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Abstract— The mixed L p-norm, 0  p  2, stabilization

algorithm is flexible for constructing a suite of subsurface

models with either distinct, or a combination of, smooth, sparse,

or blocky structures. This general-purpose algorithm can be used

for the inversion of data from regions with different subsurface

characteristics. Model interpretation is improved by the simul-

taneous inversion of multiple datasets using a joint inversion

approach. An effective and general algorithm is presented for

the mixed L p-norm joint inversion of gravity and magnetic

datasets. The imposition of the structural cross-gradient enforces

similarity between the reconstructed models. For efficiency, the

implementation relies on three crucial realistic details: 1) the

data are assumed to be on a uniform grid providing sensitivity

matrices that decompose into the block Toeplitz Toeplitz block

form for each depth layer of the model domain and yield

efficiency in storage and computation via 2-D fast Fourier trans-

forms; 2) matrix-free implementation for calculating derivatives

of parameters reduces memory and computational overhead; and

3) an alternating updating algorithm is employed. Balancing

of the data misfit terms is imposed to assure that the gravity

and magnetic datasets fit with respect to their individual noise

levels without overfitting of either model. Strategies to find all

weighting parameters within the objective function are described.

The algorithm is validated on two synthetic but complicated

models. It is applied to invert gravity and magnetic data acquired

over two kimberlite pipes in Botswana, producing models that

are in good agreement with borehole information available in the

survey area.

Index Terms— Gravity, joint inversion, kimberlite, magnetic,

mixed L p-norm.

I. INTRODUCTION

D
UE to the availability of different datasets for a sur-
vey area and greater accessibility to computers with
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increased computational power, it is important to develop
efficient algorithms for the joint inversion of multiple geophys-
ical datasets. Equipped with the complementary information
about the subsurface target(s) provided by different datasets,
the standard issues of nonuniqueness for inversion of geo-
physical data are reduced, and simultaneous joint inversion
techniques are stabilized [22]. Several approaches, depen-
dent on coupling mechanisms for different model parameters,
have been developed for the joint inversion of geophysical
datasets. If there are explicitly known, or implicitly assumed
empirical, relationships between different sets of model param-
eters, these relationships can be used to link different model
parameters [1], [22], [28], [37]. In the absence of empirical
relationships or the provision of a priori information on the
geometries of model parameters, direct spatial coupling of
the model parameters can be obtained by imposing structural
constraints [13], [50]. Of these, the cross-gradient coupling
enforces that changes in models, as represented by their
spatial gradients, occur at similar locations. Algorithms using
these constraints have been widely used in the joint inversion
literature, e.g., [12], [14], [15], [27], [38], and [41], and
yield reconstructed models that exhibit significant structural
similarity [13], [16]. Gramian constraints can also be used
within a joint inversion to provide correlated reconstructions
for different model parameters, or their attributes, without
a priori known relationship(s) [18], [25], [45], [50], [51].
Depending on the available information, these strategies can
be used independently, or they can be combined [22]. Here,
we apply the cross-gradient constraint that is an accepted
approach for imposing structural similarity between density
and magnetic susceptibility models for the joint inversion of
gravity and magnetic datasets.

Many different stabilization techniques can be used for
the inversion of potential field datasets. Choosing from these
different approaches should not be arbitrary. Rather, consider-
ation has to be paid to the goals of the inversion. For example,
does one aim to recover a model that is simple and smooth
with minimal structure, or does one anticipate that the model
should be sparse, either in the parameter space, or with respect
to perhaps the gradient of the model parameters? In the former
case, the obtained model would only be able to represent the
important and large-scale features of the subsurface target(s).
With this aim, one would use a stabilizer that employs the
L2-norm of the gradient of the model parameters, usually
called the maximum smoothness stabilizer [8], [23], [31].
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In contrast, if the aim is to obtain a solution that is compact
with well-defined edges to the structures, a stabilizer that uses
the L1- or L0-norm of the model parameters or gradient of
the model parameters would be appropriate [2], [3], [4], [9],
[10], [19], [32], [42]. Such stabilizers are suitable if the goal
is to reconstruct localized, or discontinuous, sources. In either
case, the inversion is stabilized using an L p-norm, 0  p  2,
which is also easily extended for incorporation into a joint
inversion algorithm [41]. Multiple L p stabilization terms can
also be applied, so as to recover models with such different
characteristics [11], [36], [48]. Consequently, it is possible
to generate a suite of different models that all approximate
the observed data with respect to a given noise level and
can provide potential candidates for the unknown subsurface
models. These approaches can be included within an algorithm
for the joint inversion of multiple datasets. Here, we present
a general algorithm for the joint inversion of gravity and
magnetic data based on a mixed L p-norm stabilization with
coupling between the models using a cross-gradient constraint
term to enforce structural similarity between models.

A mixed L p-norm joint inversion algorithm presents mul-
tiple computational challenges that go beyond those for the
independent inversion of individual datasets. Effective strate-
gies to overcome the major challenges that build on the
successful approaches for the single-dataset case are pre-
sented. The issues with memory and computational cost for
the inversion of a single large-scale potential field dataset
are compounded for a joint inversion algorithm. Moreover,
an algorithm that correctly accounts for the physical properties
of more than one set of parameters on a given volume
presents additional complexity due to the larger number of
terms and, consequently, the associated additional weighting
parameters, which arise in the objective function that describes
the appropriate formulation. For large-scale problems, even in
the single-dataset case, it is important to optimize the costs of
generating, storing, and using the dense sensitivity matrices
for efficient matrix-vector operation regardless of the iterative
or direct algorithm used to find the solution of the inverse
problem [24]. Without careful attention to the implementation
details, it is not feasible to obtain solutions on typical desktop
or laptop computers. For joint inversion, these factors become
even more crucial.

Several strategies have been developed to mitigate the
difficulties associated with inverting large-scale datasets. For
example, a compression technique to speed up the com-
putations and decrease the memory requirements can be
applied [33]. Using the fast wavelet transform on the sen-
sitivity matrix, with thresholding applied to eliminate the
small wavelet coefficients, so as to obtain a sparse minimal
memory representation of the matrix has also been consid-
ered [24]. Not only does the wavelet approach reduce storage
requirements because the matrix is compressed but also the
computational cost is lowered through the use of fast matrix-
vector multiplications in the wavelet domain. The overall costs
for carrying out matrix-vector operations may be reduced by
either reducing the number of such operations and/or by pro-
jecting the original problem to a smaller subspace. Algorithms
that fall into this category are, for example, iterative solvers

or randomization algorithms that use subspace projection.
Given a suitable projected space, a subspace solution can be
obtained cheaply under the assumption that the characteristics
of the full-space problem are sufficiently captured [29], [30],
[42], [43]. These solvers can also be used in the context
of approaches that speed up the underlying matrix-vector
operations. For example, taking advantage of the underlying
structure of the sensitivity matrices is advantageous for the
solution of large-scale inverse problems [34].

When the data are obtained on a uniform grid and an
associated uniform volume discretization is defined for each
depth layer of the volume, then the sensitivity matrix exhibits
a block Toeplitz Toeplitz block (BTTB) structure for each
set of unknowns by depth in the volume [7], [49]. These
block matrices are symmetric for the gravity problem but
unsymmetric for the magnetic problem. In either case, the
resulting BTTB matrix can be embedded into a block circulant
circulant block (BCCB) matrix that facilitates the use of the
2DFFT for all matrix-vector operations [47], and there is no
need to store either the BTTB or BCCB matrix. To perform
the embedding, one needs only the first column, or for the
unsymmetric case both the first row and the first column,
in order to fully describe the underlying operations with the
matrix as a 2DFFT. Not only is there a consequent significant
savings in memory but also the use of the 2DFFT for all
matrix-vector operations improves (reduces) the computational
costs significantly within any solver, yielding an efficient strat-
egy for the inversion of large-scale potential field data [34].
The strategy has also extended successfully for joint inversion
of gravity and magnetic datasets [41]. Here, we apply the
BTTB structure of sensitivity matrices in combination with
a mixed L p-norm joint inversion algorithm. The feasibility
to use this approach on the large scale is further enhanced
by adopting an inversion algorithm that alternates the updates
for the density and magnetic susceptibility while keeping the
coupling of the two models through the cross-gradient con-
straint. This further facilitates the inversion of large datasets
in a reasonable time and with reduced storage requirements.
The alternating algorithm applies regardless of the presence of
the BTTB structure of the sensitivity matrices, and significant
savings in computation time are observed.

