

# JOINT DISTRIBUTION IN RESIDUE CLASSES OF POLYNOMIAL-LIKE MULTIPLICATIVE FUNCTIONS

PAUL POLLACK AND AKASH SINGHA ROY

**ABSTRACT.** Under fairly general conditions, we show that families of integer-valued polynomial-like multiplicative functions are uniformly distributed in coprime residue classes mod  $p$ , where  $p$  is a growing prime (or nearly prime) modulus. This can be seen as complementary to work of Narkiewicz, who obtained comprehensive results for fixed moduli.

## 1. INTRODUCTION

For any integer-valued arithmetic function, it is reasonable to ask how the values of  $f$  are distributed in arithmetic progressions. As stated, this problem is far too general; to get any traction, it is necessary to restrict  $f$ . Let us suppose that  $f$  is multiplicative and that  $f$  is **polynomial-like**, in the sense that there is a polynomial  $F(T) \in \mathbb{Z}[T]$  such that  $f(p) = F(p)$  for every prime number  $p$ . In this case, Narkiewicz (beginning in [Nar67]) has made a comprehensive study of the distribution of  $f$  in coprime residue classes. For a thorough survey of this work, see Chapter V in [Nar84]. See also [Nar12] for a more recent contribution to this subject by the same author.

In 1982, Narkiewicz [Nar82] observed that his methods could be applied to study the joint distribution of several functions. We state a special case of the main theorem of [Nar82]. Let  $f_1, \dots, f_K$  be a finite sequence of multiplicative, integer-valued arithmetic functions. Say that  $f_1, \dots, f_K$  is **nice** if the following conditions hold:

- (i) Each  $f_k$  is polynomial-like for a nonconstant polynomial: There is a nonconstant polynomial  $F_k(T) \in \mathbb{Z}[T]$  such that  $f_k(p) = F_k(p)$  for all primes  $p$ ,

and

- (ii)  $F_1(T) \cdots F_K(T)$  has no multiple roots.

If  $f_1, \dots, f_K$  is a nice family, a prime  $p$  is called **good** for  $f_1, \dots, f_K$  if (a)  $p > 5$ , (b)  $p > (1 + \sum_k \deg F_k(T))^2$ , (c)  $p$  does not divide the leading coefficient of any  $F_k(T)$ , and (d)  $p$  does not divide the discriminant of

---

2020 *Mathematics Subject Classification.* Primary 11A25; Secondary 11N36, 11N64.

*Key words and phrases.* distribution in residue classes, joint distribution, polynomial-like multiplicative function, weak uniform distribution.

$F_1(T) \cdots F_K(T)$ . For any fixed nice family  $f_1, \dots, f_K$ , all but finitely many primes are good. Narkiewicz proves that if every prime divisor of  $q$  is good, and one restricts attention to  $n$  for which the values  $f_1(n), \dots, f_K(n)$  are coprime to  $q$ , then those values are asymptotically jointly uniformly distributed among the coprime residue classes modulo  $q$ . More precisely: For every choice of integers  $a_1, \dots, a_K$  coprime to  $q$ , we have

$$(1.1) \quad \sum_{\substack{n \leq x \\ (\forall k) \ f_k(n) \equiv a_k \pmod{q}}} 1 \sim \frac{1}{\phi(q)^K} \sum_{\substack{n \leq x \\ \gcd(\prod_{k=1}^K f_k(n), q) = 1}} 1,$$

as  $x \rightarrow \infty$ . (It is proved along the way that the right-hand side of (1.1) tends to infinity under the same hypotheses.) In particular, we get joint uniform distribution in coprime residue classes mod  $p$  for all good primes  $p$ .

So far everything that has been said concerns the distribution to a fixed modulus  $q$ . It is natural to also consider the distribution when  $q$  grows with  $x$ . We prove a joint uniform distribution result of this kind for nice families valid when the modulus  $q$  is prime or “nearly prime”. Here “nearly prime” means that  $\delta(q)$  is small where

$$\delta(q) := \sum_{p|q} \frac{1}{p}.$$

Our main theorem is as follows.

**Theorem 1.1.** *Fix a nice sequence  $f_1, \dots, f_K$  of multiplicative functions and fix  $\epsilon > 0$ . Then (1.1) holds, uniformly as  $q, x \rightarrow \infty$  with  $\delta(q) = o(1)$  and  $q \leq (\log x)^{\frac{1}{K}-\epsilon}$ , for every choice of coprime residue classes  $a_1, \dots, a_K$  mod  $q$ .*

*In other words: For each  $\eta > 0$ , there is a positive integer  $N$  (depending on  $f_1, \dots, f_K$ ,  $\epsilon$ , and  $\eta$ ) such that the following holds. Suppose that  $x > N$ , that  $(\log x)^{\frac{1}{K}-\epsilon} \geq q \geq N$ , and that  $\delta(q) < 1/N$ . Then for every  $K$ -tuple of integers  $a_1, \dots, a_K$  coprime to  $q$ , the ratio of the LHS to the RHS in (1.1) lies in  $(1 - \eta, 1 + \eta)$ .*

For example, let  $f_1(n) = n$ ,  $f_2(n) = \phi(n)$ , and  $f_3(n) = \sigma(n)$ . These form a nice family. By the result of Narkiewicz quoted above, the values of  $n$ ,  $\phi(n)$ ,  $\sigma(n)$  coprime to  $p$  are uniformly distributed in coprime residue classes mod  $p$  for each fixed  $p \geq 17$ . It then follows from Theorem 1.1 that this equidistribution holds uniformly for  $17 \leq p \leq (\log x)^{\frac{1}{3}-\epsilon}$ .

There are two directions in which one might hope to strengthen Theorem 1.1. First, it would be desirable to weaken the condition  $\delta(q) = o(1)$ , e.g., by replacing it with Narkiewicz’s condition that  $q$  is divisible only by good primes. Such an improvement would seem to require a substantial new idea.

