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Abstract. We consider the distribution in residue classes modulo primes p of Euler’s
totient function ϕ(n) and the sum-of-proper-divisors function s(n) := σ(n) − n. We
prove that the values ϕ(n), for n ≤ x, that are coprime to p are asymptotically uniformly
distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x)A

(with A fixed but arbitrary). We also show that the values of s(n), for n composite, are
uniformly distributed among all p residue classes modulo every p ≤ (log x)A. These appear
to be the first results of their kind where the modulus is allowed to grow substantially
with x.

1. Introduction

Let ϕ(n) denote Euler’s totient and let s(n) = σ(n)− n denote the sum-of-proper-divisors (or
sum-of-aliquot-divisors) function. In this paper, we determine asymptotic formulas for the
number of n ≤ x for which ϕ(n), or s(n), land in a given residue class modulo p, uniformly
for primes p below any fixed power of log x.

For the Euler function, the distribution mod p for fixed p can be read out of known results.
Since ϕ(n) is even for all n ≥ 3, one should assume p is odd. Using Wirsing’s mean value
theorem in [Wir61], it is straightforward to prove that the number of n ≤ x with ϕ(n)
coprime to p is

∼ Cpx/(log x)1/(p−1), as x→∞,
for a certain positive constant Cp. (An early reference for this formula is [Sco64]. See [SW06]
and [FLM14] for more precise results.) In particular, ϕ(n) ≡ 0 (mod p) for (1 + o(1))x
values of n ≤ x. What about the coprime residue classes? When p = 3, Dence and
Pomerance [DP98] present explicit positive constants C3,1 ≈ 0.61 and C3,2 ≈ 0.33 such that
the number of n ≤ x with ϕ(n) ≡ a (mod 3) is ∼ C3,ax/(log x)1/2, for a = 1, 2. When
p ≥ 5, it follows from work of Narkiewicz (see [Nar67, Corollary 2] or [Nar84, Chapter
5]; see also [Shi83]) that the values of ϕ(n) coprime to p are uniformly distributed among
the p − 1 coprime residue classes mod p.1 Hence, for each a coprime to p, there are
∼ Cp(p− 1)−1x/(log x)1/(p−1) values of n ≤ x with ϕ(n) ≡ a (mod p).

Our first theorem shows, in a precise form, that uniform distribution over coprime residue
classes mod p continues to hold for p ≤ (log x)A.
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1In fact, Narkiewicz shows that if m is coprime to 6, then the values of ϕ(n) that are coprime to m are

uniformly distributed among the ϕ(m) coprime residue classes modulo m.
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Theorem 1.1. Fix A > 0. Let x and p tend to infinity with p ≤ (log x)A. The number of
n ≤ x with ϕ(n) ≡ a (mod p) is

∼ x

p(log x)1/(p−1)
,

uniformly in the choice of coprime residue class a mod p.

Within its range of validity, Theorem 1.1 improves earlier estimates of Banks and Shparlinski
(see Theorems 3.1 and 3.2 in [BS04]).

When p = o(log log x), Theorem 1.1 implies that p | ϕ(n) for (1 + o(1))x values of n ≤ x (as
found already in [EGPS90]; see inequality (4.2) there), while when p � log log x, Theorem
1.1 shows that p | ϕ(n) for ∼ (1 − κ)x values of n ≤ x, where κ = exp(− log log x

p−1 ). Since

1 − exp(− log log x/(p − 1)) ∼ log log x/p once log log x = o(p), it seems reasonable to
suspect that p | ϕ(n) for ∼ x log log x/p values of n ≤ x when p/ log log x→∞. Our next
theorem substantiates this, when p ≤ (log x)A.

Theorem 1.2. Fix A > 0. Suppose that x and p/ log log x tend to infinity, with p ≤ (log x)A.
The number of n ≤ x for which p | ϕ(n) is (1 + o(1))x log log x

p
.

We turn now to s(n). For fixed p, one has that p | σ(n) for all n except those belonging
to a set of density 0. This was observed already by Alaoglu and Erdős in 1944 [AE44,
p. 882]. (See also the proof of Lemma 5 in [PP13], and Theorem 2 in [Pom77].) Since
s(n) = σ(n) − n ≡ −n (mod p) whenever p | σ(n), we immediately deduce that s(n) is
equidistributed mod p for each fixed p.

We will show that s(n) remains equidistributed for larger p, but some care about the
formulation is required. Since s(q) = 1 for every prime q, there are at least (1+o(1))x/ log x
values of n ≤ x with s(n) ≡ 1 (mod p), no matter the value of p. And this dashes any
hope of equidistribution if p is appreciably larger than log x. We work around this issue by
considering s(n) only for composite n.

Theorem 1.3. Fix A > 0. As x → ∞, the number of composite n ≤ x with s(n) ≡ a
(mod p) is (1 + o(1))x/p, for every residue class a mod p with p ≤ (log x)A.

The proofs of Theorem 1.1 and 1.3 combine two different methods. For small p, meaning p
smaller than roughly (log log x)2, we apply the analytic method of Landau–Selberg–Delange.
In the (partially overlapping) range when p is a bit larger than log log x, we apply a
combinatorial and “anatomical”2 method of Banks–Harman–Shparlinski [BHS05]. While
similar analytic methods have been applied in such problems before (such as in the work of
Narkiewicz mentioned above), the modulus was always fixed. To allow p to grow with x,
we apply a version of the Landau–Selberg–Delange method enunciated recently by Chang
and Martin [CM20]. Interestingly, this part of the argument uses crucially that nontrivial
Jacobi sums over Fp are bounded by

√
p in absolute value; the trivial bound of p would

2in the sense of “anatomy of integers”
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only allow the method to work for p up to about log log x, just shy of what is required for
overlap with our second range.3

Given our reliance on the Siegel–Walfisz theorem, it would seem difficult to extend uniformity
in our results past (log x)A. It would be interesting to have heuristics suggesting the “correct”
range of uniformity to expect. For s, uniformity in Theorem 1.3 certainly fails as soon as p
is a bit larger than x1/2. To see this, let q, r run over primes up to 1

3

√
x. Then each product

qr ≤ x and s(qr) = q + r + 1 <
√
x. Hence, some m <

√
x has � x1/2(log x)−2 preimages

n = qr ≤ x. If now p ≥ x1/2(log x)3 (say), then the residue class m mod p contains s(n) for
many more than x/p composite n ≤ x. For ϕ, a similar argument suggests we should not
expect uniformity in Theorem 1.1 past roughly

L(x) := exp(log x · log log log x/ log log x).

Indeed, fix δ > 0. It was shown by Pomerance — conditional on a plausible conjecture
about shifted primes q − 1 with no large prime factors — that for all large x, there is an
integer m ≤ x having all prime factors at most log x and possessing at least x/L(x)1+δ

ϕ-preimages n ≤ x [Pom80]. Then if p ≥ L(x)1+2δ, the coprime residue class m mod p
contains ϕ(n) for many more than x/p values of n ≤ x.

