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Abstract
Given a d-dimensional continuous (resp. discrete) probability distribution µ and a discrete distribution ⌫,

the semi-discrete (resp. discrete) optimal transport (OT) problem asks for computing a minimum-cost plan to
transport mass from µ to ⌫; we assume n to be the number of points in the support of the discrete distributions.
In this paper, we present three approximation algorithms for the OT problem with strong provable guarantees.

(i) Additive approximation for semi-discrete OT: For any parameter " > 0, we present an algorithm that
computes a semi-discrete transport plan ⌧̃ with cost ¢(⌧̃)  ¢(⌧⇤) + " in n

O(d) log D
"

time; here, ⌧⇤ is the
optimal transport plan, D is the diameter of the supports of µ and ⌫, and we assume we have access to
an oracle that outputs the mass of µ inside a constant-complexity region in O(1) time. Our algorithm
works for several ground distances including the Lp-norm and the squared-Euclidean distance.

(ii) Relative approximation for semi-discrete OT: For any parameter " > 0, we present an algorithm that
computes a semi-discrete transport plan ⌧̃ with cost ¢(⌧̃)  (1 + ")¢(⌧⇤) in n log(n) · ("�1 log log n)O(d)

expected time; here, ⌧⇤ is the optimal transport plan, and we assume we have access to an oracle that
outputs the mass of µ inside an orthogonal box in O(1) time, and the ground distance is any Lp norm.

(iii) Relative approximation for discrete OT: For any parameter " > 0, we present a Monte-Carlo algorithm
that computes a transport plan ⌧̃ with an expected cost ¢(⌧̃)  (1 + ")¢(⌧⇤) under any Lp norm in
n log(n) · ("�1 log log n)O(d) time; here, ⌧⇤ is an optimal transport plan and we assume that the spread
of the supports of µ and ⌫ is polynomially bounded.

1 Introduction
Optimal transport (OT) is a powerful tool for comparing probability distributions and computing maps between
them. Put simply, the optimal transport problem deforms one distribution to the other with smallest possible
cost. Classically, the OT problem has been extensively studied within the mathematics, statistics, and operations
research [38, 39, 49]. In recent years, OT has seen rapid rise in various machine learning and computer
vision applications as a meaningful metric between distributions and has been extensively used in generative
models [20, 26, 44], robust learning [21], supervised learning [29, 36], computer vision applications [12, 27],
variational inference [7], blue noise generation [19, 42], and parameter estimation [14, 35]. These applications
have led to developing efficient algorithms for OT; see the book [41] for review of computational OT.

In the geometric OT problem, the supports are (possibly infinite) point sets in Rd and the cost of transporting
unit mass between two points is some Lp distance between them. In this paper, we design simple, efficient
approximation algorithms for the semi-discrete and discrete geometric OT problems assuming d is a constant.

Let µ be a continuous probability distribution (i.e., density) defined over a compact bounded support A ⇢ Rd,
and let ⌫ be a discrete distribution, where the support of ⌫, denoted by B, is a set of n points in Rd. Let d(·, ·)
be the ground distance between a pair of points in Rd. A coupling ⌧ : A ⇥ B ! R�0 is called a transport plan

for µ and ⌫ if for all a ✓ A,
P

b2B
⌧(a, b) = µ(a) (where µ(a) is the mass of µ inside a) and for all b 2 B,R

A
⌧(a, b) da = ⌫(b). The cost of the transport plan ⌧ is given by ¢(⌧) :=

R
A

P
b2B

d(a, b)⌧(a, b) da. The goal is
to find a minimum-cost (semi-discrete) transport plan satisfying µ and ⌫1. For any parameter " > 0, a transport
plan ⌧ between µ and ⌫ is called "-close if the cost of ⌧ is within an additive error of " from the cost of the optimal
transport plan ⌧⇤, i.e., ¢(⌧)  ¢(⌧⇤)+ ". A (1+ ")-approximate OT plan, or simply "-OT plan, is a transport plan
⌧ with ¢(⌧)  (1 + ")¢(⌧⇤).
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1
Apparently the semi-discrete OT was introduced by Cullen and Purser [18] without reference to optimal transport.
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The problem of computing semi-discrete OT between µ and ⌫ reduces to the problem of finding a set of weights
y : B ! R�0 so that, for any point b 2 B, the Voronoi cell of b in the additively weighted Voronoi diagram has
a mass equal to ⌫(b), i.e., Vor(b) = {x 2 Rd | d(x, b) � y(b)  d(x, b0) � y(b0), 8b0 2 B}, µ(Vor(b)) = ⌫(b), and
the mass of µ in Vor(b) is transported to b; see [11]. One can thus define an optimal semi-discrete transport plan
by describing the weights of points in B. For arbitrary distributions, weights can have large bit (or algebraic)
complexity, so our goal will be to compute the weights accurately up to s = O(log "�1) bits, which in turn will
return an "-close semi-discrete OT plan.

If µ is also a discrete distribution with support A, a discrete transport plan is ⌧ : A⇥ B ! R�0 that assigns
the mass transported along each edge (a, b) 2 A ⇥ B such that

P
b2B

⌧(a, b) = µ(a) for each point a 2 A andP
a2A

⌧(a, b) = ⌫(b) for each point b 2 B. The cost of ⌧ is given by ¢(⌧) =
P

(a,b)2A⇥B
⌧(a, b)d(a, b). The discrete

OT problem asks for a transport plan ⌧ with the minimum cost. We refer to such plan as an OT plan.

Related work. The discrete optimal transport problem under any metric can be modeled as an uncapacitated
minimum-cost flow problem and can be solved in strongly polynomial time of O((m+ n log n)n log n) time using
the algorithm by Orlin [40]. Using recent techniques [45], it can be solved in m1+o(1)poly log(�) time, where �
depends on the spread of A [ B and the maximum demand. The special case where all points have the same
demand is the widely studied minimum-cost bipartite matching problem. There is extensive work on the design of
near-linear time approximation for the optimal transport and related matching problems [4, 8, 12, 23, 30, 43, 46].
The near-linear time algorithms by Khesin et. al. [30] and Fox and Lu [23] for computing an "-OT plan use
minimum-cost-flow (MCF) solvers (e.g. [47]) as a black box and numerically precondition their minimum-cost
flow instance using geometry [23, 30, 47]. The work of Zuzic [50] describes a multiplicative-weights update
(MWU) based boosting method for minimum-cost flows using an approximate primal-dual oracle as a black box,
which replaces the preconditioner used in [30, 47]. All these algorithms are Monte Carlo algorithms and have
running time of n("�1 log n)O(d). Recently, Agarwal et. al. [1] presented an n("�1 log n)O(d)-time deterministic
algorithm for computing an "-approximate bipartite matching in Rd. A Monte-Carlo "-approximation algorithm
for matching with run time n log4 n("�1 log log n)O(d) was presented in [2]. Very recently, Fox and Lu proposed a
deterministic algorithm for "-OT with run time of O(n"�(d+2) log5 n log log n) [24].

