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DISTRIBUTION IN COPRIME RESIDUE CLASSES OF
POLYNOMIALLY-DEFINED MULTIPLICATIVE FUNCTIONS

PAUL POLLACK AND AKASH SINGHA ROY

ABSTRACT. An integer-valued multiplicative function f is said to be polynomially-defined if
there is a nonconstant separable polynomial F(T) € Z[T] with f(p) = F(p) for all primes
p. We study the distribution in coprime residue classes of polynomially-defined multiplica-
tive functions, establishing equidistribution results allowing a wide range of uniformity in the
modulus ¢. For example, we show that the values p(n), sampled over integers n < x with
©(n) coprime to ¢, are asymptotically equidistributed among the coprime classes modulo ¢,
uniformly for moduli ¢ coprime to 6 that are bounded by a fixed power of log x.

1. INTRODUCTION

Let f be an integer-valued arithmetic function. We say f is uniformly distributed (or equidis-
tributed) modulo ¢ if, for each residue class a mod g,

#{nﬁ:c:f(n)za(modq)}wg, as T — 00.

As a nontrivial example, let €)(n) := 3, k be (as usual) the function counting the prime
factors of m with multiplicity. Then €(n) is uniformly distributed mod ¢ for every positive
integer ¢. This result was first established by Pillai in 1940 [21] but today seems best viewed
as a special case of a 1969 theorem of Delange [5] characterizing when additive functions are

uniformly distributed: An integer-valued additive function f is equidistributed mod ¢, for ¢
odd, if and only if

(1.1) Z p~ ' diverges
p: dif(p)

for every divisor d > 1 of ¢. If ¢ is even, f is uniformly distributed mod ¢ if and only if (a)
(1.1) holds for every divisor d > 2 of ¢ and (b) either (1.1) holds when d = 2, or f(2") is odd
for every positive integer r.

For multiplicative functions, there are indications that uniform distribution is not the correct
lens to look through. As a case study, consider Euler’s p-function. It is classical (e.g., implicit
in work of Landau [13]) that for every ¢, almost all positive integers n are divisible by a prime
p =1 (mod ¢). (Here and below, almost all means all numbers n < x with o(z) exceptions,
as x — 00.) But then ¢ | p— 1] ¢(n). Thus, 100% of numbers n have ¢(n) belonging to the
residue class 0 mod ¢, so that equidistribution mod ¢ fails for every ¢ > 1.
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Motivated by these observations, Narkiewicz in [17] introduces the notion of weak uniform
distribution. He calls an integer-valued arithmetic function f weakly uniformly distributed (or
weakly equidistributed) modulo ¢ if ged(f(n), q) = 1 for infinitely many n and, for every coprime

residue class a mod g,
(12)  #{n<z: f(n)=a (mod g)} ~ @

While ¢(n) is not uniformly distributed modulo any ¢ > 1, Narkiewicz shows in this same
paper that ¢(n) is weakly uniformly distributed modulo ¢ precisely when ged(q,6) = 1. His
proof goes by estimating the partial sums of y(¢(n)), for Dirichlet characters x mod ¢, and
depends on the theory of mean values of multiplicative functions built up by Delange and
Wirsing.

#{n <x:ged(f(n),q) =1}, aszx — oc.

Various criteria are available to decide weak equidistribution, but it remains a highly nontrivial
task to completely determine, for a given f, the set of ¢ for which f is weakly equidistributed
modulo ¢; see Chapter VI of Narkiewicz’s monograph [19] for an algorithmic solution to this
problem in certain cases. Of special importance for us is the following partial classification,
which is a special case of the main theorem of [18].

Call an integer-valued multiplicative function f polynomially-defined if for some nonconstant
polynomial F/(T') € Z[T], without multiple roots, we have f(p) = F(p) for all primes p. When
we refer to F' in our results below, we mean the (unique) F' associated to f in this way.

Proposition 1.1. Let f be a polynomially-defined multiplicative function. There is a constant
C = C(F) such that, if q is any positive integer all of whose prime factors exceed C, then f is
weakly equidistributed modulo q.

In all of the work mentioned so far, the modulus ¢ was assumed to be fixed. It is of some
interest to seek uniform versions of these results. Here uniform means that ¢ should be allowed
allowed to vary with x (the stopping point of our sample), in analogy with the Siegel-Walfisz
theorem from prime number theory. Our first theorem shows that one has uniformity in ¢ up
to an arbitrary (but fixed) power of logz when F' is linear.

Theorem 1.2. Let f be a fized polynomially-defined function with F(T) = RT + S, where
R,S € Z with R # 0. Fix a real number K > 0. The values f(n), forn < x, are asymptotically
weakly uniformly distributed modulo q for all moduli ¢ < (logz)% coprime to 6R.!

Thus ¢(n), sampled at numbers n < z, is asymptotically weakly equidistributed mod ¢ uni-
formly for ¢ < (logx)®X with ged(q,6) = 1. We are not sure what to conjecture for how
far the range of uniformity can be extended. As discussed in [14], standard conjectures im-

ply that for f(n) = ¢(n), we cannot replace (logz)X with L(z)'*° for any § > 0, where
L(l’) _ xlogloglogz/loglog:c‘

When the defining polynomial F' has degree larger than 1, our method applies but the results
require some preparation to state. Let F/(T') € Z[T| be nonconstant. For each positive integer

IThat is, the limit relation (1.2) holds uniformly in ¢, for these g.
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q, define
(1.3) v(q) = #{a mod ¢q : ged(a,q) =1 and F(a) =0 (mod ¢q)}
and let
1
(1.4) a(q) = m#{a mod ¢ : ged(aF'(a),q) = 1}.

It is straightforward to check, using the Chinese Remainder Theorem, that

If F' has degree D, then v(¢) < D whenever ¢ does not divide the leading coefficient of F'.
Thus, if ¢ is coprime to that coefficient and every prime dividing g exceeds D + 1, then «a(q)
is nonzero. Furthermore, by a standard argument with Mertens’ theorem, as long as «(q) is
nonzero,

(1.5) a(q) > (loglog (3¢))~".

The lower bound (1.5) will prove important later.

In what follows, by w(gq) we shall mean the number of distinct primes dividing g.

