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Abstract

Tensor regression methods have been widely used to predict a scalar response from

covariates in the form of a multiway array. In many applications, the regions of ten-

sor covariates used for prediction are often spatially connected with unknown shapes

and discontinuous jumps on the boundaries. Moreover, the relationship between the

response and the tensor covariates can be nonlinear. In this article, we develop a nonlin-

ear Bayesian tensor additive regression model to accommodate such spatial structure.

A functional fused elastic net prior is proposed over the additive component functions

to comprehensively model the nonlinearity and spatial smoothness, detect the discon-

tinuous jumps, and simultaneously identify the active regions. The great flexibility and

interpretability of the proposed method against the alternatives are demonstrated by

a simulation study and an analysis on facial feature data.
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1 Introduction

Data in the form of multiway arrays, also known as tensors, are becoming increasingly

common in physical and engineering sciences. For example, Yan et al. (2019) studied the

machinability of titanium alloy where the cylinder-shaped materials are represented by mul-

tidimensional arrays. Yue et al. (2020) performed quality inspections of nanomanufacturing

processes with Raman spectral imaging data which are formulated as a tensor. Zhong et al.

(2022) proposed a tensor-based approach to handle the spatial and temporal structures of

image outputs in the automatic control processes of semiconductor manufacturing. In hot

rolling processes, multiple sensors record the temperature, current, torque, speed at an equal

time interval, generating multiple signals in form of tensors (Miao et al., 2021). Shi (2023)

provided a good review for some recent applications of statistical tensor methods in man-

ufacturing quality improvement. Tensor data are also important in many other areas such

as chemometrics (Andersen and Bro, 2003), text mining (Chew et al., 2007), and recom-

mendation systems (Park and Chu, 2009). Among the successful applications of tensor data

analysis, using tensor regression to decode the relationship between a scalar response and

the covariates of a tensor structure has attracted considerable attentions. In condition moni-

toring and industrial asset management, Fang et al. (2019) applied a tensor regression model

to predict the residual lifetime of a rotating machinery according to the degradation image

streams acquired using an infrared camera. In neuroscience, researchers apply tensor regres-

sion methods to predict diseases and disorders such as Alzheimer’s disease (Kandel et al.,

2013) and autism spectrum disorder (Ecker et al., 2013) based on the magnetic resonance

imaging or diffusion tensor imaging of human brain.

A general scalar-on-tensor regression model between a D-way tensor of covariates X ∈

RP1×···×PD and a response Y ∈ R can be formulated via a regression function f : RP1×···×PD →

R and an additive noise: Y = f(X) + ε. The majority of existing tensor regression meth-

ods adopts the linear regression form f(X) =
∑

i1,··· ,iD Xi1,··· ,iDβi1,··· ,iD where βi1,··· ,iD is the

(i1, · · · , iD)-th element of the tensor coefficient β ∈ RP1×···×PD to be estimated. To overcome

the difficulty of estimating a huge number of coefficients in many tensor applications, Zhou

et al. (2013) proposed a linear tensor regression model with a low-rank structure of β via the
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CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970). Additional regulariza-

tion methods such as the lasso (Tibshirani, 1996) and the ridge (Hoerl and Kennard, 1970)

were also suggested to obtain a consistent and interpretable estimator. Guhaniyogi et al.

(2017) proposed Bayesian Tensor Regression (BTR), which again utilized the CP decomposi-

tion. With carefully constructed shrinkage priors, BTR is able to shrink parameters at both

local and global levels, and select the rank automatically. Some other works of tensor lin-

ear regression are based on different types of decomposition including Tucker decomposition

(Tucker, 1966) on the coefficient tensor β (Li et al., 2018).

However, the assumption that the tensor covariates can predict the response through a

linear regression function is too restrictive and can be violated in many applications. For

instance, in the field of financial analysis, Li et al. (2016) found that the nonlinearity exists

in the relationship between stock movements and information sources in the form of tensor

data. To model the nonlinearity of regression function f while keeping the inherent structural

information of the original tensor, Zhao et al. (2013, 2014) placed a Gaussian process prior

over the regression function where the covariance function is a product kernel based on the

unfoldings of tensor covariates. With a rank-1 CP decomposition X = x1 ◦ · · · ◦ xD where

◦ denotes the outer product and xd is a Pd-dimensional vector, Signoretto et al. (2013) and

Kanagawa et al. (2016) considered a regression model f(X) =
∑R

r=1

∏D
d=1 f

(d)
r (xd) with a

Gaussian process prior over each f
(d)
r , d = 1, . . . , D. Extending the rank-1 assumption,

a more flexible model f(X) =
∑R

r=1

∑M
m=1

∏D
d=1 f

(d)
r (x

(m)
d ) with X =

∑M
m=1 x

(m)
1 ◦ · · · ◦

x
(m)
D was proposed in Imaizumi and Hayashi (2016). Unfortunately, a number of multi-

dimensional functions have to be estimated in the above work, which will suffer from the

curse of dimensionality when some Pd’s are large. An alternative approach of modeling the

nonlinear regression function is using the similar idea of additive models (Stone, 1985) on the

vector of covariates. Nonparametric additive models have recently been extended to tensor

covariates with elastic net (Zhou et al., 2020) and the group lasso penalty (Hao et al., 2021).

They again exploit the tensor structure through CP decomposition of the tensor coefficient.

In many applications, the tensor of covariates (e.g., a 3D image) is a collection of observa-

tions at a regular grid over a multidimensional continuous domain. One common observation

in the corresponding applications is the existence of spatially contiguous active regions with
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unknown shapes and discontinuous jumps on the boundaries of regions, especially in image

data. For example, in neuroscience, the pathological studies show that the brain voxels that

have significant effects to the diseases are expected to be sparse and organized into several

spatially connected regions (Michel et al., 2011; Fiot et al., 2014). Therefore, the presence

of multiple piecewise smooth regions should be considered in the regression function f . Al-

though there exist prior works that are related to the modeling of this spatial structure,

such as Xin et al. (2014); Goldsmith et al. (2014); Li et al. (2015); Wang et al. (2017); Beer

et al. (2019), most make the linear assumption on the regression function. One notable

exception is Marx et al. (2011), which proposed a nonlinear tensor regression with spatial

similarity through a single-index model. However, their method does not produce sparse

estimation, and thus the important subregions are hard to be identified using their model.

In this work, we propose a novel Bayesian tensor additive regression model that incorporates

the spatial structure of tensor covariates and strikes a good balance between flexibility and

interpretability. More precisely, we design a prior called functional fused elastic net (FEN)

over the nonlinear additive component functions to adaptively learn the spatial smoothness

of the component functions within unknown connected regions. The spatial smoothness is

achieved by the graph Laplacian of the adjacent entries, and discontinuous jumps between

distinct regions are detected by the `1 fusion of the adjacent entries. With spline repre-

sentation, we apply the idea of the thresholding method (Ni et al., 2019; Cai et al., 2020)

on the coefficients to achieve sparsity and identify the important regions. A crucial advan-

tage of thresholding method against the common alternatives, such as spike-and-slab priors

(Mitchell and Beauchamp, 1988) and Bayesian credible intervals (Chen and Shao, 1999), is

its low computation cost and the ability to drop the inactive signals without increasing the

predictive error. The posterior inference is carried out through a Markov chain Monte Carlo

(MCMC) method with the Metropolis-adjusted Langevin Algorithm (MALA, Roberts and

Rosenthal, 1998). To the best of our knowledge, our work is the first to integrate the spatial

smoothness and discontinuous jumps for sparse nonlinear tensor regression.

The rest of this paper is organized as follows. In Section 2, we present the tensor additive

model and introduce the spatially piecewise smooth structure to integrate the idea of sparsity,

spatial smoothness, and discontinuous jumps. Section 3 proposes the functional FEN prior
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for the component functions of the tensor additive model and illustrates its properties with

some examples. Using spline expansion to approximate each additive component function, a

Bayesian hierarchical model is formulated on the spline coefficients, and a posterior sampling

algorithm is described. A simulation study and a real application on facial feature data are

respectively presented in Sections 4 and 5 to demonstrate the advantages of the proposed

model over existing alternatives. We finally summarize this article in Section 6 with some

concluding remarks.

2 Tensor Additive Regression Model

We consider the scalar-on-tensor regression setting where the covariate X ∈ RP1×···×PD is a

D-way tensor of dimension P1 × · · · × PD and the response Y ∈ R is a scalar. The element

Xi of X is indexed by i ∈ I = {(i1, i2, · · · , iD) : 1 ≤ id ≤ Pd, 1 ≤ d ≤ D}. Without loss of

generality, we assume Xi ∈ [0, 1] for all i. The number of elements in X can be much larger

than the sample size in many applications. For example, the magnetic resonance imaging

dataset considered in Zhou et al. (2013) consists of 776 patients with the number of covariates

up to 256× 198× 256 = 12, 976, 128. High dimensionality leads to significant difficulties in

modeling the nonlinear regression function. A natural nonlinear regression model is a tensor

additive model:

Y = µ+
∑
i∈I

fi(Xi) + ε, ε ∼ N(0, σ2
ε ), (1)

where fi’s are nonlinear functions such that
∫ 1

0
fi(x) dx = 0 for all i (for identifiability

purposes). However, even with the additive model assumption, there are still a potentially

huge number of univariate nonparametric functions to be estimated. With a limited amount

of data, it is often challenging to estimate these functions well. Furthermore, there are three

types of useful structures in tensor regressions, which are not incorporated by model (1).

Sparsity. In many real applications, only a few entries of the tensor covariates may be

relevant to predict the response. Take neuroimaging as an example, the brain is believed

to have dedicated regions for different tasks. For instances, the visual cortex in human

brains controls visual functions (Grill-Spector and Malach, 2004) and the frontal lobe is

responsible for reasoning (Collins and Koechlin, 2012). We thus generally expect many

5



Figure 1: Three examples of 2-way tensor additive model with spatially piecewise smooth

structure. The heatmaps show the magnitude of each additive component.

additive component functions in (1) to be zero (i.e., fi ≡ 0) for predicting reasoning and

visual-related outcomes. In the following, the sets of i where the additive component function

fi is non-zero and zero are called active regions and non-active regions, respectively.

Spatial smoothness. We further assume the additive model (1) to be endowed with

a spatially smooth functional structure, which means that the functions fi’s vary smoothly

with respect to the location index i. Specifically, the functions fi’s are spatially smooth with

respect to a graph G = (I, E), where E is the neighboring relationship set for the location

index set I. A pair of indices (i, i′) ∈ E are connected by an edge when Xi and Xi′ are

neighboring elements in the tensor of covariates X. Equivalently, (i, i′) ∈ E if ‖i− i′‖1 = 1,

where ‖ · ‖1 represents the `1-norm. For the additive model (1) to be spatially smooth with

respect to G, functions fi, fi′ with (i, i′) ∈ E are likely to be similar to each other.

Discontinuous jumps. Sparsity and spatial smoothness together require the functions

to be smoothly decaying to zero towards the boundary of an active/non-zero region. This

may not be realistic. In a natural image or neuroimage, a pixel (or voxel) at the boundary

of an active region could have significant effect on the response. Our work aims to address

this challenging issue, by developing a spatially smooth model that allows for occasional

discontinuous jumps, i.e., if supported by data, a few fi’s can vary non-smoothly from its

neighbors.

Combining spatial smoothness and discontinuity, we obtain a hybrid structure, which we

call spatially piecewise smooth functional structure. More specifically, in this structure, the
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index set I can be divided into a few distinct spatially connected regions I1, · · · , IC , and the

component functions within the same region are spatially smooth. Discontinuity are allowed

on the boundary between regions.

Figure 1 illustrates the various types of spatially piecewise smooth functional structures

that our model can handle. It shows the heatmap of |βi| for function fi(Xi) = βiXi, which

is linear for the simplicity of illustration. In the left panel, the active (non-black) regions

can be divided into three pieces. Inside each piece, |βi| is spatially smooth (in fact, it is

a constant). There are discontinuity jumps between the active and non-active regions and

between each pair of active regions. The middle panel simply contains one active region and

is overall smooth. The right panel has a discontinuity jump at the central square, and is

spatially smooth within the central square and the surrounding circle, respectively.