Many known algorithms for semi-discrete OT compute an "-close transport plan using the first- and second-
order numerical solvers [11, 13, 17, 19, 31, 32, 34, 39]. These algorithms start with an initial set of weights for
points in B and iteratively improve the weights until the mass inside the Voronoi cell of any point b 2 B is an
additive factor " away from ⌫(b). One can use these solvers to compute an "-close transport plan by executing
poly(n, 1/") iterations. Each iteration requires computation of several weighted Voronoi diagrams, each of which
takes nO(d) time. Another widely used approach is to draw samples from the continuous distribution and convert
the semi-discrete OT problem to a discrete instance [25]; however, due to sampling errors, this approach provides
an additive approximation. Van Kreveld et. al. [48] presented a (1 + ")-approximation OT algorithm for the
restricted case when the continuous distribution is uniform over a collection of simple geometric objects (e.g.
segments, simplices, etc.), by sampling roughly n2 points. Their running time is roughly n2"�O(d)poly log(n).

Our contributions. We present three new algorithms for the semi-discrete and discrete OT problems. Our first
result (Section 2) is a cost-scaling algorithm that computes an "-close transport plan for a semi-discrete instance
in nO(d) log(D/") time, assuming that we have access to an oracle that, given a constant complexity region ',
returns µ('):

Theorem 1.1. Let µ be a continuous distribution defined on a compact bounded set A ⇢ Rd
for some fixed d � 1,

⌫ a discrete distribution with a support B ⇢ Rd
of size n, and " > 0 a parameter. Suppose there exists an

Oracle which, given a constant complexity region ', returns µ(') in Q time. Then an "-close transport plan

can be computed in QnO(d) log(D
"
) time, where D is the diameter of A [B.

To the best of our knowledge, our algorithm is the first one to compute an "-close transport plan in time that
is polynomial in both n and log("�1). Earlier algorithms had an "�O(1) factor in the run time2. Our algorithm
not only computes an "-close transport plan, it also finds the optimal dual weights within an additive error of

2
Mérigot and Thibert had conjectured that an algorithm for computing an "-close OT for semi-discrete setting with runtime

(n log "�1)O(1)
might follow using a scaling framework [37, Remark 24]. Our result proves their conjecture in the affirmative.
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", i.e., it computes optimal dual-weights up to O(log "�1) bits of accuracy. Our algorithm works for any ground
distance where the bisector of two points under the distance function d(·, ·) is an algebraic variety of constant
degree. Consequently, it works for several important distances, including the Lp-norm and the squared-Euclidean
distance. The previous best-known algorithm by Kitagawa [31] for the semi-discrete OT has an execution time
n⌦(d)D/"; furthermore, their algorithm only approximates the cost and does not necessarily provide any guarantees
for the transport plan or the dual weights of B.

For each scale �, our algorithm starts with a set of dual weights assigned to B and constructs an instance
of discrete OT by using the arrangement of 4n + 1 shifts of the Voronoi cell of each point in B. This discrete
instance, which is of size nO(d), is then solved using a primal-dual solver. The optimal dual weights for this
discrete instance are then used to refine the dual weights of B. These refined dual weights act as the starting
dual weights for the next scale �/2. Starting with � = D, our algorithm executes O(log(D/")) scales and stops
when �  " . In order to show that the semi-discrete transport plan computed in scale � is �-close, we introduce
a set of exponentially many �-feasibility constraints and show that any transport plan that satisfies these is a
�-close transport plan. We then show that, in scale �, the semi-discrete OT plan and the duals computed by our
polynomial time algorithm satisfies all of these exponentially many constraints and therefore, is �-close.

Our second result (Section 3) is another approximation algorithm for the semi-discrete setting whose running
time is near-linear in n but the dependence on " increases to "�O(d).

Theorem 1.2. Let µ be a continuous distribution defined on a compact set A ⇢ Rd
for some fixed d � 1, ⌫ a

discrete distribution with a support B ⇢ Rd
of size n, and " > 0 a parameter. Suppose there exists an Oracle

that given an axis-aligned box ⇤, returns µ(⇤) in Q time. Then a (1 + ")-approximate OT plan can be computed

in O(n"�3d�2(log5(n) log(log n) + Q)) time. If the spread of B is polynomially bounded, a (1 + ")-approximate

OT plan can be computed in O(n"�4d�5(log(n) log2d+5(log n) +Q)) time with probability at least
1
2 .

Similar to many previous algorithms (see e.g. [48]), we also discretize the continuous distribution and use a
discrete OT algorithm. Our main contribution is a clever sampling strategy that works for arbitrary density, that
guarantees relative "-approximation of the OT cost, and that requires to choose only n"�O(d) samples. Earlier
approaches guaranteed additive error, worked for restricted cases, or required a much larger set of samples.

Our final result (Section 4) is a new (1 + ")-approximation algorithm for the discrete transport problem.

Theorem 1.3. Let µ and ⌫ be two discrete distributions with finite support sets A,B ⇢ Rd
, respectively, for some

fixed d � 1, and " > 0 a parameter. Set |A [ B| = n and assume that the spread of A [ B is nO(1)
. Then a

transport plan between µ and ⌫ can be computed in O
⇣
n"�2d�5 log(n) log2d+5(log n)

⌘
time that is an "-close OT

plan with probability at least
1
2 .

Notwithstanding the recent deterministic algorithm by Fox and Lu [24] for computing an "-OT plan in
O(n"�d�2 log5(n) log(log n)) time, our result is of independent interest. The running time is slightly better than
in [24] with respect to log n, though of course their algorithm is deterministic. But our main contribution is a
simple greedy, Monte-Carlo primal-dual O(log log n)-approximation algorithm that is geometric and that runs in
O(n log log n) time. By plugging our algorithm into the multiplicative-weight-update (MWU) method as in [50],
we obtain a (1 + ")-approximation algorithm. We believe the derandomization technique of Lu and Fox can be
applied to our algorithm, but one has to check all the technical details.

Proofs of some of the technical lemmas are omitted here and can be found in the full version [3].

2 Computing a Highly Accurate Semi-Discrete Optimal Transport
Given a continuous distribution µ over a compact bounded set A ⇢ Rd, a discrete distribution ⌫ over a set B ⇢ Rd

of n points, and a parameter " > 0, we present a cost-scaling algorithm for computing an "-close transport plan
from µ to ⌫. We first describe the overall framework, then provide details of the algorithm and analyze its
efficiency, and finally prove its correctness.

In our algorithm, we use a black-box primal-dual discrete OT solver PD-OT(µ0, ⌫0) that given two discrete
distributions µ0 and ⌫0 defined over two point sets A0 and B0, returns a transport plan � from µ0 to ⌫0 and a dual
weight y(v) for each point v 2 A0 [B0 such that for any pair (a, b) 2 A0 ⇥B0,

y(b)� y(a)  d(a, b),(2.1)
y(b)� y(a) = d(a, b) if �(a, b) > 0.(2.2)

Copyright © 2024 by SIAM
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Standard primal-dual methods [33] construct a transport plan while maintaining (2.1) and (2.2). For concreteness,
we use Orlin’s algorithm [40] that runs in O(|A0 [B0|3) time.

