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Quality estimation of magnetotelluric impedance tensors 
using neural networks

Abstract
While much of the workflow for 

geophysical data processing and analysis 
is automated, final quality assurance 
typically requires the decisions of skilled 
human analysts and interpreters. The 
quality and reliability of geophysical 
inverse models depends directly on the 
effectiveness of input data. The influence 
of spurious data on derived data products 
used in the inversion has been reduced 
by this effectiveness. Failure to identify 
and mitigate bias in data products can 
lead to costly errors. By applying super-
vised machine learning (ML), a neural 
network can be trained to recognize 
features in data that a human domain 
expert would identify as characteristic 
of poor data quality. In this study, we 
use magnetotelluric (MT) data as an 
example of a geophysical data set appro-
priate for such a training exercise. While 
MT data are used to estimate the resis-
tivity structure of the subsurface, the 
concepts we discuss are universal to 
seismic, potential fields, and other geo-
physical data sets. We train a neural 
network, pyMAGIQ (Python-based 
magnetotelluric impedance qualifier), 
with multiple hidden layers and dem-
onstrate that it successfully generates 
the nonlinear mapping function required 
to assess the quality of MT data. The 
training set is a large database of fre-
quency-domain MT impedance tensors 
from the National Science Foundation-
funded EarthScope MT project. A 
human-assigned quality index is associ-
ated with each impedance. We apply 
pyMAGIQ to unrated MT data from 
the United States and Canada and con-
firm that the ML-assigned quality 
factors are consistent with those assigned 
by trained human operators. We also 
apply sensitivity analysis to the trained 

Naoto Imamura1 and Adam Schultz2

neural network. This reveals that the human- and ML-assigned data quality index depends 
on the magnitude of the confidence limits on (1) the phases and (2) the continuity of the 
apparent resistivities and phases with respect to frequency. 

Introduction 
Solving inverse problems is a critical step in geophysical workflows. However, the inverse 

problem is typically ill posed, nonunique, and nonlinear (Tarantola, 2005). The uncertainty 
(confidence limits) on the parameters recovered from an inverse solution and their localization 
in space (resolving power) often scales nonlinearly with the size of the statistical confidence 
limits on the input data set in inverse modeling and with unmediated bias in the data. The 
bias here may be attributed to invalid assumptions made in representing the signal source. 
We draw on an example from magnetotellurics (MT), where over the past three decades, a 
variety of methods beyond classical least-squares estimation have been used to calculate the 
frequency-domain MT impedance tensors and induction vectors (i.e., the MT response 
functions that are inverted to produce resistivity images of the subsurface). The MT response 
functions can be defined in the frequency domain for a harmonic signal as:
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where E is the Fourier coefficient of the electric field vector, Z is the impedance tensor, B 
is the Fourier coefficient of the magnetic field vector, and T is the induction vector. All 
are defined at radian frequency ω, while x, y, and z is a right-handed coordinate system 
representing north, east, and positive downward, respectively. The MT response functions 
are typically calculated within a given frequency band through the following relations 
(Vozoff, 1972). The relations represent a least-squares solution to minimize the misfit 
between electric and magnetic field components (for the impedance tensor) and between 
the vertical and two horizontal magnetic field components (for the induction vector) in 
the presence of incoherent noise:
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where * represents the complex conjugate operator. The angle 
brackets represent crosspowers obtained through band average 
(the average of a set of complex Fourier coefficients summed over 
a set of adjacent frequencies), section average (the average of 
complex Fourier coefficients at a given frequency summed over a 
set of independent estimates obtained from different time series 
sections), or a combination of both. Generally, the larger the 
number of degrees of freedom in the averaging function, the 
smaller the confidence limits in the resulting response function. 
There is a trade-off between minimizing the variance on the 
estimate and the ability to resolve finer-scale structure if the 
averaging function smooths over too wide of a frequency band.

A fundamental limitation of the classical least-squares solution 
is that while it is statistically efficient, it is subject to potentially 
unbound bias in the presence of spurious data. One widely adopted 
data processing branch to mitigate this weakness relies on methods 
from robust statistics (Hampel et al., 1986). The methods seek to 
down weight the influence of data drawn from statistical popula-
tions that deviate from the main population of observed data. 
Generally, such methods do not impose an a priori assumption of 
a particular probability density function to describe the main 
population. Rather, they identify the presence of outliers (data or 
sections of data with statistical behavior that deviates significantly 
from the main population). The influence of outlying data on the 
calculation of the MT response functions is minimized (e.g., 
through Huber weighting [Huber, 1981] or similar methods). 
Then, a modified least-squares estimate obtains the robust solution 
(Egbert, 1997; Chave and Thomson, 2004). 

