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Abstract

The Tibetan Plateau, as a major elevated heat source, plays a critical role in the Asian monsoon and global climate. Obser-
vational data revealed significant correlations between spring surface air temperature in the Tibetan Plateau and downstream
summer precipitation interannual variations. Sensitivity experiments using the regional Climate-Weather Research and
Forecasting model (CWRF) were conducted to understand the physical processes and mechanisms underlying such delayed
teleconnections. A positive temperature forcing was imposed over the plateau on the surface and subsurface soil layers only
at the initial conditions around May 1st, 2003. This regional forcing quickly induces positive perturbations in local air tem-
perature and, more importantly, maintains its signal in local soil, especially deep layers, for several months. Consequently,
the soil temperature serves as a charged capacitor to modulate the planetary atmospheric circulation and through Rossby
wave chains to cause significant summer precipitation anomalies over broad regions. This relayed teleconnection pattern is
consistent with that identified from observational data records and CWRF climate simulations during 1980-2015. Diagnostic
analyses of observations and simulations suggest that the Tibetan Plateau heating significantly impacts summer East Asian
monsoon climate through influencing the South Asian High and shifting the East Asian jet.

1 Introduction Despite long-term and extensive research, the precise scope

and physical mechanism of the TP influence are still largely

The Tibetan Plateau (TP), as the highest land on the earth,
plays an important role in the Eurasian climate and global
circulation. In particular, its complex impacts on East China
precipitation associated with the East Asian Monsoon have
been long documented (Ye 1981; Ding 1992; Wan et al.
2017; Zhao et al. 2018). The intensity and frequency of
climate disasters have increased since 1950 in these main
humid and populated regions, causing huge agricultural
and socioeconomic losses every year (Huang et al. 2007,
Zhang and Zhou 2015; Riyu 2000; Gao and Yang 2009).
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unknown due to the complexity of topography-atmospheric
flow interaction and the lack of long, comprehensive
observations.

Early studies mainly focused on the TP impact through
mechanical forcing by the vast complex of high mountains
on large-scale circulations. TP blocks the prevailing upper
westerly jet and splits it into northern and southern airflows
circumventing the plateau. This not only expands the meridi-
onal range of the jet influence but also alters the water vapor
transport from the Bay of Bengal to East China (Hoskins
and Karoly 1981; Chen and Trenberth 1988). As the core
of the upper-tropospheric westerlies shifts to the north of
the plateau, the Mei-Yu along the middle-lower reach of the
Yangtze River associated with the Southeast monsoon ter-
minates (Zeng et al. 1988; Kong and Chiang 2020). TP also
blocks the South Asian Monsoon to divide unique climate
characteristics between the south and north of the plateau
and surrounding areas (Ding et al. 2017). This blocking
effect gradually disappears as the westerly jet moves north-
ward in summer.

Increasingly more studies emphasized the TP impact
through thermal forcing as an elevated heat source in

@ Springer


http://orcid.org/0000-0002-1806-6652
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-022-06266-5&domain=pdf

H. Xu et al.

summer and sink in winter (Ye 1981; Yanai et al. 1992;
Wau et al. 2014). The most relevant circulation feature is the
South Asian High (SAH), which is formed and maintained
by the TP thermal forcing. As the most powerful thermal
high-pressure system over Asia in summer, SAH has a key
climatological characteristic of periodic east—west oscilla-
tions, discovered several decades ago (Tao and Zhu 1964;
Luo et al. 1982). Extensive studies based on observations,
reanalyses and model simulations demonstrated that interan-
nual variations in the intensity of SAH and the location of its
center have important implications for the onset of the East
Asian Monsoon and regional climate (Zhang et al. 2005; Liu
et al. 2013; Ren et al. 2015; Wei et al. 2015). Meanwhile,
the TP thermal forcing can affect climate in a long time and
a wide spatial range, and even regulate the establishment
of the East Asian Summer monsoon (Wu 1984; He et al.
1987; Ueda and Yasunari 1998; Hsu and Liu 2003; Wu et al.
2014). For example, it can act as an intermediate bridge in
the summer connection between the North Atlantic Oscilla-
tion and East China precipitation (Wang et al. 2018).

Several correlation analyses based on observations and
model simulations showed that snow cover is an important
factor in the TP thermal forcing on summer monsoon pre-
cipitation in India and East China. However, controversy
still exists about its influence and mechanism at varying
scales (Liang et al. 1995; Qian et al. 2003; Li et al. 2018;
You et al. 2020). Some studies attributed this snow effect
to the changed surface energy budget due to increasing sur-
face albedo, while others suggested that soil moisture is the
bridge between snow cover and the TP thermal forcing (Liu
and Yanai 2002; Wu and Qian 2003; Zhang et al. 2004; Liu
et al. 2004; Seol and Hong 2009; Xiao and Duan 2016).
Nevertheless, it is consistent that the snow effect may only
last from late spring to early summer due to the relatively
short memory of soil moisture (Liu et al. 2004; Zhao et al.
2007; Xiao and Duan 2016).

This study presents a new idea on the TP spring heat-
ing effect and its mechanism linking to East China summer
rainfall. Unlike soil moisture, soil enthalpy anomalies may
persist for a long time, up to three months (Hu and Feng
2004; Yang and Zhang 2015). Temperature anomalies in
surface and subsurface layers caused by snow variations or
other factors over major plateaus in North America and East
Asia may remain in the soil memory to produce regional cli-
mate impacts in longer times than previously thought (Xue
etal. 2012, 2018, 2021). We first analyzed the observed tel-
econnection between TP surface air temperature and down-
stream precipitation and evaluate the ability of the regional
Climate-Weather Research and Forecasting model (CWRF;
Liang et al. 2012, 2018) in capturing this relationship. We
then conducted CWRF ensemble sensitivity experiments to
explore the role and mechanism of soil temperature on the
teleconnection. Section 2 introduces the observational data
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and teleconnection pattern analysis. Section 3 describes the
CWRF model configuration and performance. Section 4 pre-
sents the CWREF sensitivity experiment design. Section 5
examines CWRF's ability in capturing the observed telecon-
nection and compares its sensitivity experiment results to
explore the underlying mechanism. Section 6 concludes with
the main findings.