2.1 The Scaling Framework. The algorithm works in O(log(D"�1)) rounds, where D is the diameter of
A [ B. In each round, we have a parameter � > 0 that we refer to as the current scale, and we also maintain a
dual weight y(b) for every point b 2 B. Initially, in the beginning of the first round, � = D and y(b) = 0 for all
b 2 B. Execute the following steps s =

⌃
log2(D"�1)

⌥
times3.

(i) Construct a discrete OT instance: Using the current values of dual weights of B, as described below,
construct a discrete distribution µ̂� with a support set X�, where |X�| = nO(d), and define a (discrete)
distance function d� : X� ⇥B ! {0, . . . , 4n+ 1}.

(ii) Solve OT instance: Compute an optimal transport plan between discrete distributions µ̂� and ⌫ using the
procedure PD-OT(µ̂�, ⌫). Let �� be the coupling and ŷ : B ! R be the dual weights returned by the
procedure.

(iii) Update dual weights: y(b) y(b) + �ŷ(b) for each point b 2 B.

(iv) Update scale: �  �/2.

Our algorithm terminates when �  ". We now describe the details of step (i) of our algorithm, which is the only
non-trivial step. Let y(·) be the dual weights of B at the start of scale �.

Constructing a discrete OT instance. We construct the discrete instance by constructing a family of Voronoi
diagrams and overlaying some of their cells. For a weighted point set P ⇢ Rd with weights w : P ! R and a
distance function d : Rd ⇥ P ! R�0, we define the weighted distance from a point p 2 P to any point x 2 Rd as
dw(x, p) = d(x, p)�w(p). For a point p 2 P , its Voronoi cell is Vorw(p) = {x 2 Rd | dw(x, p)  dw(x, p0), 8p0 2 P},
and the Voronoi diagram VDw(P ) is the decomposition of Rd induced by Voronoi cells; see [22].

For i 2 [1, 4n + 1] and a point b 2 B, we define a Voronoi cell V i

b
using a weight function wi : B ! R�0,

as follows. We set wi(b) = y(b) + i� and wi(b0) = y(b0) for all b0 6= b. We set V i

b
= Vorwi(b) in VDwi(B). By

construction, V 1
b
✓ V 2

b
✓ · · · ✓ V 4n+1

b
. Set Vb = {V i

b
| i 2 [1, 4n + 1]} and V =

S
b2B

Vb (See Figure 1(a)). Let
A(V) be the arrangement of V, the decomposition of Rd into (connected) cells induced by V; each cell of A(V) is
the maximum connected region lying in the same subset of regions of V [5].

For each cell ' in A(V), we choose a representative point r' arbitrarily and set its mass to µ̂�(r') = µ('),
where for any region ⇢ in Rd, µ(⇢) =

R
⇢
µ(a) da is the mass of µ inside ⇢ (Here we assume the mass to be 0 outside

the support A of µ). Set X� = {r' | ' 2 A(V)}. The resulting mass distribution on X� is µ̂�.
The (discrete) distance d�(r, b) between any point b 2 B and a point r 2 X� is defined as

d�(r, b) =

8
><

>:

0, if r 2 V 1
b
,

i, if r 2 V i+1
b

\ V i

b
, i 2 [1, 4n],

4n+ 1, if r /2 V 4n+1
b

.

See Figure 1(b). Since each V i

b
is defined by n algebraic surfaces of constant degree, assuming the bisector of

two points under the distance function d(·, ·) is an algebraic variety of constant degree, A(V) has nO(d) cells and
a point in every cell of A(V) can be computed in nO(d) time [15]. Hence, |X�| = nO(d). This completes the
construction of X�, µ̂�, and d�.

Computing a semi-discrete transport plan. At the end of any scale �, we compute a �-close transport plan
⌧� from the discrete transport plan �� as follows: For any edge (r', b) 2 X�⇥B, we arbitrarily transport ��(r', b)
mass from the points inside the region ' to the point b. A simple construction of such transport plan is to set, for
any region ', any point a 2 ', and any point b 2 B, ⌧�(a, b) = µ(a)

µ̂�(r')��(r', b). Our algorithm will only compute
the transport plan at the end of the last scale, i.e., �  ".

3
Computing an "-close transport plan requires O(log(D/")) iterations. When the goal, on the other hand, is to obtain accurate

dual weights up to O(log "�1) bits, we need to execute our algorithm for O(log(nD/")) iterations. See Section 2.3.
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(a) (b)

Figure 1: (a) The (expanded) Voronoi cells V i
· of three points b, b0, b00 2 B, (b) A region ' 2 A(V) (highlighted

in gray) with a representative point r 2 X�, where d�(b, r) = 0 since r 2 V 1
b

, d�(r, b0) = 1 since r 2 V 2
b0 \ V 1

b0 , and
d�(r, b00) = 2 since r 2 V 3

b00 \ V 2
b00 . The ground distance d(·, ·) in this figure is squared Euclidean.

Efficiency analysis. Our algorithm runs O(log(D"�1)) scales, where in each scale, it constructs a discrete OT
instance in nO(d) time and solves the OT instance using a polynomial-time primal-dual OT solver. Since the
size of the discrete OT instance is nO(d), solving it also takes nO(d) time, resulting in a total execution time of
nO(d) log(D"�1) for our algorithm.

2.2 Proof of Correctness. In the discrete setting, cost scaling algorithms obtain an "-close transport plan that
satisfies (2.2) and an additive " relaxation of (2.1). For our proof, we extend these relaxed feasibility conditions
to a semi-discrete setting and show that the transport plan computed by our algorithm for a scale � satisfies
these conditions. We use the relaxed feasibility conditions to show that our transport plan is �-close. Thus, our
algorithm returns an "-close transport plan from µ to ⌫ at the end of the last scale (�  ").

�-feasible transport plan. For points B = {b1, b2, . . . , bn}, let w = hw1, . . . , wni be an n-dimensional vector
representing a weight assignment to the points in B. We say that the vector w is valid if each wi is a non-
negative integer multiple of � and bounded by (8n + 2)D. Consider the set W� of all valid vectors, i.e.,
W� = (�Z\ [0, (8n+2)D])n. For any �, consider a decomposition of the support A of the continuous distribution
µ into a set of regions A�, where each region % in A� satisfies the following condition:

(P1) Any two points x and y in % have the same weighted nearest neighbor in B with respect to any valid weight
vector w 2W�,

where a point b is a weighted nearest neighbor of a point a 2 A with respect to weights w(·) if dw(a, b) =
minb02B dw(a, b0). For a valid vector w 2 W�, let VDw(B) denote the weighted Voronoi diagram constructed
for the points in B with weights w. The partitioning A� is simply the overlay of all weighted Voronoi diagrams
VDw(B) across all valid weight vectors w 2W� (See Figure 2). For each region % 2 A�, let r% denote an arbitrary
representative point inside %.