3 Bayesian Model

In this section, we develop a Bayesian hierarchical model for the inference of the tensor

additive model (1). We propose a functional fused elastic net (functional FEN) prior to deal

with the spatially piecewise smooth functional structure and illustrate its advantage through

two simple numerical experiments. Using basis representation, we show that the proposed

functional FEN prior can be transferred to a proper prior on the the basis coefficients. An

efficient computational algorithm for the posterior inference is also developed.

3.1 Functional Fused Elastic Net Prior

To construct a prior distribution that encourages sparsity, each fi is parameterized as the

product of a latent function gi ∈ C2[0, 1] and a hard thresholding function 1{‖gi‖2L2>λ}
, i.e.,

fi = gi · 1{‖gi‖2L2>λ}, i ∈ I, (2)

where λ is the thresholding parameter. Roughly speaking, fi is thresholded to exact zero

fi ≡ 0 whenever the latent function gi has a small magnitude. Using the form of (2), the

spatially piecewise smooth functional structure on fi can be equivalently modeled on gi.
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Let `[0, 1] denote the set of affine functions on the interval [0, 1], i.e.,

`[0, 1] = {l(x) : l(x) = a+ bx}. (3)

Denote the projection operator from the space of the second order Sobolev space W2
2 [0, 1]

onto `[0, 1] by P . We propose a functional FEN prior distribution for the set of all the latent

functions G = {gi(x) : i ∈ I}:

p
(
G| δ, r1, r2

)
∝ exp

{
− δ

∑
i∈I

R(gi)− r1
∑

(i,i′)∈E

‖gi − gi′‖L2 − r2
∑

(i,i′)∈E

‖gi − gi′‖2L2

}
, (4)

where R(gi) = ‖g′′i ‖2L2
+ δ′‖Pgi‖2L2

measures the roughness of gi with g′′i being the second

derivative of gi and δ′ ∈ R+. The second summation in the prior distribution (4) is the func-

tional fusion term, which encourages local constant structure and helps build the piecewise

structure. The third summation is the functional Laplacian term, which encourages spatial

smoothness.

The fusion and the Laplacian terms of the functional FEN prior distribution (4) can be

viewed as an adaptive Laplacian prior distribution. To see this, we use a Gaussian scale

mixture identity as follows:

e−b|x| =

∫
1√
πω

exp

(
b2x2

4ω

)
· e−ω dω.

We can rewrite the fusion term in (4) through independent latent random variables ωii′ ,

(i, i′) ∈ E , following the standard exponential distribution,

p
(
G| δ, r1, r2, ωii′

)
∝
∏

(i,i′)∈E

1
√
ωii′

exp
{
− δ

∑
i∈I

R(gi)−
∑

(i,i′)∈E

(
r2 +

r21
4ωii′

)
‖gi − gi′‖2L2

}
,

ωii′
i.i.d.∼ Exp(1) for all (i, i′) ∈ E .

Using this representation, the second and the third summation in (4) are merged into a

single term. The prior distribution generally encourages the neighboring functions to be

similar, i.e., with small L2 distance. When ωii′ is close to zero, its contribution to the prior

distribution could be very large. Thus, for the corresponding neighboring functions gi and

gi′ , the prior has the tendency to push them towards being identical. In the next subsection,

we discuss more properties of the functional FEN prior and show how the fusion and the

Laplacian terms successfully accommodate a spatially piecewise smooth structure.

8



3.2 Properties of the Fuison and Laplacian Prior

For the proposed functional FEN prior distribution (4), both the functional fusion term

and the functional Laplacian term play indispensable roles. For simplicity, we illustrate

their importance via a special setting where each additive component function is linear with

fi(Xi) = Xiβi and βi ∈ R, i ∈ I. In this setting, the functional FEN prior (4) reduces to a

prior on the scalars βi’s as

p(β|δ, r1, r2) ∝ exp
{
− δ

∑
i∈I

β2
i − r1

∑
(i,i′)∈E

|βi − βi′ | − r2
∑

(i,i′)∈E

(βi − βi′)2
}
. (5)

From (5), we observe that when δ = r2 = 0, the corresponding prior of p(β|0, r1, 0) degener-

ates to the generalized fused lasso (Tibshirani et al., 2005). When δ = r1 = 0, the FEN prior

reduces to Laplacian prior or Gaussian Markov random field (Rue and Held, 2005). When

δ = 0, the corresponding (negative log) FEN prior, i.e., − log p(β|0, r1, r2), is equivalent to

the graph-fused elastic net penalty (Tec et al., 2019).

Figure 2: A toy simulation where the component functions are linear, i.e. fi(Xi) = Xiβi.

From left to right, the four panels correspond to the true values of βi, the posterior mean of

βi’s with the fusion prior, the Laplacian prior and FEN prior, respectively.

We conduct two simple experiments to illustrate the properties of fusion prior and Lapla-

cian prior, and show the performance gain of FEN by combining them. For these two ex-

periments, we set I = {(i, j) : 1 ≤ i, j ≤ 15}, and the matrix covariates are generated by

Xij
i.i.d.∼ Unif(0, 1). The responses are generated according to y =

∑
1≤i,j≤15Xijβij + ε with

ε ∼ N(0, 1), and the true values of βij’s are shown in the leftmost panels of Figures 2 and

3, respectively for two experiments. These settings correspondingly feature the true model

with the following structures: 1) a spatially piecewise constant structure, and 2) a spatially
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Figure 3: A toy simulation where the component functions are linear, i.e. fi(Xi) = Xiβi.

From left to right, the four panels correspond to the true values of βi, the posterior mean of

βi’s with the fusion prior, the Laplacian prior and FEN prior, respectively.

piecewise smooth structure. We generate N = 100 observations for each setting and repeat

the experiments for 30 times. The posterior distribution of β is given by

p(β|DN , δ, r1, r2) ∝ exp
{
− 1

2

N∑
n=1

(yn − 〈β,X(n)〉)2
}
× p(β|δ, r1, r2), (6)

where the prior distribution p(β|δ, r1, r2) is given in (5). For simplicity, we fix δ = 0 and

vary the hyperparameters r1, r2 to achieve the fusion prior (r2 = 0), the Laplacian prior

(r1 = 0), and the general FEN prior. For the FEN prior we adopt parameterization r1 = r/ρ,

r2 = (1 − r)/ρ with candidate grids r ∈ {1, 0.75, 0.5, 0.25, 0} and ρ ∈ {0.3, 0.6, 1.2, 2.4, 4.8}.

MALA (Roberts and Rosenthal, 1998) is applied to draw posterior samples from the model.

The hyperparameters are selected as those with best predictive performance on a validation

dataset. We randomly pick one replication from each experiment setting and show the

posterior mean of β from the fusion, Laplacian, FEN priors in the second, third, and fourth

panels of Figures 2 and 3. The performances of methods are also evaluated in terms of

MSE = 1
15×15

∑
i,j(βij − β̂ij)2 where β̂ij is the posterior mean of βij. The average MSE over

30 replicates are summarized in Table 1.

Figure 2 and Table 1 reveal that, when the true model has a spatially piecewise constant

structure, the fusion prior (r2 = 0) has a smaller MSE than the Laplacian prior (r1 = 0).

The estimated βij’s from the fusion prior (the second panel) recover the true signal pattern

reasonably well. However, the true pattern has been smoothed out by the Laplacian prior

(the third panel). The FEN prior selects r2 = 0 in all 30 replicates, and hence its performance

(the fourth panel) is similar to that of the fusion prior.
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Table 1: The performance of fusion, Laplacian and FEN priors under different true models

for 30 random replicates. The numbers in the parentheses are the standard errors.

True Model spatially piecewise constant spatially piecewise smooth

Prior fusion Laplacian FEN fusion Laplacian FEN

MSE 0.4286 (0.0204) 2.4860 (0.0635) 0.4317 (0.0189) 0.1707 (0.0080) 0.3265 (0.0075) 0.1589 (0.0059)

The above results demonstrate the advantage of fusion prior over Laplacian prior in esti-

mating spatially piecewise constant model, which is consistent with the findings in Tibshirani

et al. (2005) and Little and Jones (2010). However, the fusion prior tends to force similar

neighboring values to be identical, and so it may introduce biases when the true values are

not exactly constant. Figure 3 shows an example the Laplacian prior and the fusion prior

can be combined to tackle more challenging settings. As shown in the leftmost panel, the

true model is spatially piecewise smooth. There are discontinuity jumps on the boundary

between a center square piece and a surrounding circle piece, and the signals vary smoothly

within each piece. Neither the fusion prior nor the Laplacian prior estimates βij’s accurately

in this case. The fusion prior over-shrinks the coefficient in the center square piece and the

surrounding circle piece to a constant, while the Laplacian prior over-smooths the estimates

globally. By contrast, the FEN prior, which combines the fusion and the Laplacian priors,

is able to capture the corresponding piecewise smooth structure and has the lowest MSE.

3.3 Spline Representation of Functions

To facilitate the estimation of the unknown functions, we expand gi(x) =
∑K

k=1 αikφk(x) via

a vector of spline basis functions φ(x) = (φ1(x), . . . , φK(x))T, where αi = (αi1, . . . , αiK)T is

the vector of spline coefficients, i ∈ I. Denote αT = (αT
i )i∈I ∈ RP1×···×PD×K . We require

the vector of basis functions φ(·) to have the following properties.

(i) The basis functions are centered, i.e.,
∫
φ(x) dx = 0. This guarantees

∫
gi(x) dx =∫

αT
i φ(x) dx = 0 for any αi ∈ RK and thus

∫
fi(x) dx = 0 due to (2).

(ii) The basis functions are orthonormal, i.e.,
∫
φ(x)φ(x)T dx = IK . As such, the L2 norm

of function gi can be directly evaluated as the Euclidean norm of the spline coefficients,

‖gi‖2L2
= ‖αi‖22. This also facilitates the representation of (2) as fi(Xi) = φ(Xi)

Tβi
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with

βi = αi · 1{‖αi‖22>λ}. (7)

(iii) The second derivatives of the basis functions are orthogonal, i.e., Ω :=
∫
φ′′(x)φ′′(x)T dx

= diag(ω11, ω22, · · · , ωKK). The L2 norm of g′′i can thus be directly evaluated by the

weighted Euclidean norm of the spline coefficients, i.e., ‖g′′i ‖2L2
=
∑K

k=1 ωkkα
2
ik.

In the above, the first property is for the identifiability of the additive model (1). The

second and the third reduce the complexity of calculating L2 norm of gi and g′′i from O(K2)

to O(K). A vector of basis functions φ that satisfies these conditions can be constructed

from B-spline basis functions, and the details are provided in Section A.1 of the Appendix.

We also show that the first basis function, φ1, in the constructed bases satisfies φ1 ∈ `[0, 1]

as defined in (3).

Using the basis functions φ, the functional FEN prior (4) can be written as

p(α|δ, r1, r2) ∝ exp
(
− δ

∑
i∈I

αT
i Rαi − r1

∑
(i,i′)∈E

‖αi −αi′‖2 − r2
∑

(i,i′)∈E

‖αi −αi′‖22
)
. (8)

In (8), R = Ω + δ′‖φ1‖2L2
e1e

T
1 , where e1 = (1, 0, . . . , 0)T.

3.4 The Hierarchical Bayesian Model

We now summarize our hierarchical model. Given the intercept µ, the spline coefficients

α, the residual variance σ2, and the thresholding parameter λ, the response yn for the n-th

observation follows a Gaussian distribution,

yn|µ,α, µ, σ2, λ
i.i.d.∼ N

(
µ+

∑
i∈I

φ(X
(n)
i )Tαi · 1{‖αi‖22>λ}, σ

2
)
. (9)

A weakly informative Gaussian prior is imposed for µ, and a generalized inverse Gaussian

distribution GIG(p, a, b) is imposed for the thresholding parameter λ, i.e.,

µ ∼ N(0, σ2
µ) and ln p(λ) ∝ (p− 1) lnλ− a/λ+ bλ

2
. (10)
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The generalized inverse Gaussian distribution keeps λ away from 0 and meanwhile prevents

λ from being too large. The prior (8) of the spline coefficients α is re-parameterized as

p(α | δ, r, σ2, ρα) =

1

Cδ,σ2

· exp
(
−
δ
∑

i∈I α
T
i Rαi

σ2
−
r
∑

(i,i′)∈E ‖αi −αi′‖22 + (1− r)
∑

(i,i′)∈E ‖αi −αi′‖2
2σ2ρα

)
, (11)

where Cδ,σ2 is a normalizing term, δ and ρα control the informativeness of the prior, and

r controls the relative weights of the Laplacian prior and fusion prior. The normalizing

term Cδ,σ2 depends on δ and σ2 and is not analytically available. Therefore, to facilitate

computation, we propose a joint prior for σ2 and δ,

p(δ, σ2) ∝ Cδ,σ2 · δp0−1 exp(−δ) ·
( 1

σ2

)p1+1

exp
(
− 1

σ2

)
, (12)

which includes the normalizing term Cδ,σ2 in (11). This construction allows the normalizing

term to be canceled out when deriving the full conditional of δ and σ2.