For the joint inversion of gravity and magnetic datasets,
it is standard to seek a solution for which the overall data
misfit for both models satisfies a �2 criteria as a measurement
of the convergence of the algorithm. When this data fit
term is measured for the two models, it is possible that the
iteration will terminate when one or other of the models has
a much reduced individual data fit term. This will occur if
the convergence for one model is faster than for the other and
will correspond to over fitting of the model that converged
faster. This overfitting can lead to greater error in the specific
reconstructed models. To avoid the imbalance between the
accuracies of each model, it is appropriate to balance the
individual contributions of each data fit term to the overall data
fit used for the convergence test. Here, we apply weighting
parameters for each data misfit term and present an effective
strategy to determine the relative weighting parameters. In the
algorithm, all components of the objective function, including
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the data misfits, stabilizers, and cross-gradient coupling, are
weighted with suitable parameters that are updated through
the iteration. This yields a joint inversion algorithm for which
the fit for each data type is suited to its individual noise level.

A. Overview of Main Scientific Contributions
An efficient general algorithm for mixed L p-norm joint

inversion with a cross-gradient coupling is presented. The
approach includes the imposition of an anisotropic gradient
norm constraint, combined with a norm constraint on the
model parameters. This extends the work in which the efficient
joint alternating direction (AD) algorithm was introduced
without balancing the data fits and without the mixed-
formulation, namely, for either a single L p-norm constraint
on the model parameters or on a single isotropic gradient
of the parameters (no experiments were reported using the
isotropic gradient norm) [41], [44, eqs. (5)–(7)]. The imple-
mentation uses a matrix-free and storage-efficient calculation
of all derivatives of the parameters, as well as the entries
of the coupling matrices. Furthermore, a novel strategy to
automatically balance the data fit terms to limit either over
or underfitting of either dataset is presented. The weighting of
the data misfit terms is designed to ensure that both datasets
fit within their respective noise levels. This approach makes
it completely feasible to address many options for mixed and
practical inversion of real datasets. Different choices for the
norm constraint terms, which are flexible to any choice of
L p-norm with 0  p  2, can be used to provide sparse or
smooth solutions and allow the use of isotropic or anisotropic
gradient terms.

B. Organization
Section II addresses the main background for all the

components of the joint inversion algorithm. The problem
formulation is given in Section II-A, and a brief explanation of
the mixed L p-norm inversion methodology for the inversion
of a single dataset is provided in Section II-B with all the
major details that are standard for independent inversions. The
coupled cross-gradient joint inversion formulation is provided
in Section II-C, with algorithm considerations in Section II-D.
Effective determination of the various important weighting
parameters that define a specific inversion is discussed in
Section II-E. The resulting mixed L p cross-gradient coupled
joint inversion algorithm is validated using synthetic datasets
in Section III. The selection of options for the tunable weight-
ing parameters is applied on two different models to showcase
the properties of the algorithm that is given in the Appendix.
Results on the application of the algorithm on real gravity and
magnetic data obtained over two kimberlite pipes in Botswana
are given in Section IV.

II. JOINT INVERSION METHODOLOGY

The joint inversion of the data depends on both the frame-
work that is used for the independent inversion of two distinct
datasets and the approach by which the two models are
coupled. The fast inversion of a single potential field dataset is
by now well-studied; for example, earlier works are provided

in [10], [19], [23], and [31] with recent extensions that
discuss efficiency and inclusion of more general regularization
terms [7], [11], [17], [24], [33], [34], [35], [36], [42], [43],
[44], [48], [49]. For the joint inversion, the use of a cross-
gradient coupling constraint for potential field datasets has
also been described in the literature [12], [13], [14], [15], [27],
[38], [41]. Our main contribution is the extension to apply the
cross-gradient coupling constraint with a mixed regularization
term that includes an anisotropic gradient constraint and a
stabilization constraint on the model. Balancing is applied
for the data fit terms that arise. Combining these terms
together introduces multiple weighting parameters that need
to be tuned to obtain a suitable solution. To be complete,
we present the basic information in Section II-A, a brief
review of the approach for the single data case in Section II-B,
a description of the major requirements for the joint algorithm
in Section II-C, and an overview leading to the final objective
function in Section II-D. The AD algorithm is detailed in
Algorithm 1 in the Appendix along with a discussion of
important computational considerations.

A. Problem Formulation
We assume the linear forward projection problem

d
obs = Gm (1)

where G 2 Rm⇥n is a linear forward modeling operator that
projects the model parameters collected in vector m 2 Rn to
observed measured data d

obs 2 Rm at, or above, the surface,
with m ⌧ n. In obtaining this formulation, we make a number
of assumptions: 1) the observed data are distributed on a
uniform grid at a fixed height, denoted by zav, relative to
the surface of a volume for which the subsurface target(s)
should be identified [5]; 2) each measurement station is at the
center of the top face of a cuboid defined for the first layer
of the volume; 3) the volume discretization is comprised of
cuboids that are all of the same size; and 4) the unknown
physical properties of the cuboids contained in vector m are
assumed to be constant and are associated with the value
at the geometric center of each cuboid. The assumption of
a uniform grid can be achieved by interpolating the data
from nonuniform locations to uniform locations. It has been
shown that it is reasonable to use interpolation because the
associated errors that are introduced have a lesser effect on
the solution than the practical errors in the measurements [6].
The advantage of the use of these assumptions is that we
obtain the BTTB structure of the matrices by depth layer,
which facilitates both memory and cost reduction in the use
of the sensitivity matrices, as noted in Section I and further
described in [7] and [47].

The forward model [see (1)] applies for both gravity and
magnetic problems, in which the unknowns represent the
subsurface densities m1 and magnetic susceptibilities m2,
respectively, and the matrix G is modified according to the
model, specified consistently as G1 and G2.1 For the magnetic
case, we suppose that there is no remanent magnetization, and
the self-demagnetization effects are negligible.

1Throughout this article, we use subscripts 1 and 2 to indicate terms that
are related to the gravity and magnetic models, respectively.
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B. Inversion of a Single Dataset Using a Mixed
L p Stabilization

An approach to find a single model m given d
obs uses

a mixed L p-norm regularization, as described further in the
following [11], [36], [48]:

m
⇤ = arg min

m

{8(m)} = arg min
m

�
�datafit(m) + �2�reg(m)

 

(2)

where �datafit(m) is a data fit term, �reg(m) comprises stabiliza-
tion terms, and � > 0 is a regularization parameter that trades
off the relative contributions of the two terms. The weighted
data fit is given by

�datafit(m) = kWdobs
�
d

obs � Gm
�
k2

2. (3)

The diagonal matrix Wdobs is the inverse square root of the
covariance for the noise in the measured data d

obs. The noise
is assumed independent but potentially colored so that the
diagonal entries in Wdobs are the inverses of the standard
deviation estimates for the noise per data point.

The mixed regularization term given by

�reg(m) = ↵skm � m
aprkps +

X

j=x,y,z

↵ j kD j mkp j

= �s(m) + �D(m) (4)

depends on the norm parameters 0  ps, p j  2, typically
assumed to be integers, which can be chosen differently for
all components.2 Subscript s indicates variables that are associ-
ated with the smallness component �s(m). This measures the
size of a model with respect to an initial model, m

apr [11].
The starting model can be a known reference model for
the candidate approximation of m. It is also possible to set
m

apr = 0 if no prior information is available. In (4), �D(m)

is used to denote the terms that measure the smoothness of
the subsurface model along the three orthogonal directions
[21], [23]. D j m yields an approximation to a given derivative,
dependent on j and the intended order of the derivative. For
p j = 1, �D(m) is an anisotropic total variation stabilizer that
provides a blocky model. It is also possible to replace the
sum in �D(m) by a single term to yield an isotropic gradient
constraint [41, eqs. (5)–(7)]. Also, it is possible to use only
�S(m) to provide a sparse solution, but, as our results will
demonstrate, the use of the mixed L p-norm provides a result
that is more robustly sparse, as discussed in [11] for the case
of inverting a single dataset.

