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Abstract

While much of the workflow for
geophysical data processing and analysis
is automated, final quality assurance
typically requires the decisions of skilled
human analysts and interpreters. The
quality and reliability of geophysical
inverse models depends directly on the
effectiveness of input data. The influence
of spurious data on derived data products
used in the inversion has been reduced
by this effectiveness. Failure to identify
and mitigate bias in data products can
lead to costly errors. By applying super-
vised machine learning (ML), a neural
network can be trained to recognize
features in data that a human domain
expert would identify as characteristic
of poor data quality. In this study, we
use magnetotelluric (MT) data as an
example of a geophysical data set appro-
priate for such a training exercise. While
MT data are used to estimate the resis-
tivity structure of the subsurface, the
concepts we discuss are universal to
seismic, potential fields, and other geo-
physical data sets. We train a neural
network, pyMAGIQ_(Python-based
magnetotelluric impedance qualifier),
with multiple hidden layers and dem-
onstrate that it successfully generates
the nonlinear mapping function required
to assess the quality of MT data. The
training set is a large database of fre-
quency-domain MT impedance tensors
from the National Science Foundation-
funded EarthScope MT project. A
human-assigned quality index is associ-
ated with each impedance. We apply
pyMAGIQ_to unrated MT data from
the United States and Canada and con-
firm that the ML-assigned quality
factors are consistent with those assigned
by trained human operators. We also
apply sensitivity analysis to the trained

neural network. This reveals that the human- and ML-assigned data quality index depends
on the magnitude of the confidence limits on (1) the phases and (2) the continuity of the
apparent resistivities and phases with respect to frequency.

Introduction

Solving inverse problems is a critical step in geophysical workflows. However, the inverse
problem is typically ill posed, nonunique, and nonlinear (Tarantola, 2005). The uncertainty
(confidence limits) on the parameters recovered from an inverse solution and their localization
in space (resolving power) often scales nonlinearly with the size of the statistical confidence
limits on the input data set in inverse modeling and with unmediated bias in the data. The
bias here may be attributed to invalid assumptions made in representing the signal source.
We draw on an example from magnetotellurics (M'T), where over the past three decades, a
variety of methods beyond classical least-squares estimation have been used to calculate the
frequency-domain MT impedance tensors and induction vectors (i.e., the MT response
functions that are inverted to produce resistivity images of the subsurface). The M'T response
functions can be defined in the frequency domain for a harmonic signal as:
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where E is the Fourier coefficient of the electric field vector, Z is the impedance tensor, B
is the Fourier coeflicient of the magnetic field vector, and 7"is the induction vector. All
are defined at radian frequency w, while x, y, and z is a right-handed coordinate system
representing north, east, and positive downward, respectively. The MT response functions
are typically calculated within a given frequency band through the following relations
(Vozoft, 1972). The relations represent a least-squares solution to minimize the misfit
between electric and magnetic field components (for the impedance tensor) and between
the vertical and two horizontal magnetic field components (for the induction vector) in
the presence of incoherent noise:
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where * represents the complex conjugate operator. The angle
brackets represent crosspowers obtained through band average
(the average of a set of complex Fourier coefficients summed over
a set of adjacent frequencies), section average (the average of
complex Fourier coeflicients at a given frequency summed over a
set of independent estimates obtained from different time series
sections), or a combination of both. Generally, the larger the
number of degrees of freedom in the averaging function, the
smaller the confidence limits in the resulting response function.
There is a trade-off between minimizing the variance on the
estimate and the ability to resolve finer-scale structure if the
averaging function smooths over too wide of a frequency band.

A fundamental limitation of the classical least-squares solution
is that while it is statistically efficient, it is subject to potentially
unbound bias in the presence of spurious data. One widely adopted
data processing branch to mitigate this weakness relies on methods
from robust statistics (Hampel et al., 1986). The methods seek to
down weight the influence of data drawn from statistical popula-
tions that deviate from the main population of observed data.
Generally, such methods do not impose an a priori assumption of
a particular probability density function to describe the main
population. Rather, they identify the presence of outliers (data or
sections of data with statistical behavior that deviates significantly
from the main population). The influence of outlying data on the
calculation of the MT response functions is minimized (e.g.,
through Huber weighting [Huber, 1981] or similar methods).
Then, a modified least-squares estimate obtains the robust solution
(Egbert, 1997; Chave and Thomson, 2004).

