JOINT DISTRIBUTION IN RESIDUE CLASSES OF
POLYNOMIAL-LIKE MULTIPLICATIVE FUNCTIONS

PAUL POLLACK AND AKASH SINGHA ROY

ABSTRACT. Under fairly general conditions, we show that families of
integer-valued polynomial-like multiplicative functions are uniformly
distributed in coprime residue classes mod p, where p is a growing prime
(or nearly prime) modulus. This can be seen as complementary to work
of Narkiewicz, who obtained comprehensive results for fixed moduli.

1. INTRODUCTION

For any integer-valued arithmetic function, it is reasonable to ask how the
values of f are distributed in arithmetic progressions. As stated, this problem
is far too general; to get any traction, it is necessary to restrict f. Let us
suppose that f is multiplicative and that f is polynomial-like, in the sense
that there is a polynomial F(T') € Z[T] such that f(p) = F(p) for every
prime number p. In this case, Narkiewicz (beginning in [Nar67]|) has made a
comprehensive study of the distribution of f in coprime residue classes. For
a thorough survey of this work, see Chapter V in [Nar84|. See also [Narl2]
for a more recent contribution to this subject by the same author.

In 1982, Narkiewicz [Nar82| observed that his methods could be applied to
study the joint distribution of several functions. We state a special case of the
main theorem of [Nar82|. Let fi, ..., fx be a finite sequence of multiplicative,
integer-valued arithmetic functions. Say that fi, ..., fx is nice if the following

conditions hold:
(i) Each fy is polynomial-like for a nonconstant polynomial: There is a
nonconstant polynomial Fy(T") € Z[T] such that fi(p) = Fi(p) for
all primes p,
and
(ii) Fy(T)--- Fx(T) has no multiple roots.
If f1,..., fk is a nice family, a prime p is called good for fi,..., fx if
(a) p>5, (b)p> 1+, deg Fi(T))? (c) p does not divide the leading
coefficient of any Fi(7T), and (d) p does not divide the discriminant of
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Fi(T)--- Fg(T). For any fixed nice family fi,..., fx, all but finitely many
primes are good. Narkiewicz proves that if every prime divisor of ¢ is
good, and one restricts attention to n for which the values fi(n),..., fx(n)
are coprime to ¢, then those values are asymptotically jointly uniformly
distributed among the coprime residue classes modulo ¢g. More precisely: For

every choice of integers aq,...,ax coprime to ¢, we have
1
(1.1) 1~ 1,
nzgx o(q)¥ nzgx
(Vk) fr(n)=ay (mod q) ged([TE, fr(n),g)=1

as © — 0o. (It is proved along the way that the right-hand side of (1.1) tends
to infinity under the same hypotheses.) In particular, we get joint uniform
distribution in coprime residue classes mod p for all good primes p.

So far everything that has been said concerns the distribution to a fixed
modulus ¢. It is natural to also consider the distribution when ¢ grows with
x. We prove a joint uniform distribution result of this kind for nice families
valid when the modulus ¢ is prime or “nearly prime”. Here “nearly prime”

means that d(g) is small where

i(q) := Z })

plg

Our main theorem is as follows.

Theorem 1.1. Fiz a nice sequence fi,..., fx of multiplicative functions
and fiz € > 0. Then (1.1) holds, uniformly as q, x — oo with 6(q) = o(1) and
q < (log x)%_e, for every choice of coprime residue classes aq, ... ,ax mod q.

In other words: For each n > 0, there is a positive integer N (depending
on f1,..., [k, €, and n) such that the following holds. Suppose that x > N,
that (log :c)%_e >q > N, and that 6(q) < 1/N. Then for every K-tuple of
integers ay, . ..,ax coprime to q, the ratio of the LHS to the RHS in (1.1)
lies in (1 —n,1+4n).

For example, let f1(n) =n, fo(n) = ¢(n), and f3(n) = o(n). These form
a nice family. By the result of Narkiewicz quoted above, the values of n,
¢(n), o(n) coprime to p are uniformly distributed in coprime residue classes
mod p for each fixed p > 17. It then follows from Theorem 1.1 that this
equidistribution holds uniformly for 17 < p < (log x)%_e.