Theorem 1.3. Let f be a fized, polynomially-defined multiplicative function. Fiz § € (0,1].
There is a constant C = C(F') such that the following holds. For each fized K, the values f(n)
for n < x are asymptotically weakly uniformly distributed mod q provided that q¢ < (logz)¥,
that q is divisible only by primes exceeding C, and that either

(i) q is squarefree with w(q) < (1 —§)a(q)loglogx/log D, or
(ii) ¢ < (log z)*@(-0)(-1/D)~".

Conditions (i) and (ii) in Theorem 1.3 reflect genuine obstructions to uniformity. To motivate
(i), fix an integer D > 2, and let F(T) = (T—2)(T—4) - - - (T—2D)+2. Note that F is Eisenstein
at 2, so F' is irreducible over Q and thus without multiple roots. Let f be the completely
multiplicative function with f(p) = F(p) for all primes p, and let ¢ be a squarefree product of
primes exceeding D + 1. Then F(p) =2 (mod ¢) whenever (p —2)---(p —2D) =0 (mod q).
This congruence puts p in one of D¥(@ coprime residue classes mod ¢. Hence, we expect >

[:0 “E;;) e Primes p < x with F° (p) =2 (mod q), and we are assured this many primes (by Siegel—
Walfisz) if ¢ is bounded by a power of log z. On the other hand, Proposition 2.1 below implies
(under this same restriction on the size of ¢) that the number of n < z with ged(f(n),q) = 1is
x/(log z)'~(+°MW)@  Thus, the residue class 2 mod ¢ will be ‘overrepresented’ (vis-a-vis the
expectation of weak uniform distribution) if D@ > (logz)+9@ for a fixed § > 0, which

can happen already with ¢ < (logz)°?(M). 2 It follows that (i) is essentially optimal.

To motivate (ii), fix D > 2, and let f be the completely multiplicative function given by
f(p) = (p — )P + 1 for all primes p. Let ¢ be a Dth power, say ¢ = ¢”. Then f(p) = 1

20ne can take g to be the product of the primes from D+1 up to Kp log log x, for a suitably chosen constant
Kp. Here the prime ideal theorem is useful for estimating a(q).
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(mod ¢) whenever p = 1 (mod ¢;). Thus, if ¢ is bounded by a power of log z, there will be
> z/¢(q1)logz primes p < z for which f(p) =1 (mod ¢). On the other hand, if we assume
all primes dividing q; exceed D+ 1, Proposition 2.1 implies that there are z/(log x)!~(!To))a(@)
integers n < x with ged(f(n),q) = 1. It follows that the residue class 1 mod ¢ will be over-
represented if ¢'~/P = ¢/q; > (logz) 9@ This means that for weak equidistribution we
require ¢ to be no more than ~ (log z)*@(=1/P)™" " So (ii) is essentially best possible as well.

In both of the constructions described above, the obstruction to uniformity came from prime
inputs p. Tweaking the construction slightly, we could easily produce obstructions to unifor-
mity of the form rp, with r fixed (or even with r growing slowly with z). In our final theorem,
we pinpoint the ‘problem’ here as one of having too few large prime factors. Specifically, we
show that uniformity up to an arbitrary power of logx can be restored by considering only
inputs with sufficiently many prime factors exceeding ¢. In fact, for squarefree moduli ¢, it
suffices to restrict to inputs with composite ¢g-rough part.

We write P(n) for the largest prime factor of n, with the convention that P(1) = 1. We set
Pi(n) = P(n) and define, inductively, Py(n) = Pr_1(n/P(n)). Thus, P.(n) is the kth largest
prime factor of n, with Py(n) =1 if Q(n) < k.

Theorem 1.4. Let [ be a fized, polynomially-defined function. There is a constant C(F') such
that the following hold.

(a) For each fized K > 0,
(1.6) #{n <z : Ppia(n) >q, f(n) =a (mod q)}

~ S <o Paaln) > 0. ged(fn).0) =1} asz v,
uniformly for coprime residue classes a mod q with ¢ < (logx
primes exceeding C(F).

(b) For each fized K >0,
#{n <x:P(n) >q, f(n)=a (modq)}
~ S < P > 0, ged(f().g) = 1} asw oo,

uniformly for coprime residue classes a mod q with q squarefree, ¢ < (logz)%, and q
divisible only by primes exceeding C(F).

VK and q divisible only by

The method of the present paper refines that of the authors’ earlier works [14, 23]. In those
papers, it was crucial that the modulus ¢ be either prime or ‘nearly prime’, in the sense that
>_ug1/€ = o(1). The essential new ingredient here, which allows us to dispense with any
such condition, is the exploitation of a certain ergodic (or mixing) phenomenon within the
multiplicative group mod ¢g. As one illustration: Let ¢ be a positive integer coprime to 6.
From the collection of units © mod ¢ for which v+ 1 is also a unit, choose uniformly at random
U1, U, Uz, . . ., and construct the products uy, uius, urusus, . ... Once J is large, each unit mod
q is roughly equally likely to appear as u; - - -uy. This particular example plays a starring role
in our approach to the weak equidistribution of Euler’s ¢-function.
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When f = ¢, Theorem 1.2 is in the spirit of the Siegel-Walfisz theorem, with primes replaced
by values of p(n). For investigations of the corresponding ‘Linnik’s theorem’, concerning the
least n for which ¢(n) falls into a given progression, see [2, 6, 7, 8.

Finally, it is worth mentioning that although in the spirit of Narkiewicz’s results, we stated
Theorems 1.2, 1.3 and 1.4 for F(T') € Z[T], our methods go through (with minor modifica-
tions) for integer-valued polynomials F', namely those satisfying F'(Z) C Z. Writing any such
polynomial in the form G(7")/@Q for some positive integer @ and G(T') € Z[T], we need only
ensure in addition that the constant C'(F') appearing in the aforementioned theorems exceeds

Q.

Notation and conventions. We do not consider the zero function as multiplicative (thus,
if f is multiplicative, then f(1) = 1). Throughout, the letters p and ¢ are to be understood
as denoting primes. Implied constants in < and O-notation may always depend on any
parameters declared as “fixed”; other dependence will be noted explicitly (for example, with
subscripts). We use log,, for the kth iterate of the natural logarithm. When there is no danger
of confusion, we write (a,b) instead of ged(a, b).