Underlying this statistical approach is the assumption that
within an observed MT data set, the dominant feature is the
signature of the induced response of the subsurface resistivity
structure to signal sources (magnetic fields due to lightning and/
or ionospheric electric current systems). It is posited that data
from other physical sources within the electromagnetic spectrum
can be identified as outliers, distinct from the main induction
source, which typically is assumed to have a plane wave structure.
While this isn’t a rigidly parametric approach, it is an assumption
grounded in statistics rather than in a physical model of the signal
source. A well-known shortcoming of this approach is the failure
of statistically robust response function estimators to shield bias
due to violations of assumed source field structure. Although, in
practice such estimators provide substantial advances over non-
robust methods.

A second commonly used method in M T is coherence sorting
and weighting (Jones and Jodicke, 1984). The external time-varying
magnetic field, which serves as the MT signal source, induces
both magnetic and electric fields that are measured at ground
level. Absent of any noise sources, the inducing source magnetic
fields and the induced electric fields are coherent. Data sections
with low coherence between observed electric and magnetic fields
are taken to represent episodes of poor signal-to-noise level. They
are disregarded or their influence on the estimation of MT response
functions is down weighted.

While the summarized methods led to remarkable improve-
ment in the overall quality of MT response functions, substantial
problems persist. Data sections of high coherence between electric
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and magnetic fields and/or sections where the influence of outlying
values has been minimized not infrequently produce M T responses
to be identified as biased, contaminated, or poor quality by expe-
rienced human operators. This may be evident to the trained
operator (a subjective judgement usually based on years of experi-
ence). Or it may be revealed after attempts to invert seemingly
high-quality response functions return unusable results, even
when carefully constructed 3D inverse modeling attempts have
been made.

We have explored the use of supervised machine learning (ML),
employing a trained neural network to replace the human operator
and to automate the process of assessing the quality of MT response
functions. ML is a data-driven approach to extract features in data
by using one or more ways to solve problems: supervised, unsuper-
vised, and reinforcement learning. Artificial neural networks are
one of the most commonly used supervised learning methods for
classification and regression. An advantage of ML for geophysical
data quality classification is that it can be implemented without
the requirement of an underlying physical model of the structure
of the signal source. It can also be implemented without knowledge
of the earth response or of the multiplicity of noise sources.

In MT surveys, the complex-valued impedance tensor versus
frequency and the induction vector serve as input to the inversion.
Experienced human operators can often identify degraded
response functions attributable to low signal-to-noise ratios,
errors in recording due to sensor and timing failures, errors in
metadata used to determine sensor configurations and gain/filter
settings, and errors from the selection of suboptimal parameters
governing the signal analysis stage. Human operators typically
examine the apparent resistivity p and phase @ curves versus
frequency, which are real-valued quantities derived from complex-
valued impedance tensors:
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These quantities assess the continuity or smoothness of the func-
tions as well as the uncertainty as expressed through their calcu-
lated confidence limits (x, is the magnetic permeability of free
space). Apparent resistivities and phases indicate the integrated
resistivity structure from the ground surface to a certain depth.
Hence, they are expected to be smooth and continuous in the
frequency domain.

In this paper, we propose a novel approach to qualify MT
data based on an ML method. The approach is implemented in
Python using ML libraries. We named this software “pyMAGIQ”
(Python-based magnetotelluric impedance tensor qualifier). The
software casts qualification of impedance tensors as a supervised
classification problem. The artificial neural networks in pyMAGIQ_
are built using the TensorFlow framework (Abadi et al., 2016).
They are trained on large data sets of M'T apparent resistivities
and phases with human-operator-provided data quality assessment
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information acquired during the

EarthScope MT project (Schultz,
2009). The effort to employ ML for the
problem of automated M'T data quality
assessment requires the development
of techniques to interpret and explain
what the neural network has learned.
Such an effort is a key component of
the data validation procedure (Guidotti
etal., 2018). We first evaluate the per-

formance and limitations of our algo-
rithm by using convergence history and
a confusion matrix. Then, we apply it
to a set of unrated M'T impedance ten-
sors obtained across the United States
and Canada. In order to understand the decision-making process
of pyMAGIQ, we perform a sensitivity analysis by analyzing

the trained neural network.