There are two directions in which one might hope to strengthen Theorem
1.1. First, it would be desirable to weaken the condition d(q) = o(1), e.g.,
by replacing it with Narkiewicz’s condition that ¢ is divisible only by good

primes. Such an improvement would seem to require a substantial new idea.
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Second, one might hope to enlarge the range of allowable ¢ past (log x)%’e.
It was proved in [LLPSR]| that when K = 1 and fi(n) = ¢(n), one can
replace (logz)!~¢ with (logz)”, for an arbitrary A, provided g is restricted
to primes. This might seem to suggest that (log :E)%_€ in Theorem 1.1 can
always be replaced with (logx)”, with A arbitrary. As we now explain, this
is too optimistic.

Suppose that fi,..., fx is a fixed nice family with K > 2. Fix a prime
po with fi(po),- .., fx(po) all nonzero. Let X := 2(log :U)ﬁ, and choose p
to be a prime in (2X/3, X]. As © — o0, there are at “obviously” at least
(14 o(1))z/plogz > (5 + o(1))z/p™ values of n < z having fi(n) = fi(po)
(mod p) for all K =1,..., K, since n can be taken as any prime congruent
to po (mod p). This shows that equidistribution in coprime residue cannot
hold up to X. It is conceivable that in Theorem 1.1 uniformity holds up to
(log x)ﬁ* (interpreted as (logx)?, A arbitrary, when K = 1). Again, it
would seem to require a new idea to decide this.

We conclude this introduction with a brief summary of the proof of
Theorem 1.1: Split off the first several largest prime factors of n, say n =
mPjy--- Py, where PT(m) < P; < --- < P;. (Here J must be chosen
judiciously; we also ignore n with fewer than J prime factors.) Most of the
time, Py, ..., P, will appear to the first power only in n, so that fx(n) =
fe(m) fi(Py) - fr(P). Then given m, we use the prime number theorem for
progressions (Siegel-Walfisz) and character sum estimates to understand the

number of choices for P, ..., P; compatible with the congruence conditions

on fi(n).

Notation and conventions. Throughout, the letters p, P, r, with or with-
out subscripts, always denote primes whether or not this is explicitly men-
tioned. We use P*(n) for the largest prime factor of n, with the convention
that PT(1) = 1. We write f() for the conductor of the Dirichlet character

X-

2. PREPARATION

2.1. Sieve lemmas. We will make frequent use of the following special case
of the fundamental lemma of sieve theory, as formulated in [HR74, Theorem
7.2, p. 209].

Lemma 2.1. Let X > Z > 3. Suppose that the interval T = (u,v] has
length v —u = X. Let P be a set of primes not exceeding Z. For each p € P,

choose a residue class a, mod p. The number of integers n € L not congruent
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to a, mod p for any p € P is

(I0-2)) (o (o0 (532)))

The following application of Lemma 2.1 yields a lower bound for the

“numerator” on the right-hand side of (1.1). See Scourfield’s Theorem 4 in
[Sco84] for a closely related result (and compare with [Sco85]).

Lemma 2.2. Fiz a nice arithmetic function f (meaning that f is nice when
viewed as a singleton sequence). Suppose that q,x — oo with ¢ = 2°Y) and
5(q) = o(1). The number of n < = for which ged(f(n),q) = 1 eventually'
exceeds
2.1 E ( - 1).
(2.1) 5% pll L=

ged(f(p),a)>1

Remark.

(a) With a small amount of additional effort, one could show that (2.1)
is the correct order of magnitude for this count of n. But we will not
need this.

(b) It will be useful momentarily to know that the product on p in (2.1)
has size at least (log)°("). To see this, choose F(T) € Z[T] with
f(p) = F(p) for all p. It suffices to show that

Z 1/p = o(loglog x).

p<w
ged(f(p),g)>1

Let S be the set of primes p < z with ged(f(p),q) > 1. For each
prime r dividing ¢, let S, = {p € (r,z] : F(p) =0 (mod r)}. Since
F has Oy(1) roots modulo every prime r,

1 1
— log1 — =4(q) logl = o(logl .
Zzp < log ogaczr (q)loglog x = o(log log x)

rlg PESr rlq
Here the sum on p € S, has been estimated by partial summation and
the Brun-Titchmarsh inequality. For each r dividing g, there are Of(1)
primes p < r with F(p) =0 (mod r). So if we put &' := S\ U, (S,
then #S’ < w(q), and, writing p;, for the kth prime in the usual

increasing order,

#S'
1 1
E - < 5 — <y loglog(3w(q)) = o(loglog z),
peS’ p k=1 Pk

using the simple bound w(q) = O(log z) in the last step.

log g
logz?’