2. A PREPARATORY ESTIMATE: THE FREQUENCY WITH WHICH (f(n),q) =1

The following proposition is contained in results of Scourfield [26]. Nevertheless, we give a
complete treatment here, for two reasons. First, we prefer to keep matters as self-contained
as possible. Second, the results of [26] are much more precise than we will need. The weaker
version below admits a simpler and shorter proof (although we make no claim to originality
regarding the underlying ideas).

For readability, we sometimes abbreviate a(q) to «, suppressing the dependence on q.
Proposition 2.1. Fiz a multiplicative function f with the property that f(p) = F(p) for all

primes p, where F(T) € Z[T] is nonconstant. Fiz K > 0. If x is sufficiently large and
q < (logz)X with a = a(q) > 0, then

(2.1) Hn <z :(f(n),q) =1} =

T

Tog)™a exp(O((loglog (3¢))°™M)).

We treat separately the implicit upper and lower bounds in Proposition 2.1.

Upper bound. The following mean value estimate is a simple consequence of [10, Theorem
01, p. 2] (and also of the more complicated Theorem 03 from that same chapter).

Lemma 2.2. Let g be a multiplicative function with 0 < g(n) <1 for all n. For all x > 3,

Zg(n) < lozx exp <Z %) .

n<x p<lzx

Here the implied constant is absolute.

If we set g(n) := lged(f(n)q=1, then the left-hand side of (2.1) is precisely >, ., g(n). Note
that the multiplicativity of f implies the multiplicativity of g. The following lemma, due
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independently to Norton [20, Lemma, p. 669] and Pomerance [24, Remark 1], allows us to
estimate the sums of ¢g(p)/p appearing in Lemma 2.2.

Lemma 2.3. Let q be a positive integer, and suppose x is a real number with x > max{3, q}.
For each coprime residue class a mod g,

Z 1210g2$+ 1 +O<log(3q))’

~ p» 9@ Pea v(9)
p=a (mod q)

where py . denotes the least prime congruent to a modulo q.

Lemma 2.4. Let F(T) € Z[T] be a fized nonconstant polynomial. For each positive integer q
and each real number x > 3q,

1. _
§ WOt Jog, 1+ O((log log (39))°),
p

p<w

where a = a(q) is as defined in (1.4).

Proof. Using the Mobius function to detect the coprimality condition, we write

> L= X+ Olon(100)

p<x 3q<p<z
ged(F(p),q)=1 ged(F(p),q)=1
1
(2.2) => u(d) > =+ 0(log,(100g)).
dlq 3q<p§:vp
d|F(p)

If p is a prime with p > 3¢, then d | F'(p) precisely when p belongs to one of v(d) coprime
residue classes modulo d. By Lemma 2.3 (with d replacing ¢),

L), (v(d)los(3d)  v(d)logy(30
2 5= @) e +O< o T e )

3q<p<lz
d|F(p)

Substituting this estimate into (2.2) yields a main term of (3_,, * D) log, z = alog, z, as

desired. Turning to the errors,

v(d)log(3d) v(d)
Z o) Z m(logS—i—Zlog(ﬁ))

dlq dlq £d
d squarefree d squarefree

< (log3) Z (—Z)—irZI 6—1 Z v(r)

dlq rlq/t
d squarefree r squarefree

<<( dzlq %)(1%—%1@%-%).

d squarefree

(dr(
o(d)
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Now Sy, asauavetee 58} = Ll (1+2(0)/(£=1)) < (logy(30))” (keeping in mind that »(¢) < D
for all but O(1) many primes ¢). Furthermore,

log ¢ log ¢ log ¢ log€ log2 3q)
D VOIS Y X - <los (304 2. L
og (3q)
tq tq ¢<log (3q) tq tlq
£>1og(3q) £>1og(3q)

and this is
log, (3¢)  logg

log(3q) log, (3¢)

Thus, Yy, squareiree — oo < (logy(3¢))P*. Finally,

%q: W < log, (3q) - 1;[ <1 + ;(_—E)l) < (log, (3¢))7*.

d squarefree

Collecting estimates, > . Lyea(r(p).q=1/P = alogy z + O((log, (3¢))"*). u

< log, (3¢) + < log, (39).

The upper bound half of Proposition 2.1 follows (in slightly more precise form) immediately
from Lemmas 2.2 and 2.4. In fact, we have shown the upper bound in the much wider range
q<z/3.

Lower bound. The following lemma is due to Barban [1, Lemma 3.5]; see also [25, Theorem
3.5, p. 61].

Lemma 2.5. Let g be a multiplicative function with 0 < g(n) <1 for all n. For all x > 3,

¥ M e ()
n sq?t%i’(;free P

Here the implied constant is absolute.

Proof of the lower bound in Proposition 2.1. Consider n of the form mP, where m < z'/3 is
a squarefree product of primes p with ged(f(p),q) = 1 and P € (2'/2,2/m] is a prime with
(f(P),q) = 1. Each such n has f(n) = f(m)f(P) coprime to gq.

Given m as above, we count corresponding P. The prime P is restricted to one of the a(q)¢(q)
residue classes @ mod ¢ with ged(aF'(a),q) = 1. Hence, given m < z'/3 as above, the Siegel-
Walfisz theorem guarantees that there are

1 T T

> (a(q)p(q)) - =a

o(q) mlogx q)mlogx

values of P. Now sum on m; by Lemma 2.5,

1 Lgcd(f(m).q)= Loca(f(p),q)=1
— _ SN A >> _ ST NN
D= D - exp |

m<z1/3 p<zl/3 p
m squarefree
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The final sum on p is within O(1) of the corresponding sum taken over all p < z. The lower
bound half of Proposition 2.1 now follows from Lemma 2.4, bearing in mind that a(q) >

(loglog (3¢))~P. O

3. FRAMEWORK FOR THE PROOF OF THEOREMS 1.3 AND 1.4

Define J = J(z) by setting
J = |logloglog z|.