For any point b 2 B, let y(b) be the dual weight of b, where y(b) is a non-negative integer multiple of �. For
each region % 2 A�, we derive a dual weight y�(r%) for its representative point as follows. Let b% 2 B be the
weighted nearest neighbor of r% with respect to weights y(·). We set the dual weight of r% as

(2.3) y�(r%) y(b%)� d(r%, b%)� �.

We say that a transport plan ⌧ from µ to ⌫ along with the set of dual weights y(·) for points in B is �-feasible if,

Copyright © 2024 by SIAM
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Figure 2: The weighted Voronoi diagrams for four different weight vectors in W�. The ground distance in this
figure is squared Euclidean.

for each point b 2 B and each region % 2 A�,

y(b)� y�(r%)  d(r%, b) + �,(2.4)
y(b)� y�(r%) � d(r%, b) if ⌧(%, b) > 0.(2.5)

In the following lemma, we show that any �-feasible transport plan ⌧, y(·) from µ to ⌫ is �-close.

Lemma 2.1. Suppose ⌧, y(·) is any �-feasible transport plan from µ to ⌫ and let ⌧⇤ denote any optimal transport

plan from µ to ⌫. Then, ¢(⌧)  ¢(⌧⇤) + �.

Let y(·) denote the set of dual weights maintained by our algorithm at the beginning of scale �. For any point
b 2 B and any region % 2 A�, we define a slack on condition (2.4) for the pair (%, b), denoted by s�(%, b), as

s�(%, b) :=

�
d(r%, b) + � � y(b) + y�(r%)

�

⌫
�.

Next, we show that for each scale �, the semi-discrete transport plan ⌧� and dual weights (y + �ŷ)(·) for the
points in B computed by our algorithm at the end of the scale is a �-feasible transport plan.

�-feasibility of the computed transport plan. We begin by relating the decomposition A� to the partitioning
A(V) that is constructed in step (i) of our algorithm. We also relate the distance d� computed by our algorithm
to the slacks s�.

In any scale �, it can be shown that for each point b 2 B and each i 2 [1, 4n + 1], the i-expansion V i

b
can

be seen as the Voronoi cell of b in the weighted Voronoi diagram constructed with respect to some valid weight
vector in W�. Hence, by the construction of A�, each region % 2 A� completely lies inside some region ' 2 A(V),
i.e., each region in A(V) consists of a collection of regions in A�.

We observe that for each point b 2 B, all regions with a zero slack to b lie inside the 1-expansion V i

b
, all

regions with a slack i� to b, for i 2 [1, 4n], lie inside the region sandwiched between i and i+ 1 expansions of the
weighted Voronoi cell of b, and all regions % with a slack > 4n� to b are outside V 4n+1

b
. Using this observation,

in the next lemma, we establish a connection between the slacks and the distances d�.

Lemma 2.2. For any region ' 2 A(V), any region % 2 A� inside ', and any point b 2 B, if d�(r', b)  4n, then

s�(%, b) = d�(r', b)�. Furthermore, if d�(r', b) = 4n+ 1, then s�(%, b) � (4n+ 1)�.
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Recall that X� denotes the set of representative points of the regions in A(V) and µ̂� is the discrete distribution
over X� computed by our algorithm at step (i). In the following lemma, we show that any optimal transport
plan �⇤ from µ̂� to ⌫ under distance function d� does not transport mass on edges (r', b) 2 X� ⇥ B with cost
d�(r', b) > 4n.

Lemma 2.3. For any scale �, let �⇤
be any optimal transport plan from µ̂� to ⌫. For any point b 2 B and any

region ' 2 A(V), if �⇤
transports mass from r' to b, then d�(r', b)  4n.

Proof. Let ⌧2�, y(·) be the 2�-feasible transport plan computed by our algorithm at scale 2�. Let �2� denote a
transformation of ⌧2� into a discrete transport plan from µ̂� to ⌫ by simply setting, for each region ' 2 A(V),
�2�(r', b) := ⌧2�(', b). Let �⇤ be any optimal transport plan from µ̂� to ⌫, where the cost of each edge (r', b)
is set to d�(r', b). Define a directed graph G on the vertex set X� [ B as follows. For any pair (r, b) 2 X� ⇥ B,
if �⇤(r, b) > �2�(r, b), then we add an edge, called a forward edge, directed from r to b with a capacity
�⇤(r, b) � �2�(r, b); otherwise, if �⇤(r, b) < �2�(r, b), then we add an edge, called a backward edge, directed
from b to r with a capacity �2�(r, b)� �⇤(r, b). This completes the construction of the directed graph.

For the sake of contradiction, suppose there is a pair (r⇤, b⇤) 2 X� ⇥ B with d�(r⇤, b⇤) > 4n such that
�⇤(r⇤, b⇤) > 0. As shown in the full version of our paper, the edge (r⇤, b⇤) is a forward edge and is contained in a
simple directed cycle C = hb1, r1, . . . , bk, rk, bk+1 = b1i in G. Note that by the construction of G, the edges of C
alternate between forward and backward edges. Define the cost of the cycle C as

w(C) :=
kX

i=1

d�(ri, bi+1)�
kX

i=1

d�(ri, bi);

i.e., the cost of C is simply the total distance of its forward edges minus the total distance of its backward edges.
Since �⇤ is an optimal transport plan from µ̂� to ⌫, any directed cycle C on G has a non-positive cost. Since
C is a simple cycle, the length of C is at most 2n. Furthermore, as shown in the full version of our paper, any
backward edge has a distance at most 4, i.e., for each i 2 [1, k], d�(ri, bi)  4. Finally, by construction, all edges
have a non-negative distance. Therefore,

w(C) =
kX

i=1

d�(ri, bi+1)�
kX

i=1

d�(ri, bi) � d�(r
⇤, b⇤)�

kX

i=1

4 � d�(r
⇤, b⇤)� 4n > 0,

which is a contradiction of the fact that all simple cycles have a non-positive cost. Hence, �⇤ cannot transport
mass on edges (r⇤, b⇤) with distance d�(r⇤, b⇤) > 4n.

Let ��, ŷ(·) be the optimal transport plan from µ̂� to ⌫ computed at step (ii) of our algorithm, and recall
that ⌧� is the transport plan from µ to ⌫ computed at the end of scale �. In the following lemma, we show that
⌧�, (y + �ŷ)(·) is a �-feasible transport plan.

Lemma 2.4. For each scale �, let (y+ �ŷ)(·) denote the set of dual weights for points in B computed at step (iii)

of our algorithm. Then, the transport plan ⌧�, (y + �ŷ)(·) is a �-feasible transport plan.

