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Abstract—Deep learning has achieved remarkable results in
modulation classification under two assumptions: a large amount
of labeled class-balanced data is available, and the test data
and training data follow the same distribution. However, due
to channel and hardware impairments, it is implausible that
these assumptions hold in practice. This paper proposes Model-
based Data Augmentation for Deep learning-based Modulation
Classification (MDA-DMC), to build a high-quality dataset from
a small amount of labeled seed data. MDA-DMC leverages two
well-known augmentation methods: adding Gaussian noise to,
and rotation of the seed signal constellations. Furthermore, we
develop two novel augmentation methods to combat channel
and hardware impairments: radial shift and stretching of the
signal constellations. We are the first to investigate the correlation
between these augmentation methods and the channel/hardware
impairments, demonstrating the adverse effect of the rotation
and stretching of signal constellations on classifier performance.
Consequently, the dataset must incorporate both augmenta-
tions to counterbalance performance degradation. MDA-DMC
compensates for hardware impairments when training and test
data channel models are identical. It also addresses fading
impairments with a few AWGN seed data for low-order mod-
ulation formats. However, classifiers trained on the augmented
dataset struggle to generalize channel impairments effectively
with higher-order modulation formats.

Index Terms—Modulation Classification, Deep Learning, Data
augmentation.

I. INTRODUCTION

S an intermediate step between signal detection

and demodulation, Automatic Modulation Classification
(AMC) initially emerged within military contexts to analyze
intercepted enemy signals [1]. Beyond its military applica-
tions, AMC has found extensive use in cognitive radios, where
it enhances spectral efficiency and reduces receiver complex-
ity [2], [3]. Leveraging the same advantages as in cognitive
radios, AMC has been identified as the most fundamental
part of intelligent transceivers for 5G and beyond networks
[4] and future underwater optical wireless communications
[5]. Given these communication environments’ dynamic and
complex nature, the importance of a reliable and impairments-
resilient modulation classifier cannot be overstated.

In the literature, the AMC methods are broadly categorized
into three groups: (1) Likelihood-Based (LB), Feature-Based
(FB), and Deep Learning (DL)-based (DLB). LB methods
treat AMC as a multi-hypothesis testing problem where the
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maximum likelihood criterion is applied to the received sig-
nal directly or after some simple transformations, such as
averaging [6], [7]. While LB classifiers can achieve optimal
classification accuracy, they are computationally intensive and
rely on the impractical assumption of perfect knowledge of
signal and channel models, making them sensitive to unknown
channel conditions and hardware discrepancies like Sampling
Clock Offset (SCO), Carrier Frequency Offset (CFO) and In-
phase/Quadrature (I/Q) imbalance. Conversely, FB methods
are developed on an ad-hoc basis and lack optimality in the
Bayesian sense [8], [9], [10]. These methods involve manually
selecting discriminative features from raw data, such as 1/Q
or Power Spectral Density (PSD). This approach is labor-
intensive and struggles to model all channel and hardware
discrepancies, potentially leading to performance degradation
[11]. Recently, DL has achieved great success in AMC due
to its ability to automatically extract discriminative features
using multiple hidden layers with non-linear activations [7],
[12]. DLB classifiers offer higher classification accuracy and
lower computational cost, making them the preferred choice
among the three classifier groups.

Most of the proposed DLB classifiers [13], [14], [15], [16]
achieved outstanding performance under two assumptions: (1)
there is a large amount of labeled class-balanced data, and (2)
the test dataset shares the same data distribution as the training
dataset. Data labeling typically necessitates the presence of
domain experts, leading to significant expenses. Moreover,
the numerous transmitter configuration parameters and the
omnipresence of various channel and hardware imperfections
result in limitless data distribution variations [11]. Let us
define a domain as an environment with one combination
of transmitter configuration parameters, channel and hardware
impairments. It is unrealistic to assume that labeled data can
be acquired for each domain, as the number of domains
is infinite. Many efforts have been made to enhance the
robustness of modulation classifiers across various domains,
encompassing advanced loss functions [17], [18], [19], more
sophisticated Deep Neural Network (DNN) structures [20],
[21], data augmentation techniques [22], [23] and various com-
binations thereof [19], [17]. Conventional data augmentation
applies simple mathematical operations to signal constellations
and enhances a labeled seed dataset with numerous signal
distortions to model different domains. Supervised classifiers
trained on the augmented dataset using a simple cross-entropy
loss achieve comparable performance to other classifiers em-
ploying more advanced loss functions and complex training
methods [19]. In line with the practices in image processing,
AMC data augmentation has employed two well-known aug-
mentation methods: adding Gaussian noise to, and rotation of
the signal constellations [17], [22], [19]. Those operators are
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typically applied to randomly selected noisy and already im-
paired signal constellations [22], [17]. However, data augmen-
tation performance has not received a thorough examination in
the context of AMC, leaving numerous questions unanswered.
This paper addresses three key questions: (1) the importance of
seed data quality, (2) potential performance degradation when
multiple augmentation operators are combined, and (3) the
correlation between easy-to-compute augmentation operators
and realistic signal impairments due to channel or hardware
imperfections.

This paper proposes Model-based Data Augmentation for
DLB Modulation Classification, denoted as MDA-DMC, and
carries out a thorough performance evaluation to answer the
above questions. MDA-DMC uses simple spatial and temporal
transformations of the signal constellations to generate a
domain-diverse high-quality dataset from a limited amount of
labeled seed data belonging to a single domain referred to
as a source domain. In addition to well-known augmentation
operators (i.e., adding Gaussian noise to, or rotation of the
signal constellations), we propose two novel augmentation
operators named radial shift and stretching of the signal
constellations. As the source domain, we choose a simple
scenario consisting of an Additive White Gaussian Noise
(AWGN) channel with a Signal-Noise Ratio (SNR) of 18
dB and an ideal Radio Frequency (RF) front-end. Unlike
more complex channel models such as Rayleigh and Rician,
the collection of labeled data for AWGN is cheaper as it
does not have many hyperparameters such as path delay
profiles and Doppler spread. The choice of 18 dB is driven
by two considerations: (1) It mirrors a practical wireless
environment (e.g., LTE) characterized by good signal quality
with minor channel impairments [24], [25]; (2) Obtaining data
in an environment with an SNR exceeding 18 dB, featuring
excellent LTE signal quality, is likely challenging and would
necessitate a testbed with an expensive isolation chamber
and hardware with super low sensitivity. Notably, any SNR
surpassing 13 dB (indicative of LTE good signal quality)
would yield comparable performance. We selected two base-
line classifiers: (1) the well-known simple 1D-Convolutional
Neural Network (CNN) classifier given in [14] and (2) the
more sophisticated Aggregated Residual Transformations for
Deep Neural Networks (ResNeXt)-based classifier optimized
by Genetic Algorithm (GA) proposed in [26]. Both classifiers
utilize a straightforward cross-entropy loss, as the primary
focus of this study is a comprehensive examination of data
augmentation performance rather than optimizing DNN ar-
chitecture. We selected simple and more sophisticated DNN
classifiers to compare their ability to generalize complex and
non-linear data. It is important to note that the augmented
dataset can be utilized with any other DNN architecture. The
key contributions of this paper are summarized below.

o This is the first detailed study of physical connection
between data augmentation operators and signal impair-
ments introduced by channel and hardware imperfections.

o We are the first to evaluate the robustness of DLB AMC
to hardware impairments such as CFO, SCO and IQ-
imbalance.

o We show that the proposed model-based data augmenta-
tion builds high quality dataset from a small amount of
labeled seed data and significantly improves performance
under different unseen channel and hardware impair-
ments.

e We show that the quality of seed data impacts perfor-
mance of data augmentation. The cleaner the seed data,
the more precise the emulation of channel and hardware
impairments.