The reader interested in other work on the distribution of ϕ and s in residue classes is referred
to [FKP99, BS06, BL07, FS07, BBS08, FL08, BSS09, CG09, Gar09, LPZ11, Nar12, Pol14].

Notation and conventions. We reserve the letters p, q, P for primes. We write logk for
the kth iterate of the natural logarithm. In addition to employing the Landau–Bachmann–
Vinogradov notation from asymptotic analysis, we write A & B (resp., A . B) to mean
that A ≥ (1 + o(1))B (resp., A ≤ (1 + o(1))B). Constants implied by O(.) or �,� are
absolute unless otherwise specified.

2. Preparation

In this section we collect various results from the literature that will be required in the
sequel. Let P+(n) denote the largest prime factor of the positive integer n, with the
convention that P+(1) = 1. We say that n is Y -smooth (or Y -friable) if P+(n) ≤ Y . For
each pair of real numbers X, Y ≥ 1, we let

ψ(X, Y ) = #{n ≤ X : P+(n) ≤ Y },

so that ψ(X, Y ) gives the count of Y -smooth numbers not exceeding X. The following
estimate is a consequence of the Corollary on p. 15 of [CEP83].

Lemma 2.1. Suppose X ≥ Y ≥ 3, and let u := logX
log Y

. Whenever u → ∞ and X ≥ Y ≥
(logX)2, we have

ψ(X, Y ) = X exp(−(1 + o(1))u log u).

3For a distinct but related application of these kinds of character sum bounds, see [Nar84, Chapter 6].
There Weil’s bounds are used to prove that certain “polynomial-like” multiplicative functions are uniformly
distributed in coprime residue classes mod p for all large enough p. See also [Nar82, Theorem 2].
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The following result is a special case of the fundamental lemma of sieve theory, as formulated
in [HR74, Theorem 7.2, p. 209].

Lemma 2.2. Let X ≥ Z ≥ 3. Suppose that the interval I = (u, v] has length v − u = X.
Let Q be a set of primes not exceeding Z. For each q ∈ Q, choose a residue class aq mod q.
The number of integers n ∈ I not congruent to aq mod q for any q ∈ Q is

X

(∏
q∈Q

(
1− 1

q

))(
1 +O

(
exp

(
−1

2

logX

logZ

)))
.

To understand the products over primes appearing in Lemma 2.2, we use an estimate due
independently to Pomerance (see Remark 1 of [Pom77]) and Norton (see the Lemma on p.
699 of [Nor76]).

Lemma 2.3. Let m be a positive integer and let a be an integer coprime to m. Let pa,m
denote the least prime p ≡ a (mod m). For all X ≥ m,∑

p≤X
p≡a (mod m)

1

p
=

log2X

ϕ(m)
+

1

pa,m
+O

(
log (2m)

ϕ(m)

)
.

3. Equidistribution of Euler’s totient in coprime residue classes: Proof of
Theorem 1.1

Lemma 3.1. Whenever x, p, and log x
log p

all tend to infinity, we have that

#{n ≤ x : p - ϕ(n)} ∼ x

(log x)1/(p−1)
.

Proof. If n has a prime factor q ≡ 1 (mod p), then p | ϕ(n). Now fix a real number K ≥ 1.
If n ≤ x and p - ϕ(n), then n is free of prime factors q ≡ 1 (mod p), and in particular free
of all such prime factors q ≤ x1/K . By Lemma 2.2, the number of such n ≤ x is

x

 ∏
q≡1 (mod p)

q≤x1/K

(
1− 1

q

)(1 +O

(
exp

(
−1

2
K

)))
.

Moreover,

∏
q≡1 (mod p)

q≤x1/K

(
1− 1

q

)
= exp

− ∑
q≡1 (mod p)

q≤x1/K

(
1

q
+O(1/q2)

) .
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Since q > p for every q ≡ 1 (mod p), the sum of the O(1/q2) terms will be O(1/p). Also,
from Lemma 2.3, once x, p, and log x

log p
are large enough (possibly depending on K),

∑
q≡1 (mod p)

q≤x1/K

1

q
=

log2 x

p− 1
+O

(
logK

p
+

log p

p

)
.

Putting these estimates back in above, we find that the count of n ≤ x with p - ϕ(n) is (for
large x, p, log x

log p
) at most

x

(log x)1/(p−1)

(
1 +O

(
logK

p
+

log p

p
+ exp

(
−1

2
K

)))
,

which is (for large p) at most (1 +O(exp(−K/2)))x/(log x)1/(p−1). Since K can be taken
arbitrarily large, the upper bound half of Lemma 3.1 follows.

The lower bound is similar. Again, fix K ≥ 1. From our earlier work, the count of
n ≤ x having no prime factor q ≡ 1 (mod p) with q ≤ x1/K is (for large x, p, log x

log p
)

(1 +O(exp(−K/2)))x/(log x)1/(p−1). Moreover, the same estimate holds if require also that
p - n. (We acquire an extra factor of (1−1/p) in our sieve argument, which can be absorbed
into (1 +O(exp(−K/2))) for large p.)

Suppose that n ≤ x is coprime to p and free of primes q ≡ 1 (mod p) with q ≤ x1/K

but that nevertheless p | ϕ(n). Write n = AB, where A is the largest divisor of n
composed of primes q ≡ 1 (mod p). We count the number of A corresponding to a given
B. Observe that 1 < A ≤ x/B and that every prime dividing A exceeds x1/K . Also, A ≡ 1
(mod p), and so A = 1 + pa for some a < x/pB. We can assume that log x

log p
> 2K, so that

x/pB = (x/B)/p ≥ A/p > x1/K/x1/2K = x1/2K . So by Lemma 2.2 (sieving a, with primes
up to x1/2K), the number of A corresponding to a given B is

(1) � x

pB

∏
q≤x1/2K , q 6=p

(
1− 1

q

)
� Kx

pB log x
.

Since B is free of prime factors q ≡ 1 (mod p), Mertens’ theorem yields∑ 1

B
≤

∏
q 6≡1 (mod p)

q≤x

(1− 1/q)−1 � (log x)
∏

q≡1 (mod p)
q≤x

(1− 1/q)

� (log x) exp

(
−

∑
q≡1 (mod p)

q≤x

1

q

)
� (log x)1−

1
p−1 ,

using Lemma 2.3 in the last step. Hence, the number of these n is O(K
p
x/(log x)1/(p−1)),

which is O(exp(−K/2)x/(log x)1/(p−1)) for large p.
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From our last two paragraphs, the count of n ≤ x for which p - ϕ(n) is at least (1 +
O(exp(−K/2)))x/(log x)1/(p−1), for large x, p, and log x

log p
. Taking K large completes the

proof of the lower bound. �

Using Lemma 3.1 and the method of Landau–Selberg–Delange, we can prove Theorem 1.1
in the range p ≤ (log2 x)2−δ.

Lemma 3.2. Fix δ > 0. Suppose that x, p → ∞, with p ≤ (log2 x)2−δ. The number of
n ≤ x with ϕ(n) ≡ a (mod p) is

∼ x

p(log x)1/(p−1)
,

uniformly in the choice of a coprime to p.