Proof. Let y�(·) denote the set of dual weights derived for the representative points of regions in A� using
Equation (2.3) at the beginning of scale �. Consider a set of dual weights y0

�
that assigns, for each region % 2 A�

inside a region ' 2 A(V), a dual weight y0
�
(r%) := y�(r%) + �ŷ(r'). In what follows, we show that the transport

plan ⌧� along with dual weights (y+ �ŷ)(·) and y0
�
(·) satisfy �-feasibility conditions (2.4) and (2.5). Using this, in

the full version of our paper, we show that by reassigning the dual weights of the representative points of regions
in A� as in Equation (2.3), the �-feasibility conditions (2.4) and (2.5) remain satisfied; hence, we conclude that
⌧, (y + �ŷ)(·) is �-feasible, as claimed.

For any region ' 2 A(V), any region % 2 A� inside ', and any point b 2 B,
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• by Lemma 2.2, d�(r', b)�  s�(%, b). Combining with feasibility condition (2.1),

(y + �ŷ)(b)� y0
�
(r%) = (y(b) + �ŷ(b))� (y�(r%) + �ŷ(r'))

= (y(b)� y�(r%)) + �(ŷ(b)� ŷ(r'))

 (y(b)� y�(r%)) + d�(r', b)�  (y(b)� y�(r%)) + s�(%, b)

 (y(b)� y�(r%)) + (d(r%, b) + � � y(b) + y�(r%))

= d(r%, b) + �,

leading to �-feasibility condition 2.4.

• if ⌧�(%, b) > 0, then �� transports mass from r' to b, i.e., ��(r', b) > 0. In this case, by Lemma 2.3,
d�(r', b)  4n and by Lemma 2.2, s�(%, b) = d�(r', b)�. Combining with feasibility condition (2.2),

(y + �ŷ)(b)� y0
�
(r%) = (y(b) + �ŷ(b))� (y�(r%) + �ŷ(r'))

= (y(b)� y�(r%)) + �(ŷ(b)� ŷ(r'))

= (y(b)� y�(r%)) + d�(r', b)� = (y(b)� y�(r%)) + s�(%, b)

� (y(b)� y�(r%)) + (d(r%, b)� y(b) + y�(r%))

= d(r%, b),

leading to �-feasibility condition 2.5.

2.3 Computing Optimal Dual Weights. In this section, we show that in addition to computing an "-close
transport cost in the semi-discrete setting, our algorithm can also compute the set of dual weights for the points
in B accurately, up to O(log "�1) bits. To obtain such accurate set of dual weights, we execute our algorithm
for O(log(nD/")) iterations so that the final value of � when the algorithm terminates is at most "/5n. In the
following, we show that the dual weight computed for each point in B at the last scale is "-close to the optimal
dual weight value.

Note that any edge in the graph constructed in Step (i) of our algorithm has a cost at most 4n + 1.
Consequently, in Step (ii), the largest dual weight returned by the primal-dual solver is at most 4n + 14 and
in Step (iii), the dual weight of any point b 2 B changes by at most (4n+1)�. Since the dual weight of b becomes
the optimal dual weight in the limit, to bound the difference between the current dual weight and the optimal, it
suffices if we bound the total change in the dual weights for all scales after scale �  "/5n. The difference between
the optimal dual weight and the current dual weight is at most

(4n+ 1)
1X

i=1

�/2i = (4n+ 1)�  (4n+ 1)("/5n)  ".

Therefore, after O(log(nD/")) iterations of the algorithm, the difference in the optimal dual weight y(b) and the
current dual weight of b is at most ".

3 Approximation Algorithm for Semi-Discrete Optimal Transport
In this section, we present our second approximation algorithm for the semi-discrete setting that computes an "-
OT plan in n"�O(d)poly log(n) expected time. We begin by describing a few notations that help us in presenting
the algorithm. Let µ, ⌫, A, and B be the same as above. For any point b 2 Rd and any r � 0, let D(b, r)
denote the Euclidean ball of radius r centered at b. Any pair of point sets P,Q ⇢ Rd is called "-well separated if
max{diam(P ), diam(Q)}  "·min(p,q)2P⇥Q kp�qk. Given a set S of n points in Rd and a parameter ", a collection
W = {(P1, Q1), . . . , (Pk, Qk)} is an "-well separated pair decomposition ("-WSPD) of S if (i) each pair (Pi, Qi) is
"-well separated, and (ii) for any distinct p, q 2 S, there exists a pair (Pi, Qi) 2W where p 2 Pi and q 2 Qi. Given

4
Any set of dual weights returned by the algorithm can be translated by a fixed value so that the smallest dual weight becomes

0. Assuming this, it is easy to see that the largest dual weight is 4n+ 1.
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a point set B ⇢ Rd and a hypercube ⇤, we say that ⇤ is "-close to b 2 B if maxa2⇤ kb�ak  "minb0 6=b2B kb0�bk.
For any parameter � > 0, let G� denote an axis-aligned grid of side-length � with a vertex at the origin, i.e.,
G� := [0, �]d + Zd. In the remainder of this section, we present our algorithm and analyze its correctness and
efficiency.

3.1 Algorithm. Here is a brief overview of our algorithm. Let H be a hypercube of side-length 4
"
diam(B)

centered at one of the points of B. First, we partition H into a collection of hypercubes such that for each b 2 B
and all hypercubes ⇤ except the ones that are (�2")-close to b for some constant �2 > 0 (see below), the following
condition holds: for all p, q 2 ⇤, kb � pk  (1 + ")kb � qk. If a hypercube ⇤ is (�2")-close to b 2 B, then we
greedily route the mass of µ inside ⇤ to b. We then construct a discretization µ̂ of the remaining mass from µ by
collapsing the mass µ(⇤) of each cell ⇤ to its center point c⇤. We compute an "-OT plan � from µ̂ to ⌫ using the
algorithm described in Section 4 and transform � into a semi-discrete transport plan ⌧� by dispersing the mass
transportation throughout each hypercube, as described in Section 2.1. We now describe the algorithm in more
detail.

Construction of hypercubes. First, we construct an ( "4 )-WSPD W of B using the algorithm by Callahan and
Kosaraju [16]. For every pair (B1, B2) 2W , we construct a set of hypercubes by closely following the construction
of an approximate Voronoi diagram [10], as follows. Let b1 2 B1 and b2 2 B2 denote arbitrary representative points
of B1 and B2, respectively. Let �0,�1 be some fixed constants. For any integer i = 0, . . . , t = �1 log("�1), define
�i = 2i �0"

2
p
d
kb1�b2k and let Gi(B1, B2) denote the set of hypercubes of the grid G"�i intersecting D(b1, �i)[D(b2, �i).

For any cell ⇤ 2 Gi(B1, B2), if there exists a child cell ⇤0 ⇢ ⇤ in Gi�1(B1, B2), then we replace ⇤ with its 2d

children cells to keep all hypercubes interior disjoint. Set

G =
[

(B1,B2)2W

t[

i=0

Gi(B1, B2).

Transporting local mass. For any point b 2 B and some sufficiently small constant �2 > 0, define its local
neighborhood to be

N"(b) = {⇤ 2 G : ⇤ is (�2")-close to b} .