2 Observational data and teleconnection
pattern analysis

Long-term observational data for surface and soil tempera-
tures are rarely available in TP. The 2-m air temperature
was used here as a proxy to determine the TP remote impact
on China precipitation given its close correlation with sur-
face (skin) temperature and better observational availability.
Both air temperature and precipitation observations were
taken from the China meteorological forcing dataset that
integrated remote sensing products, reanalyses, and in-situ
measurements at monitoring stations (He et al. 2020). The
dataset is available at a horizontal grid of 0.1°x0.1° and a 3
hourly interval covering the period of 1979-2018.

This study used a singular value decomposition (SVD)
analysis to identify the observed teleconnection between
TP air temperature and downstream precipitation anomalies
during 1980-2018. SVD is an effective diagnostic method
to extract the leading pairs of spatially orthonormal patterns
that explain as much as possible the mean-squared temporal
covariance between two variables (Bretherton et al. 1992).
The two variables are referred to as the left and right fields in
the SVD decomposition. Each SVD mode consists of paired
left- and right-singular vectors of spatial patterns along with
their respective time series of expansion coefficients. The
geographic distribution of temporal correlations between
an input field and a SVD expansion coefficient represents a
remote connection pattern. Homogenous correlations show
remote connections within a field and are calculated by cor-
relating the input field with its own expansion coefficient
(e.g., all left or all right). Conversely, heterogeneous cor-
relations represent teleconnections between the fields and
are calculated between a field and the other field’s expansion
coefficient. This study focused on the heterogeneous cor-
relation patterns.

Table 1 lists the temporal correlations between time series
of the expansion coefficients of spring (March—May) air tem-
perature over TP and March to August precipitation in East
China for the first SVD mode at different monthly lags (0-3)
and with summer mean. It also lists the percentage of the
spatial covariance explained by this mode for each lag pair.
All the modes had dominant variance contributions, with
the percentage ranging from 39.5 to 65.3%. Temperatures in
March, April and May all had significantly (p <0.01) high
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Table 1 The temporal correlations between the time series of the expansion coefficients of spring (March to May) air temperature and subse-
quent (March to August and Summer) precipitation for the first SVD mode at different monthly lags

PRA

March April May June July August Szljl;zq)e '
T2M
March [0.74 (55.7%)[0.67 (48.4%)|0.63 (65.3%)|0.79 (44.2%)[0.84 (47.9%)|0.72 (47.5%)]0.76 (40.6%)
April 0.71 (59.6%)[0.65 (63.6%)]0.64 (59.5%)|0.72 (46.1%)|0.81 (45.7%)|0.74 (47.0%)
May 0.74 (42.2%)(0.73 (40.0%)[0.67 (39.5%)|0.77 (41.9%)]0.69 (42.5%)

The percentage of the spatial covariance explained by this mode is shown in the parentheses

correlations with precipitation in the same and subsequent
several months. For example, May temperature had a lag
correlation (0.73) with June precipitation. This delayed tem-
perature effect on precipitation persisted into August, having
their correlation (0.77) even larger than other lags. These
spring monthly temperature anomalies (March, April, May)
over TP were strongly associated with summer precipitation
patterns in East China, respectively having correlations of
0.76, 0.74, 0.69 and capturing 40.6%, 47.0%, 42.5% of the
total covariance, respectively. To follow the protocol of the
experiment design for Impact of Initialized Land Surface
Temperature and Snowpack on Subseasonal to Seasonal
Prediction Project Phase I (LS4P-I, Xue et al. 2021), this
study defines the Tibetan heating as a temperature anomaly
in May over TP and focuses on its impacts during summer.

Figure 1 shows the coupled spatial patterns (heteroge-
neous correlation) of the first SVD mode between May
temperature and summer precipitation. Negative tempera-
ture anomalies extended over most of TP and corresponded
with precipitation positive anomalies in the Northeast and
negative anomalies along the Yellow River middle to lower
reaches, Shandong Peninsula, and northern Inner Mongo-
lia as well as south of the Yangtze River middle to lower
reaches. These areas of significant precipitation anomalies
were coincident with the prevailing rainbands associated
with the summer monsoon system in East China. The time
series of the expansion coefficients for the coupled patterns
varied largely among years but consistently between the
two fields (Fig. 1c). The coupled patterns were typical of
the delayed relationships between spring temperature and
summer precipitation. For all lags in Table 1, the tempera-
ture patterns were characterized by dominant homogene-
ous anomalies over TP, whereas the corresponding monthly
precipitation patterns exhibited major signals in East China
with large variations in the sign and magnitude of regional
anomalies (Fig. S1).