Second, one might hope to enlarge the range of allowable  $q$  past  $(\log x)^{\frac{1}{K}-\epsilon}$ . It was proved in [LLPSR] that when  $K = 1$  and  $f_1(n) = \phi(n)$ , one can replace  $(\log x)^{1-\epsilon}$  with  $(\log x)^A$ , for an arbitrary  $A$ , provided  $q$  is restricted to primes. This might seem to suggest that  $(\log x)^{\frac{1}{K}-\epsilon}$  in Theorem 1.1 can always be replaced with  $(\log x)^A$ , with  $A$  arbitrary. As we now explain, this is too optimistic.

Suppose that  $f_1, \dots, f_K$  is a fixed nice family with  $K \geq 2$ . Fix a prime  $p_0$  with  $f_1(p_0), \dots, f_K(p_0)$  all nonzero. Let  $X := 2(\log x)^{\frac{1}{K-1}}$ , and choose  $p$  to be a prime in  $(2X/3, X]$ . As  $x \rightarrow \infty$ , there are at “obviously” at least  $(1 + o(1))x/p \log x \geq (\frac{4}{3} + o(1))x/p^K$  values of  $n \leq x$  having  $f_k(n) \equiv f_k(p_0) \pmod{p}$  for all  $k = 1, \dots, K$ , since  $n$  can be taken as any prime congruent to  $p_0 \pmod{p}$ . This shows that equidistribution in coprime residue cannot hold up to  $X$ . It is conceivable that in Theorem 1.1 uniformity holds up to  $(\log x)^{\frac{1}{K-1}-\epsilon}$  (interpreted as  $(\log x)^A$ ,  $A$  arbitrary, when  $K = 1$ ). Again, it would seem to require a new idea to decide this.

We conclude this introduction with a brief summary of the proof of Theorem 1.1: Split off the first several largest prime factors of  $n$ , say  $n = mP_J \cdots P_1$ , where  $P^+(m) \leq P_J \leq \cdots \leq P_1$ . (Here  $J$  must be chosen judiciously; we also ignore  $n$  with fewer than  $J$  prime factors.) Most of the time,  $P_J, \dots, P_1$  will appear to the first power only in  $n$ , so that  $f_k(n) = f_k(m)f_k(P_J) \cdots f_k(P_1)$ . Then given  $m$ , we use the prime number theorem for progressions (Siegel–Walfisz) and character sum estimates to understand the number of choices for  $P_1, \dots, P_J$  compatible with the congruence conditions on  $f_k(n)$ .

**Notation and conventions.** Throughout, the letters  $p, P, r$ , with or without subscripts, always denote primes whether or not this is explicitly mentioned. We use  $P^+(n)$  for the largest prime factor of  $n$ , with the convention that  $P^+(1) = 1$ . We write  $\mathfrak{f}(\chi)$  for the conductor of the Dirichlet character  $\chi$ .

## 2. PREPARATION

**2.1. Sieve lemmas.** We will make frequent use of the following special case of the fundamental lemma of sieve theory, as formulated in [HR74, Theorem 7.2, p. 209].

**Lemma 2.1.** *Let  $X \geq Z \geq 3$ . Suppose that the interval  $\mathcal{I} = (u, v]$  has length  $v - u = X$ . Let  $\mathcal{P}$  be a set of primes not exceeding  $Z$ . For each  $p \in \mathcal{P}$ , choose a residue class  $a_p \pmod{p}$ . The number of integers  $n \in \mathcal{I}$  not congruent*

to  $a_p \bmod p$  for any  $p \in \mathcal{P}$  is

$$X \left( \prod_{p \in \mathcal{P}} \left( 1 - \frac{1}{p} \right) \right) \left( 1 + O \left( \exp \left( - \frac{1}{2} \frac{\log X}{\log Z} \right) \right) \right).$$

The following application of Lemma 2.1 yields a lower bound for the “numerator” on the right-hand side of (1.1). See Scourfield’s Theorem 4 in [Sco84] for a closely related result (and compare with [Sco85]).

**Lemma 2.2.** *Fix a nice arithmetic function  $f$  (meaning that  $f$  is nice when viewed as a singleton sequence). Suppose that  $q, x \rightarrow \infty$  with  $q = x^{o(1)}$  and  $\delta(q) = o(1)$ . The number of  $n \leq x$  for which  $\gcd(f(n), q) = 1$  eventually<sup>1</sup> exceeds*

$$(2.1) \quad \frac{1}{20}x \prod_{\substack{p \leq x \\ \gcd(f(p), q) > 1}} \left( 1 - \frac{1}{p} \right).$$

*Remark.*

- (a) With a small amount of additional effort, one could show that (2.1) is the correct order of magnitude for this count of  $n$ . But we will not need this.
- (b) It will be useful momentarily to know that the product on  $p$  in (2.1) has size at least  $(\log x)^{o(1)}$ . To see this, choose  $F(T) \in \mathbb{Z}[T]$  with  $f(p) = F(p)$  for all  $p$ . It suffices to show that

$$\sum_{\substack{p \leq x \\ \gcd(f(p), q) > 1}} 1/p = o(\log \log x).$$

Let  $\mathcal{S}$  be the set of primes  $p \leq x$  with  $\gcd(f(p), q) > 1$ . For each prime  $r$  dividing  $q$ , let  $\mathcal{S}_r = \{p \in (r, x] : F(p) \equiv 0 \pmod{r}\}$ . Since  $F$  has  $O_f(1)$  roots modulo every prime  $r$ ,

$$\sum_{r|q} \sum_{p \in \mathcal{S}_r} \frac{1}{p} \ll_f \log \log x \sum_{r|q} \frac{1}{r} = \delta(q) \log \log x = o(\log \log x).$$

Here the sum on  $p \in \mathcal{S}_r$  has been estimated by partial summation and the Brun–Titchmarsh inequality. For each  $r$  dividing  $q$ , there are  $O_f(1)$  primes  $p \leq r$  with  $F(p) \equiv 0 \pmod{r}$ . So if we put  $\mathcal{S}' := \mathcal{S} \setminus \bigcup_{r|q} \mathcal{S}_r$ , then  $\#\mathcal{S}' \ll_f \omega(q)$ , and, writing  $p_k$  for the  $k$ th prime in the usual increasing order,

$$\sum_{p \in \mathcal{S}'} \frac{1}{p} \leq \sum_{k=1}^{\#\mathcal{S}'} \frac{1}{p_k} \ll_f \log \log(3\omega(q)) = o(\log \log x),$$

using the simple bound  $\omega(q) = O(\log x)$  in the last step.

