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Channel and hardware impairment data

augmentation for robust modulation classification
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Abstract—Deep learning has achieved remarkable results in
modulation classification under two assumptions: a large amount
of labeled class-balanced data is available, and the test data
and training data follow the same distribution. However, due
to channel and hardware impairments, it is implausible that
these assumptions hold in practice. This paper proposes Model-
based Data Augmentation for Deep learning-based Modulation
Classification (MDA-DMC), to build a high-quality dataset from
a small amount of labeled seed data. MDA-DMC leverages two
well-known augmentation methods: adding Gaussian noise to,
and rotation of the seed signal constellations. Furthermore, we
develop two novel augmentation methods to combat channel
and hardware impairments: radial shift and stretching of the
signal constellations. We are the first to investigate the correlation
between these augmentation methods and the channel/hardware
impairments, demonstrating the adverse effect of the rotation
and stretching of signal constellations on classifier performance.
Consequently, the dataset must incorporate both augmenta-
tions to counterbalance performance degradation. MDA-DMC
compensates for hardware impairments when training and test
data channel models are identical. It also addresses fading
impairments with a few AWGN seed data for low-order mod-
ulation formats. However, classifiers trained on the augmented
dataset struggle to generalize channel impairments effectively
with higher-order modulation formats.

Index Terms—Modulation Classification, Deep Learning, Data
augmentation.

I. INTRODUCTION

A
S an intermediate step between signal detection

and demodulation, Automatic Modulation Classification

(AMC) initially emerged within military contexts to analyze

intercepted enemy signals [1]. Beyond its military applica-

tions, AMC has found extensive use in cognitive radios, where

it enhances spectral efficiency and reduces receiver complex-

ity [2], [3]. Leveraging the same advantages as in cognitive

radios, AMC has been identified as the most fundamental

part of intelligent transceivers for 5G and beyond networks

[4] and future underwater optical wireless communications

[5]. Given these communication environments’ dynamic and

complex nature, the importance of a reliable and impairments-

resilient modulation classifier cannot be overstated.

In the literature, the AMC methods are broadly categorized

into three groups: (1) Likelihood-Based (LB), Feature-Based

(FB), and Deep Learning (DL)-based (DLB). LB methods

treat AMC as a multi-hypothesis testing problem where the
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maximum likelihood criterion is applied to the received sig-

nal directly or after some simple transformations, such as

averaging [6], [7]. While LB classifiers can achieve optimal

classification accuracy, they are computationally intensive and

rely on the impractical assumption of perfect knowledge of

signal and channel models, making them sensitive to unknown

channel conditions and hardware discrepancies like Sampling

Clock Offset (SCO), Carrier Frequency Offset (CFO) and In-

phase/Quadrature (I/Q) imbalance. Conversely, FB methods

are developed on an ad-hoc basis and lack optimality in the

Bayesian sense [8], [9], [10]. These methods involve manually

selecting discriminative features from raw data, such as I/Q

or Power Spectral Density (PSD). This approach is labor-

intensive and struggles to model all channel and hardware

discrepancies, potentially leading to performance degradation

[11]. Recently, DL has achieved great success in AMC due

to its ability to automatically extract discriminative features

using multiple hidden layers with non-linear activations [7],

[12]. DLB classifiers offer higher classification accuracy and

lower computational cost, making them the preferred choice

among the three classifier groups.

Most of the proposed DLB classifiers [13], [14], [15], [16]

achieved outstanding performance under two assumptions: (1)

there is a large amount of labeled class-balanced data, and (2)

the test dataset shares the same data distribution as the training

dataset. Data labeling typically necessitates the presence of

domain experts, leading to significant expenses. Moreover,

the numerous transmitter configuration parameters and the

omnipresence of various channel and hardware imperfections

result in limitless data distribution variations [11]. Let us

define a domain as an environment with one combination

of transmitter configuration parameters, channel and hardware

impairments. It is unrealistic to assume that labeled data can

be acquired for each domain, as the number of domains

is infinite. Many efforts have been made to enhance the

robustness of modulation classifiers across various domains,

encompassing advanced loss functions [17], [18], [19], more

sophisticated Deep Neural Network (DNN) structures [20],

[21], data augmentation techniques [22], [23] and various com-

binations thereof [19], [17]. Conventional data augmentation

applies simple mathematical operations to signal constellations

and enhances a labeled seed dataset with numerous signal

distortions to model different domains. Supervised classifiers

trained on the augmented dataset using a simple cross-entropy

loss achieve comparable performance to other classifiers em-

ploying more advanced loss functions and complex training

methods [19]. In line with the practices in image processing,

AMC data augmentation has employed two well-known aug-

mentation methods: adding Gaussian noise to, and rotation of

the signal constellations [17], [22], [19]. Those operators are
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typically applied to randomly selected noisy and already im-

paired signal constellations [22], [17]. However, data augmen-

tation performance has not received a thorough examination in

the context of AMC, leaving numerous questions unanswered.

This paper addresses three key questions: (1) the importance of

seed data quality, (2) potential performance degradation when

multiple augmentation operators are combined, and (3) the

correlation between easy-to-compute augmentation operators

and realistic signal impairments due to channel or hardware

imperfections.