(For our purposes, any integer-valued function tending to infinity sufficiently slowly would
suffice.) With ¢ from the statement of Theorem 1.3, we let y = y(x) be defined by

y = exp((logz)*/?)

and we say that the positive integer n is convenient (with respect to a given large real number
x) if (a) n <z, (b) the J largest prime factors of n exceed y, and (c¢) none of these J primes
are repeated in n. That is, n is convenient if n admits an expression n = mPy --- P;, where
Py, ..., Py are primes with

(3.1) max{P(m),y} < P; <--- < P,

The framework developed in this section will go through in the proof of Theorem 1.4 (§6) by
setting ¢ := 1.

Now let f be a fixed multiplicative function with f(p) = F(p) for all primes p, where F(T') €
Z[T) is nonconstant. Fix K > 0, and suppose that ¢ < (logx)*. We set

N(q) = #{n < x :ged(f(n),q) = 1},

and we define N, (¢q) and Niy(q) analogously, incorporating the extra requirement that n be
convenient or inconvenient, respectively.

Lemma 3.1. N(q) ~ Nen(q), as © — oo. Here the asymptotic holds uniformly in q with
q < (logz)X and a(q) # 0.

Proof. We must show that Ni,.(q) = o(N(q)), as x — oo.

Suppose the integer n < z is counted by Ni,(q). We can assume that P(n) > z := z'/1°&27 [n-
deed, by well-known results on smooth numbers (for instance [27, Theorem 5.13 and Corollary
5.19, Chapter I11.5]), the number of n < x with P(n) < z is at most z/(log x)(1+oM)1ess = and
this is o(N(q)) by our ‘rough-and-ready’ estimate of Proposition 2.1. We can similarly assume
that n has no repeated prime factors exceeding y, since the number of exceptions is O(z/y),
which is again o(N(q)).

Write n = PAB, where P = P(n) and A is the largest divisor of n/P supported on primes
exceeding y. Observe that AB = n/P < x/z. So if A and B are given, the number of
possibilities for P is bounded by 7(z/AB) < x/ABlogz < z(loglogz)/ABlogxz. We sum
on A, B. As n has no repeated primes exceeding y but n is inconvenient, it must be that
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Q(A) < J. Thus, >1/A < (143, 1/p)” < (2logy2)” < exp(O((logz x)?)). Using that
(f(B),q) =1 (as f(n) = f(B)f(AP)) and that B is y-smooth,

£ 1 (5 20 ) oy (3 i)

p<y \Jj=0 Py p
and this is < (log )*%/? exp(O((log, ¢)°"M)) by Lemma 2.4. We conclude that these n make
a contribution to Np.(gq) of size at most Wexp(O((logg z)% + (log, ¢)°WM)). Since
q < (logz)X and a(q) obeys the lower bound (1.5), this contribution is also o(N(q)). O

Let N(q,a) denote the number of n < z with f(n) = a (mod ¢), and define N,(q,a) and
Ninc(q, a) analogously. By Lemma 3.1, the weak equidistribution of f mod ¢ will follow if

N(Qa CL) ~ @NCOH(Q)'

As a first step in this direction, we compare Neoy(q) and Neon(q, a). Clearly,

Newn(d) = Y Z 1,

m<z  Pi,...,

ged(f(m),q)= 1

where the ' on the sum indicates that Pj,..., P; run through primes satisfying (3.1), (3.2),
and

(3.3) ged(f(Pr) -+ f(Py),q) = 1.

Similarly,
2
Ncon(Qaa') = Z Z 1a
m<x P,...,Py
ged(f(m),g)=1

where the ” condition indicates that we enforce (3.1), (3.2) and (in place of (3.3))
(3.4) fm)f(P)f(Py) - f(Py) =a (mod q).
Let

V= {(un,...,05) mod g ged(vy .. v, q) = 1, ged(F(wy) -+ F(vy),q) = 1}
and

Vi am = {(v1,...,v5) mod ¢ : ged(vy .. vy, q) = 1, f(m)F(v1) -+ F(v;) = a (mod ¢)}.

Then (3.3) amounts to restricting (P, ..., Ps), taken mod ¢, to belong to V;, while (3.4)
restricts this same tuple to V;/, ... By (1.4), #V, = (¢(q)a(q))’.

The conditions (3.2) and (3.3) are independent of the ordering of Pi,..., P;. Thus, letting
L., = max{y, P(m)},

(3.5) Z 1= Z > 1.

..... vevy P1,...,PJ distinct
Py--Py<z/m
each P;>Lm

each Pj=v; (mod q)
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We proceed to remove the congruence conditions on the P; from the inner sum. For each tuple

(v1,...,vs) mod q € V,
ST S S

P,...,Py distinct Ps,...,P; distinct P1#Ps,...,Py
P--Py<z/m Py--Py<z/mLy, Lm<Pi<z/mPs--P;
each P;j>Lm, each P;>Lm, Py=v; (mod q)

each Pj=v; (mod q) each Pj=v; (mod q)

2K/§

Since L,, >y and ¢ < (logz)®X = (logy)*/°, the Siegel-Walfisz theorem implies that

Z 1= (L Z 1+0 (#PJ exp(—Coy/ logy)) ;

P1#Ps,...Py 14 Q) P1#£Ps,....Py
Lm<Pi<z/mPs---Py Lp<Pi<z/mP>---Py
P1=v1 (mod q)

for some positive constant Cy := Cy(K, ) depending only on K and 6. Putting this back into
the last display and bounding the O-terms crudely, we find that

D 3 140 <%exp <—%Co(log:):)5/4>) .

P1,...,Py distinct (P(Q) P,...,Py distinct
Pi--Py<z/m Pi--Pyj<z/m
each Pj>Lpm each Pj>Lm
each Pj=v; (mod q) (V§>2) Pj=v; (mod q)
Proceeding in the same way to remove the congruence conditions on P, ..., P;, we arrive at
the estimate
1 T 1
1= 140 =exp | —=Co(logz)*) ).
J 4
o v(q) . m
P,...,Pj distinct P1,...,Py distinct
Py--P;<z/m Py--Py<z/m
each Pj>Lm each Pj>Lm

each Pj=v; (mod q)

Inserting this estimate into (3.5) and keeping in mind that #V, < (logx)"” (trivially), we
conclude that

New(g) = Y Z, 1

m<z Pr,....Py
ged(f(m),q)=1

= XI5 X 1) o (sen(-Jaem).

