DENSITIES OF INTEGER SETS REPRESENTED BY QUADRATIC FORMS

PETE L. CLARK, PAUL POLLACK, JEREMY ROUSE, AND KATHERINE THOMPSON

ABSTRACT. Let f(t1,...,tn) be a nondegenerate integral quadratic form. We analyze the asymptotic
behavior of the function D¢(X), the number of integers of absolute value up to X represented by
f. When f is isotropic or n is at least 3, we show that there is a §(f) € QN (0,1) such that
D¢ (X) ~ 6(f)X and call §(f) the density of f. We consider the inverse problem of which densities
arise. Our main technical tool is a Near Hasse Principle: a quadratic form may fail to represent
infinitely many integers that it locally represents, but this set of exceptions has density 0 within the
set of locally represented integers.

1. INTRODUCTION

1.1. Terminological preliminaries. Let S be a subset of Z. We say that S is positive if it contains
no negative integers, negative if it contains no positive integers, definite if it is either positive or
negative and indefinite otherwise.

We say a subset S C Z has density 6 = §(5) if
#SOILN] _ s

—
#SO=N,—=1] _ 5

limpy 00 w =06 if S is indefinite;

limpy 00 if S is positive,

if S is negative,

in each case we are requiring the limit to exist. We say that S C Z has upper density J ( resp. lower
density 0) if in the above definition we replace limy_ o, by limsupy_, ., (resp. by liminfy_, ).

Let R be a PID of characteristic different from 2 with fraction field K. We denote by R® the set
of nonzero elements of R. For a prime element p of R, let v, be the corresponding p-adic valuation.
Let f € R[t1,...,t,] be a nondegenerate quadratic form. (Henceforth we assume all quadratic forms
to be nondegenerate.) We put
Dy = f(R™)\ {0}.

A quadratic form f is primitive if its coefficients generate the unit ideal of R. The quadratic form f
corresponds to a R-lattice (necessarily free, since R is a PID) L in a quadratic space (V, ¢) over K on
which f is R-valued. We say that ¢ is maximal if there is no R-lattice M 2 L on which ¢ is R-valued.

We say that a quadratic form f,p is ADC (cf. [Cl12], [CJ14]) if for all 2 € R, whenever there is
v € K™ such that f(v) = x, there is w € R"™ such that f(w) = x. In other words, f is ADC if and
only if every element of R that is K-represented by f is moreover R-represented by f. In symbols:

Df = Df/K N R.

For a prime element p of R, let K, be the completion of K with respect to the p-adic valuation vy,
and let R, be the valuation ring. We say that f,r is locally ADC if for all prime elements p, the
form f/p, is ADC.

A quadratic form f,z is regular if for all m € Z, if f R-represents m and Z,-represents m for all
primes p, then f Z-represents m. A quadratic form f,z is almost regular if the set

meZ represents m over R and over Z, for all primes p but not over Z
P

is finite. (In this paper, the term “almost” in this paper will always mean “all but finitely many.”)
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Theorem 1.1.
a) Let f/r, be a quadratic form. If f is maximal, then it is ADC.
b) Let f/r be a quadratic form. If f is ADC, then it is locally ADC.
c) Let fz be a quadratic form. Then f is ADC if and only if it is locally ADC and regular.

Proof. These are either all results from [Cl12] or follow immediately from them.

a) Combine [C112, Thm. 8] and [Cl12, Thm. 19].

b) This is [C112, Cor. 17].

c¢) This is [Cl12, Thm. 25]. O

1.2. The density of an integral quadratic form. Let f € Z[ty,...,t,] be an n-ary integral qua-
dratic form. As a special case of a definition given above, we put

Dy = f(Z") \ {0}.
For X > 1, let
Dy(X)=D;Nn[—-X,X].
We call f positive, negative or indefinite according to whether Dy is positive, negative or indefinite.

If f is negative, then — f is positive and Dy(X) = —D_;(X), so negative forms do not merit separate
consideration.

One of the main problems in the area is, given f, to determine Dy explicitly. In general this is quite
difficult. Actually the situation is worse: it is not completely clear what “determine Dy explicitly”
means! The set Dy is recursive: there is an algorithm that, given f and m € Z, determines whether
f represents m. Presumably we have in mind some finitistic description of Dy. This is possible e.g. if
f is known to be almost regular, but even so there are 14 positive ternary forms that are known to be
regular conditionally on GRH but not yet unconditionally [LO14].

1.3. Some motivating examples. The point of departure of this work is the idea that it ought to
be simpler to describe the size of D rather than Dy itself: namely in terms of the density

6(f) = 6(Dy)
and — when 6(f) = 0 — the asymptotic behavior of D;(X). We consider several motivating examples.

Example 1.2.

a) Let f = t1t2, an indefinite form. Then Dy = Z\ {0}, so §(f) = 1.
b) Let f =t? —t32, an indefinite form. Then

Dy = {m € Z* | va(m) £ 1},
so 6(f) = 3.

Example 1.3 (Fermat). Let f = t3 + t2, a positive form. As Fermat knew, f represents m € Z* if
and only if v,(m) is even for all primes p = 3 (mod 4). Thus for all primes p = 3 (mod 4), f does not
represent any integer that is divisible by p but not by p?. Since

1 1
H (1 - = + 2) - O,
p=3 (mod 4) p p
it follows that 6(f) = 0.

Example 1.4 (Gauss-Legendre). Let f = t7 + t3 + t2, a positive form. Gauss and Legendre showed
that f represents n € Z™ if and only if n is not of the form 4%(8b + 7) for a,b € N. Tt follows that
1+1/441/42+... 5
R

Example 1.5.
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a) Let f =2 +t% +t3 +t3. Lagrange showed that Dy = Z*, so 6(f) = 1.

b) Let f = 2023t 4 2023t3 + 2023t% + 2023t3. Then Dy = 2023Z" so §(f) = 201—23.

c¢) For a prime number p, let f, =t + p*t3 + ...+ p?t3. Then f, does not represent any integer
with p-adic valuation 1, so

1 1
6(fp)§1—5+1?<1

1.4. Results on density. We observe a stark difference in behavior between Examples 1.2 and 1.3.
This is due to the fact the form 7 + t2 is positive whereas the forms #;t, and t2 — 3 are not just
indefinite but isotropic. More generally, let f,z = At? + Btits + Ct2 be a binary quadratic form of
Discriminant® A := B? — 4AC # 0. Then: f is isotropic if and only if A = b? for some b € Z*. (This
follows, for instance, from [L, Thm. 1.3.2].)

Theorem 1.6. Let f7 be a primitive binary quadratic form of Discriminant A.

a) (Landau-Bernays [La08], [Bel2], [MC99]) Suppose f is anisotropic. There is a constant k > 0

(depending only on A) such that as X — oo we have

kX

Di(X)~ ——.

# f( ) 10g1/2X
b) If f is isotropic of Discriminant A = b, then §(f) > 0. More precisely, for a prime p, let

ap = vp(A). Put

1 ’Lf az = 07

S2(f) =193 \ . . if az =1,
94 94—a2  95—az  92—ag .

+ +12 + Zf a2 Z 23

and for p > 2, put
p+p T 4+ 2p

op(f) = %+ 2

Then
(1) 5(f) =116,

the product extending over all prime numbers — or equivalently, over all primes dividing A: we

have 6,(f) =1 if and only if a, = 0.
Theorem 1.7. Let n > 3, and let f;z be an n-ary quadratic form. Then 5(f) > 0.
Theorem 1.8. Let f/; be an anisotropic ternary quadratic form. Then 0(f) < 1.

Remark 1.9. Tt is immediate that for all a € Z \ {0}, we have J(az?) = 0. So it follows from Theorems
1.6, 1.7 and 1.8 that the density 0(f) exists for any quadratic form f,z.

Remark 1.10. Theorem 1.8 is essentially classical. It follows from the Hasse-Minkowski theory that f
is anisotropic at some prime number p and that f fails to Q,-represent —disc f, and thus f fails to
represent all integers in a nonempty union of congruence classes modulo p* (if p > 2 we may replace
pt by p?). An extensive analysis of such local representation issues will be given later on.

In particular, no positive definite ternary form is universal, a result that goes back at least to 1933
[A133]. See [MO] and [DW17] for further information on the history. The latter work gives an explicit
congruence class of integers not represented by any given definite ternary f using elementary methods.

Theorem 1.11. Let n > 3, and let f;z be a quadratic form. If n =3 we assume that f is isotropic.

a) The following are equivalent:
(i) f is locally universal: fz  is universal for all primes p.

1This Discriminant (note the capitalization) is defined only for binary quadratic forms. On the other hand, for an
n-ary quadratic form ¢ defined over a domain of characteristic different from 2, we define the discriminant disc(f) to be
the determinant of the Gram matrix of the associated bilinear form.
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(ii) f is locally ADC: fz, is ADC for all primes p.
(iii) We have 6(f) = 1.
b) If f is mazimal, then 6(f) = 1.

These results invite us to consider the “inverse problem” for densities of representation sets: which
real numbers arise as the density d(f) of an n-ary quadratic form? Here are some results on this:

Theorem 1.12 (Rationality of densities). For f,z a quadratic form, we have 6(f) € Q.