This paper proposes Model-based Data Augmentation for

DLB Modulation Classification, denoted as MDA-DMC, and

carries out a thorough performance evaluation to answer the

above questions. MDA-DMC uses simple spatial and temporal

transformations of the signal constellations to generate a

domain-diverse high-quality dataset from a limited amount of

labeled seed data belonging to a single domain referred to

as a source domain. In addition to well-known augmentation

operators (i.e., adding Gaussian noise to, or rotation of the

signal constellations), we propose two novel augmentation

operators named radial shift and stretching of the signal

constellations. As the source domain, we choose a simple

scenario consisting of an Additive White Gaussian Noise

(AWGN) channel with a Signal-Noise Ratio (SNR) of 18

dB and an ideal Radio Frequency (RF) front-end. Unlike

more complex channel models such as Rayleigh and Rician,

the collection of labeled data for AWGN is cheaper as it

does not have many hyperparameters such as path delay

profiles and Doppler spread. The choice of 18 dB is driven

by two considerations: (1) It mirrors a practical wireless

environment (e.g., LTE) characterized by good signal quality

with minor channel impairments [24], [25]; (2) Obtaining data

in an environment with an SNR exceeding 18 dB, featuring

excellent LTE signal quality, is likely challenging and would

necessitate a testbed with an expensive isolation chamber

and hardware with super low sensitivity. Notably, any SNR

surpassing 13 dB (indicative of LTE good signal quality)

would yield comparable performance. We selected two base-

line classifiers: (1) the well-known simple 1D-Convolutional

Neural Network (CNN) classifier given in [14] and (2) the

more sophisticated Aggregated Residual Transformations for

Deep Neural Networks (ResNeXt)-based classifier optimized

by Genetic Algorithm (GA) proposed in [26]. Both classifiers

utilize a straightforward cross-entropy loss, as the primary

focus of this study is a comprehensive examination of data

augmentation performance rather than optimizing DNN ar-

chitecture. We selected simple and more sophisticated DNN

classifiers to compare their ability to generalize complex and

non-linear data. It is important to note that the augmented

dataset can be utilized with any other DNN architecture. The

key contributions of this paper are summarized below.

• This is the first detailed study of physical connection

between data augmentation operators and signal impair-

ments introduced by channel and hardware imperfections.

• We are the first to evaluate the robustness of DLB AMC

to hardware impairments such as CFO, SCO and IQ-

imbalance.

• We show that the proposed model-based data augmenta-

tion builds high quality dataset from a small amount of

labeled seed data and significantly improves performance

under different unseen channel and hardware impair-

ments.

• We show that the quality of seed data impacts perfor-

mance of data augmentation. The cleaner the seed data,

the more precise the emulation of channel and hardware

impairments.

The remainder of the paper is organized as follows. The

related work is presented in Section II. The preliminaries,

problem definition, and proposed data augmentation methods

are given in Section III. The results obtained from various

examined experiments are discussed in Section V. The con-

clusions are briefly presented in Section VI.

II. RELATED WORK

DL has achieved impressive breakthroughs in AMC [12],

[7] but fails when applied to signals with unseen transmit-

ter/channel parameters [11]. It also requires a large labeled

dataset to achieve high classification accuracy. Many methods

have been proposed to improve classification performance in

unseen conditions, such as blind estimation of signal and

channel parameters [27], [28], [29], unsupervised Domain

Adaptation (DA) [30], [31], [32], [18], [33], [34], Deep Metric

Learning (DML) [17], [19], Transfer Learning (TL) [11], and

data augmentation. Keeping in mind the focus of this work,

we summarize State-of-the-Art (SoA) achievements of data

augmentation methods in what follows.

Data augmentation expands the prior knowledge by aug-

menting the minimally available data samples and generating

more diverse samples to train the model. The simplest way to

enhance the modulation dataset for different noise conditions

is to add a random Gaussian noise [35], [22], [36]. Generative

Adversarial Networks (GANs) have been widely used to gen-

erate additional high-quality labeled data from a small amount

of seed data [37], [38], [39], [40]. One limitation of a GAN

is that it cannot generate data with a distribution that differs

from the existing data distribution since it attempts to learn the

feature distribution of the existing data. In contrast, Spatial

Transformer Network (STN) learns spatial transformations

and generates additional data which might have a different

distribution [11]. In [23], data is enhanced through the flip

operations designed for I/Q signal data characteristics. Two

flip operations are proposed: (1) a left-right flip done along

the center of the time axis, and (2) an up-down flip along

the origin of I/Q coordinates. In addition to adding Gaussian

noise and flipping, the rotation method is introduced in [22],

showing that the rotation augmentation method outperforms

flipping. The authors randomly select 12.5% of data from the

dataset, incorporating noisy samples with SNR ranging from

−20 dB to 20 dB. In this context, adding Gaussian noise is

anticipated to yield suboptimal results, given that introducing

noise to instances already corrupted by noise could lead to

a higher presence of instances with lower SNRs within the

dataset. Nevertheless, the evaluation of augmentation methods

is conducted on a dataset featuring a combination of channel
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and hardware impairments. Consequently, it becomes chal-

lenging to discern the correlation between impairments and

the proposed augmentation methods.

In scenarios where unlabeled data is available, one can adopt

pseudo-labeling, a technique that involves assigning labels to

such data based on the model’s predictions, as demonstrated

in [41]. Before pseudo-labeling, the feature set, consisting of

10 hand-crafted features and 30 AutoEncoder (AE)-learned

features, undergoes optimization to remove redundant and

irrelevant features by using a fast correlation-based filter.

Moreover, [41] assumes that a few labeled samples are avail-

able for each class at each SNR. Additionally, the applied

policy for pseudo-labeling cannot guarantee that the selected

label is correct, especially when applied to instances with

unknown channel and hardware imperfections due to their

substantial distribution shifts [11].

III. METHODOLOGY

This section describes the signal model fed to the classifier’s

input, problem statement, preliminaries, and proposed data

augmentation methods.