J
m<x QP(Q) P1,...,Py distinct
ged(f(m),q)=1 Pi--Py<z/m
each P;>Lm

An entirely analogous argument yields the same estimate with Neo,(q) replaced by Neon(q, @)
and V, replaced by V, Comparing (3.6) with its Neou (g, a) analogue and rewriting

q,a,m‘
#Vgam _ #Vqam  #Yy
©(q)? #V wlg)?’

we are motivated to introduce the following hypothesis.
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Hypothesis A. ##f;,m ~ ﬁ, as r — oo, uniformly in q and a and uniformly in m < x with

ged(f(m),q) = 1.

We will soon see how to verify Hypothesis A in the situations described in Theorems 1.2, 1.3,
and 1.4. The phrase “uniformly in ¢ and a” in Hypothesis A should be read as “uniformly in
q and a subject to the restrictions of these theorem statements”.

If Hypothesis A holds, we may deduce (keeping in mind Lemma 3.1, and that z exp(—£Co(log 2)*/*) =

o(N(q)/¢(q)))
Ncon(qa CL) = Z Z” 1

gcd(fn(K)xq):l .....
o L (N@Y g L
— (14 o(1) = Nawla) + (gp@) (14 o(1) N0

Since N(q,a) = Neon(q,a) + Ninc(q, @), weak uniform distribution mod ¢ will follow if the
contribution from Nj,(q, a) is shown to be negligible. We record this condition as our next
Hypothesis.

Hypothesis B. Ni,.(¢,a) = o(N(q)/¢(q)), as x — oo, uniformly in q and a.

4. LINEARLY DEFINED FUNCTIONS: PROOF OF THEOREM 1.2

We proceed to verify Hypotheses A and B.

Verification of Hypothesis A. Let m < x with ged(f(m),q) = 1, and let w 6 Z be a value of
af(m)~! modulo q. We will estimate #V” .~ via the product formula #Vgam = Llseyq Vee,

q,a,m
where

J
Ve .= #{(v,...,vs) mod £° : ged(vy ...vz,0) =1, H (Rv; +S) =w (mod £°)}.
i=1

By assumption, (¢,6R) =1 for all £ | q.

Suppose first that ¢ | S. Then the condition ged(vy ... vy, £) = 1 is implied by [, (Rv;+S) =
w (mod ¢¢). Noting that the map v — Rv + S is a permutation of Z/{°Z, we see that
Vi = @(¢°)’~! and

(4.1) P(LOVL = p(t°).

When /1S, we must work somewhat harder. By inclusion-exclusion,

(4.2) Vi = i(—l)j(ﬁ Vie js

=0 J

where
J

Vie; = #{(v1,...,vg) mod £°: £ | vy, vg, ... 0y, H(Rvi +5) =w (mod £°)}.

1=1
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If 0 <j<J, then Vi, = (¢")7p(¢¢)’77": Each of vy,...,v; can be chosen arbitrarily from
the ¢! classes divisible by ¢, while vj41,...,v;_1 can be chosen arbitrarily subject to each
of Ru;+ S (fori=j+1,...,J — 1) being a unit mod ¢¢; this then determines v;. Similarly,
Vil ;= O((£c7")77"). Referring back to (4.2),

PVl = () — L) o(ee(e™h)™)
(4.3) = (t°(1=2/0)" (1+0((t—-2)"")).
By (4.1) and (4.3), in either case for £ we have

PV = (go(ee) (1 — %))J (1+01-2)"").

Multiplying over ¢,
DBV 0 = (@) [T L+ 0O =2)7")) =V, [[ 1+ Ot = 2)77)) .
£llq £llq
So to verify Hypothesis A, it is enough to show that the final product is 1+ o(1). This follows
if Zze” A= 2)~7 = o(1), which is straightforward to prove: Since ¢ is coprime to 6, we have
for all large x that

ZE(Z -2)77 < Zg(g — ) <37 Zf(g —9)I/2 < 3712 Zf(g _ 9B« 32 O

¢e|q >5 >5 >5

Remark. 1t is also possible to estimate V! via character sums, which will be our primary tool
for general F(T) € Z[T]. By orthogonality (as in (5.1) below), p(£)Vil = 37 e X(w)Z],
where

Zyi= Y xol)x(Ro+ )

v mod £¢
= > xw-— > x(u);
u mod ¢¢ u mod £¢

u=S mod ¢

here we have used that as v runs over coprime residues mod ¢¢, the expression Rv+.S runs over
all the residues mod (¢ except for those congruent to S mod ¢. If £ | S, it is then immediate
that Z, = 1,-,,0(¢°) (with xo denoting the principal character mod ¢¢), once again giving
us p(L)Vy = @(¢?)’. On the other hand, if £ ¥ S, then fixing a generator g mod ¢¢ and
considering the unique 7 € {0,1,...,¢(¢¢) — 1} satisfying ¢" = S (mod ¢¢), we observe that
the sets {u mod ¢ : u = S mod £} and {g"**"Y*¥ mod (¢ : 0 < k < ¢°71} are equal. Hence,

Z x(u) = ILXZAZXOX(S)KE_l-

u mod £¢
u=S mod ¢

As such, Z, = 1, 070 — 2) + O(Lye-12y,. o™ "), which again leads to (4.3) since there
are ¢ — 2 nontrivial characters y mod ¢¢ satisfying x*~! = xo.

Verification of Hypothesis B. We proceed as in the proof of Lemma 3.1. Let n < x be an
inconvenient solution to f(n) = a (mod ¢q). We can assume P(n) > z = z/1%%2% since
the number of exceptional n < = is o(N(q)/(q)). Similarly, we can assume that n has no
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repeated prime factors exceeding y = exp((logz)%?). Write n = PAB, where P := P(n) and
A is the largest divisor of n/P supported on primes exceeding y. Then z < P < x/AB and
(RP+ S)f(AB) = a (mod g). Given A and B, this congruence is satisfied for P belonging to
at most one coprime residue class mod ¢. So by the Brun—Titchmarsh inequality, given A and
B there are < z/¢(q)ABlog (2/q) < xlogy x/p(q)AB logx corresponding values of P. Note
that we have saved a factor of ¢(q) here over the analogous estimate in Lemma 3.1. Summing
on A, B, and making the same estimates as in the argument for Lemma 3.1, yields

Nine(4,0) < s imaars OXP(O((logy 2)? + (log, ) V),

and this is o(N(q)/¢(q)). O

5. GENERAL POLYNOMIALLY DEFINED FUNCTIONS: PROOF OF THEOREM 1.3

To check Hypothesis A in the context of Theorem 1.3, we require the following character sum
estimate, which follows from the Weil bounds when e = 1 and from work of Cochrane [3] (see
also [4]) when e > 1. See [23, Proposition 2.6] for a detailed discussion.