Theorem 1.13 (Density of densities). Let n > 3, and let r,s € N be such that r + s =n. Let S, 5 be
the set of n-ary quadratic forms f;z with signature (r,s). Then the set

D, = {0(f) 1 fe Sr,s}
is dense in [0, 1].

Theorem 1.14. As f,z varies over all locally ADC ternary quadratic forms, the possible values of
0(f) comprise only 0% of all rational numbers in [0,1], in the sense of height. Since mazimal quadratic
forms are locally ADC, the same holds as we vary over all maximal ternary fz,.

We do not know whether for every § € (0,1) N Q there is a ternary quadratic form f,7 with §(f) = 0.

1.5. The Near Regularity Theorem and the Density Hasse Principle. The key to the proofs
of the above results is a Hasse principle for §(f). For a quadratic form f,z, we say that that m € Z is
locally represented by f if f represents m over Z, for all primes p and also over R. Let Dy o be
the set of integers n that are locally represented by f. Thus we have Dy C Dy 1oc, with equality if and
only if f is regular, whereas almost regularity means that Dy \ Dy o is finite.

Theorem 1.15 (Tartakowsky-Kloosterman-Ross-Pall [RP46]). Let f,z be a positive quadratic form.
If fz, is isotropic for all primes p, then f is almost regular.

When n > 5, every n-ary quadratic form over Z, is isotropic, and thus we get:
Corollary 1.16 (Tartakowsky). Forn > 5, every n-ary positive f;z is almost reqular.

Remark 1.17. Combining Corollary 1.16 and Theorem 1.1a) gives: if n > 5, a maximal positive n-ary
f/z represents all sufficiently large integers.

There are also positive quaternary forms f,7 such that f,z, is isotropic for all primes p, e.g. 12412 +
t3 4+ nt3 where n € Z* is not of the form 4%(8b + 1).

Theorem 1.18 (Bochnak-Oh [BOO08]). Let f/z be an almost reqular positive quaternary form. Then
the set of anisotropic primes of f is either empty or consists of a single prime p < 37.

Example 1.19.

a) The binary quadratic form 3 + 14¢3 is not almost regular. The set of prime numbers that it
represents locally has relative density i, whereas the set of prime numbers that it represents
has relative density %.

b) The ternary quadratic form 3t? + 4¢3 + 9¢2 is not almost regular (more details are given in
Example 4.5).

¢) The quadratic form f = 7 + 3 + 7t3 + 7t3 locally represents all positive integers. Since f =0
(mod 49) if and only if t = t3 =t3 =t4 =0 (mod 7), then f is anisotropic at 7. The fact that
f does not represent 3, 6, 21 or 42 shows that f fails to represent 3- 7% or 6 - 7% for any integer
k > 0. This shows that f is not almost regular (as was known to Watson [Wa, p. 121]). More
effort shows that f represents every positive integer except those of the form 3 - 7% or 6 - 7*.

So positive forms in fewer than five variables need not be almost regular. However, there is a more
permissive — but analytically natural — sense in which every quadratic form is “nearly regular.” Put

DfJOC(X) = Df,loc N [_X7 X]
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and
5f(X) = Df,loc(X) \Df(X)
Let us also put
5loc(f) = 5(Df,10c)~
For a prime number p, let u, be the unique Haar measure on Z, with p,(Z,) = 1. For an n-ary
integral quadratic form f, we define d,(f) to be p,({f(@1,...,2n) | (x1,...,25) € Z;}). (These are
the quantities 6, (f) that appear in Theorem 1.6.)

We have the following two key results.
Theorem 1.20 (Product Formula). Let f/7 be an n-ary quadratic form. Then:

(2) 5loc(f) = H 6I)(f)a

the product extending over all prime numbers.

We will see later that if n < 2 and f is anisotropic, then Hp dp(f) = 0. In every other case we have
dp(f) =1 for all sufficiently large p, so the product is actually finite. Thus Theorem 1.20 implies that
Oloc(f) exists.

Theorem 1.21 (Near Regularity). Let f,z be an n-ary quadratic form.
a) As X — oo,

(3) #E5(X) = o(Dy(X)).
b) If n > 3 we have #E¢(X) = O(VX) (whereas Theorem 1.7 gives Dy(X) > X).
These results have the following immediate consequence:

Corollary 1.22 (Density Hasse Principle). For all f;z, we have
8(f) = doe(f) = [ [ 6u()-
P

Corollary 1.22 shifts the work of computing §(f) to the more tractable setting of quadratic forms over
Zy. In fact we carry out this local analysis first in §2. In §3 we prove Theorem 1.20. We prove Theorem
1.21 in §4, in fact with an explicit error bound that depends on the number of variables and whether f
is definite or indefinite. In §5 we prove a globalization result, which is used in §6 along with Corollary
1.22 to prove the remaining results.

1.6. Acknowledgments. We are grateful to the anonymous referee for reading our paper carefully,
for contributing Remark 4.6 and for suggesting some relevant references.

2. THE LOCAL CASE

2.1. The representation table and the local representation measure. In this paper, a local
field is a complete discretely valued field (K, v) of characteristic different from 2, with valuation ring
R, uniformizing element 7, and finite residue field R/7R = F,. We say that K (or R) is nondyadic
if ¢ is odd and dyadic if ¢ is even. Let S := K*/K*? be the set of square classes of K. By a slight
abuse of notation, we will also denote by S a chosen set of representatives for K*2 in K.

If R is non-dyadic, we fix r € R* such that r + 7R € Fy \IFqXQ. Then as coset representatives for
K*? in K we may take [L, Thm. VI.2.2(1)]

S=A{l,r,mrr}.

If R is dyadic then #8 = 2[K:Q2]+2 [L, Cor. VI.2.23]. When K = Qo, as coset representatives for QQXZ
in Q) we take
S§=1{1,3,5,7,2,6,10,14}.
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For n > 1, let f,gp be an n-ary quadratic form. In contrast to the global case, we can give a finitistic
description of Dy in all cases. Namely, for s € S, let v, be the minimal valuation v(z) of an element
x € Dy such that x € sK*2, or oo if no such element exists. We refer to the assignment

se€S v, € NU{oo}

as the representation table of f. Let s € S with vy < co. Then there is z € Dy N sK*? with
valuation vs; moreover, for any element y € sK*? with v(y) = v, we have y = u?x for some u € R*,
soy € Dy. Since x € Dy, so is 72k for all k > 0. It follows that

DinsK*?={y e R*|yecsK**and v(y) > vs},
and thus knowing the representation table determines Dy.

Remark 2.1. Let f,r be an n-ary quadratic form. Here is some information on the finiteness /
infiniteness of the entries in the representation table of f.

a) Let s € S. Then vs < oo if and only if f K-represents s.

b) If f is isotropic, then f/x is K-universal, so v, < oo for all s € S.

¢) For a unary form we have vg < oo for a unique s € S.

d) If f is an anisotropic binary form, then f,x K-represents precisely half of the elements of S
[L, p. 184, Exc. 8], so precisely half of the entries of the representation table of f will be
finite. If K is nondyadic, we will shortly see by direct calculation that all 6 possible pairs of
square classes can arise this way. On the other hand, when K = Qq, the inequality (i) > 82
shows that not all 4 element subsets of S arise as the set of square classes represented by
an anisotropic binary quadratic form f,q,. A straightforward asymptotic analysis shows as
a = [K : Q] tends to infinity, the number of 2¢*! element subsets of S arising as the set
of square classes K-represented by an anisotropic binary quadratic form f,x divided by the

number @Zﬁ) of 2¢F1 element subsets of S approaches 0.

e) If f is an anisotropic ternary form, then f,x K-represents every s € S except the class of
—disc(f) and does not represent — disc(f) [L, Cor. 2.15(2)]. So in this case exactly one entry
of the representation table will be infinite, and by scaling any one anisotropic ternary form we
see that this infinite entry can be any s € S.

f) If n > 4, then f,j is universal [L, Cor. 2.11 and Cor. 2.15(1)], so every entry in the represen-
tation table is finite. If n > 5 then f is isotropic [L, Thm. 2.12].

Let p be the Haar measure on R with unit mass. Then we define the local representation measure
6o (f) = (D).
When K = Q, we write 6,(f) instead. We also define
v(R) = [R* : R*?),
so v(R) = 2 if ¢ is odd and v(R) = 2K+ is ¢ is even.

Let a € R® have valuation v. If u := =% then we get

aR*? = 1 (uR*?).

For any measurable Y C R and = € R®, we have u(zY) = 1Y) 1t follows that

qU(I)
qg—1
p(R*) = p(R\7R) = <
-1
uR*?) = 1=
and finally that
-1
p(aR*?) = 1

v(R)qv+t
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Let s € S be such that vs < 0o, and choose x € Dy N sK*? with v(z) = v,. Then

w(DyNsK*?) =p (Hﬂ'zil‘sz)

i=0

11 ¢ 1
= p(zR*? 1+++...): TR*?) = .
pett) < ¢ gt -1 F) v(R)g*~1(¢+1)
W to be 0. This yields a formula for the local
representation measure d,(f) in terms of the representation table:

When v, = oo, we take the expression

Theorem 2.2. Letn € Z*, and let f/r be an n-ary quadratic form. Then we have

1
(4) 8o (f) =;V(R)qwl(q+l).