A. Signal model

This paper considers a Single-Input, Single-Output (SISO)

system over a dynamic wireless fading channel modeled with

an impulse response h(t; τ), in complex baseband equivalent

notation. The h(.; .) is a complex-valued function, τ represents

the path delays of the multipath wireless channel, and t is the

time variable. The input to the SISO system is a vector of

complex symbols a ∈ C
Ns , where Ns denotes the number of

samples per symbol. The symbols are encoded by adopting

modulation format m from a pool of known modulations M,

shaped with a pulse of duration Ts and upconverted to center

frequency fc, forming the real transmitted passband signal

s(t). The output of the SISO system is the down-converted

complex baseband signal, r(t), which is distorted and noise-

corrupted and given as

r(t) = s(t−∆t)⊛ h(t; τ)ej(φ0+2π∆ft) + v(t), (1)

where ⊛ denotes convolution in the time domain, ∆t is

a random time asynchronism between the transmitter and

receiver clocks, ∆f is the carrier frequency offset, ϕ0 is the

phase offset, and v(t) is AWGN with mean 0 and variance 2σ2
v .

The received signal, r(t), is sampled with Nyquist frequency

1/Tr, and Nr raw I/Q samples are fed to a modulation

classifier’s input. The Nr raw I/Q samples are referred to as

an instance, represented as a two-dimensional array, r, with

dimensions 2 − by − Nr, where the first row holds I values,

and the second row holds the corresponding Q values.

B. Problem definition

This paper aims to enable robust modulation classification

with limited training data for numerous combinations of chan-

nel and hardware impairments and SNR. Particularly, we target

a source domain where labeled data is empirically collected

for a single SNR (18 dB) and single channel (AWGN) across

all target modulations, and then augmented this baseline to

match a large number of realistic cases. Let r ∈ C
Nr be an

available seed instance and m ∈ M = {1, 2, ...,M} be its

output label, where M is number of modulation classes. The

source domain, denoted by Ds, consists of ns labeled seed

instances from C
Nr . The data available for the source domain

are enhanced by applying data augmentation operators that

emulate the channel and hardware impairments to obtain the

enhanced dataset Da
s with na > ns labeled instances. The size

na depends on how many seed instances are augmented with

a range of possible augmentation methods, as will be detailed

below.

Given the enhanced labeled dataset Da
s , the objective of a

DLB modulation classifier is to learn a functional mapping

g : CNr −→ M. The functional mapping g can be decomposed

into a feature encoder and a label predictor. The feature

encoder, z(r; θ) : C
Nr −→ R

L, takes an instance r and

generates an encoding vector z(r) of length L (θ denotes the

parameters of the DNN architecture for feature encoding). The

label predictor maps the encoding vectors to the label space

M. The functional mapping g is found by training the feature

encoder and label predictor on the enhanced labeled dataset,

Da
s , utilizing the cross-entropy loss.

C. Loss definition

The baseline classifiers are trained by adopting cross-

entropy loss. Categorical cross-entropy [42] is a measure of

the difference between two probability distributions. Softmax

is utilized to convert the learned classification embeddings into

the probability of belonging to each candidate modulation.

When used as a loss function, the two underlying distribu-

tions are the predictions and the true classes of the samples.

Categorical cross-entropy can be written as:

Lce = −
1

NB

NB
∑

i=1

M
∑

j=1

mi,j · log(m̂i,j), (2)

where mi,j represents the ground truth, m̂i,j is the predic-

tion, M is the number of modulation classes, and NB is the

training batch size.

D. Data augmentation

CNN-based modulation classifiers learn spatial features of

signals, i.e., signal constellations [11]. Dynamic fading chan-

nel and hardware imperfections introduce spatial transforma-

tion of the signal constellations, such as rotation, shifting, and

scaling. Modeling the channel and hardware impairments has

many degrees of freedom, making it tedious. Thus, simple

mathematical operations are proposed to enhance a limited

amount of labeled data in the source domain. We use four

augmentation methods:

1) Adding Gaussian Noise (AGN): The received signal

is distorted by adding Gaussian noise with zero mean

value and random variance σ2. The noise variance is

inversely proportional to the desired SNR level. The

emulation of passing the received signal, r, through an
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AWGN channel with a certain SNR [dB] consists of

the following steps:

a) Step 1: measure the power of the received signal

r =

[

I
Q

]

2 X Nr

as below,

Pr =
1

Nr

Nr
∑

k=1

|rk|
2; , (3)

where rk = ik+jqk denotes k-th sample in r with

in-phase value of ik and quadrature value of qk.

b) Step 2: translate SNR [dB] to linear scale

SNRl = 10SNR[dB]/10;

c) Step 3: generate Gaussian noise as

n =

[

nI

nQ

]

=

√

Pr

2 · SNRl
·

[

randn(1, Nr)
randn(1, Nr)

]

, (4)

where randn(·) generates 1 x Nr array of white

Gaussian noise samples with zero mean and unit

variance;

d) Step 4: add the generated noise to the received

signal as below,

rn =

[

Î

Q̂

]

=

[

I + nI

Q+ nQ

]

. (5)

2) Rotation of the Signal Constellation (RSC): Rotation

emulates the impact of the phase offset. The phase

offset might be introduced by fading channels or local

oscillators. The phase offset impairs each point in the

constellation, causing a rotation in the counterclockwise

direction for a positive phase offset and a rotation in

the clockwise direction for a negative phase offset. The

augmented I/Q values by rotation with random angle θ
are calculated as

rr =

[

Î

Q̂

]

=

[

cos θ − sin θ
sin θ cos θ

]

·

[

I
Q

]

. (6)

3) Stretching of the Signal Constellation (SSC): Stretch-

ing emulates the impact of the amplitude imbalance,

which occurs when the modulator’s in-phase and quadra-

ture components are not orthogonal. Noisy mixers used

for the signal downconversion are the sources of the

amplitude imbalance. A positive amplitude imbalance

causes horizontal stretching of the constellation, while a

negative amplitude imbalance causes vertical stretching.

