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Abstract

Tensor regression methods have been widely used to predict a scalar response from
covariates in the form of a multiway array. In many applications, the regions of ten-
sor covariates used for prediction are often spatially connected with unknown shapes
and discontinuous jumps on the boundaries. Moreover, the relationship between the
response and the tensor covariates can be nonlinear. In this article, we develop a nonlin-
ear Bayesian tensor additive regression model to accommodate such spatial structure.
A functional fused elastic net prior is proposed over the additive component functions
to comprehensively model the nonlinearity and spatial smoothness, detect the discon-
tinuous jumps, and simultaneously identify the active regions. The great flexibility and
interpretability of the proposed method against the alternatives are demonstrated by

a simulation study and an analysis on facial feature data.
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1 Introduction

Data in the form of multiway arrays, also known as tensors, are becoming increasingly
common in physical and engineering sciences. For example, Yan et al. (2019) studied the
machinability of titanium alloy where the cylinder-shaped materials are represented by mul-
tidimensional arrays. Yue et al. (2020) performed quality inspections of nanomanufacturing
processes with Raman spectral imaging data which are formulated as a tensor. Zhong et al.
(2022) proposed a tensor-based approach to handle the spatial and temporal structures of
image outputs in the automatic control processes of semiconductor manufacturing. In hot
rolling processes, multiple sensors record the temperature, current, torque, speed at an equal
time interval, generating multiple signals in form of tensors (Miao et al., 2021). Shi (2023)
provided a good review for some recent applications of statistical tensor methods in man-
ufacturing quality improvement. Tensor data are also important in many other areas such
as chemometrics (Andersen and Bro, 2003), text mining (Chew et al., 2007), and recom-
mendation systems (Park and Chu, 2009). Among the successful applications of tensor data
analysis, using tensor regression to decode the relationship between a scalar response and
the covariates of a tensor structure has attracted considerable attentions. In condition moni-
toring and industrial asset management, Fang et al. (2019) applied a tensor regression model
to predict the residual lifetime of a rotating machinery according to the degradation image
streams acquired using an infrared camera. In neuroscience, researchers apply tensor regres-
sion methods to predict diseases and disorders such as Alzheimer’s disease (Kandel et al.,
2013) and autism spectrum disorder (Ecker et al., 2013) based on the magnetic resonance
imaging or diffusion tensor imaging of human brain.

A general scalar-on-tensor regression model between a D-way tensor of covariates X €
RP1>*Pp and a response Y € R can be formulated via a regression function f : RP»>*Fp
R and an additive noise: Y = f(X) + e. The majority of existing tensor regression meth-
ods adopts the linear regression form f(X) = Z“ZD Xiy oo ipBiy.ip Where ;.. i, is the
(i1, ,ip)-th element of the tensor coefficient 3 € R *F'p to be estimated. To overcome
the difficulty of estimating a huge number of coefficients in many tensor applications, Zhou

et al. (2013) proposed a linear tensor regression model with a low-rank structure of 3 via the



CANDECOMP /PARAFAC (CP) decomposition (Harshman, 1970). Additional regulariza-
tion methods such as the lasso (Tibshirani, 1996) and the ridge (Hoerl and Kennard, 1970)
were also suggested to obtain a consistent and interpretable estimator. Guhaniyogi et al.
(2017) proposed Bayesian Tensor Regression (BTR), which again utilized the CP decomposi-
tion. With carefully constructed shrinkage priors, BTR is able to shrink parameters at both
local and global levels, and select the rank automatically. Some other works of tensor lin-
ear regression are based on different types of decomposition including Tucker decomposition
(Tucker, 1966) on the coefficient tensor 3 (Li et al., 2018).

However, the assumption that the tensor covariates can predict the response through a
linear regression function is too restrictive and can be violated in many applications. For
instance, in the field of financial analysis, Li et al. (2016) found that the nonlinearity exists
in the relationship between stock movements and information sources in the form of tensor
data. To model the nonlinearity of regression function f while keeping the inherent structural
information of the original tensor, Zhao et al. (2013, 2014) placed a Gaussian process prior
over the regression function where the covariance function is a product kernel based on the
unfoldings of tensor covariates. With a rank-1 CP decomposition X = x; o --- o xp where
o denotes the outer product and x4 is a P;-dimensional vector, Signoretto et al. (2013) and
Kanagawa et al. (2016) considered a regression model f(X) = 3> 17, i (xq4) with a
Gaussian process prior over each fqu) ,d=1,...,D. Extending the rank-1 assumption,
a more flexible model f(X) = Y27 S T2, A9y with X = M xMo... 0
X%n) was proposed in Imaizumi and Hayashi (2016). Unfortunately, a number of multi-
dimensional functions have to be estimated in the above work, which will suffer from the
curse of dimensionality when some P,;’s are large. An alternative approach of modeling the
nonlinear regression function is using the similar idea of additive models (Stone, 1985) on the
vector of covariates. Nonparametric additive models have recently been extended to tensor
covariates with elastic net (Zhou et al., 2020) and the group lasso penalty (Hao et al., 2021).
They again exploit the tensor structure through CP decomposition of the tensor coefficient.

In many applications, the tensor of covariates (e.g., a 3D image) is a collection of observa-

tions at a regular grid over a multidimensional continuous domain. One common observation

in the corresponding applications is the existence of spatially contiguous active regions with



unknown shapes and discontinuous jumps on the boundaries of regions, especially in image
data. For example, in neuroscience, the pathological studies show that the brain voxels that
have significant effects to the diseases are expected to be sparse and organized into several
spatially connected regions (Michel et al., 2011; Fiot et al., 2014). Therefore, the presence
of multiple piecewise smooth regions should be considered in the regression function f. Al-
though there exist prior works that are related to the modeling of this spatial structure,
such as Xin et al. (2014); Goldsmith et al. (2014); Li et al. (2015); Wang et al. (2017); Beer
et al. (2019), most make the linear assumption on the regression function. One notable
exception is Marx et al. (2011), which proposed a nonlinear tensor regression with spatial
similarity through a single-index model. However, their method does not produce sparse
estimation, and thus the important subregions are hard to be identified using their model.
In this work, we propose a novel Bayesian tensor additive regression model that incorporates
the spatial structure of tensor covariates and strikes a good balance between flexibility and
interpretability. More precisely, we design a prior called functional fused elastic net (FEN)
over the nonlinear additive component functions to adaptively learn the spatial smoothness
of the component functions within unknown connected regions. The spatial smoothness is
achieved by the graph Laplacian of the adjacent entries, and discontinuous jumps between
distinct regions are detected by the ¢; fusion of the adjacent entries. With spline repre-
sentation, we apply the idea of the thresholding method (Ni et al., 2019; Cai et al., 2020)
on the coefficients to achieve sparsity and identify the important regions. A crucial advan-
tage of thresholding method against the common alternatives, such as spike-and-slab priors
(Mitchell and Beauchamp, 1988) and Bayesian credible intervals (Chen and Shao, 1999), is
its low computation cost and the ability to drop the inactive signals without increasing the
predictive error. The posterior inference is carried out through a Markov chain Monte Carlo
(MCMC) method with the Metropolis-adjusted Langevin Algorithm (MALA, Roberts and
Rosenthal, 1998). To the best of our knowledge, our work is the first to integrate the spatial
smoothness and discontinuous jumps for sparse nonlinear tensor regression.

The rest of this paper is organized as follows. In Section 2, we present the tensor additive
model and introduce the spatially piecewise smooth structure to integrate the idea of sparsity,

spatial smoothness, and discontinuous jumps. Section 3 proposes the functional FEN prior



for the component functions of the tensor additive model and illustrates its properties with
some examples. Using spline expansion to approximate each additive component function, a
Bayesian hierarchical model is formulated on the spline coefficients, and a posterior sampling
algorithm is described. A simulation study and a real application on facial feature data are
respectively presented in Sections 4 and 5 to demonstrate the advantages of the proposed
model over existing alternatives. We finally summarize this article in Section 6 with some

concluding remarks.

2 Tensor Additive Regression Model

We consider the scalar-on-tensor regression setting where the covariate X € RP1xFp jg 4
D-way tensor of dimension P, X --- X Pp and the response Y € R is a scalar. The element
X; of X is indexed by i € Z = {(i1,12,--- ,ip) : 1 < iy < P;,1 < d < D}. Without loss of
generality, we assume X; € [0, 1] for all i. The number of elements in X can be much larger
than the sample size in many applications. For example, the magnetic resonance imaging
dataset considered in Zhou et al. (2013) consists of 776 patients with the number of covariates
up to 256 x 198 x 256 = 12,976, 128. High dimensionality leads to significant difficulties in
modeling the nonlinear regression function. A natural nonlinear regression model is a tensor

additive model:

Y =p+ mei) +e, e~ N(0,02), (1)

where f;’s are nonlinear functions such that fol fi(x)dx = 0 for all i (for identifiability
purposes). However, even with the additive model assumption, there are still a potentially
huge number of univariate nonparametric functions to be estimated. With a limited amount
of data, it is often challenging to estimate these functions well. Furthermore, there are three
types of useful structures in tensor regressions, which are not incorporated by model (1).
Sparsity. In many real applications, only a few entries of the tensor covariates may be
relevant to predict the response. Take neuroimaging as an example, the brain is believed
to have dedicated regions for different tasks. For instances, the visual cortex in human
brains controls visual functions (Grill-Spector and Malach, 2004) and the frontal lobe is

responsible for reasoning (Collins and Koechlin, 2012). We thus generally expect many
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Figure 1: Three examples of 2-way tensor additive model with spatially piecewise smooth

1 2 3 4 5 86 7 & 9 10 1 12 43 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15

structure. The heatmaps show the magnitude of each additive component.

additive component functions in (1) to be zero (i.e., f; = 0) for predicting reasoning and
visual-related outcomes. In the following, the sets of i where the additive component function
fi is non-zero and zero are called active regions and non-active regions, respectively.

Spatial smoothness. We further assume the additive model (1) to be endowed with
a spatially smooth functional structure, which means that the functions fi’s vary smoothly
with respect to the location index i. Specifically, the functions f;’s are spatially smooth with
respect to a graph G = (Z,€), where £ is the neighboring relationship set for the location
index set Z. A pair of indices (i,i’) € £ are connected by an edge when X; and Xy are
neighboring elements in the tensor of covariates X. Equivalently, (i,i) € £ if [|i — 1|, = 1,
where || - ||; represents the ¢;-norm. For the additive model (1) to be spatially smooth with
respect to G, functions f;, fiy with (i,i') € £ are likely to be similar to each other.

Discontinuous jumps. Sparsity and spatial smoothness together require the functions
to be smoothly decaying to zero towards the boundary of an active/non-zero region. This
may not be realistic. In a natural image or neuroimage, a pixel (or voxel) at the boundary
of an active region could have significant effect on the response. Our work aims to address
this challenging issue, by developing a spatially smooth model that allows for occasional
discontinuous jumps, i.e., if supported by data, a few f;’s can vary non-smoothly from its
neighbors.

Combining spatial smoothness and discontinuity, we obtain a hybrid structure, which we

call spatially piecewise smooth functional structure. More specifically, in this structure, the



index set Z can be divided into a few distinct spatially connected regions Z;, - - - , Z¢, and the
component functions within the same region are spatially smooth. Discontinuity are allowed
on the boundary between regions.