The above observed SVD analysis indicated signifi-
cant teleconnections between spring Tibetan heating and
downstream summer precipitation. However, lacking soil
surface and subsurface data over TP renders it difficult to
both determine the source of the heating and understand

the physical processes and underlying mechanisms. This
study seeks numerical simulations to first reproduce the
observed patterns and then explore the mechanisms. To
facilitate the study, the summer of 2003 was selected when
severe droughts occurred in the southern part of East China
and flooding in the northern part (Fig. 2b), resulting in
great agricultural and socioeconomic losses (Zhang and
Zhou 2015; Seol and Hong 2009). Meanwhile, almost the
entire TP region experienced a cold spring, with an average
anomaly of —2.0°C (Fig. 2a). These significant anomalies
observed in the summer of 2003 resembled the first SVD
coupled mode of interannual variations during 1980-2018
(Fig. 1), although the negative (positive) precipitation
anomalies north of the Yellow (Yangtze) River were weaker
(stronger). In addition, surface air temperature anomalies in
East China were positive in the South and North-Northeast
but negative in the Central and the northern border.

3 CWRF description and performance

The CWREF has been developed and continuously updated as
a Climate extension of the Weather Research and Forecast-
ing model (WRF, Skamarock et al. 2008) by incorporating
substantial improvements in representing key physical pro-
cesses and their interactions as well as surface and lateral
boundary conditions, all of which are essential to climate
modeling (Liang, et al. 2012, 2018; Liang and Zhang 2013;
Zhang et al. 2013; Choi et al. 2013; Xu et al. 2014; Ling
et al. 2015; Qiao and Liang 2015, 2016, 2017; Sun et al.
2020a,b). It has been widely applied in the United States
and China, achieving superior performance, especially for
precipitation and extremes (Yuan and Liang 2011a; Liang
etal. 2012, 2018; Chen et al. 2016; Liu et al. 2016; Li et al.
2020; Sun et al. 2020a,b; Jiang et al. 2021).

Most relevant to this study is the state-of-the-art con-
junctive surface—subsurface process (CSSP) model built-in
CWREF (Choi et al. 2007, 2013; Choi and Liang 2010; Yuan
and Liang 2011b). The CSSP not only predicts soil mois-
ture vertical transport and exchange with the atmosphere as
in typical land surface models but also uniquely represents
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Fig. 1 The coupled spatial patterns of the first SVD mode for a May as well as c the time series of their respective expansion coefficients.
air temperature with the key signals over TP (within the red dashed This mode explains 42.5% of the spatial covariance between the two
line, terrain height above 4000 m) and b summer precipitation with fields with a temporal correlation of 0.69 between their expansion
the key signals over eastern China (within the green dashed line in a) coefficients
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Fig.2 Observed a May temperature (°C) and b summer precipitation (mm day~') anomalies in 2003
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the 3-D lateral flow and subgrid topography-controlled soil
moisture transport that interact with the surface routing and
subsurface horizontal water movement. Along with the real-
istic treatment of surface boundary conditions such as topog-
raphy, soil, and vegetation distributions (Liang et al. 2005a;
Xu et al. 2014) and the advanced dynamic-statistical param-
eterization of land surface albedo (Liang et al. 2005b), CSSP
accurately represents the terrestrial hydrological processes
and their impacts on regional climate (Liang et al. 2012).
Its applications are growing (Gan et al. 2015; Ji et al. 2017;
Yuan et al. 2018). The CSSP’s comprehensive subsurface
treatment facilitates our quantification of the Tibetan heating
source and subsequent impact.

This study used the CWRF computational domain follow-
ing Liu et al. (2008), with the center at (35.18° N, 110.0° E)
on the Lambert conformal map projection and a horizontal
spacing of 30 km for a total of 232X 172 grids. The model
contained 36 vertical terrain-following sigma (o) levels with
the top at 50 hPa and selected the following physics con-
figuration: cumulus—ECP penetrative convection (Liang
et al. 2004a; Qiao and Liang 2015, 2016, 2017) plus UW
shallow convection (Bretherton and Park 2009), microphys-
ics—GSFCGCE (Tao et al. 2003), cloud—XRL (Xu and
Randall 1996; Liang et al. 2004b), aerosol—MISR (Kahn
et al. 2005), radiation—GSFCLXZ (Chou and Suarez 1999;
Chou et al. 2001), planetary boundary layer—CAM (Holt-
slag and Boville 1993) plus ORO (Rontu 2006; Liang et al.
2006), and Surface—CSSP land with 11 soil layers up to
5.7 m depth (see above for references) plus UOM ocean of
30 layers up to 300 m depth (Ling et al. 2015). This CWRF
configuration has been well evaluated to realistically capture
regional climate variations in China (Liang et al. 2018; Li
et al. 2020; Xu et al. 2021; Shi et al. 2021; Wei et al. 2021;
Jiang et al. 2021).

For all CWRF simulations in this study, the initial and
lateral boundary conditions were based on the 6-hourly
ECMWF-Interim reanalysis data at ~ 80 km horizontal grid
spacing (ERA-interim, Dee et al. 2011). Daily sea surface
temperature distributions were derived from NOAA OISST
analysis at 0.25° (Reynolds et al. 2007; Banzon et al. 2016)
and used in UOM for relaxation to minimize the model pre-
diction drift due to the lack of the deep and global ocean
dynamics (Ling et al. 2011, 2015).

Figure 3 shows the May temperature and summer pre-
cipitation anomalies in 2003 simulated by CWREF from its
continuous integration of 36 years (1980-2015) driven by
ERA-interim. As compared with observations in Fig. 2,
CWREF realistically reproduced these anomalies over
most regions with finer structures. Obvious and realistic
temperature signals included the cold anomalies over TP
and Xinjiang and the warm-cold-warm anomaly pattern
in East China. The model biases from observations were
generally small (Fig. 3c). Temperature biases were within

1° over most China land except for small parts of TP and
northeastern mountains up to 2°. Correspondingly, CWRF
well captured the precipitation anomaly patterns, having
droughts in the Southeast and heavier than normal rainfall
in the North, albeit the boundaries were shifted north-
ward, especially for the northern parts. Most global and
regional climate models, however, could not fully produce
these 2003 anomalies (Xue et al. 2021). It is very encour-
aging that CWREF in a free run without perturbation was
able to reproduce the major anomalies. Therefore, CWRF
is credible to use for understanding the Tibetan heating
impact on East China precipitation.