Here is an immediate consequence:

Corollary 2.3. Let n € Z™", and let f/r be an n-ary quadratic form. Then:

a) We have 6,(f) € (0,1]NQ.
b) We have D(f) = R® if and only if 6,(f) = 1.

If f/R is a quadratic form, it is a routine task to compute its representation table and thus via Theorem
2.2 its local representation measure d, (). However, for our later applications we want to solve a related
inverse problem: namely, for fixed n € Z™ we would like to determine all possible representation tables
for n-ary quadratic forms f,r. (What we actually need is the set of local representation measures,
which we approach via the representation tables.) For fixed R and n, this is clearly a finite problem.
It is even a finite problem for fixed R and varying n: one can show that the set of representation tables
for n-ary forms f,p is independent of n as long as n is sufficiently large.

Here we will solve this problem for every nondyadic R and show that the set of possible represen-
tation tables of n-ary forms is the same for all n > 4. To do so we need only hand calculations.

For our applications to integral forms it would be desirable also to treat the case of R = Zs. But
this finite problem seems several orders of magnitude more difficult than the general nondyadic case.
Instead we will compute all possible local representation densities d;(f) for (i) isotropic binary forms
f/z, and (ii) ADC forms f,z,.

2.2. Non-dyadics. Throughout this section we suppose that R is non-dyadic, i.e., F; = R/7R has
characteristic different from 2. We order the square classes as 1,7, 7, rm. If f/r is a quadratic form
with representation table («, 8,7, ), then «, 8, if finite, are even, while 7,4 (if finite), are odd.

Since R is non-dyadic, every quadratic form f,r is diagonalizable [Ge, Thm. 8.1], so we may as-
sume
f=a1t?+ ... +a,t?

with v(a1) < ... <w(ap). Then a%f is a primitive quadratic form defined over R.

Remark 2.4. The representation table for f is easily determined from that of a—ll f: indeed, ordering

2k

the square classes as 1, r, 7, rm, if the representation table for ale is (a, 8,7, 0), then a; = rfun” with

e€{0,1},u € R* and k > 0. Then:

e If e =0 and k is even, the table for fis (a« +k, 8+ k,v+ k,0 + k).
If e = 0 and k is odd, the table for fis (v + k,d +k,a+ k, B8+ k).
If e =1 and k is even, the table for fis (8 + k,a+ k,d + k,v + k).
If e =1 and k is odd, the table for fis (6 + k,v+k,B8+ k,a + k).

Thus we have reduced to the case of

f=t4ast+ ...+ a,t>.
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2.2.1. Binary forms. The discriminant of t2 + ast3 is as, so as as ranges over all 4 elements of S we
get four different K-isomorphism classes of binary forms. Note also that as subests of S = K* /K *?
we have {1,7} = {—1,—r} and {m,r7} = {—7, —r7}, allowing us some latitude in our choice of signs.

Case 2.1: f =12 — m?°t2. We claim that the representation table is (0,2b,2b + 1,2b 4 1).

The form f is isotropic and thus K-universal. Taking t; ~ 7°t;, we find that f represents 72°(t? —t3).
Since 2 € R*, t? — t3 is isomorphic to the hyperbolic plane ¢t and thus is universal. It follows that
f represents every element with valuation at least 20.

e Suppose 7 — 7r2b:c2 = r720=2_ Then we must have z; = 7*~1X7y, so

X -zl =,

and going mod 7 gives X? = r (mod 7), a contradiction.
e Suppose 27 — 7222 = un?*~1 where u € {1,7}. Then 2v(x;) = v(z?) > 2b — 1 and thus the left
hand side has valuation at least 2b, contradiction.

Case 2.2: f =12 —rn?*t3. We claim that the representation table is (0, 2b, 0o, 00).

By Hensel’s Lemma the form t2 — rt3 represents both 1 and r, hence the K-equivalent form f K-
represents 1 and 7. Reducing modulo 7 shows that f does not K-represent either 7w or rmw. Moreover
f represents everything represented by 72°(t2 — rt2), so f represents rm2’.

e Suppose 27 — rr2b22 = ra2v=2, Then x; = 71 X1, so

X2 —rnal =17,

and going mod 7 gives a contradiction.

Case 2.3: f = t? + 72**1¢2. Then f is anisotropic and K-represents 1 and 7 but not r or 7.
We claim that the representation table is (0, 00,2b + 1,00). Clearly f represents 72°+1.
e Suppose z? + 720+122 = 72=1 Then as above 72° divides the left hand side, contradiction.

Case 2.4: f = t? + rr?**1¢2. Then f is anisotropic and K-represents 1 and rm but not r or .
The representation table is (0, 00, 00, 2b + 1); the computations are similar to those of Case 2.3.

2.2.2. Ternary Forms.

Case 3.1: f =12 — 7212 + ct2 with v(c) > 2b.
We claim that the representation table is (0,2b,2b+ 1,2b+ 1), i.e., the same as for its binary subform
12 — 7242 treated in Case 2.1. All we need to show is that for d = rr2°=2, 726=1 prr2*=1 the equation

22 — 7?22 4 a2 =d

is not solvable for (21,79, 73) € R3. The argument of Case 2.1 carries over almost verbatim.

Case 3.2.1: f =13 —rn?3 — 72¢3 with b < c.
We claim that the representation table is (0,2b,2c + 1,2¢ + 1). Since f represents w2¢(t3 — t3), it
represents all elements with valuation at least 2¢ and thus 72¢t! and rw2¢t!. If for d € R the equation

z? — 7‘772%2 — w222 = d is solvable, so is 22 — rr?’z2 — 7222 = d, so we may assume ¢ = b.

o If 27 — r7r2b 2 m2eg? = rr?=2 is solvable, then so is 22 — r7r2bx§ — 2022 = pr2=2, Then 7*~ 1 | o,
S0
2,2 2,2
X? —rrlas — mad =1,
and going modulo 7 gives a contradiction.

o If 22 — rr?®z2 — 72622 = um?¢~1 is solvable, then so is
2 _ 2,2 2¢—1

;L‘l—T:,CQ—ﬂ' 1'3—’(147'[-
Since 22 — ra3 is anisotropic modulo 7, we get 1 = 17X, y; = Y] and

7TX12 — 7’7TX22 — ch_lxg = umr?c 2,
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If ¢ = 1, the left hand side is divisible by 7 and the right hand side is not, contradiction. Otherwise:
X —rX2 - n27 22 = yr?e3,

and by induction on ¢ we get a contradiction.

Case 3.2.2: f =13 —rn?3 — rr2t2 with b < c.
The representation table is (0, 2b,2¢ 4+ 1, 2¢ + 1); the computations are similar to those of Case 3.2.1.

Case 3.2.3: f =12 — rr?%3 4+ 727142 with b < c.

We claim that the representation table is (0, 2b,2¢c+ 1, 00). Since f is anisotropic, it does not represent
—disc f (mod K*?) =rr (mod K*?). As above it represents 772" and clearly it represents m2¢*1.

o If 22 — r2by? 4 726+122 — p2b=2 is solvable, then so is

2 2b, 2

o —rry + 72?2 = rp?b2,

If b = 1 then going modulo 7 gives a contradiction. Otherwise we may take x = 7.X, getting
TX2 Ly 4 2 23

and then z = 77, getting
X2 — 22 4 n7? — 2t

and by induction on b we get a contradiction.

o If 22 — rm2by? 4 g20+1,2 = p2¢=1 g golvable, then so is

20+122 — 20—1.

x2—ry2+7r ™

Going modulo 7 shows we can take z = 17X, y = 7Y, getting
7X2 —raY? 4 n2¢? = 272,
If ¢ = 1, then going modulo 7 gives a contradiction; else we get

X2 _ ’I“Y2 4 7_‘_2(:—1’22 — 7_‘,20—3

)

and by induction on ¢ we get a contradiction.

Case 3.2.4: f =12 — r7?%3 + rr?ct1t2 with b < c.
The representation table is (0, 2b, 00, 2¢ + 1); the computations are similar to those of Case 3.2.3.

Case 3.3.1: f =12 + 7207142 — 7242 with b < c.
We claim that the representation table is (0,2c,2b+ 1,2c+ 1). By Case 2.1, f represents rm2¢; clearly
it represents w271, Also f represents m2¢(t? — t3) so represents rm2¢tl.
o If f=a? 4+ n2b+ly? 12022 — p2¢=2 i5 golvable, then so is
2?4 my? — w2 = rp?eT2,
If ¢ = 1, then going modulo 7 yields a contradiction. Else we may take x = 7w X, getting
TX2 oy - p2e1,2 = 23
and then y = 7Y, getting
X2 4 7V2 — q2072,2 _ pp2e—d
and by induction on ¢ we get a contradiction.
o If f = a2 4 w20H1y2 — 12¢22 = 720=1 ig solvable, then we may take x = 7X, getting
TX2 or2y? el 2
and going modulo 7 gives a contradiction.
o If f =22+ a2b+ly? — 72,2 = pr2¢=1 i5 solvable, then so is

f _ .’E2 + 7Ty2 o ’/TQCZ2 _ 7’7T2C_1.
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We may take x = 7.X, getting
TX2 4 y? — 2ol = pp2e2

If ¢ =1, then going modulo 7 gives a contradiction. Else we can take y = 7Y, getting
X2 4 y? — w2072, — pp2e3

and by induction on ¢ we get a contradiction.