For each b 2 B, we transport the mass locally as follows. If ⌫(b) > 0 and there exists a hypercube ⇤ ✓ N"(b)
with µ(⇤) > 0, we transport min{µ(⇤), ⌫(b)} mass from ⇤ to b. If µ(⇤)  ⌫(b), we set ⌫(b) = ⌫(b)�µ(⇤), delete
⇤ from G, and repeat the above step. If µ(⇤) > ⌫(b), we set ⌫(b) = 0 and scale the mass in ⇤ down so that
µ(⇤) = µ(⇤)� ⌫(b). This process stops when either ⌫(b) = 0 or no cell of G lies inside N"(b).

Discrete OT on remaining demand. Let µ0 and ⌫0 be the two distributions after transporting the local mass.
Note that µ0 and ⌫0 are not necessarily probability distributions, i.e., the mass of each one of them might not
add up to 1; however, the total mass in µ0 equals that of ⌫0. Let G be the set of remaining hypercubes. Let
Â = {c⇤ : ⇤ 2 G} [ {c0} for some c0 2 A \H, where c⇤ denotes the center of ⇤. Define µ̂(c⇤) =

R
⇤ µ0(a) da for

every hypercube ⇤ 2 G and let µ̂(c0) =
R
A
µ0(a)da�

P
⇤2G µ̂(c⇤). We compute a (1 + �3")-approximate discrete

transport plan � from µ̂ to ⌫0, for some constant �3 < 1, using the algorithm described in Section 4. We then
convert � into a semi-discrete transport plan ⌧� in a straightforward manner, similar to Section 2.1. We return a
transport plan e⌧ obtained from combining ⌧� with the local mass transportation committed in the previous step
in a straight-forward manner. It is easy to confirm that the transport plan e⌧ is a transport plan from µ to ⌫.
This completes the description of our algorithm.

3.2 Proof of Correctness. In this section, we show that the transport plan computed by our algorithm is a
(1 + ")-approximate transport plan from µ to ⌫. Recall that as a first step, our algorithm constructs a family G
of hypercubes. In the following lemma, we enumerate useful properties of these hypercubes.

Lemma 3.1. There exist constants �4,�5 depending only on �0,�1,�2,�3 such that for each ⇤ 2 G the hypercube

⇤ satisfies at least one of the following two conditions:

1. For any two points a1, a2 2 ⇤ and any b 2 B, ka1 � bk  (1 + �4")ka2 � bk,
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2. There exists some b 2 B such that ka� bk  �5"minb0 6=b kb0 � bk for all a 2 ⇤.

We then use a simple triangle inequality argument similar to [6] to show that a greedy routing on N"(b) only
incurs another small relative error.

Lemma 3.2. Let ⌧⇤ be an optimal transport plan between µ and ⌫, and let e⌧ be the transport plan returned by the

algorithm. There exists a transport plan ⌧̂ such that (i) ⌧̂ = e⌧ when restricted to
S

b2B
N"(b), and (ii) there exists

some constant �6 depending only on �0,�1,�2,�3 where ¢(⌧̂)  (1 + �6")¢(⌧⇤).

We next show that any mass outside of H can be routed arbitrarily while incurring small relative error because
any two points b1, b2 2 B are approximately equidistant from any a 2 A \H.

Lemma 3.3. Let e⌧ be the semi-discrete transport plan constructed by our algorithm. Let ⌧ be any arbitrary

transport plan. Then for some constant �7 < 1 depending only on �0,�1,�2,�3,

X

b2B

Z

A\
S

⇤2G ⇤
ka� bk · e⌧(a, b) da  (1 + �7")

X

b2B

Z

A\
S

⇤2G ⇤
ka� bk · ⌧(a, b) da.

Finally, we consider the mass that lies inside H but does not lie in a cell of G that is (�2")-close to a point of B
that has survived. We use the fact that all points within such a cell ⇤ of G are roughly at the same distance from
a point of B, i.e. for any p, q 2 ⇤ where µ0(⇤) > 0 and for any b 2 B where ⌫0(b) > 0, kp� qk  (1+ �2")kq� bk.

Lemma 3.4. Let ⌧̂ 0 be a transport plan between µ0
and ⌫0 defined by ⌧̂ 0(a, b) = ⌧̂(a, b) if a 62 N"(b) and ⌧̂ 0(a, b) = 0

otherwise. Then ¢(⌧�)  (1 + �8")¢(⌧̂ 0) for some constant �8 > 0 depending only on �0,�1,�2,�3.

Lemmas 3.2-3.4 together imply that our algorithm returns an "-OT plan.

Lemma 3.5. Let e⌧ be the transport plan computed by our algorithm, and let ⌧⇤ be an optimal transport plan

between µ and ⌫. Then ¢(e⌧)  (1 + ")¢(⌧⇤).

3.3 Efficiency analysis. Callahan and Kosaraju [16] have shown that an ( "4 )-WSPD W of S of size O(n"�d)
can be constructed in O(n("�d+log n)) time. For each pair in W , our algorithm computes O(log "�1) approximate
balls, where for each approximate ball, our algorithm adds O("�d) hypercubes to G. Therefore, the collection G
of hypercubes has size O(n"�2d log "�1). Hence, partitioning the hypercube H takes O(n(log n + "�2d log "�1))
time. Furthermore, computing the mass of µ inside each hypercube take O(n"�2d log "�1Q) time. Finally,
note that the discrete OT instance computed by our algorithm has size O(n"�2d log "�1) and hence, can be
solved in O(n"�4d�5 log(n) log2d+5(log n) log("�1)) time using the algorithm in Section 4 when the spread of B is
polynomially bounded, leading to Theorem 1.2.

4 A Near-Linear "-Approximation Algorithm for Discrete OT
In this section, we present a randomized Monte-Carlo (1+")-approximation algorithm for the discrete OT problem.
We now let µ, ⌫ be two discrete distributions with support sets A and B, respectively, which are finite point sets
in Rd. Set n = |A|+ |B|. We first present an overview of the algorithm, then provide details of the various steps,
and finally analyze its correctness and efficiency. Our algorithm can be seen as an adaptation of the boosting
framework presented by Zuzic [50] to the discrete OT problem; we present an O(log log n)-approximation algorithm
for the discrete OT problem and then boost the accuracy of our algorithm using the multiplicative-weight-update
method and compute a (1 + ")-approximate OT plan.

4.1 Overview of the Algorithm. At a high level, we compute a hierarchical graph G = (V,E), where
V ◆ A [ B is a set of points in Rd. The weight of an edge is the Euclidean distance between its endpoints.
The construction of G is randomized, and G is a (1 + ")-spanner in expectation, i.e., dG(a, b), the shortest-path
distance between (a, b) 2 A⇥B in G satisfies the condition

ka� bk  E[dG(a, b)]  (1 + ")ka� bk.
We formulate the OT problem as a min-cost flow problem in G by setting ⌘(u) = µ(u) if u 2 A and

⌘(u) = �⌫(u) if u 2 B. Following a bottom-up greedy approach, we construct a flow � : V ! R�0 and dual
weights y : V ! R that satisfy (C1) and (C2) with ⇢ = a1 log log n, where a1 > 0 is a constant:
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(C1) |y(u)� y(v)|  ⇢ku� vk 8(u, v) 2 E,

(C2)
P

(u,v)2E
�(u, v)ku� vk 

P
u2V

y(u)⌘(u).