Figure 1 illustrates the various types of spatially piecewise smooth functional structures
that our model can handle. It shows the heatmap of |5;| for function f;(X;) = 5;X;, which
is linear for the simplicity of illustration. In the left panel, the active (non-black) regions
can be divided into three pieces. Inside each piece, |f;| is spatially smooth (in fact, it is
a constant). There are discontinuity jumps between the active and non-active regions and
between each pair of active regions. The middle panel simply contains one active region and
is overall smooth. The right panel has a discontinuity jump at the central square, and is

spatially smooth within the central square and the surrounding circle, respectively.

3 Bayesian Model

In this section, we develop a Bayesian hierarchical model for the inference of the tensor
additive model (1). We propose a functional fused elastic net (functional FEN) prior to deal
with the spatially piecewise smooth functional structure and illustrate its advantage through
two simple numerical experiments. Using basis representation, we show that the proposed
functional FEN prior can be transferred to a proper prior on the the basis coefficients. An

efficient computational algorithm for the posterior inference is also developed.

3.1 Functional Fused Elastic Net Prior

To construct a prior distribution that encourages sparsity, each f; is parameterized as the

product of a latent function g; € C?[0, 1] and a hard thresholding function 1 (g2, >A}s 1€,
2

fi=g- Lijgiliz, >2) ieZ, (2)

where A is the thresholding parameter. Roughly speaking, f; is thresholded to exact zero
fi = 0 whenever the latent function g; has a small magnitude. Using the form of (2), the

spatially piecewise smooth functional structure on f; can be equivalently modeled on g;.



Let £[0, 1] denote the set of affine functions on the interval [0, 1], i.e.,
00,1] = {l(z) : l(z) = a + bx}. (3)

Denote the projection operator from the space of the second order Sobolev space W2[0, 1]
onto £[0, 1] by P. We propose a functional FEN prior distribution for the set of all the latent
functions G = {gi(z) : i€ Z}:

p(Glo,r ) ccexp{ =8> Rig) =1 3 g —grlla =72 D Nl = gwlZ ). ()

iez (i,i)e€ (i,i)e€

where R(gi) = ||lg/'||f, + ¢'[|Pgil|f, measures the roughness of g; with g’ being the second
derivative of g; and ¢’ € R*. The second summation in the prior distribution (4) is the func-
tional fusion term, which encourages local constant structure and helps build the piecewise
structure. The third summation is the functional Laplacian term, which encourages spatial
smoothness.

The fusion and the Laplacian terms of the functional FEN prior distribution (4) can be
viewed as an adaptive Laplacian prior distribution. To see this, we use a Gaussian scale

mixture identity as follows:

el / ! e ba® e ¥dw
= xp| — | - .
\/TW P 4w

We can rewrite the fusion term in (4) through independent latent random variables wiy,

(i,1) € &, following the standard exponential distribution,

2
p(G| 0,71, 72, wipr) o H \/clﬂ exp{ — 5272(90 — Z (r2 + 4:1ii/)”gi - gi'HiQ},

iez (ii")e&

wiy R Exp(1) for all (i,i') € €.

Using this representation, the second and the third summation in (4) are merged into a
single term. The prior distribution generally encourages the neighboring functions to be
similar, i.e., with small Ly distance. When wjy is close to zero, its contribution to the prior
distribution could be very large. Thus, for the corresponding neighboring functions g; and
gy, the prior has the tendency to push them towards being identical. In the next subsection,
we discuss more properties of the functional FEN prior and show how the fusion and the

Laplacian terms successfully accommodate a spatially piecewise smooth structure.



3.2 Properties of the Fuison and Laplacian Prior

For the proposed functional FEN prior distribution (4), both the functional fusion term
and the functional Laplacian term play indispensable roles. For simplicity, we illustrate
their importance via a special setting where each additive component function is linear with
fi(Xi) = Xif; and f; € R, i € Z. In this setting, the functional FEN prior (4) reduces to a
prior on the scalars f;’s as

p(BIS T m) ocexp{ =83 B D B— el - D (BB ()

i€z (ii")eE (ii")eE

From (5), we observe that when § = ry = 0, the corresponding prior of p(3]0,71,0) degener-
ates to the generalized fused lasso (Tibshirani et al., 2005). When § = r; = 0, the FEN prior
reduces to Laplacian prior or Gaussian Markov random field (Rue and Held, 2005). When
d = 0, the corresponding (negative log) FEN prior, i.e., —logp(8|0,r1, ), is equivalent to
the graph-fused elastic net penalty (Tec et al., 2019).
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Figure 2: A toy simulation where the component functions are linear, i.e. fi(X;) = X;f;.
From left to right, the four panels correspond to the true values of f3;, the posterior mean of

Bi’s with the fusion prior, the Laplacian prior and FEN prior, respectively.

We conduct two simple experiments to illustrate the properties of fusion prior and Lapla-
cian prior, and show the performance gain of FEN by combining them. For these two ex-
periments, we set Z = {(4,j) : 1 < i,7 < 15}, and the matrix covariates are generated by
Xij R Unif(0,1). The responses are generated according to y = Zlgi,jgm Xi;Bi; + € with
e ~ N(0,1), and the true values of f3;;’s are shown in the leftmost panels of Figures 2 and

3, respectively for two experiments. These settings correspondingly feature the true model

with the following structures: 1) a spatially piecewise constant structure, and 2) a spatially
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Figure 3: A toy simulation where the component functions are linear, i.e. fi(X;) = Xif;.
From left to right, the four panels correspond to the true values of f;, the posterior mean of

Bi’s with the fusion prior, the Laplacian prior and FEN prior, respectively.

piecewise smooth structure. We generate N = 100 observations for each setting and repeat

the experiments for 30 times. The posterior distribution of 3 is given by

N
pBIDy, b r1,r) exp{ =2 3= (BXU) < p(Blo ), (0)

n=1
where the prior distribution p(8|d,r1,72) is given in (5). For simplicity, we fix 6 = 0 and
vary the hyperparameters r1,rs to achieve the fusion prior (ro = 0), the Laplacian prior
(r1 = 0), and the general FEN prior. For the FEN prior we adopt parameterization r; = r/p,
ro = (1 — r)/p with candidate grids r € {1,0.75,0.5,0.25,0} and p € {0.3,0.6,1.2,2.4,4.8}.
MALA (Roberts and Rosenthal, 1998) is applied to draw posterior samples from the model.
The hyperparameters are selected as those with best predictive performance on a validation
dataset. We randomly pick one replication from each experiment setting and show the
posterior mean of 3 from the fusion, Laplacian, FEN priors in the second, third, and fourth
panels of Figures 2 and 3. The performances of methods are also evaluated in terms of
MSE = 15_i15 >ii(Big — B\ij)2 where ,/B\ij is the posterior mean of /3;;. The average MSE over
30 replicates are summarized in Table 1.

Figure 2 and Table 1 reveal that, when the true model has a spatially piecewise constant
structure, the fusion prior (1, = 0) has a smaller MSE than the Laplacian prior (r; = 0).
The estimated f;;’s from the fusion prior (the second panel) recover the true signal pattern
reasonably well. However, the true pattern has been smoothed out by the Laplacian prior
(the third panel). The FEN prior selects o = 0 in all 30 replicates, and hence its performance

(the fourth panel) is similar to that of the fusion prior.
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Table 1: The performance of fusion, Laplacian and FEN priors under different true models

for 30 random replicates. The numbers in the parentheses are the standard errors.

True Model spatially piecewise constant spatially piecewise smooth

Prior fusion Laplacian FEN fusion Laplacian FEN

MSE 0.4286 (0.0204) 2.4860 (0.0635) 0.4317 (0.0189) | 0.1707 (0.0080) 0.3265 (0.0075) 0.1589 (0.0059)

The above results demonstrate the advantage of fusion prior over Laplacian prior in esti-
mating spatially piecewise constant model, which is consistent with the findings in Tibshirani
et al. (2005) and Little and Jones (2010). However, the fusion prior tends to force similar
neighboring values to be identical, and so it may introduce biases when the true values are
not exactly constant. Figure 3 shows an example the Laplacian prior and the fusion prior
can be combined to tackle more challenging settings. As shown in the leftmost panel, the
true model is spatially piecewise smooth. There are discontinuity jumps on the boundary
between a center square piece and a surrounding circle piece, and the signals vary smoothly
within each piece. Neither the fusion prior nor the Laplacian prior estimates (3;;’s accurately
in this case. The fusion prior over-shrinks the coefficient in the center square piece and the
surrounding circle piece to a constant, while the Laplacian prior over-smooths the estimates
globally. By contrast, the FEN prior, which combines the fusion and the Laplacian priors,

is able to capture the corresponding piecewise smooth structure and has the lowest MSE.

3.3 Spline Representation of Functions

To facilitate the estimation of the unknown functions, we expand gi(z) = 31, awgr(z) via
a vector of spline basis functions ¢(z) = (¢1(), ..., ¢x(2))T, where a3 = (1, ..., ix )t is
the vector of spline coefficients, i € Z. Denote a™ = (af )iz € RV >FPpXE  We require
the vector of basis functions ¢(-) to have the following properties.
(i) The basis functions are centered, i.e., [@(x)dx = 0. This guarantees [ gi(z)dx =
[ af¢p(z)dz =0 for any a; € R¥ and thus [ fi(z)dz = 0 due to (2).
(ii) The basis functions are orthonormal, i.e., [ ¢(z)p(x)T dz = Ix. As such, the Ly norm
of function g; can be directly evaluated as the Euclidean norm of the spline coefficients,

lgillZ, = llaull3. This also facilitates the representation of (2) as fi(X;) = ¢(X;)'5;

11



with
Bi = ai Ly poay- (7)

(iii) The second derivatives of the basis functions are orthogonal, i.e., Q := [ ¢"(z)¢"(z)" dx
= diag(wi1,wae, -+ ,wkk). The Ly norm of ¢! can thus be directly evaluated by the
weighted Euclidean norm of the spline coefficients, i.e., ||g/' |7, = Zszl Wik O

In the above, the first property is for the identifiability of the additive model (1). The
second and the third reduce the complexity of calculating L, norm of g; and ¢/’ from O(K?)
to O(K). A vector of basis functions ¢ that satisfies these conditions can be constructed
from B-spline basis functions, and the details are provided in Section A.1 of the Appendix.
We also show that the first basis function, ¢, in the constructed bases satisfies ¢; € £[0, 1]
as defined in (3).

Using the basis functions ¢, the functional FEN prior (4) can be written as

plald, 71, 7s) ocexp( 53 afRei —r1 Y Jlew — awlls — 7 Z oy — o ||) (8)
ieZ (ii"heE

In (8), R=Q+ ¢, ere], where e; = (1,0,...,0)".