1meauning whenever ¢, x are sufficiently large and d(q) are sufficiently small
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Proof of Lemma 2.2. Fix a real number U > 2. We start by considering all
n < x not divisible by any p < 2'/Y with ged(f(p),q) > 1. For large ¢,z

and small

isgg, d(q), where here and below “large” and “small” may depend

on U, the sieve shows that the count of such n is

x( 11 <1—%))(1+O(exp(—U/2))).

p<at/V
ged(f(p),q)>1

We now bound from above the number of these n with ged(f(n),q) > 1.
For each n surviving our initial sieve but having ged(f(n),q) > 1, we
factor n = A1 A, B, where

Al = H D, A2 = H pe, and B = n/A1A2.
plln p¢|n, e>1
ged(f(p),g)>1 ged(f(p©),q)>1

Then either A; > 1 or A, > 1. Moreover, every prime dividing A; exceeds
/U,

Suppose A; > 1. Since As is squarefull, the number of n < x with
Ay > 21/%is O(23/*), which will be negligible for our purposes. So we assume
that Ay < z'/2. Given A,, we count the number of possibilities for the
cofactor Ay B. Note that A;B < x/A, and that A; B is free of prime factors
p < zYY with ged(f(p),q) > 1. So the sieve shows that the number of

possibilities for A; B is at most

ged(f(p),q)>1

(We assume as usual that ¢,z are large and %, d(q) are small.) Since

1 1 1 2)¢(3
Z M:H(1+P+E+”'):%:1'943”"

M squarefull

the count of n with As > 1 is bounded above by

0.94590( II (1 — %) ) (14 O(exp(—U/4))).

p<z/U
ged(f(p),g)>1

Suppose now that A, = 1. Then n = A; B, where A; > 1 and every prime
dividing A; exceeds z'/V. Let p be a prime dividing A;, and write A; = pS.
Then n = pSB < x where SB < 'YV Given S and B, the number of
possible p (and hence possible n) is, by Brun-Titchmarsh, at most

z r 1
1 ) _—
Z Z < ;; rSBlog (x/SBr) < (Q)Ulogx SB’

rla p<z/SB
F(p)=0 (mod r)
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here we have assumed that ¢ < 2'/?Y, so that x/SBr > (x/SB)/r > x'/?V

for every r | ¢. Summing on S and B, the number of n that arise is

T 1 1
o(q)U = -
(X 9l T 5
plS=pe(z'/V ] p|B, p<z'/U=gcd(f(p),q)=1
swr (1 (-0 (Y
= q logl’ /U P 1 P )
z1/U <p<z p<z/U
ged(f(p),g)=1
which is
x 1\ ! 1
5(q)U° 1—- 1--
<(g) log x H ( p) H ( p)
p<at/V p<a'/V

ged(f(p),g)>1

<s(qUz ] (1—2).

p<al/U p
ged(f(p),q)>1
But 6(¢) = o(1), so the final expression is o(z [T ,1/v sea(sp).a)>1(1 — 1/P))-
Collecting estimates shows that if U is fixed sufficiently large, then
eventually the number of n < z with ged(f(n),q) = 1 exceeds
1 1
il 1—-].
20" 11 ( p>
p§$1/U
ged(f(p),q)>1
Bounding the product over p < z'/U below by the product over p < z
completes the proof. O

Our second application of the sieve is an upper bound on the count of n
with few large prime factors. More precise results on this problem have been
obtained by [Ten00], but the comparatively simple Lemma 2.3 below will
suffice for our purposes.

Set P;"(n) = P*(n) and define, inductively,

P, (n) = P*(n/Pf (n)--- P} (n)).

Thus, P;"(n) is the jth largest prime factor of n (with multiple primes

counted multiply), with P;“(n) = 1 if n has fewer than j prime factors.