While the direct solution of (4 for general ps, p j 6= 2 poses
challenges, a widely used and well-known strategy yields an
iterative approximation for L p-norm of a vector x, kxkp, using
an L2-norm3 [10], [11], [20], [42]

kxkp ⇡ kWxk2
2, W = diag

✓�
x

2 + ✏2� p�2
4

◆
. (5)

2 p = 0 is not a norm in the mathematical sense but can still be used to
generate solutions that are compact in that it gives the total number of nonzero
elements for the given model.

3Note that, here and throughout as helpful, we give the form for W by
using the inverse operation 1/a�c = ac . Furthermore, we use the notation
that the product of vectors refers to componentwise products.

Applying the method of iteratively reweighted least squares
(IRLS), the solution of (2) is obtained by minimizing the
objective function that is solved at each iteration k

8(k)(m) = kWdobs
�
d

obs � Gm
�
k2

2

+ �2↵skWdhW
(k)
s
�
m � m

(k�1)
�
k2

2

+ �2
X

j=x,y,z

↵ j kWdhW
(k)
D j

D j mk2
2. (6)

This depends on weighting parameters ↵s � 0 and ↵ j � 0.
The nonlinear diagonal weighting matrices that define the

smallness and gradient terms are obtained from (5) and are
given by

W
(k)
s = diag

✓⇣�
m

(k�1) � m
(k�2)

�2 + ✏2
s

⌘ ps �2
4
◆

(7)

and

W
(k)
D j

= diag

 ⇣�
D j m

(k�1)
�2 + ✏2

j

⌘ p j �2
4

!
, j = x, y, z. (8)

The safety parameters 0 < ✏s, ✏ j ⌧ 1 are introduced to assure
that the given matrices are nonsingular. The matrix Wdh =
WhardWdepth is a constant diagonal weighting matrix. Matrix
Whard is used to introduce hard constraints into the model.
If some of the model parameters are already known, perhaps
from drill-hole data or prior geological information, then the
respective diagonal entries are set to large values for weighting
of the known model parameters, and the relevant entries
of m

apr are assigned to these known values. Otherwise, the
diagonal entries in Whard are set to 1. Thus, the known model
parameters are kept fixed during the iterative minimization [5].
The diagonal depth weighting matrix Wdepth = (z + zav)

�(⌫/2)

is used to counteract the rapid decay of the kernels with
depth [23]. Parameter z is the mean depth of the cuboid, and ⌫

is an adjustable parameter that is determined in such a way that
the resulting weighting matrix captures the decaying behavior
of the model kernel.

For potential field inversion, it is also important to have
knowledge of approximate upper and lower bounds for the
physical properties that can be imposed iteratively. These
bounds are used to maintain realistic solutions through the
IRLS inversion algorithm and provide another way by which
prior geophysical or geological knowledge is imposed. At each
iteration, if an estimated model parameter falls outside the
predefined bounds, it will be returned back to the nearest
bound [5]. Imposing suitable and correct bounds is very
relevant when sparsity regularization is used [19], [32].

C. Joint Inversion of Two Datasets
We rewrite the mixed regularization term that occurs in (6)

as

�(k)
reg(m) ⇡ ↵skW

(k)
m

�
m � m

(k�1)
�
k2

2

+
X

j=x,y,z

↵ j kW
(k)
D j m

mk2
2 (9)

where

W
(k)
m

= WdhW
(k)
s and W

(k)
D j m

= WdhW
(k)
D j

D j . (10)
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In each case, the iteration matrices are calculated using (7) and
(8) with the appropriate choice of m1, or m2, and the depth
matrices and hard constraint matrices are chosen dependent on
the data, and a choice of ⌫ where generally ⌫1 6= ⌫2. Safety
parameters ✏s and ✏ j are replaced by distinct ✏s1, ✏s2 and ✏ j1,
✏ j2, respectively, as needed to tailor the tolerances to the model
parameters. Moreover, all weights can be adjusted for each
model. This yields a joint, but uncoupled formulation for the
gravity and magnetic models

8(m) =
�
� 2

1 �datafit(m1) + �2
1 �reg(m1)

�

+
�
� 2

2 �datafit(m2) + �2
2 �reg(m2)

�

= 81(m1) + 82(m2). (11)

In our implementation, the coupled joint problem is obtained
by imposing a correlation between the models. Equation
(11) is augmented by the nonlinear cross-gradient term, ktk2

2,
yielding

8Coupled(m) = 81(m1) + 82(m2) + �2ktk2
2 (12)

where � > 0 is a Lagrange parameter

t = rm1(x, y, z) ⇥ rm2(x, y, z) 2 R3n (13)

and r indicates the gradient operator. Structural similarity is
achieved when t = 0 [13]. To find m1 and m2 that achieve
a minimum for 8Coupled in (12), we follow the approach of
Gallardo and Meju [13], [14] in which a first-order Taylor
expansion is applied to linearize the cross-gradient constraint.
The linearized version of 8Coupled is

8Coupled(m) = 81(m1) + 82(m2) + �2kt + B
�
m � m

apr�k2
2

(14)

where B is the Jacobian matrix of the discrete approximation
for the cross-gradient function

B =

0

@
B1x B2x
B1y B2y
B1z B2z

1

A = (B1, B2) 2 R3n⇥2n. (15)

Block matrices Bi j , i = 1, 2 and j = x, y, z, are the com-
ponents of B for gravity and magnetic problems, respectively,
in the three orthogonal directions [12], [13], [14].

Taking rm8Coupled(m) = 0 defines an iterative scheme
to update the model parameters as the solution of a linear
symmetric positive definite (SPD) system

E
(k)

m
(k) = f

(k), k = 0, 1, . . . (16)

where the terms are updated for each iteration k. The system
is defined by

E
(k) = � 2(Wdobs G)>Wdobs G + �2�

B
(k)
�>

B
(k)

+ �2

0

@↵s
�
W

(k)
m

�>
W

(k)
m

+
X

j=x,y,z

↵ j

⇣
W

(k)
D j m

⌘>
W

(k)
D j m

1

A

(17)

and

f
(k) = � 2(Wdobs G)>Wdobs d

obs + �2�
B

(k)
�>

B
(k)

m
(k�1)

� �2�
B

(k)
�>

t
(k) + �2

⇣
↵s
�
W

(k)
m

�>
W

(k)
m

⌘
m

(k�1).

(18)

The coupling of the model parameters arises because

B
>

B =
✓

B
>
1 B1 B

>
1 B2

B
>
2 B1 B

>
2 B2

◆
(19)

does not have a block diagonal form. On the other hand, if we
ignore the off-diagonal entries, B

>
1 B2 and B

>
2 B1, we obtain the

two independent systems of equations equivalent to (16) for
each of m1 and m2. The system is described by

E
(k)
i = � 2

i G
>
i W

>
d

obs
i

Wd
obs
i

Gi + �2
i

⇣
B

(k)
i

⌘>
B

(k)
i

+ �2
i ↵s
�
W

(k)
mi

�>�
W

(k)
mi

�

+ �2
i

X

j=x,y,z

↵ j

⇣
W

(k)
D j mi

⌘>
W

(k)
D j mi

(20)

and

f
(k)
i = � 2

i G
>
i W

>
d

obs
i

Wd
obs
i

d
obs
i + �2

i

⇣
B

(k)
i

⌘>
B

(k)
i m

(k�1)
i

� �2
i

⇣
B

(k)
i

⌘>
t
(k) + �2

i

⇣
↵s
�
W

(k)
mi

�>
W

(k)
mi

⌘
m

(k�1)
i . (21)

The Jacobian matrix Bi and vector t are updated between the
solution of the two systems. Equations (20) and (21) are of
the same format as the full system that is of size 2n ⇥ 2n but
adapted for system i of size n ⇥ n. It has been shown that
significant computational savings are achieved for the solution
of (17) and (18) without the anisotropic constraint [41]. While
ignoring off-diagonal entries in (19) can introduce a small
error into the final solution, computational savings in memory
and time are, indeed, observed by adopting AD Algorithm 1
to solve (20) and (21).