Lemma 5.1. Let Fy(T), ..., Fx(T) € Z[T] be nonconstant polynomials for which the product
Fi(T) - Fx(T) has no multiple roots. Let { be an odd prime not dividing the leading coefficient
of any of the Fy(T') and not dividing the discriminant of F1(T)--- Fx(T). Let e be a positive
integer, and let x1, ..., Xk be Dirichlet characters modulo (¢, at least one of which is primitive.
Then

Z X1(Fi(z)) - xg(Fr(z))] < (d-— 1)66(1_1/607

x mod £¢

where d = S deg F(T).

Let A(F') denote the discriminant of F(T') if F(0) = 0 and the discriminant of TF(T) if
F(0) # 0. Throughout this section and the next, we assume that C'(F') is fixed so large that
primes exceeding C(F) are odd and divide neither the leading coefficient of ' nor A(F'). We
also assume that C'(F) > (4D)*’*2 where D = deg F(T).

Verification of Hypothesis A. Suppose that m < x has ged(f(m),q) = 1 and write w for a
value of af(m)~ mod g. Then #Vy, ., = [, Vii and #V;, = 1, Vi, where

J
Vil = #{(v1, ..., vy) mod £ : ged(vy ... vy, 0) = 1, [[F(vi) = w (mod ¢°)}
i=1
and
Vie :=#{(v1,...,v5) mod ¢ : ged(vy ... v F (v1) - F(vy),£) = 1}.
With yo denoting the principal Dirichlet character mod ¢¢,
(5.1) p(Wii= 3 xw) D xolvr-v)x(F() - F(vg)
x mod £¢ v1,...,07 mod £¢
(5.2) =Vi+ > xw)z,

x mod £¢
XF#X0
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where Z, = 3" e xo(v)X(F(v)). For each x of conductor ¢ with 1 < ey < e, Lemma
5.1 gives |2y = 03 o(@)x(F(x))] < Dee—eoteol-L(D+1) — Dge-eo/D3D) (1f ¢
divides F'(0), then > 1o Xo(@)X(F(2)) = >, Loq o X(F(2)), and we apply Lemma 5.1
with k = 1 and Fy(T) = F(T); otherwise we take k = 2, Fy(T) =T, and F»(T) = F(T).) As
there are fewer than £°° characters of conductor £¢°,

> x(w)z]| <

x mod £¢
XF#X0

Z eeo(Dee—eo/(D—l—l))J _ DJgeJ Z eeo(l—J/(D—l—l)).

1<ep<e 1<ep<e

Since J > D + 2 once z is sufficiently large, each term in the sum Y, _, ¢°00=7/(P+D) g
smaller than half the previous, and Y, , €°00~7//(PH0) < 201=J(PH) Thus, | Y7 mod e X(w) 2| <

XF#X0
2D70¢7 (1=7/(P+1) - Since V. = (p(£¢)a(£°))?, we conclude from (5.2) that
(5.3) o(L)Ve = Vie(1 + Ry),
where
|R,| < 2DJ< ) /D) < 2(4D)’ ('~ J/(D+1)
(We use here that £¢/p(£¢), a(¢¢)~! < 2.) Multiplying over £ in (5.3), we see that Hypothesis

A will follow if (4D)” 7, =7/ (D“ = o(1). To check this last inequality, observe that when
x is large,

(4D)J Zfl—J/(D—i-l) < (4D)JC(F)—J/(2D+2) Zgl—J/(2D+2)
lq g
< (4D/C( 1/(2D+2 ZE— < 2 4D/C( )1/ (2D+2) )J7

this last quantity tends to 0 since C(F) > (4D)*’*2 and J — oo. O

Verification of Hypothesis B. We follow the arguments for the corresponding step in §4. Let
£(q) be the maximum number of roots v mod ¢ of any congruence F'(v) = a (mod ¢), where
the maximum is over all residue classes @ mod ¢. Then there are at most £(q) possibilities for
the residue class of P modulo ¢ and our previous arguments yield

Ninc(q,a) < g(q)@(Q)(lng)l_aé/z exp(O((logs x)2 + (log, q>0(1)))

<80 g log a2

This last quantity is certainly o(N(q)/¢(q)) as long as £(q) < (log 2)1=9% (say). By the choice
of C(F), we have £(q) < D@ for squarefree ¢, verifying Hypothesis B for squarefree ¢ having
w(q) < (1 —9d)alog,z/log D. On the other hand, by a result of Konyagin, each congruence
F(v) = a (mod q) has O(¢*~'/P) roots modulo ¢ [11, 12]. Consequently, Hypothesis B also
holds true for ¢ < (logz)*1=91=1/D)™" “completing the proof of Theorem 1.3. O
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6. EQUIDISTRIBUTION ALONG INPUTS WITH SEVERAL PRIME FACTORS EXCEEDING ¢:
PROOF OF THEOREM 1.4

Proof of (a). Recall that for the purposes of Theorem 1.4, we take § := 1 and y = exp((log z)"/?)
in the framework developed in section 3. Lemma 3.1 still applies to show that N(q) ~ Neon(q)
as ¥ — oo, uniformly in ¢ < (logz)® having a(q) # 0. In particular, if Pp,o(n) < ¢, then
Pj(n) < ¢ <y (once x is large); thus n is inconvenient, placing it in a set of size o(N(q)). It
follows that the right-hand side of (1.6) is ~ N(q)/¢(q), and our task is that of showing the
same for the left-hand side. The proof of Hypothesis A in §5 gives Neon(q,a) ~ N(q)/¢(q).
It remains only to show that there are o(N(q)/¢(q)) inconvenient n with Ppis(n) > ¢ and

f(n) =a (mod q).