Underlying this statistical approach is the assumption that 
within an observed MT data set, the dominant feature is the 
signature of the induced response of the subsurface resistivity 
structure to signal sources (magnetic fields due to lightning and/
or ionospheric electric current systems). It is posited that data 
from other physical sources within the electromagnetic spectrum 
can be identified as outliers, distinct from the main induction 
source, which typically is assumed to have a plane wave structure. 
While this isn’t a rigidly parametric approach, it is an assumption 
grounded in statistics rather than in a physical model of the signal 
source. A well-known shortcoming of this approach is the failure 
of statistically robust response function estimators to shield bias 
due to violations of assumed source field structure. Although, in 
practice such estimators provide substantial advances over non-
robust methods.

A second commonly used method in MT is coherence sorting 
and weighting (Jones and Jödicke, 1984). The external time-varying 
magnetic field, which serves as the MT signal source, induces 
both magnetic and electric fields that are measured at ground 
level. Absent of any noise sources, the inducing source magnetic 
fields and the induced electric fields are coherent. Data sections 
with low coherence between observed electric and magnetic fields 
are taken to represent episodes of poor signal-to-noise level. They 
are disregarded or their influence on the estimation of MT response 
functions is down weighted. 

While the summarized methods led to remarkable improve-
ment in the overall quality of MT response functions, substantial 
problems persist. Data sections of high coherence between electric 

and magnetic fields and/or sections where the influence of outlying 
values has been minimized not infrequently produce MT responses 
to be identified as biased, contaminated, or poor quality by expe-
rienced human operators. This may be evident to the trained 
operator (a subjective judgement usually based on years of experi-
ence). Or it may be revealed after attempts to invert seemingly 
high-quality response functions return unusable results, even 
when carefully constructed 3D inverse modeling attempts have 
been made. 

We have explored the use of supervised machine learning (ML), 
employing a trained neural network to replace the human operator 
and to automate the process of assessing the quality of MT response 
functions. ML is a data-driven approach to extract features in data 
by using one or more ways to solve problems: supervised, unsuper-
vised, and reinforcement learning. Artificial neural networks are 
one of the most commonly used supervised learning methods for 
classification and regression. An advantage of ML for geophysical 
data quality classification is that it can be implemented without 
the requirement of an underlying physical model of the structure 
of the signal source. It can also be implemented without  knowledge 
of the earth response or of the multiplicity of noise sources.  

In MT surveys, the complex-valued impedance tensor versus 
frequency and the induction vector serve as input to the inversion. 
Experienced human operators can often identify degraded 
response functions attributable to low signal-to-noise ratios, 
errors in recording due to sensor and timing failures, errors in 
metadata used to determine sensor configurations and gain/filter 
settings, and errors from the selection of suboptimal parameters 
governing the signal analysis stage. Human operators typically 
examine the apparent resistivity ρ and phase Φ curves versus 
frequency, which are real-valued quantities derived from complex-
valued impedance tensors: 
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These quantities assess the continuity or smoothness of the func-
tions as well as the uncertainty as expressed through their calcu-
lated confidence limits (μ0 is the magnetic permeability of free 
space). Apparent resistivities and phases indicate the integrated 
resistivity structure from the ground surface to a certain depth. 
Hence, they are expected to be smooth and continuous in the 
frequency domain. 

In this paper, we propose a novel approach to qualify MT 
data based on an ML method. The approach is implemented in 
Python using ML libraries. We named this software “pyMAGIQ” 
(Python-based magnetotelluric impedance tensor qualifier). The 
software casts qualification of impedance tensors as a supervised 
classification problem. The artificial neural networks in pyMAGIQ 
are built using the TensorFlow framework (Abadi et al., 2016). 
They are trained on large data sets of MT apparent resistivities 
and phases with human-operator-provided data quality assessment 
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information acquired during the 
EarthScope MT project (Schultz, 
2009). The effort to employ ML for the 
problem of automated MT data quality 
assessment requires the development 
of techniques to interpret and explain 
what the neural network has learned. 
Such an effort is a key component of 
the data validation procedure (Guidotti 
et al., 2018). We first evaluate the per-
formance and limitations of our algo-
rithm by using convergence history and 
a confusion matrix. Then, we apply it 
to a set of unrated MT impedance ten-
sors obtained across the United States 
and Canada. In order to understand the decision-making process 
of pyMAGIQ , we perform a sensitivity analysis by analyzing 
the trained neural network.