D. Algorithmic Considerations for the Joint Inversion
Objective Function With the Cross-Gradient Constraint

The AD algorithm, as given in Algorithm 1, is terminated
when the �2 test is satisfied for each data fit term. This requires
that

(�2)(k) = kWdobs
�
d

obs � Gm
(k)
�
k2

2  m +
p

2m (22)

or equivalently

!
(k)
i =

�
�2

i
�(k)

m +
p

2m
 1 (23)

for both m1 and m2. As a safety check, the algorithm will
also terminate if k = Kmax is achieved before the �2 test is
satisfied.

In (14) defined for each iteration k, the data misfit terms are
weighted with parameters �i > 0, i = 1, 2. The motivation
for weighting each misfit term is that it is typically difficult to
balance the relative values of the two misfit terms [22]. The
convergence of one data fit term is generally faster than the
other. This means that, at convergence with a combined mea-
sure of the �2 fit given by (22), it is feasible that one dataset

Authorized licensed use limited to: ASU Library. Downloaded on June 10,2024 at 00:49:46 UTC from IEEE Xplore.  Restrictions apply. 



5614917 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

will be oversmoothed due to overfitting, while the other may
be noisier due to underfitting. Applying weighting parameters
�i to balance the two data misfits can mitigate this problem and
can impose that both misfits are met to their individual noise
levels. This requires a strategy to determine the �i parameters
dynamically, along with all the other regularization parameters
↵s , ↵i , �i , and �i . This presents a greater challenge than the
approach in [22] in which only the data misfit weightings are
changed. We note that the parameters ⌫i , ✏ j , and ✏s , defined
in Section II-B, also have important effects on the solution.

E. Estimating the Algorithm Parameters

In Algorithm 1, the parameters �i , ↵s , ↵ j , �i , and �i ,
i = 1, 2, determine the relative weights for the data misfits,
stabilization terms, and cross-gradient constraints within the
minimization of (14). Consequently, the choices for all of
these parameters have a significant impact on the quality of
the obtained results.

1) Relative Weighting Parameters on Regularization
Terms �

(k)
i : We use the cooling approach adopted

in [39]. For large initial �
(0)
i , �i and i = 1, 2 are adjusted

slowly according to

�
(k+1)
i =

(
�

(k)
i qi , !

(k)
i > 1

�
(k)
i , otherwise.

(24)

The decay rate parameters 0 < qi  1 impact the rate at
which the �

(k)
i decays with iteration k, and the use of different

starting values and decay rates allows an algorithm that can be
adapted to the properties of the two model sensitivity matrices.
Prior experience with these two models tells us that, while the
magnetic model is better conditioned than the gravity model
[39, Figs. 8 and 9, eq. (8), and tables], the largest singular
value for G2 is much larger. Therefore, it is important that
�

(0)
2 > �

(0)
1 . If we do not adjust these parameters appropriately

to the largest singular values, the impact of filtering the
components will not be equivalent across the two models.
In view of this, it is also important that �2 is not allowed
to decrease as rapidly as �1. In contrast, it is also possible
to use variable parameters qi that are small when the initial
iterations indicate predicted data that are far from the observed
data. Then, the data misfits are large, and qi should be small
to force faster convergence for the data misfit term.

2) Relative Weighting Parameters on Data Fit Terms �
(k)
i :

Initially, we take �
(0)
i = 1. Suppose that, during the cooling

approach, !
(k)
i < 1 for one dataset but not the other. At this

point, parameter �i is adjusted as

�
(k+1)
i = 1

1 +
✓

1 �
⇣
!

(k)
i

⌘2
◆ , where !

(k)
i  1. (25)

This provides a weighting �i  1, for the next iteration, which
is proportional to the distance from the target misfit at the
current iteration. The relative values of the two data misfit
terms are adjusted to guarantee the approximate fitting of each
dataset within its noise level.

3) Regularization Parameters ↵s and ↵ j : When imple-
mented in a true mathematical formulation, each term of the
anisotropic regularizer in �reg depends on an approximation to
the derivative of the model. The smallness term, in contrast,
provides differences in the model from one iteration to the
next and is not scaled by the grid size. Assuming that the
derivative is order 1 and applied mathematically with the grid
scaling included, then, with ps = p j , this means that we will
have ↵s ⇡ ↵ j h�ps

j , for j = x, y, where h j is the dimension of
the cell in the j th dimension. In the z dimension, however, the
depth weighting directly impacts this approximation, and the
relation cannot be uniformly applied at all depths. Taking
the three terms together, and assuming a uniform grid size
in each dimension, we can see that using ↵s ⇡ ↵ j h�ps

j would
overweight the L p contribution. Instead, it is reasonable to
roughly average the contributions from the x, y directions and
to use a much smaller contribution to the z direction so that
solutions that are inappropriately concentrated at depth are not
obtained. Using ↵s = 1, this yields choice ↵ j ⇡ 0.4 h p j

j for
the east and north dimensions with the reduced contribution
↵z ⇡ 0.01↵x.

When ps 6= p j , the relation between the various terms also
depends on the anticipated size of the model parameter. For
example, when p j = 2 but ps = 1, we find ↵ j�m ⇡ ↵s h2

j for
each cell. However, based on the bound constraints applied for
our experiments, we expect m1 ⇡ 10, and we would expect
the change �m to scale similarly, which yields ↵2

j ⇡ 10↵1
j ,

where ↵1
j / (h2

j ). On the other hand, when p j = 0 but
ps = 1, we obtain ↵ j ⇡ ↵s�m, which is independent of h j
with ↵ j < ↵s , and ↵1

j ⇡ 10↵2
j . Notice that, at convergence for

m, we expect that �m to be small. These estimates guide the
initial choices that are used in the experiments, which are then
refined to provide iterations that converge.

We note that, for nonuniform cuboids, different grid sizes
h j , j = x, y, and z, for the volume discretization, the
arguments need to be modified appropriately. Allowing the use
of separate parameters ↵s and ↵ j for all of the contributions to
the mixed regularization terms permits differential weighting
for the anisotropic derivatives and the smallness component.

4) Safety Parameters ✏1, ✏2, ✏s1, and ✏s2: It has been already
demonstrated in the literature that these are small positive
parameters that are chosen to assure that the weight matrices
are not singular. When the L0-norm is imposed, it is standard
to use a slightly larger parameter [35], [44].

5) Lagrange Parameters �i : It is clear that the limiting
case �i = 0 provides solutions without a structural similarity
constraint, and �i should be large in order to impose structural
similarity. However, in considering the size of �i , it is impor-
tant to consider that it weights the term kt+Bi (mi �m

(k�1)
i )k2

2.
Again, assuming that the derivatives are calculated directly,
and then by the definitions of t and B, we can see that each of
these has entries that are inversely proportional to the second
power of the grid size in each dimension, h�2

j , equivalent to
h�4

j in the two-norm. Hence, if h j is relatively large, the impact
of the cross-gradient term will not be significant unless �i is
taken large enough to balance against the regularization and
data fit terms. However, if �i is too large, it is also possible
that the data fit �2 measure is not satisfied, and the algorithm
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TABLE I
DATASET PARAMETERS FOR SIMULATED AND REAL DATA

does not converge within a reasonable number of iterations.
Lack of convergence can be seen in increasing or oscillating
values of !