EarthScope MT data

We used M T response function data archived in the Incorporated
Research Institutions for Seismology (IRIS) Searchable Product
Depository (SPUD) database (Schultz, 2019). At the time of writing
this paper, the database contained 1115 M'T impedance tensors
acquired during the EarthScope MT project. This is an effort
overseen by Oregon State University that continues under NASA
and USGS funding as we complete the systematic mapping of the
electrical resistivity structure of the conterminous United States
(Figure 1). In this database, an index of data quality for MT
impedance tensors is provided on a scale from 0 to 5, based on the
following criteria:

*  AnMT site with a quality index of 5 displays apparent resistiv-
ity and phase curves for the two principal (off-diagonal)
elements of the impedance tensor. These vary smoothly with
frequency and with confidence limits that are small (typically
less than 5% standard error in apparent resistivity and less
than 2° in phase across the frequency band spanning from
10 to 10 Hz).

* Arating of 4 indicates slightly larger confidence limits across
part or all of the frequency band in comparison to a rating
of 5. However, the MT impedance tensor can be safely used
for inversion.

* A rating of 3 has significantly larger confidence limits than
those with higher ratings, but the data still provide usable
constraints to an inversion.

* A rating of 2 indicates that one or both principal elements of
the impedance tensor were not usable for a range of periods.

* A rating of 1 means that the data were unreliable.

* A rating of 0 is a placeholder, indicating that the data were
not yet assigned a rating.

Such a rating system based on the experience of human
operators is clearly subjective and prone to inconsistency. This is
because different human operators examine different data sets.
'The ability of supervised ML to assimilate a subjective training
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Figure 1. Location and data quality of MT impedance tensors in the USArray project. A higher rate indicates that the
data quality of MT impedance tensors is better.

set and to produce a system capable of accurately attributing data
quality assessments is a notable outcome of the present work.

To train the neural network, we employed TensorFlow (Abadi
et al., 2016) and used 1101 MT impedance functions from the
IRIS SPUD database. Each impedance function had a human-
assigned rating from 1 to 5 and spanned a wide enough range of
frequencies to substantially cover the band identified in the first
bullet point. In this training set, there were 521 sites rated 5, 385
rated 4, 143 rated 3, 34 rated 2, and 18 rated 1. At the end of
2019, the SPUD database also had 1909 sets of unrated M'T
impedance data from locations in Canada and the United States.
After training our neural network, we applied pyMAGIQ to these
unrated MT impedance tensors to assess their data quality.

In an ML study, the distribution of classifications is ideally
similar between different categories in a training data set. A biased
training data set can result in a biased prediction. As shown earlier,
the distribution in the training data sets is biased toward data ranked
as higher quality. Approximately 82% of the data are rated as 4 or
5. We applied data augmentation to increase the ratio of the lower-
rated data. New training data sets were created by horizontally
rotating the original M'T impedance tensors away from their cardinal
coordinate system by angles between -15° and 15° in one-degree
increments. These augmented data have the same rating as the
original unrotated data. This is under the assumption that the rotation
by a small angle does not change its perceived quality. After creating
augmented data, we randomly selected 550 M'T impedances for
each of the data quality ratings, yielding a training set of 2750

impedance tensors distributed equally across the rating categories.

Method

The MT impedance tensor has four complex-valued elements
at each frequency. In order to simplify the training, we only
examine the off-diagonal impedance elements Z_ and Z . These
are considered the principal elements of the impedance, and for
a resistivity structure that varies in 1D or 2D, they are the only
nonzero elements. The concept developed for pyMAGIQ could
easily be extended to all four impedance tensor elements.
Although, the quality of the diagonal elements is far more
variable than the off-diagonal elements and less representative
of overall data quality in most cases. We scale the off-diagonal
impedance elements and their associated confidence limits into
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their real-valued equivalent forms of apparent resistivity and
phase, following equations 4 and 5.