We defer the proof of Lemma 3.2 to §6.

Suppose that x, p → ∞ in such a way that p/ log2 x → ∞. Then (log x)1/(p−1) ∼ 1, and
x/(log x)1/(p−1) ∼ x. Thus, to finish off Theorem 1.1, it will suffice to establish the next
two propositions.

Proposition 3.3. Fix A > 0. The number of n ≤ x for which ϕ(n) ≡ a (mod p) is . x/p
as x, p→∞, uniformly in a, p with p ≤ (log x)A and a ∈ Z coprime to p.

Proposition 3.4. Fix A > 0. The number of n ≤ x for which ϕ(n) ≡ a (mod p) is & x/p
as x, p

log2 x
→∞, uniformly in a, p with p ≤ (log x)A and a ∈ Z coprime to p.

The proofs of Propositions 3.3 and 3.4 both begin the same way. In what follows, we assume
x, p→∞ and that p ≤ (log x)A, for a fixed A > 0. We set L := exp(

√
log x).

For each n > 1, we may think of n as factored in the form n = mP , where P = P+(n).
Then ∑

1<n≤x
ϕ(n)≡a (mod p)

1 =
∑

m,P : mP≤x
P≥P+(m)

ϕ(Pm)≡a (mod p)

1.

By Lemma 2.1, the number of n ≤ x for which P ≤ L is O(x/L), which is o(x/p) in our
range of p. Such a contribution is negligible from the point of view of our asymptotic
formulas. Thus, we may assume that P > L. We can also assume P 2 - Pm =: n
(equivalently, P > P+(m)), since the number of n ≤ x divisible by r2 for an integer r > L is
at most x

∑
r>L r

−2 � x/L. Then ϕ(Pm) = (P − 1)ϕ(m). For a given m, the congruence
(P − 1)ϕ(m) ≡ a (mod p) holds for all P in a certain coprime residue class ap,m mod p as
long as p - ϕ(m) and ϕ(m) 6≡ −a (mod p). So writing Lm := max{P+(m), L},

(2)
∑

m,P : mP≤x
P≥P+(m)

ϕ(Pm)≡a (mod p)

1 =

( ∑
m≤x

ϕ(m) 6≡0,−a (mod p)
Lm<x/m

∑
Lm<P≤x/m

P≡ap,m (mod p)

1

)
+ o(x/p).
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Since p ≤ (log x)A ≤ (log(Lm))2A, the Siegel–Walfisz theorem (see [MV07, Corollary 11.21])
implies that, for a certain absolute positive constant c,

(3)
∑

Lm<P≤x/m
P≡ap,m (mod p)

1 =
1

p− 1

∑
Lm<P≤x/m

1 +OA

( x
m

exp(−c
√

log(x/m))
)
.

Since log(x/m)1/2 ≥ (log x)1/4, if we plug (3) into the right-hand side of (2), the O-terms
contribute

�A x exp(−c(log x)1/4)
∑
m≤x

1

m
� x exp

(
−1

2
c(log x)1/4

)
,

which is o(x/p). The main terms contribute

1

p− 1

∑
m≤x

ϕ(m)6≡0,−a (mod p)
Lm<x/m

∑
Lm<P≤x/m

1.

Carrying out our earlier simplifications, but in reverse, we find that∑
m≤x

ϕ(m)6≡0,−a (mod p)
Lm<x/m

∑
Lm<P≤x/m

1 =

( ∑
m,P : mP≤x
P≥P+(m)

ϕ(m)6≡0,−a (mod p)

1

)
+ o(x/p).

Putting all of this together yields following fundamental relation:

(4)
∑

1<n≤x
ϕ(n)≡a (mod p)

1 =

(
1

p− 1

∑
m,P : mP≤x
P≥P+(m)

ϕ(m)6≡0,−a (mod p)

1

)
+ o(x/p).

Proof of Proposition 3.3. The right-hand sum in (4) is trivially bounded by x, since every
integer n > 1 has a unique representation in the form mP with P ≥ P+(m). Hence, the
right-hand side of (4) is at most x/(p− 1) + o(x/p) = (1 + o(1))x/p, as desired. �

Proof of Proposition 3.4. Since
∑

m,P : mP≤x
P≥P+(m)

1 = x+O(1), in view of (4) the claimed lower

bound will follow if it is shown that both

(5)
∑

m,P : mP≤x
P≥P+(m)

ϕ(m)≡0 (mod p)

1 = o(x)

and

(6)
∑

m,P : mP≤x
P≥P+(m)

ϕ(m)≡−a (mod p)

1 = o(x).
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If n = mP is counted by the left-hand side of (5), then n ≤ x and p | ϕ(m) | ϕ(n). Since
p/ log2 x→∞, Lemma 3.1 puts n in a set of size o(x), proving (5).

We turn now to (6). We first consider all n with 1 < n ≤ x of the form n = mP , P ≥ P+(m),
having m ≤ L := exp(

√
log x). The number of such n does not exceed∑

m≤L

∑
P≤x/m

1� x

log x

∑
m≤L

1

m
� x√

log x
= o(x).

So for the purpose of establishing (6), we may tack on to its left-hand side the condition
that m > L. Then x/P > L. We now bound the number of n = mP that occur by counting,
for each P , the number of corresponding m ≤ x/P . Since p ≤ (log x)A < (log(x/P ))2A, we
may apply Proposition 3.3. We find that if p and x are sufficiently large and in our given
range, ∑

m,P : mP≤x
P≥P+(m)
m≥L

ϕ(m)≡−a (mod p)

1 ≤
∑
P≤x/L

∑
m≤x/P

ϕ(m)≡−a (mod p)

1 ≤ 2x

p

∑
P≤x

1

P
,

which is � x log2 x/p = o(x), as desired. �

4. Values of ϕ(n) divisible by p: Proof of Theorem 1.2

We suppose, as in the statement of Theorem 1.2, that x and p/ log2 x tend to infinity, with
p ≤ (log x)A. We start the proof by showing that

∑
q≤x, q≡1 (mod p) 1/q ∼ log2 x/p. For this

we adapt Pomerance’s proof of Lemma 2.3. Fix K ≥ A. Noting that any prime congruent
to 1 mod p exceeds p, we see that∑

q≤x
q≡1 (mod p)

1

q
= O(1/p) +

∫ exp(p1/K)

10p

dπ(t; p, 1)

t
+

∫ x

exp(p1/K)

dπ(t; p, 1)

t
.

We assume throughout this argument that x and p/ log2 x are large (allowed to depend
on K). Then 10p < exp(p1/K). By the Brun–Titchmarsh inequality (see, e.g., [MV07,
Theorem 3.9, p. 90]), π(t; p, 1)� t

p log(t/p)
for all t > p, and so the first right-hand integral

in the last display is

� 1

p
+

1

p

∫ exp(p1/K)

10p

dt

t log(t/p)
� log p

Kp
.