(k)
i .

It can take more than one run of the algorithm to find the
suitable compromise value for �i that is neither too small
nor too large. We follow the strategy in [39] in which we
initially use a relatively small value for �i . If the algorithm
converges quickly but without achieving a good similarity, �i
is increased. The smallest values of �i that provides similarity
between the reconstructed models are selected. When the
algorithm is implemented for the full system without the AD,
the same approach is used for � = �i .

6) Impact of Relative Weightings: Large values of �i give
more weight to the importance of minimizing the regulariza-
tion terms and less weight to the data fit. This can lead to
solutions that are oversmoothed, while the data misfit criterion
is not satisfied. Small values for �i will likely yield models
that satisfy the data misfit but are noise-contaminated and not
stabilized. In contrast, small values of �i give less weight
to the data misfits. In our algorithm, �i and �i are iteration
dependent, but they do not change simultaneously. On the
other hand, �i is taken to be constant, and the impact of
the cross-gradient term gradually increases as �

(k)
i decreases.

An alternative balancing of the terms is also possible [11].

III. EXPERIMENTAL VERIFICATION OF THE MIXED AND
BALANCED JOINT INVERSION WITH

CROSS-GRADIENT COUPLING

The presented formulation is validated for synthetic exam-
ples discussed in Sections III-A–III-C and a practical dataset
described in Section IV. For the simulations, we assume:
1) the density contrast and magnetic susceptibility of the
subsurface structures are ⇢ = 0.6 g cm�3 and  = 0.06
(SI unit), respectively; 2) the bodies are embedded in a
homogeneous nonsusceptible background medium; and 3) for
all implementations, m

apr
i = 0. The experiments are performed

using diagonal matrix Wdobs for the noise added to the true
data using `th entry ⌧1 |(dobs

i )`| + ⌧2 max|dobs
i |, i = 1, 2 and

` = 1, . . . , m. The pairs (⌧1, ⌧2) for the experiments and
resulting SNR in each case are given in Table I. For the
experiments, we evaluate the performance of the algorithm in
terms of the weighted �2 measures (23), the required number
of iterations, and, when available, the relative errors of the
reconstructed models given by

REi = ||mexact
i � m

(K)
i ||2

||mexact
i ||2

, i = 1, 2 (26)

where m
exact is the exact model and m

(K ) is the reconstructed
model at the final iteration K  Kmax.

TABLE II
ALGORITHM PARAMETER CHOICES COMMON TO ALL REPORTED

RESULTS. ✏s1 AND ✏s2 ARE THE SAFETY PARAMETERS IN THE
SMALLNESS REGULARIZATION WEIGHTING

MATRIX [SEE (7)]

In all cases, there are a number of algorithm parameters
that need to be chosen. The parameters that are fixed for
all experiments are given in Table II. Parameters used to
test the algorithm with respect to the impact on the resulting
characteristics of the models and the convergence properties
of the algorithm are given in Table III. Upper and lower
bounds, ⇢min  m1  ⇢max (g cm�3) and min  m2 
max (SI unit), are imposed at all iterations of the inversion
algorithm. Different choices for ps and p j are assessed for
the joint inversion algorithm, extending the approach for
independent mixed L p-norm inversions given in [11] and [48].
Moreover, we aim to demonstrate that the AD strategy, which
has already been seen to be successful for the single L p-
norm inversion, is also valid within the mixed formulation
for providing a robust and computationally efficient inversion
of two datasets.

For all implementations, we use an iMac 2017 computer
with a 4.2-GHz Quad-Core Intel Core i7 processor and 32-GB
RAM. The results for all experiments are given in Table IV,
with timings obtained for the same problems also given in
parentheses for implementation on a MacBook Pro with M1
Max processor and 32-GB RAM. We note that the timings and
number of iterations may not be the same across each environ-
ment. It is the comparison of robustness across environments
and the relative increase in cost for the larger problems that
are most important in assessing that the algorithm is robust
for multiple environments and problems.

A. Simulations
The first example is a small but complicated model con-

sisting of two dipping dikes for which it is feasible in terms
of computational time to evaluate the algorithm for multiple
and different mixed L p-norm components. It is also possible
to validate the AD algorithm versus the full system imple-
mentation. These tests for the dipping dyke are referred to as
Tests 1–6 in Table IV. It is also feasible in this case to compare
with the standard independent inversion for the inversion of
each dataset. Results using the mixed L p-norm stabilization
without balancing, as described in (2), �1 = �2 = 1 and
without the cross-coupling constraint �1 = �2 = 0, are also
presented. We note also that tests with a different configuration
for a dipping dike using the cross-gradient constraint, without
balancing or mixed terms, were given in [40]. Results were
chosen to also demonstrate the impact of the cross-gradient
when one structure is not magnetic; in this case, a vertical
dike is not magnetic and demonstrated that the cross-gradient
coupling does not force the existence of the vertical structure
for the magnetic domain [40, Figs. 16 and 18].

The second example, Test 7, is a larger model consisting
of multiple bodies that are designed to validate the algorithm
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Fig. 1. Cross section of the synthetic model consisting of two dipping dikes
that are used in Tests 1–6. The dikes have a value of 0.6g/cm3 for the density
distribution and 0.06 in SI units for the magnetic susceptibility distribution.
We illustrate the structure of the magnetic susceptibility distribution.

for larger problems. The application of the hard constraint
matrix is demonstrated in this example. In all cases, the chosen
parameters are given in Tables II and III and the results in
Table IV.

The experiments presented in Section III-B are chosen to
demonstrate that the joint inversion algorithm can be used
to generate many different models all of which satisfy the
observed data to the given noise level. Thus, for practical
applications, it is feasible to use different stabilizing terms,
dependent on available a priori information as to what may
be desired in the model. The practicality of the solution to a
large problem is demonstrated in Section III-C.

B. Two-Dipping-Dike Model
Fig. 1 illustrates the cross section of the model with two

dipping dikes, each with a top depth 50 m, but with extensions
in depth for the left and right dikes of 350 and 200 m,
respectively. The gravity and magnetic data for the model are
generated on the surface on a 40 ⇥ 20 uniform grid with a
grid spacing of 50 m. The noisy datasets are illustrated in
Fig. 2. The subsurface volume is discretized into 40 ⇥ 20 ⇥
10 = 8000 cuboids of size 50 m, for a model that extends to
depth 500 m.

1) Test 1 (AD Algorithm for Mixed-L p Inversion, px =
py = pz = 2 and ps = 1): It has been suggested that
these choices are ideal, especially for the reconstruction of
a dipping structure [48]. Convergence is achieved in about
5–6 min. Structurally, the reconstructed density and magnetic
susceptibility models illustrated in Fig. 3 are similar. The
upper depths and dip of the structures are approximately
reconstructed, but the extensions in depth are not consistent
with the original synthetic models. Parameters !i at the final
iteration indicate that the gravity solution is close to the target
value, but the noise in the magnetic solution is further reduced.
The algorithm was also implemented for the same parameters
as for Test 1 (indicated as Test 1a) but without balancing, i.e.,
�i = 1, for all iterations. The algorithm terminates at the same
number of iterations, but !2 is further reduced to 0.71, which
suggests overfitting of the magnetic solutions and validates
the use of balancing in the algorithm. Furthermore, the relative
errors using the joint inversion are smaller than those achieved
by the independent inversions, which supports the use of the
joint inversion. Indeed, the independent inversion incorrectly
predicts increased susceptibility at greater depth.

2) Test 2 (FULL Algorithm for Mixed-L p Inversion, px =
py = pz = 2 and ps = 1): The number of iterations to
convergence and the relative errors are comparable to Test 1,

but the cost increases fourfold to 1785 s. The reconstructed
models illustrated in Fig. 4 cannot be determined to be any
improvement on those in Fig. 3. Given the commensurate
increase in computational cost without apparent improved
solutions, hereafter, we will use the AD strategy in the pre-
sented simulations.