4 Sensitivity experiment design

Systematic TP cold biases were found in modern reanal-
yses and current global climate models, some reaching
7 °C (Frauenfeld et al. 2005; Xie et al. 2007; Wang and
Zeng 2012; You et al. 2013, 2016; Zhu and Yang 2020;
Xu et al. 2021). Although overall model advances over a
decade reduced the biases (Zhu and Yang 2020), resolution
increases did not help much (Xu et al. 2021). On the other
hand, CWRF downscaling with more advanced physics sig-
nificantly improved the TP simulation of both its climate and
interannual variation (Xu et al. 2021). Nonetheless, all mod-
els still contain large departures from very limited observa-
tions over TP. These departures, whether due to observa-
tional uncertainty or model deficiency, are simply referred to
as model biases here. On average over TP, CWRF produced
a cold bias of 1.5 °C in May 2003 (Fig. 3c). Below CWRF
sensitivity experiments were designed to explore how a cor-
rection for such TP cold biases in spring induce summer
teleconnection precipitation anomalies in East China.
Previous studies have shown that the near-surface forcing
would dissipate rapidly (in a couple of days) if only surface
air and land skin temperature perturbations were imposed
to initial conditions. The only way for climate models to
memorize the signal and produce significant feedback is to
impose the forcing on both surface and subsurface soil tem-
peratures (Xue et al. 2012, 2018). However, most models
still failed to fully capture the delayed teleconnection pat-
terns (Xue et al. 2021). Fortunately, CWRF captured the
key climate anomalies driven by lateral boundary condi-
tions alone (Fig. 3a—c), although some modest cold biases
still existed over TP. This study adopted the initialization
approach proposed by Xue et al. (2021), that is, imposing
positive perturbations on both surface and subsurface tem-
perature initial conditions over TP to offset the model drift
and so eliminate local cold biases. Given the surface air tem-

perature monthly mean anomaly observed (7;poma1y) and bias
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Fig.3 CWREF simulated a May temperature (°C) and b summer pre-
cipitation (mm day~') anomalies in 2003. ¢ CWRF May temperature
bias (°C) from observations. d Imposed land surface and subsurface

modeled (7};,,), the initial temperature forcing at each grid
over TP was defined as:

AT =-nXT

anomaly — Tbias

where 7 is a tuning parameter to compensate for the general
soil memory loss by land models. Based on previous stud-
ies (Xue et al. 2012, 2018) and combined with our CWRF
test runs, n = 2 was chosen for this study. Figure 3d shows
the distribution of the forcing that was imposed at the initial
step to the ground (skin) and all 11 soil layers’ temperature
in CSSP.

A CWREF run could be started directly from the ERA-
interim driving conditions or restarted at any given time from
its own long continuous integration driven by ERA-interim,
called respectively a cold or warm start. A cold start inputs
only the basic atmosphere (temperature, wind, humidity)
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temperature perturbation (AT, °C) over the Tibetan Plateau at the ini-
tial step of the sensitivity experiments

and surface (snow, vegetation, soil temperature/moisture)
conditions from ERA-interim, while artificially setting other
variables like cloud hydrometeors. Given large dynamic and
physical formulation differences between CWRF and ERA-
interim, these atmosphere and surface states are not bal-
anced nor consistent for the coupled CWRF/CSSP system
and thus may drift away after a spin-up period. In contrast,
a warm start begins with a balanced and consistent state of
the system itself. In either case, this study perturbed the start
state by adding the initial forcing AT to temperatures at the
surface and all subsurface soil layers. Such a perturbation
alone may cause an unbalanced state unless soil moisture is
also consistently set. This is particularly important because a
soil temperature change may alter the soil water phase from
liquid to ice or vice versa, which is associated with a huge
latent heat difference.
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Fig.4 Initial conditions on May 1st of 2003 from ERI data and CWREF cold and warm start for a soil temperature (°C) and b soil moisture (kg

m_z)

Figure 4 compares the soil temperature and moisture pro-
files averaged over TP on 1 May 2003 as derived from ERA-
interim and CWRF cold and warm start initial conditions.
ERA-interim produced systematically colder soil tempera-
tures than the control CWRF long-term climate integration
(see the warm start). Since ER A-interim provided soil data
only up to the depth of 2.55 m and the CWRF pre-processor
assigned the observed annual mean surface air temperature
as the soil condition at the bottom (5.67 m), the cold start
soil temperature had abrupt increases in deeper layers due
to unrealistic extrapolation. On the other hand, ERA-interim
simulated substantially wetter soil moisture contents than the
control CWREF by several times. The warm start gave more
reasonable profiles of soil temperature (warmer than ERA-
interim) and moisture, which were also balanced with the
atmospheric forcing as resulted from the long-term CWRF/
CSSP coupling.