EarthScope MT data 
We used MT response function data archived in the Incorporated 

Research Institutions for Seismology (IRIS) Searchable Product 
Depository (SPUD) database (Schultz, 2019). At the time of writing 
this paper, the database contained 1115 MT impedance tensors 
acquired during the EarthScope MT project. This is an effort 
overseen by Oregon State University that continues under NASA 
and USGS funding as we complete the systematic mapping of the 
electrical resistivity structure of the conterminous United States 
(Figure 1). In this database, an index of data quality for MT 
impedance tensors is provided on a scale from 0 to 5, based on the 
following criteria:

•	 An MT site with a quality index of 5 displays apparent resistiv-
ity and phase curves for the two principal (off-diagonal) 
elements of the impedance tensor. These vary smoothly with 
frequency and with confidence limits that are small (typically 
less than 5% standard error in apparent resistivity and less 
than 2° in phase across the frequency band spanning from 
10-4 to 10-1 Hz).

•	 A rating of 4 indicates slightly larger confidence limits across 
part or all of the frequency band in comparison to a rating 
of 5. However, the MT impedance tensor can be safely used 
for inversion. 

•	 A rating of 3 has significantly larger confidence limits than 
those with higher ratings, but the data still provide usable 
constraints to an inversion.

•	 A rating of 2 indicates that one or both principal elements of 
the impedance tensor were not usable for a range of periods. 

•	 A rating of 1 means that the data were unreliable. 
•	 A rating of 0 is a placeholder, indicating that the data were 

not yet assigned a rating.

Such a rating system based on the experience of human 
operators is clearly subjective and prone to inconsistency. This is 
because different human operators examine different data sets. 
The ability of supervised ML to assimilate a subjective training 

set and to produce a system capable of accurately attributing data 
quality assessments is a notable outcome of the present work.

To train the neural network, we employed TensorFlow (Abadi 
et al., 2016) and used 1101 MT impedance functions from the 
IRIS SPUD database. Each impedance function had a human-
assigned rating from 1 to 5 and spanned a wide enough range of 
frequencies to substantially cover the band identified in the first 
bullet point. In this training set, there were 521 sites rated 5, 385 
rated 4, 143 rated 3, 34 rated 2, and 18 rated 1. At the end of 
2019, the SPUD database also had 1909 sets of unrated MT 
impedance data from locations in Canada and the United States. 
After training our neural network, we applied pyMAGIQ to these 
unrated MT impedance tensors to assess their data quality.

In an ML study, the distribution of classifications is ideally 
similar between different categories in a training data set. A biased 
training data set can result in a biased prediction. As shown earlier, 
the distribution in the training data sets is biased toward data ranked 
as higher quality. Approximately 82% of the data are rated as 4 or 
5. We applied data augmentation to increase the ratio of the lower-
rated data. New training data sets were created by horizontally 
rotating the original MT impedance tensors away from their cardinal 
coordinate system by angles between −15° and 15° in one-degree 
increments. These augmented data have the same rating as the 
original unrotated data. This is under the assumption that the rotation 
by a small angle does not change its perceived quality. After creating 
augmented data, we randomly selected 550 MT impedances for 
each of the data quality ratings, yielding a training set of 2750 
impedance tensors distributed equally across the rating categories. 

Method
The MT impedance tensor has four complex-valued elements 

at each frequency. In order to simplify the training, we only 
examine the off-diagonal impedance elements Zxy and Zyx. These 
are considered the principal elements of the impedance, and for 
a resistivity structure that varies in 1D or 2D, they are the only 
nonzero elements. The concept developed for pyMAGIQ could 
easily be extended to all four impedance tensor elements. 
Although, the quality of the diagonal elements is far more 
variable than the off-diagonal elements and less representative 
of overall data quality in most cases. We scale the off-diagonal 
impedance elements and their associated confidence limits into 

Figure 1. Location and data quality of MT impedance tensors in the USArray project. A higher rate indicates that the 
data quality of MT impedance tensors is better.
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their real-valued equivalent forms of apparent resistivity and 
phase, following equations 4 and 5.