The amplitude imbalance is characterized by the amount

of error in the amplitude, ϵr (|ϵr| > 1). A positive

amplitude-imbalanced impaired signal is given by

ri =

[

Î

Q̂

]

=

[

ϵr 0
0 1

]

·

[

I
Q

]

, (7)

while a negative amplitude-imbalanced impaired signal

is given by

ri =

[

Î

Q̂

]

=

[

1 0
0 |ϵr|

]

·

[

I
Q

]

. (8)

Note that | · | is necessary in Eq. 8 for a negative

amplitude imbalance value to ensure proper scaling

along the quadrature axis.

Algorithm 1: Radial Shift of the Signal Constellation

(RSSC)

Input: Instance r, rotation step ∆θ

Output: Radially shifted instance r̂

1 k ← 1
2 r̂ ← r

3 foreach (i, q) ∈ r do

4 θ ← k ·∆θ

rr =

[

î

q̂

]

=

[

cos θ − sin θ

sin θ cos θ

]

·

[

i

q

]

. (9)

r̂[k − 1]← (̂i, q̂)
5 k ← k + 1

6

7 return r̂

4) Radial Shift of the Signal Constellation (RSSC):

Radial shift emulates the impact of CFO and SCO

caused by the local oscillators at the transmitter and

receiver. CFO also occurs due to relative motion of the

transmitter and/or receiver. This phenomenon is well-

known as Doppler shift, and is directly proportional

to the speed and direction of motion of the transmit-

ter/receiver with respect to the direction of arrival of the

received multipath wave [43]. CFO and SCO change the

angles of points in the constellation linearly over time,

causing points in the constellation to shift radially in

the counterclockwise direction for a positive frequency

offset and in the clockwise direction for a negative fre-

quency offset. Although the points are radially shifted,

their magnitude is unchanged [44]. The implementation

of the radial shift augmentation method is described in

Algorithm 1.

The ranges of SNR, θ, ∆θ, and ϵr are explored in the

evaluation section. The optimal number of augmentations per

method and the order of performing augmentation are also

assessed in the evaluation section. Each augmented instance

is normalized before it is added to the dataset Da
s . Figs. 1

and 2 show constellations of various modulated signals with

realistic and emulated channel and hardware impairments,

respectively. While the realistic and augmented constellations

may appear similar, the performance evaluation aims to assess

the precision of emulating different channel and hardware

impairments.

IV. EXPERIMENTAL SETUP

This section will introduce the chosen classifier baselines

and selected datasets for performance evaluation. The imple-

mentation details are also summarized.

1) Datasets: Two modulations sets are used: (1) a Basic

set, containing Nmod = 11 modulation formats typically used

in the literature: BPSK, QPSK, 8-PSK, 16/64-QAM, PAM4,

GFSK, CPFSK, BFM, DSB-AM and SSB-AM; and (2) an

Extended set, containing the basic ones and nine higher-order

modulations: OQPSK, 32/128/256-QAM, 16/32/64/128/256-

APSK (Nmod = 20). Both sets are synthetically gener-

ated in MATLAB as for the data augmentation analysis we

need full control over various domains. Thus, the benchmark
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Figure 1: Constellations of several modulation types with realistic channel and hardware impairments at SNR=18 dB and

upsampling factor of 1 (SC0 = 10 ppm, CFO = 15 kHz, IQ amplitude imbalance = 5 dB, IQ phase imbalance = 5 °).

Figure 2: Constellations of several modulation types with emulated channel and hardware impairments.

datasets [45], generated for one channel model including

various random hardware impairments, are unsuitable for such

analysis. The code is published and available online1. The

source and target domains contain I/Q samples (instances)

shaped with an upsampling factor of 4 and an Raised Cosine

(RC) filter with a roll-off factor of 0.35. Instances have a

size of Nr = 128 and Nr = 1024 for the basic and the

extended modulation sets, respectively. The extended mod-

ulation set requires a longer signal observation because of

the higher-order modulations [11]. The source domain DS-

Source contains 100 instances for each modulation class for an

18 dB AWGN channel with ideal hardware. Each considered

target domain has 1000 instances for each modulation/SNR

1https://github.com/ErmaPerenda/Modulation-dataset-generation-in-MAT
LAB

pair across the whole SNR range of [−6 : 2 : 20] dB. The

data in the source domain is available during training, while

the data in the target domains is available during testing. The

target domains encompass the following channel and hardware

impairments:

1) DS-AWGN: AWGN with SNR ranging from -6 dB to

20 dB and the ideal RF front-end.

2) DS-Rayleigh: Rayleigh channel with a path profile:

delays of [0, 4.5, 8.5] µs and gains of [0,−1,−5] dB.

AWGN with SNR in the range of [−6, 20] dB is added

to the Rayleigh channel. The maximum Doppler shift is

set to 4 Hz. The RF front-end is ideal.

3) DS-Rician: Rician channel with K factor of 4, a path

profile with delays of [0, 0.25, 3, 8] µs and gains of

[0,−2,−10,−3] dB. AWGN with SNR in the range

of [−6, 20] dB is added to the Rician channel. The
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SNR value (18 dB). Those 100 instances per class are referred

to as the seed data in the text below. MDA-DMC consists of

four augmentation operators, and we will use the basic set

of modulations to explore its correlation with various channel

and hardware impairments. The overall performance of MDA-

DMC will be validated on the extended set of modulations.

A. MDA-DMC hyper-parameters settings

The MDA-DMC operators come with several hyper-

parameters whose value ranges should be determined. We

opted for the SNR range [−6, 20] dB with a 2 dB increment,

aligning with standard settings found in benchmark datasets.

We employ a trial-and-error approach to find value ranges for

other hyperparameters. The ranges are selected as a trade-off

between performance gain and dataset size. We omit the de-

tailed results for simplicity and present only the chosen ranges.