3) Test 3 (L1-Norm for All Terms, ps = px = py =
pz = 1): This implementation should yield a blocky structure.
The algorithm termination is comparable to Test 1 with
reduced relative errors that are less than those achieved using
independent inversion. In each case, we see that !2 < !1.
From the cross sections in Fig. 5, we see that the magnetic sus-
ceptibility model is a slightly better representation of dipping
dikes compared to the density model. This is reflected also in
the relative errors given in Table IV. The results demonstrate
that the arguments given in Section II-E for selecting the regu-
larization parameters ↵s and ↵ j are appropriate and are equally
valid for the independent inversions. Again, in comparison
to the joint inversion, the independent inversion incorrectly
predicts variation in the susceptibility at greater depth.

4) Test 4 (Mixed L p, ps = 1, and px = py = pz = 0):
The L0-norm applied to the gradient terms should provide a
blocky solution. We have observed that, when an L0-norm is
applied, the solution is more sensitive to both the weighting
parameters and the choice of ✏s and ✏ j used within the iterative
reweighting matrices. This occurs due to the use of the second
root in (7) and (8) rather than the fourth root, which is required
for L1-norm components. Generally, a good set of parameters
allows the algorithm to converge within a reasonable number
of iterations. Hence, this sensitivity becomes apparent if the
algorithm is not converging. In such cases, it is sufficient to
run the algorithm under several configurations of the parameter
set and to, thus, find suitable parameters that provide a
good convergence behavior. From the density and magnetic
susceptibility models shown in Fig. 6, we see that the results
are quite blocky, particularly for the independent inversion,
which overestimates the depth of the magnetic structure. From
this result, we conclude that, although it is more challeng-
ing to find converged reconstructions using the L0-norm,
it is possible to reconstruct the dip of structure if suitable
weighting parameters are selected. This contrasts with the
suggestion in [48].

5) Test 5 (L1-Norm for All Terms, ps = px = py = pz = 1,
but Increased Upper Bounds ⇢max = 1.5 and max = 0.15):
This is the same configuration as Test 3 except for the upper
bounds. The timing and required number of iterations are
comparable to the Test 1 and 3 results, but the relative errors
are higher for both joint and independent inversions. This
is reflected in the cross sections illustrated in Fig. 7. In all
cases, it is clear that the estimated parameters are too high
at the centers of the target structures and are not consistent
with the original model. The obtained reconstructions are not
satisfactory. On the other hand, again, the joint algorithm does
yield better results in terms of relative error estimates than
the solutions obtained with independent inversion. Note that,
if we apply the L1- or L0-norm of the smallness term without
the anisotropic components (see [32]), the obtained models
become much more focused due to the incorrect bounds.
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Fig. 2. Anomaly produced by the two dipping dikes shown in Fig. 1 and contaminated with noise. (a) Vertical components of the gravity field. (b) Total
magnetic field.

Fig. 3. Cross sections of the reconstructed models using the AD algorithm for Test 1 for the datasets shown in Fig. 2. The results show the joint inversion
to give the density distribution and magnetic susceptibility distribution in (a) and (b) and the equivalent results for the independent inversions in (c) and (d),
respectively.

Fig. 4. Cross sections of the reconstructed models for the datasets shown in Fig. 2. (a) Density distribution. (b) Magnetic susceptibility distribution. The
Full system is used with the parameters, as given in Tables II and III, for Test 2.

6) Test 6 (L2-Norm for All Terms, ps = px = py =
pz = 2): Here, the use of L2-norms contrasts with the L1-
norms used for Test 5 and should provide a smooth model
of the subsurface. The smoothness is immediately evident in
Fig. 8. The algorithm requires more iterations to converge,
but the algorithm, whether joint or independent, is very fast,
indicating that the solution solves at each iteration are fast.
In particular, for each outer iteration, two different linear
systems are solved using the PCG algorithm to a specified
tolerance and not with a set number of iterations for the PCG.
We notice that the solutions, in this case, are more robust to
the imposition of the incorrect bounds than the results using
the L1-norms. The solutions by independent inversion are also
smooth but are less robust to the incorrect bounds.

7) Summary of Tests 1–6: Overall, we determine that:
1) the joint inversion outperforms the independent inversion,

particularly in terms of depth resolution; 2) the AD algorithm
is an effective approach that avoids the higher cost of the
FULL algorithm; and 3) the use of the mixed formulation with
L1 in all cases does indeed provide solutions that are better at
predicting the structures, particularly at depth.

C. Model of Multiple Bodies

Fig. 9 illustrates a model consisting of six subsurface targets
with different shapes, dimensions, and depths, for which three
depth sections are illustrated in Fig. 10. Gravity and magnetic
data are generated on a grid with 100 ⇥ 50 points and a
grid spacing of 100 m, and the volume is extended to the
depth of 800 m, yielding 40 000 cuboids of size 100 m. The
noise-contaminated data are illustrated in Fig. 11. For this
model, the results of the inversion using the L1-norm for
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Fig. 5. Cross sections of the reconstructed models using the AD algorithm for Test 3 for the datasets shown in Fig. 2. The results show the joint inversion
to give the density distribution and magnetic susceptibility distribution in (a) and (b) and the equivalent results for the independent inversions in (c) and (d),
respectively.

Fig. 6. Cross sections of the reconstructed models using the AD algorithm for Test 4 for the datasets shown in Fig. 2. The results show the joint inversion
to give the density distribution and magnetic susceptibility distribution in (a) and (b) and the equivalent results for the independent inversions in (c) and (d),
respectively.

Fig. 7. Cross sections of the reconstructed models using the AD algorithm for Test 5 for the datasets shown in Fig. 2. The results show the joint inversion
to give the density distribution and magnetic susceptibility distribution in (a) and (b) and the equivalent results for the independent inversions in (c) and (d),
respectively.

the smallness term, without the anisotropic components, are
presented in [41].

1) Test 7 (Large Model With Hard Constraint Matrices):
Matrices (Whard)1 and (Whard)2 are tested by assuming that

there is a priori information on the physical properties of four
cuboids that are located in the southwest corner of the small
cube in the second layer. This layer extends from 100 to
200 m. We also suppose that the cuboids above and below
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Fig. 8. Cross sections of the reconstructed models using the AD algorithm for Test 6 for the datasets shown in Fig. 2. The results show the joint inversion
to give the density distribution and magnetic susceptibility distribution in (a) and (b) and the equivalent results for the independent inversions in (c) and (d),
respectively.

Fig. 9. Synthetic model consisting of six targets with different geometries
and depths for Test 7.

these known cuboids, in the first and third layers, do not have
any contrast with the background. These known density and
magnetic susceptibility values are imposed in the initial model,
which is otherwise 0, and by setting the relevant entries in
(Whard)1 and (Whard)2 to 100.

From the results given in Table IV, we see that the mag-
netic problem converges in fewer iterations than the gravity
problem. The time increases commensurate with the increased
size of the problem but is still reasonable and less than an
hour. From Figs. 12 and 13, it is evident that sharp and
focused reconstructions for the subsurface targets are obtained.
The models are in good agreement with the original model
and have nearly similar structures. Although an incorrect
extension in the depth direction is seen in other parts of the
small cube, the cuboids with known values do not show any
depth extension. This example indicates that it is possible to
incorporate information into the joint inversion algorithm in
order to increase the reliability of the reconstructed models.
Furthermore, the results presented in Figs 12 and 13 are better
than the results for the same model and a comparable SNR,
as noted with only the L1 constraint on the model parameters,
which were presented in [41]. There, the results were given
with and without the joint inversion with the cross-gradient
coupling, as shown in Figs. 5 and 6 and 8 and 9, respectively.
Compared with Figs 12 and 13, we see that we now achieve

better resolution at depth 400 m using the cross-gradient
coupling with balancing, particularly for the susceptibility,
despite the incorrect extensions of the smaller structures. This
validates using the hard constraint and the mixed and balanced
stabilization for joint inversion.