---

<sup>1</sup>meaning whenever  $q, x$  are sufficiently large and  $\frac{\log q}{\log x}, \delta(q)$  are sufficiently small

*Proof of Lemma 2.2.* Fix a real number  $U \geq 2$ . We start by considering all  $n \leq x$  not divisible by any  $p \leq x^{1/U}$  with  $\gcd(f(p), q) > 1$ . For large  $q, x$  and small  $\frac{\log q}{\log x}, \delta(q)$ , where here and below “large” and “small” may depend on  $U$ , the sieve shows that the count of such  $n$  is

$$x \left( \prod_{\substack{p \leq x^{1/U} \\ \gcd(f(p), q) > 1}} \left(1 - \frac{1}{p}\right) \right) (1 + O(\exp(-U/2))).$$

We now bound from above the number of these  $n$  with  $\gcd(f(n), q) > 1$ .

For each  $n$  surviving our initial sieve but having  $\gcd(f(n), q) > 1$ , we factor  $n = A_1 A_2 B$ , where

$$A_1 = \prod_{\substack{p \parallel n \\ \gcd(f(p), q) > 1}} p, \quad A_2 = \prod_{\substack{p^e \parallel n, e > 1 \\ \gcd(f(p^e), q) > 1}} p^e, \quad \text{and} \quad B = n/A_1 A_2.$$

Then either  $A_1 > 1$  or  $A_2 > 1$ . Moreover, every prime dividing  $A_1$  exceeds  $x^{1/U}$ .

Suppose  $A_2 > 1$ . Since  $A_2$  is squarefull, the number of  $n \leq x$  with  $A_2 > x^{1/2}$  is  $O(x^{3/4})$ , which will be negligible for our purposes. So we assume that  $A_2 \leq x^{1/2}$ . Given  $A_2$ , we count the number of possibilities for the cofactor  $A_1 B$ . Note that  $A_1 B \leq x/A_2$  and that  $A_1 B$  is free of prime factors  $p \leq x^{1/U}$  with  $\gcd(f(p), q) > 1$ . So the sieve shows that the number of possibilities for  $A_1 B$  is at most

$$\frac{x}{A_2} \left( \prod_{\substack{p \leq x^{1/U} \\ \gcd(f(p), q) > 1}} \left(1 - \frac{1}{p}\right) \right) (1 + O(\exp(-U/4))).$$

(We assume as usual that  $q, x$  are large and  $\frac{\log q}{\log x}, \delta(q)$  are small.) Since

$$\sum_{M \text{ squarefull}} \frac{1}{M} = \prod_p \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots\right) = \frac{\zeta(2)\zeta(3)}{\zeta(6)} = 1.943\dots,$$

the count of  $n$  with  $A_2 > 1$  is bounded above by

$$0.945x \left( \prod_{\substack{p \leq x^{1/U} \\ \gcd(f(p), q) > 1}} \left(1 - \frac{1}{p}\right) \right) (1 + O(\exp(-U/4))).$$

Suppose now that  $A_2 = 1$ . Then  $n = A_1 B$ , where  $A_1 > 1$  and every prime dividing  $A_1$  exceeds  $x^{1/U}$ . Let  $p$  be a prime dividing  $A_1$ , and write  $A_1 = pS$ . Then  $n = pSB \leq x$  where  $SB \leq x^{1-1/U}$ . Given  $S$  and  $B$ , the number of possible  $p$  (and hence possible  $n$ ) is, by Brun–Titchmarsh, at most

$$\sum_{r|q} \sum_{\substack{p \leq x/SB \\ F(p) \equiv 0 \pmod{r}}} 1 \ll_f \sum_{r|q} \frac{x}{rSB \log(x/SBr)} \ll \delta(q)U \frac{x}{\log x} \frac{1}{SB};$$

here we have assumed that  $q \leq x^{1/2U}$ , so that  $x/SBr \geq (x/SB)/r \geq x^{1/2U}$  for every  $r \mid q$ . Summing on  $S$  and  $B$ , the number of  $n$  that arise is

$$\begin{aligned} & \ll_f \delta(q)U \frac{x}{\log x} \left( \sum_{\substack{S \\ p|S \Rightarrow p \in (x^{1/U}, x]}} \frac{1}{S} \right) \left( \sum_{\substack{B \leq x \\ p|B, p \leq x^{1/U} \Rightarrow \gcd(f(p), q) = 1}} \frac{1}{B} \right) \\ & \leq \delta(q)U \frac{x}{\log x} \left( \prod_{x^{1/U} < p \leq x} \left(1 - \frac{1}{p}\right)^{-2} \right) \left( \prod_{\substack{p \leq x^{1/U} \\ \gcd(\bar{f}(p), q) = 1}} \left(1 - \frac{1}{p}\right)^{-1} \right), \end{aligned}$$

which is

$$\begin{aligned} & \ll \delta(q)U^3 \frac{x}{\log x} \prod_{p \leq x^{1/U}} \left(1 - \frac{1}{p}\right)^{-1} \prod_{\substack{p \leq x^{1/U} \\ \gcd(\bar{f}(p), q) > 1}} \left(1 - \frac{1}{p}\right) \\ & \ll \delta(q)U^2 x \prod_{\substack{p \leq x^{1/U} \\ \gcd(\bar{f}(p), q) > 1}} \left(1 - \frac{1}{p}\right). \end{aligned}$$

But  $\delta(q) = o(1)$ , so the final expression is  $o(x \prod_{p \leq x^{1/U}, \gcd(f(p), q) > 1} (1 - 1/p))$ .