However, special care is needed to ensure that (12) is proper and also weakly informative.

For propriety, the integral of (12) is finite if and only if the integral with respect to δ in

the neighborhood of 0 and the integral with respect to σ2 in the neighborhood of +∞ are

both finite. Hence we need to derive the order of magnitude of Cδ,σ2 as σ2 → ∞ and

δ → 0. Proposition 1 below shows p0 and p1 in (12) should be at least larger than K/2 and

P1 · · ·PDK/2, respectively.

Proposition 1. The order of magnitude of the normalizing term Cδ,σ2 satisfies: (i) with

respect to δ, Cδ,σ2 is of order (1/δ)K/2 as δ → 0, and of order (1/δ)P1···PDK/2 as δ → +∞; (ii)

with respect to σ2, Cδ,σ2 is of order (σ2)(2P1···PD−1)K/2 as σ2 → 0, and of order (σ2)P1···PDK/2

as σ2 → +∞.

The proof is provided in Section A.2 of the Appendix. For weak informativeness, we sug-

gest to standardize the response variable so that the variance σ2 of noise ε should concentrate

on [0, 1]. Because Proposition 1 shows that Cδ,σ2 is of order
(
σ2
)(2P1···PD−1)K/2 as σ2 → 0, we

set p1 = (2P1 · · ·PD − 1)K/2 to balance the magnitude of Cδ,σ2 and thus make (12) weakly

informative with respect to σ2 (similar to an inverse-gamma prior with the shape parameter

close to 0 near the origin). As for the hyperparameter p0, it is associated with the parameter
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δ, which controls the smoothness of the function. We will determine p0 in a data-adaptive

way and present the details in Section A.5.3 of the Appendix.

Although the approximation of additive component functions fi’s and the definition of

R in prior (11) are based on the vector of spline basis functions φ, the posterior distribution

of
∑

i∈I fi(x) remains unchanged for the proposed hierarchical model if an equivalent vector

of orthonormal bases of the same spline space is employed. This invariant property of our

hierarchical model is summarized in Proposition 2 and its proof is presented in Section A.3

of the Appendix.

Proposition 2. The inference for tensor additive regression (1) is invariant with respect

to an orthonormal transformation of the basis functions. That is, for φQ = Qφ where

Q ∈ RK×K is orthonormal, the posterior distribution of f :=
∑

i∈I fi remains unchanged.

3.5 Posterior Sampling Algorithm

We apply a hybrid MCMC method to obtain the posterior samples of {µ,α, λ, σ2, δ} from

the hierarchical model (9)–(12). In particular, the MALA (Roberts and Rosenthal, 1998)

is used to sample µ and α; the parameters σ2 and δ are drawn from their full conditional

probabilities; and the Metropolis-Hastings algorithm with a truncated normal proposal is

applied to update λ (Cai et al., 2020). As MALA requires the posterior to be differentiable,

we approximate the non-differentiable components of the posterior by

1{‖αi‖22>λ} ≈ t(αi;λ) =
1

2
+

1

π
arctan

(
‖αi‖22 − λ

ε0

)
, (13)∑

(i,i′)∈E

‖αi −αi′‖2 ≈
∑

(i,i′)∈E

√
‖αi −αi′‖22 + ε1. (14)

The approximations become exact if the parameters ε0 in (13) and ε1 in (14) go to 0+.

Though random walk metropolis does not rely on the assumption of smooth posterior,

its low efficiency makes it impractical to apply in high-dimensional problems. We compare

MALA and the random walk metropolis in Section A.7.3 of the Appendix through a simula-

tion experiment. The experiment demonstrates the advantage of MALA, and it is worthwhile

to smooth the likelihood and prior. The idea of approximating the non-differentiable thresh-

olding function and `1-norm by smooth ones is commonly used in many areas such as spiking
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neural networks (Bohte et al., 2000) and brain-machine interface technology (Onaran et al.,

2013). Another advantage of using the smooth approximation is to improve the computa-

tional efficiency of MCMC (see, e.g., Rischard et al., 2018). Furthermore, our approximations

(13) and (14) can be interpreted as Student t smoothing with 1 and 2 degrees of freedom,

respectively. This is similar to the Gaussian smoothing technique of Chatterji et al. (2020).

Details of these smoothing representations are provided in Section A.4 of the Appendix.

Algorithm A.1 in Section A.5.1 of the Appendix presents the details of the posterior

updates. With the training sample size N , the computational complexity of our algorithm is

O(NpK+pK2), where p is the number of entries of the tensor covariate (i.e., p = P1P2 · · ·PD
for a D-way tensor) and K is the dimension of the spline bases. After the algorithm exe-

cution, the active regions are determined by the estimated receiver operating characteristic

(ROC) curve (Hajian-Tilaki, 2013) according to the posterior samples of BFEN, which is

also provided in Section A.5.1 of the Appendix. The posterior point estimator f̂i of the

additive component function in the active regions is computed by φTβ̂i where β̂i is the

posterior mean of the truncated spline coefficients (7). Overall, our method includes several

hyperparameters {r, ρα, p0, p1, σ2
µ, p, a, b} and tuning parameters {δ′, ε0, ε1} in (10)–(14). For

ease of tuning, we suggest to standardize the responses in practice. After this, we assign

(2P1 · · ·PD − 1)K/2 to p1 as discussed in Section 3.4 and a small number 10−6 to ε1. The

choice of ε0 is data-driven and addressed in Section A.5.2 of the Appendix. We find that our

model is not sensitive to the specific choice of small value for ε1 through a sensitivity analysis

in Section A.5.2 of the Appendix. We also suggest to set δ′ = 0.0001 in prior (11), and set

σ2
µ = 100, p = 1 and a = b = 0.5 in prior (10). The sensitivity analyses of these parameters

are presented in Section A.5.4 of the Appendix. As for (r, ρα) in the prior (11) and p0 in

the hyperprior (12), a validation method is suggested since they are critical in controlling

the strength of the prior. In our experiments, we split the available data into a training set

and a validation set with sizes in the ratio of 5 to 1, and the optimal parameters are those

minimizing the validation loss L(yvalid, ŷvalid) := (1/Nvalid)‖yvalid − ŷvalid‖22, where Nvalid is

the size of the validation set, and ŷvalid is the vector of predicted values of the observations

yvalid in the validation set. The details of this procedure are discussed in Section A.5.3

of the Appendix. We find that the above strategy of selecting the hyperparameters works

15



reasonably well in all of our numerical experiments.

4 Simulation

In this section we compare our method, Bayesian additive tensor regression with FEN prior

(BFEN), with three alternative methods: i) the sparse nonparametric tensor additive regres-

sion (STAR) with the group lasso penalty (Hao et al., 2021); ii) the frequentist linear tensor

regression (FTR) with the lasso penalty (Zhou et al., 2013); iii) the Bayesian linear tensor

regression (BTR, Guhaniyogi et al., 2017).

4.1 Simulation Settings

In our simulation study, the covariate X is a 2-way tensor (i.e., matrix) of dimension P1×P2,

and so the corresponding additive model can be written as f(X) = µ +
∑

i,j fij(Xij) where

many fij’s are identically zero.

We let µ = 0 and consider three different patterns of true active regions (non-zero additive

component functions): low-rank shapes, a horse shape, and a shape of handwritten Arabic

six from MNIST database (LeCun, 1998). These patterns are depicted in Figure 5 where

the non-black pixels indicate the positions of the active regions.

Each pattern includes two nonlinear settings with different levels of signal-to-noise ratio

SNR = 5 and SNR = 50 respectively, and one linear setting with SNR = 5. In the nonlinear

settings, for each pixel (i, j) in the true active regions, we set fij(x) = hij(x)−mij with

hij(x) = aij sin(cijx) + aij cos(dijx) + bijx, (15)

and mij =
∫
hij(x) dx such that fij(x) is centered.

We now specify the additive component functions in the active regions through the coeffi-

cients aij, bij, cij, and dij in (15) for each setting. First, for the linear cases, we let aij = 0 and

bij = 1 in all three patterns. For the nonlinear cases, we set aij for three patterns in different

ways. In particular, aij is set to 1 for every pixel (i, j). For the shape of handwritten Arabic

six, we let W be the gray-scale matrix of this figure in the MNIST database, and aij is set

as 2Wij +1. For the horse shape, we follow Dong et al. (2016) which applies the eigenvectors
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Table 2: Specification of the component function coefficients aij, bij, cij, and dij in (15) for

(i, j) in the true active regions for each simulation setting. The nine settings are organized

into three groups by their patterns (shapes) of the active regions.

Setting ID 1 2 3 4 5 6 7 8 9

Shape Low rank Horse Handwritten Arabic six

SNR 5 50 5 5 50 5 5 50 5

Setting Meaning
low SNR high SNR

linear
low SNR high SNR

linear
low SNR high SNR

linear
nonlinear nonlinear nonlinear nonlinear nonlinear nonlinear

True fij aij sin(cijx) + aij cos(dijx) + bijx−mij

mij

∫
aij sin(cijx) + aij cos(dijx) + bijx dx

aij 1 0 1u
(1)
ij + 2 0 2Wij + 1 0

cij 1.5π 0 v
(2)
ij 0 v

(2)
ij 0

dij 1.5π 0 v
(3)
ij 0 v

(3)
ij 0

bij
2
π
aij(cij + dij) 1 2

π
aij(cij + dij) 1 2

π
aij(cij + dij) 1

of the graph Laplacian matrix to produce smooth signals on the graph. More specifically,

we construct the spatially smooth coefficients aij’s based on the eigenvectors of the graph

Laplacian matrix of the graph G defined in Section 2. As for cij and dij, we set them to

1.5π in the nonlinear cases of the low-rank shapes. For the other two shapes, cij and dij are

also spatially smooth with value restricted to [π, 1.5π]. Then, bij is set as (2/π)aij(cij + dij)

for all the nonlinear settings. Finally, we generate the noise terms by adjusting the variance

to achieve SNR = 50 for Settings 2, 5, 8, and SNR = 5 for the others. Overall, we have

nine simulation settings with different shapes of active regions, signal-to-noise ratios, and

complexities of the nonlinear functions. These nine settings are summarized in Table 2 where

the details of constructing u
(1)
ij , v

(2)
ij , and v

(3)
ij by following Dong et al. (2016) are provided in

Section A.7.1 of the Appendix.

For each setting, the entries of each covariate X are generated from i.i.d. unif(0, 1), and

the response is generated from the additive model with corresponding observational noise

level σ2
ε . We generated 30 simulated datasets of sample size 600 independently for each

setting. We apply the proposed BFEN and the alternatives on the datasets. For BFEN,

the hyperparameters are selected as discussed in Section 3.5. For STAR, FTR and BTR, we

implement these three methods respectively following Hao et al. (2021), Zhou et al. (2013)

and Guhaniyogi et al. (2017), and the details are provided in Section A.6 of the Appendix.
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To evaluate the estimation accuracy of the component functions for various methods, we

calculate the mean squared error (MSE) and relative mean squared error (RMSE) as

MSE =
1

P1P2

∑
i,j

‖fij − f̂ij‖2L2
and RMSE =

1

|V|
∑

(i,j)∈V

‖fij − f̂ij‖2L2
/‖fij‖2L2

,

where V is the set of indices of true active functions. The ability to select the active func-

tions/pixels is assessed by the true positive rate (TPR) and the true negative rate (TNR).