IV. REAL DATA

The AD joint inversion algorithm is applied on ground
gravity and magnetic data acquired over two kimberlite pipes
in the Orapa kimberlite field (OKF) in north-central Botswana.
The OKF is a well-known diamond-producing region and
lies within the Kalahari basin, which trends northeast across
central Botswana. The Kalahari basin is comprised of the
Karoo Supergroup, which consists of mostly clastic sedi-
ments interbedded with basaltic layers. Underlying the Karoo
Supergroup are Archean-aged lithologies that include biotite
gneisses, amphibolites, and metamorphosed basalts (green-
stones) [26]. Of importance to our study are basalt flows
of the Stromberg Group that overlies most of the Karoo
sedimentary sequences. Overlying all of the sedimentary and
basaltic layers is a thin layer of calcrete and silcrete. More
information on the geology of the region can be found in [26].
Recently, several small kimberlite pipes have been discovered
in the region using geophysical methods. Two of these pipes,
hereafter called BK54 and BK55, were found using ground
gravity and magnetic surveys. Subsequent drilling confirmed
the presence of the kimberlitic material [26]. Residual gravity
and magnetic anomalies over BK54 and BK55 are illustrated
in Fig. 14. The residual magnetic anomaly, clearly, has positive
anomalies over the BK54 and BK55 pipes. On the other hand,
the BK55 pipe is only characterized by a small amplitude
gravity maximum, while the BK54 pipe does not produce a
gravity maximum but has a small amplitude gravity minimum.
This may be due to the crater facies containing less dense
material or may also be due to a lack of density contrast
between the BK54 pipe and the surrounding sandstones [26].
Based on available boreholes, the kimberlitic material was
found at a depth between approximately 80–150 m in BK54
and 125–220 m for BK55 [26]. One borehole, drilled until
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Fig. 10. Depth sections of the synthetic model shown in Fig. 9. Here, the density distribution of the model is presented at depths of (a) 100, (b) 200, and
(c) 400 m.

Fig. 11. Anomalies produced by the model shown in Fig. 9 and contaminated with noise. (a) Vertical components of the gravity field. (b) Total magnetic
field.

Fig. 12. Depth sections of the reconstructed density model using the joint inversion algorithm at depths of (a) 100, (b) 200, and (c) 400 m for the data
shown in Fig. 11.

Fig. 13. Depth sections of the reconstructed magnetic susceptibility model using the joint inversion algorithm applied on the data shown in Fig. 11. The
depth sections are presented at depths of (a) 100, (b) 200, and (c) 400 m.

depth 221 m, did not encounter the bottom of the BK55 pipe,
which indicates that more extension is possible.

For the joint inversion of this data, we used the same
setup for the inversion, as presented in [46]. Specifically, the
gravity and magnetic anomalies were gridded on a uniform
grid of size 26 ⇥ 34 = 884 data points with grid spacing
15 m. The subsurface volume is discretized with uniform
cells of sizes 15 m in each dimension to a depth of 300 m
corresponding to 20 depth layers. To avoid possible distortion
in the reconstruction along the boundaries, the domain was
padded to a width of 45 m in the east, west, south, and
north directions in the grid domain. This yields a model with
32 ⇥ 40 ⇥ 20 = 25 600 cuboids. The lower and upper
bounds for this case, as indicated in Table III, are obtained
from [26]. Furthermore, the choice ps = px = py = pz = 1

was made with the goal to obtain a compact and focused
reconstruction for the identification of kimberlite pipes [11].
The use of Algorithm 1 for the inversion of the data con-
trasts with the inversion using the cross-gradient coupling and
L1-norm constraint on each of the model parameters, as
presented in [46].

Convergence was achieved at 78 iterations, requiring a
clock time of 2286 s, considerably faster than the 6461 s
for convergence at 86 iterations, for the inversion presented
in [46]. The improved (reduced) cost is in part due to
the use of a more powerful laptop for the current set of
results, but note also that the problem is larger due to
the use of the anisotropic norm constraint and the L1-
norm on the model parameters. Compared to the synthetic
studies, the timing is consistent; the synthetic multiple-body
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Fig. 14. Gravity and magnetic anomalies over BK54 and BK55. (a) Residual gravity anomaly. (b) Residual magnetic anomaly. Lines AA0 and BB0 are the
locations for which the cross sections of the reconstructed models are illustrated.

Fig. 15. Depth-sections of the reconstructed models using the joint AD algorithm for the real datasets shown in Fig. 14. The parameters used in the inversion
are given in Tables II and III (Test R). (a)–(c) Magnetic susceptibility model and (d)–(f) density model at depths of 70, 110, and 150 m, respectively.

model is a little larger and requires a larger clock time to
converge. At convergence, !1 and !2 are .76 and .91, respec-
tively, when balancing is applied, but, without balancing, the
algorithm still terminates at iteration 78 but with !1 = 0.34

and !2 = 0.92. This indicates overfitting occurs without
balancing.

These results clearly indicate that our strategy for weighting
the data misfit terms is appropriate and can provide an
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TABLE III
SUMMARY OF THE EXPERIMENTS FOR THE JOINT INVERSION ALGORITHM APPLIED ON DATA PRODUCED BY THE SYNTHETIC MODELS 1 AND 2 AND

FOR THE REAL DATASETS OF THE OKF IN BOTSWANA, HERE INDICATED USING R. D, I , AND F ARE THE DECLINATION, INCLINATION, AND
INTENSITY OF THE GEOMAGNETIC FIELD, RESPECTIVELY. AD AND F INDICATE THE APPLICATION OF THE AD ALGORITHM AND THE

USE OF THE FULL SYSTEM, RESPECTIVELY. ADP INDICATES THAT PADDING IS USED WITH THE AD ALGORITHM FOR A UNIFORM
PADDING OF THREE CELLS IN EAST AND NORTH DIRECTIONS. ✏ j IS THE SAFETY PARAMETER USED IN THE TV TERMS

[SEE (8)]. ⇢min, ⇢max, min, AND max, RESPECTIVELY, ARE THE BOUNDS ON THE VARIABLES. �1 AND �2 ARE
THE LAGRANGE PARAMETERS WEIGHTING THE CROSS-GRADIENT COUPLING. REGULARIZATION IS IMPOSED

WITH PARAMETERS ↵s , ↵i
x = ↵i

y, AND ↵i
z = 0.01↵i

x FOR ps AND p j REGULARIZATION NORMS

Fig. 16. Cross sections of the reconstructed models using the joint AD algorithm for the real datasets shown in Fig. 14. The parameters used in the inversion
are given in Tables II and III (Test R). (a) and (b) Magnetic susceptibility model and (c) and (d) density model with cross sections at Northing = 180 m and
Northing = 350 m, respectively.

approximately reasonable balance between two data misfit
terms. The depth and cross sections of the reconstructed
density and magnetic susceptibility models are illustrated in
Figs. 15 and 16. Although the upper depths of the recon-
structed models, for BK54 and BK55, are not consistent with
the information from boreholes, the extensions of the targets
approximately match the estimates indicated by the boreholes.
From the reconstructed density model, we see that there are
lower density materials associated with BK54. The lack of a
large dense body for the BK54 kimberlite but having a high
magnetic susceptibility could be indicative of the diatreme
portion for most of the kimberlite. The diatreme portion

consists of highly brecciated material, which would reduce
the density of the material but still contains a large amount
of magnetic minerals. The amount of brecciation is within
the middle of the kimberlite, and the higher density region
near the surface above the known position of the kimberlite
may be due to the overlying basalt. The higher density and
magnetic susceptibility regions at the west of the models [see
Fig. 16(a) and (c)] may be due to basalt layers within the
Karoo Supergroup sediments or Archean lithologies, which are
known to exist just to the north of the study area [26]. The
results presented in Figs. 15 and 16 are for the same depth
and cross sections as [46, Figs. 10 and 11]. We see overall that
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TABLE IV
RESULTS OF THE JOINT INVERSION ALGORITHM FOR THE TESTS DETAILED IN TABLES II AND III IN ADDITION TO THE RESULTS WITH NO BALANCING

INDICATED AS 1a AND Ra, RESPECTIVELY. HERE, THE RESULTS SHOW THE ITERATIONS AT WHICH THE �2 TEST WAS SATISFIED FOR EACH
DATASET, INDICATED BY K1 AND K2, RESPECTIVELY, AS WELL AS THE ERRORS AND �2 MEASURES AT CONVERGENCE AT THE FINAL

ITERATION. THE TIME FOR THE RUN IS ALSO REPORTED IN SECONDS FOR THE IMAC AND IN PARENTHESES FOR THE MAC LAPTOP.
IN THE SECOND BLOCK ARE THE SAME EXPERIMENTS ON THE IMAC BUT WITHOUT THE CROSS-GRADIENT COUPLING AND

WITH THE RESULTS GIVEN AT THE INDIVIDUAL CONVERGENCE ITERATIONS K1 AND K2

the use of balancing and the mixed formulation yields results
that are overall less smoothed.