Based on the above discussion, this study conducted
five sets of CWRF experiments. Each set consisted of 10
ensemble runs starting from 22 April to 1 May at a daily
interval for an 8-month integration till 31 December 2003.
All experiments were driven by the same ERA-interim
6-hourly lateral boundary conditions and OISST daily sea
surface temperature distributions. Table 2 lists the experi-
ment configurations, each defined by whether the control

Table 2 Experiments design in this study

Experiment Control initial ~Soil temperature Soil water
abbreviation state (I) perturbation (T) phase change

b=balanced, p=perturbed, (W)

n=not n=not c=changed,

n=not

InTnWn Not (n) Not (n) Not (n)
InTpWn Not (n) Yes (p) Not (n)
InTpWc Not (n) Yes (p) Yes (¢)
IbTnWn Yes (b) Not (n) Not (n)
IbTpWc Yes (b) Yes (p) Yes (¢)

initial state (I) was balanced (b), the initial soil tempera-
ture (T) perturbed (p), and the initial soil water phase (W)
changed as the soil temperature crossing the freezing point
(c). For convenience, these configurations were referred
below by abbreviations that combine the prefixes (I, T, W)
each followed by the respective choice (b, p, ¢) or not (n).
For example, InTnWn depicts that the initial state was not
balanced (cold start), the soil temperature was not perturbed,
and the soil water phase was not changed. Similarly, IbTpWc
means that the initial state was balanced (warm start), the
soil temperature perturbed, and the soil water phase changed
(see below).
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Incorporating into the initial perturbation the soil water
phase change according to the soil temperature change is
critical because the latent heat of melting ice is~78 times
the specific heat of liquid water per K. A positive perturba-
tion may raise the soil temperature from below to above
the freezing point in some grids or layers, where the local
soil water, if not adjusted accordingly, would remain in
the ice form. Comparison between InTnWn and InTpWn
revealed that the initial temperature perturbation dissipated
rapidly during the first few days, just like in other global and
regional climate models (Xue et al. 2021). This occurred
because the imposed temperature forcing made most grids
in TP rise from below to above the freezing point and that
extra heat was quickly consumed to melt the existing ice.
Thus, InTpWn was discarded in the subsequent analysis. In
all the experiments with initial soil temperature perturba-
tions, the existing local ice content was fully converted into
liquid water at any grid or layer if the soil was heated above
the freezing point.

Note that most climate models do not explicitly predict
frozen or ice soil moisture and thus may not directly encoun-
ter such water phase change issues. ERA-interim provided
no soil ice content, which made the CWREF cold start even
more arbitrary as soil temperature crossed the freezing point.
Ideally, a spin-up for decades is needed for a model to reach
an equilibrium state where soil temperature and moisture
in both liquid and ice phases are fully balanced with each
other as well as with the atmosphere (Liu et al. 2020). None-
theless, the warm start from the control CWRF’s 36-years
(1980-2015) continuous integration offered a more realistic
initial state than the cold start.

5 Results and discussion

Below the analyses focused on the differences between
the CWREF sensitivity and control experiments to quantify
the Tibetan heating impacts. All results were shown as the
ensemble mean of the 10 realizations differing only in the
start date, and those passed the t test at the 95% confidence
level were considered as statistically significant signals.
Figure 5 shows May—August monthly mean distribu-
tions of surface air temperature and precipitation differ-
ences between the cold start InNTpWc and InTnWn. These
differences depict the local and remote impacts of the initial
temperature perturbation with corresponding water phase
change imposed to the surface and subsurface soil layers
over TP. As reflected in surface air temperature, the local
signal was robust and persisted for about five months. On
average over TP, May—August monthly mean temperatures
were increased by 0.68, 0.54, 0.47, and 0.17 C, respectively.
Considering that the TP forcing was more than 5 °C at the
initial step, the warming averaged in the first month was
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rather weak, implying a large energy loss during the spin-
up to gain the surface-atmosphere balance through ground
longwave emission and sensible heat. Nonetheless, the result
demonstrated that CWREF could retain a portion of the initial
forcing to reduce the systematic cold bias in the May air tem-
perature anomaly by almost half (—0.73 versus —1.41 C).
Initially, the soil forcing influence was confined to TP in
May and then induced a significant response in East China
by altering large-scale circulation (see below). Especially,
in July large cooling of 0.5-1.5 “C appeared in Northeast to
North China, and in August this cooling expanded south-
ward to cover North to Central China. Meanwhile, a band of
heating appeared to the south of the Yangtze River, evident
in July over Zhejiang-Fujian and western Yunnan and more
organized in August across the divide between Central and
South China.

The precipitation responses to the TP heating appeared
earlier (Fig. 5b). In May, significant rainfall increases
occurred over the eastern TP, a source region of the Yang-
tze River, together with changes of both signs over smaller
areas around the middle to lower reaches of the river. In
June, the signal was amplified, when rainfall increased over
the eastern and southern TP and in most of the Northeast and
decreased over the North and in scattered regions across the
Yangtze River and the south and eastern borders of continen-
tal China. In July, the changes were more pronounced and
much more organized. Large decreases (up to 7 mm day ™)
occurred in a long band extending from Inner Mongolia to
North and Northeast China. At the same time, there were
large increases (up to 7 mm day~') immediately to the south
of the band, covering the broad areas across the source
region of both the Yellow and Yangtze Rivers, between their
middle reaches, in the Yellow River lower reach, and the
Shandong Peninsula. Further south, notable decreases (up to
2 mm day ") occurred in the Sichuan Basin. This oscillating
pattern indicated a systematic southward shift of the sum-
mer monsoon rainband in East China. In August, the rain-
band was still shifted southward. Large decreases focused
across Inner Mongolia to North China, while large increases
expanded over most areas between the two rivers. Further
south, large decreases extended over most of the Southwest
and the regions south of the Pearl River. Meanwhile, modest
increases existed in the Northeast.