Lemma 2.3. Let x > y > 10. Let J be an integer, J > 2. The number of
n < x with Py (n) <y is

log y

)J—l
log © '

<Ljx

(loglog
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Proof. Suppose that P} (n) <y and write n = AB, where A is the largest
divisor of n composed of primes not exceeding y. Then w(B) < Q(B) < J.
Clearly, A < z'/? or B < z'/2. Suppose first that A < z%/2. Then B <
x/A and w(B) < J—1, so that by a classical theorem of Landau (see [HW08,
Theorem 437, p. 491]), given A there are < m(log log (z/A))' 2 <
Tiogz loglog )72 possible B. Summing 1/A on A with P*(A) <y intro-
by — 1/p)~! < logy, which yields for this case a slightly

duces a factor [
stronger upper bound than that claimed in the lemma.
1/2

Suppose now that B < x'/%. Since A has no prime factors larger than

y, the sieve shows that given B, the number of possible A < z/B is <
£ 1 cpcare(1 = 1/p) < 5L, Since

1 = 1\’
J—1
E ES E i <§ Z;) <y (loglogx)’ ™",
B<z j=0 pe<z
w(B)<J—1
the result follows. Il

2.2. Character sums of polynomials. We require estimates for (com-
plete, multiplicative) character sums of polynomials modulo prime powers.

For prime moduli, we use the following version of the Weil bound.

Lemma 2.4. Let ¥, be a finite field, and let x1,. .., xx be characters of F,
extended to all of F, by setting xx(0) = 0. Let Fy(T),..., Fx(T) € F,[T] be
nonzero and pairwise relatively prime. Assume that for some 1 < k < K, the
polynomial Fy,(T') is not an ord(xx)th power in F,[T]| or a constant multiple
of such. Then

where dj; denotes the degree of the largest squarefree divisor of Fy(T).

Lemma 2.4 is essentially Corollary 2.3 of [Wan97|. It is assumed in
[Wan97| that all the y, are nontrivial, but this assumption is not used in
the proof.

Estimating the sums to proper prime power moduli requires some stage
setting. Let p™ be an odd prime power, where m > 2. Let g be a primitive
root modulo p™. Let x be the Dirichlet character mod p™ defined on integers
x coprime to p by

. indy(z)
(2.2) x(x) = exp (27r1pm_1(p — 1)> :
indg (x)

where g =z (mod p™).
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Let F(T) € Z[T] be a nonconstant polynomial, and let ¢ be the largest
nonnegative integer for which p' divides every coefficient of F'(T). Let
F(T) € F,[T] denote the mod p reduction of p~*F'(T). (Note that F(T) is
nonzero by the choice of t.) Let A C I, denote the set of roots of F(T) in
[F, that are not roots of the reduction of F'(7') mod p. For each o € A, let
Ve denote the multiplicity of o as a zero of F/(T), and let M = maxae 4 Va.

The following is an immediate consequence of Cochrane’s Theorem 1.2 in
[Coc02]; that very general result concerns mixed additive and multiplicative
character sums, but see Theorem 2.1 of [CLZ03| for the specialization to

multiplicative character sums.

Lemma 2.5. Under the above conditions, and the additional assumption
that m >t + 2, we have

< (X v
acA

> X(F(a)

x mod p™

The proof of Theorem 1.1 depends on the following consequence of
Lemmas 2.4 and 2.5, which seems of some independent interest.

Proposition 2.6. Let Fi(T),...,Fx(T) € Z[T] be nonconstant and as-
sume that the product Fy(T)--- Fx(T) has no multiple roots. Let p be an
odd prime not dividing the leading coefficient of any of the Fy(T) and not
dividing the discriminant of Fy(T)--- Fx(T). Let m be a positive integer,
and let x1, ..., XK be Dirichlet characters modulo p™, at least one of which

1s primitive. Then

(2.3) > xa(Fu(@) - xx(Fr(e)| < (D= 1)pmtP),

x mod p™

where D = Zle deg Fi.(T).