By the Siegel–Walfisz theorem, for all t ≥ exp(p1/K),

π(t; p, 1) =
li(t)

p− 1
+OK(t exp(−c

√
log t))

=
t

(p− 1) log t
+O

(
t

p(log t)2

)
+OK(t exp(−c

√
log t)),
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leading to the conclusion that∫ x

exp(p1/K)

dπ(t; p, 1)

t
=

log2 x

p− 1
+O

(
log p

Kp

)
+OK

(
1

p

)
=

log2 x

p
+O

(
log2 x

p2
+

log p

Kp

)
+OK

(
1

p

)
.

Assembling these estimates, we find that if x, p/ log2 x are large and p ≤ (log x)A,∑
q≤x

q≡1 (mod p)

1

q
=

log2 x

p
(1 +O(A/K)) .

Since K can be taken arbitrarily large,
∑

q≤x, q≡1 (mod p) 1/q ∼ log2 x/p, as claimed.

The upper bound in Theorem 1.2 now follows quickly. If p | ϕ(n), either p2 | n or q | n
for some q ≡ 1 (mod p). The former occurs for at most x/p2 values of n ≤ x, which is
negligible compared to x log2 x/p. The latter occurs for at most x

∑
q≤x, q≡1 (mod p) 1/q =

(1 + o(1))x log2 x/p values of n.

For a lower bound, it is enough to bound from below the number of n ≤ x having
at least one prime factor q ≡ 1 (mod p). We perform the first two steps of inclusion-
exclusion. Let N1 count each n ≤ x weighted by k(n), where k(n) is the number of its

distinct prime divisors q ≡ 1 (mod p), and let N2 count each n ≤ x weighted by
(
k(n)
2

)
.

Since k −
(
k
2

)
≤ 1 for each integer k ≥ 0, our count is bounded below by N1 − N2. Now

N1 =
∑

q≤x, q≡1 (mod p)bx/qc = (x
∑

q≤x, q≡1 (mod p) 1/q)+O(x/p log x) = (1+o(1))x log2 x/p,
while

N2 =
∑

q1<q2≤x
q1≡q2≡1 (mod p)

⌊
x

q1q2

⌋
≤ x

( ∑
q≤x

q≡1 (mod p)

1

q

)2

= (1 + o(1))
x(log2 x)2

p2
,

which is o(x log2 x/p).

5. Equidistribution of the sum of proper divisors: Proof of Theorem 1.3

As explained in the introduction, we may confine our attention to the situation when
p→∞.

Lemma 5.1. Fix A > 0. Suppose that p, x, log x
log p
→∞. Then, uniformly in the choice of

residue class a mod p, ∑
n≤x

n≡a (mod p)
σ(n) 6≡0 (mod p)

1 ∼ x

p(log x)1/(p−1)
.

Proof. The proof is similar to that of Lemma 3.1. First we treat the upper bound. Suppose
that n ≤ x, n ≡ a (mod p), and σ(n) 6≡ 0 (mod p). Write n = AB, where A is the largest
divisor of n composed of primes congruent to −1 (mod p). Then A is squarefull, A ≡ ±1



10 NOAH LEBOWITZ-LOCKARD, PAUL POLLACK, AND AKASH SINGHA ROY

(mod p), and B ≡ ±a (mod p) (with matching choices of sign). The number of n ≤ x
with a squarefull divisor exceeding x1/2 is at most x

∑
m>x1/2, squarefull 1/m� x3/4, which

is o( x
p(log x)1/(p−1) ) as x, p, log x

log p
tend to infinity. So we assume that A ≤ x1/2 and count B

corresponding to a given A. We have that B ≤ x/A, that B ≡ ±a (mod p) (for a specific
choice of sign, determined by A), and that B is free of prime factors q ≡ −1 (mod p). In
particular, fixing K ≥ 4, we have that B is free of prime factors q ≡ −1 (mod p) with
q ≤ x1/K . Since x1/K ≤ x1/4 ≤ x

Ap
when log x

log p
≥ 4, the sieve bounds the number of these B

by  x

Ap

∏
q≤x1/K

q≡−1 (mod p)

(1− 1/q)

(1 +O

(
exp

(
−1

2

log(x/Ap)

log(x1/K)

)))
,

which (cf. the proof of Lemma 3.1) is at most

x

Ap(log x)1/(p−1)
(1 +O(exp(−K/8)))

when x, p, log x
log p

are all large enough (allowed to depend on K). The sum of 1/A over squarefull

positive integers A ≡ ±1 (mod p) is at most 1 +
∑

A≥p−1, A squarefull 1/A = 1 + O(p−1/2),

which is 1 +O(exp(−K/8)) for large p. The upper bound half of the lemma now follows,
since K can be taken arbitrarily large.

We start the proof of the lower bound by counting n ≤ x, n ≡ a (mod p) with no small
prime factor q ≡ −1 (mod p). Taking “small” to mean q ≤ x1/K , where K ≥ 2 is fixed, the
sieve implies that the number of such n ≤ x, when x, p, and log x

log p
are all large, is(

x

p

∏
q≡−1 (mod p)

q≤x1/K

(
1− 1

q

))(
1 +O

(
exp

(
−1

2

log (x/p)

log(x1/K)

)))

=
x

p(log x)1/(p−1)
(1 +O(exp(−K/4))) .

We now wish to remove from our count those n that survive the sieve of the last paragraph
but nonetheless satisfy σ(n) ≡ 0 (mod p). Take an n of this kind. We consider two cases,
according to whether or not there is a prime q dividing n with q ≡ −1 (mod p).

Suppose there is such a prime q. Since n survived our sieve, necessarily q > x1/K . Let A
be the largest divisor of n composed of primes q ≡ −1 (mod p) and write n = AB. Then
A ≡ ±1 (mod p) and B ≡ ±a (mod p) (for the same choice of sign). As in the proof of
Lemma 3.1 (see (1)), the number of A corresponding to a given B is

� Kx

pB log x
.

(As usual, we assume all of x, p, log x
log p

are large.) We now estimate
∑

1/B. For each T ≥ p2,

the sieve (along with Lemma 2.3) implies that the number of B ≤ T , B ≡ ±a (mod p),
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with B free of prime factors q ≡ −1 (mod p) is

� T/p

log(T/p)1/(p−1)
� T

p(log T )1/(p−1)
.

Summing by parts, ∑ 1

B
� 1 +

1

p
(log x)1−

1
p−1 .

(The “1” bounds the contribution of those B ≤ p2.) Hence, the count of corresponding n is

� Kx

p log x
+

Kx

p2(log x)1/(p−1)
,

which is o( x
p(log x)1/(p−1) ) as x, p, log x

log p
tend to infinity.