The first condition guarantees the dual solution y is ⇢-approximately feasible, while the second condition
guarantees that y is non-trivial and the flow � is a ⇢-approximation. Using such a primal-dual solution, one can
use multiplicative-weight-update method (MWU) [9] to boost a ⇢-approximate flow into a (1 + ")-approximate
flow on G by making O(⇢2"�2 log n) calls to our greedy primal-dual approximation algorithm. We also describe
the MWU procedure in Section 4.4. Once a (1 + ")-approximate flow is obtained in G, then one can simply
shortcut paths in G to obtain an "-OT plan; see e.g. [24]. We remark that a (1+")-spanner is not needed if only a
O(log log n)-approximation is desired. An O(log log n)-OT plan can be constructed directly in O(n log log n) time
using our algorithm. We now describe the details of our algorithm.

4.2 Constructing a spanner. We now define the construction of the graph G, which is built upon a
hierarchical partitioning of Rd and the tree T associated with it. Let " = �" for some small enough constant �.
We only rescale " to guarantee that the resulting transport plan is (1 + ")-approximate.

Hierarchical partitioning. For simplicity, we refer to all d-dimensional hypercubes as cells. For any cell ⇤, let
`⇤ and c⇤ denote its side-length and center, respectively. Let � = maxp,q2A[B kp�qk

minp,q2A[B kp�qk denote the spread of A [ B.
We assume � = nO(1). Additionally, define G(⇤, `) to be the grid that partitions ⇤ into new cells of side-length
`. Without loss of generality, assume A [B ✓ [0,�]d.

Let ⇤⇤ be a randomly shifted cell of side-length 2� containing all points in A[B, i.e., ⇤⇤ = [0, 2�]d � x for
some x chosen uniformly at random from the hypercube [0,�]d. We construct a hierarchical partition of ⇤⇤ as
follows. We designate ⇤⇤ as the root cell of T . For any cell ⇤ of T , define n⇤ := |(A [B) \⇤| as the number of
points of A [ B contained within ⇤. We construct T recursively as follows. If n⇤ 

�
"�1 log log n

�d, ⇤ is a leaf
of T . Otherwise, using the grid G⇤ = G

⇣
⇤, `⇤/n

1
3d

⇤
⌘
, we partition ⇤ into smaller cells of side-length `⇤/n

1
3d

⇤ .
We add all non-empty cells of G⇤ to T as the children of ⇤ and denote them by C[⇤]. The height h of T is
h = O(log log n).

For any cell ⇤ of T , we define a set of O(("�1dh)d) equal-sized subcells as follows. Define �⇤ = "`⇤
4dh to be the

side-length of the subcells of ⇤. We add all the cells of the grid G(⇤, �⇤) that contain a point of A [ B as the
subcells of ⇤ and denote the resulting family by S[⇤].

Vertices and edges of the graph. The vertex set of G consists of the points A[B plus the center point of all
non-empty cells and subcells of T . More precisely,

V = (A [B) [
[

⇤2T

{c⇤} [ {c⇠ : ⇠ 2 S[⇤]}.

The edge set of G consists of two sets of edges per cell of T .

1. If ⇤ is a non-leaf cell, let I⇤ = c⇤[
⇣S

⇤02C[⇤] c⇤0

⌘
[
⇣S

⇠2S[⇤] c⇠
⌘

be the set of points composed of the center
of ⇤, centers of its children, and the centers of the subcells of ⇤. Otherwise, let I⇤ = c⇤ [ ((A [ B) \⇤).
We construct a (1 + ")-spanner S⇤ on I⇤. We add all edges of S⇤ to G and refer to them as greedy edges.
Note that |I⇤| = |C[⇤]|+ |S[⇤]|+ 1 = O(n1/3

⇤ + (h/")d) for any non-leaf cell.

2. In addition, for any non-leaf cell ⇤, let X⇤ =
S

⇤02C[⇤]

S
⇠2S[⇤0] c⇠ be the set of centers of the subcells of

the children of ⇤. Let S 0
⇤ be a (1 + ")-spanner constructed on the points in X⇤. We add all the edges of

S 0
⇤ to G and refer to them as shortcut edges.

Recall that the weight of every edge in G is the Euclidean distance between its endpoints. The greedy edges
are the edges that our greedy algorithm uses to compute a flow, whereas the shortcut edges guarantee that the
shortest-path distances in G are a (1 + ")-approximation of the Euclidean distances in expectation. We remark
that the shortcut edges are used only when we apply the MWU method to obtain a (1+")-approximate OT plan.
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Figure 3: The hierarchical structure of the graph G. The vertices of the graph are the centers of the cells
(diamonds) and centers of subcells (disks). For any cell ⇤, the greedy edges form a spanner on its children and
subcells (solid red lines) and the shortcut edges cross between distinct children (solid green lines).

For any pair (a, b) 2 A ⇥ B, let ⇧a,b be the shortest path in G from a to b, and let �(a, b) be the cost of
⇧a,b. The following lemma bounds the size of G and shows that the shortest path metric of G, in expectation,
(1 + ")-approximates Euclidean distances.

Lemma 4.1. The graph G contains O(nh) vertices and O(n"�dh) edges. The max degree of any vertex in G is at

most O("�d log n). Furthermore, for any pair of points (a, b), �(a, b) � ka� bk and E [�(a, b)]  (1 + ")ka� bk.

4.3 Greedy Primal-Dual Algorithm. Given the graph G = (V,E) and a demand function ⌘ : V ! R, we
compute a primal-dual flow (�, y) on G that routes the demand function ⌘ and satisfies the conditions (C1) and
(C2). To do so, for every cell ⇤ of T , we construct a balanced instance of the min-cost flow problem on S⇤ and
solve the instance using Orlin’s algorithm. Since each greedy edge in G belongs to the spanner S⇤ of a unique cell
⇤, the combination of all flows computed for all cells of T routes the demand ⌘. We describe the details next.