Our ML software, pyMAGIQ , takes the apparent resistivities, 
phases, confidence limits, and continuity versus frequency of these 
quantities in the measurement reference frame as input parameters 
of the neural network. Continuity is calculated by taking the 
derivative, with respect to frequency, of each of these parameters. 
MT response function data in the EarthScope MT data sets are 
defined at 30 frequencies, which are spaced logarithmically from 
7.3 to 18,724 s period. The total number of parameters for one 
MT site is 480, which is the product of 30 frequencies. At each 
frequency, there are 8° of freedom (apparent resistivities, phase, 
confidence limits, and continuity) for two off-diagonal impedance 
elements. The output of this neural network is a data quality rating 
assigned to each impedance that ranges from 1 to 5. This input 
and output information is used to train the weight parameters 
between nodes in the neural network.

The hidden core layers of our neural network are eight dense 
layers connecting all nodes between each layer (Figure 2). Dense 
layers are the rectified linear unit activation function for the first 
seven layers and the softmax activation function for the last layer. 
The parameter of the network is optimized to minimize discrep-
ancy between the predicted rating and the given rating on the 
training set by using the cross-entropy loss function. The loss 
function is defined as:

−
i=1

n

∑
j=1

m

∑yi , j log pi , j( ) ,                              (6)

where yi,j denotes the true value (i.e., 1 if sample i belongs to rating 
j and 0 otherwise), and pi,j denotes the probability predicted by 
the model of sample i belonging to rating j. The number of nodes 
in each layer is set to 50. The total number of unknown weighting 
parameters is 42,155. Hyperparameters, including the number of 
layers, nodes, and regularization parameters in this study, are 
selected based on Optuna (Akiba et al., 2019), optimizing the 
validation accuracy. Using these parameters, we optimized the 
weight parameters with the Adamax algorithm with the default 

optimization parameters in the Keras library. We trained our 
weight parameters for 500 iterations, which took approximately 
2 minutes on a 2.9 GHz Intel Core i5 processor. Once we train 
the weight parameters on the neural networks, a rating is estimated 
in a few seconds for any input.

After the neural network has been trained, we interpret the 
obtained neural network with a sensitivity analysis (Zurada et al., 
1994; Sung, 1998; Khan et al., 2001). This is based on the model’s 
locally evaluated gradient according to the following equation:

Ri x( ) = ∂ f
∂xi

⎛
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2

,                                 (7)

where the gradient is evaluated at data point x, and xi denotes a 
parameter in the data. This gradient gives the rating change of 
each parameter xi for x. Sensitivity Ri(x) will tell us how f will 
behave in response to infinitesimal perturbations. If Ri(x) takes 
on a large magnitude, then f is sensitive to parameter xi. We 
change every parameter of x, a total of 480 parameters, to see its 
sensitivity. We use the predicted rating f for data analysis in this 
study. The gradient is discretized and calculated based on the 
central difference method with 4% perturbations.

Results and discussion
Before processing unrated data sets, we tested the accuracy 

of the trained neural network through the convergence and 
confusion matrix. The confusion matrix visualizes classification 
accuracy and errors made by the ML model. Each row of the 
matrix represents the given rating by human experts, while each 
column represents the predicted rating. In our evaluation, 90% 
of data sets randomly chosen are used for actual training from 
rated data sets. The remaining 10% of data sets are used for the 
validation of the trained neural network. These validation data 
sets are randomly selected from the human-rated MT database. 
However, their assigned ratings are ignored, and they are not 
used as part of the training data set. The training data sets are 
used for the actual training of the model. Validation data sets 
are not used for training, but are used to test the neural network 

for the nontraining data sets during the 
iteration. The model accuracy and loss 
for the trained neural network along 
with epoch are shown in Figure 3. After 
500 iterations, there was no further 
improvement in the accuracy of the 
validation data sets. We obtain 98% 
accuracy for matching the predicted 
data quality ratings against those previ-
ously assigned to the actual training 
data sets. We matched the human-
provided data quality rating of 91% for 
the validation data sets after 500 itera-
tions. The high rating of concurrence 
with expert human data quality ratings 
indicates that the neural network is 
trained well. A review of the ML-guided Figure 2. Overview of the neural network used in this study.
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data quality ratings found discrepancies in some of the human-
assigned data quality ratings. It was concluded (subjectively) 
that the neural network performed at least as well, if not better, 
than the trained human expert at assigning ratings that were 
consistent across different data sets. The loss function indicates 
that the validation loss hits bottom after 200 epochs. The loss 
function is used to predict rating probabilities. The accuracy line 
increases when the neural network’s output is close to 1 for the 
right rating and close to 0 for other ratings. However, the loss 
function reaches a plateau after 200 epochs, while the validation 
accuracy continues to increase. This suggests that the neural 
network is trained to select the right rating. Although, the neural 
network returns high probabilities for multiple ratings rather 
than selecting one rating as the prediction with very high value. 
This happens because the neighbor rating in this study has similar 
characteristics. Therefore, it is hard to determine the prediction 
with high probabilities when the neural network is trained 
enough. Since validation accuracy increases after 200 epochs, 
we chose the neural network trained after 500 iterations for the 
following discussion.