Note that the posterior samples of the BTR method do not directly indicate the activity of

pixels directly. To evaluate the region selection performance of BTR, we follow Guhaniyogi

et al. (2017) to identify the active pixels of BTR by checking whether the 95% posterior

credible intervals exclude 0. For our proposed BFEN method, we used the posterior sample

as introduced in Section 3.5. We further use the testing relative prediction error (RPE) to

evaluate the prediction accuracy. To do this, we generate another 400 observations as a

testing dataset whose index set is denoted by T , and calculate

RPE =
∑
n∈T

(ŷn − yn)2/
∑
n∈T

y2n, (16)

where ŷn the predicted value of the n-th observation in the test set through µ̂ and f̂ij’s.

4.2 Results

The results are presented visually as boxplots in Figure 4, which summarizes RPE, MSE,

RMSE, TPR, and TNR based on 30 replicates for each setting. We also provide detailed

numerical results of the simulation experiments in Table A.3 of the Appendix. To compare

the computational efficiency between our algorithm and the alternatives, all methods were

run on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU and the execution time is

also recorded in Table A.3. The convergence time of Algorithm A.1 for our proposed BFEN

method is less than 1.5 minutes on average for a single specification of tuning parameters.

It can be seen that the average RPE, MSE, and RMSE of BFEN are smaller than those

of STAR, FTR, and BTR in all settings of irregular sparsity shapes, i.e., a horse and a

handwritten Arabic six (Settings 4–9). In Settings 1–3, the true active region is of low

rank which is indeed in favor of the other alternative methods. It is expected that STAR
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works well in Setting 2 and the linear alternatives have better performance in Setting 3

since the corresponding settings favor these models. Besides, among the three alternative

methods, STAR enjoys an advantage over FTR and BTR only when nonlinear signals are

strong enough (Settings 2, 5, and 8). Overall, BFEN is more flexible and has advantages in

a wider range of scenarios.

As for the recovery of active regions, the proposed BFEN method has a balanced per-

formance in both TPR and TNR for all settings. We find that STAR and FTR tend to

over-select active pixels, i.e., TNR is low. On the other hand, TPR of BTR deteriorates

considerably when its low rank and linear assumption are violated in Settings 4, 5, 7, and 8.

For further demonstration, we calculate the L2-norm of each estimated additive compo-

nent function, ‖f̂ij‖L2 , for all methods. These results can be visualized by heatmaps for each

simulated dataset. For the nonlinear with high SNR settings, the heatmap corresponding to

the median RPE among 30 simulated datasets for each method was depicted in Figure 5, and

the heatmap for the truth was also depicted at the leftmost of Figure 5. For the nonlinear

with low SNR and linear settings, the heatmaps were respectively provided in Figures A.3

and A.4 of the Appendix. It is evident that the proposed BFEN recovers the shape of the

true active region and the corresponding spatial distribution of the signal strength with a

reasonably good accuracy.

In contrast, STAR, FTR, and BTR only work well in the low-rank setting (Setting 2,

the first row in Figure 5) but are substantially worse for the other two patterns. STAR,

FTR, and BTR are based on the tensor rank-R CP decomposition, which is the sum of

R rank-1 tensors. Therefore, the sparsity patterns recovered by these methods tend to be

a combination of several rectangular blocks. BFEN, however, encourages the similarity of

neighbouring signals rather than enforcing certain shapes of spatially connected regions and,

thus, can adaptively identify the active regions with complex shapes.

5 Facial Feature Analysis

We apply our method to the Labeled Faces in the Wild dataset (Huang et al., 2008). This

dataset consists of facial images collected from 5, 721 people and attributes that quantify
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Figure 4: The boxplots for visualizing the results of simulation experiments. Rows 1–5 depict

RPE, MSE, RMSE, TPR, and TNR, respectively. Columns 1–3 respectively correspond to

low-rank shapes, a horse shape, and a shape of handwritten Arabic six. In each panel, the

left, middle, and right group of boxes correspondingly represent the results under ‘low SNR,

nonlinear’, ‘high SNR, nonlinear’ and ‘linear’ setting. In each setting, the blue, orange,

green, and red boxes correspond to BFEN, STAR, FTR and BTR, respectively.
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Figure 5: The heatmaps of various methods under the nonlinear with high SNR settings

(Settings 2, 5, and 8). Rows 1–3 correspond to the patterns of low-rank shapes (Setting 2),

a horse shape (Setting 5), and a shape of handwritten Arabic six (Setting 8), respectively.

The first column presents the truth. Columns 2–5 correspond to the estimated results by

BFEN, STAR, FTR, and BTR, respectively.

various facial features for each facial image (Kumar et al., 2009). In this experiment, we

select one facial image per person and choose the facial expressions related to the mouth as

responses, which are smiling, frowning, mouth closed, mouth wide open, and teeth not visible.

We follow Hassner et al. (2015) to register these images. In particular, all images are

frontalized to make faces in constrained and forward-facing poses; thus, the same regions of

different images represent the same part of a human face. The original gray-scale image is

of size 90×90 with entry values in [0, 255]. We further down-sample each image to a 45×45

matrix by replacing every four pixels in a square with one pixel of average gray-scale value,

and rescale the entry values to [0, 1]. Figure 7(a) shows an example of the resulting image.

We compare the proposed method with STAR, FTR, and BTR as in Section 4. We

randomly sample an index set S of size 2000 from the full subject set {1, · · · , 5721} for
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Figure 6: The boxplots of the relative predictive errors for the facial data analysis under

100 replicates. From left to right, the 5 groups of the boxes respectively represent the

results for attributes smiling, frowning, mouth closed, mouth wide open, and teeth not visible,

respectively. In each group, the blue, orange, green, and red boxes respectively correspond

to BFEN, STAR, FTR, and BTR.

feasible computation. The set S is then divided into three disjoint subsets S = S1 ∪ S2 ∪ T

of sizes 1000, 200 and 800 respectively. Sets S1 and S2 are used for training and tuning, and

Set T is used to evaluate the performance of prediction through RPE in (16). We repeat

this procedure 100 times.

The results are presented visually as boxplots in Figure 6, which summarizes the RPE

of various methods for each attribute. We also provide the numerical results and runtime

for the facial feature analysis in Table A.5 of the Appendix. In particular, Algorithm A.1

of our proposed BFEN method needs less than 2 minutes on average to converge for one

grid of tuning parameters with a 2.2-GHz Intel E5-2650 v4 CPU. It shows that BFEN

outperforms the three competitors in all cases, except for the response mouth wide open

where BFEN and STAR have similarly good performances. The heatmaps in Figure 7(c)

display the magnitude ‖f̂ij‖L2 of each pixel for the attribute smiling using various methods.

It shows that the result of BFEN has better interpretability: smiling can be characterized

by the pixel values around the eyes, mouth and some facial muscles. Figure 7(b) depicts
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the estimated nonlinear functions fij’s and the 95% posterior credible intervals by BFEN

corresponding to the region indicated by the rectangle in Figure 7(a). Some functions exhibit

clear non-linearity. In contrast, the signals selected by FTR and BTR do not have an obvious

interpretation. With the help of nonlinearity and the group regularization across different

blocks, STAR has better interpretability than that of FTR and BTR, but is still inferior to

BFEN. Overall, the low-rank modeling may not be flexible enough to characterize a complex

shape like smiling, and this result is consistent with our findings in the simulation study.

The heatmaps for other attributes are depicted in Figure A.6 of the Appendix.

6 Discussion

In this paper, we have proposed a nonlinear Bayesian tensor additive regression model, which

incorporates the spatial information of the tensor covariates. A functional version of the fused

elastic net, FEN, has been introduced as a prior distribution on the additive component func-

tions to accommodate the sparse, spatially smooth functional structure with discontinuous

jumps. Through numerical experiments on the simulated and the facial feature datasets,

we have demonstrated the superior performance of the proposed method compared to the

existing linear and nonlinear tensor regression models for characterizing irregular shapes of

sparse active regions, even if the signal-to-noise ratio is relatively low. The performance of

alternative methods, however, rely on low-rank assumption, which is often violated in real

applications of image and neuroscience data.

The proposed BFEN has some limitations, which may lead to extension of this work.

Similar to many other methods with multiple hyperparameters, the main computational

burden of our method is due to the validation method for selecting hyperparameters p0, r,

and ρα. Further investigation is needed to relieve this bottleneck by, for example, imposing

appropriate hyperpriors on these hyperparamters to automatically adjust them. In addition,

extending the current model to the case of multi-dimensional response variables, like matrix-

on-tensor and tensor-on-tensor regressions, is also of interest.

23



(a) (b)

(c)

Figure 7: Real applications on the facial data for the attribute smiling. (a) An example of

facial covariate tensor X. Its corresponding value of smiling attribute is 1.51, which means

the person is smiling. (b) Each of the 4 × 6 panels depicts the estimated f̂ij from BFEN

corresponding to the enclosed rectangle area in (a), and between the dashed lines are the

95% posterior credible intervals. (c) The heatmaps in columns 1–4 correspond to ‖f̂ij‖L2

estimated by BFEN, STAR, FTR, and BTR, respectively.

Appendix

A.1 Construction of Spline Basis

In this section, we show the details of the basis construction in Section 3.3. The K dimen-

sional centered and orthonormal basis φ is from an K+1 dimensional B-spline basis ψ. The

construction is divided into three steps:
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First, denote W :=
∫
ψ(x)ψ(x)T dx. Suppose its eigendecomposition is W = VΓ1V

T,

where Γ1 is diagonal containing the eigenvalues and V is orthonormal containing the eigen-

vectors in its columns. Set ψ̃(x) := Γ
−1/2
1 VTψ(x) to get an orthonormal basis satisfying∫
ψ̃(x)ψ̃(x)T dx = IK+1.

Next, denote d :=
∫
ψ̃(x) dx ∈ RK+1, set T ∈ RK+1,K as the full column rank matrix

with columns orthornormal to d, i.e., TTd = 0. Set φ̃(·) := TTψ̃(x), and we get an set of

orthonormal and centered basis functions satisfying∫
φ̃(·)φ̃(·)T dx = TTT = IK and

∫
φ̃(x) dx = 0.

Finally, denote Ω0 :=
∫
φ̃
′′
(x)φ̃

′′
(x)T dx. Suppose it has the eigendecomposition Ω0 =

UΓ2U
T, where Γ2 is a diagonal matrix of eigenvalues arranged in an increasing order. Set

φ(x) := UTφ̃(x). We can see that φ is a centered and orthornormal basis with a diagonal

Ω :=

∫
φ′′(x)φ′′(x)T dx = UTΩ0U = UTUΓ2U

TU = Γ2.

Hence the properties (i), (ii), and (iii) in Section 3.3 of the main paper are all satisfied by

the constructed spline basis φ.

As Ω0 is computed from the second order derivative of φ̃, its smallest eigenvalue is zero,

i.e., (Γ2)11 = 0. This eigenvalue corresponds to an eigenvector u1 such that uT
1 φ̃ is a linear

function. This implies the first component of φ is a linear function. Because the properties (i)

and (ii) in Section 3.3 are both satisfied, it is easy to see that φk ⊥ `[0, 1], k > 1. Meanwhile,

it can be verified that φ1αi1 is the projection of the function gi = φTαi onto `[0, 1], i.e.,

Pgi = φ1αi1, where αi1 is the first element of αi. Hence, with the basis φ, the roughness

norm R(gi) = ‖g′′i ‖2L2
+ δ′‖Pgi‖2L2

in (4) of the main paper can be rewritten as
∑

i∈I α
T
i Rαi

where R = Ω + δ′‖φ1‖2L2
e1e

T
1 with e1 = (1, 0, . . . , 0)T.

Using the above procedure, constructing the orthonormal basis only requires to know the

degree and dimension of the B-spline. For the degree, it can be fixed as 4 (cubic spline)

to alleviate the computational burden, and this choice is commonly used in nonparametric

literature Huang et al. (2010). As for K, there are many simple recommendations based on

the sample size (e.g., Ruppert et al., 2003). We follow Fan et al. (2011) to fix K = dn1/5c,
where d·c denotes rounding to the nearest integer, n is the sample size, and the interior knots

are equally-spaced quantiles of all covariate samples. All the results of numerical experiments

exhibited in our paper are obtained through this empirical rule, and we find that this rule

works reasonably well.
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A.2 The Order of Normalizing Term of the Prior

In this section, we provide the proof of Proposition 1 by calculating the orders of the nor-

malizing term Cδ,σ2 of the prior (11) with respect to δ and σ2 respectively.