V. CONCLUSION

An efficient strategy for mixed L p-norm, 0  p  2, joint
inversion of gravity and magnetic datasets, combined with a
cross-gradient structural coupling constraint between density
and magnetic susceptibility models, has been presented and
validated. The algorithm uses weighting parameters for all
components. The data misfits are weighted with parameters
that are proportional to the distance from the target misfit. This
provides an effective strategy to balance the two terms so that
each model is fit to its own noise level, which is important in
a joint inversion algorithm. The strategy used here provides a
good balance between the two terms. Furthermore, a general
and robust approach to determine all weighting parameters is
discussed. It is also demonstrated that the use of alternating
updates for the density and magnetic susceptibility models
yields a very effective approach for the joint inversion of
datasets at significantly reduced computational cost compared
to an approach using the full systems at each iteration while
providing solutions that are comparable in quality to the solves
without the AD. The application of the BTTB structure of
the sensitivity matrices, and the matrix-free calculation of
derivatives, is also crucial in providing an algorithm that is
memory efficient for the solution of large problems. Together,
the memory and computationally efficient implementation
make it feasible to make robust estimates of subsurface targets.

Two synthetic datasets were used to assess, and high-
light, the performance of the algorithm with respect to the
selection of different stabilizers and regularization parame-
ters. We showed the robust performance of the algorithm by
presenting the results of applying the algorithm for different
combinations of the L p-norm components of the stabilizers.
If suitable weighting parameters are chosen, the algorithm can
provide smooth, sparse, or blocky models, dependent on the
L p-norm components applied within the stabilization term.
Furthermore, a combination of both sparse and blocky stabi-
lizers yields good reconstructions of the subsurface. Moreover,
by also presenting results for mixed L p stabilization used
with independent inversions, we verify that the joint inversion

generally outperforms the independent algorithm in terms of
reduced relative error at a comparable cost.

The algorithm was applied to real data obtained over two
kimberlite pipes, BK54 and BK55, in Botswana. The magnetic
data clearly indicate two pipes, but the BK54 pipe does
not appear on the residual gravity anomaly. The algorithm
provides an acceptable reconstruction for both pipes. Although
the depths to the top of the pipes are not consistent with the
drill hole information, the extensions in depth are close to
those estimated by boreholes.

APPENDIX

Practically, we note that all diagonal weighting matrices
only require storage of their n diagonal entries, and the
multiplications WdhW

(k)
s and WdhW

(k)
D j

are accomplished in
O(n) operations for each iteration. Moreover, the calculation
of updating matrices W

(k)
s and W

(k)
D j

is accomplished in O(n)

operations per iteration, given m
(k�1) and D j m

(k�1). For our
implementation, D j m

(k�1) is obtained using a matrix-free
implementation in which, for the first-order derivative operator,
the calculation of the x or y derivative for m on a given
depth slice can be obtained using a suitable differencing
operation on that slice. This is equivalent to forming the first-
order difference approximation for the first-order derivative,
which is obtained using the bidiagonal matrix with �1 on the
diagonal and 1 above the diagonal. The derivative in depth
is obtained in the same way but now applied for a constant
slice in either x- or y-direction. Overall, derivatives in all
directions are accomplished using the differencing operations
along with suitable permutations of the 3-D array for storing
the parameter vector m. Furthermore, the efficient computation
of the entries in the sparse matrix Bi is described in [41].

In the implementation, it is not necessary to scale the
derivative calculations by the grid size in order to form what
we would call true mathematical derivatives. However, in this
case, given that the weighting parameter estimates provided
in Section II-E assume that the grid sizes are employed, it is
then necessary to move the scaling to the calculations of these
parameters. Equivalently, �i is scaled by h�2

j , ↵ j by h�p j
j , and

also the safety parameters scale up by h2
j . Indeed, doing the

scaling to the parameters rather than the derivative calculations
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Algorithm 1 AD Mixed L p-Norm Joint Inversion of Gravity
and Magnetic Datasets With the Cross-Gradient Constraint
Input: Data vectors d

obs
i and Wd

obs
i

.
Prior information: vectors defining m

apr
i , and (Whard)i

Bound constraints: ⇢min, ⇢max, min, max
Functions to calculate operations with matrices Gi , D j .
Variables to define the functions.
Parameters: ✏s , ✏ j , ps , p j , ⌫i , ↵s , ↵ j , �i and �i for i = 1,
2 and j = x, y, z
Initial regularization parameter, �

(1)
i and decay rate qi for

i = 1, 2
Maximum number of iterations: Kmax

1: Calculate (Wdepth)i and then form (Wdh)i =
(Wdepth)i (Whard)i , for i = 1, 2.

2: Set �i = 1, i = 1, 2, and k = 1.
3: Initialize m

(k)
i = m

apr
i , W

(k)
si = In , W

(k)
D j i

= In , for i = 1, 2,
and j = x, y, z.

4: while Not converged, (�2
i )(k) for both data sets not satis-

fied, and k < Kmax do

5: k = k + 1.
6: Compute t

(k) and B
(k)
1 .

7: Solve E
(k)
1 m

(k)
1 = f

(k)
1 , defined by Eqs. (20) and (21).

8: Impose constraint ⇢min  m
(k)
1  ⇢max.

9: Update t
(k) and B

(k)
2 using estimated m

(k)
1 .

10: Solve E
(k)
2 m

(k)
2 = f

(k)
2 , defined by Eqs. (20) and (21).

11: Impose constraint min  m
(k)
2  max.

12: Test convergence criteria for both �2
1 and �2

2 . Exit loop
if both satisfied.

13: If both convergence criteria are not satisfied, set �
(k)
i =

�
(k�1)
i qi , for i = 1, 2.

14: If !i  1 for either i = 1 or i = 2, for that i keep �i
fixed and decrease �i using Eq. (25).

15: Update W
(k)
si , and W

(k)
D j i

, for i = 1, 2 and j = x, y, z,
Eqs. (7) and (8).

16: end while

Output: ⇢ = m
(k)
1 and  = m

(k)
2 .

reduces the computational cost marginally since scalars rather
than vectors are scaled.

The use of the BTTB structure of the matrices G1 and
G2 to improve the efficiency of operations with sensitivity
matrices has been described in multiple papers [7], [17], [49]
and adopted for the cross-gradient joint inversion in [41].
Here, we use an implementation for the BTTB structure,
which further improves the efficiency. Specifically, noting
that the underlying operations for Gm are implemented as
a sum over the depth layers, where, for layer j , we have a
BTTB-operation for G j m j , Gm = P

j G j m j , we can use
linearity and reduce the number of inverse transforms required.
Previously, we obtained G j m j by using the inverse 2DFFT of
the convolution G j m j for each j . However, by summing in
the Fourier space before taking the inverse, the total number of
inverses is reduced. The transpose is also implemented more
efficiently. Thus, we note that all operations with matrices G1
and G2 are matrix-free and are implemented using fast Fourier

transforms, as described in [34], with the use of the linearity
to reduce the total number of transforms overall.
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