3.4 The Hierarchical Bayesian Model

We now summarize our hierarchical model. Given the intercept u, the spline coefficients
a, the residual variance o2, and the thresholding parameter A, the response ¥, for the n-th

observation follows a Gaussian distribution,
yn|u7aaﬂ>a27A Y <N+ Z(b «; - 1{||Oci\|§>)\}70-2>‘ (9)

A weakly informative Gaussian prior is imposed for u, and a generalized inverse Gaussian
distribution GIG(p, a,b) is imposed for the thresholding parameter A, i.e.,

a/X+bA

o~ N(0,07) and Inp(\) o (p—1)InA— 5

(10)

12



The generalized inverse Gaussian distribution keeps A away from 0 and meanwhile prevents

A from being too large. The prior (8) of the spline coefficients a is re-parameterized as

p(a | 57 T7 UZ;pa) -

1 0 ez & Ray _ TZ(i,i’)eg loe — e ||3 + (1 —7) Z(i,i’)eg o — o2
Cs o2 2

).

o 2‘72pa

where Cs,2 is a normalizing term, ¢ and p, control the informativeness of the prior, and
r controls the relative weights of the Laplacian prior and fusion prior. The normalizing

2

term Cs,2 depends on 6 and o and is not analytically available. Therefore, to facilitate

computation, we propose a joint prior for o2 and d,

p(6,0%) o Cyon -6 exp(—0) - ()" exp (= ). (12)

which includes the normalizing term Cj,2 in (11). This construction allows the normalizing
term to be canceled out when deriving the full conditional of § and o2,

However, special care is needed to ensure that (12) is proper and also weakly informative.
For propriety, the integral of (12) is finite if and only if the integral with respect to J in
the neighborhood of 0 and the integral with respect to ¢? in the neighborhood of +oo are

2 5 00 and

both finite. Hence we need to derive the order of magnitude of Cs,2 as o
d — 0. Proposition 1 below shows py and p; in (12) should be at least larger than K /2 and

Py - PpK /2, respectively.

Proposition 1. The order of magnitude of the normalizing term Cjs 2 satisfies: (i) with
respect to §, Cs 2 is of order (1/86)5/% as § — 0, and of order (1/5)PFpK/2 g5 5 — 400, (ii)
with respect to o2, Cs 2 is of order (02) 2P Po=VK/2 q5 52 — (0, and of order (o%)PrTpK/2

as 02 — +00.

The proof is provided in Section A.2 of the Appendix. For weak informativeness, we sug-
gest to standardize the response variable so that the variance o2 of noise € should concentrate

2Py Pp—1)K/2
( K2 a5 0% = 0, we

on [0, 1]. Because Proposition 1 shows that Cj,2 is of order (o?)
set p1 = (2P --- Pp — 1)K /2 to balance the magnitude of Cj,2 and thus make (12) weakly
informative with respect to o (similar to an inverse-gamma prior with the shape parameter

close to 0 near the origin). As for the hyperparameter py, it is associated with the parameter

13



0, which controls the smoothness of the function. We will determine py in a data-adaptive
way and present the details in Section A.5.3 of the Appendix.

Although the approximation of additive component functions f;’s and the definition of
R in prior (11) are based on the vector of spline basis functions ¢, the posterior distribution
of » ;7 fi(z) remains unchanged for the proposed hierarchical model if an equivalent vector
of orthonormal bases of the same spline space is employed. This invariant property of our
hierarchical model is summarized in Proposition 2 and its proof is presented in Section A.3

of the Appendix.

Proposition 2. The inference for tensor additive regression (1) is invariant with respect
to an orthonormal transformation of the basis functions. That is, for ¢q = Q¢ where

Q € REXK s orthonormal, the posterior distribution of f := Y ez fi remains unchanged.

3.5 Posterior Sampling Algorithm

We apply a hybrid MCMC method to obtain the posterior samples of {u, a, X, 02,5} from
the hierarchical model (9)—(12). In particular, the MALA (Roberts and Rosenthal, 1998)

2 and § are drawn from their full conditional

is used to sample p and «; the parameters o
probabilities; and the Metropolis-Hastings algorithm with a truncated normal proposal is
applied to update A (Cai et al., 2020). As MALA requires the posterior to be differentiable,

we approximate the non-differentiable components of the posterior by
11 losif[3 — A
Ljeqiz>ny & to; A) = 5 4 — arctan ( ; ) (13)

s €0
> o=z~
=

Sl — a3+ e (14)
(1,1 (,i)e€

The approximations become exact if the parameters ¢ in (13) and € in (14) go to 0%,
Though random walk metropolis does not rely on the assumption of smooth posterior,
its low efficiency makes it impractical to apply in high-dimensional problems. We compare
MALA and the random walk metropolis in Section A.7.3 of the Appendix through a simula-
tion experiment. The experiment demonstrates the advantage of MALA, and it is worthwhile
to smooth the likelihood and prior. The idea of approximating the non-differentiable thresh-

olding function and ¢;-norm by smooth ones is commonly used in many areas such as spiking
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neural networks (Bohte et al., 2000) and brain-machine interface technology (Onaran et al.,
2013). Another advantage of using the smooth approximation is to improve the computa-
tional efficiency of MCMC (see, e.g., Rischard et al., 2018). Furthermore, our approximations
(13) and (14) can be interpreted as Student ¢ smoothing with 1 and 2 degrees of freedom,
respectively. This is similar to the Gaussian smoothing technique of Chatterji et al. (2020).
Details of these smoothing representations are provided in Section A.4 of the Appendix.
Algorithm A.1 in Section A.5.1 of the Appendix presents the details of the posterior
updates. With the training sample size N, the computational complexity of our algorithm is
O(NpK +pK?), where p is the number of entries of the tensor covariate (i.e., p = PPy -+ Pp
for a D-way tensor) and K is the dimension of the spline bases. After the algorithm exe-
cution, the active regions are determined by the estimated receiver operating characteristic
(ROC) curve (Hajian-Tilaki, 2013) according to the posterior samples of BFEN, which is
also provided in Section A.5.1 of the Appendix. The posterior point estimator ﬁ of the
additive component function in the active regions is computed by q,’)TBi where Bi is the
posterior mean of the truncated spline coefficients (7). Overall, our method includes several
hyperparameters {7, pa, Po, D1, az,p7 a,b} and tuning parameters {J’, €y, €1 } in (10)—(14). For
ease of tuning, we suggest to standardize the responses in practice. After this, we assign
(2P, --- Pp — 1)K/2 to p; as discussed in Section 3.4 and a small number 107¢ to ¢;. The
choice of ¢ is data-driven and addressed in Section A.5.2 of the Appendix. We find that our
model is not sensitive to the specific choice of small value for ¢; through a sensitivity analysis
in Section A.5.2 of the Appendix. We also suggest to set ¢’ = 0.0001 in prior (11), and set
ai =100, p =1 and a = b = 0.5 in prior (10). The sensitivity analyses of these parameters
are presented in Section A.5.4 of the Appendix. As for (7, pa) in the prior (11) and py in
the hyperprior (12), a validation method is suggested since they are critical in controlling
the strength of the prior. In our experiments, we split the available data into a training set
and a validation set with sizes in the ratio of 5 to 1, and the optimal parameters are those
minimizing the validation loss L(yvaiia; Yvatia) = (1/Nvatia)||Yvatia — Yvatial|3, where Nyaia is
the size of the validation set, and y,a;q is the vector of predicted values of the observations
Vwaia in the validation set. The details of this procedure are discussed in Section A.5.3

of the Appendix. We find that the above strategy of selecting the hyperparameters works
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reasonably well in all of our numerical experiments.

4 Simulation

In this section we compare our method, Bayesian additive tensor regression with FEN prior
(BFEN), with three alternative methods: i) the sparse nonparametric tensor additive regres-
sion (STAR) with the group lasso penalty (Hao et al., 2021); ii) the frequentist linear tensor
regression (FTR) with the lasso penalty (Zhou et al., 2013); iii) the Bayesian linear tensor
regression (BTR, Guhaniyogi et al., 2017).

4.1 Simulation Settings

In our simulation study, the covariate X is a 2-way tensor (i.e., matrix) of dimension Py x P,
and so the corresponding additive model can be written as f(X) = u+ >, ; fi;(X;;) where
many f;;’s are identically zero.

We let 1 = 0 and consider three different patterns of true active regions (non-zero additive
component functions): low-rank shapes, a horse shape, and a shape of handwritten Arabic
six from MNIST database (LeCun, 1998). These patterns are depicted in Figure 5 where
the non-black pixels indicate the positions of the active regions.

Each pattern includes two nonlinear settings with different levels of signal-to-noise ratio
SNR = 5 and SNR = 50 respectively, and one linear setting with SNR = 5. In the nonlinear

settings, for each pixel (7, ) in the true active regions, we set f;;(z) = h;;(z) — m;; with
h”(l') = Qyj Sin(CijZL’) + Qi COS(dijZL') + bl‘jl‘, (15)

and m;; = [ h;j(z) dx such that f;;(z) is centered.

We now specify the additive component functions in the active regions through the coeffi-
cients a;;, b;;, ¢;;, and d;; in (15) for each setting. First, for the linear cases, we let a;; = 0 and
b;j = 1 in all three patterns. For the nonlinear cases, we set a;; for three patterns in different
ways. In particular, a;; is set to 1 for every pixel (4, j). For the shape of handwritten Arabic
six, we let W be the gray-scale matrix of this figure in the MNIST database, and a;; is set
as 2W;;+ 1. For the horse shape, we follow Dong et al. (2016) which applies the eigenvectors
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Table 2: Specification of the component function coefficients a;;, b;;, ¢;j, and d;; in (15) for
(,7) in the true active regions for each simulation setting. The nine settings are organized

into three groups by their patterns (shapes) of the active regions.

Setting ID 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 7 ‘ 8 ‘ 9
Shape Low rank Horse Handwritten Arabic six
SNR 5 50 5 5 50 5 5 50 5
low SNR | high SNR low SNR | high SNR low SNR | high SNR
Setting Meaning linear linear linear
nonlinear | nonlinear nonlinear | nonlinear nonlinear | nonlinear
True f;; a; sin(cy;x) + agj cos(dijx) + bijz — my;
mij [ aijsin(ci;z) + a; cos(dijx) + bz da
ai; 1 0 1) +2 0 Wy + 1 0
cij 157 0 o) 0 o) 0
di; 157 0 o 0 o 0
bis 2aij(cij + diy) ! Zaij(cij + diy) ! 2aij(cij + diy) !

of the graph Laplacian matrix to produce smooth signals on the graph. More specifically,
we construct the spatially smooth coefficients a;;’s based on the eigenvectors of the graph

Laplacian matrix of the graph G defined in Section 2. As for ¢;; and d;;, we set them to

ij>
1.57 in the nonlinear cases of the low-rank shapes. For the other two shapes, ¢;; and d;; are
also spatially smooth with value restricted to [m, 1.57]. Then, b;; is set as (2/m)a;;(c;j + dij)
for all the nonlinear settings. Finally, we generate the noise terms by adjusting the variance
to achieve SNR = 50 for Settings 2, 5, 8, and SNR = 5 for the others. Overall, we have
nine simulation settings with different shapes of active regions, signal-to-noise ratios, and
complexities of the nonlinear functions. These nine settings are summarized in Table 2 where

1 (2

the details of constructing u;;", v;7",

Section A.7.1 of the Appendix.

and vi(?) by following Dong et al. (2016) are provided in

For each setting, the entries of each covariate X are generated from i.i.d. unif(0, 1), and
the response is generated from the additive model with corresponding observational noise
level 02. We generated 30 simulated datasets of sample size 600 independently for each
setting. We apply the proposed BFEN and the alternatives on the datasets. For BFEN,
the hyperparameters are selected as discussed in Section 3.5. For STAR, FTR and BTR, we
implement these three methods respectively following Hao et al. (2021), Zhou et al. (2013)
and Guhaniyogi et al. (2017), and the details are provided in Section A.6 of the Appendix.
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To evaluate the estimation accuracy of the component functions for various methods, we

calculate the mean squared error (MSE) and relative mean squared error (RMSE) as
MSE = 5 SOy~ Byl and RMSE = oo 37y = /IR

6] (i.5)ev

where V is the set of indices of true active functions. The ability to select the active func-
tions/pixels is assessed by the true positive rate (TPR) and the true negative rate (TNR).
Note that the posterior samples of the BTR method do not directly indicate the activity of
pixels directly. To evaluate the region selection performance of BTR, we follow Guhaniyogi
et al. (2017) to identify the active pixels of BTR by checking whether the 95% posterior
credible intervals exclude 0. For our proposed BFEN method, we used the posterior sample
as introduced in Section 3.5. We further use the testing relative prediction error (RPE) to
evaluate the prediction accuracy. To do this, we generate another 400 observations as a

testing dataset whose index set is denoted by 7, and calculate

RPE = Z(/y\n - yn)Q/ Zygw <16)

neT neT

where 7, the predicted value of the n-th observation in the test set through iz and ﬁ»j’s.