Case 3.3.2: f =12 + 7207143 — 72t 142 with b < c.
The representation table is (0, 2c+2,2b+1,2¢+1); the computations are similar to those of Case 3.3.1.

Case 3.3.3: f =12 + 72t142 — ra2¢42 with b < c.
We claim that the representation table is (0, 2¢, 2b + 1, 00).
Since f is anisotropic, it does not represent
—disc f (mod K*?)=rr (mod K*?).
Clearly f represents 72**1; it also represents 72¢(t? — rt2) hence m%r.
o If f =24 w20+1y2 — pr2¢22 = 22 ig solvable, then so is
2?4 my? — rr2es? = pr2e?,

If ¢ = 1, then going modulo 7 gives a contradiction. Else we may take r = 7.X, getting

X2 4 y? - pp2e 1,2 = pp2ed,
and then y = 7Y, getting

X2 4 Y2 _ pp2e2,2 _ pp2ed

and by induction on ¢ we get a contradiction.
o If f = a2 4 m20H1y2 — pr2¢22 = 126=1 i solvable, then so is

1,2 + 7T26+1y2 o 7,71_2b22 _ 7T2b71.

7

We may take z = 71X, getting
TX2 o2y 21,2 22
If b = 1, then going modulo 7 gives a contradiction. Else we get
X2 4 op2bly? pp20-2,2 203

and by induction on b we get a contradiction.

Case 3.3.4: f =13 + 727142 — rr2et142 with b < c.
The representation table is (0, 00,2b + 1,2¢ + 1); the computations are similar to those of Case 3.3.3.

Case 3.4.1: f =12 +ra?*+ 143 — 722 with b < c.
The representation table is (0, 2¢, 2¢ 4+ 1, 2b + 1); the computations are similar to those of Case 3.3.1.

Case 3.4.2: f =13 +rr?*t 13 — pr2et122 with b < c.
The representation table is (0, 2c+2,2c+ 1, 2b+1); the computations are similar to those of Case 3.3.1.

Case 3.4.3: f =12 + rn?*+ 143 — rr2¢t2 with b < c.
The representation table is (0, 2¢, 00, 2b 4+ 1); the computations are similar to those of Case 3.3.3.

Case 3.4.4: f =12 +rp?*H142 — 72142 with b < c.
The representation table is (0, 00, 2c + 1,2b + 1); the computations are similar to those of Case 3.3.3.
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From this we find that for a ternary form z2 4+ by? + c2? the possible representation tables are precisely
the following: for any b,c € N,

(0,00,2b+ 1,2¢ + 1), (0, 2b, 00,2¢ + 1), (0,2b,2¢ + 1, 00),
(0,2b,2b+ 1,204 1),(0,2b,2¢ 4+ 1,2¢ + 1), (0,2b,2¢ + 1,2b 4+ 1),
and also:
Vb,c € Nwith b <e¢, (0,20,2¢+1,2¢+ 1), (0,2¢+2,2¢+ 1,20+ 1)
Vb, c € N with ¢ < b, (0,20,2¢+1,2b+ 1), (0,2b,2b+1,2¢+ 1)
Vb,c € N with ¢ <b, (0,20 +2,2¢+1,2b+1), (0,20+2,2b+1,2¢c+ 1).

2.2.3. Quaternary forms. Let f,g be a quaternary form. Then f is K-universal, so f R-represents ele-
ments of every K-adic square class, and thus the representation table is of the form (2a, 2b, 2c+1, 2d+1)
for a,b,c,d € N. We claim that all of these representation tables actually occur. As in Remark 2.4,

via scaling it is enough to show that all representation tables (0,2b,2¢ + 1,2d + 1) occur. This is
accomplished by the following calculations.

Case 4.1: f:t2 — r2042 4 rr2dt 142 — 72¢+142 with d < e.
We claim that the representation table is (0,2b,2¢ + 1,2d + 1).

By Case 2.2, f represents r72°. Clearly f represents rr2?+1. Moreover f represents w2¢+1(rt2 —t2),
hence it represents m2¢+1.
o If f =2 —ra2by? 4 pp2dtly2 _ p2e412 — pp26=2 i5 solvable, then so is

22 —rn?y? +rrz? — rw? = e,

If b = 1, then going modulo 7 gives a contradiction. Else we may take r = w.X, getting
7 X2 — 2 ly? 2 —w? = 203,
Going modulo 7 shows that we may take z = 77 and w = 7W, getting
X2 - rwgb*zyz +rrZ? —aW? = ’1”7T2b74,

and by induction on b we get a contradiction.
o If f = a2 — r?by? 4 pp2dtl 2 _ p2et1yy2 — 12¢=1 ig solvable, then so is
22 —ry? 4 rma? — w2etly? = p2el)
Going modulo 7 shows that we may take x = 7X and y = 7Y, getting
X2 —raY? 4 r2? — n%w? = n272
If ¢ = 1, then going modulo 7 gives a contradiction. Else we may take z = 77, getting
X2 pV2 422 — g2 1yy2 o 263

and by induction on ¢ we get a contradiction.
o If f =2 —ra2by? 4 pp2dtl,2 _ p2e41y2 — pr2d=1 ig solvable, then so is
w2 —py? gopp2dHl2 g2l 2d-1
Going modulo 7 shows that we may take x = 7X and y = 7Y, getting
aX? —raY? 4 rr2d2? — p2dy? = pp2d-2,
If d = 1, then going modulo 7 gives a contradiction. Else we get
X2 _pY2 4 opp2d-1,2 _ p2d-1,2  2d-3
Going modulo 7 shows that we may take X = 7X and Y = 7)), getting
72— Y? g opp2de2,2 22,2 244

and by induction on d we get a contradiction.
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Case 4.2: f:t2 — rr2%43 4+ 72¢H142 — rr2dt142 with ¢ < d.
The representation table is (0, 2b,2c + 1,2d + 1); the computations are similar to those of Case 4.1.

2.2.4. n >5. Suppose that f,r is an n-ary quadratic form with n > 5.

Case 5.1: Let b,c,d € N with d < ¢, and put A = max(2b — 1,2¢,2d). Let f : t? — rn2%t2 +
rr2dtle2 — p2etly2 4o g A2 4 +12). Revisiting the argument of Case 4.1, we see that the represen-
tation table remains (0,2b,2c + 1, 2d + 1).

Case 5.2: Let b,c,d € N with ¢ < d, and put A := max(2b—1,2c,2d). Let f : t? — ra?0t2 4+ g2et142 —
rr2d T2 LA (t2 4. . +12). Revisiting the argument of Case 4.1, we see that the representation table
remains (0,2b,2c+ 1,2d + 1).
2.2.5. A consequence.
Theorem 2.5. Let R be a complete DVR with residue field of finite odd cardinality q. Let f,r be an
n-ary anisotropic ADC form.

a) If n =2, then §,(f) € {qf’l, 1, qul}, and all of these occur.

b) If n =3, then §,(f) € {Lt%, 22511 and both of these occur.

2g+27 2q+2
c) If n >4, then §,(f) = 1.

Proof. We have v1,v, € {0,00} and vr,v,n € {1,00}. So if f represents a out of the square classes
{1,7} and b out of the square classes {m, 77} then by (4) we have

aqg+b

5 (f) = .

(/) 2g+2
a) If n = 2, then we know that a + b = 2, so (a,b) € {(2,0),(1,1), (0,2)}, which leads, respectively, to
6o (f) = g1, 6u(f) = 2 and 0,(f) = qT11- Moreover there are 6 = (3) inequivalent anisotropic binary

forms over K and every pair of square classes is represented by exactly one of these forms. So all of
these densities occur.

b) If n = 3, then f represents all square classes except — disc f. Thus we have (a,b) € {(2,1), (1,2)},
which leads, respectively, to d,(f) € {%, Qqq%}. The quantity — disc f can be any square class, just
by scaling any one anisotropic ternary form. So all of these densities occur.

c) If n > 4 then f is K-universal and ADC hence R-universal. So §,(f) = 1. O

2.3. ADC forms over Zy. Let f;z, be an n-ary ADC form. The ADC condition implies that for all
s € {1,3,5,7} we have v, € {0,000}, while for all s € {2,6,10,14} we have vy € {1,00}. Thus if f
represents a of the square classes {1,3,5,7} and b of the square classes {2, 6,10, 14}, by (4) we have

2a+b
5v(f) - 12 .

If n > 4 then f is Qq-universal and ADC, so it is Zs-universal and d2(f) = 1. Moreover if f is isotropic

and ADC, then it is Zs-universal and d2(f) = 1. So the nontrivial cases (among ADC forms) are when

n € {2,3} and f is anisotropic.

Recall also that in the complete local case maximal lattices are ADC, so every QQo-isomorphism class
of quadratic forms yields at least one Zs-isomorphism class of ADC forms.