Now suppose that n is entirely free of primes q ≡ −1 (mod p). In that case, since p | σ(n),
there must be a prime power qe ‖ n, e > 1, for which p | σ(qe). Let S be the product of all
such qe ‖ n. If S ≥ x1/2, then S is a squarefull divisor of n exceeding x1/2; as at the start
of this proof, this puts n in a set of size O(x3/4), which is o( x

p(log x)1/(p−1) ). So suppose that

S ≤ x1/2 and write n = ST . Then T ≤ x/S, T ≡ aS−1 (mod p), and T is free of primes
q ≡ −1 (mod p). By another application of the sieve, the number of possibilities for T
given S is

� x

pS

∏
q≡−1 (mod p)

q≤ x
pS

(
1− 1

q

)
� x

pS(log(x/pS))1/(p−1)
� x

pS(log x)1/(p−1)
,

when x, p, log x
log p

are all large. To estimate
∑

1/S, note that σ(qe) < 2qe for every prime power

qe, so that if p | σ(qe), then qe > 1
2
p. It follows that

∑
1/S ≤

∑
S> 1

2
p, S squarefull 1/S �

1/p1/2. So only O( x
p3/2(log x)1/(p−1) ) values of n arise this way, and this is o( x

p(log x)1/(p−1) ).

The lower bound half of the lemma follows by combining the results of the previous three
paragraphs, noting again that K can be as large as we like. �

5.1. Equidistribution when p ≤ (log2 x)2−δ. The proof of the next lemma, concerning
the joint distribution of n and σ(n) mod p, is deferred to §6.

Lemma 5.2. Fix δ > 0. Suppose that p, x → ∞, with p ≤ (log2 x)2−δ. The number of
n ≤ x with n ≡ u (mod p) and σ(n) ≡ v (mod p) is

∼ x

p2(log x)1/(p−1)
,

uniformly in the choice of integers u, v coprime to p.

With Lemmas 5.1 and 5.2 in hand, we can deduce Theorem 1.3 in the range p ≤ (log2 x)2−δ

(δ > 0 fixed). Notice that in this range, it makes no difference if we restrict the inputs of
s(·) to composite n, since x/ log x = o(x/p).
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We can express the count of n ≤ x with s(n) ≡ a (mod p) as

(7)
∑

u,v (mod p)
u+v≡a (mod p)

Nu,v; p(x),

where

Nu,v; p(x) :=
∑
n≤x

n≡−u (mod p)
σ(n)≡v (mod p)

1.

First, suppose that a 6≡ 0 (mod p). Then there are p− 2 pairs (u, v) summing to a mod
p with u, v 6≡ 0 (mod p). By Lemma 5.2, Nu,v; p(x) ∼ x

p2(log x)1/(p−1) for each, resulting in a

combined contribution to (7) of (1 + o(1)) x
p(log x)1/(p−1) . The two remaining pairs are (0, a)

and (a, 0). Suppose n is counted by N0,a; p(x). Write n = pk. Then σ(k) ≡ σ(n) ≡ a
(mod p). Now taking cases according to whether p - k or p | k, and writing k = pk′ in the
latter, we find that

N0,a; p(x) ≤
∑
k≤x/p

k 6≡0 (mod p)
σ(k)≡a (mod p)

1 +
∑

k′≤x/p2
σ(k′) 6≡0 (mod p)

1.

Here the first sum can be estimated by Lemma 5.2 while the second succumbs to Lemma
5.1; the sums total to o( x

p(log x)1/(p−1) ). A further application of Lemma 5.2 shows that

Na,0; p(x) =
x

p
− (1 + o(1))

x

p(log x)1/(p−1)
.

Combining our tallies, the n with s(n) ≡ a (mod p) make up a set of size x/p+o( x
p(log x)1/(p−1) ),

which is (1 + o(1))x/p, as desired.

The argument is similar when a ≡ 0 (mod p). In that case, there are p− 1 contributions of
size (1 + o(1)) x

p2(log x)1/(p−1) coming from the pairs (u,−u) with u 6≡ 0 (mod p), for a total

of (1 + o(1)) x
p(log x)1/(p−1) . It remains to consider N0,0; p(x). Writing the integers n counted

by N0,0; p(x) in the form prk, where p - k, we see using Lemma 5.1 that

N0,0; p(x) =
∑
k≤x/p

k 6≡0 (mod p)
σ(k)≡0 (mod p)

1 +O(x/p2)

= (p− 1)

(
x

p2
− (1 + o(1))

x

p2(log x)1/(p−1)

)
+O(x/p2)

= x/p− (1 + o(1))
x

p(log x)1/(p−1)
+O(x/p2).

Tallying it all up, we get a total of (1 + o(1))x/p in this case as well. This completes the
proof of Theorem 1.3 when p ≤ (log2 x)2−δ.
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5.2. Equidistribution when p/ log2 x→∞. For the remainder of this section, we work
in the range where both x and p/ log2 x tend to infinity. We continue to assume that
p ≤ (log x)A, where A > 0 is fixed.

Suppose n is composite with 1 < n ≤ x and write n = mP where P = P+(n). Set
L := exp(

√
log x). As in §3, we can assume that P > L and P - m, at the cost of o(x/p)

exceptions. Then s(n) = (P + 1)σ(m) − Pm = Ps(m) + σ(m), and we have s(n) ≡ a
(mod p) precisely when Ps(m) ≡ a− σ(m) (mod p). Now writing Lm = max{L, P+(m)},
we see that∑

1<n≤x
n composite

s(n)≡a (mod p)

1 =

( ∑
1<m≤x

s(m)≡0 (mod p)
σ(m)≡a (mod p)

∑
Lm<P≤x/m

1 +
∑

1<m≤x
s(m)6≡0 (mod p)
σ(m)6≡a (mod p)

∑
Lm<P≤x/m

P≡ap,m (mod p)

1

)
+ o(x/p),

where ap,m mod p is determined by the congruence ap,m · s(m) ≡ a− σ(m) (mod p). Pro-
ceeding in exact analogy with §3, we may express the right-hand side as

(8)

( ∑
m,P : mP≤x

m>1, P≥P+(m)
s(m)≡0 (mod p)
σ(m)≡a (mod p)

1 +
1

p− 1

∑
m,P : mP≤x

m>1, P≥P+(m)
s(m)6≡0 (mod p)
σ(m)6≡a (mod p)

1

)
+ o(x/p).

We proceed to show that the first of the two sums in (8) is o(x/p).

Take first the case when p | a. If m,P are counted by this first sum, then m = σ(m)−s(m) ≡
a− 0 ≡ 0 (mod p), so that p | m. Write m = pru, where p - u. Then p | σ(u), and so qe ‖ u
for some prime power qe with p | σ(qe). It follows that n := mP is an integer not exceeding
x divisible by prqe. Hence, in this case our sum is at most

x
∑
r≥1

1

pr

∑
qe≤x
p|σ(qe)

1

qe
� x

p

( ∑
q≤x

q≡−1 (mod p)

1

q
+

∑
qe≤x, e>1
p|σ(qe)

1

qe

)

� x

p

(
log2 x

p− 1
+

log p

p
+

∑
m squarefull
m>p/2

1

m

)
,

which is o(x/p).