4.2 Results

The results are presented visually as boxplots in Figure 4, which summarizes RPE, MSE,
RMSE, TPR, and TNR based on 30 replicates for each setting. We also provide detailed
numerical results of the simulation experiments in Table A.3 of the Appendix. To compare
the computational efficiency between our algorithm and the alternatives, all methods were
run on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU and the execution time is
also recorded in Table A.3. The convergence time of Algorithm A.1 for our proposed BFEN
method is less than 1.5 minutes on average for a single specification of tuning parameters.
It can be seen that the average RPE, MSE, and RMSE of BFEN are smaller than those
of STAR, FTR, and BTR in all settings of irregular sparsity shapes, i.e., a horse and a
handwritten Arabic six (Settings 4-9). In Settings 1-3, the true active region is of low

rank which is indeed in favor of the other alternative methods. It is expected that STAR
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works well in Setting 2 and the linear alternatives have better performance in Setting 3
since the corresponding settings favor these models. Besides, among the three alternative
methods, STAR enjoys an advantage over FTR and BTR only when nonlinear signals are
strong enough (Settings 2, 5, and 8). Overall, BFEN is more flexible and has advantages in
a wider range of scenarios.

As for the recovery of active regions, the proposed BFEN method has a balanced per-
formance in both TPR and TNR for all settings. We find that STAR and FTR tend to
over-select active pixels, i.e., TNR is low. On the other hand, TPR of BTR deteriorates
considerably when its low rank and linear assumption are violated in Settings 4, 5, 7, and 8.

For further demonstration, we calculate the LLo-norm of each estimated additive compo-
nent function, Hﬁ] ||lL,, for all methods. These results can be visualized by heatmaps for each
simulated dataset. For the nonlinear with high SNR settings, the heatmap corresponding to
the median RPE among 30 simulated datasets for each method was depicted in Figure 5, and
the heatmap for the truth was also depicted at the leftmost of Figure 5. For the nonlinear
with low SNR and linear settings, the heatmaps were respectively provided in Figures A.3
and A.4 of the Appendix. It is evident that the proposed BFEN recovers the shape of the
true active region and the corresponding spatial distribution of the signal strength with a
reasonably good accuracy.

In contrast, STAR, FTR, and BTR only work well in the low-rank setting (Setting 2,
the first row in Figure 5) but are substantially worse for the other two patterns. STAR,
FTR, and BTR are based on the tensor rank-R CP decomposition, which is the sum of
R rank-1 tensors. Therefore, the sparsity patterns recovered by these methods tend to be
a combination of several rectangular blocks. BFEN, however, encourages the similarity of
neighbouring signals rather than enforcing certain shapes of spatially connected regions and,

thus, can adaptively identify the active regions with complex shapes.

5 Facial Feature Analysis

We apply our method to the Labeled Faces in the Wild dataset (Huang et al., 2008). This

dataset consists of facial images collected from 5,721 people and attributes that quantify
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Figure 4: The boxplots for visualizing the results of simulation experiments. Rows 1-5 depict
RPE, MSE, RMSE, TPR, and TNR, respectively. Columns 1-3 respectively correspond to
low-rank shapes, a horse shape, and a shape of handwritten Arabic six. In each panel, the
left, middle, and right group of boxes correspondingly represent the results under ‘low SNR,
nonlinear’, ‘high SNR, nonlinear’ and ‘linear’ setting. In each setting, the blue, orange,

green, and red boxes correspond to BFEN, STAR, FTR and BTR, respectively.
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Figure 5: The heatmaps of various methods under the nonlinear with high SNR settings
(Settings 2, 5, and 8). Rows 1-3 correspond to the patterns of low-rank shapes (Setting 2),
a horse shape (Setting 5), and a shape of handwritten Arabic six (Setting 8), respectively.
The first column presents the truth. Columns 2-5 correspond to the estimated results by

BFEN, STAR, FTR, and BTR, respectively.

various facial features for each facial image (Kumar et al., 2009). In this experiment, we
select one facial image per person and choose the facial expressions related to the mouth as
responses, which are smiling, frowning, mouth closed, mouth wide open, and teeth not visible.

We follow Hassner et al. (2015) to register these images. In particular, all images are
frontalized to make faces in constrained and forward-facing poses; thus, the same regions of
different images represent the same part of a human face. The original gray-scale image is
of size 90 x 90 with entry values in [0, 255]. We further down-sample each image to a 45 x 45
matrix by replacing every four pixels in a square with one pixel of average gray-scale value,
and rescale the entry values to [0, 1]. Figure 7(a) shows an example of the resulting image.

We compare the proposed method with STAR, FTR, and BTR as in Section 4. We
randomly sample an index set S of size 2000 from the full subject set {1,---,5721} for
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Figure 6: The boxplots of the relative predictive errors for the facial data analysis under
100 replicates. From left to right, the 5 groups of the boxes respectively represent the
results for attributes smiling, frowning, mouth closed, mouth wide open, and teeth not visible,

respectively. In each group, the blue, orange, green, and red boxes respectively correspond

to BFEN, STAR, FTR, and BTR.

feasible computation. The set § is then divided into three disjoint subsets S =& US; U T
of sizes 1000, 200 and 800 respectively. Sets S; and Ss are used for training and tuning, and
Set T is used to evaluate the performance of prediction through RPE in (16). We repeat
this procedure 100 times.

The results are presented visually as boxplots in Figure 6, which summarizes the RPE
of various methods for each attribute. We also provide the numerical results and runtime
for the facial feature analysis in Table A.5 of the Appendix. In particular, Algorithm A.1
of our proposed BFEN method needs less than 2 minutes on average to converge for one
grid of tuning parameters with a 2.2-GHz Intel E5-2650 v4 CPU. It shows that BFEN
outperforms the three competitors in all cases, except for the response mouth wide open
where BFEN and STAR have similarly good performances. The heatmaps in Figure 7(c)
display the magnitude ||ﬁj|| 1, of each pixel for the attribute smiling using various methods.
It shows that the result of BFEN has better interpretability: smiling can be characterized

by the pixel values around the eyes, mouth and some facial muscles. Figure 7(b) depicts
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the estimated nonlinear functions f;;’s and the 95% posterior credible intervals by BFEN
corresponding to the region indicated by the rectangle in Figure 7(a). Some functions exhibit
clear non-linearity. In contrast, the signals selected by FTR and BTR do not have an obvious
interpretation. With the help of nonlinearity and the group regularization across different
blocks, STAR has better interpretability than that of FTR and BTR, but is still inferior to
BFEN. Overall, the low-rank modeling may not be flexible enough to characterize a complex
shape like smiling, and this result is consistent with our findings in the simulation study.

The heatmaps for other attributes are depicted in Figure A.6 of the Appendix.

6 Discussion

In this paper, we have proposed a nonlinear Bayesian tensor additive regression model, which
incorporates the spatial information of the tensor covariates. A functional version of the fused
elastic net, FEN, has been introduced as a prior distribution on the additive component func-
tions to accommodate the sparse, spatially smooth functional structure with discontinuous
jumps. Through numerical experiments on the simulated and the facial feature datasets,
we have demonstrated the superior performance of the proposed method compared to the
existing linear and nonlinear tensor regression models for characterizing irregular shapes of
sparse active regions, even if the signal-to-noise ratio is relatively low. The performance of
alternative methods, however, rely on low-rank assumption, which is often violated in real
applications of image and neuroscience data.

The proposed BFEN has some limitations, which may lead to extension of this work.
Similar to many other methods with multiple hyperparameters, the main computational
burden of our method is due to the validation method for selecting hyperparameters pg, r,
and p,. Further investigation is needed to relieve this bottleneck by, for example, imposing
appropriate hyperpriors on these hyperparamters to automatically adjust them. In addition,
extending the current model to the case of multi-dimensional response variables, like matrix-

on-tensor and tensor-on-tensor regressions, is also of interest.
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Figure 7: Real applications on the facial data for the attribute smiling. (a) An example of

facial covariate tensor X. Its corresponding value of smiling attribute is 1.51, which means

the person is smiling. (b) Each of the 4 x 6 panels depicts the estimated ﬁj from BFEN

corresponding to the enclosed rectangle area in (a), and between the dashed lines are the

95% posterior credible intervals. (c) The heatmaps in columns 1-4 correspond to Hﬁ-jHLQ

estimated by BFEN, STAR, FTR, and BTR, respectively.

Appendix

A.1 Construction of Spline Basis

In this section, we show the details of the basis construction in Section 3.3. The K dimen-

sional centered and orthonormal basis ¢ is from an K 41 dimensional B-spline basis 7). The

construction is divided into three steps:
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First, denote W := [(z)3p(x)" dz. Suppose its eigendecomposition is W = VI, VT,
where I'; is diagonal containing the eigenvalues and V is orthonormal containing the eigen-

vectors in its columns. Set ¢(z) := I‘fl/ VT4 () to get an orthonormal basis satisfying
[ #@)" dr =T

Next, denote d := [4p(z)dzr € REH! set T € RETLE as the full column rank matrix
with columns orthornormal to d, i.e., TTd = 0. Set ¢(-) := TT4p(x), and we get an set of

orthonormal and centered basis functions satisfying
/ P()p()" dz =T'T =TI and / d(x) dz = 0.

Finally, denote Qg := [ c}bﬂ(x)a/(w)T dz. Suppose it has the eigendecomposition €y =
UT, U, where I'; is a diagonal matrix of eigenvalues arranged in an increasing order. Set

¢(x) := UT¢(x). We can see that ¢ is a centered and orthornormal basis with a diagonal
Q= / ¢"(2)¢" (z)" dz = UTQ,U = UTUTL,UTU =T,

Hence the properties (i), (ii), and (iii) in Section 3.3 of the main paper are all satisfied by
the constructed spline basis ¢.

As Q is computed from the second order derivative of ¢, its smallest eigenvalue is zero,
i.e., (I'2)11 = 0. This eigenvalue corresponds to an eigenvector u; such that ulT(z) is a linear
function. This implies the first component of ¢ is a linear function. Because the properties (i)
and (ii) in Section 3.3 are both satisfied, it is easy to see that ¢ L £[0, 1],k > 1. Meanwhile,
it can be verified that ¢ay; is the projection of the function ¢; = ¢’ oy onto 2[0,1], i.e.,
Pgi = ¢,1, where oy is the first element of a;. Hence, with the basis ¢, the roughness
norm R(g;) = ||¢/'|IZ, + 0’| PgillZ, in (4) of the main paper can be rewritten as Y ; ; o] Roy
where R = Q + 0'[|¢1 |7 ere] with e; = (1,0,...,0)".