We show in Figure 4 the confusion matrix between the 
predicted and given data quality ratings to identify erroneous 

ratings in the validation data sets. Here, the predicted rating is 
given by pyMAGIQ. The given rating is assigned by human 
experts, as reflected in the EarthScope MT database. Although 
the confusion matrix indicates that the predicted and given ratings 
match in most cases, there are some misclassified ratings that 
under- or overestimate the data quality. This is usually by a single 
integer rating level. This is because MT data-assigned neighboring 
ratings have similar characteristics, as described previously. 
Figure 5 shows examples of apparent resistivities and phases from 
these data sets. These data sets are displayed in measurement 
(i.e., geomagnetic coordinates). Apparent resistivities and phases 
show that the pyMAGIQ-assigned data quality rating conforms 
to the definitions provided previously in all examples. One can 
see that results in Figures 5c, 5e, and 5h are misclassified. 
However, it is difficult to judge correctly using only visual means 
and experience. In Figure 5c, the apparent resistivities and phases 
vary smoothly with frequency, and their confidence limits are 
relatively small. This example indicates that the predicted rating 
of 5 subjectively appears to be more reasonable than the human-
assigned rating of 4. In the validation data sets, data from a few 
sites were assigned quality ratings by pyMAGIQ that appear to 
be more reasonable rather than those from corresponding human 
expert results (Figure 4). There are similar data sets potentially 
misrated in the training data sets, but these are not dominant. 
Because the weights in the neural network are optimized by the 
total data sets, these minor data sets do not significantly bias the 
weights during neural network training.

Following training of the neural network, we applied 
pyMAGIQ to unrated MT data from sites in Canada and the 
United States. Because the frequency bins of the EarthScope MT 
response function data and that of the unrated MT data can differ 
on a site-by-site basis, we interpolated the apparent resistivities, 
phases, and their confidence limits of the unrated data sets and 
resampled them using spline interpolation to fit the frequencies 

Figure 3. History of model accuracy and loss for the training and validation data 
sets. Blue lines are results from training data sets. Orange lines are results from 
validation data sets.

Figure 4. Confusion matrix for the validation data sets. Contour colors show 
the number of samples. Each row of the matrix represents the rating by human 
experts. Each column represents the predicted rating.
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at which the EarthScope MT program’s data sets were defined. 
In general, apparent resistivities and phases at longer periods have 
larger confidence limits because there are fewer degrees of freedom 
associated with such data. While the EarthScope MT training 
data set includes long-period MT data, a significant fraction of 
the test data set from Canada comprises wideband MT that does 
not extend past a 1000 s period. Whereas, the EarthScope MT 
data extend well beyond a 10,000 s period. We exclude unrated 
data sets that do not extend beyond a 1000 s period to avoid the 
need to extrapolate wideband data well outside the range of their 
validity. There are 626 data sets satisfying this condition in the 
unrated data sets. The distribution and ML-predicted ratings of 
the unrated MT data are shown in Figure 6. In these predicted 
ratings, there are 231 data sets assigned a rating of 5, 200 rated 
as 4, 142 as 3, 20 as 2, and 33 as 1. By using these quality ratings, 

one can decide which sites have data appropriate for inversion and 
interpretation. One can also use the ML-guided data quality 
assessment to identify sites that may require relocation or reinstal-
lation of MT equipment in order to address shortcomings in data 
quality. Unrated data sets and ML-generated data quality ratings 
are shown in Figure 7. The predicted data quality ratings appear 
to be reasonable in terms of the characteristics of the apparent 
resistivity and phase curves. 