The remainder of the paper is organized as follows. The
related work is presented in Section II. The preliminaries,
problem definition, and proposed data augmentation methods
are given in Section III. The results obtained from various
examined experiments are discussed in Section V. The con-
clusions are briefly presented in Section VI.

II. RELATED WORK

DL has achieved impressive breakthroughs in AMC [12],
[7] but fails when applied to signals with unseen transmit-
ter/channel parameters [11]. It also requires a large labeled
dataset to achieve high classification accuracy. Many methods
have been proposed to improve classification performance in
unseen conditions, such as blind estimation of signal and
channel parameters [27], [28], [29], unsupervised Domain
Adaptation (DA) [30], [31], [32], [18], [33], [34], Deep Metric
Learning (DML) [17], [19], Transfer Learning (TL) [11], and
data augmentation. Keeping in mind the focus of this work,
we summarize State-of-the-Art (SoA) achievements of data
augmentation methods in what follows.

Data augmentation expands the prior knowledge by aug-
menting the minimally available data samples and generating
more diverse samples to train the model. The simplest way to
enhance the modulation dataset for different noise conditions
is to add a random Gaussian noise [35], [22], [36]. Generative
Adversarial Networks (GANs) have been widely used to gen-
erate additional high-quality labeled data from a small amount
of seed data [37], [38], [39], [40]. One limitation of a GAN
is that it cannot generate data with a distribution that differs
from the existing data distribution since it attempts to learn the
feature distribution of the existing data. In contrast, Spatial
Transformer Network (STN) learns spatial transformations
and generates additional data which might have a different
distribution [11]. In [23], data is enhanced through the flip
operations designed for I/Q signal data characteristics. Two
flip operations are proposed: (1) a left-right flip done along
the center of the time axis, and (2) an up-down flip along
the origin of I/Q coordinates. In addition to adding Gaussian
noise and flipping, the rotation method is introduced in [22],
showing that the rotation augmentation method outperforms
flipping. The authors randomly select 12.5% of data from the
dataset, incorporating noisy samples with SNR ranging from
—20 dB to 20 dB. In this context, adding Gaussian noise is
anticipated to yield suboptimal results, given that introducing
noise to instances already corrupted by noise could lead to
a higher presence of instances with lower SNRs within the
dataset. Nevertheless, the evaluation of augmentation methods
is conducted on a dataset featuring a combination of channel
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and hardware impairments. Consequently, it becomes chal-
lenging to discern the correlation between impairments and
the proposed augmentation methods.

In scenarios where unlabeled data is available, one can adopt
pseudo-labeling, a technique that involves assigning labels to
such data based on the model’s predictions, as demonstrated
in [41]. Before pseudo-labeling, the feature set, consisting of
10 hand-crafted features and 30 AutoEncoder (AE)-learned
features, undergoes optimization to remove redundant and
irrelevant features by using a fast correlation-based filter.
Moreover, [41] assumes that a few labeled samples are avail-
able for each class at each SNR. Additionally, the applied
policy for pseudo-labeling cannot guarantee that the selected
label is correct, especially when applied to instances with
unknown channel and hardware imperfections due to their
substantial distribution shifts [11].

III. METHODOLOGY

This section describes the signal model fed to the classifier’s
input, problem statement, preliminaries, and proposed data
augmentation methods.

A. Signal model

This paper considers a Single-Input, Single-Output (SISO)
system over a dynamic wireless fading channel modeled with
an impulse response h(t;T), in complex baseband equivalent
notation. The h(.;.) is a complex-valued function, 7 represents
the path delays of the multipath wireless channel, and ¢ is the
time variable. The input to the SISO system is a vector of
complex symbols a € CV+, where N, denotes the number of
samples per symbol. The symbols are encoded by adopting
modulation format m from a pool of known modulations M,
shaped with a pulse of duration 7 and upconverted to center
frequency f., forming the real transmitted passband signal
s(t). The output of the SISO system is the down-converted
complex baseband signal, r(¢), which is distorted and noise-
corrupted and given as

r(t) = s(t — At) ® h(t;7)ed Cot2TAID L@y, (1)

where ® denotes convolution in the time domain, At is
a random time asynchronism between the transmitter and
receiver clocks, Af is the carrier frequency offset, ¢q is the
phase offset, and v(t) is AWGN with mean 0 and variance 20°2.
The received signal, r(t), is sampled with Nyquist frequency
1/T,, and N, raw I/Q samples are fed to a modulation
classifier’s input. The N, raw I/Q samples are referred to as
an instance, represented as a two-dimensional array, r, with
dimensions 2 — by — N,., where the first row holds I values,
and the second row holds the corresponding Q values.

B. Problem definition

This paper aims to enable robust modulation classification
with limited training data for numerous combinations of chan-
nel and hardware impairments and SNR. Particularly, we target
a source domain where labeled data is empirically collected
for a single SNR (18 dB) and single channel (AWGN) across

all target modulations, and then augmented this baseline to
match a large number of realistic cases. Let r € C" be an
available seed instance and m € M = {1,2,..., M} be its
output label, where M is number of modulation classes. The
source domain, denoted by D;, consists of n, labeled seed
instances from CV. The data available for the source domain
are enhanced by applying data augmentation operators that
emulate the channel and hardware impairments to obtain the
enhanced dataset Dy with n, > n, labeled instances. The size
ng depends on how many seed instances are augmented with
a range of possible augmentation methods, as will be detailed
below.

Given the enhanced labeled dataset D¢, the objective of a
DLB modulation classifier is to learn a functional mapping
g : CN» — M. The functional mapping g can be decomposed
into a feature encoder and a label predictor. The feature
encoder, z(r;0) : CM+ — RL, takes an instance r and
generates an encoding vector z(r) of length L (6 denotes the
parameters of the DNN architecture for feature encoding). The
label predictor maps the encoding vectors to the label space
M. The functional mapping ¢ is found by training the feature
encoder and label predictor on the enhanced labeled dataset,
D¢, utilizing the cross-entropy loss.

C. Loss definition

The baseline classifiers are trained by adopting cross-
entropy loss. Categorical cross-entropy [42] is a measure of
the difference between two probability distributions. Softmax
is utilized to convert the learned classification embeddings into
the probability of belonging to each candidate modulation.
When used as a loss function, the two underlying distribu-
tions are the predictions and the true classes of the samples.
Categorical cross-entropy can be written as:

Np M

1 N
Lee =3~ DO miy - log(r ), )

i=1 j=1

where m; ; represents the ground truth, 1, ; is the predic-
tion, M is the number of modulation classes, and Npg is the
training batch size.