Our ML software, pyMAGIQ, takes the apparent resistivities,
phases, confidence limits, and continuity versus frequency of these
quantities in the measurement reference frame as input parameters
of the neural network. Continuity is calculated by taking the
derivative, with respect to frequency, of each of these parameters.
MT response function data in the EarthScope MT data sets are
defined at 30 frequencies, which are spaced logarithmically from
7.3 to 18,724 s period. The total number of parameters for one
MT site is 480, which is the product of 30 frequencies. At each
frequency, there are 8° of freedom (apparent resistivities, phase,
confidence limits, and continuity) for two off-diagonal impedance
elements. The output of this neural network is a data quality rating
assigned to each impedance that ranges from 1 to 5. This input
and output information is used to train the weight parameters
between nodes in the neural network.

'The hidden core layers of our neural network are eight dense
layers connecting all nodes between each layer (Figure 2). Dense
layers are the rectified linear unit activation function for the first
seven layers and the softmax activation function for the last layer.
The parameter of the network is optimized to minimize discrep-
ancy between the predicted rating and the given rating on the
training set by using the cross-entropy loss function. The loss
function is defined as:

—iiy,ljlog (P,«,/-) ,

i=1 j=1

(6)

where y, ; denotes the true value (i.e., 1if sample 7 belongs to rating
J and 0 otherwise), and p, ; denotes the probability predicted by
the model of sample 7 belonging to rating ;. The number of nodes
in each layer is set to 50. The total number of unknown weighting
parameters is 42,155. Hyperparameters, including the number of
layers, nodes, and regularization parameters in this study, are
selected based on Optuna (Akiba et al., 2019), optimizing the
validation accuracy. Using these parameters, we optimized the
weight parameters with the Adamax algorithm with the default

optimization parameters in the Keras library. We trained our
weight parameters for 500 iterations, which took approximately
2 minutes on a 2.9 GHz Intel Core i5 processor. Once we train
the weight parameters on the neural networks, a rating is estimated
in a few seconds for any input.

After the neural network has been trained, we interpret the
obtained neural network with a sensitivity analysis (Zurada et al.,
1994; Sung, 1998; Khan et al., 2001). This is based on the model’s
locally evaluated gradient according to the following equation:

R,-<x>=(§—j;j2 ,

where the gradient is evaluated at data point x, and x; denotes a

(7)

parameter in the data. This gradient gives the rating change of
each parameter «; for x. Sensitivity R,(x) will tell us how fwill
behave in response to infinitesimal perturbations. If R(x) takes
on a large magnitude, then f'is sensitive to parameter x;. We
change every parameter of x, a total of 480 parameters, to see its
sensitivity. We use the predicted rating ffor data analysis in this
study. The gradient is discretized and calculated based on the
central difference method with 4% perturbations.

Results and discussion

Before processing unrated data sets, we tested the accuracy
of the trained neural network through the convergence and
confusion matrix. The confusion matrix visualizes classification
accuracy and errors made by the ML model. Each row of the
matrix represents the given rating by human experts, while each
column represents the predicted rating. In our evaluation, 90%
of data sets randomly chosen are used for actual training from
rated data sets. The remaining 10% of data sets are used for the
validation of the trained neural network. These validation data
sets are randomly selected from the human-rated M'T database.
However, their assigned ratings are ignored, and they are not
used as part of the training data set. The training data sets are
used for the actual training of the model. Validation data sets
are not used for training, but are used to test the neural network
for the nontraining data sets during the
iteration. The model accuracy and loss
for the trained neural network along
with epoch are shown in Figure 3. After

hidden layer 1

hidden layer 2
Figure 2. Overview of the neural network used in this study.

hidden layer 7
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Rating5 500 iterations, there was no further
_ improvement in the accuracy of the
Rating4  y;lidation data sets. We obtain 98%
- accuracy for matching the predicted
Rating3  4ata quality ratings against those previ-
Rating 2 ously assigned to the actual training
data sets. We matched the human-

Rating 1 provided data quality rating of 91% for

the validation data sets after 500 itera-
output layer tions. The high rating of concurrence
with expert human data quality ratings
indicates that the neural network is

trained well. A review of the ML-guided

October 2020 The Leading Edge 309



model accuracy

accuracy
©c o 9 o ¢
[+,] ~ =] w o

o
&)
L

o
S
f

—— accuracy
—— val_acc

o
w
L

2 EJD 3C|l V] 460 5 60

model loss

1.4 1
1.2 1

1.0 ‘l

029 — loss

—— val_loss

0.0

0 100 200 300 400 500

epoch

Figure 3. History of model accuracy and loss for the training and validation data
sets. Blue lines are results from training data sets. Orange lines are results from
validation data sets.