Collecting estimates shows that if  $U$  is fixed sufficiently large, then eventually the number of  $n \leq x$  with  $\gcd(f(n), q) = 1$  exceeds

$$\frac{1}{20}x \prod_{\substack{p \leq x^{1/U} \\ \gcd(\bar{f}(p), q) > 1}} \left(1 - \frac{1}{p}\right).$$

Bounding the product over  $p \leq x^{1/U}$  below by the product over  $p \leq x$  completes the proof.  $\square$

Our second application of the sieve is an upper bound on the count of  $n$  with few large prime factors. More precise results on this problem have been obtained by [Ten00], but the comparatively simple Lemma 2.3 below will suffice for our purposes.

Set  $P_1^+(n) = P^+(n)$  and define, inductively,

$$P_{j+1}^+(n) = P^+(n/P_1^+(n) \cdots P_j^+(n)).$$

Thus,  $P_j^+(n)$  is the  $j$ th largest prime factor of  $n$  (with multiple primes counted multiply), with  $P_j^+(n) = 1$  if  $n$  has fewer than  $j$  prime factors.

**Lemma 2.3.** *Let  $x \geq y \geq 10$ . Let  $J$  be an integer,  $J \geq 2$ . The number of  $n \leq x$  with  $P_J^+(n) \leq y$  is*

$$\ll_J x \frac{\log y}{\log x} (\log \log x)^{J-1}.$$

*Proof.* Suppose that  $P_j^+(n) \leq y$  and write  $n = AB$ , where  $A$  is the largest divisor of  $n$  composed of primes not exceeding  $y$ . Then  $\omega(B) \leq \Omega(B) < J$ .

Clearly,  $A \leq x^{1/2}$  or  $B \leq x^{1/2}$ . Suppose first that  $A \leq x^{1/2}$ . Then  $B \leq x/A$  and  $\omega(B) \leq J-1$ , so that by a classical theorem of Landau (see [HW08, Theorem 437, p. 491]), given  $A$  there are  $\ll \frac{x}{A \log(x/A)} (\log \log(x/A))^{J-2} \ll \frac{x}{A \log x} (\log \log x)^{J-2}$  possible  $B$ . Summing  $1/A$  on  $A$  with  $P_j^+(A) \leq y$  introduces a factor  $\prod_{p \leq y} (1 - 1/p)^{-1} \ll \log y$ , which yields for this case a slightly stronger upper bound than that claimed in the lemma.

Suppose now that  $B \leq x^{1/2}$ . Since  $A$  has no prime factors larger than  $y$ , the sieve shows that given  $B$ , the number of possible  $A \leq x/B$  is  $\ll \frac{x}{B} \prod_{y < p \leq x^{1/2}} (1 - 1/p) \ll \frac{x \log y}{B \log x}$ . Since

$$\sum_{\substack{B \leq x \\ \omega(B) \leq J-1}} \frac{1}{B} \leq \sum_{j=0}^{J-1} \frac{1}{j!} \left( \sum_{p^e \leq x} \frac{1}{p^e} \right)^j \ll_J (\log \log x)^{J-1},$$

the result follows.  $\square$

**2.2. Character sums of polynomials.** We require estimates for (complete, multiplicative) character sums of polynomials modulo prime powers. For prime moduli, we use the following version of the Weil bound.

**Lemma 2.4.** *Let  $\mathbb{F}_q$  be a finite field, and let  $\chi_1, \dots, \chi_K$  be characters of  $\mathbb{F}_q^\times$ , extended to all of  $\mathbb{F}_q$  by setting  $\chi_k(0) = 0$ . Let  $F_1(T), \dots, F_K(T) \in \mathbb{F}_q[T]$  be nonzero and pairwise relatively prime. Assume that for some  $1 \leq k \leq K$ , the polynomial  $F_k(T)$  is not an  $\text{ord}(\chi_k)$ th power in  $\mathbb{F}_q[T]$  or a constant multiple of such. Then*

$$\left| \sum_{x \in \mathbb{F}_q} \chi_1(F_1(x)) \cdots \chi_K(F_K(x)) \right| \leq \left( \sum_{k=1}^K d_k - 1 \right) \sqrt{q},$$

where  $d_k$  denotes the degree of the largest squarefree divisor of  $F_k(T)$ .

Lemma 2.4 is essentially Corollary 2.3 of [Wan97]. It is assumed in [Wan97] that all the  $\chi_k$  are nontrivial, but this assumption is not used in the proof.

Estimating the sums to proper prime power moduli requires some stage setting. Let  $p^m$  be an odd prime power, where  $m \geq 2$ . Let  $g$  be a primitive root modulo  $p^m$ . Let  $\chi$  be the Dirichlet character mod  $p^m$  defined on integers  $x$  coprime to  $p$  by

$$(2.2) \quad \chi(x) = \exp \left( 2\pi i \frac{\text{ind}_g(x)}{p^{m-1}(p-1)} \right),$$

where  $g^{\text{ind}_g(x)} \equiv x \pmod{p^m}$ .

Let  $F(T) \in \mathbb{Z}[T]$  be a nonconstant polynomial, and let  $t$  be the largest nonnegative integer for which  $p^t$  divides every coefficient of  $F'(T)$ . Let  $\tilde{F}(T) \in \mathbb{F}_p[T]$  denote the mod  $p$  reduction of  $p^{-t}F'(T)$ . (Note that  $\tilde{F}(T)$  is nonzero by the choice of  $t$ .) Let  $\mathcal{A} \subset \mathbb{F}_p$  denote the set of roots of  $\tilde{F}(T)$  in  $\mathbb{F}_p$  that are not roots of the reduction of  $F(T)$  mod  $p$ . For each  $\alpha \in \mathcal{A}$ , let  $\nu_\alpha$  denote the multiplicity of  $\alpha$  as a zero of  $\tilde{F}(T)$ , and let  $M = \max_{\alpha \in \mathcal{A}} \nu_\alpha$ .

The following is an immediate consequence of Cochrane's Theorem 1.2 in [Coc02]; that very general result concerns mixed additive and multiplicative character sums, but see Theorem 2.1 of [CLZ03] for the specialization to multiplicative character sums.