Using the above procedure, constructing the orthonormal basis only requires to know the
degree and dimension of the B-spline. For the degree, it can be fixed as 4 (cubic spline)
to alleviate the computational burden, and this choice is commonly used in nonparametric
literature Huang et al. (2010). As for K, there are many simple recommendations based on
the sample size (e.g., Ruppert et al., 2003). We follow Fan et al. (2011) to fix K = [n'/?],
where [-] denotes rounding to the nearest integer, n is the sample size, and the interior knots
are equally-spaced quantiles of all covariate samples. All the results of numerical experiments
exhibited in our paper are obtained through this empirical rule, and we find that this rule

works reasonably well.
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A.2 The Order of Normalizing Term of the Prior

In this section, we provide the proof of Proposition 1 by calculating the orders of the nor-
malizing term Cj,2 of the prior (11) with respect to 6 and o? respectively.

The normalizing term Cj,2 equals to

T
expd — 0> ier o4 Ry
RP1-PDK O'2

(A.1)
_ TZ(i,i/)eg les — |3+ (1 —7) Z(i,i’)eg i — |2 da
20%pa
With a formula
Aal /°° A a? A2w? 4
€x D ex _—_ — — w
P o 0 V2mw? P 202w? 2
for (A > 0) (Andrews and Mallows, 1974), we have
{ (1 =7) > )ee los — a2 }
exp{ —
20%pa
(A.2)

1= i—oaplly (1 —r)%w
— H / —T . exp{ _ Ha 43 H22 _ ( 7") Wii }dCUIQI/
(iiee /0 \/ 2mwg, 2 - 4o pwiy 2

Here we introduce some notations to facilitate the proof. Let a., denote the tensor of
dimension P; X --- X Pp whose i-th element, (a.y);, is ay; (the k-th element of coefficient
vector @), i = (i1,...,ip) € Z and k = 1,..., K. For a generic D-way tensor, we define
the operator vec(-) as its vectorization according to the lexicographical order from its 1-st
to D-th mode. In other words, vec(Z) := (1,2,---, [, Pa) as the vectorized form of the
index set Z such that i = (i1,...,ip) is now placed at the t-th element of vec(Z), where
t=ir+ 30 (ig—1) H;l,_:ll Py, for any i € Z. Similarly, vec(avy) is the vectorized av.; such
that the ¢-th element of vec(av.r,) is (ax); whenever t = i+ 3.2, (iq— 1) [[%_ Pur. With the
vectoried a.p, some terms in the integrand of (A.1) can be rewritten in terms of quadratic
forms. In particular, define the quadratic matrices Agk) for k=1,..., K, Ay, and Ag") as
follows. Agk) is Gy, - I, where Gy, € R is the k-th diagonal element of the matrix R in (A.1).
For any edge (i,i') € £ of the graph, suppose i (or i') corresponds to the ¢-th (or t’-th resp.)
element of vec(Z), the (¢,t')-th and (¢, ¢)-th elements of Ay and Ag") are (A2)w = —1/(2pa),
(Ao)i = =X u(Ao)is, (AS))w = —1/(2- 4p2wd), and (AS”)y = =3, (AS”)ss; The
other elements of Ay and Ag"’) are 0’s. The three matrices satisfy:

Vec(a.k)TAgk)vec(a.k) =4 Z Grrtiy, (A.3)
iz
2
Qi — Oy
vec(oy) T Agvec(ay) = (.Z);g %, (A.4)

26



vee(a)TAY vec(auy) Z L, 7 al/k : (A.5)

(ii"e€ 2 4pa i’
Denote 5 9
o(w) = 1—r exp{_(l—r) wn,}
(iiee 2w, 2
and o)
k) TAQ A w
Alk,w,8,0%) = AW =+ =

After using the above simplified notations, we substitute (A.2) back into (A.1), and apply
the Fubini’s Theorem to have

K
SA(k,w, 0, o>
Cs oz = /ngg(w) [H /]RP N exp{—vec(a.k)T ( o 7 )Vec(a.k)} da.k] dw?.
+ k=1 /RILTTD

Integrating out av;’s, the normalizing term Cj,2 becomes

-1

c /R . g(w) (?)P o [H Vdet{A(k,w,d, 02)}] dw?. (A.6)

Hence, the key to compute the degrees of § and o2 is to find out the degrees within
det{A(k,w,d,0%)}. Since G = (Z,€) is a connected graph, (A.4) and (A.5) equal to 0 if

and only if oz, = oy, Vi, 1 € Z, i.e. vec(ag) o< 1, where 1is a P, - - - Pp dimensional vector

with each entry being 1. Hence A, and Ag“’) are positive semidefinite matrix with rank
Py -+ Pp —1. Next we discuss the order of Cj > with respect to §, 0% when they go to both

0 or co. On one hand,

(i) 0 — oco. With the positive (semi-)definiteness of the matrices, we have

(w)
2 ), V6 > 1.

0 < det (A) < det{A(k,w,d,0?)} < det <A§

We can see that det{A(k,w,d,c?)} is bounded by two positive constants that is inde-
pendent to §, so det{A(k,w,d,0?)} is of order O(1) for 6 — oco. Together with (A.6),

we know the normalizing term Cj 2 is of order (1/§)71Fpk/2,

(i) 02 — oo. Similarly, we have

rAs Ay AW
0<det<Ak)—|— 6)<det{A(k;w50)}<det(A(k r52 : ),v02>1,

so det{A(k,w, d,0?)} is of order O(1) for 2 — oo. Combining with (A.6), the normal-

izing term Cj 42 is of order (o)1 PpK/2,
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On the other hand, to compute the degrees of § and ¢ when they go to 0, we apply Grinberg

(2020)’s formula for n dimensional square matrices A, B:
det(A+zB) = det(A)+det(A)p (A7 'B)z+- - -+det(A)p,—1 (A 'B)z" ' +det(B)a", (A.7)

where A is an invertible square matrix, and p;(-),- -+, pn—1(-) are the sums of all principal

minors of order 2,--- ,n — 1, respectively.

(iii) 6 — 0. After respectively substituting the three variates Agk), rAs + Ag") /o?, and
1/6 for A, B, and z in formula (A.7), it shows that n in (A.7) turns to be P, - -- Pp,
and A is a positive definite matrix. It is easy to see that the right side of the linear
combination r x (A.4) 4+ (A.5)/c? equal to 0 if and only if ay, = ey, Vi, i’ € Z, s0 B
is a positive semidefinite matrix with rank P, --- Pp — 1, and meanwhile A~'B is also

positive semidefinite matrix with rank P; --- Pp — 1. Hence we have
det{A(k,w,d,0%)} = det(A) + det(A)p (A 'B)/6 + - + det(A)p,_1(A7'B) /6",

where det(B) = 0, det(A) > 0, and p;(A™'B) >0, j =1,--- ,n— 1. So we know
that det{A(k,w,d,0%)} is of order 1/§7Pp~=! for § — 0. Combining with (A.6), the

normalizing term Cj,2 is of order (1/8)%/2.

(iv) 0 — 0. Substitute A + rAy/8, AL /5, 1/02 for A, B, z in the formula (A.7),
respectively. Similarly, we can prove det{A(k,w,d,0%)} is of order (1/02)PrFp=1,

Further, according to (A.6), the normalizing term Cj,2 is of order (g2)2PFo—1EK/2,

A.3 Model Invariance

In this section, we prove Proposition 2 in Section 3.4 of the main paper. Denote p(a; @)
the probability distribution function of the prior (11), where ‘@’ is involved because R in
the prior (11) is defined based on the spline basis. Note fi(Xi) = ¢(Xi) @i - 1(ja 352}, 50
the prior p(a; ¢) of paramater a induces a prior distribution for f(X). For any orthogonal
matrix Q € O(K), after giving orthogonal transformation to the spline basis: ¢q = Q¢, we

have a new model Y = fq(X) + € with component function

fai(Xi) = dq(Xi) et - Lyjayzn)- (A.8)

With the new spline basis ¢q, the prior imposed on « turns to be (e ch), which also
induces a prior distribution for fq(X). Proposition 2 is an equivalent to: The prior distri-

bution of fq(X) induced by the prior p(c; ¢q) keeps unchange for any orthonormal matrix
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Q € O(K). Denote aiq € R *PpxK whose element (aq)ir = (QTew)r, 1 € Z,1 <k < K.
Because

fai(Xi) = (X)) TQ et - 1yjayzony = H(X5)TQ s - 1 qray 2=y

(A.8) with the prior p(-; ¢q) for e is equivalent to

fai(Xi) = &(Xi) T (@) - 1jaquiz>r} (A.9)

with a prior ¢(-; ¢q) for aq, where q(-; ¢q) is obtained through density transformation from
p(e; ¢g). All we need is to show that ¢(-; ¢q) is invariant to Q € O(K), which, is guaranteed

by the following computation

D oGinee (e Q"Qas — 20/ Q" Qo + o Q" Qavy)

Ingleidq) x = al Q(QRQ") Qe - o7

(1-r) Z(i,i’)es ValfQTQa; — 2 QTQa; + o QTQay
20%pa
2(4)ee (o a; — 2af oy + of ay)

- r
oc—E o; Ra; —
i

(1=7) Yiee Vo on — 20505 + ajay

20%pa

20%pa

o p(a; @).

A.4 Student ¢t Smoothing

In this section, we show that the proposed approximations (13) and (14) of nonsmooth
functions in the main paper can be represented in terms of smoothing method similar to
Chatterji et al. (2020), where a Gaussian smoothing was introduced.

We first recall that o™ = (o )jer € RPVXPpXE are the combined spline coefficients for
all additive component functions f;, i € Z, and £ is the neighboring relationship set for the
location index set Z. Let p be the cardinality of £, i.e., p = |€|. Denote g : RF1**FPoxK s Rp
such that g(a) = (|| — aw|]2) Gvyee. We can then rewrite the non-differentiable fusion term
> iiyee o — awll2 (the left hand side of (14) of the main paper) as [[g(a)[li. Now, let &
be a p-dimensional random vector with &; RS ta, j € &€, where ty denotes the Student ¢

distribution with 2 degrees of freedom. It can be shown that, for ¢; > 0,

Elg(er) +V(/2)€lh = ) \/Hai_ai’H%‘l'El- (A.10)

(i,i")e€

Thus (14) of the main paper can be represented by a perturbation (Chatterji et al., 2020)
using Student t distribution with 2 degrees of freedom. To show (A.10), we note that for a
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random variable & ~ t,, direct calculation shows
Ela+ ué] = Va + 2u?, (A.11)

for o, u € R. Thus, for 5“/ i "ty, we have

Ellg(a) +v(e/2) &l = > EBllas—apls+V(6/2) &)
(i,i)ee
All

Sl — a3+ e,

(i,i )65

which completes our Student ¢y perturbation representation of (14) of the main paper

Similarly, let U be the indicator function such that U(u) = 1y,>»}, and define &N tl,
i € Z, where t; denotes the Student ¢ distribution with 1 degree of freedom (i.e., the Cauchy
distribution). We then have

E{U (lell3 + €o&) } = E(Lgjazz+eoei>a})
= IP’(||a1H§ + 60& > )\)
=P{& > (A= |leull3)/e0}

1 1
-1 _ 3 + - arctan{(\ — ||a;|3)/eo}

1 1
=5+= arctan{([la;|5 — X)/eo}-

Thus, (13) of the main paper can be represented by the Student ¢; (Cauchy) perturbation.