data quality ratings found discrepancies in some of the human-
assigned data quality ratings. It was concluded (subjectively)
that the neural network performed at least as well, if not better,
than the trained human expert at assigning ratings that were
consistent across different data sets. The loss function indicates
that the validation loss hits bottom after 200 epochs. The loss
function is used to predict rating probabilities. The accuracy line
increases when the neural network’s output is close to 1 for the
right rating and close to O for other ratings. However, the loss
function reaches a plateau after 200 epochs, while the validation
accuracy continues to increase. This suggests that the neural
network is trained to select the right rating. Although, the neural
network returns high probabilities for multiple ratings rather
than selecting one rating as the prediction with very high value.
This happens because the neighbor rating in this study has similar
characteristics. Therefore, it is hard to determine the prediction
with high probabilities when the neural network is trained
enough. Since validation accuracy increases after 200 epochs,
we chose the neural network trained after 500 iterations for the
following discussion.

We show in Figure 4 the confusion matrix between the
predicted and given data quality ratings to identify erroneous
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Figure 4. Confusion matrix for the validation data sets. Contour colors show
the number of samples. Each row of the matrix represents the rating by human
experts. Each column represents the predicted rating.

ratings in the validation data sets. Here, the predicted rating is
given by pyMAGIQ. The given rating is assigned by human
experts, as reflected in the EarthScope MT database. Although
the confusion matrix indicates that the predicted and given ratings
match in most cases, there are some misclassified ratings that
under- or overestimate the data quality. This is usually by a single
integer rating level. This is because MT data-assigned neighboring
ratings have similar characteristics, as described previously.
Figure 5 shows examples of apparent resistivities and phases from
these data sets. These data sets are displayed in measurement
(i.e., geomagnetic coordinates). Apparent resistivities and phases
show that the pyM AGIQ-assigned data quality rating conforms
to the definitions provided previously in all examples. One can
see that results in Figures 5c¢, Se, and 5h are misclassified.
However, it is difficult to judge correctly using only visual means
and experience. In Figure Sc, the apparent resistivities and phases
vary smoothly with frequency, and their confidence limits are
relatively small. This example indicates that the predicted rating
of 5 subjectively appears to be more reasonable than the human-
assigned rating of 4. In the validation data sets, data from a few
sites were assigned quality ratings by pyMAGIQ_that appear to
be more reasonable rather than those from corresponding human
expert results (Figure 4). There are similar data sets potentially
misrated in the training data sets, but these are not dominant.
Because the weights in the neural network are optimized by the
total data sets, these minor data sets do not significantly bias the
weights during neural network training.

Following training of the neural network, we applied
pyMAGIQ_to unrated MT data from sites in Canada and the
United States. Because the frequency bins of the EarthScope MT
response function data and that of the unrated MT data can differ
on a site-by-site basis, we interpolated the apparent resistivities,
phases, and their confidence limits of the unrated data sets and
resampled them using spline interpolation to fit the frequencies
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at which the EarthScope MT program’s data sets were defined.
In general, apparent resistivities and phases at longer periods have
larger confidence limits because there are fewer degrees of freedom
associated with such data. While the EarthScope MT training
data set includes long-period MT data, a significant fraction of
the test data set from Canada comprises wideband M T that does
not extend past a 1000 s period. Whereas, the EarthScope MT
data extend well beyond a 10,000 s period. We exclude unrated
data sets that do not extend beyond a 1000 s period to avoid the
need to extrapolate wideband data well outside the range of their
validity. There are 626 data sets satisfying this condition in the
unrated data sets. The distribution and ML-predicted ratings of
the unrated MT data are shown in Figure 6. In these predicted
ratings, there are 231 data sets assigned a rating of 5, 200 rated
as 4,142 as 3,20 as 2, and 33 as 1. By using these quality ratings,

one can decide which sites have data appropriate for inversion and
interpretation. One can also use the ML-guided data quality
assessment to identify sites that may require relocation or reinstal-
lation of MT equipment in order to address shortcomings in data
quality. Unrated data sets and M L-generated data quality ratings
are shown in Figure 7. The predicted data quality ratings appear
to be reasonable in terms of the characteristics of the apparent
resistivity and phase curves.