Proof. Take first the case when m = 1. When D = 1, the left-hand side
of (2.3) vanishes and (2.3) holds. When D > 2, we apply Lemma 2.4 with
g = p. The mod p reductions of the Fj(7T') are nonzero (in fact, of the same
degree as their counterparts in Z[T), and Fy(T') - - - Fx(T) is squarefree over
[F,, so that each Fj(T') is squarefree and the Fj (1) are pairwise relatively
prime in F,[T]. Since some xj is primitive, it has order larger than 1, and
so Fi(T') is not an ord(yy)th power in F,[T] or a constant multiple of such.
Lemma 2.4 now yields (2.3).

Henceforth, we suppose that m > 2. Let g be a primitive root mod p™,
and let x be the character mod p™ defined in (2.2). We can write each y; in
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the form x“*, where 0 < A, < p™~!(p — 1). Then

(2.4) Y. xalE(@) - xk(Fr(@) = Y x(F),

x mod p™ x mod p™
where
F(T) := F(T)" - Fi(T)"*
Also,
K
F(T) = (H Fk(T)A“> G(T),
k=1
K
where G(T):=)_ <AkF,;(T) 1T Fj(T)>.
k=1 1§;§]€K
J

Let t be the largest integer for which p' divides all the coefficients of F'(T).
Since none of the Fy(T) are multiples of p, the power p' is also the largest
power of p dividing all the coefficients of G(T') (by Gauss’s content lemma).

We claim that ¢ = 0. Choose, for each k =1,..., K, a root oy, of Fy(T)
from the algebraic closure F, of F,. Then in F,,

Glaw) = (Filew) ] Filw))Aw,
1<<K
J#k
and the factor in front of Ay is nonzero. But if ¢ > 0, then G(T") induces the
zero function on Fp, forcing each A to be a multiple of p. Then none of the
X are primitive characters mod p™, contrary to hypothesis.

Now let A, v,, and M be defined as in the discussion preceding Lemma
2.5. Then each a € A is a root in [, of the mod p reduction of G(T") of
multiplicity v,. Moreover, M < 3" v < degG(T) < D — 1. The desired
upper bound (2.3) follows from (2.4) and Lemma 2.5. O

3. PROOF OF THEOREM 1.1

Throughout this proof, we suppress the dependence of implied constants
or implied lower /upper bounds on the constant € > 0 as well as the family
fi,.o o fx. Welet Fi(T), ..., Fx(T) € Z|T] be such that fi(p) = Fi(p) for
all primes p. We put

J:=(K+1)D

where, anticipating an application of Proposition 2.6,

K
D:=1+) degFy(T).
k=1
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It will be convenient to introduce the notation

Zf(x; q) = Z 1.

n<x
ged(f(n),q)=1

Throughout this proof, when we say a term is ignorable, we mean that it is of

smaller order than the right-hand side of (1.1), that is, o(¢(q) ™ > ¢(z; )).
By Lemma 2.2 (with f = fi--- fx) and the remark following it, we find
that

-K . > K o(1)
6@) Y (:0) = ¢ Falloga)
> z(log z)X°W /log & > x(log z)F°M /log .
(Here we use our assumption that ¢ < (logz)% <) So Lemma 2.3 allows
us to discard from the left-hand side of (1.1) those n for which Pj (n) < L,
where
Le
= exp((log 2)79),

at the cost an ignorable error. Write each remaining n in the form n =
mPj - -- Py, where each P; = P;"(n). We keep only those n where P*(m) <
P; < -.- < P;. Any n discarded at this step has a repeated prime factor
exceeding L, and there are O(x/L) of these, which is again ignorable. Note

that for all of the remaining n, we have f(n) = f(m)f(P,)--- f(P1), where
each P; > L,, with

Ly, :=max{P*(m), L}.

By the observations of the last paragraph, it suffices to prove that

1
> (wg.a) ~ Sk > (@a),

where
ICTOIEIDS 3 1
m<x P1,....Py
ged(TTf, fr(m),q)=1 Py-Py<z/m

Limn<Pj<-<P
(Vk) fr(m)T1)=, fe(Pj)=ax (mod q)

(3.) D D > L

m<x P1,...,Py distinct
ged(TTi, fr(m),9)=1 Py-Py<z/m
k=1 each P; > Ly,

(VK) fe(m)TT{=; fx(Pj)=ax,  (mod q)

We now remove the distinctness restriction in the final inner sum. Estimating
crudely, this incurs an error of size O(x/mL) in the inner sum and an error
of size O(zlogz/L) in the double sum.
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For each k =1,2,..., K, let u; denote a value of fx(m) 'a; mod ¢q and
define

Vin :={(v1 mod ¢, ...,v; mod q) : ged(vy---vy,q) =1,

J
(VE) T Fr(vj) = ux  (mod q)}.