D. Data augmentation

CNN-based modulation classifiers learn spatial features of
signals, i.e., signal constellations [11]. Dynamic fading chan-
nel and hardware imperfections introduce spatial transforma-
tion of the signal constellations, such as rotation, shifting, and
scaling. Modeling the channel and hardware impairments has
many degrees of freedom, making it tedious. Thus, simple
mathematical operations are proposed to enhance a limited
amount of labeled data in the source domain. We use four
augmentation methods:

1) Adding Gaussian Noise (AGN): The received signal
is distorted by adding Gaussian noise with zero mean
value and random variance o2. The noise variance is
inversely proportional to the desired SNR level. The
emulation of passing the received signal, r, through an
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AWGN channel with a certain SNR [dB] consists of
the following steps:

a) Step 1: measure the power of the received signal

r= I as below,
Q 2X N,
1N
_ 2,
H‘ﬁ%ﬁ”” 3)

where 7, = i + jqi denotes k-th sample in r with
in-phase value of i; and quadrature value of gy.
b) Step 2: translate SNR [dB] to linear scale
SNRl — loSNR[dB]/lo;
c) Step 3: generate Gaussian noise as

[nr] P, randn(1, N,.)
71__{RQ} —'V/Q,EUV}h'[randn(l,Aﬁ)}7(4)

where randn(-) generates 1 x N, array of white
Gaussian noise samples with zero mean and unit
variance;

d) Step 4: add the generated noise to the received
signal as below,

_ j _ I—l—n]
welol-loti) @

2) Rotation of the Signal Constellation (RSC): Rotation

emulates the impact of the phase offset. The phase
offset might be introduced by fading channels or local
oscillators. The phase offset impairs each point in the
constellation, causing a rotation in the counterclockwise
direction for a positive phase offset and a rotation in
the clockwise direction for a negative phase offset. The
augmented 1/Q values by rotation with random angle 6

are calculated as
I cosf) —sinf I
r= {Q] o Lin@ cosf } ’ {Q] ’ ©)

3) Stretching of the Signal Constellation (SSC): Stretch-

ing emulates the impact of the amplitude imbalance,
which occurs when the modulator’s in-phase and quadra-
ture components are not orthogonal. Noisy mixers used
for the signal downconversion are the sources of the
amplitude imbalance. A positive amplitude imbalance
causes horizontal stretching of the constellation, while a
negative amplitude imbalance causes vertical stretching.
The amplitude imbalance is characterized by the amount
of error in the amplitude, €. (le,| > 1). A positive
amplitude-imbalanced impaired signal is given by

el o

while a negative amplitude-imbalanced impaired signal

is given by
(1]t 0] [1
ot R A O A R

Note that | - | is necessary in Eq. 8 for a negative
amplitude imbalance value to ensure proper scaling
along the quadrature axis.

Algorithm 1: Radial Shift of the Signal Constellation
(RSSC)

Input: Instance r, rotation step A
Output: Radially shifted instance 7

1 k<1

2 P 4T

3 foreach (i,q) € r do
4 0« k-A6

_[2] _ [cos6
r= G| — |siné
k=1 (,0)
5 k+—k+1

—sinf 7
cos 0 } ' |:q] ’ ©)

7 return 7

4) Radial Shift of the Signal Constellation (RSSC):
Radial shift emulates the impact of CFO and SCO
caused by the local oscillators at the transmitter and
receiver. CFO also occurs due to relative motion of the
transmitter and/or receiver. This phenomenon is well-
known as Doppler shift, and is directly proportional
to the speed and direction of motion of the transmit-
ter/receiver with respect to the direction of arrival of the
received multipath wave [43]. CFO and SCO change the
angles of points in the constellation linearly over time,
causing points in the constellation to shift radially in
the counterclockwise direction for a positive frequency
offset and in the clockwise direction for a negative fre-
quency offset. Although the points are radially shifted,
their magnitude is unchanged [44]. The implementation
of the radial shift augmentation method is described in
Algorithm 1.

The ranges of SNR, 0, Af, and ¢, are explored in the
evaluation section. The optimal number of augmentations per
method and the order of performing augmentation are also
assessed in the evaluation section. Each augmented instance
is normalized before it is added to the dataset DZ. Figs. 1
and 2 show constellations of various modulated signals with
realistic and emulated channel and hardware impairments,
respectively. While the realistic and augmented constellations
may appear similar, the performance evaluation aims to assess
the precision of emulating different channel and hardware
impairments.

IV. EXPERIMENTAL SETUP

This section will introduce the chosen classifier baselines
and selected datasets for performance evaluation. The imple-
mentation details are also summarized.

1) Datasets: Two modulations sets are used: (1) a Basic
set, containing N,,,q = 11 modulation formats typically used
in the literature: BPSK, QPSK, 8-PSK, 16/64-QAM, PAM4,
GFSK, CPFSK, BFM, DSB-AM and SSB-AM; and (2) an
Extended set, containing the basic ones and nine higher-order
modulations: OQPSK, 32/128/256-QAM, 16/32/64/128/256-
APSK (Npod = 20). Both sets are synthetically gener-
ated in MATLAB as for the data augmentation analysis we
need full control over various domains. Thus, the benchmark
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Fig-ure 1: Constellations of several modulation types with realistic channel and hardware impairments at SNR=18 dB and
upsampling factor of 1 (SCO = 10 ppm, CFO = 15 kHz, 1Q amplitude imbalance = 5 dB, IQ phase imbalance = 5 °).
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Figure 2: Constellations of several modulation types with emulated channel and hardware impairments.

datasets [45], generated for one channel model including
various random hardware impairments, are unsuitable for such
analysis. The code is published and available online'. The
source and target domains contain I/Q samples (instances)
shaped with an upsampling factor of 4 and an Raised Cosine
(RC) filter with a roll-off factor of 0.35. Instances have a
size of N, = 128 and N, = 1024 for the basic and the
extended modulation sets, respectively. The extended mod-
ulation set requires a longer signal observation because of
the higher-order modulations [11]. The source domain DS-
Source contains 100 instances for each modulation class for an
18 dB AWGN channel with ideal hardware. Each considered
target domain has 1000 instances for each modulation/SNR

Uhttps://github.com/ErmaPerenda/Modulation-dataset- generation-in-MAT
LAB

pair across the whole SNR range of [—6 : 2 : 20] dB. The
data in the source domain is available during training, while
the data in the target domains is available during testing. The
target domains encompass the following channel and hardware
impairments:

1) DS-AWGN: AWGN with SNR ranging from -6 dB to
20 dB and the ideal RF front-end.
DS-Rayleigh: Rayleigh channel with a path profile:
delays of [0,4.5,8.5] us and gains of [0,—1,—5] dB.
AWGN with SNR in the range of [—6,20] dB is added
to the Rayleigh channel. The maximum Doppler shift is
set to 4 Hz. The RF front-end is ideal.
DS-Rician: Rician channel with K factor of 4, a path
profile with delays of [0,0.25,3,8] us and gains of
[0,—2,—10,—3] dB. AWGN with SNR in the range
of [—6,20] dB is added to the Rician channel. The

2)

3)
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maximum Doppler shift is set to 4 Hz. The RF front-end
is ideal.