The normalizing term Cδ,σ2 equals to∫
RP1···PDK

exp

{
−
δ
∑

i∈I α
T
i Rαi

σ2

−
r
∑

(i,i′)∈E ‖αi −αi′‖22 + (1− r)
∑

(i,i′)∈E ‖αi −αi′‖2
2σ2ρα

}
dα

(A.1)

With a formula

exp

(
−λ|a|

σ

)
=

∫ ∞
0

λ√
2πω2

exp

(
− a2

2σ2ω2
− λ2ω2

2

)
dω2

for (λ > 0) (Andrews and Mallows, 1974), we have

exp

{
−

(1− r)
∑

(i,i′)∈E ‖αi −αi′‖2
2σ2ρα

}
=
∏

(i,i′)∈E

∫ ∞
0

1− r√
2πω2

ii′

· exp

{
− ‖αi −αi′‖22

2 · 4σ4ρ2αω
2
ii′
− (1− r)2ω2

ii′

2

}
dω2

ii′ .
(A.2)

Here we introduce some notations to facilitate the proof. Let α·k denote the tensor of

dimension P1 × · · · × PD whose i-th element, (α·k)i, is αik (the k-th element of coefficient

vector αi), i = (i1, . . . , iD) ∈ I and k = 1, . . . , K. For a generic D-way tensor, we define

the operator vec(·) as its vectorization according to the lexicographical order from its 1-st

to D-th mode. In other words, vec(I) := (1, 2, · · · ,
∏D

d=1 Pd) as the vectorized form of the

index set I such that i = (i1, . . . , iD) is now placed at the t-th element of vec(I), where

t = i1 +
∑D

d=2(id − 1)
∏d−1

d′=1 Pd′ , for any i ∈ I. Similarly, vec(α·k) is the vectorized α·k such

that the t-th element of vec(α·k) is (α·k)i whenever t = i1+
∑D

d=2(id−1)
∏d−1

d′=1 Pd′ . With the

vectoried α·k, some terms in the integrand of (A.1) can be rewritten in terms of quadratic

forms. In particular, define the quadratic matrices Λ
(k)
1 for k = 1, . . . , K, Λ2, and Λ

(ω)
3 as

follows. Λ
(k)
1 is Gkk · I, where Gkk ∈ R is the k-th diagonal element of the matrix R in (A.1).

For any edge (i, i′) ∈ E of the graph, suppose i (or i′) corresponds to the t-th (or t′-th resp.)

element of vec(I), the (t, t′)-th and (t, t)-th elements of Λ2 and Λ
(ω)
3 are (Λ2)tt′ = −1/(2ρα),

(Λ2)tt = −
∑

s6=t(Λ2)ts, (Λ
(ω)
3 )tt′ = −1/(2 · 4ρ2αω2

ii′), and (Λ
(ω)
3 )tt = −

∑
s6=t(Λ

(ω)
3 )ts; The

other elements of Λ2 and Λ
(ω)
3 are 0’s. The three matrices satisfy:

vec(α·k)
TΛ

(k)
1 vec(α·k) = δ

∑
i∈I

Gkkα
2
ik, (A.3)

vec(α·k)
TΛ2vec(α·k) =

∑
(i,i′)∈E

(αik − αi′k)
2

2ρα
, (A.4)
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vec(α·k)
TΛ

(ω)
3 vec(α·k) =

∑
(i,i′)∈E

(αik − αi′k)
2

2 · 4ρ2αω2
ii′

. (A.5)

Denote

g(ω) =
∏

(i,i′)∈E

1− r√
2πω2

ii′

exp

{
− (1− r)2ω2

ii′

2

}
and

Λ(k,ω, δ, σ2) = Λ
(k)
1 +

rΛ2

δ
+

Λ
(ω)
3

δσ2
.

After using the above simplified notations, we substitute (A.2) back into (A.1), and apply

the Fubini’s Theorem to have

Cδ,σ2 =

∫
R
|E|
+

g(ω)

[
K∏
k=1

∫
RP1···PD

exp

{
−vec(α·k)

T δΛ(k,ω, δ, σ2)

σ2
vec(α·k)

}
dα·k

]
dω2.

Integrating out α·k’s, the normalizing term Cδ,σ2 becomes

c

∫
R
|E|
+

g(ω)

(
σ2

δ

)P1···PDK/2
[
K∏
k=1

√
det{Λ(k,ω, δ, σ2)}

]−1
dω2. (A.6)

Hence, the key to compute the degrees of δ and σ2 is to find out the degrees within

det{Λ(k,ω, δ, σ2)}. Since G = (I, E) is a connected graph, (A.4) and (A.5) equal to 0 if

and only if αik = αi′k, ∀i, i′ ∈ I, i.e. vec(α·k) ∝ 1, where 1 is a P1 · · ·PD dimensional vector

with each entry being 1. Hence Λ2 and Λ
(ω)
3 are positive semidefinite matrix with rank

P1 · · ·PD − 1. Next we discuss the order of Cδ,σ2 with respect to δ, σ2 when they go to both

0 or ∞. On one hand,

(i) δ →∞. With the positive (semi-)definiteness of the matrices, we have

0 < det
(
Λ

(k)
1

)
≤ det{Λ(k,ω, δ, σ2)} ≤ det

(
Λ

(k)
1 + rΛ2 +

Λ
(ω)
3

σ2

)
, ∀δ > 1.

We can see that det{Λ(k,ω, δ, σ2)} is bounded by two positive constants that is inde-

pendent to δ, so det{Λ(k,ω, δ, σ2)} is of order O(1) for δ → ∞. Together with (A.6),

we know the normalizing term Cδ,σ2 is of order (1/δ)P1···PDK/2.

(ii) σ2 →∞. Similarly, we have

0 < det

(
Λ

(k)
1 +

rΛ2

δ

)
≤ det{Λ(k,ω, δ, σ2)} ≤ det

(
Λ

(k)
1 +

rΛ2

δ
+

Λ
(ω)
3

δ

)
, ∀σ2 > 1,

so det{Λ(k,ω, δ, σ2)} is of order O(1) for σ2 →∞. Combining with (A.6), the normal-

izing term Cδ,σ2 is of order (σ2)P1···PDK/2.
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On the other hand, to compute the degrees of δ and σ when they go to 0, we apply Grinberg

(2020)’s formula for n dimensional square matrices A,B:

det(A+xB) = det(A)+det(A)p1(A
−1B)x+· · ·+det(A)pn−1(A

−1B)xn−1+det(B)xn, (A.7)

where A is an invertible square matrix, and p1(·), · · · , pn−1(·) are the sums of all principal

minors of order 2, · · · , n− 1, respectively.

(iii) δ → 0. After respectively substituting the three variates Λ
(k)
1 , rΛ2 + Λ

(ω)
3 /σ2, and

1/δ for A, B, and x in formula (A.7), it shows that n in (A.7) turns to be P1 · · ·PD,

and A is a positive definite matrix. It is easy to see that the right side of the linear

combination r × (A.4) + (A.5)/σ2 equal to 0 if and only if αik = αi′k, ∀i, i′ ∈ I, so B

is a positive semidefinite matrix with rank P1 · · ·PD − 1, and meanwhile A−1B is also

positive semidefinite matrix with rank P1 · · ·PD − 1. Hence we have

det{Λ(k,ω, δ, σ2)} = det(A) + det(A)p1(A
−1B)/δ + · · ·+ det(A)pn−1(A

−1B)/δn−1,

where det(B) = 0, det(A) > 0, and pj
(
A−1B

)
> 0, j = 1, · · · , n − 1. So we know

that det{Λ(k,ω, δ, σ2)} is of order 1/δP1···PD−1 for δ → 0. Combining with (A.6), the

normalizing term Cδ,σ2 is of order (1/δ)K/2.

(iv) σ2 → 0. Substitute Λ
(k)
1 + rΛ2/δ, Λ

(ω)
3 /δ, 1/σ2 for A, B, x in the formula (A.7),

respectively. Similarly, we can prove det{Λ(k,ω, δ, σ2)} is of order (1/σ2)P1···PD−1.

Further, according to (A.6), the normalizing term Cδ,σ2 is of order (σ2)(2P1···PD−1)K/2.

A.3 Model Invariance

In this section, we prove Proposition 2 in Section 3.4 of the main paper. Denote p(α;φ)

the probability distribution function of the prior (11), where ‘φ’ is involved because R in

the prior (11) is defined based on the spline basis. Note fi(Xi) = φ(Xi)
Tαi · 1{‖αi‖22>λ}, so

the prior p(α;φ) of paramater α induces a prior distribution for f(X). For any orthogonal

matrix Q ∈ O(K), after giving orthogonal transformation to the spline basis: φQ = Qφ, we

have a new model Y = fQ(X) + ε with component function

fQ,i(Xi) = φQ(Xi)
Tαi · 1{‖αi‖22>λ}. (A.8)

With the new spline basis φQ, the prior imposed on α turns to be p(α;φQ), which also

induces a prior distribution for fQ(X). Proposition 2 is an equivalent to: The prior distri-

bution of fQ(X) induced by the prior p(α;φQ) keeps unchange for any orthonormal matrix
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Q ∈ O(K). Denote αQ ∈ RP1×···×PD×K whose element (αQ)ik = (QTαi)k, i ∈ I, 1 ≤ k ≤ K.

Because

fQ,i(Xi) = φ(Xi)
TQTαi · 1{‖αi‖22>λ} = φ(Xi)

TQTαi · 1{‖QTαi‖22>λ},

(A.8) with the prior p(·;φQ) for α is equivalent to

fQ,i(Xi) = φ(Xi)
T(αQ)i · 1{‖(αQ)i‖22>λ} (A.9)

with a prior q(·;φQ) for αQ, where q(·;φQ) is obtained through density transformation from

p(α;φQ). All we need is to show that q(·;φQ) is invariant to Q ∈ O(K), which, is guaranteed

by the following computation

ln q(α;φQ) ∝ −
∑
i

αT
i QT(QRQT)Qαi −

r
∑

(i,i′)∈E
(
αT

i QTQαi − 2αT
i′Q

TQαi +αT
i′Q

TQαi′
)

2σ2ρα

−
(1− r)

∑
(i,i′)∈E

√
αT

i QTQαi − 2αT
i′Q

TQαi +αT
i′Q

TQαi′

2σ2ρα

∝ −
∑
i

αT
i Rαi −

r
∑

(i,i′)∈E
(
αT

i αi − 2αT
i′αi +αT

i′αi′
)

2σ2ρα

−
(1− r)

∑
(i,i′)∈E

√
αT

i αi − 2αT
i′αi +αT

i′αi′

2σ2ρα

∝ p(α;φ).

A.4 Student t Smoothing

In this section, we show that the proposed approximations (13) and (14) of nonsmooth

functions in the main paper can be represented in terms of smoothing method similar to

Chatterji et al. (2020), where a Gaussian smoothing was introduced.

We first recall that αT = (αT
i )i∈I ∈ RP1×···×PD×K are the combined spline coefficients for

all additive component functions fi, i ∈ I, and E is the neighboring relationship set for the

location index set I. Let p be the cardinality of E , i.e., p = |E|. Denote g : RP1×···×PD×K → Rp

such that g(α) = (‖αi−αi′‖2)(i,i′)∈E . We can then rewrite the non-differentiable fusion term∑
(i,i′)∈E ‖αi − αi′‖2 (the left hand side of (14) of the main paper) as ‖g(α)‖1. Now, let ξ

be a p-dimensional random vector with ξj
i.i.d.∼ t2, j ∈ E , where t2 denotes the Student t

distribution with 2 degrees of freedom. It can be shown that, for ε1 > 0,

E ‖g(α) +
√

(ε1/2) ξ‖1 =
∑

(i,i′)∈E

√
‖αi −αi′‖22 + ε1. (A.10)

Thus (14) of the main paper can be represented by a perturbation (Chatterji et al., 2020)

using Student t distribution with 2 degrees of freedom. To show (A.10), we note that for a
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random variable ξ ∼ t2, direct calculation shows

E|α + uξ| =
√
α + 2u2, (A.11)

for α, u ∈ R. Thus, for ξ(i,i′)
i.i.d.∼ t2, we have

E ‖g(α) +
√

(ε1/2) ξ‖1 =
∑

(i,i′)∈E

E
∣∣‖αi −αi′‖2 +

√
(ε1/2) ξ(i,i′)

∣∣
(A.11)

=
∑

(i,i′)∈E

√
‖αi −αi′‖22 + ε1,

which completes our Student t2 perturbation representation of (14) of the main paper.