2.3.1. Binary forms. Let f;z, be an anisotropic ADC binary form. By [L], f/q, represents precisely 4
of the 8 elements of S. Thus a + b = 4. One sees — e.g. by a brute force search of the 36 binary forms
ax? 4 by? obtained by letting @ and b run through unordered pairs of square classes in Qo — that the
pairs (1,3) and (3,1) do not occur. As for the others:

222 + 22y + 2y% is ADC and Qs-represents 2,6, 10, 14, so (a,b) = (0,4), and da(f) = %



DENSITIES OF INTEGER SETS REPRESENTED BY QUADRATIC FORMS 13

22 + y? Qo-represents 1,2,5,10, hence (a,b) = (2,2), and d>(f) = %
2?2 + xy + y? is ADC and Qy-represents 1,3, 5,7, hence (a,b) = (4,0), and do(f) = %

2.3.2. Ternary forms. Let f/z, be an anisotropic ADC ternary form. Then f fails to represent the
Q2-square class of — disc f and represents all other square classes. By scaling we see that — disc f can
be any square class. So the possibilities are

2.4. Isotropic binary forms over Z,. Let
f(t1,t2) = At + Btyty + Ct3

be a primitive isotropic binary form over Z, with discriminant A = B? — 4AC. Then A is a square
in Zs, so a == 2v3(A) € N. We will compute d5(f) in terms of a. Since every binary form over Zj is
either diagonalizable or Zy-equivalent to 2%(¢3 +t1ty +13) or 2%;t, for some a € N [Ca, Lemma 8.4.1],
and since f is primitive with square discriminant, f is isomorphic to either t1t5 or u(t? — 222=2¢2) for
u € Z5 . The former case occurs if and only if a = 0, and in this case clearly d3(f) = 1. In the latter
case we have 6o(f) = 0a(t2 — 2297242). If a = 1 then do(f) = 62(t? — 3). It is easy to see that f
represents precisely the elements of Zy with valuation different from 1, so d2(f) = %. Now we suppose
that ¢ > 2. Ordering the Q5 square classes as 1,3,5,7,2,6,10, 14, we claim that the representation
table of f is

(0,2a — 2,2a —4,2a — 2,2a + 1,2a+ 1,2a + 1,2a + 1).

First suppose that a = 2. Then one easily sees that 3 —4t2 has representation table (0,2,0,2,5,5,5,5).
Now suppose a > 3. Clearly t? — 22972¢2 represents 1; reducing modulo 8 shows that it does not
represent any of 2,3,5,6,7,10,14. Now, for w € Z,, suppose that there are x,y € Zy such that
22 — 2207242 — 4. Then we may take x = 2X and get

X2 9204y gy

and conversely if t3 — 2227442 represents w then t? — 2297242 represents 4w. So if the representation
table for 2 — 2207442 ig

(0,2a — 4,2a — 6,2a — 4,2a — 1,2a — 1,2a — 1,2a — 1),
then the representation table for 3 — 22¢72¢32 is
(0,2a —2,2a —4,2a — 2,2a + 1,2a+ 1,2a + 1,2a + 1),

and the claim follows by induction on a.

Combining the above analysis with (4), we get the following result.

Proposition 2.6. Let f,z, be a primitive isotropic binary quadratic form of Discriminant A, and let

a= 3va(A). Then:

a) If a =0, then §3(f) = 1.
b) If a =1, then &(f) = 2.
2+2472a+2572a+2272a ]

¢) If a > 2, then §o(f) = 12

2.5. A consequence. The following is an immediate consequence of our results.

Theorem 2.7. Let fz be ann-ary ADC form (e.g. a mazimal lattice). Suppose moreover that either
n=3 orp>2. Then either 6,(f) =1 or §,(f) is a rational number with negative 2-adic valuation.
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2.6. Some examples.

Example 2.8. Let p > 2 and let f = 22 + py? — pz2. The binary subform py? — pz? = p(y* — 22) is
isotropic, hence so is f. Since y? — 22 = yz is universal, the form f represents every square class with
valuation at least 1. Clearly it also represents Z;Q, but it does not represent the unit non-residue r:
for all z,y,z € Zy, 2* + py* — pz* (mod p) € F¥* U {0}. We conclude
p—1 »p+1
s(f) =12 =P
2p 2p
Thus v (0,(f)) is non-negative for all p > 2, is strictly positive if and only if p = 3 (mod 4) and is
arbitrarily large on a set of primes of positive relative density.

Example 2.9. Let n > 3, p > 2 and put
f=1+p%2 —p*2 — ... = p*t2.

Then the subform p?t3 —p?t3 is isotropic and represents all z with v(x) > 2. Moreover f does represent
1 and does not represent any of r, p, rp. So

p—1 p—1 p—1 p>—p+2
6P(f):1_ - 5 G 2 .
2p 2p 2p 2p

Example 2.10. Let n > 4 and let p > 2. Choose ay,az € Z, such that —ajaz =7 (mod Z;2). Let
fo = a1t? + ast3 + pt3 and
fte, ... tn) = folty,ta, t3) + p*t5 + ... + p*t2.

The ternary subform fo is maximal and anisotropic, so represents precisely those elements of Z,, that
do not lie in the Q,-adic square class of rp. If z1,...,z, € Z, are such that

flxy,... ,wn) = ale + agwg +pw§ +p2xi + ... +p2xi =17rp,
then a12% + azz3 = 0 (mod p) and thus there are X1, X» € Z,, with 71 = pX1, 2 = pXs. Making this
substitution and simplifying, we get
pa1 X7+ pas X3 + 23 +pri + ...+ prl =1
Reducing mod p gives 22 = r (mod p): contradiction. So f does not represent rp.
Since fy represents p?(rp—1) and p*t3 +...+ p?t2 represents p?, f represents p*(rp—1) +p? = rp?,
hence also 7p°, 7p” and so forth. Thus f represents everything but the Z,-square class of rp, so

-1
B(f) =1~

3. PROOF OF THE ProDUCT FORMULA

Suppose first that n = 1. Then for all but finitely many primes p, we have

p—1 1 1 P 1
o0p(f) = 5 (1+p2 +p4 +) “ 2+ <3
so [[,0,(f) = 0. Clearly, 5(f) = 0 in this case as well, so the formula (2) holds. If n = 2 and f/z is
anisotropic, again both sides of (2) vanish, as shown in §4.2.

Thus, we may assume that either n > 3, or that n = 2 and f/z is isotropic. In either case, we may
fix a finite set of primes S such that f/z is universal for all p ¢ S. For if n > 3, we have seen already
that J, = 1 for all odd primes not dividing the discriminant. When n = 2 and f is isotropic, then
for all odd primes not dividing the discriminant, f,z, is isomorphic to the hyperbolic plane and hence
universal. Since d; = dioc(f) (the Density Hasse Principle), to complete the proof of (2) it will suffice
to show that

(5) oc(f) = [] 6u()-

pES
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Let p € S. Asking that the nonzero integer n be represented by f/z, is equivalent to requiring that
n lie in one of the Z,-square classes represented by f. For K € Z*, let U, x be the union of the
represented Z,-square classes whose p-adic valuation is smaller than K. Then U, x NZ is a union of
residue classes modulo pX*2, and the density of U, x N Z coincides with the Haar measure 6, x (f)
(say) of Uy k.

It now follows from the Chinese Remainder Theorem that the set of n that are locally represented
by f and not divisible by p¥ for any p € S has density

)= H5 x(f)
peS

In particular, the set of locally represented integers has lower density bounded below by dx(f), for
any K. Now letting K — oo, and noting that

k() /7 0p(f) for each fixed p € S,

we deduce that the set of locally represented integers has lower density at least [
other direction, the upper density of locally represented integers is at most

Z <[law Z

peS peES pes

ves Op(f). In the

Letting K — oo bounds this upper density from above by HpE 5 0p(f). This completes the proof of
(5) (and also of (2)).

4. PROOF OF NEAR REGULARITY

4.1. n=1. Fora € Z*, let f = at?. It follows from the Global Square Theorem [L, Thm. VI1.3.7] that

D¢ = Dy jqec.

4.2. n = 2, anisotropic case. Let f = ax? + bxy + cy® be an integral binary quadratic form, with
2

discriminant ac — bz and Discriminant A = b2 — 4ac. Then f is isotropic if and only if A = B? for

some B € N.

First we suppose that f is anisotropic. Bernays [Bel2] showed that there is a kA > 0 such that

KJAX
D¢(X) ~ ———
# f( ) 10g1/2 X
That #&¢(X) = o(Ds(X)) is also essentially due to Bernays. A more explicit and modern treatment

is given in work of Odoni [Od77, §5].

It is much easier to show that 6(f) = di0c(f) = 0. The set S of prime numbers p > 2 such that

(ﬂi%c(f)) = —1 has density % within the primes. For each such prime, f,z is anisotropic and
represents precisely the two unit square classes, so §,(f) =1 — 5 +1 Therefore
0<6< doc(f H(l—)—o
peES p + 1

(More details on why this infinite product is 0 can be found in the proof of Lemma 4.1.)

4.3. n = 2, isotropic case. Suppose f is isotropic, so A = B2 for some B € Z*. We may assume
without loss of generality that f is primitive. The form f is maximal if and only if A = 1, in which
case f is a maximal lattice in the hyperbolic plane, and by [Sh, Lemma 29.8] we have f & zy and f is
universal. Thus we may assume that A > 1. Gauss showed [Ga, Art. 206] that f is SLy(Z)-equivalent
to a form

(6) A2® 4+ Bxy, 1 < A< B, ged(A,B) = 1.
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Lemma 4.1. Let a and k be coprime positive integers. Then almost all positive integers have a prime
factor p=a (mod k) — i.e., the exceptional set has density zero in ZT.

