN ResNeXt-
STN

#1

AWGN 81.65 46.10 73.46 79.05 69.60 26.25 63.85 72.26

Rayleigh 68.76 41.67 63.48 69.94 58.02 23.97 55.07 63.09

Rician 61.06 36.25 59.06 62.95 44.83 17.50 44.89 42.66

#2

AWGN 81.65 42.94 73.46 79.05 69.60 30.26 63.85 72.26

Rayleigh 68.76 41.56 63.48 69.94 58.02 27.89 55.07 63.09

Rician 61.06 40.39 59.06 62.95 44.83 23.10 44.89 42.66

#3

AWGN 70.54 46.25 49.46 46.04 55.84 30.15 39.24 44.40

Rayleigh 60.88 43.87 47.72 43.62 47.31 28.73 37.28 40.21

Rician 53.63 37.66 44.74 44.57 39.82 22.17 33.37 32.03

drops by 33.01/24%, 26.32/15.76%, and 18.38/14.32% for

ResNeXt-STN/1D-CNN in the AWGN, Rayleigh, and Rician

channels, respectively. The drop values are similar for the

extended dataset for both ResNeXt-STN and 1D-CNN. On the

contrary, CLSR-AMC can perform quite well even under such

a limited amount of data. Its accuracy drops are much lower,

and they are 11.11/13.76%, 7.88/10.71%, and 7.43/5.01%
for the baseline/extended dataset in the AWGN, Rayleigh,

and Rician channels, respectively. Semi-CLR performs the

worst for the first experiment, where only labeled data are

available without unlabeled data. In the other two experiments,

it has the same performance. Compared to Semi-CLR for the

baseline dataset, CLSR-AMC has a higher average accuracy

of 24.29%, 17.01%, and 15.97% in the AWGN, Rayleigh,

and Rician channels, respectively. CLSR-AMC also achieves

similar accuracy gains for the extended dataset. Table III shows

that CLSR-AMC benefits from the proposed weighted loss

function in a case with a small amount of labeled data. In

contrast, data augmentation dominates for a larger amount of

labeled data, as shown later.

2) CLSR-AMC: Performance gain due to the data augmen-

tation: The comparison with supervised baselines (1D-CNN,

LSTM-DRCN, and ResNeXt-STN) is suitable to assess the

performance gain due to the data augmentation. Thus, we

run three experiments: (1) supervised baselines are trained for

AWGN with a large amount of labeled data for the entire

SNR range, SNR = [−6, 20] dB, (2) supervised baselines are

trained for AWGN with a large amount of labeled data with

SNR = 18 dB, and (3) supervised baselines are trained for

AWGN with a large amount of labeled data with SNR = 18
dB with included proposed data augmentation where four

augmented signals are added per each labeled signal sample.

CLSR-AMC is trained only for AWGN and SNR = 18 dB

with its data augmentation. Such trained models are evaluated

in the AWGN, Rayleigh, and Rician channels.

Fig. 5 and Fig. 6 show accuracy versus SNR in different

channels for the baseline and extended datasets, respectively.

All baselines experience significant accuracy drops by cc.

30%, 40% and 60% in AWGN with the unknown SNR,

Rayleigh, and Rician channels, respectively (see Figs. 5 and 6,

middle column). The proposed data augmentation helps each

baseline to boost accuracy up to cc. 40% for unknown channel

conditions (see Figs. 5 and 6, right column). CLSR-AMC

performs similarly in fading channels as the supervised base-

lines with the augmented dataset. CLSR-AMC achieves the

accuracy gain due to contrastive loss in the AWGN channel

for SNR > 10 dB. The accuracy gains are up to 7.8%, 13.8%,

and 6.8% versus ResNeXt-STN, 1D-CNN, and LSTM-DRCN,

respectively, for the baseline dataset (see Fig. 5 right top).

The accuracy gains are up to 4.8%, 13.0%, and 5% versus

ResNeXt-STN, 1D-CNN, and LSTM-DRCN, respectively, for

the extended dataset (see Fig. 6 right top). A gain due to recon-

struction loss can be noticed for low SNR values in AWGN

and is equal to 4%, 5%, and 10.2% versus ResNeXt-STN,

1D-CNN, and LSTM-DRCN, respectively, for the baseline

dataset. In the Rayleigh channel, LSTM-DRCN and CLSR-

AMC achieve the best performance due to reconstruction

loss in their loss functions. Fig. 5 and Fig. 6 show that

reconstruction loss can deal with the Rayleigh fading but not

with the Rician fading.

VI. CONCLUSIONS

Supervised DL-based modulation classifiers are very sen-

sitive to changes in the transmitter and channel parameters

as such variations cause large data distribution shifts. A

few unsupervised DA methods have been adopted to combat

distribution shifts, but under the unrealistic assumption of

a large and complete class-balanced unlabeled dataset that

covers each possible combination of transmitter and channel

parameters. That assumption does not hold in the wild because

the possible combinations of transmitter and channel param-

eters is unbounded. In this paper, we proposed CLSR-AMC,

which assumes that only a large amount of labeled data is

collected in the simplest channel conditions, AWGN with an

SNR of 18 dB. CLSR-AMC applies simple data augmentation

operations to emulate the impact of fading channels or in

general data distribution changes to the signal constellations.

It is shown that with four augmentations per labeled instance,

the classification performance improves up to cc. 40% in

unknown channel conditions. We showed that the proposed

weighted sum of contrastive, reconstruction and cross-entropy

losses provides better results than when they are treated inde-

pendently. The weighted loss function outperforms the fully

supervised baselines in the high SNR, simple AWGN channel

regime by 6.8% and 5%, when trained on the same augmented

and labeled baseline and extended datasets, respectively. This

means all networks are trained on exactly the same data, but

our proposed method learns the differences between domain
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Figure 5: CLSR-AMC comparison with the supervised classifiers in different channels (AWGN top, Rayleigh middle, Rician bottom) and the baseline dataset
when classifiers are trained for: AWGN SNR = [−6, 20] dB (left); AWGN SNR = [18] dB (middle); AWGN SNR = [18] dB including proposed data
augmentation for all baselines (right). CLSR-AMC is trained for AWGN SNR = [18] dB and includes data augmentation.
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Figure 6: CLSR-AMC comparison with the supervised classifiers in different channels (AWGN top, Rayleigh middle, Rician bottom) and the extended dataset
when classifiers are trained for: AWGN SNR = [−6, 20] dB (left); AWGN SNR = [18] dB (middle); AWGN SNR = [18] dB including proposed data
augmentation for all baselines (right). CLSR-AMC is trained for AWGN SNR = [18] dB and includes data augmentation.

variations and class variations better. The results in addition

show that the reconstruction loss can combat the impact of the

Rayleigh fading, but not the Rician fading. This paper covers

only distribution shifts due to channel parameters’ changes.

The future work will cover distribution shifts due to transmitter

parameters’ changes by adding corresponding augmentation

operations in CLSR-AMC to emulate their impacts to signal

constellations.
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