Although pyMAGIQ achieves a high congruence with expert 
human data quality assessment, we do not know precisely how 
pyMAGIQ’s neural network arrives at a rating decision. We have 
explored which factors may have the most influence on neural 
network decision making. Figures 8a and 8b show a sensitivity 
analysis from Figures 5a and 5b. The y-axis in Figure 8 shows 
the sensitivity of the final data quality rating to the change of 

Figure 5. Predicted and given rates for apparent resistivities and phases for the validation data sets. Blue lines are x-y components. Red lines are y-x components. 
Predicted rating is for results of pyMAGIQ. Given rating is for the original rating in the USArray.
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parameters. One can see that the con-
tinuity of apparent resistivity and phase 
versus frequency are relatively more 
significant factors than the other param-
eters. This means that these parameters 
are dominant for the rating decision. 
This corresponds with the traditional 
qualification, which focuses on smooth-
ness of the parameters. The magnitude 
of the confidence limits on the phase 
and the continuity of the confidence 
limits on the apparent resistivity and 
phase fol low in signif icance. 
Examination of the pattern of confi-
dence limits reveals that there are often Figure 6. Location and predicted ratings for unrated data sets in North America.

Figure 7. Predicted ratings for apparent resistivities and phases for unrated data sets in North America. Blue lines are x-y components. Red lines are y-x components. 
Predicted ratings are for results of pyMAGIQ.



October 2020     The Leading Edge      313Special Section: Machine learning and AI

two bands of larger confidence limits on the phase at periods of 
approximately 102 to 104 s and 101 s. The magnitude of confidence 
limits on phase generally becomes larger at the extreme short- and 
long-period ends of the spectrum for MT data of lower quality. 
The sensitivity analysis indicates that the ML-guided data quality 
rating is particularly sensitive to uncertainty in the phase at these 
periods. Previous research did not identify that the uncertainty 
in the apparent resistivity is a secondary factor to uncertainty in 
the phase as a driver of overall data quality.

Conclusion
We show that pyMAGIQ is capable of automatically ranking 

the quality of MT data as effectively as trained human operators. 
A deep neural network model trained with EarthScope MT 
project data sets was used to assess the data quality of unrated 
data sets throughout the United States and Canada. The 
ML-assigned data quality rating matches the expert 

human-assigned rating of 98% for the actual training data sets 
and 91% for the validation data sets. The confusion matrix suggests 
that when pyMAGIQ deviates from human-assigned data quality 
ratings, it does so by assigning them to the neighboring rating 
integer. This is a classification that indicates similar properties in 
apparent resistivity and phase to the neighboring classification. 
The apparent resistivities and phases of the validation data sets 
indicate that the rating predicted by pyMAGIQ in some sites is 
more reasonable than the previous expert human-assigned assess-
ment rating. We applied pyMAGIQ to the unrated MT data and 
assigned data quality rankings to the data for the first time.

Sensitivity analysis of deep neural networks suggests that 
uncertainty in phase and the continuity versus frequency of apparent 
resistivity, phase, and confidence limits dominate the neural net-
work’s assessment of data quality. This is consistent with the standard 
visual approach for qualification, which focuses on smoothness of 
parameters and size of the associated confidence limits. On the 

Figure 8. Sensitivity analysis of apparent resistivities and phases for three data sets. (a) Figure 5a. (b) Figure 5b. Blue lines are x-y components. Red lines are y-x 
components. The y-axis shows sensitivity to the change of parameters.
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other hand, sensitivity of the data quality assessment to the confi-
dence limits on the apparent resistivity, and the values of apparent 
resistivity and phase, are negligible compared to other parameters. 
This sensitivity analysis suggests that one should focus foremost on 
uncertainty in the phase and continuity of parameters.

In this study, the amount of MT data was limited. However, 
as that amount increases, more accurate prediction would be 
possible because the MT array program continues to map the 
3D electrical structure across the United States. The computational 
requirements for pyMAGIQ to assess the quality of a data set 
are extremely modest. Hence, in the near future, pyMAGIQ 
could be used by field crews in real time to assess the quality of 
field data. As pyMAGIQ provides an arguably less subjective 
evaluation of the quality of MT impedance data, it could also be 
used to optimize the methods and parameters of data processing 
stages. Current research is looking into the practicality of using 
the trained neural network to randomly select from the large set 
of crosspowers that are used to calculate MT response functions. 
This aims to select the subset of crosspowers that yield responses 
of the highest quality rating. These could potentially serve as 
pilot estimates against which robust processing methods would 
refine to yield response functions less prone to biasing effects 
that escape purely statistical-based methods. Finally, while the 
examples we have drawn from are for MT data, the principles 
explored here are applicable across a wide range of geophysical 
and related data sets. 
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