A.5 Model Estimation

In this section we demonstrate how to estimate the tensor regression model (1) of the main
paper. The method includes two major components: sampling posterior and selecting hy-

perparameters (a validation method).

A.5.1 Posterior Sampling

Algorithm A.1 describes the Markov chain Monte Carlo (MCMC) method to obtain posterior
samples for the parameters {u, a, A, 02,6} of the hierarchical model (9)-(12) of the main
paper. Steps 1 and 2 use the MALA (Roberts and Rosenthal, 1998) to sample p and a;; Step

2 and ¢ from their full conditional probabilities; and Step

3 and 4 draw the parameters o
5 applies the Metropolis-Hastings algorithm with a truncated normal proposal to update A
(Cai et al., 2020). The hyperparamaters (7, po) in (11) and pg in (12) of the main paper are

fixed during the MCMC update.
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Algorithm A.1: Posterior updates under fixed r and p,.

Input: the parameters from the last iteration
Output: the updated parameters for the next iteration

1 Draw p* ~ N(fi,77), where

2 N 2
o T Olp(yn | @ p 0% N) | Olnp(p)
p=p 2(;21 B Yo )

Update p = p* with probability

NGl 7)) TE ple i 0%, )
N(M*Ul; Tﬁ)p(ﬂ) Hi:;l p(yn|a7 1, 0-27 )\)

2 Draw o* ~ N(&, 721p,p,), where

N

- Ta O p(yn | o, p,0%,\) | dlnpla | d,r,0°, pa)

Update ¢ = a* with probability

i 4 1. Nlelar, o Ip e, )p(e” | 0,7,0%, pa) [Tny p(ynl o, 1,02, \)
N(a*|é, 721pp,)p(e | 6,7,0% pa) TTn_y P(ynlor, p, 0%, N)

s Draw o? ~ Inv-I'(a, b), where a = p; + &,

N n)
Zn:l(yn -t ZieI ¢(Xi( )Tai a(e)’ +0 Z OéiTRai

b=1
+ 2 .
ieZ
n rZ(i,i’)eg lot — e ||3 + (1 —7) Z(i,i’)eg o — il
2P0, '
4 Draw § ~ I'(a, b), where a = py and
.o Ry
b=1+ Liez & Reu = .
o

5 Draw \* ~ N, (\,0, A\, 77) , which is a normal distribution N (), 7§) truncated by
[0,\,]. Update A = \* with probability

L N O A A ) ) Ty f (e o 0?0
Ny (/\*|/\7 )‘Av)‘uaT)%)p()‘) nglf(yn|aaﬂa027/\)
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Given the posterior samples of a;, A from Algorithm A.1, we estimate the model coefficient
B in (7) of the main paper in the following way. Denote {a!#*) )\(B“)} the posterior
samples after burn-in, and Dy the training dataset. We achieve sparsity by Selectmg the ac-
tive indices (1, j) from the posterior inclusion probability. The posterior inclusion probability

for B, is given by the posterior mean of the indicator function ¢(a;; \) in (13):
I-B
O D t B+l )\(B-‘rl)
P8 #0103 = 5 Y )

The corresponding additive component function fi, i € ﬁ, is regarded as active if Pr (B; #0 | Dy) >

cp for some cut-off value ¢y. The estimated active index set is then

V(eo) = {i:ﬁ(ﬁﬁéo | Dy) >c0}.

Similar to Hajian-Tilaki (2013), the cut-off value ¢, can be decided according to the receiver
operating characteristic (ROC) curve. For this purpose, we introduce several notations.
Define two tensors Jy, ']17(00) € RFPvxPp guch that

1, true B; # 0, L, ieﬁ(CO)a
(Jv)i = and (I5e))i =

0, otherwise; 0, otherwise.

In the above, 3; is the true coefficient and thus Jy can be interpreted as an indicator for
the true active index, while J ) can be interpreted as the estimated active index. We also
define a tensor J € RF>~ XPD Whose elements are all ones, i.e., J; = 1, Vi € Z. With these
notations, the true negative rate (TNR) and the true positive rate (TPR) for the cut-off
value ¢q are respectively defined as

(J=Iv. I = Iy

TNR(C()) = <J7J _ JV>

and
(v, J17(00)>

(J,Jv)

Note that Jy, is unknown, we use the tensor P € RP1*XPo whose element P; = Pr (B; #0 | Dy)
to approximate Jy, in practice. According to Hajian-Tilaki (2013), the estimation of TNR
and TPR can be obtained as

TPR(C()) =

<J P J JV(C())> —— <P7Jﬁ(60)>

TNR(co) = T TPR(co) = TP

We thus determine the optimal cut-off value ¢y as the one minimizing the distance between
the point (0,1) and the ROC curve, i.e.,

50:argminc\/{1—TPR (0)}* + {1 = TNR(c)}".

32



Finally, with the selected ¢y, the estimated regression coefficient for an active index i is given

by
N T .
Bi= g o e, e,

=1

and the corresponding estimated additive component function turns to be f: = qz’)T,/B\i.

A.5.2 The Selection of Approximation Parameter

There are two considerations about the tuning parameter €, in the smooth indicator ¢(a;; \)
(13). On one hand, as required by MALA, the indicator should be smooth enough. On the
other hand, as an indicator function, its range [min; ¢(ay; A), max; t(ay; A)] needs to cover
[0,1] as much as possible. According to Figure A.1, we can see that with a bigger ¢, the

lailz A ——

fffff t(ai; A) =2 + 2arctan
(@;A)=3+n X v
q2 A 1y
—— tla;A) =1 +Larctan(l222) i
0.8 :
il —A If
"""""" tay; A) =1 + Rarctan(2) |
|
06 }
f:: L“
c ‘
=
04 il
I
w:
[i
I
02
/:‘
S /// i
0.0 S
-10.0 -7.5 -5.0 -2.5 0.0 25 5.0 7.5 10.0
laalls — A

Figure A.1: The smooth indicators with different ¢;’s.

indicator becomes smoother, but [min; ¢(cy; A), max; t(a; A)] is harder to cover [0,1]. It
should be avoided that the parameter ¢, is either too small or too big. Denote m such that
1/2 + (1/m) arctan(m) = 1 — n, where 7 is close to 0. To make [min; t(a;; A), max; t(og; A)]
cover [n, 1 — n], we require ¢ to satisfy min; ||a;||3 — A < —mey and max; ||a;]|3 — A > meo,

hence we have

0 c <O, max; || o |3 — min [0 13
2m
We choose the largest value
max; || o |3 — min; |03
2m
for ¢y to make the indicator smooth as far as possible, and we suggest to set 1 as 0.05 in the

numerical experiments.
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However, in a real application, ||ay||3 is unknown. In practice, we apply a two-step

strategy as follows to settle this problem.

(i) Set t(ai;A\) = 1 and drop the step updating A in Algorithm A.1. We run Algo-
rithm A.1 under 7 = 1 and po, = p1 to get rough estimates of max; | ;|3 and
min; ||a|[3. We then set

max; || |5 — min; [|ay|3

2m

(ii) With this ey, we completely run Algorithm A.1 under r = 1 and p, = p; to get new

estimates of max; ||a;||3 and min; ||ag||3. We then set

 max; [|ay|3 — min; [|as]]3

2m

As for the tuning parameter e, it is used in the approximation to the ¢; function (see
(14) of the main paper). To closely approximate the nonsmooth ¢; function, €; is suggested
to be small enough and we specify its value to be 107° as discussed in Section 3.5 of the main
paper. We find that our proposed model is not sensitive to the specific value of ¢; through a
sensitivity analysis on the simulated data. In particular, we generated the simulated dataset
of sample size 600 under the nonlinear setting of a horse shape with high SNR (Setting
5) as in Section 4 of the main paper. On the simulated dataset, we applied our proposed
BFEN method with ¢, = 107%, 107%, and 107!°. We repeated the experiments 30 times
and calculated relative prediction error (RPE), mean squared error (MSE), relative mean
squared error (RMSE), true positive rate (TPR), and true negative rate (TNR) as in the
main paper. The results for various €;’s are summarized in Table A.1. Table A.1 shows that

our model is not sensitive to the tuning parameter ¢; with small values.

Table A.1: Estimation errors for different specifications of parameter €;. The first row stands
for the default specification, i.e., ¢, = 107%. The following rows summarize results when ¢,
is assigned new values. The numbers in parentheses are the standard errors based on 30

replicates.

RPE MSE RMSE TPR TNR

e1 =107 [ 0.0763 (0.0024) 0.0166 (0.0006) 0.0508 (0.0024) 0.9996 (0.0004) 0.9392 (0.0021)
e, =107% | 0.0761 (0.0022) 0.0165 (0.0007) 0.0509 (0.0025) 0.9998 (0.0002) 0.9405 (0.0017)
e1 = 10710 | 0.0763 (0.0022) 0.0168 (0.0008) 0.0516 (0.0028) 0.9996 (0.0004) 0.9412 (0.0017)
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Algorithm A.2: Validation method to select py and pg.

Let Loss;; denote the validation loss corresponding to hyperparameters py = po ;
and pa = pat-
Denote @Vt = {1,604 Uit (52)0hi) 5040 \GEDY the i-th update of posterior
samples set under py = po ; and pa = pa-
Set po1 < -+ < Po,Js Pat <+ < par, W< B <1
Set po = Po,1; Pa = Pa,1, and initialize the parameter set <
Obtain {@(1,1,2‘) I_| through Algorithm A.1 and set j = 1,t =2,j' = 1,¢' = 1.
while 7 < J do
Set 1 =71}, pa = Pout-
Initialize the parameters set @U4") with the averaged {@U I}
Obtain {@U")}_ = through Algorithm A.1, and compute validation loss Loss;,.
Set j/ = j,t' = t.
if =1 (mod 2) then
if ¢ <T then
| t=1+1;
else
| J=+1
end

1L,11)

else
if £ > 1 then
| t=1t—1;
else
| J=J7+1
end

end
end
Set (jo, to) = argmin, {Loss;, | 1 <j < J,1 <t <T}.
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A.5.3 Validation Method

We apply the validation method to select tuning parameters (7, po) in prior (11) and po
in hyperprior (12) from a corresponding list of candidate values {rs}s—1... sy {pPat}t=1... 1
and {po;}j=1..s. Given the estimated {ﬁ}iez from the training set under py = po j, r = 75,
Po = Pat, the response value y is predicted in the validation set. The final tuning parameters
are selected as those minimizing the validation 10ss L(Yvalid, Yvalid)-
For the validation method, applying Algorithm A.1 for all combinations of py € {po ;}j=1,...7, 7 €
{rsts=1...5 Pa € {pPat}i=1.. 1 is a time-consuming process. We adopt the following strategy

to reduce the computational cost.

(a) The number of combinations of (pg, r, pa) can be reduced from J-S-T to J-T+S-T

by using a two-step greedy search:

i) Compute the validation loss under different py € {po;}j=1. s, pa € {Pat}t=1, T
with r = 7y fixed. Select py = pg;, from the optimal pair (pg, po) that minimizes

the validation loss.

ii) Compute the validation loss under different r € {rs}s—1... 5, pa € {Pat}i=1,- 1

with py = poj, fixed, then select the optimal r = ry;, pa +,-

(b) The number of iterations in executing Algorithm A.1 under each pg, 7, po can be re-
duced by applying a warmstart. In other words, the initial point of Algorithm A.1 under
T = T2, P = Pa,1 is determined as the output of Algorithm A.1 under r = ry, po = pa,1-
We find that this initialization trick circularly reduces the computational burden of val-

idation.