4) DS-iqImbalance: 1Q imbalanced dataset with amplitude
imbalance ranging from —10 dB to 10 dB, and phase
imbalance ranging from —10° to 10°. The maximum
absolute amplitude imbalance of 10 dB corresponds to
a poorly designed quadrature frequency down-converter
in the absence of IQ imbalance acquisition and com-
pensation. The channel model is AWGN and the local
oscillator is ideal (SCO and CFO are zero).

5) DS-SCO: Sampling clock offset dataset with a clock
offset ranging from —20 ppm to 20 ppm. The maximum
offset of 20 ppm corresponds to a poorly designed
crystal oscillators. The channel model is AWGN, while
CFO is zero and the down-converter is ideal.

6) DS-CFO: Carrier frequency offset dataset with fre-
quency offset ranging from —10 kHz to 10 kHz. The
maximum offset of 10 kHz corresponds to the perfor-
mance of extremely bad CFO acquisition algorithms.
The channel model is AWGN, while SCO is zero and
the down-converter is ideal.

7) DS-Mix: We added random channel and hardware im-
pairments to each instance. The fading channel is added
with a probability of 70%. The fading channel type
is randomly chosen, either Rayleigh or Rician, with
the profiles outlined in DS-Rayleigh and DS-Rician,
respectively. In contrast, SCO, CFO, and IQ imbalance
impairments were addressed independently and added
with a probability of 100%, allowing a single instance
to undergo multiple hardware impairments. The specific
values for these impairments were randomly selected
from the ranges outlined in DS-SCO, DS-CFO, and DS-
igImbalance, respectively.

2) Baselines: This work adopts two fully-supervised clas-
sifiers to assess the data augmentation performance: (1) 1D-
CNN [14] and (2) ResNeXt-based classifier optimized by
GA [26]. Due to the shorter instance duration of 128 used
in the basic modulation set, the two last Convolutional and
Pooling layers are removed from the 1D-CNN original ar-
chitecture. The original architecture of 1D-CNN is kept for
the extended modulation set. The GA best-found ResNeXt
architecture for the classifier consists of the feature encoder
with the architecture shown in Fig. 3 and the classification
head, which has one Dense layer with 166 dense units and tanh
activation. The feature encoder consists of one Convolutional
layer, four blocks with the structure shown in Fig. 4, and a
Global average pooling layer. Each block has two parallel
branches, each with two Convolutional layers with f filters,
kernel size k, and activation a. Note that we run GA for the
basic modulation set.

The alternative data augmentation techniques, GAN [40]
and STN [11], claim that classifiers achieve an accuracy gain
of up to 6% when trained on GAN and STN enhanced datasets.
As GAN attempts to learn the data distribution of seed data,
it enlarges the dataset with instances of the same distribution.
GAN is mostly used to prevent classifiers’ overfitting but not
to combat distribution shifts due to channel and hardware

| Input (shape = (N;,2,1)) |

Conv(32,1,selu)

Conv(32,3,linear)

Block: [(32,3,relu),
(16,5,selu)]

—

I BN+AvgPool(2)+Dropout(0.3) I

Conv(32,3,selu)

Block: [(32,5,selu),
(16,3,selu)]

Conv(32,1,selu)

Block: [(64,5,selu),
(16,1,relu)]

s

| BN+AvgPool(2)+Dropout(0.3) |

| I

Figure 3: ResNeXt-based classifier architecture. (The Conv,
BN, Dropout, and AvgPool denote Convolutional, Batch Nor-
malization, Dropout, and Average Pooling layers, respectively.
The selu, relu, and tanh denote Scaled exponential linear
unit, Rectified linear unit, and Hyperbolic tangent activation
functions, respectively.)

Block: [(16,3,relu),

Conv(128,1,selu)
(64,1,tanh)]

| Global Average Pooling |

| Input (shape=(iy, i5,i3)) |

| Conv(fy,ky,a4) || Conv(f,kq,a1) |

| Conv(fy,ky,a;) || Conv(f,k,a;) |

Concat (axis=3)

| output(shape=(iy, i, 2 f,)) |

Figure 4: ResNeXt-based block structure with two parallel
branches. Each branch is a serial fusion of two Convolutional
layers.

impairments. On the other hand, in our previous work [11],
we showed that STN improves accuracy by up to 6%, but
it is still sensitive to distribution shifts due to channel or
hardware impairments. In contrast, we proposed MDA-DMC
mainly to combat distribution shifts. Therefore, a comparison
of our proposed MDA-DMC with GAN- and STN-based data
augmentation is out of the scope this paper.

3) Implementation details: All used models are imple-
mented in TensorFlow [46]. The training is performed over
Nepochs = 80 epochs and a batch size of 256 on a GPU server
with eight Nvidia RTX 2080Ti cards. Adam [47] is adopted for
weights’ optimization with its default recommended learning
rate of 0.001. Additionally, for supervised classifiers, 1D-CNN
and ResNeXt, we employ the learning rate decay that reduces
the learning rate by a factor of 0.2 when a validation loss has
not been improved over five epochs. The code is published
and available online”.

V. DATA AUGMENTATION PLATEAU

In this section, we will evaluate the performance of the
proposed MDA-DMC as a function of the realistic channel
and hardware impairments. As already mentioned, DS-Source
has 100 labeled instances for each modulation class at one

Zhttps://github.com/ErmaPerenda/MDA-DMC/tree/main
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SNR value (18 dB). Those 100 instances per class are referred
to as the seed data in the text below. MDA-DMC consists of
four augmentation operators, and we will use the basic set
of modulations to explore its correlation with various channel
and hardware impairments. The overall performance of MDA-
DMC will be validated on the extended set of modulations.