Now assume p - a. Fix K > 2 (which later will be taken large). We first bound the
contribution to our sum from those cases where m ≤ x1/K or m ≥ x1−1/K . Since σ(m) ≡ a
(mod p) and s(m) ≡ 0 (mod p), we have that m = σ(m)− s(m) ≡ a (mod p). Moreover,
since m > 1, we have s(m) > 0, and so σ(m) > s(m) ≥ p. Since σ(m)� m log2 (3m) (see,
e.g., [HW08, Theorem 323, p. 350]), we deduce that m� p/ log2 p. It follows that the cases
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where m ≤ x1/K contribute

�
∑

1<m≤x1/K
σ(m)≡a (mod p)

p|s(m)

π(x/m)� x

log x

∑
1<m≤x1/K

σ(m)≡a (mod p)
p|s(m)

1

m

� x

log x

(
log2 p

p
+

∑
p<m≤x1/K
m≡a (mod p)

1

m

)
� x

log x

(
log2 p

p
+

log x

pK

)
,

which is o(x/p) + O( x
pK

). If instead m ≥ x1−1/K , then P ≤ x1/K . In that case it is

convenient to count values of m corresponding to a given P . We have that m ≡ a (mod p),
that m ≤ x/P , and that m has no prime factors exceeding P . By the sieve, the number of
possibilities for m is � x

Pp

∏
P<q≤x/Pp(1 − 1/q) � x

p
logP
P log x

. (We assume here, and below,

that x and p/ log2 x are large, in a manner allowed to depend on K, and we keep in mind
that p ≤ (log x)A.) Summing on P ≤ x1/K , we see that the number of n arising this way is
O( x

pK
).

Now suppose that x1/K < m < x1−1/K . For each such m, the number of corresponding P is
at most

π(x/m)� Kx

m log x
.

We shall use this bound to justify several further assumptions on m. Since p | s(m), we
know that m is not prime. Write

m = m0P1P2,

where P2 = P+(m) and P1 = P+(m/P2).

The number of n := mP corresponding to m with P2 ≤ x1/K
3

is

� Kx

log x

∑
X1/K<m≤x
m≡a (mod p)

P+(m)≤X1/K3

1

m
.

By the sieve, for each T ≥ x1/K , the number of m ≤ T , m ≡ a (mod p), with P+(m) ≤
x1/K

3
is � T

p

∏
x1/K

3
<q≤T/p(1− 1/q)� T

pK2 . Hence, the sum of 1/m in the last display is

O( log x
pK2 ), and the number of corresponding n is O( x

pK
). Suppose P2 > x1/K

3
but P1 ≤ x1/K

3
.

Then m = uP2 where u := m0P1 is such that P+(u) ≤ x1/K
3
. Thus,∑ 1

m
≤
( ∑
P+(u)≤x1/K3

p-u

1

u

∑
x1/K

3
<P2≤x

P2≡u−1a (mod p)

1

P2

)
� logK

p

∑
P+(u)≤x1/K3

1

u

=
logK

p

∏
q≤x1/K3

(1− 1/q)−1 � log x

p
· logK

K3
.
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Here the sum on P2 has been estimated with the Brun–Titchmarsh inequality and partial
summation (direct use of Lemma 2.3 would give a slightly worse estimate). Hence, the
number of corresponding n is O( logK

K2
x
p
), which is O( x

pK
).

Now suppose that P1, P2 > x1/K
3
. If P1 = P2 or P1 | m0, then n = m0P1P2P is divisible

by the square of a prime exceeding x1/K
3
. The number of such n is O(x1−1/K

3
), which is

o(x/p).

Thus, at the cost of o(x
p
) + O( x

pK
) exceptions, we may assume that x1/K < m < x1−1/K ,

that P2 > P1 > P+(m0), and that P1 > x1/K
3
. The congruence σ(m) ≡ a (mod p) implies

that σ(m0) is coprime to p, and that

(P1 + 1)(P2 + 1) ≡ σ(m0)
−1a (mod p).

Also, m ≡ a (mod p) implies that p - m0 and that

P1P2 ≡ m−10 a (mod p).

For each m0, the last two displayed congruences determine O(1) possibilities for the pair of
residue classes (P1 mod p, P2 mod p). Moreover, for each pair (u mod p, v mod p), the sum
of 1/m taken over the corresponding values of m = m0P1P2 does not exceed∑

m0≤x

1

m0

∑
x1/K

3
<P1≤x

P1≡u (mod p)

1

P1

∑
x1/K

3
<P2≤x

P2≡v (mod p)

1

P2

� (logK)2

p2
log x.

Hence, the number of these remaining n is

� K(logK)2

p

x

p
,

which is o(x/p).

Collecting the results of the last several paragraphs, we conclude that for each fixed K the
first of the sums in (8) is O( x

pK
), provided x and p/ log2 x are large enough (in terms of

K,A). Since K may be taken large, this first sum is o(x/p).

We have thus proved: Let x and p/ log2 x tend to infinity, with p ≤ (log x)A for a fixed
A > 0. Uniformly in the choice of a ∈ Z,∑

1<n≤x
n composite

s(n)≡a (mod p)

1 =

(
1

p− 1

∑
m,P : mP≤x

m>1, P≥P+(m)
s(m) 6≡0 (mod p)
σ(m)6≡a (mod p)

1

)
+ o(x/p).

Bounding the right-hand sum trivially yields the following analogue of Proposition 3.3.

Proposition 5.3. Fix A > 0. The number of composite n ≤ x for which s(n) ≡ a (mod p)
is . x/p, as x, p

log2 x
→∞, uniformly in the choice of a ∈ Z and prime p ≤ (log x)A.
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The analogue of Proposition 3.4 can now be established. We use in its proof that Proposition
3.3 still holds if ϕ is replaced by σ. In fact, our proof of Proposition 3.3 applies to σ almost
verbatim (a few “−” signs change to “+”).

Proposition 5.4. Fix A > 0. The number of composite n ≤ x for which s(n) ≡ a (mod p)
is & x/p, as x, p

log2 x
→∞, uniformly in the choice of a ∈ Z and prime p ≤ (log x)A.

Proof. Since
∑

m,P : mP≤x
m>1, P≥P+(m)

1 = x− π(x) +O(1) ∼ x, it will suffice to show that both

(9)
∑

m,P : mP≤x
m>1, P≥P+(m)
σ(m)≡a (mod p)

1 = o(x)

and

(10)
∑

m,P : mP≤x
m>1, P≥P+(m)
s(m)≡0 (mod p)

1 = o(x).

Let L := exp(
√

log x). Imitating the argument for (6) in the proof of Proposition 3.4, we
see that (9) and (10) follow if for all T with L ≤ T ≤ x,∑

m≤T
σ(m)≡a (mod p)

1� T

p
,

∑
m≤T

s(m)≡0 (mod p)

1� T

p
.

The second estimate is a consequence of Proposition 5.3, while when p - a, the first estimate
follows from the σ-analogue of Proposition 3.3.

To prove (9) when p | a, we mimic the proof of (5). The sum on the left of (9) changes
by o(x) if we impose the additional constraint that P - m. (In fact, our work above
shows that the change is O(x/L).) Then for the numbers n = mP being counted here,
p | σ(m) | σ(mP ), and so n ≤ x is such that p | σ(n). Lemma 5.1 now places n in a set of
size o(x). �

Propositions 5.3 and 5.4 complete the proof of Theorem 1.3.