Figure 6 shows May to August monthly mean distribu-
tions of surface air temperature and precipitation differences
between the warm start IbTpWc and IbTnWn. The TP heat-
ing was systematically weaker than the cold start. On aver-
age over TP, May—August monthly mean temperatures were
increased by 0.55, 0.31, 0.18, and 0.07°C. This weakening
was expected as the initial soil moisture content was several
times lower in the warm than cold start so that much less
latent heat was retained under the same temperature forcing.
Correspondingly, the remote temperature effects of the TP
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Fig.5 CWREF simulated
monthly (May—August) mean
differences in a temperature
(°C) and b precipitation (mm
day™!) between the cold start
InTpWc and InTnWn

2

-6 5 -4

heating were also weaker, but the spatial patterns resem-
bled those from the cold start. One exception was in August
when the strong cooling center across North to Central

3 2 10505 1 2 3 4 5 6

China from the cold start was replaced with a broad warming
(0.5-1.5 °C) center over Central China excluding the region
across Jiangsu-Zhejiang-Jiangxi. For precipitation, the
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Fig.6 CWREF simulated
monthly (May—August) mean
differences in a temperature
(°C) and b precipitation (mm
day™!) between the warm start
IbTpWc and IbTnWn

I
-3 25 -2

15 -1

-0.5 -0.2

-6 -5 -4

responses were also generally weaker in the warm than cold
start, especially over TP. On the other hand, large changes
(up to 7 mm day~!) of both signs were still produced over
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broad downstream regions. In particular, the July and August
patterns resembled those from the cold start, albeit differing
in regional magnitude and coverage.
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Despite the response differences noted above between
the cold and warm starts, the delayed precipitation telecon-
nection patterns in East China were highly consistent with
each other and both were clearly identified with the sys-
tematic southward shift of the summer monsoon rainband.
Climatologically, the rainband is characterized by a stepwise
poleward advance over East China. It arrives in South China
during May, advances to the Yangtze River valley in June,
and establishes in North China together with another rain-
band in the Northeast in July (Samel et al. 1999). By early
August, the summer monsoon starts to retreat southward.
The TP forcing must have altered the summer monsoon cir-
culation so to change the rainband advance and retreat pro-
cesses. Subsequent analyses explored the key mechanisms
underlying the delayed teleconnection from the spring heat-
ing over TP. Given that the cold start introduced excessive
surface-atmosphere inconsistencies and imposed unrealistic
big energy perturbations, the analyses below focused on the
warm start IbTpWc minus IbTnWn differences.

The initial soil temperature represents the heating source
over TP, which decays over time. The decay speed depends
on soil thermal diffusivity which equals thermal conductiv-
ity divided by density and specific heat capacity at constant
pressure. Given its large density and heat capacity, the soil
has small diffusivity and so slow decay for its initial forc-
ing. Thus, the soil has a long memory, a prerequisite for
the TP heating to induce delayed local and remote climate
responses.

Soil Depth(m)

May Jun Jul Aug Sep Oct Nov  Dec

0 04 08 1.2 1.6 2 24 28 32 36 4 44 48 5

Fig.7 Depth-time variations of the TP-averaged soil temperature dif-
ferences between the warm start IbTpWc and IbTnWn. The dashed
lines depict interfaces between model soil layers

Figure 7 shows the variation of daily mean soil tem-
perature vertical profile differences averaged over TP. Ini-
tial temperature forcing is well preserved in the soil with
the penetrating (to deeper layers) and decaying (in time)
rates close to observations (Liu et al. 2020), indicating that
CWREF/CSSP is able to reproduce this soil memory, which
is difficult to do in other climate models (Xue et al. 2021).
The memory increases with depth, so initial soil temperature
perturbations in deeper layers decay significantly slower. In
upper layers, the forcing of initially ~5 “C drops to 2 “C in
only a few days, while the same change takes 50 days at
1-m depth and 100 days at 2-m depth. Once the soil reaches
below 2 m, half of the initial forcing can be maintained for
more than 2 months, from spring to summer. At the bottom
of the soil, a certain amount of the forcing (~ 1 °C) persists
even into the following year. The above results are consistent
with the observed characteristics of soil temperature distri-
bution, i.e., deep layer soil usually has very weak seasonal-
interannual variation.

The soil temperature evolution reveals a robust energy
transfer path through surface sensible and latent heat fluxes
(Fig. 8). The near-surface soil layer continuously transfers
sensible heat to the air (remaining significant until Septem-
ber), resulting in an increased soil temperature gradient
between shallow and deep layers, thereby generating more
heat transfer upward. This heat transfer process is slow,
retaining deep layer heating for over four months. The sur-
face warming enhances evapotranspiration as depicted by
the positive latent heat difference over TP, which is generally
weaker than that of the sensible heat. This increases local
precipitation in the first few months (Fig. 6) but also quickly
dries out soil moisture during the initial one month, although
with following wetter conditions due to more precipitation
(Fig. S3). Thus, the memory of soil moisture is significantly
shorter (by ~2 months) than that of soil temperature. In
addition, the warmer surface also produces larger longwave
emissions. In summary, the initial TP forcing, especially in
deep soil, acts as a long-term heat source, and the continued
ascent of moist hot air masses enhances local convection and
precipitation.

After the TP heating continues for about a month, nota-
ble changes in both sensible and latent heat fluxes appear
remotely in East China. In June, larger sensible heat down-
stream of TP coincides with warmer air temperatures
between the lower reaches of the Yangtze and Yellow Riv-
ers, while latent heat and so rainfall changes of both signs
spread across East China (Fig. 6). In July, the downstream
sensible heat response is weak (with colder air temperatures
shifted northward into North-Northeast China), while the
latent heat and rainfall changes in East China are enhanced.
In August, both increases in sensible heat and decreases in
latent heat are significantly enlarged downstream of TP,
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Fig.8 CWRF simulated time-longitude variations of 27° N=37° N latitudinal mean surface a sensible and b latent heat flux (W m~2) differences
between the warm start IbTpWc and IbTnWn. The black lines depict the latitudinal mean terrain elevation (m), using the scale on the right

which correspond to more organized temperature and pre-
cipitation increases there. Remote signals widely spread
across East China and coastal oceans in July and August.
These signals are essentially produced by atmospheric per-
turbations induced remotely by the initial TP heating, as
discussed below.