Similarly, let U be the indicator function such that U(u) = 1{u>λ}, and define ξi
i.i.d.∼ t1,

i ∈ I, where t1 denotes the Student t distribution with 1 degree of freedom (i.e., the Cauchy

distribution). We then have

E
{
U
(
‖αi‖22 + ε0ξi

)}
= E

(
1{‖αi‖22+ε0ξi>λ}

)
= P

(
‖αi‖22 + ε0ξi > λ

)
= P

{
ξi > (λ− ‖αi‖22)/ε0

}
= 1−

[
1

2
+

1

π
arctan{(λ− ‖αi‖22)/ε0}

]
=

1

2
+

1

π
arctan{(‖αi‖22 − λ)/ε0}.

Thus, (13) of the main paper can be represented by the Student t1 (Cauchy) perturbation.

A.5 Model Estimation

In this section we demonstrate how to estimate the tensor regression model (1) of the main

paper. The method includes two major components: sampling posterior and selecting hy-

perparameters (a validation method).

A.5.1 Posterior Sampling

Algorithm A.1 describes the Markov chain Monte Carlo (MCMC) method to obtain posterior

samples for the parameters {µ,α, λ, σ2, δ} of the hierarchical model (9)–(12) of the main

paper. Steps 1 and 2 use the MALA (Roberts and Rosenthal, 1998) to sample µ and α; Step

3 and 4 draw the parameters σ2 and δ from their full conditional probabilities; and Step

5 applies the Metropolis-Hastings algorithm with a truncated normal proposal to update λ

(Cai et al., 2020). The hyperparamaters (r, ρα) in (11) and p0 in (12) of the main paper are

fixed during the MCMC update.
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Algorithm A.1: Posterior updates under fixed r and ρα.

Input: the parameters from the last iteration

Output: the updated parameters for the next iteration

1 Draw µ∗ ∼ N(µ̃, τ 2µ), where

µ̃ = µ+
τ 2µ
2

( N∑
n=1

∂ ln p(yn | α, µ, σ2, λ)

∂µ
+
∂ ln p(µ)

∂µ

)
.

Update µ = µ∗ with probability

min

{
1,
N(µ|µ̃∗, τ 2µ∗)p(µ∗)

∏N
n=1 p(yn|α, µ∗, σ2, λ)

N(µ∗|µ̃, τ 2µ)p(µ)
∏N

n=1 p(yn|α, µ, σ2, λ)

}
.

2 Draw α∗ ∼ N(α̃, τ 2αIP1P2), where

α̃ = α+
τ 2α
2

( N∑
n=1

∂ ln p(yn | α, µ, σ2, λ)

∂α
+
∂ ln p(α | δ, r, σ2, ρα)

∂α

)
.

Update α = α∗ with probability

min

{
1,
N(α|α̃∗, τ 2α∗IP1P2)p(α

∗ | δ, r, σ2, ρα)
∏N

n=1 p(yn|α∗, µ, σ2, λ)

N(α∗|α̃, τ 2αIP1P2)p(α | δ, r, σ2, ρα)
∏N

n=1 p(yn|α, µ, σ2, λ)

}
.

3 Draw σ2 ∼ Inv-Γ(a, b), where a = p1 + N
2
,

b = 1 +

∑N
n=1(yn − µ−

∑
i∈I φ(X

(n)
i )Tαi · tλ(αi))

2

2
+ δ

∑
i∈I

αT
i Rαi

+
r
∑

(i,i′)∈E ‖αi −αi′‖22 + (1− r)
∑

(i,i′)∈E ‖αi −αi′‖2
2ρα

.

4 Draw δ ∼ Γ(a, b), where a = p0 and

b = 1 +

∑
i∈I α

T
i Rαi

σ2
.

5 Draw λ∗ ∼ N+ (λ, 0, λu, τ
2
λ) , which is a normal distribution N(λ, τ 2λ) truncated by

[0, λu]. Update λ = λ∗ with probability

min

{
1,
N+ (λ|λ∗, λl, λu, τ 2λ) p(λ∗)

∏N
n=1 f (yn|α, µ, σ2, λ∗)

N+ (λ∗|λ, λλ, λu, τ 2λ) p(λ)
∏N

n=1 f (yn|α, µ, σ2, λ)

}
.
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Given the posterior samples of α, λ from Algorithm A.1, we estimate the model coefficient

β in (7) of the main paper in the following way. Denote
{
α(B+l), λ(B+l)

}I−B
l=1

the posterior

samples after burn-in, and DN the training dataset. We achieve sparsity by selecting the ac-

tive indices (i, j) from the posterior inclusion probability. The posterior inclusion probability

for βi is given by the posterior mean of the indicator function t(αi;λ) in (13):

P̂r (βi 6= 0 | DN) =
1

I − B

I−B∑
l=1

t
(
α

(B+l)
i ;λ(B+l)

)
.

The corresponding additive component function fi, i ∈ V̂ , is regarded as active if P̂r (βi 6= 0 | DN) >

c0 for some cut-off value c0. The estimated active index set is then

V̂(c0) =
{

i : P̂r (βi 6= 0 | DN) > c0

}
.

Similar to Hajian-Tilaki (2013), the cut-off value c0 can be decided according to the receiver

operating characteristic (ROC) curve. For this purpose, we introduce several notations.

Define two tensors JV ,JV̂(c0) ∈ RP1×···×PD such that

(JV)i =

1, true βi 6= 0,

0, otherwise;
and (JV̂(c0))i =

1, i ∈ V̂(c0),

0, otherwise.

In the above, βi is the true coefficient and thus JV can be interpreted as an indicator for

the true active index, while JV̂(c0) can be interpreted as the estimated active index. We also

define a tensor J ∈ RP1×···×PD whose elements are all ones, i.e., Ji = 1, ∀i ∈ I. With these

notations, the true negative rate (TNR) and the true positive rate (TPR) for the cut-off

value c0 are respectively defined as

TNR(c0) =
〈J− JV ,J− JV̂(c0)〉
〈J,J− JV〉

and

TPR(c0) =
〈JV ,JV̂(c0)〉
〈J,JV〉

.

Note that JV is unknown, we use the tensor P ∈ RP1×···×PD whose element Pi = P̂r (βi 6= 0 | DN)

to approximate JV in practice. According to Hajian-Tilaki (2013), the estimation of TNR

and TPR can be obtained as

T̂NR(c0) =
〈J−P,J− JV̂(c0)〉
〈J,J−P〉

, T̂PR(c0) =
〈P,JV̂(c0)〉
〈J,P〉

.

We thus determine the optimal cut-off value c0 as the one minimizing the distance between

the point (0, 1) and the ROC curve, i.e.,

ĉ0 = argminc

√{
1− T̂PR(c)

}2
+
{

1− T̂NR(c)
}2
.
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Finally, with the selected ĉ0, the estimated regression coefficient for an active index i is given

by

β̂i =
1

I − B

I−B∑
l=1

α
(B+l)
i · t(α(B+l)

i ;λ(B+l)), i ∈ V̂ ,

and the corresponding estimated additive component function turns to be f̂i = φTβ̂i.

A.5.2 The Selection of Approximation Parameter

There are two considerations about the tuning parameter ε0 in the smooth indicator t(αi;λ)

(13). On one hand, as required by MALA, the indicator should be smooth enough. On the

other hand, as an indicator function, its range [mini t(αi;λ),maxi t(αi;λ)] needs to cover

[0, 1] as much as possible. According to Figure A.1, we can see that with a bigger ε0, the
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i 2
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Figure A.1: The smooth indicators with different ε0’s.

indicator becomes smoother, but [mini t(αi;λ),maxi t(αi;λ)] is harder to cover [0, 1]. It

should be avoided that the parameter ε0 is either too small or too big. Denote m such that

1/2 + (1/π) arctan(m) = 1 − η, where η is close to 0. To make [mini t(αi;λ),maxi t(αi;λ)]

cover [η, 1− η], we require ε0 to satisfy mini ‖αi‖22 − λ ≤ −mε0 and maxi ‖αi‖22 − λ ≥ mε0,

hence we have

ε0 ∈
(

0,
maxi ‖αi‖22 −mini ‖αi‖22

2m

]
.

We choose the largest value
maxi ‖αi‖22 −mini ‖αi‖22

2m

for ε0 to make the indicator smooth as far as possible, and we suggest to set η as 0.05 in the

numerical experiments.
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However, in a real application, ‖αi‖22 is unknown. In practice, we apply a two-step

strategy as follows to settle this problem.

(i) Set t(αi;λ) ≡ 1 and drop the step updating λ in Algorithm A.1. We run Algo-

rithm A.1 under r = 1 and ρα = ρ1 to get rough estimates of maxi ‖αi‖22 and

mini ‖αi‖22. We then set

ε0 =
maxi ‖α̂i‖22 −mini ‖α̂i‖22

2m
.

(ii) With this ε0, we completely run Algorithm A.1 under r = 1 and ρα = ρ1 to get new

estimates of maxi ‖αi‖22 and mini ‖αi‖22. We then set

ε0 =
maxi ‖α̂i‖22 −mini ‖α̂i‖22

2m
.

As for the tuning parameter ε1, it is used in the approximation to the `1 function (see

(14) of the main paper). To closely approximate the nonsmooth `1 function, ε1 is suggested

to be small enough and we specify its value to be 10−6 as discussed in Section 3.5 of the main

paper. We find that our proposed model is not sensitive to the specific value of ε1 through a

sensitivity analysis on the simulated data. In particular, we generated the simulated dataset

of sample size 600 under the nonlinear setting of a horse shape with high SNR (Setting

5) as in Section 4 of the main paper. On the simulated dataset, we applied our proposed

BFEN method with ε1 = 10−6, 10−8, and 10−10. We repeated the experiments 30 times

and calculated relative prediction error (RPE), mean squared error (MSE), relative mean

squared error (RMSE), true positive rate (TPR), and true negative rate (TNR) as in the

main paper. The results for various ε1’s are summarized in Table A.1. Table A.1 shows that

our model is not sensitive to the tuning parameter ε1 with small values.

Table A.1: Estimation errors for different specifications of parameter ε1. The first row stands

for the default specification, i.e., ε1 = 10−6. The following rows summarize results when ε1

is assigned new values. The numbers in parentheses are the standard errors based on 30

replicates.

RPE MSE RMSE TPR TNR

ε1 = 10−6 0.0763 (0.0024) 0.0166 (0.0006) 0.0508 (0.0024) 0.9996 (0.0004) 0.9392 (0.0021)

ε1 = 10−8 0.0761 (0.0022) 0.0165 (0.0007) 0.0509 (0.0025) 0.9998 (0.0002) 0.9405 (0.0017)

ε1 = 10−10 0.0763 (0.0022) 0.0168 (0.0008) 0.0516 (0.0028) 0.9996 (0.0004) 0.9412 (0.0017)
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Algorithm A.2: Validation method to select p0 and ρα.

Let Lossj,t denote the validation loss corresponding to hyperparameters p0 = p0,j

and ρα = ρα,t.

Denote Θ(j,t,i) = {µ(j,t,i),α(j,t,i), (σ2)(j,t,i), δ(j,t,i), λ(j,t,i)} the i-th update of posterior

samples set under p0 = p0,j and ρα = ρα,t.

Set p0,1 < · · · < p0,J , ρα,1 < · · · < ρα,T , W < B < I .

Set p0 = p0,1, ρα = ρα,1, and initialize the parameter set Θ(1,1,1).

Obtain {Θ(1,1,i)}Ii=1 through Algorithm A.1 and set j = 1, t = 2, j′ = 1, t′ = 1.

while j ≤ J do
Set r = rj, ρα = ρα,t.

Initialize the parameters set Θ(j,t,W ) with the averaged {Θ(j′,t′,i)}Ii=B.

Obtain {Θ(j,t,i)}Ii=W through Algorithm A.1, and compute validation loss Lossj,t.