We compute the primal-dual pair (�, y) in a bottom-up manner. For each cell ⇤, we construct a balanced
demand function ⌘⇤ on the point set I⇤. In our construction, we treat the center point of ⇤ as a sink, which
absorbs all unrouted mass among its subcells and children (or points, if ⇤ is a leaf). This mass is then routed
in the instance computed at the parent of ⇤. More precisely, we define ⌘⇤ as follows. For any subcell ⇠ 2 S[⇤],
we simply set ⌘⇤(c⇠) := ⌘(c⇠). If ⇤ is a leaf cell, then for any point v 2 (A [ B) \ ⇤, we set ⌘⇤(v) := ⌘(v).
Otherwise, ⇤ is a non-leaf cell and for each child ⇤0 2 C[⇤], we set ⌘⇤(c⇤0) = ⌘(c⇤0)� ⌘⇤0(c⇤0). Finally, for the
center point c⇤, we set ⌘⇤(c⇤) = �

P
x2I⇤\{c⇤} ⌘⇤(x). This completes the construction of ⌘⇤. The pair (S⇤, ⌘⇤)

is a balanced instance for the min-cost flow.
For every cell ⇤, we compute a primal-dual flow (�⇤, y⇤) using Orlin’s min-cost flow algorithm on the instance

(S⇤, ⌘⇤) [40]. We construct a set of dual weights y(·) for the points in V in a top-down manner. For a cell ⇤
and any point u 2 I⇤, we define the dual weight of u as y(u)  y⇤(u) � y⇤(c⇤) + y(c⇤). The definition of y(·)
adjusts dual weights based on the intersection I⇤ \ I⇤0 = {c⇤0} for every non-leaf cell ⇤ and every ⇤0 2 C[⇤].
Additionally, observe that each greedy edge (u, v) of G belongs to a unique min-cost flow instance (S⇤, ⌘⇤). This
is because |I⇤1

\ I⇤2
|  1 for all pairs of cells ⇤1,⇤2 2 T . For any greedy edge (u, v) 2 E, define ⇤uv to be

the unique cell of T containing the edge (u, v). We set �(u, v) = �⇤uv
(u, v) for every greedy edge (u, v) 2 E,

and �(u, v) = 0 for every shortcut edge (u, v) 2 E. This completes the construction of our greedy primal-dual
algorithm.
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4.4 Multiplicative Weights Update (MWU) Framework. Using Indyk and Thaper’s greedy algorithm
[28], we first compute an estimate of the OT cost within a O(log n) factor in O(n log n) time, i.e. we compute
a value g̃ such that ¢(⌧⇤)  g̃  O(log n) · ¢(⌧⇤). Using this estimate, we perform an exponential search in the
range

h
g̃

O(logn) , g̃
i

with increments of factor (1 + "). For any guess value g, the MWU algorithm either returns a
flow � : E ! R with ¢(�)  (1 + ")g or returns dual weights as a certificate that g < ¢(⌧⇤). We now describe the
MWU algorithm for a fixed value of g.

Set T = d4⇢2"�2 log |E|e. The algorithm runs in at most T iterations, where in each iteration, it maintains a
pre-flow vector �t, i.e., a vector over the edges where inflow and outflow may not sum to the demand of a vertex,
satisfying ¢(�t)  g. Initially, set �0(u, v) = g

ku�vk·|E| for each edge (u, v) 2 E. For each iteration t, define the
residual demand ⌘tres(·) as

⌘tres(u) = ⌘(u)�
X

v:(u,v)2E

(�t�1(u, v)� �t�1(v, u)).

Let (�t
res, y

t) be the primal-dual flow computed by our greedy algorithm for the residual demands ⌘tres. Recall
that (�t

res, y
t) satisfies (C1) and (C2). If h⌘tres, yti  "g, then (C2) implies that ¢(�t

res)  "g. Since �t
res routes the

residual demands, the flow function e⌧ = �t�1 + �t
res routes the original demand ⌘ with a cost ¢(�t)  (1+ ")g. In

this case, the algorithm returns e⌧ as the desired flow and terminates.
Otherwise, h⌘tres, yti > "g and we update the flow along each edge e = (u, v) of G based on the slack

st(u, v) = y
t(u)�y

t(v)
ku�vk of e with respect to dual weights yt:

�t(u, v) exp

✓
"

2⇢2
st(u, v)

◆
· �t�1(u, v).

We emphasize that flow along an edge is increasing if the slack is large. Then, one needs to rescale �t so that
its cost is bounded above by g. If the algorithm does not terminate within T rounds, we conclude that the value
of g is an under-estimate of the cost of the min-cost flow; we increase g by a factor of (1+") and repeat the MWU
algorithm. This completes the description of the MWU framework.

4.5 Analysis. The following two lemmas prove that our algorithm satisfies conditions (C1) and (C2) for a
sufficiently small approximation factor.

Lemma 4.2. For any edge (u, v) 2 E, |y(u)� y(v)|  O(d3/2h"�1)ku� vk.

Lemma 4.3.
P

(u,v)2E
�(u, v)ku� vk 

P
u2V

y(u)⌘(u).

The following lemma, which just combines the inequalities of Lemmas 4.2 and 4.3, guarantees that our greedy
primal-dual algorithm is a O(log log n) approximation.

Lemma 4.4. Suppose �⇤
is an optimal discrete transport plan between µ and ⌫, and (�, y) is a primal-dual pair

computed by our greedy algorithm. Then,

E

2

4
X

(u,v)2E

�(u, v)ku� vk

3

5  O(d3/2"�1 log log n)¢(�⇤).

It is shown in [50] that a "-OT plan can be obtained from our greedy algorithm using the MWU method and
shortcuting the resulting approximate min-cost flow. By Lemma 4.1, the cost of the approximate min-cost flow
on G is a (1 +O("))-approximation of the OT cost in expectation.

Next, we bound the running time of our greedy algorithm. For any cell ⇤, the algorithm computes an exact
primal-dual solution to min-cost flow on I⇤ with demands ⌘⇤(·) using Orlin’s algorithm [40] in O(|I⇤|3) time.
Each leaf cell ⇤ satisfies |I⇤|  ("�1 log log n)d = O((h/")d) since h = O(log log n), and each non-leaf cell ⇤
satisfies |I⇤| = |C[⇤]| + |S[⇤]| + 1 = O

⇣
n1/3
⇤ + (h/")d

⌘
. The total number of points inside the cells of level i is
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n; i.e,
P

⇤2L[i] n⇤ = n. Furthermore, the total number of points of A [B in leaf cells and non-empty subcells of
the cells at level i is at most n. Therefore,

X

⇤2L[i]

|I⇤|3 =
X

⇤2L[i]

O
⇣
n⇤ +

�
h"�1

�3d⌘
= O

⇣
n
�
h"�1

�2d⌘
.

Summing over all levels of T , the total running time of the greedy algorithm is O
⇣
n (h/")2d+1

⌘
. Putting

everything together, the overall running time of the algorithm is O(n"2d+5 log(n) log2d+5(log n)).

5 Conclusion
In this paper, we presented algorithms for the discrete and semi-discrete OT problems. Our techniques exploit
the geometric structure of OT plans that led to simple and efficient algorithms for constructing near-optimal
transport plans in low dimensions. There are a few natural open questions: First, it is unknown whether there
exists a strongly polynomial time algorithm for semi-discrete OT problem when the continuous distribution also
has nice geometric structure, such as a collection of geometric objects. Second, our algorithms are near-optimal
in n, but incur exponential dependence in d. This raises the question whether there exists an algorithm for
constructing an "-OT plan whose running time is near-linear in n and polynomial in " and d. Finally, is there an
efficient algorithm for computing an "-OT plan between two continuous distributions?
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