A. MDA-DMC hyper-parameters settings

The MDA-DMC operators come with several hyper-
parameters whose value ranges should be determined. We
opted for the SNR range [—6,20] dB with a 2 dB increment,
aligning with standard settings found in benchmark datasets.
We employ a trial-and-error approach to find value ranges for
other hyperparameters. The ranges are selected as a trade-off
between performance gain and dataset size. We omit the de-
tailed results for simplicity and present only the chosen ranges.
RSC achieves the best results for § € [—180, 180)° with a step
of 10°. SSC is optimal for €, € [—4,—1) U (1, 4] with a step
0.4. RSSC is optimal for Af € [—40 : 2 : 40]° with a step
of 2°. Notably, employing smaller steps for each MDA-DMC
operator has no adverse effect on classification performance;
however, it significantly expands the dataset size. Given the
definition of MDA-DMC operators outlined in Section III-D,
one can conclude that the classification performance is not
adversely affected by the order in which augmentations are
applied. Next, we studied the impact of each augmentation
run on dataset size and accuracy gain for each hyperparameter
separately. Our experiments revealed that conducting AGN
only once for each seed instance yields comparable gains
compared to augmenting each seed instance multiple times
for different random noise values. As the dataset size increases
linearly with each run, limiting AGN augmentations to only
one per seed instance makes sense. We obtained this observa-
tion after an analysis based on 100 seed instances. Applying
RSC, RSSC, and SSC for each hyper-parameter value to each
seed instance results in an enormous dataset, necessitating
powerful GPU servers to facilitate efficient training. Initially,
we began with randomly selecting one seed instance for each
modulation type and augmenting it per each RSC/SSC/RSSC
hyperparameter value. However, experiments demonstrated
that, for a minimum of three augmentations per hyperparame-
ter value, both classifiers effectively generalize RSC, SSC, and
RSSC-augmented instances. Performing more augmentations
per RSC/SSC/RSSC hyperparameter value does not yield
significant accuracy improvements but drastically increases
dataset size. Therefore, we chose to execute RSC/SSC/RSSC
on three randomly chosen seed instances for each correspond-
ing hyperparameter value, i.e., the total number of augmented
instances is equal to 3- M - (Nrsc + Nssc + Nrssc), where
M is number of modulation classes and Nrsc, Nssc, and
Npgssc denote number of hyper-parameter values for RSC,
SSC, and RSSC, respectively. Two augmented instances are
allocated for training and one for validation.

B. Correlation between MDA-DMC operators and chan-
nel/hardware impairments

First, we evaluate the robustness of the classifiers for
different channel and hardware impairments when they are

trained only on the labeled seed data from the source domain
(DS-Source). We refer to this case as the starting case in the
text below. Second, we compare performance gains due to the
artificially adding noisy instances per each seed instance across
the considered SNR range (i.e., SNR € [—6 : 2 : 20] dB).
Next, we apply the other three MDA-DMC operators on the
AGN-augmented dataset and evaluate classifier performance
on the newly generated datasets. The results are summarized
in Tables I and II. The accuracy values for target domains,
DS-AWGN, DS-Rayleigh and DS-Rician are averaged over
the entire SNR range, [—6 : 2 : 20] dB. The accuracy val-
ues for DS-SCO, DS-CFO and DS-igImbalance are averaged
over the entire SCO, CFO and amplitude imbalance ranges,
respectively, for 0 or 18 dB.

The amount of labeled seed instances (DS-Source) is not
sufficient for both classifiers to generalize well, leading to
notably poor performance in each channel model, as indicated
in the first row in Table I. By artificially adding one noisy
instance per seed instance for each SNR value in the range
[—6,20] dB with a step of 2 dB, AGN augmentation built the
dataset for which ResNeXt [26] increases the average accuracy
values by 35.41%, 19.73%, and 19.88% in the AWGN,
Rayleigh and Rician channels, respectively (the second row in
Table I). On the other hand, the 1D-CNN [14] improves the av-
erage accuracy values by 16.03%, 13.99%, and 22.69% in the
AWGN, Rayleigh and Rician channels, respectively. It is worth
noting that RSC, RSSC, and SSC did not yield any significant
accuracy gains in the AWGN channel. However, ResNeXt
boosts the accuracy when trained on the RSC-augmented
dataset by an additional 13.52% and 15.78% in Rayleigh and
Rician channels, respectively. The RSC-augmented dataset is
more complex, making it challenging for 1D-CNN to capture
such complex non-linearities, thereby achieving only modest
accuracy gains of up to 3.8% in fading channels. While the
RSSC-augmented dataset enables the classifiers to achieve a
slight accuracy improvement in fading channels, the SSC-
augmented dataset confuses the classifiers more, leading to
adverse effects with accuracy drops of 7% in the Rayleigh
channel and 2.4% in the Rician channel.

In order to understand the impact of the hardware impair-
ments on classifier performance, we trained ResNeXt [26] on
a large amount of labeled AWGN data for the entire SNR
range with the ideal RF front-end. The ResNeXt is then tested
on DS-SCO, DS-CFO and DS-iglmbalance datasets. Fig. 5
shows that even a minor SCO value of +2 ppm results in
significant drops in accuracy, specifically 61%, 56%, 40%, and
26% at SNR of 18 dB, 12 dB, 6 dB and 0 dB, respectively.
The CFO value of +2 kHz yields nearly identical accuracy
drops as the SCO value of 2 ppm. In contrast, ResNeXt can
tolerate the amplitude imbalance of +5 dB. When subjected
to an amplitude imbalance of +-10 dB, ResNeXt experiences
accuracy drops of 13%, 2.46%, 1.38% and 21.86% at SNR
of 18 dB, 12 dB, 6 dB and O dB, respectively. 1D-CNN [14]
follows the same accuracy drop trends as ResNeXt [26].

Table II shows that adding noisy instances improves the
accuracy in the presence of hardware impairments at SNR=0
dB for both classifiers. Conversely, when we examine the SNR
of 18 dB, which matches the seed SNR, we observe distinct
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Table I: Correlation between MDA-DMC operators and channel impairments: accuracy gains/drops (%) versus the starting
case in different channels for the basic modulation set. The first row contains the reference values for dataset size and average

accuracy values (%) in the brackets for the starting case.

Trained for AWGN and Tested for
Seed data Auemen-
SNRs [dB] | per mod./SNR N agtion Dataset DS-AWGN DS-Rayleigh DS-Rician
pair size
increase (#x) 1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt
[18] 100 None 1 (1 100) 0 (46.74) | 0 (46.05) | 0 (39.4) 0 (32.78) | 0(28.87) | 0 (25.03)
[18] 100 AGN 14 +16.03 +35.41 +13.99 +19.73 +22.69 +19.88
[18] 100 AGN+RSC 42 +19.23 +34.99 +17.54 +33.25 +26.57 +35.66
[18] 100 AGN+SSC 42 +18.57 +36.73 +12.96 +12.74 +21.19 +17.44
[18] 100 AGN+RSSC 42 +21.83 +34.59 +12.4 +28.28 +16.62 +21.45
|—e—SNR = 0 dB & SNR = 6 dB —o— SNR = 12 dB —— SNR = 18 dB |
100\\\\\‘\\\\\\\\\\‘\\\\\ \\\\\‘\\\\\\\\\\‘\\\\\ 7
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Figure 5: ResNeXt [26] sensitivity to the hardware impairments for the basic modulation set: SCO (left), CFO (middle), and

IQ imbalance (right) in AWGN at different SNRs.

behaviors from ResNeXt and 1D CNN. Specifically, ResNeXt
experiences a marginal accuracy drop of up to 5.63% for
SCO and CFO-impaired data compared to the starting case.
In contrast, 1ID-CNN exhibits a slight accuracy improvement
of up to 4.50%. Both classifiers have an accuracy gain of up
to 31.08% for IQ imbalance-impaired data at SNR=18 dB.
However, Fig. 5 shows that the classifiers are robust to IQ im-
balance at high SNR values. Therefore, the AGN augmentation
method cannot combat the impact of hardware impairments as
it only eliminates a lack of noisy data. Table II shows that a
leading contributor to combating SCO and CFO is RSSC, as
it yields substantial accuracy gains of 40% and 16% for both
classifiers at SNR levels of 18 dB and O dB, respectively.
On the other hand, SSC provides accuracy improvements of
6.30% and 7.87% for IQ imbalance-impaired data at 18 dB for
ResNeXt and 1D-CNN, respectively. However, it is noteworthy
that RSC has a detrimental effect on IQ imbalance-impaired
data, causing a significant accuracy drop of 20% at 18 dB for
ResNeXt.