Set j′ = j, t′ = t.

if j ≡ 1 (mod 2) then

if t < T then
t = t+ 1;

else
j = j + 1

end

else

if t > 1 then
t = t− 1;

else
j = j + 1

end

end

end

Set (j0, t0) = argminj,t{Lossj,t | 1 ≤ j ≤ J, 1 ≤ t ≤ T}.
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A.5.3 Validation Method

We apply the validation method to select tuning parameters (r, ρα) in prior (11) and p0

in hyperprior (12) from a corresponding list of candidate values {rs}s=1,··· ,S, {ρα,t}t=1,··· ,T ,

and {p0,j}j=1,··· ,J . Given the estimated {f̂i}i∈I from the training set under p0 = p0,j, r = rs,

ρα = ρα,t, the response value y is predicted in the validation set. The final tuning parameters

are selected as those minimizing the validation loss L(yvalid, ŷvalid).

For the validation method, applying Algorithm A.1 for all combinations of p0 ∈ {p0,j}j=1,··· ,J , r ∈
{rs}s=1,··· ,S, ρα ∈ {ρα,t}t=1,··· ,T is a time-consuming process. We adopt the following strategy

to reduce the computational cost.

(a) The number of combinations of (p0, r, ρα) can be reduced from J ·S ·T to J ·T +S ·T
by using a two-step greedy search:

i) Compute the validation loss under different p0 ∈ {p0,j}j=1,··· ,J , ρα ∈ {ρα,t}t=1,··· ,T

with r = r1 fixed. Select p0 = p0,j0 from the optimal pair (p0, ρα) that minimizes

the validation loss.

ii) Compute the validation loss under different r ∈ {rs}s=1,··· ,S, ρα ∈ {ρα,t}t=1,··· ,T

with p0 = p0,j0 fixed, then select the optimal r = rs0 , ρα,t0 .

(b) The number of iterations in executing Algorithm A.1 under each p0, r, ρα can be re-

duced by applying a warmstart. In other words, the initial point of Algorithm A.1 under

r = r2, ρα = ρα,1 is determined as the output of Algorithm A.1 under r = r1, ρα = ρα,1.

We find that this initialization trick circularly reduces the computational burden of val-

idation.

The validation method to obtain the optimal tuning parameters p0 and ρα are summarized

in Algorithm A.2. We omit the detailed algorithm to obtain the optimal tuning parameters

r since the procedure is similar. For the candidate grids of p0, r, and ρα, their ranges should

be reasonable and wide enough. Among them, the range of r is within [0, 1] and thus we

assign the grid of r as {1, 0.75, 0.5, 0.25, 0} following Zhou et al. (2020). For ρα, we specify

the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} for ρα following the suggestion of Teipel et al.

(2015); Engebretsen and Bohlin (2019); Tec et al. (2020). For p0, its grid is suggested as

{0.5P1 · · ·PDK, 5P1 · · ·PDK, 50P1 · · ·PDK, 500P1 · · ·PDK, 5000P1 · · ·PDK},

where the lower bound of the grid is determined according to Proposition 1 of the main

paper. We find all the above grids are wide enough in our numerical experiments.
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A.5.4 Sensitivity Analyses

For the other hyperparameters {p1, σ2
µ, p, a, b} and tuning parameters δ′, first note that ac-

cording to Proposition 1 of the main paper, we set p1 = (2P1 · · ·PD − 1)K/2 to balance

the magnitude of the normalization term of the prior distribution p(δ, σ2) in (12) and thus

p(δ, σ2) is weakly informative with respect to σ2 (similar to an inverse-gamma prior with the

small shape parameter). For the rest σ2
µ, p, a, b, and δ′, we carry out a sensitivity analysis

for these parameters. Recall that our default specifications are σ2
µ = 100, p = 1, a = b = 0.5,

and δ′ = 0.0001, which renders the prior relatively weak-informative. In particular for a, we

plot the mean and the variance as two functions of the parameter a with p and b fixed at 1

and 0.5, respectively. According to Figure A.2, a = 0.5 shows reasonably weak-informative

since it is at the “elbow” for both curves. In the sensitivity analysis, we consider a larger and

a smaller values relative to the default setting for hyperparamters σ2
µ, p, a, b, and δ′ to assess

their sensitivity. Results of sensitivity analysis in the nonlinear setting of a horse shape with

high SNR (Setting 5) of our simulation experiments are summarized in Table A.2 based on

30 replicates. It can be seen that our model is relatively robust with different choices of

tuning/hyper parameters.

Table A.2: Estimation errors for different specifications of tuning/hyper parameters. The

first row shows the results with default specification: σ2
µ = 100, p = 1, a = b = 0.5, and

δ′ = 0.0001. The following rows exhibit the results with each parameter being assigned new

values. The numbers in parentheses are the standard errors based on 30 replicates.

RPE MSE RMSE TPR TNR

default 0.0763 (0.0024) 0.0166 (0.0006) 0.0508 (0.0024) 0.9996 (0.0004) 0.9392 (0.0021)

σ2
µ = 10 0.0751 (0.0021) 0.0162 (0.0006) 0.0493 (0.0017) 1.0000 (0.0000) 0.9404 (0.0024)

σ2
µ = 1000 0.0748 (0.0019) 0.0165 (0.0007) 0.0505 (0.0026) 0.9998 (0.0002) 0.9405 (0.0019)

p = −10 0.0765 (0.0024) 0.0169 (0.0008) 0.0521 (0.0028) 0.9995 (0.0004) 0.9404 (0.0019)

p = 10 0.0757 (0.0020) 0.0166 (0.0007) 0.0514 (0.0022) 1.0000 (0.0000) 0.9427 (0.0023)

a = 0.25 0.1002 (0.0026) 0.0235 (0.0016) 0.0701 (0.0048) 0.9991 (0.0004) 0.9237 (0.0050)

a = 1 0.0667 (0.0013) 0.0138 (0.0003) 0.0434 (0.0011) 1.0000 (0.0000) 0.9487 (0.0014)

b = 0.25 0.0754 (0.0021) 0.0165 (0.0007) 0.0489 (0.0017) 1.0000 (0.0000) 0.9381 (0.0025)

b = 1 0.0751 (0.0020) 0.0164 (0.0007) 0.0488 (0.0017) 1.0000 (0.0000) 0.9381 (0.0025)

δ′ = 0.001 0.0756 (0.0020) 0.0163 (0.0006) 0.0484 (0.0014) 1.0000 (0.0000) 0.9375 (0.0027)

δ′ = 0.00001 0.0772 (0.0023) 0.0167 (0.0007) 0.0514 (0.0020) 1.0000 (0.0000) 0.9420 (0.0025)
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Figure A.2: The mean and the variance of the generalized inverse Gaussian prior (10) as a

function of parameter a with p and b fixed as 1 and 0.5, respectively. The plot has a shared

x-axis and two y-axes correspondingly for mean (the left) and variance (the right).

A.5.5 Summary

We summarize how to estimate the tensor regression model (1) of the main paper. First,

select the hyperparamters ε0 through the methods introduced in Section A.5.2. Second,

follow Section A.5.3 to obtain the optimal tuning parameters (p0, r, ρα). Finally, follow

Section A.5.1 to obtain the estimated component functions fi’s through the posterior samples

corresponding to the optimal tuning parameters (p0, r, ρα).

A.6 Tuning Parameter Selection for the Compared Meth-

ods

We present here the details of tuning parameter selection for the competitive methods (Zhou

et al., 2013; Hao et al., 2021; Guhaniyogi et al., 2017) in our numerical experiments. As

suggested in Zhou et al. (2013) and Hao et al. (2021), we choose lasso penalty and group

lasso penalty for FTR and STAR respectively, and also apply the validation method to select

the rank of CP decomposition and the tuning parameters of their penalties. The training

set, validation set, and test set for STAR and FTR are the same as those for BFEN. Note

that BTR only needs a training set and a test set because it automatically selects the tuning

parameters (Guhaniyogi et al., 2017). So the training set and validation set for BFEN are

used together to train BTR.
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For FTR and STAR, both of the tuning parameters of lasso (FTR) and group lasso

(STAR) are selected from a geometric sequence (ρ1, · · · , ρ10), where ρ1 = 0.1 and ρ10 = 10;

and the rank of CP decomposition is selected from {2, 4, 6, 8, 10}. The above grids are

wide enough for two competing models in the sense that the boundary points are seldomly

selected by either method. For BTR, the hyperparamters are selected as Guhaniyogi et al.

(2017) suggested. In particular, the rank of the CP decomposition is selected as 10 in

simulation experiments. In real data experiments, we find that BTR fails to converge for

some experiments among the 100 replicates if the rank of CP decomposition is over 6. Hence,

we select the rank as 5 in real data experiments.

A.7 Additional Results for the Simulation Study

In this section we explain in details how to construct spatially smooth signals through graph

Laplacian matrix, and provide some additional outputs for the experimental results.

A.7.1 The Construction of Spatially Smooth Model

The parameters {u(1)ij }, {v
(2)
ij }, and {v(3)ij } in Table 2 of the main paper are constructed

through graph Laplacian matrix as follows.

First, we obtain the graph Laplacian matrix (Merris, 1994), L ∈ RP1P2×P1P2 , of the graph

G = (I, E) defined in Section 2 of the main paper where the index in I is arranged in the

column-major order. Denote ul as the eigenvector of L corresponding to the l-th smallest

eigenvalue. We focus on the first L (L < P1P2) eigenpairs with l = 1, . . . , L. The eigenvector

ul ∈ RP1P2 is reshaped to be a matrix Ul ∈ RP1×P2 by the column-major order. As the

eigenvector correspond to small Laplacian value, the element values of Ul (1 ≤ l ≤ L) has

variability of low frequency and thus is spatially smooth across (i, j) (Dong et al., 2016).

Second, to make use of all the L spatially smooth matrices, we further construct three

matrices U
(1)

, U
(2)

, and U
(3)

as random linear combinations of U1, · · · ,UL, i.e., U
(m)

=∑L
l=1 γ

(m)
l Ul with γ

(m)
l

i.i.d.∼ Unif(0, 1), l = 1, . . . , L,m = 1, 2, 3. After that, aij in non-linear

cases of the horse shape (Settings 4 and 5 in Table 2 of the main paper) is set as 1u
(1)
ij + 2 ,

where u
(1)
ij is the (i, j)-th element of U

(1)
.

As for cij and dij in the non-linear cases of a horse shape and a shape of handwritten six

(Settings 4, 5, 7, and 8 in Table 2 of the main paper), they are constructed from U
(2)

and

U
(3)

. To be specific, we rescale each element u
(m)
ij of U

(m)
, m = 2 and 3, to get a new matrix(

v
(m)
ij

)
such that min(i,j)∈V v

(m)
ij = π and max(i,j)∈V v

(m)
ij = 1.5π, where V is the set of active

pixels. We set cij and dij as v
(2)
ij and v

(3)
ij , respectively. The number L of eigenvectors is set

as L = 80.
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A.7.2 Additional Results

Recall that we have 9 simulation settings with 30 replicates for each setting. We provide

the detailed numerical results and runtime for the simulation experiments in Table A.3. All

methods were implemented on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU.

The results of the experiments under the nonlinear with high SNR settings have already

been exhibited in Section 4.2 of the main paper by heatmaps. In this section, we exhibit

the results with the median relative prediction error (RPE) under the nonlinear with low

SNR and linear settings. In Figures A.3 and A.4, the shade of each square (i, j) indicates

the L2 norm of fij as is in Figure 5 of the main paper. The heatmaps in the first column

exhibits the magnitude ‖fij‖L2 of the true component function, while in Columns 2–5 exhibit

the magnitude ‖f̂ij‖L2 estimated by BFEN, STAR, FTR, and BTR, respectively. Rows 1–3

correspond to the patterns of low-rank shapes (Settings 1 and 3), a horse shape (Settings 4

and 6) and a shape of handwritten six (Settings 7 and 9), respectively. Figures A.3 and A.4

show that our method outperforms STAR, FTR, and BTR for irregular sparsity shapes, i.e.

a horse and a handwritten Arabic six. Moreover, it is also exhibited that all the methods

have good performances when signals are linear and the shape of active region is of low rank.

These results are consistent with Figures 4 and 5 of the main paper.

A.7.3 A Comparative Study with Random Walk Metropolis

In Algorithm A.1, a hybrid method (Metropolis-adjusted Langevin Algorithm, MALA) and

the smoothing technique (Eqn. (13) and Eqn. (14)) are employed for the update of α. We

chose the MALA over the random walk metropolis due to its computational efficiency. To

illustrate this point, we compare MALA and the random walk metropolis under the nonlinear

setting of handwritten Arabic six with high SNR (Setting 8) of our simulation experiments.