J=1
Then writing v = (v mod ¢, ..., v; mod ¢q),
2 1= > L
Pi,....Py veVm Py,...,Py
Py--Py<z/m PyPy<z/m
each P; > L, each P; > L,
(Vk) fr(m)T1)=, fu(Py)=ax (mod q) (V§) Pj=v; (mod gq)

For each v € V,,,, we show how to remove the right-hand congruence
conditions on the P;. First we handle P,. Noting that ¢ < (logz) = (log L)¥*,
the Siegel-Walfisz theorem (see, for example, [IMV07, Corollary 11.21])
implies that for a certain positive constant C' = C.,

2 1= ) 2. L

Py,...,Py Ps,...,Py Lm<P1§ﬁ
Py--Py<z/m Py--Py<z/m Pr=v; Enmgd ‘I)J
each P; > Ly, each P; > Ly, -

(V) Pj=v; (mod q) (V§>2) Pj=v; (mod q)

where

1 x
Z 1= ) Z 1+0 (m exp(—CVlogL)) .

€T T
Lm<P1§W Lm<P1§W

Pi=v; (mod q)

It follows that

>, 1
Pr,...Py
Py--Py<z/m
each P; > Ly,
(Vj) Pj=v; (mod q)

1 T 1
= — 1—I—O(—exp (——C\/logL>).
¢(q) b PZ b m 2
1,P2,...,Py
Py--Pj<z/m
each P; > Ly,
(V§>2) Pj=v; (mod q)

In the same way, the congruence conditions on P, ..., Py can be removed
successively to yield

PIRERE d)(;J 3 1+o(%exp(_§c@>).

P1,P,....Py

Pi--Py<z/m Pi--Py<z/m

each P; > Ly, each P; > L,
(V4) Pj=v; (mod q)
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The main term on the right-hand side is independent of v. Keeping in mind
that #V,, < ¢’/ < (logx)’ for all m, we deduce from (3.1) that

(32) ) (z;49.a)
_ 3 %% PZ 1+O<xexp (—}Lc\/@».

m<z Py
K
ged _1 fr(m),q)=1 PyPy<z/m
(k= fi(m).) each P; > L,

To handle the main term, notice that

> 1<Jy Yy L

PloPy pla PPy
P--Py<z/m Py--P;<z/m
each P; > L, each P; > L,

some ged(f(Pj),q) > 1 plf(P1)

The condition that p | f(P;) puts P, in a certain (possibly empty) set of
O(1) residue classes mod p. Removing these congruence condition by the
Siegel-Walfisz theorem (exactly as above) we find that (with C' as above)

Z 1<<1 Z 1+%exp <—%C’\/logL)

Py,...,Py p Py,...,Py
Py--Py<z/m Pp--Py<z/m
each P; > Ly, each P; > Ly,
plf(P1)
and so
T 1
E 1 < 6(q) g 1+ —exp|—=Cy/logL ).
m 4
Pl,...7PJ Plv"'7R]
Py--Py<z/m Pi--Pr<z/m
each P; > Ly, each P; > Ly,

some ged(f(Pj),q) > 1

Since d(q) = o(1),

Y. 1=(1+0((9) >, 1

Py,....Py Py,...,Py
P--Py<z/m Py--P;<z/m
each P; > L, each P; > L, ged(f(P)),q) =1
1
+0 <£ exp (——C\/log L>) ,
m 4
which (considering possible orderings of P, ..., Py) in turn is equal to
(1+0(5(g)))J! > 1
Pj<--<Py
P--Py<z/m

each P; > Ly, ged(f(Pj),q) =1
1
+0 <£ exp (——C\/logL>) :
m 4
The following claim will be established at the end of this section as an

application of Proposition 2.6.
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Claim. #V,, ~ ¢’ /¢(q)¥, uniformly in m.