**Lemma 2.5.** *Under the above conditions, and the additional assumption that  $m \geq t + 2$ , we have*

$$\left| \sum_{x \bmod p^m} \chi(F(x)) \right| \leq \left( \sum_{\alpha \in \mathcal{A}} \nu_\alpha \right) p^{\frac{t}{M+1}} p^{m(1 - \frac{1}{M+1})}.$$

The proof of Theorem 1.1 depends on the following consequence of Lemmas 2.4 and 2.5, which seems of some independent interest.

**Proposition 2.6.** *Let  $F_1(T), \dots, F_K(T) \in \mathbb{Z}[T]$  be nonconstant and assume that the product  $F_1(T) \cdots F_K(T)$  has no multiple roots. Let  $p$  be an odd prime not dividing the leading coefficient of any of the  $F_k(T)$  and not dividing the discriminant of  $F_1(T) \cdots F_K(T)$ . Let  $m$  be a positive integer, and let  $\chi_1, \dots, \chi_K$  be Dirichlet characters modulo  $p^m$ , at least one of which is primitive. Then*

$$(2.3) \quad \left| \sum_{x \bmod p^m} \chi_1(F_1(x)) \cdots \chi_K(F_K(x)) \right| \leq (D-1)p^{m(1-1/D)},$$

where  $D = \sum_{k=1}^K \deg F_k(T)$ .

*Proof.* Take first the case when  $m = 1$ . When  $D = 1$ , the left-hand side of (2.3) vanishes and (2.3) holds. When  $D \geq 2$ , we apply Lemma 2.4 with  $q = p$ . The mod  $p$  reductions of the  $F_k(T)$  are nonzero (in fact, of the same degree as their counterparts in  $\mathbb{Z}[T]$ ), and  $F_1(T) \cdots F_K(T)$  is squarefree over  $\mathbb{F}_p$ , so that each  $F_k(T)$  is squarefree and the  $F_k(T)$  are pairwise relatively prime in  $\mathbb{F}_p[T]$ . Since some  $\chi_k$  is primitive, it has order larger than 1, and so  $F_k(T)$  is not an  $\text{ord}(\chi_k)$ th power in  $\mathbb{F}_q[T]$  or a constant multiple of such. Lemma 2.4 now yields (2.3).

Henceforth, we suppose that  $m \geq 2$ . Let  $g$  be a primitive root mod  $p^m$ , and let  $\chi$  be the character mod  $p^m$  defined in (2.2). We can write each  $\chi_k$  in

the form  $\chi^{A_k}$ , where  $0 < A_k \leq p^{m-1}(p-1)$ . Then

$$(2.4) \quad \sum_{x \bmod p^m} \chi_1(F_1(x)) \cdots \chi_K(F_K(x)) = \sum_{x \bmod p^m} \chi(F(x)),$$

where

$$F(T) := F_1(T)^{A_1} \cdots F_K(T)^{A_K}.$$

Also,

$$F'(T) = \left( \prod_{k=1}^K F_k(T)^{A_k-1} \right) G(T),$$

where  $G(T) := \sum_{k=1}^K \left( A_k F'_k(T) \prod_{\substack{1 \leq j \leq K \\ j \neq k}} F_j(T) \right).$

Let  $t$  be the largest integer for which  $p^t$  divides all the coefficients of  $F'(T)$ . Since none of the  $F_k(T)$  are multiples of  $p$ , the power  $p^t$  is also the largest power of  $p$  dividing all the coefficients of  $G(T)$  (by Gauss's content lemma).

We claim that  $t = 0$ . Choose, for each  $k = 1, \dots, K$ , a root  $\alpha_k$  of  $F_k(T)$  from the algebraic closure  $\overline{\mathbb{F}}_p$  of  $\mathbb{F}_p$ . Then in  $\overline{\mathbb{F}}_p$ ,

$$G(\alpha_k) = (F'_k(\alpha_k) \prod_{\substack{1 \leq j \leq K \\ j \neq k}} F_j(\alpha_k)) A_k,$$

and the factor in front of  $A_k$  is nonzero. But if  $t > 0$ , then  $G(T)$  induces the zero function on  $\overline{\mathbb{F}}_p$ , forcing each  $A_k$  to be a multiple of  $p$ . Then none of the  $\chi_k$  are primitive characters mod  $p^m$ , contrary to hypothesis.

Now let  $\mathcal{A}$ ,  $\nu_\alpha$ , and  $M$  be defined as in the discussion preceding Lemma 2.5. Then each  $\alpha \in \mathcal{A}$  is a root in  $\mathbb{F}_p$  of the mod  $p$  reduction of  $G(T)$  of multiplicity  $\nu_\alpha$ . Moreover,  $M \leq \sum_{\alpha \in \mathcal{A}} \nu_\alpha \leq \deg G(T) \leq D - 1$ . The desired upper bound (2.3) follows from (2.4) and Lemma 2.5.  $\square$

### 3. PROOF OF THEOREM 1.1

Throughout this proof, we suppress the dependence of implied constants or implied lower/upper bounds on the constant  $\epsilon > 0$  as well as the family  $f_1, \dots, f_K$ . We let  $F_1(T), \dots, F_K(T) \in \mathbb{Z}[T]$  be such that  $f_k(p) = F_k(p)$  for all primes  $p$ . We put

$$J := (K + 1)D$$

where, anticipating an application of Proposition 2.6,

$$D := 1 + \sum_{k=1}^K \deg F_k(T).$$

It will be convenient to introduce the notation

$$\sum_{\mathbf{f}}(x; q) := \sum_{\substack{n \leq x \\ \gcd(f(n), q) = 1}} 1.$$

Throughout this proof, when we say a term is **ignorable**, we mean that it is of smaller order than the right-hand side of (1.1), that is,  $o(\phi(q)^{-K} \sum_{\mathbf{f}}(x; q))$ .