Proof. For each fixed B > 1, the upper density of the exceptional set is bounded above by the density
of the set of n € Z™ that are divisible by no prime p = a (mod k) with p < B, i.e., by

)
1-——-1.
H(modk)< p

p<B, p=a

This quantity is at most

1
exp | — E -
= p
p<B, p=a (mod k)
The usual proof of Dirichlet’s theorem on primes in arithmetic progressions gives

3 ]19:00.

p=a (mod k)
Taking B — oo, the result follows. O

Lemma 4.2. As K appoaches infinity, the density of the set of integers that are not Kth powerfree
approaches 0.

Proof. We show the statement for the positive integers, which is sufficient. If n € Z* is not Kth power
free then there is an integer m > 2 such that m# | n. Tt follows that for each x > 0, the number
of such n < x that are not Kth power free is at most > ~_, %, and thus the upper density of the
set of non-Kth-powerfree positive integers is at most > °_, m% This quantity tends to zero as K
approaches infinity, e.g. by the Integral Test. O

Let f = Az?+ Bay with 1 < A < B and ged(z,y) = 1. We will prove that almost every integer locally
represented by f is globally represented. Taking x = 1 we see that D contains every element congruent
to A modulo B, so #D¢(X) > X. So an equivalent statement of the result is that #&5(X) = o(X).
Fix K € Z*, and let & (X)) be the subset of £¢(X) consisting of integers that are Kth power free.
By Lemma 4.2, it is enough to show that for all K > 2 we have #&; x(X) = ox (X). Put

M = HpK"‘Up(B).
»|B
Let n € & x(X). It follows from Lemma 4.1 that for a density 1 subset of n € Z we have that for all

¢ coprime to M there is a prime p | n such that p = ¢ (mod M). Henceforth we restrict to n in this
subset and such that f locally represents n. For every prime p | n there are g p, Yo, € Z, such that

(7) z0,p(Azo,p + Byo,p) = n.

Step 1: We show that there is x € Z such that

(8) z|nand Vp| B, =1y, (modpXturB))

To see this, let r € Z be such that r = z¢, (mod pX+*»(B)) for all p | B. Let p | B. It follows from
(7) that
Up(20,p) < vp(n) < K
and thus
p(r) = vp(To,p)-
It follows that there is an integer w coprime to M such that qupr”P(me) =r (mod M). Because
of our assumption on n, we may take u to be the class in Z/MZ of a prime ¢ | n, and thus

T=q Hpv)p(wo,p)
p|B
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satisfies (8).

K+vp(B) | Reducing (7) modulo pX+v»(B) we get

Step 2: Let 31, € Z be congruent to yp,, modulo p
x(Az + By1p) =n  (mod pKtor(B)y,
Since v, (x) < vp(n) < K, we get

Ar=Ax+ By p = (mod p¥»(B)),

813

Since this holds for all p | B we have
Ax =

n
x

(mod B).
Thus we can write 2 = Az + By for some y € Z, so n = x(Ax + By) = f(z,y).

Example 4.3. Let f(z,y) = 2% +5xy. If £ =4 (mod 5) is a prime number, then f Z,-represents ¢ for
all primes p: for p # 5, there is a representation with x = 1; over Z5 there is a representation with y = 0.
However, it is easy to check that the equation z(z + 5y) = ¢ has no solutions (z,y) € Z?. Thus f is
not almost regular, and Dirichlet’s theorem on primes in arithmetic progressions gives £¢(X) > %.

4.4. n = 3, positive case. Let f,; be a positive r-ary quadratic form. The nth coefficient of the
Eisenstein projection of the theta series of f can be written as

ap(n) = T Bp(n)

where for finite p,

. #{x e (Z/p*Z)" : f(z) =n (mod pF)}
Bp(n) = klggo p(r—Dk ’

and if we write f(t) = tT At, then

,rﬂ.r/2n(r—2)/2

TOOT (5 + 1) det(A)/2

Boo(n)

For a prime p, we write the local Jordan splitting of f (as in [Ha04]) as
fla) =2 p" f()).
J

If p > 2, each f; is one-dimensional, while f; can be two-dimensional if p = 2. We let 7. ;(m) =
#{x € (Z/p*Z)" : f(x) =m (mod p*)}. A solution to this congruence is called good type if p¥iz; % 0
(mod p) for some j. It is called zero type if x =0 (mod p), and bad type otherwise. In [Ha04], Hanke
gives a recursive method to determine the number of good type, bad type, and zero type solutions to
f(z) =m (mod p*).

Proposition 4.4. Let f;7 be a positive ternary quadratic form. As X — oo we have E¢(X) = O(WVX).

Proof. Let 07(z) =3 o2 ;r¢(n)q", ¢ = €®™% be the theta series of f. We may decompose
05(2) = E(z) + H(z) + C(2) = Y _ap(n)g" + Y _au(n)g" + Y ac(n)q".
n=0 n=0 n=0

Here E(z) is a weight 3/2 Cohen-Eisenstein series, H(z) is a weight 3/2 cusp form that is a linear
combination of unary theta series (modular forms of the shape z:nezw(n)nq"2 where 9 is an odd
Dirichlet character), and C(z) is the projection of 67(z) onto the orthogonal complement in the space
of weight 3/2 cusp forms of unary theta series. Let N(f) be the level of f.

Cohen-Eisenstein series: It follows from a multivariate form of Hensel’s lemma that £,(n) > 0
if and only if there is a solution to f(z) =n in Z,.
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If pt N(f) and p{n, Hanke gives the formula

(See Table 1 on the top of page 363 of [Ha04].)

Now we consider the case that p { N(f) but p | n. In this case, f/r, is isotropic (because if f
is anisotropic, then p? | N(f)). As a consequence, f(z,y,z) = 0 defines a conic over F, which has
a point on it. Therefore f(z,y,z) = 0 is isomorphic to P! over F, and there are p + 1 (projective)
points on it. This yields (p+ 1)(p — 1) = p? — 1 solutions to the equation f(z,y,z) =0 (mod p) with
(z,y,2) # (0,0,0) (mod p). These are “good type” solutions in the terminology of Hanke, and from
the recursive formula for good type solutions (Lemma 3.2 of [Ha04]) it follows that 3,(n) > £ 251.

If p | N(f) but f/q, is isotropic, then there are finitely many possibilities for 3,(n) if v,(n) <
vp(N(f)). If vy(n) > vp(N(f)), then n is p-stable in the terminology of Hanke (see Definition 3.6
and Remark 3.6.1), and it follows that the contribution to 3,(p?’n) of the good type and bad type
solutions is constant for v > 1. By Lemma 3.8, this contribution is nonzero, and it follows that there
is an absolute lower bound on (,(n) over all n that are locally represented by f.

Finally, if f/q, is anisotropic, then again there are finitely many possibilities for 3,(n) if v,(n) <
vp(N(f)) + 1. The net result is that there is an absolute constant Cg so that

ortn > Copoin T (1 5) TT (144 (724029,

pIN pIN
pln pin
provided that n is locally represented by f and v,(n) < v,(N(f)) + 1 for all anisotropic primes p.
We have that S.(n) = %. If we let x, be the unique primitive Dirichlet character with

Xn(p) = (_d%f‘é‘)") for p prime with p t det(A)n, then we obtain

ag(n) > @L(an) 11 <1 + W)

plnN b

Now we use the ineffective lower bound L(1,x,) > n~¢ Also note that if k is squarefree, then
Ik (1 - %) = @ > k7€ for all € > 0. It follows from this that

ap(n) >n2=*

provided that n is locally represented and v,(n) < v,(N(f)) + 1 for all anisotropic primes p.
Unary theta series: Because H(z) is a linear combination of unary theta series, there are finitely
many squarefree integers by, by, ..., b so that ag(n) = 0 unless n/b; is the square of an integer.
Cusp form part: Theorem 1 of [Bl04] gives that for all € > 0

lac(n)| < e nl3/28+e,
Since
r¢(n) = ap(n) + an(n) + ac(n),
the bounds above imply there are only finitely many n for which
(i) an(n) =0,
(ii) m is locally represented, and
(iii) vp(n) <v,(N(f)) + 1 for all anisotropic primes p
which are not represented by f.
Let ¢1,¢a,. .., ¢ be the list of all positive integers for which ay(n) = 0, that are not represented by
f, which are locally represented, and for which v,(¢;) < v,(N(f)) + 1 for all anisotropic primes p.

If n is a positive integer that is locally represented by f but not represented, one possibility is that
ag(n) # 0. In this case n/b; is a square for some 7 and there are O(y/x) many such n < z.
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If n is a positive integer that is locally represented by f but not represented and agy(n) =0, let

S = {p: p|n is anisotropic and v,(n) > v,(N(f)) + 1} = {p1,p2,...,Ps}-

Corollary 3.8.2 of [Ha04] implies that if n’ = n/[[;_, p?”* is such that v,(n’) = v,(N(f)) or v,(n') =
vp(N(f))+ 1 for all p € S, then r¢(n) =0 = r¢(n’) = 0. This n’ must be one of the ¢; mentioned

above, and so n/c; = [[5_, p;” is a perfect square. The number of such n < x is O((logx)), where ¢
is the number of anisotropic primes for f. O

Example 4.5. The form f(z,y,2) = 322 + 4y? + 922 locally represents integers n with vy(n) # 1 that
are not in the Qs square class of —3. We will show that the locally represented integers that are not
represented are those of the form k? with all prime factors of k = 1 (mod 3). This fact was observed
by Jones and Pall [JP39, Table II] and a proof of this is given by [SP80, Lemma 5]. We illustrate the
techniques in the proof of Proposition 4.4 by giving a self-contained proof.