We apply the proposed BFEN model with MALA (Algorithm A.1 of the Appendix) and

the random walk metropolis (the corresponding MALA step is replaced by a random walk

metropolis step in Algorithm A.1) on the simulated dataset to sample the coefficients α of

the unknown functions. Note that since the smoothing technique is no longer involved for

the random walk metropolis, ε0 and ε1 are released in this method. The other tuning/hyper

parameters of random walk metropolis are set in the same way as the MALA method. In

other words, the two methods use the same tuning/hyper parameters except for the extra

smoothing parameters in the MALA algorithm. We set the lengths of Markov chains to

20,000 and 50,000 for MALA and random walk metropolis, respectively. In this experiment,

the acceptance rate of random walk proposal is around 0.45.

To inspect the convergence of MALA and random walk, we depict the trace plot of average

training error (1/N)
∑N

i=1(yi − ŷi)2, which is proportional to the negative log-likelihood, of
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Table A.3: Average RPE, MSE, RMSE, TPR, TNR, and execution time (in minutes) of var-

ious methods in the simulation study. The reported time is the total execution time divided

by the number of candidate parameter values in the grid of each method. The numbers in

the parentheses are the standard errors based on 30 replicates. The best performances are

boldfaced.

Setting ID 1 2 3 4 5 6 7 8 9

Shape Low rank Horse Handwritten Arabic six

SNR 5 50 5 5 50 5 5 50 5

Setting Meaning
low SNR high SNR

linear
low SNR high SNR

linear
low SNR high SNR

linear
nonlinear nonlinear nonlinear nonlinear nonlinear nonlinear

RPE (×10−2)

BFEN 58.49(1.45) 16.87(1.27) 29.79(1.07) 37.09(1.01) 7.63(0.24) 23.99(0.58) 38.98(1.30) 8.39(1.23) 20.62(0.35)

STAR 54.41(1.13) 12.25(0.65) 36.61(0.87) 63.52(1.02) 40.38(0.66) 48.10(0.75) 62.75(1.15) 36.10(1.04) 45.65(0.68)

FTR 46.00(0.86) 28.01(0.49) 21.46(0.39) 63.27(0.72) 49.98(0.69) 36.91(0.48) 54.79(0.87) 39.67(0.70) 29.55(0.48)

BTR 46.74(0.77) 30.01(0.52) 23.76(0.45) 57.96(0.65) 45.36(0.51) 33.41(0.38) 56.19(0.72) 41.75(0.65) 31.26(0.37)

MSE (×10−2)

BFEN 3.86(0.10) 1.15(0.10) 0.18(0.01) 6.96(0.27) 1.66(0.06) 0.16(0.01) 6.13(0.28) 1.51(0.29) 0.05(0.00)

STAR 3.51(0.10) 0.80(0.05) 0.26(0.01) 15.82(0.23) 10.92(0.15) 0.66(0.01) 12.75(0.26) 7.87(0.21) 0.35(0.01)

FTR 2.80(0.06) 2.09(0.02) 0.06(0.00) 15.91(0.16) 13.86(0.13) 0.43(0.01) 10.82(0.12) 8.93(0.09) 0.16(0.00)

BTR 2.80(0.03) 2.24(0.02) 0.09(0.00) 14.04(0.09) 12.43(0.08) 0.35(0.00) 10.97(0.11) 9.37(0.07) 0.17(0.00)

RMSE (×10−2)

BFEN 28.43(0.87) 10.34(0.78) 9.26(0.92) 13.61(0.79) 5.08(0.24) 6.01(0.32) 25.36(0.76) 9.14(1.38) 3.33(0.14)

STAR 27.71(1.01) 5.51(0.41) 12.32(0.54) 39.58(0.67) 28.51(0.49) 23.69(0.55) 39.02(0.89) 25.45(0.76) 19.18(0.54)

FTR 29.78(0.48) 24.21(0.24) 3.79(0.19) 47.70(0.54) 42.41(0.44) 16.03(0.38) 45.49(0.47) 39.05(0.45) 8.82(0.20)

BTR 27.27(0.32) 23.22(0.15) 2.99(0.12) 41.67(0.35) 37.19(0.30) 11.12(0.22) 42.17(0.38) 36.60(0.33) 7.90(0.20)

TPR

BFEN 0.96(0.01) 1.00(0.00) 0.99(0.00) 0.99(0.00) 1.00(0.00) 0.99(0.00) 0.98(0.00) 0.99(0.00) 1.00(0.00)

STAR 1.00(0.00) 0.99(0.01) 0.99(0.01) 0.98(0.01) 0.97(0.01) 0.99(0.01) 0.98(0.01) 0.98(0.01) 0.99(0.01)

FTR 0.96(0.01) 0.99(0.00) 1.00(0.00) 0.87(0.01) 0.93(0.01) 0.97(0.00) 0.86(0.01) 0.92(0.01) 0.99(0.00)

BTR 0.97(0.00) 1.00(0.00) 1.00(0.00) 0.62(0.01) 0.78(0.01) 0.93(0.00) 0.68(0.01) 0.83(0.01) 0.99(0.00)

TNR

BFEN 0.78(0.02) 0.91(0.00) 0.91(0.00) 0.81(0.01) 0.94(0.00) 0.93(0.00) 0.85(0.01) 0.93(0.00) 0.94(0.00)

STAR 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

FTR 0.32(0.02) 0.29(0.02) 0.27(0.02) 0.28(0.03) 0.24(0.03) 0.21(0.02) 0.26(0.02) 0.22(0.02) 0.16(0.02)

BTR 0.99(0.00) 0.98(0.00) 0.98(0.00) 0.98(0.00) 0.97(0.00) 0.97(0.00) 0.99(0.00) 0.98(0.00) 0.98(0.00)

execution time (in minutes)

BFEN 1.35(0.02) 1.33(0.02) 1.36(0.02) 1.20(0.02) 1.20(0.02) 1.19(0.01) 1.19(0.04) 1.13(0.01) 1.10(0.01)

STAR 0.57(0.03) 0.86(0.04) 0.78(0.03) 0.46(0.02) 0.57(0.03) 0.59(0.03) 0.39(0.02) 0.49(0.02) 0.49(0.02)

FTR 0.15(0.00) 0.13(0.00) 0.11(0.00) 0.13(0.00) 0.11(0.00) 0.10(0.00) 0.11(0.00) 0.10(0.00) 0.09(0.00)

BTR 17.73(0.12) 17.81(0.15) 17.20(0.27) 14.33(0.11) 14.52(0.14) 14.18(0.02) 13.07(0.01) 12.95(0.04) 12.93(0.04)

both MALA and random walk metropolis. The error is averaged over 10 replicates for the

first candidate value of tuning parameters in Figure A.5. Figure A.5 reveals that random

walk metropolis fails to explore the posterior efficiently, and that it has not yet converged

even with a much longer Markov chain.

We also calculate the relative prediction error (RPE), mean squared error (MSE), relative

mean squared error (RMSE), true positive rate (TPR), and true negative rate (TNR). These

results are based on the last 1,000 iterations of the two algorithms averaged over 10 replicates,

which are summarized in Table A.4. The table also suggests the slow convergence of the
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Figure A.3: The heatmaps of various methods under the nonlinear with low SNR settings

(Settings 1, 4, and 7). Rows 1–3 correspond to the patterns of low-rank shapes (Setting 1),

a horse shape (Setting 4), and a shape of handwritten Arabic six (Setting 7), respectively.

The first column presents the magnitude of the true additive component function. Columns

2–5 correspond to the estimated results by BFEN, STAR, FTR, and BTR, respectively.

random walk Metropolis algorithm.

Table A.4: Operating characteristics for MALA and the random walk metropolis. The

results are based on 10 replicates.

RPE MSE RMSE TPR TNR

MALA 0.08 (0.02) 0.01 (0.00) 0.09 (0.02) 0.99 (0.00) 0.93 (0.00)

random walk 0.38 (0.03) 0.09 (0.01) 0.31 (0.02) 0.90 (0.01) 0.90 (0.01)

A.8 Additional Numerical Results for Facial Data Anal-

ysis

We provide the detailed numerical results and runtime for the facial data analysis in Table

A.3. All algorithms were run on the same platform with a 2.2-GHz Intel E5-2650 v4 CPU.
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Figure A.4: The heatmaps of various methods under the linear settings (Settings 3, 6,

and 9). Rows 1–3 correspond to the patterns of low-rank shapes (Setting 3), a horse shape

(Setting 6), and a shape of handwritten Arabic six (Setting 9), respectively. The first column

presents the magnitude of the true additive component function. Columns 2–5 correspond

to the estimated results by BFEN, STAR, FTR, and BTR, respectively.
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Figure A.5: The trace plot of average training error (1/N )
∑N

i=1(yi − ŷi)
2 of the Markov

chains for MALA and random walk metropolis for the first grid of tuning parameters (i.e.,

r = 1 and ρα = 0.001). The plotted training error at each iteration is the average of 10

replicates. The slight difference of the initial training errors for two algorithms is caused by

the extra smoothing approximation employed in MALA.
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The magnitude of each estimated additive component functions for the response attribute

smiling have already been presented in Section 5 of main paper as heatmaps. In this section,

we depict the heatmaps of other facial attribute frowning, mouth closed, mouth wide open,

and teeth not visible in the different rows of Figure A.6. The selected heatmap corresponds

to the replicate with the median RPE for each method.

It is evident from the figure that BFEN has better interpretability in most cases. Similar

to the attribute smiling, the result of frowning in the first row of Figure A.6 is also determined

by the pixel values around the eyes, mouth and some facial muscles. The attribute mouth

closed can be determined by the positions of a person’s lips and the skin around the lips.

When someone keeps his/her mouth wide open, the upper lip and lower lip are apart, and

thus the mouth cavity can be detected from the image. The teeth is obviously critical for the

prediction of the attribute teeth not visible. Besides, part of the muscles (orbicularis oris)

around the lips are also related to this attribute. In contrast, all the results of FTR and

BTR lack interpretations. With the help of nonlinearity and the group regularization across

different blocks, STAR has better interpretability than FTR and BTR, but is still inferior

to BFEN due to its low-rank modeling. For example, the rectangular subregion selected by

STAR may not sufficiently interpret the attribute mouth wide open. Overall, our method

can achieve a better balance between interpretation and predictive accuracy.

Table A.5: Average RPE and execution time (in minutes) of various methods for each

attribute of the facial data analysis. The reported time is the total execution time divided

by the number of candidate parameter values in the grid of each method. The numbers in

the parentheses are the standard errors based on 100 replicates of random splitting. The

best performances are boldfaced.

Attribute Smiling Frowning Mouth closed Mouth wide open Teeth not visible

RPE

BFEN 0.2129 (0.0015) 0.2198 (0.0013) 0.4510 (0.0025) 0.2365 (0.0013) 0.3209 (0.0019)

STAR 0.2233 (0.0014) 0.2314 (0.0015) 0.4647 (0.0027) 0.2369 (0.0012) 0.3260 (0.0018)

FTR 0.2296 (0.0015) 0.2407 (0.0016) 0.5117 (0.0032) 0.2621 (0.0016) 0.3449 (0.0022)

BTR 0.2501 (0.0026) 0.2599 (0.0024) 0.5136 (0.0042) 0.2641 (0.0024) 0.3748 (0.0038)

execution time (in minutes)

BFEN 1.9282 (0.0255) 1.7675 (0.0189) 1.9220 (0.0251) 1.9279 (0.0256) 1.9364 (0.0253)

STAR 2.1964 (0.0254) 2.2022 (0.0241) 1.9066 (0.0265) 2.0286 (0.0400) 2.4710 (0.0686)

FTR 0.7650 (0.0099) 0.7563 (0.0101) 0.4835 (0.0135) 0.4515 (0.0116) 0.6747 (0.0111)

BTR 25.4650 (0.2691) 27.1958 (0.2461) 26.2883 (0.2594) 28.3153 (0.3101) 26.6684 (0.3309)
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Figure A.6: The heatmaps for the response attributes frowning, mouth closed, mouth wide

open, and teeth not visible. The shade of square (i, j) in the heatmaps represents the L2

norm of fij. The heatmaps in Columns 1–4 correspond to the magnitude ‖f̂ij‖L2 estimated

by BFEN, STAR, FTR, and BTR, respectively.
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