The validation method to obtain the optimal tuning parameters py and p, are summarized
in Algorithm A.2. We omit the detailed algorithm to obtain the optimal tuning parameters
r since the procedure is similar. For the candidate grids of pg, r, and p4, their ranges should
be reasonable and wide enough. Among them, the range of 7 is within [0, 1] and thus we
assign the grid of r as {1,0.75,0.5,0.25,0} following Zhou et al. (2020). For p,, we specify
the grid {0.001,0.005,0.01,0.05,0.1,0.5, 1,5} for p, following the suggestion of Teipel et al.
(2015); Engebretsen and Bohlin (2019); Tec et al. (2020). For py, its grid is suggested as

{0.5P,---PpK,5P,--- PpK, 50P; --- PpK, 500P; - - - Pp K, 5000P; - -- Pp K},

where the lower bound of the grid is determined according to Proposition 1 of the main

paper. We find all the above grids are wide enough in our numerical experiments.
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A.5.4 Sensitivity Analyses

For the other hyperparameters {p, Oi, p,a,b} and tuning parameters ¢, first note that ac-
cording to Proposition 1 of the main paper, we set p; = (2P, -+ Pp — 1)K/2 to balance
the magnitude of the normalization term of the prior distribution p(d,0?) in (12) and thus
p(d,0?) is weakly informative with respect to o (similar to an inverse-gamma prior with the
small shape parameter). For the rest 03, p, a, b, and ¢', we carry out a sensitivity analysis
for these parameters. Recall that our default specifications are ai =100,p=1,a=0=0.5,
and ¢’ = 0.0001, which renders the prior relatively weak-informative. In particular for a, we
plot the mean and the variance as two functions of the parameter a with p and b fixed at 1
and 0.5, respectively. According to Figure A.2, a = 0.5 shows reasonably weak-informative
since it is at the “elbow” for both curves. In the sensitivity analysis, we consider a larger and
a smaller values relative to the default setting for hyperparamters az, p, a, b, and ¢’ to assess
their sensitivity. Results of sensitivity analysis in the nonlinear setting of a horse shape with
high SNR (Setting 5) of our simulation experiments are summarized in Table A.2 based on
30 replicates. It can be seen that our model is relatively robust with different choices of

tuning/hyper parameters.

Table A.2: Estimation errors for different specifications of tuning/hyper parameters. The
first row shows the results with default specification: ai =100, p =1, a =b = 0.5, and
0’ = 0.0001. The following rows exhibit the results with each parameter being assigned new

values. The numbers in parentheses are the standard errors based on 30 replicates.

RPE MSE RMSE TPR TNR
default ‘ 0.0763 (0.0024) 0.0166 (0.0006) 0.0508 (0.0024) 0.9996 (0.0004) 0.9392 (0.0021
03:10 0.0751 (0.0021) 0.0162 (0.0006) 0.0493 (0.0017) 1.0000 (0.0000) 0.9404 (0.0024
0521000 0.0748 (0.0019) 0.0165 (0.0007) 0.0505 (0.0026) 0.9998 (0.0002) 0.9405 (0.0019
p=—10 0.0765 (0.0024) 0.0169 (0.0008) 0.0521 (0.0028) 0.9995 (0.0004) 0.9404 (0.0019

( ) ) ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
p=10 0.0757 (0.0020) 0.0166 (0.0007) 0.0514 (0.0022) 1.0000 (0.0000) 0.9427 (0.0023)
a =025 0.1002 (0.0026) 0.0235 (0.0016) 0.0701 (0.0048) 0.9991 (0.0004) 0.9237 (0.0050)
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a=1 0.0667 (0.0013) 0.0138 (0.0003) 0.0434 (0.0011) 1.0000 (0.0000) 0.9487 (0.0014
b=0.25 0.0754 (0.0021) 0.0165 (0.0007) 0.0489 (0.0017) 1.0000 (0.0000) 0.9381 (0.0025
b=1 0.0751 (0.0020) 0.0164 (0.0007) 0.0488 (0.0017) 1.0000 (0.0000) 0.9381 (0.0025
0’ =0.001 0.0756 (0.0020) 0.0163 (0.0006) 0.0484 (0.0014) 1.0000 (0.0000) 0.9375 (0.0027
d" =0.00001 | 0.0772 (0.0023) 0.0167 (0.0007) 0.0514 (0.0020) 1.0000 (0.0000) 0.9420 (0.0025
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Figure A.2: The mean and the variance of the generalized inverse Gaussian prior (10) as a
function of parameter a with p and b fixed as 1 and 0.5, respectively. The plot has a shared

z-axis and two y-axes correspondingly for mean (the left) and variance (the right).

A.5.5 Summary

We summarize how to estimate the tensor regression model (1) of the main paper. First,
select the hyperparamters ¢, through the methods introduced in Section A.5.2. Second,
follow Section A.5.3 to obtain the optimal tuning parameters (pg,r, po). Finally, follow
Section A.5.1 to obtain the estimated component functions fi’s through the posterior samples

corresponding to the optimal tuning parameters (pg, 7, pa)-

A.6 Tuning Parameter Selection for the Compared Meth-

ods

We present here the details of tuning parameter selection for the competitive methods (Zhou
et al., 2013; Hao et al., 2021; Guhaniyogi et al., 2017) in our numerical experiments. As
suggested in Zhou et al. (2013) and Hao et al. (2021), we choose lasso penalty and group
lasso penalty for FTR and STAR respectively, and also apply the validation method to select
the rank of CP decomposition and the tuning parameters of their penalties. The training
set, validation set, and test set for STAR and FTR are the same as those for BFEN. Note
that BTR only needs a training set and a test set because it automatically selects the tuning
parameters (Guhaniyogi et al., 2017). So the training set and validation set for BFEN are
used together to train BTR.
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For FTR and STAR, both of the tuning parameters of lasso (FTR) and group lasso
(STAR) are selected from a geometric sequence (p1, -+ , p1o), where p; = 0.1 and p;g = 10;
and the rank of CP decomposition is selected from {2,4,6,8,10}. The above grids are
wide enough for two competing models in the sense that the boundary points are seldomly
selected by either method. For BTR, the hyperparamters are selected as Guhaniyogi et al.
(2017) suggested. In particular, the rank of the CP decomposition is selected as 10 in
simulation experiments. In real data experiments, we find that BTR fails to converge for
some experiments among the 100 replicates if the rank of CP decomposition is over 6. Hence,

we select the rank as 5 in real data experiments.

A.7 Additional Results for the Simulation Study

In this section we explain in details how to construct spatially smooth signals through graph

Laplacian matrix, and provide some additional outputs for the experimental results.

A.7.1 The Construction of Spatially Smooth Model

The parameters {ﬂg) } {vg)}, and {vl(]?’)} in Table 2 of the main paper are constructed
through graph Laplacian matrix as follows.

First, we obtain the graph Laplacian matrix (Merris, 1994), L € RP1P2XP1P2of the graph
G = (Z,€) defined in Section 2 of the main paper where the index in Z is arranged in the
column-major order. Denote u; as the eigenvector of L corresponding to the [-th smallest
eigenvalue. We focus on the first L (L < P, P,) eigenpairs with [ = 1,..., L. The eigenvector
u; € R s reshaped to be a matrix U; € RP"*™ by the column-major order. As the
eigenvector correspond to small Laplacian value, the element values of U; (1 <[ < L) has
variability of low frequency and thus is spatially smooth across (7, j) (Dong et al., 2016).

Second, to make use of all the L spatially smooth matrices, we further construct three
matrices ﬁ(l) ﬁ(z) nd ﬁ(g) as random linear combinations of Uy, --- , Uy, i.e., ﬁ(m) =
Zl 1% ™U, with ’ylm) LR Unif(0,1),l =1,...,L,m = 1,2,3. After that, a;; in non-linear
cases of the horse shape (Settings 4 and 5 in Table 2 of the main paper) is set as 1u( )+ 2,
where u is the (7, j)-th element of o

As for ¢;j and d;; in the non-linear cases of a horse shape and a shape of handwritten six
(Settings 4,5, 7, and 8 in Table 2 of the main paper) they are constructed from U and
ﬁ( To be specific, we rescale each element u ) of U( = 2 and 3, to get a new matrix
(v-(m)) such that min j)ey U( ™= and max(w)ey vgj m = 1.57T, where V is the set of active

ij
pixels. We set ¢;; and d;; as v( )

as L = &0.

and v} respectively. The number L of eigenvectors is set

Z]7
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A.7.2 Additional Results

Recall that we have 9 simulation settings with 30 replicates for each setting. We provide
the detailed numerical results and runtime for the simulation experiments in Table A.3. All
methods were implemented on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU.
The results of the experiments under the nonlinear with high SNR settings have already
been exhibited in Section 4.2 of the main paper by heatmaps. In this section, we exhibit
the results with the median relative prediction error (RPE) under the nonlinear with low
SNR and linear settings. In Figures A.3 and A.4, the shade of each square (i, j) indicates
the Ly norm of f;; as is in Figure 5 of the main paper. The heatmaps in the first column
exhibits the magnitude || fi;||L, of the true component function, while in Columns 2-5 exhibit
the magnitude HﬁjHLQ estimated by BFEN, STAR, FTR, and BTR, respectively. Rows 1-3
correspond to the patterns of low-rank shapes (Settings 1 and 3), a horse shape (Settings 4
and 6) and a shape of handwritten six (Settings 7 and 9), respectively. Figures A.3 and A.4
show that our method outperforms STAR, FTR, and BTR for irregular sparsity shapes, i.e.
a horse and a handwritten Arabic six. Moreover, it is also exhibited that all the methods
have good performances when signals are linear and the shape of active region is of low rank.

These results are consistent with Figures 4 and 5 of the main paper.

A.7.3 A Comparative Study with Random Walk Metropolis

In Algorithm A.1, a hybrid method (Metropolis-adjusted Langevin Algorithm, MALA) and
the smoothing technique (Eqn. (13) and Eqn. (14)) are employed for the update of a.. We
chose the MALA over the random walk metropolis due to its computational efficiency. To
illustrate this point, we compare MALA and the random walk metropolis under the nonlinear
setting of handwritten Arabic six with high SNR (Setting 8) of our simulation experiments.
We apply the proposed BFEN model with MALA (Algorithm A.1 of the Appendix) and
the random walk metropolis (the corresponding MALA step is replaced by a random walk
metropolis step in Algorithm A.1) on the simulated dataset to sample the coefficients a of
the unknown functions. Note that since the smoothing technique is no longer involved for
the random walk metropolis, €y and €; are released in this method. The other tuning/hyper
parameters of random walk metropolis are set in the same way as the MALA method. In
other words, the two methods use the same tuning/hyper parameters except for the extra
smoothing parameters in the MALA algorithm. We set the lengths of Markov chains to
20,000 and 50,000 for MALA and random walk metropolis, respectively. In this experiment,
the acceptance rate of random walk proposal is around 0.45.

To inspect the convergence of MALA and random walk, we depict the trace plot of average

training error (1/N) Zi]\il(yi — ¥;)?, which is proportional to the negative log-likelihood, of
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Table A.3: Average RPE, MSE, RMSE, TPR, TNR, and execution time (in minutes) of var-
ious methods in the simulation study. The reported time is the total execution time divided
by the number of candidate parameter values in the grid of each method. The numbers in

the parentheses are the standard errors based on 30 replicates. The best performances are

boldfaced.