The decomposition of 0;(z) = E(z) + H(z) + C(z) has C(z) = 0 and

Here x3(n) is the non-principal Dirichlet character modulo 3. It follows that if n is not a square and
n is locally represented, then ag(n) > 0 and ay(n) = 0 and so n is represented by f. If n = k? with
k even, then f(0,k/2,0) = n, and if n = k? with k£ a multiple of 3, then f(0,0,%/3) = n.

Suppose that n is a square which is coprime to 6. Then the nth coefficient of H(z) is —nt/2. A
straightforward computation with Yang’s formulas for local densities [Ya98] shows that if n is a square
coprime to 6, then

71'\/577,1/2 . _
e if p= o0,

L4 5+ (xa(p) = 1) e i3 <p<oo,
) if p=3,
1 if p=2.

Bp(n) =
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This implies that

2m\/3n1/2 1 xs(p)—1
ag(n) = [ ﬂp(n)=TH <1++W)

p<oo p>3 P
2my/3n1/2 ( 1 xs(p) — 1) ( X3(p))
=—]1+=-+ " 14222
9 H D p”p(”)/2+1 H P
pln p>3
pin
_ﬂ\/gnl/QHPQ—ll—[ P’ <1+1+X3(p)—1>H(1_X3(p))
- 2 2 vp(n)/2+1
CE et p P s p
™3 Pt -1 xs(p)\ ! p? 1 xs(p)—1 x3(p)
=2 ) F — (1+- 1—
2" 1;[ p? 1;[ p HPQ—I +p+p”P(”)/2“ p

m/3nl/2 1 p? ( 1 ><3(p)1) ( X3(p))
= I(l,x (14— ) (1 - 22
2 ((2) ( S)E;ﬁ—l p | por(m)/2HT p
1/2 2 1 1
_ m/3n '%'ﬂ\/gH Ly PO x3(p) L Xxs(®)
2 T 9 ‘ P -1 D p'up(n)/2+1
pln

p
2
12 p 1 xs(p)—1 ~ xs(p)
—n Hp2—1(1+p+pvp<n)/2+1 1 =)

pln

We have that ) ) ®)
P I xs(p)—1 x3(p
p2 -1 (1 + 1; + pvp(n)/2+1> (1 o P ) =1
with equality if and only if x3(p) = 1. It follows that

n = k? is not represented by f <= ap(n) +ag(n) =0
1

1/2

<~ ag(n)=n <= for all primes p | k, x3(p) =

Thus we have

C$1/2
log"/*(x)
for some C' > 0. So the upper bound of Proposition 4.4 is sharp up to log factors.

(9) EX)=#{n<z:n=Fk, andplk = p=1 (mod 3)} ~

Remark 4.6. The referee communicated to us that the constant C in (9) is known to be v/2Cj3 1, where

V2 1)?
03,1:7 H (1—2> 5
) p

5
! p=2 (mod 3
compare with [Mo04, (2)].

4.5. n = 4, positive case. Let f,; be a positive quaternary quadratic form. Then every sufficiently
large n € Z™ that is locally primitively represented — for all primes p there is (z1, %2, 23, 74) € Zg with
at at least one x; not divisible by p such that f(x1,x2,x3,x4) = n — is primitively represented — there
is (21, x9,x324) € Z with ged (1, x2, 23, 24) = 1 such that f(z) =n [Ca, Thm. 11.1.6].

From this it follows easily that #&;(X) = O(VX). Indeed, every representation of a squarefree
integer is primitive, so £y contains only finitely many squarefree exceptions, and there are O(\/)? )
integers lying in the same rational square class as one of these squarefree exceptions. Thus after
removing O(\/)? ) integers, we may assume that 1 < n < X is such that for every integer m lying in
the rational square class of n, if m is primitively locally represented then it is represented. We claim
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that n is represented. It certainly is if it is primitively locally represented. If not, there is a prime p | n
n 1 n

such that f Z,-represents > For all primes ¢ # p, we have 77 € Z;Q so f Zg-represents ik Thus f
locally represents p%. If the representation is not locally primitive we can repeat the above argument,

eventually getting that f primitively represents m = 75 and thus also that f represents n.

4.6. n > 5, positive case. If f,; is a positive n-ary quadratic form with n > 5, then by Corollary
1.16, the form f is almost regular, so #&;(X) = O(1).

4.7. n > 3, indefinite case. In this case the result follows from work of Eichler, Kneser, Weil and
Hsia, as recorded in [SP13, Thm. 5]. Indeed, if f,; is indefinite n-ary with n > 4 then f is regular
and thus #&;(X) = 0. If f/7 is indefinite ternary then the elements of £ lie in finitely many rational

square classes and thus #&;(X) = O(VX).

5. LATTICE GLOBALIZATION

An n-ary quadratic form f,; has signature (r, s) if

f/R%x%+...+xff:c£+l f...fxf_‘_s.
The following result amounts to telling us that for all n > 3, we can find an integral n-ary quadratic
form that has prescribed signature, prescribed Z,-equivalence class at each of any finite set S of prime
numbers, and has d,(f) = 1 for all primes p ¢ S. The underlying “globalization” construction is a
well known one in the literature — see e.g. [Sh, Theorems 31.6 and 31.7] for a related result — but as
we have not found a result exactly of the form we need, we supply a complete proof.

Theorem 5.1. Let n,r,s € N withn >3 and r+ s =mn. Let S be a finite set of prime numbers, and
let T be a subset of S. If n = 3, we suppose that #T is odd if rs = 0 and even otherwise. For p € S,
let f, be an n-ary quadratic form defined over Z, that is anisotropic if and only if p € T'. Then there
is an n-ary quadratic form fz such that:

For all primes p € S, we have f/z, = fp.

The form f/g has signature (r,s).

Ifn = 3, then for all primes p ¢ S, we have that [z, is isotropic and mazimal, hence universal.
If n > 4, then for all primes p ¢ S, we have that [z, is unwersal.

Proof. Let (fs)/r be a quadratic form of signature (r, s).

Step la): Suppose n = 3. By weak approximation [Ar, Thm. 8], there is d € ZT such that for all
p € S, we have d = disc f, (mod Q2) and d > 0 if and only if s is even. For p a place of Q (i.e., a
prime number or co) and g/q, a ternary quadratic form, let €,(g) € {#£1} be the Hasse invariant and

let ¢,(g) = e(g)(%ﬁi“g) € {£1} be the Witt invariant. Recall that for a ternary quadratic form g

over Q,, we have ¢,(g) = —1 if and only if g is anisotropic. For p a place of Q, put
Cp(fp) if pE Sa

(10) ep = &p(foo) if p= o0,
1 otherwise.

By virtue of the parity condition imposed on T', we have [] cp = 1. Now for p a place of Q, put

p<oo

1, -d
wm e (Z71).

By (10) and the properties of the Hilbert symbol, we have that e, = 1 for all but finitely many p and
also that [[ . €, = 1. Since two ternary forms over Q, with the same discriminant square class and

Witt invariants are isometric, by [Se, Prop. 7], there is a quadratic form gq,q of signature (r,s) such
that discq = d (mod Q?), q/q, = qp for all p € S and q is isotropic at all prime numbers p ¢ S.
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Step 1b): Suppose n > 4. Fix a finite odd prime py ¢ S. For p a place of Q, put

(11) o _Jelfp) ifpeSU{oc},
’ 1 if p & SU{po, oo},
and take €,, € {£1} to be so that

H e = L.
p<oo
Now let (gp,),q,, be an isotropic n-ary quadratic form with €, (gp,) = €5, (Since
epo (B3 +... +t2) =1
and
€po (t% +t..o.t t3172 + T‘t72171 +p0ti) = _17
this is certainly possible.) By weak approximation, there is d € ZT such that for all p € S U {po}, we

have d = disc f, (mod Qf,) and d > 0 if and only if s is even. Applying [Se, Prop. 7] there is an n-ary
quadratic form q,q of signature (r, s) such that q,q, = ¢, for all p € SU {po}.

Step 2: We view the quadratic form g, constructed in Step 1 as a quadratic space V)g. For each
p € S, we may view f, as a Zp-lattice L, in the quadratic space V ® Q,. Let M be any maximal
Z-lattice in V. By [Ge, Thm. 9.4], there is a lattice L in V such that for a prime number p, we have

Loz — L, ifpels,
P M, otherwise.

The quadratic form f/7 corresponding to L satisfies the desired properties: If n = 3, then for all p ¢ S,
the form f,z is iostropic and maximal, hence universal, while if n > 4 then for all p ¢ S the form f /Z,
is maximal, hence ADC, hence universal.

6. PROOFS OF THE REMAINING THEOREMS

6.1. Proof of Theorem 1.6b). Let f,z be a primitive isotropic binary quadratic form of Discriminant
A. By (2) we have 6(f) = [[,dp(f). For p > 2, Case 1 of §2.2.1 and (4) computes J,(f), while
Proposition 2.6 computes da(f).