6. Proofs of Lemma 3.2 and Lemma 5.2 by the method of
Landau–Selberg–Delange

In this section, we supply the promised proofs of Lemmas 3.2 and 5.2, by the method of
Landau–Selberg–Delange. We use a recent formulation of that method due to Chang and
Martin [CM20], which is based on Tenenbaum’s treatment in [Ten15, Chapter II.5] but
(crucially for us) more explicit about the dependence on certain parameters.
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6.1. Setup. We follow [CM20] in setting log+ y = max{0, log y}, with the convention that
log+ 0 = 0. We write complex numbers s as s = σ + iτ .4

For a complex number z and positive real numbers c0, δ, and M satisfying δ ≤ 1, we say
that the Dirichlet series F (s) has property P(z; c0, δ,M) if

G(s; z) := F (s)ζ(s)−z

continues analytically for σ ≥ 1− c0/(1 + log+ |τ |), wherein it satisfies the bound

|G(s; z)| ≤M(1 + |τ |)1−δ.

For complex numbers z and w and for positive real numbers c0, δ, and M satisfying δ ≤ 1,
we say that a Dirichlet series F (s) :=

∑∞
n=1 ann

−s has type T (z, w; c0, δ,M) if it has
property P(z; c0, δ,M) and there exists a sequence {bn}∞n=1 of nonnegative real numbers
upper bounding the sizes of {an}∞n=1 termwise (that is, satisfying |an| ≤ bn for all positive
integers n), such that the Dirichlet series

∑∞
n=1 bnn

−s has property P(w; c0, δ,M).

The following is a special case of Theorem A.13 in [CM20]. Specifically, we take A = 1, N =
0, δ = 1/2 in that result.

Proposition 6.1. Let z, w be complex numbers with |z|, |w| ≤ 1. Let c0,M be posi-
tive real numbers with c0 ≤ 2/11. Let F (s) =

∑∞
n=1 an/n

s be a Dirichlet series of type
T (z, w; c0, 1/2,M). Then, uniformly for x ≥ exp(16/c0), we have∑

n≤x

an = x(log x)z−1
(
G(1; z)

Γ(z)
+O(MR(x))

)
,

where

R(x) = c−30 exp

(
−1

6

√
1

2
c0 log x

)
+

1

c0 log x
.

Here we have corrected some typos in [CM20]; the expression for R(x) there has an extra
factor of M throughout as well as an extra factor of x in its first term.

6.2. Proof of Lemma 5.2. We prove Lemma 5.2 in detail; after that, it will suffice to
sketch the (very similar) proof of Lemma 3.2.

We will assume throughout the argument that p ≥ 3. We do not assume to start with that
p→∞ or that p and x are related in size in a particular way; those assumptions of Lemma
5.2 will be introduced only at the conclusion of the argument.

By the orthogonality relations,

(11)
∑
n≤x

n≡u (mod p)
σ(n)≡v (mod p)

1 =
1

(p− 1)2

∑
χ,ψ

χ̄(u)ψ̄(v)
∑
n≤x

χ(n)ψ(σ(n)),

4The distinction between σ as the real part of a complex number and σ as the sum-of-divisors function
will be clear from context.
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where the first right-hand sum is over all Dirichlet characters χ, ψ mod p. Let ε denote the
trivial character mod p. Then ∑

n≤x

ε(n)ε(σ(n)) =
∑
n≤x
p-n

p-σ(n)

1,

whose behavior will be understood with Lemma 5.1. Now assume that (χ, ψ) 6= (ε, ε). In
this case, we will estimate

∑
n≤x χ(n)ψ(σ(n)) by an application of Proposition 6.1.

Let

Fχ,ψ(s) =
∞∑
n=1

χ(n)ψ(σ(n))

ns
.

In the half plane <(s) > 1,

Fχ,ψ(s) =
∏
q

(
1 +

χ(q)ψ(q + 1)

qs
+
χ(q2)ψ(q2 + q + 1)

q2s
+ . . .

)
.

We can choose coefficients aρ, for each Dirichlet character ρ mod p, in such a way that

(12) χ(n)ψ(n+ 1) =
∑
ρ

aρρ(n)

for all n. Indeed, it is straightforward to check that this holds if we set

aρ =
1

p− 1

∑
m mod p

(χρ̄)(m)ψ(m+ 1).

The sum on m used to define aρ has p− 2 nonzero terms, and so trivially |aρ| < 1. In fact,
unless ψ is trivial and ρ = χ, we have

|aρ| ≤
√
p/(p− 1).

This follows by recognizing (p − 1)aρ as — up to sign — a Jacobi sum.5 See Theorem 1
on p. 93 and the Corollary on p. 94 of [IR90]. This bound on aρ can also be viewed as a
consequence of Weil’s Riemann Hypothesis for curves (see, e.g., [Wan97, Corollary 2.3] for
a general character sum estimate along these lines).

We will show that Fχ,ψ(s) has property P(aε; c0, 1/2,M) for certain values c0 ≤ 2/11
and M ≥ 1. Since the coefficients of F are termwise dominated by those of ζ(s), which
has property P(1; c0, 1/2,M), it follows that Fχ,ψ(s) has type T (aε, 1; c0, 1/2,M). After
obtaining estimates for c0 and M , Proposition 6.1 will yield a satisfactory estimate for∑

n≤x χ(n)ψ(σ(n)).

We set
Uχ,ψ(s) = Fχ,ψ(s)

∏
ρ

L(s, ρ)−aρ

5In the theory of Jacobi sums, it is common to set ε(0) = 1. We are following instead the usual convention
for Dirichlet characters according to which ε(0) = 0.
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and observe that for <(s) > 1,

Uχ,ψ(s) =
∏
q

((
1 +

χ(q)ψ(q + 1)

qs
+
χ(q2)ψ(q2 + q + 1)

q2s
+ . . .

)∏
ρ

(
1− ρ(q)

qs

)aρ)
.

Notice that(
1 +

χ(q)ψ(q + 1)

qs
+
χ(q2)ψ(q2 + q + 1)

q2s
+ . . .

)(
1− χ(q)ψ(q + 1)

qs

)
= 1 + c2/q

2s + c3/q
3s + . . . ,

where the cj = cj(q, χ, ψ) are at most 2 in absolute value. It follows that the function

Vχ,ψ(s) :=
∏
q

((
1 +

χ(q)ψ(q + 1)

qs
+
χ(q2)ψ(q2 + q + 1)

q2s
+ . . .

)(
1− χ(q)ψ(q + 1)

qs

))
is holomorphic and bounded by an absolute constant for <(s) ≥ 0.99 (say). For <(s) > 1,

Uχ,ψ(s) = Vχ,ψ(s)Wχ,ψ(s),

where

Wχ,ψ(s) :=
∏
q

((∏
ρ

(
1− ρ(q)

qs

)aρ)(
1− χ(q)ψ(q + 1)

qs

)−1)
.