Although pyMAGIQ achieves a high congruence with expert
human data quality assessment, we do not know precisely how
pyMAGIQ’s neural network arrives at a rating decision. We have
explored which factors may have the most influence on neural
network decision making. Figures 8a and 8b show a sensitivity
analysis from Figures 5a and 5b. The y-axis in Figure 8 shows
the sensitivity of the final data quality rating to the change of
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Figure 5. Predicted and given rates for apparent resistivities and phases for the validation data sets. Blue lines are x-y components. Red lines are y-x components.
Predicted rating is for results of pyMAGIQ. Given rating is for the original rating in the USArray.
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parameters. One can see that the con-
tinuity of apparent resistivity and phase
versus frequency are relatively more
significant factors than the other param-
eters. This means that these parameters
are dominant for the rating decision.
This corresponds with the traditional
qualification, which focuses on smooth-
ness of the parameters. The magnitude
of the confidence limits on the phase
and the continuity of the confidence
limits on the apparent resistivity and
phase follow in significance.
Examination of the pattern of confi-

dence limits reveals that there are often
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two bands of larger confidence limits on the phase at periods of
approximately 10? to 10* s and 10' s. The magnitude of confidence
limits on phase generally becomes larger at the extreme short- and
long-period ends of the spectrum for MT data of lower quality.
'The sensitivity analysis indicates that the ML-guided data quality
rating is particularly sensitive to uncertainty in the phase at these
periods. Previous research did not identify that the uncertainty
in the apparent resistivity is a secondary factor to uncertainty in
the phase as a driver of overall data quality.

Conclusion

We show that pyMAGIQ is capable of automatically ranking
the quality of MT data as effectively as trained human operators.
A deep neural network model trained with EarthScope MT
project data sets was used to assess the data quality of unrated
data sets throughout the United States and Canada. The
ML-assigned data quality rating matches the expert

human-assigned rating of 98% for the actual training data sets
and 91% for the validation data sets. The confusion matrix suggests
that when pyMAGIQ deviates from human-assigned data quality
ratings, it does so by assigning them to the neighboring rating
integer. This is a classification that indicates similar properties in
apparent resistivity and phase to the neighboring classification.
'The apparent resistivities and phases of the validation data sets
indicate that the rating predicted by pyMAGIQ _in some sites is
more reasonable than the previous expert human-assigned assess-
ment rating. We applied pyMAGIQ to the unrated M'T data and
assigned data quality rankings to the data for the first time.
Sensitivity analysis of deep neural networks suggests that
uncertainty in phase and the continuity versus frequency of apparent
resistivity, phase, and confidence limits dominate the neural net-
work’s assessment of data quality. This is consistent with the standard
visual approach for qualification, which focuses on smoothness of
parameters and size of the associated confidence limits. On the
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Figure 8. Sensitivity analysis of apparent resistivities and phases for three data sets. (a) Figure 5a. (b) Figure 5b. Blue lines are x-y components. Red lines are y-x

components. The y-axis shows sensitivity to the change of parameters.
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other hand, sensitivity of the data quality assessment to the confi-
dence limits on the apparent resistivity, and the values of apparent
resistivity and phase, are negligible compared to other parameters.
'This sensitivity analysis suggests that one should focus foremost on
uncertainty in the phase and continuity of parameters.

In this study, the amount of M'T data was limited. However,
as that amount increases, more accurate prediction would be
possible because the MT array program continues to map the
3D electrical structure across the United States. The computational
requirements for pyMAGIQ_to assess the quality of a data set
are extremely modest. Hence, in the near future, pyMAGIQ_
could be used by field crews in real time to assess the quality of
field data. As pyMAGIQ_provides an arguably less subjective
evaluation of the quality of M'T impedance data, it could also be
used to optimize the methods and parameters of data processing
stages. Current research is looking into the practicality of using
the trained neural network to randomly select from the large set
of crosspowers that are used to calculate M'T response functions.
This aims to select the subset of crosspowers that yield responses
of the highest quality rating. These could potentially serve as
pilot estimates against which robust processing methods would
refine to yield response functions less prone to biasing effects
that escape purely statistical-based methods. Finally, while the
examples we have drawn from are for M'T data, the principles
explored here are applicable across a wide range of geophysical
and related data sets. Rilz
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