Setting ID 1 2 3 4 5 6 7 8 9
Shape Low rank Horse Handwritten Arabic six
SNR 5 50 5 5 50 5 5 50 5
. . low SNR high SNR . low SNR high SNR . low SNR high SNR .
Setting Meaning i i linear ) X linear i i linear
nonlinear nonlinear nonlinear nonlinear nonlinear nonlinear
RPE (x1072%)
BFEN 58.49(1.45) 16.87(1.27) 29.79(1.07) | 37.09(1.01) 7.63(0.24) 23.99(0.58) | 38.98(1.30) 8.39(1.23) 20.62(0.35)
STAR 54.41(1.13) 12.25(0.65) 36.61(0.87) | 63.52(1.02) 40.38(0.66) 48.10(0.75) | 62.75(1.15) 36.10(1.04) 45.65(0.68)
FTR 46.00(0.86) 28.01(0.49) 21.46(0.39) | 63.27(0.72) 49.98(0.69) 36.91(0.48) | 54.79(0.87) 39.67(0.70) 29.55(0.48)
BTR 46.74(0.77)  30.01(0.52)  23.76(0.45) | 57.96(0.65) 45.36(0.51) 33.41(0.38) | 56.19(0.72) 41.75(0.65) 31.26(0.37)
MSE (x1072)
BFEN 3.86(0.10) 1.15(0.10) 0.18(0.01) 6.96(0.27) 1.66(0.06) 0.16(0.01) | 6.13(0.28) 1.51(0.29) 0.05(0.00)
STAR 3.51(0.10)  0.80(0.05)  0.26(0.01) | 15.82(0.23) 10.92(0.15) 0.66(0.01) | 12.75(0.26) 7.87(0.21)  0.35(0.01)
FTR 2.80(0.06) 2.09(0.02)  0.06(0.00) | 15.91(0.16) 13.86(0.13) 0.43(0.01) | 10.82(0.12) 8.93(0.09)  0.16(0.00)
BTR 2.80(0.03) 2.24(0.02) 0.09(0.00) | 14.04(0.09) 12.43(0. 08) 0.35(0.00) | 10.97(0.11)  9.37(0.07)  0.17(0.00)
RMSE (x1072
BFEN 28.43(0.87)  10.34(0.78)  9.26(0.92) | 13.61(0.79) 5.08(0.24) 6.01(0.32) 25.36(0.76) 9.14(1.38)  3.33(0.14)
STAR 27.71(1.01)  5.51(0.41) 12.32(0.54) | 39.58(0.67) 28.51(0.49) 23.69(0.55) | 39.02(0.89) 25.45(0.76) 19.18(0.54)
FTR 29.78(0.48)  24.21(0.24)  3.79(0.19) | 47.70(0.54) 42.41(0.44) 16.03(0.38) | 45.49(0.47) 39.05(0.45)  8.82(0.20)
BTR 27.27(0.32) 23.22(0.15)  2.99(0.12) | 41.67(0.35) 37.19(0.30) 11.12(0.22) | 42.17(0.38) 36.60(0.33)  7.90(0.20)
TPR
BFEN 0.96(0.01) 1.00(0.00)  0.99(0.00) 0.99(0.00)  1.00(0.00) 0.99(0.00) | 0.98(0.00) 0.99(0.00) 1.00(0.00)
STAR 1.00(0.00)  0.99(0.01) 0.99(0.01) 0.98(0.01)  0.97(0.01)  0.99(0.01) | 0.98(0.01) 0.98(0.01)  0.99(0.01)
FTR 0.96(0.01) 0.99(0.00) 1.00(0.00) 0.87(0.01)  0.93(0.01)  0.97(0.00) 0.86(0.01)  0.92(0.01)  0.99(0.00)
BTR 0.97(0.00) 1.00(0.00)  1.00(0.00) 0.62(0.01)  0.78(0.01)  0.93(0.00) 0.68(0.01)  0.83(0.01)  0.99(0.00)
TNR
BFEN 0.78(0.02) 0.91(0.00) 0.91(0.00) 0.81(0.01)  0.94(0.00)  0.93(0.00) 0.85(0.01)  0.93(0.00)  0.94(0.00)
STAR 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)  0.00(0.00)  0.00(0.00) 0.00(0.00)  0.00(0.00)  0.00(0.00)
FTR 0.32(0.02) 0.29(0.02) 0.27(0.02) 0.28(0.03)  0.24(0.03)  0.21(0.02) 0.26(0.02)  0.22(0.02)  0.16(0.02)
BTR 0.99(0.00)  0.98(0.00)  0.98(0.00) | 0.98(0.00) 0.97(0.00) 0.97(0.00) | 0.99(0.00) 0.98(0.00) 0.98(0.00)
execution time (in minutes)
BFEN 1.35(0.02) 1.33(0.02) 1.36(0.02) 1.20(0.02) 1.20(0.02)  1.19(0.01) 1.19(0.04)  1.13(0.01) 1.10(0.01)
STAR 0.57(0.03) 0.86(0.04) 0.78(0.03) 0.46(0.02)  0.57(0.03)  0.59(0.03) 0.39(0.02)  0.49(0.02)  0.49(0.02)
FTR 0.15(0.00) 0.13(0.00) 0.11(0.00) 0.13(0.00)  0.11(0.00)  0.10(0.00) 0.11(0.00)  0.10(0.00)  0.09(0.00)
BTR 17.73(0.12)  17.81(0.15)  17.20(0.27) | 14.33(0.11) 14.52(0.14) 14.18(0.02) | 13.07(0.01) 12.95(0.04) 12.93(0.04)

both MALA and random walk metropolis. The error is averaged over 10 replicates for the
first candidate value of tuning parameters in Figure A.5. Figure A.5 reveals that random
walk metropolis fails to explore the posterior efficiently, and that it has not yet converged
even with a much longer Markov chain.

We also calculate the relative prediction error (RPE), mean squared error (MSE), relative
mean squared error (RMSE), true positive rate (TPR), and true negative rate (TNR). These
results are based on the last 1,000 iterations of the two algorithms averaged over 10 replicates,

which are summarized in Table A.4. The table also suggests the slow convergence of the
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Figure A.3: The heatmaps of various methods under the nonlinear with low SNR settings
(Settings 1, 4, and 7). Rows 1-3 correspond to the patterns of low-rank shapes (Setting 1),
a horse shape (Setting 4), and a shape of handwritten Arabic six (Setting 7), respectively.
The first column presents the magnitude of the true additive component function. Columns
2-5 correspond to the estimated results by BFEN, STAR, FTR, and BTR, respectively.

random walk Metropolis algorithm.

Table A.4: Operating characteristics for MALA and the random walk metropolis. The

results are based on 10 replicates.

RPE MSE RMSE TPR TNR
MALA 0.08 (0.02) 0.01 (0.00) 0.09 (0.02) 0.99 (0.00) 0.93 (0.00)
random walk | 0.38 (0.03) 0.09 (0.01) 0.31 (0.02) 0.90 (0.01) 0.90 (0.01)

A.8 Additional Numerical Results for Facial Data Anal-
ysis

We provide the detailed numerical results and runtime for the facial data analysis in Table
A.3. All algorithms were run on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU.
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Figure A.4: The heatmaps of various methods under the linear settings (Settings 3, 6,
and 9). Rows 1-3 correspond to the patterns of low-rank shapes (Setting 3), a horse shape
(Setting 6), and a shape of handwritten Arabic six (Setting 9), respectively. The first column
presents the magnitude of the true additive component function. Columns 2—5 correspond
to the estimated results by BFEN, STAR, FTR, and BTR, respectively.
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Figure A.5: The trace plot of average training error (1/N) Zfil(yz — 7i)? of the Markov
chains for MALA and random walk metropolis for the first grid of tuning parameters (i.e.,
r = 1 and p, = 0.001). The plotted training error at each iteration is the average of 10
replicates. The slight difference of the initial training errors for two algorithms is caused by

the extra smoothing approximation employed in MALA.
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The magnitude of each estimated additive component functions for the response attribute
smiling have already been presented in Section 5 of main paper as heatmaps. In this section,
we depict the heatmaps of other facial attribute frowning, mouth closed, mouth wide open,
and teeth not visible in the different rows of Figure A.6. The selected heatmap corresponds
to the replicate with the median RPE for each method.

It is evident from the figure that BFEN has better interpretability in most cases. Similar
to the attribute smiling, the result of frowning in the first row of Figure A.6 is also determined
by the pixel values around the eyes, mouth and some facial muscles. The attribute mouth
closed can be determined by the positions of a person’s lips and the skin around the lips.
When someone keeps his/her mouth wide open, the upper lip and lower lip are apart, and
thus the mouth cavity can be detected from the image. The teeth is obviously critical for the
prediction of the attribute teeth not visible. Besides, part of the muscles (orbicularis oris)
around the lips are also related to this attribute. In contrast, all the results of FTR and
BTR lack interpretations. With the help of nonlinearity and the group regularization across
different blocks, STAR has better interpretability than FTR and BTR, but is still inferior
to BFEN due to its low-rank modeling. For example, the rectangular subregion selected by
STAR may not sufficiently interpret the attribute mouth wide open. Overall, our method

can achieve a better balance between interpretation and predictive accuracy.

Table A.5: Average RPE and execution time (in minutes) of various methods for each
attribute of the facial data analysis. The reported time is the total execution time divided
by the number of candidate parameter values in the grid of each method. The numbers in
the parentheses are the standard errors based on 100 replicates of random splitting. The

best performances are boldfaced.

Attribute ‘ Smiling Frowning Mouth closed ~ Mouth wide open Teeth not visible
RPE
BFEN 0.2129 (0.0015) 0.2198 (0.0013) 0.4510 (0.0025) 0.2365 (0.0013)  0.3209 (0.0019)
STAR 0.2233 (0.0014)  0.2314 (0.0015)  0.4647 (0.0027)  0.2369 (0.0012)  0.3260 (0.0018)
FTR 0.2296 (0.0015)  0.2407 (0.0016)  0.5117 (0.0032)  0.2621 (0.0016)  0.3449 (0.0022)
BTR 0.2501 (0.0026)  0.2599 (0.0024)  0.5136 (0.0042)  0.2641 (0.0024)  0.3748 (0.0038)
execution time (in minutes)
BFEN 1.9282 (0.0255)  1.7675 (0.0189)  1.9220 (0.0251)  1.9279 (0.0256) 1.9364 (0.0253)
STAR 2.1964 (0.0254)  2.2022 (0.0241)  1.9066 (0.0265)  2.0286 (0.0400) 2.4710 (0.0686)
FTR 0.7650 (0.0099)  0.7563 (0.0101)  0.4835 (0.0135)  0.4515 (0.0116)  0.6747 (0.0111)
BTR 25.4650 (0.2691) 27.1958 (0.2461) 26.2883 (0.2594) 28.3153 (0.3101)  26.6684 (0.3309)
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Figure A.6: The heatmaps for the response attributes frowning, mouth closed, mouth wide
open, and teeth not visible. The shade of square (i,7) in the heatmaps represents the Lg
norm of f;;. The heatmaps in Columns 1-4 correspond to the magnitude HﬁjHLQ estimated
by BFEN, STAR, FTR, and BTR, respectively.
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