RSC achieves the best results for θ ∈ [−180, 180)° with a step

of 10°. SSC is optimal for ϵr ∈ [−4,−1) ∪ (1, 4] with a step

0.4. RSSC is optimal for ∆θ ∈ [−40 : 2 : 40]° with a step

of 2°. Notably, employing smaller steps for each MDA-DMC

operator has no adverse effect on classification performance;

however, it significantly expands the dataset size. Given the

definition of MDA-DMC operators outlined in Section III-D,

one can conclude that the classification performance is not

adversely affected by the order in which augmentations are

applied. Next, we studied the impact of each augmentation

run on dataset size and accuracy gain for each hyperparameter

separately. Our experiments revealed that conducting AGN

only once for each seed instance yields comparable gains

compared to augmenting each seed instance multiple times

for different random noise values. As the dataset size increases

linearly with each run, limiting AGN augmentations to only

one per seed instance makes sense. We obtained this observa-

tion after an analysis based on 100 seed instances. Applying

RSC, RSSC, and SSC for each hyper-parameter value to each

seed instance results in an enormous dataset, necessitating

powerful GPU servers to facilitate efficient training. Initially,

we began with randomly selecting one seed instance for each

modulation type and augmenting it per each RSC/SSC/RSSC

hyperparameter value. However, experiments demonstrated

that, for a minimum of three augmentations per hyperparame-

ter value, both classifiers effectively generalize RSC, SSC, and

RSSC-augmented instances. Performing more augmentations

per RSC/SSC/RSSC hyperparameter value does not yield

significant accuracy improvements but drastically increases

dataset size. Therefore, we chose to execute RSC/SSC/RSSC

on three randomly chosen seed instances for each correspond-

ing hyperparameter value, i.e., the total number of augmented

instances is equal to 3 ·M · (NRSC +NSSC +NRSSC), where

M is number of modulation classes and NRSC , NSSC , and

NRSSC denote number of hyper-parameter values for RSC,

SSC, and RSSC, respectively. Two augmented instances are

allocated for training and one for validation.

B. Correlation between MDA-DMC operators and chan-

nel/hardware impairments

First, we evaluate the robustness of the classifiers for

different channel and hardware impairments when they are

trained only on the labeled seed data from the source domain

(DS-Source). We refer to this case as the starting case in the

text below. Second, we compare performance gains due to the

artificially adding noisy instances per each seed instance across

the considered SNR range (i.e., SNR ∈ [−6 : 2 : 20] dB).

Next, we apply the other three MDA-DMC operators on the

AGN-augmented dataset and evaluate classifier performance

on the newly generated datasets. The results are summarized

in Tables I and II. The accuracy values for target domains,

DS-AWGN, DS-Rayleigh and DS-Rician are averaged over

the entire SNR range, [−6 : 2 : 20] dB. The accuracy val-

ues for DS-SCO, DS-CFO and DS-iqImbalance are averaged

over the entire SCO, CFO and amplitude imbalance ranges,

respectively, for 0 or 18 dB.

The amount of labeled seed instances (DS-Source) is not

sufficient for both classifiers to generalize well, leading to

notably poor performance in each channel model, as indicated

in the first row in Table I. By artificially adding one noisy

instance per seed instance for each SNR value in the range

[−6, 20] dB with a step of 2 dB, AGN augmentation built the

dataset for which ResNeXt [26] increases the average accuracy

values by 35.41%, 19.73%, and 19.88% in the AWGN,

Rayleigh and Rician channels, respectively (the second row in

Table I). On the other hand, the 1D-CNN [14] improves the av-

erage accuracy values by 16.03%, 13.99%, and 22.69% in the

AWGN, Rayleigh and Rician channels, respectively. It is worth

noting that RSC, RSSC, and SSC did not yield any significant

accuracy gains in the AWGN channel. However, ResNeXt

boosts the accuracy when trained on the RSC-augmented

dataset by an additional 13.52% and 15.78% in Rayleigh and

Rician channels, respectively. The RSC-augmented dataset is

more complex, making it challenging for 1D-CNN to capture

such complex non-linearities, thereby achieving only modest

accuracy gains of up to 3.8% in fading channels. While the

RSSC-augmented dataset enables the classifiers to achieve a

slight accuracy improvement in fading channels, the SSC-

augmented dataset confuses the classifiers more, leading to

adverse effects with accuracy drops of 7% in the Rayleigh

channel and 2.4% in the Rician channel.

In order to understand the impact of the hardware impair-

ments on classifier performance, we trained ResNeXt [26] on

a large amount of labeled AWGN data for the entire SNR

range with the ideal RF front-end. The ResNeXt is then tested

on DS-SCO, DS-CFO and DS-iqImbalance datasets. Fig. 5

shows that even a minor SCO value of ±2 ppm results in

significant drops in accuracy, specifically 61%, 56%, 40%, and

26% at SNR of 18 dB, 12 dB, 6 dB and 0 dB, respectively.

The CFO value of ±2 kHz yields nearly identical accuracy

drops as the SCO value of ±2 ppm. In contrast, ResNeXt can

tolerate the amplitude imbalance of ±5 dB. When subjected

to an amplitude imbalance of ±10 dB, ResNeXt experiences

accuracy drops of 13%, 2.46%, 1.38% and 21.86% at SNR

of 18 dB, 12 dB, 6 dB and 0 dB, respectively. 1D-CNN [14]

follows the same accuracy drop trends as ResNeXt [26].