The warmer surface of TP results in a smaller air density
and lower pressure in near-surface layers, causing an anom-
alous convergence and upward motion, which promotes
stronger local turbulent mixing and a deeper, warmer plan-
etary boundary layer (Fig. S2). Combined with the moisten-
ing from more evapotranspiration, the forced rising warmer
and wetter air mass increases local precipitation. Since TP
has a considerable area of elevations above 5000 m, the
impact of its surface heating can be rapidly transmitted to the
middle and even upper troposphere, producing geopotential
height anomalies aloft.

To better understand how the TP heating effect on the
atmospheric circulation evolves in space and time, we com-
pared the day-by-day (Fig. S4) and week-by-week (Fig. S5)
geopotential height results between the runs initiated on May
1. We did not use the ensemble mean of the 10 members
initialized one day apart, because their cumulative 10-day
span would interfere the comparison considering that the
large-scale wave propagation across China may take only a
few days. On the first day, the TP heating induces above a
coupled 500-hPa cyclonic and 300-hPa anticyclonic circula-
tion anomaly. The associated vorticity anomaly propagates
downstream by large-scale waves, initially along the TP
latitude band under the prevailing westerly flow and later
spreading to northern China and Mongolia. By days 3-4,
a negative 300-hPa height anomaly occurs over northeast
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China to southern Okhotsk Sea. This anomaly changes its
sign in day 5 and reappears in days 67, and so on. The
distance between the positive and negative anomaly centers
is ~5000 km and the traveling speed is~12 m s~!, which
are consistent with the characteristic wavelength and phase
speed of Rossby waves. In the first week, the 300 and 500-
hPa anomalies are almost opposite in sign, so to enhance
baroclinicity. The circulation anomalies are continuously
adjusted along with the evolving vertical motion and latent
heat, and finally become quite stationary and barotropic after
week 7. During the entire process of the wave activities,
the boundaries between significant 300-hPa cyclonic and
anticyclonic anomalies mostly overlay the exit region of the
East Asian upper-level westerly jet (ULJ), around North-
Northeast China. These anomalies exert important impacts
on the jet location and the secondary circulation across the
jet, which are essential to summer rainfall distribution in
East China (Liang and Wang 1998).

The condensation latent heat and vertical energy transport
by the enhanced moist convection as well as the induced
stronger subsidence and adiabatic heating collaborate to
produce widespread warming in the mid-upper troposphere
beyond the forcing area over TP. In May, this causes a per-
turbed warming center at 100 hPa to the northeast of TP,
covering the entire Yellow River basin, and shifts the ULJ
northward (Fig. 9). The heating elevation is strengthened in
June and expanded to also cover the entire Yangtze River
basin, while the jet north shift continues. In July, the mean
(i-e., unperturbed or IbTnWn) SAH (see the 17,700 m con-
tour at 100 hPa) intensifies and advances northward to gov-
ern across the entire TP to Central China, while the mean
ULIJ (see the 25 m s™! contour) jumps by ~ 10° to the north
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of the June position (Fig. 9b). The TP heating now induces
the warming perturbation across the SAH center latitude
band from TP to Central China and coastal oceans, which
is coupled with a significant cooling center over the North-
east. That cooling adds perturbed resistance to the ULJ north
jump, keeping it more to the south. As a result, the Northeast
to North China is under the influence of subsidence cooling
air behind the ULJ’s left exit and so has colder and drier
surface conditions, whereas the lower reach of the Yellow
River basin is affected by stronger ascending motion on the
ULJ right exit and so has more precipitation (Fig. 6). In
August, the mean SAH further intensifies while the mean
ULJ strengthens and continues moving northward (Fig. 9).
Although the SAH northern cooling (southern warming)
perturbations induced by the initial TP heating largely dis-
sipate (diminish), the ULJ exit core is enhanced and concen-
trated (from both north and south sides). This causes even
stronger descending motions not only beneath the ULJ’s
left exit but also to the far-right flank, and hence results in
less precipitation across Inner Mongolia to North China and
warmer surface air temperature over Central China, respec-
tively (Fig. 6).

Figure 10 shows the composite of monthly mean differ-
ences in precipitation, 850-hPa wind vector, and 200-hPa
zonal wind component, whose mean value is also overlaid to
depict the ULJ position. A major signal occurs in July when
the mean ULJ core locates right above the Northeast and is
accompanied by significant positive (negative) perturbations
to its right (left) exit. This indicates the ULJ is shifted south-
ward, which is associated with a strong low-level cyclonic
circulation anomaly across the Northeast coasts, the Yellow
Sea, the Korean Peninsula, the Sea of Japan, and Japan. As
shown by Liang and Wang (1998), a south shift of the ULJ
induces a secondary circulation across the jet exit region
with upward (downward) motions to the right (left). Conse-
quently, a pronounced cooling and drier center occurs over
the Northeast, whereas a heavier rainfall center appears in
North China and across the Yellow Sea, Korea to Japan
(Figs. 6, 9, 10). These anomalous changes weaken in August.