Recalling that the aρ were selected to ensure (12), we find that

logWχ,ψ(s) =
∑
q

∑
k≥2

(
χ(q)kψ(q + 1)k −

∑
ρ aρρ(q)k

kqks

)
.

This is holomorphic for <(s) ≥ 0.99 and in this region we have

| logWχ,ψ(s)| � 1 +
∑
ρ

|aρ|.

Moreover, since |aρ| ≤
√
p/(p− 1) for all ρ, with at most one exception where |aρ| < 1,

(13)
∑
ρ

|aρ| �
√
p.

We conclude that Uχ,ψ(s) is holomorphic for <(s) ≥ 0.99 and that |Uχ,ψ(s)| ≤ exp(O(
√
p))

there.

Now

Fχ,ψ(s) = Uχ,ψ(s)
∏
ρ

L(s, ρ)aρ

= ζ(s)aε(1− 1/ps)aεUχ,ψ(s)
∏
ρ6=ε

L(s, ρ)aρ

= ζ(s)aεGχ,ψ(s), where Gχ,ψ(s) := (1− 1/ps)aεUχ,ψ(s)
∏
ρ6=ε

L(s, ρ)aρ .
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The factor (1− 1/ps)aε is holomorphic and absolutely bounded for <(s) ≥ 0.99. It remains
to understand the behavior of

∏
ρ 6=ε L(s, ρ)aρ . For this, we appeal to [CM20, Proposition

2.3]. Below, log log+ denotes the second iterate of log+.

Lemma 6.2. Let m be an integer at least 3. There is an effective constant 0 < η < 1/81
such that for all m ≥ 3 and all Dirichlet characters ξ mod m, the function L(s, ξ) has no
zeros in the region

σ ≥ 1− c0
1 + log+ |τ |

with c0 =
η

m1/2(logm)2

and therein satisfies the bound

| logL(s, ξ)| ≤

{
log log+(m|τ |) +O(1) if L(s, ξ) has no exceptional zero,
1
2

logm+ 3 log log+(m|τ |) +O(1) if L(s, ξ) has an exceptional zero.

We do not define “exceptional zero” here (see [CM20]). It suffices for present purposes to
note that for each m, there is at most one character ξ mod m for which L(s, ξ) has an
exceptional zero.

We take

c0 :=
η

p1/2(log p)2
,

where η is as in Lemma 6.2. Then the product
∏

ρ 6=ε L(s, ρ)aρ is nonzero and holomorphic

for σ ≥ 1− c0/(1 + log+ |τ |), and in this same region,

| log
∏
ρ 6=ε

L(s, ρ)aρ| � log p+
√
p log log+(p|τ |) +O(

√
p)

� √p(log log+(p|τ |) + 1).

(Here we used (13) and that at most one ρ is exceptional.) Hence,∣∣∣∣∣∏
ρ 6=ε

L(s, ρ)aρ

∣∣∣∣∣ ≤ exp(O(
√
p)) exp(O(

√
p log log+(p|τ |))).

It is a calculus exercise to show that the right-hand side is at most (C
√
p)C

√
p(1 + |τ |)1/2

for a certain absolute constant C. (Compare with the proof of [CM20, Lemma 3.3].)

Assembling our results, we find that Gχ,ψ(s) is holomorphic for σ ≥ 1− c0/(1 + log+ |τ |)
and therein satifies

(14) |Gχ,ψ(s)| ≤M(1 + |τ |)1/2

where

M := (C ′
√
p)C

′√p

for a certain constant C ′. Hence, Fχ,ψ(s) has property P(aε; c0, 1/2,M).
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From Proposition 6.1, we deduce that for all x ≥ exp(16
η
p1/2(log p)2),∑

n≤x

χ(n)ψ(σ(n)) = x(log x)aε−1
(
Gχ,ψ(1)

Γ(aε)
+O (MR(x))

)
.

Since (χ, ψ) 6= (ε, ε), we have |aε| ≤
√
p/(p− 1). As aε is close to zero, |1/Γ(aε)| � |aε| �

p−1/2. From (14), Gχ,ψ(1) � M . We have crudely that R(x) � c−30 � p2. If we assume
that p > 10, then |aε| < 2/5, and we conclude that∣∣∣∣∑

n≤x

χ(n)ψ(σ(n))

∣∣∣∣ ≤ x(log x)−3/5 exp(O(
√
p log p)).

Referring back to (11), it is now straightforward to complete the proof of Lemma 3.2. We
are assuming in Lemma 3.2 that x, p→∞ with p ≤ (log2 x)2−δ. Under these assumptions,
we certainly have (for large x, p) that x ≥ exp(16

η
p1/2(log p)2). Moreover (for large x, p),∣∣∣∣∑

n≤x

χ(n)ψ(σ(n))

∣∣∣∣ ≤ x(log x)−1/2.

Therefore, ∣∣∣∣∣ 1

(p− 1)2

∑
χ,ψ

(χ,ψ)6=(ε,ε)

χ̄(u)ψ̄(v)
∑
n≤x

χ(n)ψ(σ(n))

∣∣∣∣∣ ≤ x(log x)−1/2.

On the other hand, Lemma 5.1 implies that

1

(p− 1)2

∑
n≤x

ε(n)ε(σ(n)) ∼ 1

p2
x

(log x)1/(p−1)
.

In this range,
x

(log x)1/2
= o

(
1

p2
x

(log x)1/(p−1)

)
.

We conclude that the number of n ≤ x with n ≡ u (mod p) and σ(n) ≡ v (mod p) is
(1 + o(1)) x

p2(log x)1/(p−1) , as desired.

7. Proof of Lemma 3.2 (sketch)

The proof is similar to, but slightly simpler than, the above proof of Lemma 5.2. We start
by writing ∑

n≤x
ϕ(n)≡a (mod p)

1 =
1

p− 1

∑
χ

χ̄(a)
∑
n≤x

χ(ϕ(n)).

For nontrivial χ, we let Fχ(s) =
∑∞

n=1 χ(ϕ(n))n−s, and we define

Uχ(s) = Fχ(s)
∏
ρ

L(s, ρ)−aρ ,
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where now each

aρ =
1

p− 1

∑
m mod p

ρ̄(m)χ(m− 1).

Here the aρ have been chosen so that, for all n 6≡ 0 (mod p),

χ(n− 1) =
∑
ρ

aρρ(n).

Then aε = −χ(−1)/(p − 1) and |aρ| ≤
√
p/(p − 1) for all ρ 6= ε. Proceeding as be-

fore, one checks that Uχ(s) is holomorphic for <(s) ≥ 0.99 and, in this same region,
bounded in absolute value by exp(O(

√
p)). From this, one deduces that Fχ(s) has

type T (−χ(−1)
p−1 , 1; c0, 1/2,M) for c0 := η/(p1/2(log p)2), with η as in Lemma 6.2, and

M := (C
√
p)C

√
p for a certain absolute constant C. The rest of the argument is as above,

using Lemma 3.1 in place of Lemma 5.1 at the appropriate spot.
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vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 165–204.

[FKP99] K. Ford, S. Konyagin, and C. Pomerance, Residue classes free of values of Euler’s function,
Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999,
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