Table II shows that adding noisy instances improves the

accuracy in the presence of hardware impairments at SNR=0

dB for both classifiers. Conversely, when we examine the SNR

of 18 dB, which matches the seed SNR, we observe distinct
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Table I: Correlation between MDA-DMC operators and channel impairments: accuracy gains/drops (%) versus the starting

case in different channels for the basic modulation set. The first row contains the reference values for dataset size and average

accuracy values (%) in the brackets for the starting case.
Trained for AWGN and Tested for

SNRs [dB]
pair

per mod./SNR
Seed data

tation
Augmen-

increase (#x)
size

Dataset DS-AWGN DS-Rayleigh DS-Rician

1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt

[18] 100 None 1 (1 100) 0 (46.74) 0 (46.05) 0 (39.4) 0 (32.78) 0 (28.87) 0 (25.03)

[18] 100 AGN 14 +16.03 +35.41 +13.99 +19.73 +22.69 +19.88

[18] 100 AGN+RSC 42 +19.23 +34.99 +17.54 +33.25 +26.57 +35.66

[18] 100 AGN+SSC 42 +18.57 +36.73 +12.96 +12.74 +21.19 +17.44

[18] 100 AGN+RSSC 42 +21.83 +34.59 +12.4 +28.28 +16.62 +21.45
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Figure 5: ResNeXt [26] sensitivity to the hardware impairments for the basic modulation set: SCO (left), CFO (middle), and

IQ imbalance (right) in AWGN at different SNRs.

behaviors from ResNeXt and 1D CNN. Specifically, ResNeXt

experiences a marginal accuracy drop of up to 5.63% for

SCO and CFO-impaired data compared to the starting case.

In contrast, 1D-CNN exhibits a slight accuracy improvement

of up to 4.50%. Both classifiers have an accuracy gain of up

to 31.08% for IQ imbalance-impaired data at SNR=18 dB.

However, Fig. 5 shows that the classifiers are robust to IQ im-

balance at high SNR values. Therefore, the AGN augmentation

method cannot combat the impact of hardware impairments as

it only eliminates a lack of noisy data. Table II shows that a

leading contributor to combating SCO and CFO is RSSC, as

it yields substantial accuracy gains of 40% and 16% for both

classifiers at SNR levels of 18 dB and 0 dB, respectively.

On the other hand, SSC provides accuracy improvements of

6.30% and 7.87% for IQ imbalance-impaired data at 18 dB for

ResNeXt and 1D-CNN, respectively. However, it is noteworthy

that RSC has a detrimental effect on IQ imbalance-impaired

data, causing a significant accuracy drop of 20% at 18 dB for

ResNeXt.

In conclusion, AGN serves as a countermeasure against

the impact of noise, while RSC, RSSC and SSC combat

fading channels, SCO/CFO, and IQ imbalance effects, respec-

tively. Interestingly, classifiers trained on the RSC-augmented

datasets experience worse performance when tested with IQ

imbalance-impaired data. In contrast, classifiers trained on

the SSC-augmented datasets experience accuracy drops when

tested in fading channels. In what follows, we will examine

how those augmentation methods work jointly and whether

the adverse effects can be alleviated by achieving a balance

between RSC and SSC augmented instances within the dataset.

C. Overall performance of MDA-DMC

We can treat each data augmentation type and all their

possible combinations as distinct domains. We split the data

augmentation process into two stages to establish balance

among the domains. In the first stage, RSC, SSC, and RSSC

are applied only to the AGN-augmented instances. In the

second stage, each augmentation method is applied to in-

stances that the other two methods have augmented, i.e.,

RSC augments the SSC- and RSSC-augmented instances;

SSC augments the RSC- and RSSC-augmented instances, and

RSSC augments the SSC- and RSC-augmented instances. RSC

has 35 angle values, SSC has 18 ϵr values, and RSSC has

40 ∆θ values. The number of augmentations for each type

and modulation/SNR pair should be balanced with the number

of seed instances. In our initial setup, there are 100 seed

instances, with 90 allocated for training and 10 for validation.

To find the optimal augmentation process, we executed four

experiments wherein we applied the AGN augmentation (1)

one, (2) two, (3) three, and (4) four times to each seed instance

per each modulation/SNR pair. In the first stage of data aug-

mentation, each augmentation type selects (1) one, (2) three,

(3) four, and (4) six instances augmented with AGN for each

modulation/SNR pair in experiments 1-4, correspondingly. In

the second phase of data augmentation, each of these three

augmentation methods selects (1) one, (2) one, (3) two, and

(4) two instances that were previously augmented by the other

two methods, corresponding to experiments 1-4, respectively.

Since SSC offers only half the potential augmentations per

instance compared to RSC and RSSC, we have two options

to balance them. We can either decrease ϵr step to 0.2 or
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Table II: Correlation between MDA-DMC operators and hardware impairments: accuracy gains/drops (%) versus the starting

case in AWGN at SNR=0 dB and SNR=18 dB with different hardware imperfections for the basic modulation set. The first

row contains the reference values for average accuracy values (%) in the brackets for the starting case.
Trained for
AWGN and

Tested for

ntation
Augme-

DS-SCO DS-CFO DS-iqImbalance
1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt

0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB

None
(13.01)

0
(29.11)

0
(13.38)

0
(43.32)

0
(12.57)

0
(31.97)

0
(14.92)

0
(50.61)

0
(25.54)

0
(59.43)

0
(16.14)

0
(63.32)

0

AGN +15.22 +4.50 +25.31 -0.56 +17.36 +4.10 +25.76 -5.63 +24.95 +4.01 +51.01 +26.50

AGN+RSC +22.12 +12.91 +26.04 +3.32 +25.59 +14.55 +26.31 +0.66 +25.31 -0.80 +48.75 +6.85

AGN+SSC +16.70 +7.07 +24.81 -0.44 +19.82 +8.14 +25.28 -7.17 +29.07 +11.88 +51.28 +32.18

AGN+RSSC +30.13 +44.68 +42.24 +39.53 +30.53 +39.80 +39.99 +32.15 +29.89 +19.85 +47.22 +23.29

Table III: Number of instances per modulation/SNR pair for

each MDA-DMC augmentation method in different domain-

balanced experiments.
Experiment AGN RSC SSC RSSC

#1 90 105 54 120

#1a 90 105 96 120

#1b 90 105 108 120

#2 180 175 90 200

#3 270 280 144 320

#4 360 350 180 400

double the number of augmentations for both stages of data

augmentation. We explored both possibilities using the same

AGN settings as in experiment 1. In particular, experiment

#1a denotes the scenario where SSC adopts an ϵr step of 0.2.