In conclusion, AGN serves as a countermeasure against
the impact of noise, while RSC, RSSC and SSC combat
fading channels, SCO/CFO, and IQ imbalance effects, respec-
tively. Interestingly, classifiers trained on the RSC-augmented
datasets experience worse performance when tested with 1Q
imbalance-impaired data. In contrast, classifiers trained on
the SSC-augmented datasets experience accuracy drops when
tested in fading channels. In what follows, we will examine
how those augmentation methods work jointly and whether
the adverse effects can be alleviated by achieving a balance
between RSC and SSC augmented instances within the dataset.

C. Overall performance of MDA-DMC

We can treat each data augmentation type and all their
possible combinations as distinct domains. We split the data
augmentation process into two stages to establish balance
among the domains. In the first stage, RSC, SSC, and RSSC
are applied only to the AGN-augmented instances. In the
second stage, each augmentation method is applied to in-
stances that the other two methods have augmented, i.e.,
RSC augments the SSC- and RSSC-augmented instances;
SSC augments the RSC- and RSSC-augmented instances, and
RSSC augments the SSC- and RSC-augmented instances. RSC
has 35 angle values, SSC has 18 ¢, values, and RSSC has
40 A@ values. The number of augmentations for each type
and modulation/SNR pair should be balanced with the number
of seed instances. In our initial setup, there are 100 seed
instances, with 90 allocated for training and 10 for validation.
To find the optimal augmentation process, we executed four
experiments wherein we applied the AGN augmentation (1)
one, (2) two, (3) three, and (4) four times to each seed instance
per each modulation/SNR pair. In the first stage of data aug-
mentation, each augmentation type selects (1) one, (2) three,
(3) four, and (4) six instances augmented with AGN for each
modulation/SNR pair in experiments 1-4, correspondingly. In
the second phase of data augmentation, each of these three
augmentation methods selects (1) one, (2) one, (3) two, and
(4) two instances that were previously augmented by the other
two methods, corresponding to experiments 1-4, respectively.
Since SSC offers only half the potential augmentations per
instance compared to RSC and RSSC, we have two options
to balance them. We can either decrease €, step to 0.2 or

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on June 04,2024 at 14:37:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3379379

Table II: Correlation between MDA-DMC operators and hardware impairments: accuracy gains/drops (%) versus the starting
case in AWGN at SNR=0 dB and SNR=18 dB with different hardware imperfections for the basic modulation set. The first
row contains the reference values for average accuracy values (%) in the brackets for the starting case.

Trained  for Tested for

AWGN and

Augme- DS-SCO DS-CFO DS-igImbalance

ntation 1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt
0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB

None 0 0 0 0 0 0 0 0 0 0 0 0
(13.01) (29.11) (13.38) (43.32) (12.57) (31.97) (14.92) (50.61) (25.54) (59.43) (16.14) (63.32)

AGN +15.22 +4.50 +25.31 -0.56 +17.36 +4.10 +25.76 -5.63 +24.95 +4.01 +51.01 +26.50

AGN+RSC +22.12 +12.91 +26.04 +3.32 +25.59 +14.55 +26.31 +0.66 +25.31 -0.80 +48.75 +6.85

AGN+SSC +16.70 +7.07 +24.81 -0.44 +19.82 +8.14 +25.28 -7.17 +29.07 +11.88 +51.28 +32.18

AGN+RSSC +30.13 +44.68 +42.24 +39.53 +30.53 +39.80 +39.99 +32.15 +29.89 +19.85 +47.22 +23.29

Table III: Number of instances per modulation/SNR pair for
each MDA-DMC augmentation method in different domain-
balanced experiments.

Experiment | AGN RSC SSC RSSC
#1 90 105 54 120
#la 90 105 96 120
#1b 90 105 108 120
#2 180 175 90 200
#3 270 280 144 320
#4 360 350 180 400

double the number of augmentations for both stages of data
augmentation. We explored both possibilities using the same
AGN settings as in experiment 1. In particular, experiment
#1a denotes the scenario where SSC adopts an ¢, step of 0.2.
In contrast, experiment #1b maintains the same ¢, step of 0.4
as experiment #1, but doubles the number of SSC augmenta-
tions for both data augmentation stages. The SSC setting with
the best performance is selected and applied in experiments
2-4. The number of instances per modulation/SNR pair for
each augmentation method in each experiment is summarized
in Table III. We compare these experiments to the baseline
scenario, where 1000 labeled instances are accessible for each
modulation/SNR pair in AWGN for the basic modulation set,
involving both ResNeXt [26] and 1D-CNN [14]. Subsequently,
we assess the most effective augmentation approach for the
extended modulation set. The results are summarized in Ta-
bles IV and V.

The first three rows in Table IV show that it is better to
have fewer SSC augmentations compared to RSC and RSSC
augmentations. Let us compare the obtained accuracy values
for experiments 1, la, and 1b. The classifiers achieve the
highest accuracy gains in AWGN and fading channels for
experiment 1 with the €, step of 0.4, where the number of
SSC-augmented instances is half compared to the number
of RSC- and RSSC-augmented instances. With more SSC
augmentations in the training dataset, the classifiers focus more
on capturing IQ imbalance while violating the discriminative
features for channel impairments. As we observed in the earlier
analysis, the classifiers tested on SCO and CFO-impaired data
appear to be relatively insensitive to the presence of SSC
augmentations in the training dataset. Both classifiers achieve
slightly higher accuracy for IQ imbalance impairments for
the experiments with €, step of 0.4 (see the first three rows
in Table V) than the step of 0.2. As a trade-off between
classifier robustness to channels and hardware impairments,
for experiments 2-4, we opted for the SSC settings used in ex-
periment 1 (Ae,.=0.4). By increasing the number of instances

per modulation/SNR pair for the augmentation methods from 1
to 6 (experiment 1 and experiment 4), the dataset size expands
by a factor of 3.5. With this larger dataset, ResNeXt achieves
a maximum accuracy gain of up to 4.36% for the Rician
channel, whereas 1D-CNN achieves a maximum accuracy gain
of 7.35% for CFO impairments. Since experiment 2 features
a training dataset size that closely matches the baseline sce-
nario’s training dataset size, we will proceed to assess their
performance for both the basic and extended modulation sets.
The augmented dataset from experiment 2 will denote MDA-
DMC augmented dataset (i.e., D?) in the text below.