By Lemma 2.2 (with  $f = f_1 \cdots f_K$ ) and the remark following it, we find that

$$\begin{aligned} \phi(q)^{-K} \sum_{\mathbf{f}}(x; q) &\geq q^{-K} x (\log x)^{o(1)} \\ &\geq x (\log x)^{K\epsilon+o(1)} / \log x \geq x (\log x)^{\epsilon+o(1)} / \log x. \end{aligned}$$

(Here we use our assumption that  $q \leq (\log x)^{\frac{1}{K}-\epsilon}$ .) So Lemma 2.3 allows us to discard from the left-hand side of (1.1) those  $n$  for which  $P_J^+(n) \leq L$ , where

$$L := \exp((\log x)^{\frac{1}{2}\epsilon}),$$

at the cost an ignorable error. Write each remaining  $n$  in the form  $n = mP_J \cdots P_1$ , where each  $P_j = P_j^+(n)$ . We keep only those  $n$  where  $P^+(m) < P_J < \cdots < P_1$ . Any  $n$  discarded at this step has a repeated prime factor exceeding  $L$ , and there are  $O(x/L)$  of these, which is again ignorable. Note that for all of the remaining  $n$ , we have  $f(n) = f(m)f(P_J) \cdots f(P_1)$ , where each  $P_j > L_m$  with

$$L_m := \max\{P^+(m), L\}.$$

By the observations of the last paragraph, it suffices to prove that

$$\sum_{\mathbf{f}}(x; q, \mathbf{a}) \sim \frac{1}{\phi(q)^K} \sum_{\mathbf{f}}(x; q),$$

where

$$\begin{aligned} (3.1) \quad \sum_{\mathbf{f}}(x; q, \mathbf{a}) &:= \sum_{\substack{m \leq x \\ \gcd(\prod_{k=1}^K f_k(m), q) = 1}} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ L_m < P_J < \cdots < P_1 \\ (\forall k) \ f_k(m) \prod_{j=1}^J f_k(P_j) \equiv a_k \pmod{q}}} 1 \\ &= \sum_{\substack{m \leq x \\ \gcd(\prod_{k=1}^K f_k(m), q) = 1}} \frac{1}{J!} \sum_{\substack{P_1, \dots, P_J \text{ distinct} \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall k) \ f_k(m) \prod_{j=1}^J f_k(P_j) \equiv a_k \pmod{q}}} 1. \end{aligned}$$

We now remove the distinctness restriction in the final inner sum. Estimating crudely, this incurs an error of size  $O(x/mL)$  in the inner sum and an error of size  $O(x \log x/L)$  in the double sum.

For each  $k = 1, 2, \dots, K$ , let  $u_k$  denote a value of  $f_k(m)^{-1}a_k \pmod{q}$  and define

$$V_m := \{(v_1 \pmod{q}, \dots, v_J \pmod{q}) : \gcd(v_1 \cdots v_J, q) = 1, \\ (\forall k) \prod_{j=1}^J F_k(v_j) \equiv u_k \pmod{q}\}.$$

Then writing  $\mathbf{v} = (v_1 \pmod{q}, \dots, v_j \pmod{q})$ ,

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall k) f_k(m) \prod_{j=1}^J f_k(P_j) \equiv a_k \pmod{q}}} 1 = \sum_{\mathbf{v} \in V_m} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j) P_j \equiv v_j \pmod{q}}} 1.$$

For each  $\mathbf{v} \in V_m$ , we show how to remove the right-hand congruence conditions on the  $P_j$ . First we handle  $P_1$ . Noting that  $q \leq (\log x) = (\log L)^{2/\epsilon}$ , the Siegel–Walfisz theorem (see, for example, [MV07, Corollary 11.21]) implies that for a certain positive constant  $C = C_\epsilon$ ,

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j) P_j \equiv v_j \pmod{q}}} 1 = \sum_{\substack{P_2, \dots, P_J \\ P_2 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j \geq 2) P_j \equiv v_j \pmod{q}}} \sum_{\substack{L_m < P_1 \leq \frac{x}{m P_2 \cdots P_J} \\ P_1 \equiv v_1 \pmod{q}}} 1,$$

where

$$\sum_{\substack{L_m < P_1 \leq \frac{x}{m P_2 \cdots P_J} \\ P_1 \equiv v_1 \pmod{q}}} 1 = \frac{1}{\phi(q)} \sum_{L_m < P_1 \leq \frac{x}{m P_2 \cdots P_J}} 1 + O\left(\frac{x}{m P_2 \cdots P_J} \exp(-C\sqrt{\log L})\right).$$

It follows that

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j) P_j \equiv v_j \pmod{q}}} 1 = \frac{1}{\phi(q)} \sum_{\substack{P_1, P_2, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j \geq 2) P_j \equiv v_j \pmod{q}}} 1 + O\left(\frac{x}{m} \exp\left(-\frac{1}{2}C\sqrt{\log L}\right)\right).$$

In the same way, the congruence conditions on  $P_2, \dots, P_J$  can be removed successively to yield

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ (\forall j) P_j \equiv v_j \pmod{q}}} 1 = \frac{1}{\phi(q)^J} \sum_{\substack{P_1, P_2, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m}} 1 + O\left(\frac{x}{m} \exp\left(-\frac{1}{2}C\sqrt{\log L}\right)\right).$$

The main term on the right-hand side is independent of  $\mathbf{v}$ . Keeping in mind that  $\#V_m \leq q^J \leq (\log x)^J$  for all  $m$ , we deduce from (3.1) that

$$(3.2) \quad \sum_{\mathbf{f}} (x; q, \mathbf{a}) = \sum_{\substack{m \leq x \\ \gcd(\prod_{k=1}^K f_k(m), q) = 1}} \frac{\#V_m}{\phi(q)^J} \cdot \frac{1}{J!} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ \text{some } \gcd(f(P_j), q) > 1}} 1 + O\left(x \exp\left(-\frac{1}{4}C\sqrt{\log L}\right)\right).$$

To handle the main term, notice that

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ \text{some } \gcd(f(P_j), q) > 1}} 1 \leq J \sum_{p|q} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ p|f(P_1)}} 1.$$