In contrast, experiment #1b maintains the same ϵr step of 0.4
as experiment #1, but doubles the number of SSC augmenta-

tions for both data augmentation stages. The SSC setting with

the best performance is selected and applied in experiments

2-4. The number of instances per modulation/SNR pair for

each augmentation method in each experiment is summarized

in Table III. We compare these experiments to the baseline

scenario, where 1000 labeled instances are accessible for each

modulation/SNR pair in AWGN for the basic modulation set,

involving both ResNeXt [26] and 1D-CNN [14]. Subsequently,

we assess the most effective augmentation approach for the

extended modulation set. The results are summarized in Ta-

bles IV and V.

The first three rows in Table IV show that it is better to

have fewer SSC augmentations compared to RSC and RSSC

augmentations. Let us compare the obtained accuracy values

for experiments 1, 1a, and 1b. The classifiers achieve the

highest accuracy gains in AWGN and fading channels for

experiment 1 with the ϵr step of 0.4, where the number of

SSC-augmented instances is half compared to the number

of RSC- and RSSC-augmented instances. With more SSC

augmentations in the training dataset, the classifiers focus more

on capturing IQ imbalance while violating the discriminative

features for channel impairments. As we observed in the earlier

analysis, the classifiers tested on SCO and CFO-impaired data

appear to be relatively insensitive to the presence of SSC

augmentations in the training dataset. Both classifiers achieve

slightly higher accuracy for IQ imbalance impairments for

the experiments with ϵr step of 0.4 (see the first three rows

in Table V) than the step of 0.2. As a trade-off between

classifier robustness to channels and hardware impairments,

for experiments 2-4, we opted for the SSC settings used in ex-

periment 1 (∆ϵr=0.4). By increasing the number of instances

per modulation/SNR pair for the augmentation methods from 1

to 6 (experiment 1 and experiment 4), the dataset size expands

by a factor of 3.5. With this larger dataset, ResNeXt achieves

a maximum accuracy gain of up to 4.36% for the Rician

channel, whereas 1D-CNN achieves a maximum accuracy gain

of 7.35% for CFO impairments. Since experiment 2 features

a training dataset size that closely matches the baseline sce-

nario’s training dataset size, we will proceed to assess their

performance for both the basic and extended modulation sets.

The augmented dataset from experiment 2 will denote MDA-

DMC augmented dataset (i.e., Da
s ) in the text below.

The augmented dataset size for both modulation sets is ap-

proximately 80% of the dataset size in the baseline case. In the

baseline case, training is conducted for AWGN with the entire

SNR range with the ideal RF front-end and experiences high

accuracy drops when tested for different channel and hardware

impairments. The proposed MDA-DMC aims to achieve the

same accuracy in AWGN with the ideal RF front-end as

the baseline case while increasing the accuracy for different

channel and hardware impairments. In all tested scenarios with

the augmented dataset, ResNeXt performs better than 1D-

CNN. The augmented dataset comprises highly complex data,

requiring a more complex and deeper DNN architecture to cap-

ture these complexities effectively. Therefore, the subsequent

analysis will focus solely on the comparison for ResNeXt.

Compared to the baseline case, ResNeXt with the aug-

mented dataset has a lower accuracy by 6.69% and 7.88%
in AWGN with the ideal RF-front end for the basic and the

extended set of modulations, respectively. On the other hand,

it has a higher accuracy by 13.50/16.81% and 17.20/11.98%
for the basic/extended modulation set in the Rayleigh and

Rician channels, respectively. Data augmentation significantly

improves the accuracy by 13.38/19.02% and 42.36/38.82%
for the basic/extended modulation set for SCO-impaired data

at SNR of 0 and 18 dB, respectively. Similarly, the accuracy

gains of 12.29/16.89% and 44.57/33.77% are achieved for

the basic/extended modulation set for CFO-impaired data at

SNR of 0 and 18 dB, respectively. In contrast, compared to the

baseline case ResNeXt with the augmented dataset has a lower

accuracy by 2.21% and 5.58% for the basic modulation set and

IQ imbalance-impaired data at SNR of 0 and 18 dB, respec-

tively. On the other hand, for the extended modulation set with

IQ imbalance-impaired data, it has a higher accuracy by 3.37%
at SNR of 18 dB while a lower accuracy by 5.96% at SNR

of 0 dB. The proposed data augmentation methods enhance

the classifiers’ resilience against SCO and CFO impairments,
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Table IV: MDA-DMC overall performance for different settings: accuracy gains/drops (%) versus the baseline case in different

channels for the basic (BD) and extended (ED) modulation sets. The first/forth row contains the reference values for dataset

size and average accuracy values (%) in the brackets for the basic/extended modulation set and the baseline case.
Trained for AWGN and Tested for

Exp. SNRs [dB] Augm. Dataset
dataset size (%)

Total training DS-AWGN DS-Rayleigh DS-Rician
1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt

Baseline [-6:2:20] No BD 100 (154 000) 0 (85.11) 0 (86.88) 0 (59.77) 0 (50.88) 0 (49.47) 0 (40.78)

#1 [18] Yes BD 46.27 -21.09 -7.11 -9.35 +10.73 -1.95 +13.21

#1a [18] Yes BD 51.32 -21.39 -8,00 -9.66 +9.43 -3.81 +12.14

#1b [18] Yes BD 52.99 -21.33 -8.18 -10.29 +9.67 -3.80 +13.26

#2 [18] Yes BD 80.63 -18.92 -6.69 -6.55 +13.50 -0.85 +17.20

#3 [18] Yes BD 127.03 -19.20 -7.39 -5.98 +14.17 +0.95 +18.51

#4 [18] Yes BD 161.52 -19.10 -5.59 -6.44 +14.51 +1.12 +17.57

Baseline [-6:2:20] No ED 0 (224 000) 0 (78.68) 0 (76.85) 0 (49.24) 0 (46.34) 0 (36.41) 0 (34.86)

#2 [18] Yes ED 85.01 -24.02 -7.88 -3.32 +16.81 +1.55 +11.98

Table V: MDA-DMC overall performance for different settings: accuracy gains/drops (%) versus the baseline case in AWGN

at SNR=0 dB and SNR=18 dB with different hardware imperfections for the basic (BD) and extended (ED) modulation sets.