The augmented dataset size for both modulation sets is ap-
proximately 80% of the dataset size in the baseline case. In the
baseline case, training is conducted for AWGN with the entire
SNR range with the ideal RF front-end and experiences high
accuracy drops when tested for different channel and hardware
impairments. The proposed MDA-DMC aims to achieve the
same accuracy in AWGN with the ideal RF front-end as
the baseline case while increasing the accuracy for different
channel and hardware impairments. In all tested scenarios with
the augmented dataset, ResNeXt performs better than 1D-
CNN. The augmented dataset comprises highly complex data,
requiring a more complex and deeper DNN architecture to cap-
ture these complexities effectively. Therefore, the subsequent
analysis will focus solely on the comparison for ResNeXt.

Compared to the baseline case, ResNeXt with the aug-
mented dataset has a lower accuracy by 6.69% and 7.88%
in AWGN with the ideal RF-front end for the basic and the
extended set of modulations, respectively. On the other hand,
it has a higher accuracy by 13.50/16.81% and 17.20/11.98%
for the basic/extended modulation set in the Rayleigh and
Rician channels, respectively. Data augmentation significantly
improves the accuracy by 13.38/19.02% and 42.36/38.82%
for the basic/extended modulation set for SCO-impaired data
at SNR of 0 and 18 dB, respectively. Similarly, the accuracy
gains of 12.29/16.89% and 44.57/33.77% are achieved for
the basic/extended modulation set for CFO-impaired data at
SNR of 0 and 18 dB, respectively. In contrast, compared to the
baseline case ResNeXt with the augmented dataset has a lower
accuracy by 2.21% and 5.58% for the basic modulation set and
IQ imbalance-impaired data at SNR of 0 and 18 dB, respec-
tively. On the other hand, for the extended modulation set with
IQ imbalance-impaired data, it has a higher accuracy by 3.37%
at SNR of 18 dB while a lower accuracy by 5.96% at SNR
of 0 dB. The proposed data augmentation methods enhance
the classifiers’ resilience against SCO and CFO impairments,
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Table IV: MDA-DMC overall performance for different settings: accuracy gains/drops (%) versus the baseline case in different
channels for the basic (BD) and extended (ED) modulation sets. The first/forth row contains the reference values for dataset
size and average accuracy values (%) in the brackets for the basic/extended modulation set and the baseline case.

Trained for AWGN and Tested for
Exp. SNRs [dB] | Augm. | Dataset| Total training DS-AWGN DS-Rayleigh DS-Rician
dataset size (%) | 1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt
Baseline | [-6:2:20] No BD 100 (154 000) 0 (85.11) 0 (86.88) 0 (59.77) 0 (50.88) 0 (49.47) 0 (40.78)
#1 [18] Yes BD 46.27 -21.09 -7.11 -9.35 +10.73 -1.95 +13.21
#la [18] Yes BD 51.32 -21.39 -8,00 -9.66 +9.43 -3.81 +12.14
#1b [18] Yes BD 52.99 -21.33 -8.18 -10.29 +9.67 -3.80 +13.26
#2 [18] Yes BD 80.63 -18.92 -6.69 -6.55 +13.50 -0.85 +17.20
#3 [18] Yes BD 127.03 -19.20 -7.39 -5.98 +14.17 +0.95 +18.51
#4 [18] Yes BD 161.52 -19.10 -5.59 -6.44 +14.51 +1.12 +17.57
Baseline | [-6:2:20] No ED 0 (224 000) 0 (78.68) 0 (76.85) 0 (49.24) 0 (46.34) 0 (36.41) 0 (34.86)
#2 [18] Yes ED 85.01 -24.02 -7.88 -3.32 +16.81 +1.55 +11.98

Table V: MDA-DMC overall performance for different settings: accuracy gains/drops (%) versus the baseline case in AWGN
at SNR=0 dB and SNR=18 dB with different hardware imperfections for the basic (BD) and extended (ED) modulation sets.
The first/forth row contains the reference values for dataset size and average accuracy values (%) in the brackets for the
basic/extended modulation set and the baseline case.

Trained for AWGN and Tested for
Exp. DS-SCO DS-CFO DS-igImbalance
Ds. 1D-CNN ResNeXt 1D-CNN ResNeXt 1D-CNN ResNeXt
0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB 0dB 18dB
Baseline | BD 0 0 0 0 0 0 0 0 0 0 0 0
(30.92) | (33.67) | (39.71) | (39.18) | (33.66) | (35.08) | (39.88) | (36.67) | (64.86) | (84.71) | (67.53) | (92.42)
#1 BD +9.00 +33.56 | +12.74 | +41.54 | +5.70 +28.92 | +10.56 | +43.72 | -12.27 | -13.45 | -1.21 -2.46
#la BD +9.16 +33.65 | +12.59 | +41.29 | +5.96 +29.42 | +11.41 | +43.41 | -12.63 | -13.58 | -1.74 -1.81
#1b BD +9.28 +34.10 | +11.84 | +41.35 | +5.91 +29.75 | +11.16 | +44.06 | -12.29 | -14.16 | -3.27 -2.31
#2 BD +11.28 | +37.77 | +13.38 | +42.36 | +7.52 +33.93 | +12.29 | +44.57 | -8.86 -11.60 | -2.21 -5.58
#3 BD +12.46 | +39.00 | +13.81 | +42.79 | +8.69 +35.51 | +13.15 | +44.98 | -13.02 | -12.13 | -243 -6.59
#4 BD +14.40 | +39.86 | +14.36 | +43.89 | +10.71 | +36.27 | +12.99 | +45.24 | -10.03 | -12.07 | -1.19 -4.64
Baseline | ED 0 0 0 0 0 0 0 0 0 0 0 0
(23.16) | (33.72) | (29.62) | (37.43) | (26.34) | (39.73) | (31.53) | (42.61) | (49.03) | (65.71) | (53.83) | (68.61)
#2 ED +14.09 | 42597 | +19.02 | +38.82 | +10.27 | +18.71 | +16.89 | +33.77 | -6.3 -6.07 -5.96 +3.37

as evident in Fig. 6 compared to Fig. 5. The minor adverse the classification process. The differentiation of similar com-
effects are present for AWGN and IQ imbalance-impaired data. plex modulations under channel and hardware impairments
In comparison to the basic modulation set, both classifiers are may require a more sophisticated DNN architecture and a
highly sensitive to IQ imbalance for the extended modulation specialized loss function for the feature encoder. Nevertheless,
set (accuracy is less than 70% at 18 dB). such considerations fall beyond the scope of the current study.