As usual, we can assume P(n) > z := z!/1°€2% and that n has no repeated prime factor
exceeding y = exp(y/logx). Since n is inconvenient, we must have P;(n) < y. We suppose
first that one of the largest D + 2 primes in n is repeated. Write n = PSm, where P = P(n),
S is the largest squarefull divisor of n/P; hence, Sm < z/z and S > ¢*>. Given S and m,
there are fewer than m(x/Sm) < xlog, ©/Smlog x possibilities for P. Summing on squarefull
S > ¢ bounds the number of n, given m, as < zlog, /qgmlogx. To handle the sum on m,
write m = AB, where A is the largest divisor of m composed of primes exceeding y. Then
Q(A) < J, while B is y-smooth with ged(f(B),q) = 1. Bounding » 1/A and ) 1/B as in
the proof of Lemma 3.1, we deduce that 5> 1/m < (log)2® exp((logy 2)°M). Putting it all
together, we see that the number of n in this case is at most - exp((logg #)°M), which

is o(N(q)/¢(q))-

We now suppose that each P; := P;(n) appears to the first power in n, for i =1,2,..., D + 2,
and we write n = Py -+ Ppiom. Since f(n) = a (mod ¢), it must be that gcd(f( ) q) = 1.
Furthermore, letting w denote a value of af(m)~! mod g,

(Ph .- '7PD+2> mod qc Vq(w)7

g(logx)' 2

where

Vy(w) :={(v1,...,vpsa) mod q : ged(vy - -~ vpya,q) =1, F(vy) -+ F(vps2) = w (mod ¢q)}.
Let us estimate the size of #V,(w). Put
Vie = #{(v1,...,vps2) mod £° : ged(vy - - - vpio,€) =1, F(v1) -+ F(vpi2) =w (mod €9)},
so that #V,(w) = [y, Vee. From the proof of (5.3), with J replaced by D + 2,
P(L)Vee = () (L)) P2(1 + Ry),
where |R,| < 2(4D)P+2¢=1/(P+) « ¢=1/(D+D)  Multiplying on ¢ gives

P(@)#V,(w) < a(g)”p(q) D”exp( (D e/mem) )

¢q
(6.1) < p(q)" T exp(O((log ¢)' P 1)).
Given P, ..., Ppio, m, and v = (v1,...,0ps+2) mod ¢ € V,(w), the number of possibilities for

P is < xlogy x/p(q)mPs - - - Ppislogx, by Brun—Titchmarsh. Summing on P, ..., Ppis, we
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see that the number of possibilities for n given v and m is < z(log, 2)°M /o (q)P+?

(We use here that

mlogx.

Z 1 < log2:)37
©(q)

q<p<z
p=v (mod q)

uniformly in the choice of v, which follows from Brun-Titchmarsh and partial summation;
alternatively, one can apply Lemma 2.3.) We sum on v € V,(w), using (6.1), and then sum on
m, writing m = AB and making the estimates as earlier in this proof. We find that the total

number of n is at most
T

plg)(log )2
which is o(N(q)/¢(q)). O

exp(O((logy )'~/7*1)),

07

Proof of (b). We follow the proof of (a), replacing D + 2 everywhere by 2. It suffices to show
that

(6.2) P(OVe < p(0*(1+ 0(1/V0))

for each ¢, for then ¢(q)#V,(w) < »(q)? exp(O((logq)*/?)), which is a suitable analogue of
(6.1).

Certainly V; is bounded by the count of Fy-points on the affine curve F(z)F(y) = w.

The polynomial F'(x)F(y)—w is absolutely irreducible over F,.> Indeed, suppose that F(z)F(y)—
w = U(x,y)V(z,y) for some U(z,y),V(x,y) € Flx,y]. Then for each root § € Fy of F, we
find that —w = U(0,y)V(6,y), and so in particular U(6,y) is constant. Thus, if we write

Ulz,y) =) ar(2)y",

k>0

with each ay(z) € Fylx], then a(f) = 0 for each k > 0. Since F' has no multiple roots over
[y, each such ay(z) is forced to be a multiple of F'(z), hence U(x,y) = ag(x) (mod F(z)). A
symmetric argument shows that V(z,y) = by(y) (mod F(y)) for some by(y) € Fyfy], so that

V(z,0) = by(6). Consequently, for any root 0 € F, of F,

—w=F(x)F(0) —w=U(z,0)V(x,0) = ag(z)by(#) (mod F(z)),
which shows that U(z,y) = ag(z) = ¢ (mod F(x)) for some constant ¢ € F,. But this forces
c=U(0,0), showing that F'(z) divides U(z,y) — U(6,0). By symmetry, so does F(y), and we
obtain U(z,y) = U(0,0) + F(x)F(y)Q(x,y) for some Q(z,y) € F¢lx,y]. Degree considerations

now imply that for U(x,y) to divide F(x)F(y) — w, either Q(x,y) is a nonzero constant, in
which case V (z,y) is constant, or Q(x,y) = 0, in which case U(x,y) is constant.

Now we apply the version of the Hasse—Weil bound appearing as [15, Corollary 2(b)]; this gives
that the number of F,-points on F(z)F(y) = w is at most ¢ + 1 + 3(2D — 1)(2D — 2)|2V/¢],
which is o(¢)(1 4+ O(1/V/7)), yielding (6.2). O

3The published version of the paper contained an incorrect argument for this claim.
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7. CONCLUDING REMARKS AND FURTHER QUESTIONS

Elementary methods often enjoy a robustness surpassing their analytic counterparts, and our
(quasi)elementary approach to weak uniform distribution is no exception. Not only does
our method yield a range of uniformity in ¢ wider than that (seemingly) accessible to more
‘obvious’ attacks via mean value theorems for multiplicative functions, but the method applies
to functions that do not fit conveniently into the ‘multiplicative managerie’. We illustrate with
the following theorem; note that the distribution in residue classes of the function A*(n) below
does not seem easily approached via mean value theorems.

Theorem 7.1. Fiz K > 1. The sum of prime divisors function A(n) := Z?:(’I) P;(n), as well

as the alternating sum of prime divisors function A*(n) := Z?:(q)(—l)j_le(n), is asymptoti-
cally uniformly distributed to all moduli ¢ < (logx)X. In other words, as x — oo,

(7.1) o1~ 3 1~ 2

V)
n<z n<x q

A(n)=a (mod q) A*(n)=a (mod q)

uniformly in moduli ¢ < (logz)X and residue classes a mod q.