The condition that  $p \mid f(P_1)$  puts  $P_1$  in a certain (possibly empty) set of  $O(1)$  residue classes mod  $p$ . Removing these congruence condition by the Siegel–Walfisz theorem (exactly as above) we find that (with  $C$  as above)

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ p|f(P_1)}} 1 \ll \frac{1}{p} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m}} 1 + \frac{x}{m} \exp\left(-\frac{1}{2}C\sqrt{\log L}\right)$$

and so

$$\sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m \\ \text{some } \gcd(f(P_j), q) > 1}} 1 \ll \delta(q) \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m}} 1 + \frac{x}{m} \exp\left(-\frac{1}{4}C\sqrt{\log L}\right).$$

Since  $\delta(q) = o(1)$ ,

$$\begin{aligned} \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m}} 1 &= (1 + O(\delta(q))) \sum_{\substack{P_1, \dots, P_J \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m, \gcd(f(P_j), q) = 1}} 1 \\ &\quad + O\left(\frac{x}{m} \exp\left(-\frac{1}{4}C\sqrt{\log L}\right)\right), \end{aligned}$$

which (considering possible orderings of  $P_1, \dots, P_J$ ) in turn is equal to

$$\begin{aligned} (1 + O(\delta(q)))J! \sum_{\substack{P_J < \dots < P_1 \\ P_1 \cdots P_J \leq x/m \\ \text{each } P_j > L_m, \gcd(f(P_j), q) = 1}} 1 &+ O\left(\frac{x}{m} \exp\left(-\frac{1}{4}C\sqrt{\log L}\right)\right). \end{aligned}$$

The following claim will be established at the end of this section as an application of Proposition 2.6.

**Claim.**  $\#V_m \sim q^J / \phi(q)^K$ , uniformly in  $m$ .

We insert the estimate of the Claim, together with the last display, into (3.2). Since  $\delta(q) = o(1)$ , we have  $\frac{q^J}{\phi(q)^J}(1 + O(\delta(q))) = 1 + o(1)$ . We find that up to an ignorable error,  $\sum_{\mathbf{f}}(x; q, \mathbf{a})$  is equal to

$$(1 + o(1)) \frac{1}{\phi(q)^K} \sum_{\substack{m \leq x \\ \gcd(\prod_{k=1}^K f_k(m), q) = 1}} \sum_{\substack{L_m < P_J < \dots < P_1 \\ P_1 \dots P_J \leq x/m \\ \text{each } \gcd(f(P_j), q) = 1}} 1.$$

We can view the double sum as counting those numbers  $n \leq x$  with  $\gcd(f(n), q) = 1$  and certain extra constraints: Namely, the  $J$ th largest prime factor of  $n$  exceeds  $L$  and none of the largest  $J$  prime factors are repeated. But (by reasoning seen at the start of this proof) dropping the extra constraints incurs an ignorable error. So up to an ignorable error,  $\sum_{\mathbf{f}}(x; q, \mathbf{a})$  is equal to  $\frac{(1+o(1))}{\phi(q)^K} \sum_{\mathbf{f}}(x; q)$ . By definition of ignorable,

$$\sum_{\mathbf{f}}(x; q, \mathbf{a}) \sim \frac{1}{\phi(q)^K} \sum_{\mathbf{f}}(x; q),$$

and we have seen already that this suffices to complete the proof of Theorem 1.1.

*Proof of the Claim.* Using  $\chi_0$  for the trivial character mod  $q$ , orthogonality yields

$$\begin{aligned} & \phi(q)^K \#V_m \\ &= \sum_{\chi_1, \dots, \chi_K \text{ mod } q} \left( \prod_{k=1}^K \bar{\chi}_k(u_k) \right) \left( \sum_{x_1, \dots, x_J \text{ mod } q} \chi_0(\prod_{j=1}^J x_j) \cdot \prod_{k=1}^K \chi_k(\prod_{j=1}^J F_k(x_j)) \right) \\ (3.3) \quad &= \sum_{\chi_1, \dots, \chi_K \text{ mod } q} \left( \prod_{k=1}^K \bar{\chi}_k(u_k) \right) S_{\chi_1, \dots, \chi_K}^J, \end{aligned}$$

where

$$S_{\chi_1, \dots, \chi_K} := \sum_{x \text{ mod } q} \chi_0(x) \chi_1(F_1(x)) \cdots \chi_K(F_K(x)).$$

The number of  $x \text{ mod } q$  where one of  $x, F_1(x), \dots, F_K(x)$  has a common factor with  $q$  is  $\ll q\delta(q) = o(q)$ , and so the tuple  $\chi_1, \dots, \chi_K$  of trivial characters makes a contribution  $\sim q^J$  to (3.3). So to complete the proof, it suffices to show that

$$(3.4) \quad \sum_{\substack{\chi_1, \dots, \chi_K \text{ mod } q \\ \text{not all trivial}}} |S_{\chi_1, \dots, \chi_K}|^J$$

has size  $o(q^J)$ .

Assume that  $\chi_1, \dots, \chi_K$  are Dirichlet characters mod  $q$ , not all of which are trivial. Factor  $q = \prod_{p|q} p^{e_p}$ . Each character  $\chi_k$ , for  $k = 0, 1, \dots, K$ , admits a unique decomposition of the form  $\chi_k = \prod_{p|q} \chi_{k,p}$ , where  $\chi_{k,p}$  is a Dirichlet character modulo  $p^{e_p}$ . By the **type** of the tuple  $\chi_1, \dots, \chi_K$ , we mean the  $\omega(q)$ -element sequence of positive integers  $\{\mathfrak{f}_p\}_{p|q}$ , where each

$$\mathfrak{f}_p = \text{lcm}[\mathfrak{f}(\chi_{1,p}), \dots, \mathfrak{f}(\chi_{K,p})].$$