To investigate the origins of these ResNeXt performance

fluctuations, let us analyze the confusion matrices for the D. MPA'QMC performance under joint channel and hard-
extended modulation set across various testing datasets in Ware umpairments

Figs. 7-12. Compared to the baseline case, MDA-DMC ex- The analysis above assessed the performance of MDA-DMC
hibits misclassifications within the QAM modulation family in two cases: (1) hardware impairments in the presence of
under conditions identical to those in which seed data are ~AWGN and (2) fading impairments in the presence of AWGN
captured, as shown in Fig. 7. Notably, it is intriguing to and with an ideal RF front end. Additionally, each hardware
observe that 100 seed instances are sufficient for distinguishing imperfection was examined independently. In practical scenar-
higher-order APSK modulations. However, higher-order QAM ios, every transmitted signal encounters a variety of channels
modulations demand more seed instances to capture all symbol and hardware impairments during its journey to the receiver.
transitions adequately. In contrast to the baseline case, MDA- RF-front ends at both the transmitter and receiver sides intro-
DMC facilitates accurate classifications of analog, higher- duce several hardware imperfections, including SCO, CFO,
order APSK, and low-order digital modulations in Rayleigh and IQ imbalance. Hence, in the subsequent analysis, we
fading. However, intra-QAM family misclassifications persist investigated the effectiveness of MDA-DMC emulation in
in the presence of Rayleigh fading. Figs. 8 and 9 illustrate that  situations where multiple channel and hardware impairments
MDA-DMC exhibits heightened sensitivity to Rician fading can coincide. First, we created a labeled DS-Mix dataset,
at equivalent SNR. Similarly, under hardware imperfections, simulating joint channel and hardware impairments. For each
MDA-DMC misclassifies QAM modulation types. Conversely, modulation/SNR pair, we generated 1000 instances experi-
MDA-DMC accurately classifies all other modulations under encing various impairments, with SNR ranging from -6 dB
substantial SCO impairment of 10 ppm and CFO impairment to 20 dB. Second, we run three scenarios depending on the
of 5 kHz. However, under IQ imbalance, MDA-DMC ex- dataset for which the ResNeXt classifier was trained: (1) the
periences misclassifications in APSK and QAM due to the MDA-DMC augmented dataset, (2) the DS-AWGN dataset,
similarity induced by stretching, thereby adding complexity to and (3) the DS-Mix dataset. Third, for each scenario we
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Figure 7: Confusion matrices for DS-AWGN at SNR=18 dB
(right) datasets.

tested the trained ResNeXt classifier for the DS-Mix dataset.
Each scenario was executed for both modulation sets, and the
summarized results can be found in Fig. 13.

Despite DS-AWGN having 1000 labeled instances for each
modulation/SNR pair, the classifier trained on it demonstrates
poor generalization power, yielding an accuracy of approx-
imately 20%. In contrast, under an ideal scenario where
numerous labeled instances for joint channel and hardware
impairments are assumed during the training stage (80% of
the DS-Mix dataset), the classifier achieves 80% and 70% ac-
curacy at high SNRs for the baseline and extended modulation
sets, respectively. MDA-DMC generates the augmented dataset
from 100 labeled instances for each modulation type at an
SNR of 18 dB. The classifier trained on this augmented dataset
significantly enhances accuracy compared to the baseline case
(DS-AWGN). It reaches 65% and 55% accuracy at high SNRs
for baseline and extended modulation sets, respectively. The
observed accuracy gap of 15% compared to the classifier
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when ResNeXt is trained for the baseline (left) and augmented

trained for DS-Mix is likely attributed to MDA-DMC not
emulating fading channels optimally. Consequently, further
research on enhancing the emulation of fading channels is
needed.

E. Does the seed data properties matter?

The seed data depends on: SNR value and number of
instances per modulation. The above analysis is done for
default properties’ values: SNR = 18 dB and 100 instances
per modulation. Although we justified why we chose 18
dB, we will assess how data augmentation’s performance is
impacted by changing the seed data properties.

1) SNR value of seed data: To assess the impact of SNR,
we run three experiments with SNR of: (1) 0 dB, (2) 10 dB,
and (3) 20 dB. We run each experiment for both basic and ex-
tended modulation sets while adopting ResNeXt as a classifier
since it outperforms 1D-CNN in each evaluated scenario, as
shown above. Fig. 14 shows accuracy averaged over the whole
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SNR range for each experiment. The results show that the
cleaner the seed data, the higher the accuracy for each channel
and hardware impairment case, as augmentation can easily be
used to add noise but not to remove it. To illustrate, consider
the classifier’s performance under hardware impairments at
0 and 18 dB. At 0 dB, the classifier’s performance remains
relatively consistent when the seed SNR exceeds O dB. In
contrast, as the seed SNR increases to 18 dB, the classifier’s
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Figure 8: Confusion matrices for DS-Rayleigh at SNR=10 dB when ResNeXt is trained for the baseline
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Figure 9: Confusion matrices for DS-Rician at SNR=10 dB when ResNeXt is trained for the baseline (left) and augmented
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performance notably improves in the presence of hardware
imperfections.

2) Seed data set size: To assess the impact of seed data
set size, we compare (1) 10, (2) 25, and (3) 50 instances
per modulation/SNR pair. To keep the same dataset size,
we run AGN (1) 10, (2) 4, and (3) 2 times for each seed
instance for experiments 1 to 3, respectively. We keep the
optimal settings for the other data augmentation methods for
each experiment. We run each experiment for both basic and
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Figure 10: Confusion matrices for DS-SCO at SNR=18 dB and SCO = 10 ppm when ResNeXt is trained for the baseline (left)
and augmented (right) datasets.
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Figure 11: Confusion matrices for DS-CFO at SNR=18 dB and CFO = 5 kHz when ResNeXt is trained for the baseline (left)
and augmented (right) datasets.

extended modulation sets while adopting only the ResNeXt demonstrated earlier, the extended modulation set demands
classifier. Fig. 15 shows accuracy averaged over the whole more seed instances to distinguish higher-order QAM modu-
SNR range for each experiment. MDA-DMC achieves nearly lations effectively. Data augmentation performance decreases
identical accuracy with 50 seed instances per modulation/SNR by up to 15% for channel impairments and up to 17% for
pair compared to 100 seed instances per modulation/SNR pair  hardware impairments when we decrease the number of seed
for the basic modulation set. Conversely, for the extended instances from 100 to 10. As we showed in our previous
modulation set, accuracy experiences a slight increase as work [11], CNN-based modulation classifiers learn both spatial
the number of seed instances increases from 50 to 100. As features and the transitions between signal constellation points.
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Figure 12: Confusion matrices for DS-iqgImbalance at SNR=18 dB and amplitude imbalance of 6 dB when ResNeXt is trained
for the baseline (left) and augmented (right) datasets.

Trained for: as a cost-effective and practical tool to emulate diverse

@ MDA-DMC ¢ DS-AWGN 0O DS-Mix channel and hardware impairment scenarios. By collecting a
—— BD --- ED few labeled seed data, our proposed MDA-DMC with four
SE— S — — augmentation methods makes the classifier robust to hardware

: . impairments with an accuracy gain of up to 40%. MDA-DMC

achieves significant accuracy gains for channel impairments up
to 17.20%. The results showed that MDA-DMC emulates joint
channel and hardware impairments very well. Nonetheless, a
15% accuracy gap persists compared to scenarios with perfect
channel and hardware impairments knowledge. While MDA-
DMC brings about significant performance enhancements, fu-
ture research should emphasize a deeper understanding of how
fading channels impact constellation shapes. This knowledge
can facilitate the development of more finely tuned augmen-
tation methods, potentially bridging the observed performance
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