The first/forth row contains the reference values for dataset size and average accuracy values (%) in the brackets for the

basic/extended modulation set and the baseline case.
Trained for AWGN and Tested for

Exp.
Ds.

DS-SCO DS-CFO DS-iqImbalance
1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt

0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB

Baseline BD
(30.92)

0
(33.67)

0
(39.71)

0
(39.18)

0
(33.66)

0
(35.08)

0
(39.88)

0
(36.67)

0
(64.86)

0
(84.71)

0
(67.53)

0
(92.42)

0

#1 BD +9.00 +33.56 +12.74 +41.54 +5.70 +28.92 +10.56 +43.72 -12.27 -13.45 -1.21 -2.46

#1a BD +9.16 +33.65 +12.59 +41.29 +5.96 +29.42 +11.41 +43.41 -12.63 -13.58 -1.74 -1.81

#1b BD +9.28 +34.10 +11.84 +41.35 +5.91 +29.75 +11.16 +44.06 -12.29 -14.16 -3.27 -2.31

#2 BD +11.28 +37.77 +13.38 +42.36 +7.52 +33.93 +12.29 +44.57 -8.86 -11.60 -2.21 -5.58

#3 BD +12.46 +39.00 +13.81 +42.79 +8.69 +35.51 +13.15 +44.98 -13.02 -12.13 -2.43 -6.59

#4 BD +14.40 +39.86 +14.36 +43.89 +10.71 +36.27 +12.99 +45.24 -10.03 -12.07 -1.19 -4.64

Baseline ED
(23.16)

0
(33.72)

0
(29.62)

0
(37.43)

0
(26.34)

0
(39.73)

0
(31.53)

0
(42.61)

0
(49.03)

0
(65.71)

0
(53.83)

0
(68.61)

0

#2 ED +14.09 +25.97 +19.02 +38.82 +10.27 +18.71 +16.89 +33.77 -6.3 -6.07 -5.96 +3.37

as evident in Fig. 6 compared to Fig. 5. The minor adverse

effects are present for AWGN and IQ imbalance-impaired data.

In comparison to the basic modulation set, both classifiers are

highly sensitive to IQ imbalance for the extended modulation

set (accuracy is less than 70% at 18 dB).

To investigate the origins of these ResNeXt performance

fluctuations, let us analyze the confusion matrices for the

extended modulation set across various testing datasets in

Figs. 7–12. Compared to the baseline case, MDA-DMC ex-

hibits misclassifications within the QAM modulation family

under conditions identical to those in which seed data are

captured, as shown in Fig. 7. Notably, it is intriguing to

observe that 100 seed instances are sufficient for distinguishing

higher-order APSK modulations. However, higher-order QAM

modulations demand more seed instances to capture all symbol

transitions adequately. In contrast to the baseline case, MDA-

DMC facilitates accurate classifications of analog, higher-

order APSK, and low-order digital modulations in Rayleigh

fading. However, intra-QAM family misclassifications persist

in the presence of Rayleigh fading. Figs. 8 and 9 illustrate that

MDA-DMC exhibits heightened sensitivity to Rician fading

at equivalent SNR. Similarly, under hardware imperfections,

MDA-DMC misclassifies QAM modulation types. Conversely,

MDA-DMC accurately classifies all other modulations under

substantial SCO impairment of 10 ppm and CFO impairment

of 5 kHz. However, under IQ imbalance, MDA-DMC ex-

periences misclassifications in APSK and QAM due to the

similarity induced by stretching, thereby adding complexity to

the classification process. The differentiation of similar com-

plex modulations under channel and hardware impairments

may require a more sophisticated DNN architecture and a

specialized loss function for the feature encoder. Nevertheless,

such considerations fall beyond the scope of the current study.

D. MDA-DMC performance under joint channel and hard-

ware impairments

The analysis above assessed the performance of MDA-DMC

in two cases: (1) hardware impairments in the presence of

AWGN and (2) fading impairments in the presence of AWGN

and with an ideal RF front end. Additionally, each hardware

imperfection was examined independently. In practical scenar-

ios, every transmitted signal encounters a variety of channels

and hardware impairments during its journey to the receiver.

RF-front ends at both the transmitter and receiver sides intro-

duce several hardware imperfections, including SCO, CFO,

and IQ imbalance. Hence, in the subsequent analysis, we

investigated the effectiveness of MDA-DMC emulation in

situations where multiple channel and hardware impairments

can coincide. First, we created a labeled DS-Mix dataset,

simulating joint channel and hardware impairments. For each

modulation/SNR pair, we generated 1000 instances experi-

encing various impairments, with SNR ranging from -6 dB

to 20 dB. Second, we run three scenarios depending on the

dataset for which the ResNeXt classifier was trained: (1) the

MDA-DMC augmented dataset, (2) the DS-AWGN dataset,

and (3) the DS-Mix dataset. Third, for each scenario we
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Figure 14: Data augmentation performance vs the seed data SNR value for different channel and hardware impairments evaluated

for the basic modulation set (left) and the extended modulation set (right).
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Figure 15: Data augmentation performance vs seed data set size for different channel and hardware impairments evaluated for

the basic modulation set (left) and the extended modulation set (right).
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