Note that the changes in near-surface and shallow-soil
temperatures as well as surface sensible and latent heat
fluxes over TP decrease significantly after June (Figs. 7, 8).
Thus, the enhanced surface air temperature and precipitation
anomalies during July and August over East China (Fig. 6)
may not be a direct response to the weak TP forcing that
remains in these months. In addition, the lateral boundary
and sea surface conditions were kept identical between all
CWREF runs such that planetary forcing signals outside of
the domain and oceans were precluded. Furthermore, soil
temperature anomalies in the downstream regions are very
weak and hardly penetrating below 20 cm (Fig. S3). In fact,
significant high positive (> 0.4) correlations occur between
daily precipitation and soil moisture variations during

summer when the former leads by 2—0 days, whereas they
are insignificant reversely. Thus, soil moisture anomalies,
although significant in some regions, are mainly the result
(rather than the cause) of local precipitation changes. There-
fore, the primary mechanism that keeps the long memory
outside the TP forcing area is likely preserved in the atmos-
pheric circulation anomalies as identified above. In par-
ticular, the altered SAH and ULJ circulation features are
responsible for the summer temperature and precipitation
changes in East China.

Note also that subtle differences exist between the SVD
statistical analysis and the CWRF perturbed simulation.
The SVD results show lag correlations between the spring
near-surface TP heating and the summer precipitation in
East China. In contrast, the model simulations capture the
dynamic effects of the initial surface and subsurface soil
temperature perturbations that persist in the subsequent
months. If the perturbation had been stopped at the end of
May, the summer temperature and precipitation anomalies
simulated by CWRF would be truly delayed responses. How-
ever, as discussed above, the remaining TP perturbation after
June tend to play a minor role on July—August anomalies
over East China. Additional experiments may be helpful to
confirm this argument.

6 Conclusion

Observational data analysis showed that spring surface air
temperature anomalies on TP were correlated with summer
precipitation variations in East China. Since CWRF repro-
duced well this observed relationship, it was used here for
a case study in 2003 to explore the physical processes and
underlying mechanisms of how initial TP soil heating in
May induces significant local and remote responses in sum-
mer temperature and precipitation. We found that initial
heat in deep soil layers is memorized for several months and
continues to be transmitted upwards through the surface to
the atmosphere from spring through summer. This provides
an elevated heating source through longwave emission and
sensible/latent heat flux to warm/moist the air and enhance
local convection and precipitation. The enhanced moist con-
vection causes larger condensation latent plus subsidence
adiabatic heating to the mid-troposphere, in which the pre-
vailing westerly advection and thermal expansion transport
the heat downstream to produce widespread warming in the
mid-upper troposphere beyond the forcing area over TP. This
transport is accomplished through Rossby waves with signif-
icant vorticity anomalies induced by the TP heating. These
waves are initially propagating downstream and eventually
become stationary, causing important circulation anomalies
over the ULJ exit region. Together, the warming strength-
ens the SAH and shifts the ULJ, which induces stronger
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subsidence cooling air behind the jet left exit and ascending  center over the Northeast and a heavier rainfall center in
motions to the right. Consequently, in July, a south shift of =~ North China. There are other responses in both temperature
the ULJ is accompanied by a significant cooling and drier
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«Fig. 9 CWREF simulated a monthly (May—August) mean differences
between the warm start IbTpWc and IbTnWn in 100-hPa geopoten-
tial height (colors, m), overlaid with IbTnWn 100-hPa geopotential
height (red contours, m), and 105° E and 125° E longitudes (green
dash lines), and b altitude (pressure, hPa)-latitude cross section of
the 105° E-125° E longitudinal mean wind circulation differences
between the warm start IbTpWc and IbTnWn from May to August.
In b, the zonal (m s™') and meridional (m s™')/ vertical (10~ hPa s™!)
wind components are represented by contours and vectors, respec-
tively. The shaded areas denote the statistical significance at the
a<0.1 level of 7 test values. The thick curves show the corresponding
longitudinal mean precipitation (green, mm day~!) and temperature
(red, °C) differences, and the gray shading depicts the mean terrain
elevation

and precipitation over broad regions in East China, depend-
ing on which month from May to August.

Our results confirmed that the spring TP soil heating has
an important delayed impact on downstream precipitation in
East China. Two issues warrant further investigation. One
issue is due to the extremely rare availability of observa-
tional data over TP. Currently, monitoring temperature and
precipitation data are available only for a few sites in the
central to western Tibet (see Fig. S1 in Liang et al. 2018),
and soil temperature observations are even less (see Fig.
S1 in Liu et al. 2020). The modern reanalyses also contain
great uncertainties over TP (Xu et al. 2021), and correlations
among different reanalyses are generally low. This makes
it extremely difficult to evaluate the model performance
or identify model biases for improving soil initialization.
Another issue concerns the source of the spring TP thermal
forcing, whether it is due to observed anomalies or model
deficiencies. Some studies argued that anomalies in winter
snowfall and subsequent snow accumulation change surface
albedo and so solar radiation to impose thermal forcing from
the surface into deep soil storage for later release in spring
(Souma and Wang 2010; Lau and Kim 2018). Others showed
that model radiation schemes have the greatest impact on
TP temperature simulations (Xu et al. 2021). In both cases,
the heating transfer from the surface to subsurface layers is
a very slow process, still open to understand its actual role
for charging the signal.
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Fig. 10 CWRF simulated monthly (May—August) mean differences
between the warm start IbTpWc and IbTnWn in 850-hPa horizontal
wind (vector, m s~!), 200-hPa zonal wind (contour, +{0.5, 1.0, 1.5}
m s~!) and precipitation (color, mm day™!), overlaid with IbTnWn
200-hPa zonal wind speeds in dashed contours (staring from 25 at an
interval of 5)
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