Remark 6.1. Our local analysis also shows that for a primitive isotropic binary quadratic form f,z,
the set Dy joc is a union of congruence classes modulo A, so 6(f) = %, where N(A) is the number

of congruence classes modulo A that are locally represented by f.

6.2. Proof of Theorem 1.7. Let n > 3 and let f,z be an n-ary quadratic form. We have
o(f) =1,
P

Each 6,(f) is positive. Since n > 3, for each odd prime p { disc(f) we have that f,z is universal, so
dp(f) = 1. It follows that §(f) > 0.

6.3. Proof of Theorem 1.8. Let f,7 be an anisotropic ternary form. By Hasse-Minkowski, f is
anisotropic at a nonempty, finite set of places of even cardinality hence over Z, for at least one prime
p. As seen in §2, f then does not represent any element in the Q,-square class of —disc f, which forces

p(f) < 1 and thus 6(f) =[], 0,(f) < 1.

6.4. Proof of Theorem 1.11. Let n > 3, and let f,z be an n-ary quadratic form. If n = 3 we assume
that f isotropic. For every prime p, the form f/q, is universal. Thus f is locally universal if and only if
it is locally ADC. Since every Z,-square class has positive measure, these conditions are also equivalent
to d,(f) =1 for all p and thus, since 6(f) =[], d,(f), to d(f) = 1. This proves Theorem 1.11a). Part

b) follows from part a) and Theorem 1.1: if f is maximal, it is locally maximal and thus locally ADC.
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6.5. Proof of Theorem 1.12. Let n > 1 and let f/; be an n-ary quadratic form. By (4) we have
dp € (0,1] N Q for all primes p. If n > 3 or n = 2 but f/5 is isotropic, then é,(f) = 1 for all but
finitely many primes p; hence, §(f) = Hp 0p(f) is rational. The remaining case is that n < 2 and f is
anisotropic, and in this case we’ve already seen that §(f) = 0.

6.6. Proof of Theorem 1.13.

Lemma 6.2. Let {a,}>2, be a sequence with values in (0,1]. We suppose:
(i) an, — 0,
(i) >y an = oo.

Then: for all0 < o < B < 1, there are positive integers N,nq,...,nyn such that Hﬁ[:l(l—ani) € (o, 8).

Proof. Put r := % Choose K € Z™ such that for all n > K we have 1 —a,, > r. We claim that there is
L € Z* such that [T, (1 —ax 1) € (a,8). Indeed, since Y°° | a,, = 0o we have [[°°,(1—a,) = 0, so
certainly Hle(l —agy;) < B for all sufficiently large L. Let L be the smallest such positive integer.
Then, since Hf:_ll(l — ak+4i) > B, we have

L
H(l_aK+i) > Bl —aryr) >rf=a. O

i=1

Now we prove Theorem 1.13. For n € Z1, let p,, be the nth odd prime number, and put a,, := ﬁ
This sequence satisfies (i) and (ii) of Lemma 6.2. Thus for all 0 < o < 8 < 1 there are N,nq,...,ny
such that Hi]il(l - ﬁ) € (o, B).

Let us first treat the case in which n > 4. Then we put S = {pn,,...,Pny }. By the local analysis
of §2, for every prime p > 2 there is an (anisotropic) quadratic form (fy),z, with §,(f,) =1 — TI-%Z
that represents at least one of 1 and r, hence is primitive. Applying Theorem 5.1 we get an n-ary
form f/5 of signature (r,s) such that f/z, = fp for all p € S and such that f;z, is universal — hence
primitive, for all p ¢ S. This form f is locally primitive — hence primitive — and has

50 =TLan =11 (1- 555 € (@0

peS peES

Now suppose n = 3. We want to apply the above argument with S = T, but there is now a parity
requirement on 7' that may not be satisfied. If it is not, we choose p,,,, large enough so that

N+1 1
II (12pm+2) € (. 8)

i=1

and put S =T = {pn,,.-.Pnyy.}- The remainder of the argument is the same.

1 11
AQ = o) §7 771 )
267 12

1 p+2 2p+1
Ap=<-, ——, ——, 1.
2" 2p+2 2p+2

By Theorem 1.20 and the material of §2, we have (f) =[], 0,(f) with 6,(f) € A, for all pand 6, =1
for all but finitely many p.

6.7. Proof of Theorem 1.14. Put

and for an odd prime p put

Step 1: If f is isotropic and ADC then it is universal and 6(f) = 1. So we may assume that f
is anisotropic and thus is anisotropic at £ > 1 primes p. For each of these primes, we have that
v2(8,(f)) < 0 and thus v2(6(f)) < —k. It follows that the proportion of attained values of § within
QN [0,1] approaches 0 as k — oo so it suffices to deal with a fixed number k of anisotropic primes.
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Step 2: For each fixed k € ZT, let D}, be the set of rational numbers § = Hp 0, of the above form such
that §, # 1 for at most k primes. We claim that Dy, is a compact subset of [0, 1]. First we observe
that every sequence in D; has a subsequence that is either constant, convergent to 1 or convergent to
%, so Dy is a sequentially compact metric space, thus compact. Next we observe that D;, is the image
of Hle D; under the continuous map (x1,...,2g) — 21 - - - T SO is compact.

Step 3: We show that any compact subset K C QN [0, 1] contains only 0% of QN [0, 1] in the sense of
height. We do so by contraposition: For each n € Z*, let K,, be the subset of K consisting of rational
numbers with reduced deminator n. Since there are > N? elements z € [0, 1] N Q with numerator and
denominator at most N, if K does not contain 0% of the rational numbers, there is ¢ > 0 and infinitely
many N € Z% such that the number of elements of K with denominator at most IV is at least cN?,
and thus there is an infinite subset J C Z* such that

Vn e J, #K, >cn:

for if not, then the number of rationals in K with reduced denominator at most N would be at most
Zgzl en + O(1), which is smaller than ¢N? for large N. Now we thicken each K, to a set U, by
surrounding each point of K,, with the intersection with [0, 1] of an open interval of radius ﬁ Since
distinct elements of K, are at least % apart, these intervals are pairwise disjoint, and thus for each
n € J the measure of U, is at least #K,, - ﬁ > 5. Let U be the set of reals that belong to U, for
infinitely many n. Then the measure of U is at least § [H, p. 40]. Every element of U is the limit
of a sequence in K, but K is compact, so K D U and thus K has positive measure. So K cannot be

contained in Q.

6.8. Remarks on 2-adic properties of the density. We do not know whether the “locally ADC”
condition in Theorem 1.14 can be removed. One the one hand, we have not completed the classification
of densities of quadratic forms over Zy. Using our present methods this would be tedious to do without
computer assistance. But this is not really the crux of the matter: consider for instance the problem
of finding all densities of ternary integral quadratic forms f such that f,z, is universal. In this case,
we know everything that we need to know on the quadratic forms side, but we cannot solve the
elementary number-theoretic problem of determining which rational numbers arise as Hp 0p for the
known possible values of 6,. The proof of Theorem 1.14 does not adapt to this case, because it exploits
2-adic properties of 0, (f) and §(f). There is a curious phenomenon here: loosely speaking, “va(d(f))
wants to be negative but does not need to be negative.” We make this precise in the following results.

Theorem 6.3. Let f,z be a positive definite ternary quadratic form. Let U be the set of primes p =3
(mod 4) such that Iz, is isotropic. Suppose that f;z, is ADC for p =2 and for allp € U. Then

Proof. As above, let S be the set of prime numbers p such that f,z, is not both anisotropic and
maximal, and let T" be the subset of S of anisotropic places; #7 is odd and thus positive. Then

6(Ds) = [T 0 (5).
pES
We claim that v2(d,(f)) < 0 for all p € S and v2(d,(f)) < 0 for all p € T certainly, this suffices.

e We have v3(d2(f)) < 0 by Theorem 2.7; henceforth we suppose p > 2.

e Suppose p € S\ T, so f/z, is isotropic. By hypothesis, if p = 3 (mod 4), then f,z is ADC,
so again Theorem 2.7 gives v2(d,(f)) < 0. Now suppose p = 1 (mod 4). Let X be a set of
representatives of the Z,-square classes that f does not represent. Thus

p—1
0p(f)=1- —_
v(x)+1

reX 2p @

Since p =1 (mod 4), each term has positive 2-adic valuation, and thus 6,(f) = 0.
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e Suppose p € T, so [z, is anisotropic. Let g/, correspond to a maximal lattice containing f.
Then arguing as in the previous case we get

p—1
p(f) = bpg) — D@1
zeX p

Since each term of the sum has non-negative 2-adic valuation and v2(d,(g)) < 0, we get
v2(8p(f)) = v2(0p(9)) <O0. L

Proposition 6.4. For every k € N there is a positive definite ternary quadratic form fz such that
v2(0(f)) 2 k.

Proof. By Dirichlet’s Theorem, there is a prime number p such that p = —1 (mod 2¥+2). Let S =
{2,p}, T = {2} and
fa=a?+y* + 2%,
fp =2 +py? —pz*.
The form (f2),z, is anisotropic, and the form (f;),z, is isotropic. Thus Theorem 5.1 applies, and there
is a positive definite ternary f/z such that f,;, = fa, fz, = fp and f/z, is isotropic and maximal for
all £ 2,p. So

5 p+1
5(f) = 8a(f)o,(f) = 2 - 22
By our choice of p, we have 2¥*2 | p + 1, and the result follows. O
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