Write  $q = q_0 q_1$ , where  $q_1$  is the unitary divisor of  $q$  supported on the primes  $p \mid q$  for which  $\mathfrak{f}_p > 1$ . Note that  $q_1 > 1$ , since not all of  $\chi_1, \dots, \chi_K$  are trivial. By the Chinese remainder theorem,

$$S_{\chi_1, \dots, \chi_K} = \prod_{p|q} \left( \sum_{x \bmod p^{e_p}} \chi_{0,p}(x) \chi_{1,p}(F_1(x)) \cdots \chi_{K,p}(F_K(x)) \right),$$

from which we see that

$$\begin{aligned} |S_{\chi_1, \dots, \chi_K}| &\leq q_0 \prod_{p|q_1} \left| \sum_{x \bmod p^{e_p}} \chi_{0,p}(x) \chi_{1,p}(F_1(x)) \cdots \chi_{K,p}(F_K(x)) \right| \\ &= q_0 \prod_{p|q_1} \frac{p^{e_p}}{\mathfrak{f}_p} \left| \sum_{x \bmod \mathfrak{f}_p} \chi_{0,p}(x) \chi_{1,p}(F_1(x)) \cdots \chi_{K,p}(F_K(x)) \right|. \end{aligned}$$

At least one of  $\chi_{1,p}, \dots, \chi_{K,p}$  has conductor  $\mathfrak{f}_p$ , and so the remaining sum on  $x$  may be estimated by Proposition 2.6, yielding

$$|S_{\chi_1, \dots, \chi_K}| \leq q(D-1)^{\omega(q_1)} \prod_{p|q_1} \mathfrak{f}_p^{-1/D}.$$

(If none of the  $F_k(T)$  are multiples of  $T$ , we apply Proposition 2.6 with the polynomials  $T, F_1(T), \dots, F_k(T)$ ; otherwise, the sum on  $x$  is unchanged if we remove the term  $\chi_{0,p}(x)$  and we apply the proposition with  $F_1(T), \dots, F_k(T)$ . Keep in mind that since  $\delta(q) = o(1)$ , all the prime factors of  $q$  are large, so the nondivisibility conditions on  $p$  in Proposition 2.6 are certainly satisfied.) Hence (since  $J = (K+1)D$ )  $|S_{\chi_1, \dots, \chi_K}|^J \leq q^J (D-1)^{\omega(q_1)J} \prod_{p|q_1} \mathfrak{f}_p^{-(K+1)}$ . There are no more than  $(\prod_{p|q_1} \mathfrak{f}_p)^K$  tuples  $\chi_1, \dots, \chi_K$  sharing this type, so that the contribution from all such tuples to (3.4) is at most  $q^J (D-1)^{\omega(q_1)J} \prod_{p|q_1} \mathfrak{f}_p^{-1}$ . Summing  $\mathfrak{f}_p$  over all powers of  $p$ , for  $p \mid q_1$ , reveals that the contribution from all types corresponding to a given  $q_1$  is at most

$$q^J (D-1)^{\omega(q_1)J} \frac{q_1}{\phi(q_1)} \prod_{p|q_1} p^{-1} \leq q^J (D-1)^{\omega(q_1)J} 2^{\omega(q_1)} \prod_{p|q_1} p^{-1}.$$

Finally, summing over all unitary divisors  $q_1$  of  $q$  with  $q_1 > 1$  bounds (3.4) by

$$q^J \left( \prod_{p|q} \left( 1 + \frac{2(D-1)^J}{p} \right) - 1 \right) \leq q^J (\exp(2(D-1)^J \delta(q)) - 1) = o(q^J).$$

Collecting estimates completes the proof of the Claim.  $\square$

**Acknowledgements.** We thank the referee for helpful comments. The first-named author (P.P.) is supported by the US National Science Foundation (NSF), award DMS-2001581.

## REFERENCES

- [CLZ03] T. Cochrane, C.L. Liu, and Z.Y. Zheng, *Upper bounds on character sums with rational function entries*, Acta Math. Sin. (Engl. Ser.) 19 (2003), 327–338.
- [Coc02] T. Cochrane, *Exponential sums modulo prime powers*, Acta Arith. 101 (2002), 131–149.
- [HR74] H. Halberstam and H.-E. Richert, *Sieve methods*, Academic Press, London-New York, 1974.
- [HW08] G.H. Hardy and E.M. Wright, *An introduction to the theory of numbers*, sixth ed., Oxford University Press, Oxford, 2008.
- [LLPSR] N. Lebowitz-Lockard, P. Pollack, and A. Singha Roy, *Distribution mod  $p$  of Euler’s totient and the sum of proper divisors*, submitted.
- [MV07] H.L. Montgomery and R.C. Vaughan, *Multiplicative number theory. I. Classical theory*, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007.
- [Nar67] W. Narkiewicz, *On distribution of values of multiplicative functions in residue classes*, Acta Arith. 12 (1967), 269–279.
- [Nar82] ———, *On a kind of uniform distribution for systems of multiplicative functions*, Litovsk. Mat. Sb. 22 (1982), no. 1, 127–137.
- [Nar84] ———, *Uniform distribution of sequences of integers in residue classes*, Lecture Notes in Mathematics, vol. 1087, Springer-Verlag, Berlin, 1984.
- [Nar12] ———, *Weak proper distribution of values of multiplicative functions in residue classes*, J. Aust. Math. Soc. 93 (2012), 173–188.
- [Sco84] E.J. Scourfield, *Uniform estimates for certain multiplicative properties*, Monatsh. Math. 97 (1984), 233–247.
- [Sco85] ———, *A uniform coprimality result for some arithmetic functions*, J. Number Theory 20 (1985), 315–353.
- [Ten00] G. Tenenbaum, *A rate estimate in Billingsley’s theorem for the size distribution of large prime factors*, Q. J. Math. 51 (2000), 385–403.
- [Wan97] D. Wan, *Generators and irreducible polynomials over finite fields*, Math. Comp. 66 (1997), 1195–1212.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GA 30602  
*Email address:* `pollack@uga.edu`

ESIC STAFF QUARTERS No.: D2, 143 STERLING ROAD, NUNGAMBAKKAM, CHENNAI 600034, TAMIL NADU, INDIA.  
*Email address:* `akash01s.roy@gmail.com`