Remark. The uniform distribution of A(n) mod ¢ for each fixed ¢ is a consequence of the
theorem of Delange quoted in the introduction, with more precise results appearing in work
of Goldfeld [9]. For varying ¢, the problem seems to have been first considered in [22]; there
Haldsz’s mean value theorem is used to show uniform distribution of A(n) mod ¢ for ¢ <
(logz)2~? (for any fixed § > 0), a significantly narrower range than that allowed by Theorem
7.1.

Proof of Theorem 7.1. With y := exp(y/logx), arguments analogous to (but simpler than)
those in the proof of Lemma 3.1 show that the number of inconvenient n < x is o(z), while
arguments analogous to (but simpler than) those in the verification of Hypothesis B of §4 show
that the number of inconvenient n < z having A(n) = a (mod ¢) or A*(n) = a (mod q) is
o(z/q). Hence, it suffices to show that

(7.2) N(gq,a) ~ N*(g,a) ~

2. L

convenient n<x

| =

where N (g, a) (respectively, N*(g, a)) denotes the number of convenient n < x having A(n) = a
(mod q) (resp., A*(n) = a (mod q)).

Proceeding as in §3, we define, for an arbitrary residue class w mod gq,

V,(w) :={(v1,...,v5) mod ¢ : ged(vy ...vy,q) =1, Zvj =w (mod ¢)}

J=1

and

<

Vi(w) :=={(v1,...,v5) mod q : ged(vy ... vy, q) =1, Z(—l)j_lvj =w (mod q)},
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and we write

YL Y Y L Nea=Y Y Y

m<z " v&Vgam P1,..,Py distinct m<zx veVy am iy, Py distinct
Py--P;<z/m Py--P;<z/m
each Pj>Lm each Pj>Lpm
each Pj=v; (mod q) each Pj=v; (mod q)
where Vg am 1= Vy(a — A(m)) and Vi, . = Vi(a — (—1)7 A*(m)).

By J applications of Siegel-Walfisz, we now obtain

73 Nigo)= Y D (i 3 ) e (x exp (_écKaogx)w))

m<z "7 \  Pi,.., Pj distinct
P1 -Py<z/m
each P;>Lm
* #Vgam 1 1/4
(74)  N'(ga):=)_ oL J, > +0 (wexp ( —2Cr(log) :
m<zx P\ p Pj distinct
P1 -Py<z/m
each Pj>Lm

for some constant C'x > 0 depending only on K. As an analogue of our Hypothesis A, we
claim that as x — oo,

e(q)’
(7.5) #Vgam ~ (Lag + 2+ Lojg, y=a—A(m) (mod 2)) q
e(q)’
(7.6) #Vo am ~ (Logg + 2 Logjg, s=a—(=1)7 4* (m) (mod 2)) pa

uniformly in m < z and in ¢ < (logz)®. (If Loy + 2 - Lojg j=a—A(m) (mod 2) = 0, the asymptotic
(7.5) should be interpreted as the claim V,,, is empty, and similarly for (7.6).) To this end,
it suffices to show that

J
(7.7) BV (1) = #Vy(w) ~ (Laig + 2 g,y o 2>>“”(j) ,

uniformly in ¢ < (logz)® and in residue classes w mod ¢. The equality in (7.7) follows imme-
diately from the one-to-one correspondence (vq,- -+ ,v;) <=+ (v, —va, -+, (—=1)’"1v;) between
Vo(w) and V;(w). To see the asymptotic, we write #V(w) =[], Ve, where for each prime
power (¢ || g,

J
Ve : = #{(v1,...,v7) mod £° : ged(vy ...v;5,0) =1, Zvj =w (mod )}

j=1
1 Z exp( 27rzrw) S,(r)’.

0<r<£€

with Se(r) := 32, nod e, (v.0)=1 €XP(2Tirv/€) (a Ramanujan sum). Since Si(r) = Lperp(—C¢71)
for all r € {1,---,¢¢ — 1} (see, for instance, [16, Theorem 4.1, p. 110]), we deduce that as
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T — 00,

J 1
#Vy(w) = (Loyg + 2 - Lojg, 7=w (mod 2))S0(Z) g (1 +0 (W)) :
>2

leading to (7.7), since 32, 4o 1/(£ = 1)77" = 0(1) as J — oo,

Plugging (7.5) and (7.6) into (7.3) and (7.4) respectively, and carrying out our initial reductions
in reverse order completes the proof of (7.2), and hence also that of (7.1), for odd ¢ < (log x)¥.
On the other hand, when ¢ is even we obtain

Nga=2 Y 1+0<g), N*(q,a)zg 3 1+0<§);

q n<x n<x
A(n)=a (mod 2) A*(n)=a (mod 2)
here, it has been noted that a — A(m) = J (mod 2) is equivalent to A(mP;---P;) = a
(mod 2), and likewise for A* in place of A. Since A(n) is known to be equidistributed mod 2
(as discussed in the remarks preceding the theorem), and A*(n) = A(n) (mod 2), the theorem
follows. u

The flexibility of our method suggests the possibility of extensions in several different directions.
One natural generalization is to study simultaneous weak equidistribution for a finite family
of polynomially-defined multiplicative functions. Problems of this kind with fixed moduli were
investigated by Narkiewicz in [18], and initial results towards uniformity were obtained in [23].
It should now be possible to draw more complete conclusions. Going in a different direction,
one could apply our method to additive functions, aiming perhaps at a uniform generalization
of the quoted theorem of Delange. One could even consider simultaneous equidistribution
of additive and multiplicative functions; here estimates for hybrid character sums, as in [3],
should prove useful.

We close on a more speculative note. The mixing exploited in this paper can be interpreted as
a quantitative ergodicity phenomenon for random walks on multiplicative groups. However,
our proofs go through character sum estimates; one might say that no actual Markov chains
were harmed in the production of our arguments. It would be interesting to investigate the
extent to which the (rather substantially developed) theory of Markov chain mixing could be
brought directly to bear on these kinds of uniform and weak uniform distribution questions.
This has the potential to open up applications in situations where character sum technology
is unavailable.
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