We insert the estimate of the Claim together with the last display, into
(3.2). Since 6(q) = o(1), we have ( ) +(1+0(3(q))) =1+ o(1). We find that
up to an ignorable error, Y .(z; ¢, a) is equal to

B I

mSI L'm<Rl<"'<P1
ged([Tiy fr(m),9)=1  Pr-Py<z/m
k=1 each ged(f(P;), q) =1

We can view the double sum as counting those numbers n < x with
ged(f(n),q) = 1 and certain extra constraints: Namely, the Jth largest
prime factor of n exceeds L and none of the largest J prime factors are
repeated. But (by reasoning seen at the start of this proof) dropping the
extra constraints incurs an ignorable error. So up to an ignorable error,
> ¢(z;¢,a) is equal to ¢ HO Zf(x q). By definition of ignorable,

T~ g

and we have seen already that this suffices to complete the proof of Theorem
1.1.

Proof of the Claim. Using xq for the trivial character mod ¢, orthogonality
yields

d(Q) #Vin

> (HXk (s )( > Xo(]ﬁll’j) : ]f[le(ﬁ Fk(%)))

X1,--,Xk mod q Z1,...,x7 mod ¢ i

(3.3)

- Z (ﬁxk(uk))sil,...,XK’

X1,--XK mod g k=1

where
Syroc = Y, Xol@)xi(Fi(@)) - xx (Fi ().
z mod ¢q
The number of x mod g where one of x, Fi(x), ..., Fx(x) has a common factor

with ¢ is < ¢d(q) = o(q), and so the tuple xi,...xx of trivial characters
makes a contribution ~ ¢’ to (3.3). So to complete the proof, it suffices to
show that

(3.4) DR A

X1,---X ) mod g
not all trivial

has size o(q”).
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Assume that xi, ..., xx are Dirichlet characters mod ¢, not all of which

are trivial. Factor ¢ = [],, p®. Each character xj, for £ = 0,1,..., K,

plg
admits a unique decomposition of the form y; = qu Xk,p, Where xy, is
a Dirichlet character modulo p». By the type of the tuple x1,..., xx, we

mean the w(g)-element sequence of positive integers {fp}p|q, Where each

fp = lem[f(x1p); - - -5 FxKp)]-

Write ¢ = qoq1, where ¢ is the unitary divisor of ¢ supported on the
primes p | ¢ for which f, > 1. Note that ¢; > 1, since not all of x1,..., xx

are trivial. By the Chinese remainder theorem,

smwKzﬂ( XIXMMMME@W~Mw@M@0,

plg x mod p°P

from which we see that

Sl S @0 [T D0 xop@)xap(Fi(@) - xep(Fie(2))
plg1 ' = mod p°P
€p
= qo H T Z Xo.p(T)X1,p(F1(2)) - - XK,p(FK(x))‘-
plan P '@ mod f,
At least one of x1,,..., Xk, has conductor §,, and so the remaining sum on

x may be estimated by Proposition 2.6, yielding
’SXh--‘,XK‘ < Q(D - 1)w(q1) Hf]gl/D'

play
(If none of the Fy(T') are multiples of 7', we apply Proposition 2.6 with the
polynomials T, Fy(T'), . .., F(T); otherwise, the sum on x is unchanged if we
remove the term xo,(2) and we apply the proposition with Fy(T), ..., F}(T).
Keep in mind that since 6(¢) = o(1), all the prime factors of ¢ are large, so
the nondivisibility conditions on p in Proposition 2.6 are certainly satisfied.)
. w —(K+1

Hence (since J = (K+1)D) |Sy, .y |” < ¢/(D-1)* T fp ) There
are no more than (1_[p|q1 f,)5 tuples x1, ..., xx sharing this type, so that the

g - J w(qr)J -1
contribution from all such tuples to (3.4) is at most ¢’ (D — 1)~(@) [T f0
Summing f, over all powers of p, for p | ¢, reveals that the contribution

from all types corresponding to a given ¢; is at most

q‘](D _ 1)W(Q1)J¢(q;1) Hp—l < qJ(D _ 1)w(q1)J2w(q1) Hp—l‘

Finally, summing over all unitary divisors ¢; of ¢ with ¢; > 1 bounds (3.4)

plar plq1

T (1+ 2220 1) < dtewien - 1)5(0) - 1) = o
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Collecting estimates completes the proof of the Claim. (I
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