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ABSTRACT
This article investigates statistical inference for noisy matrix completion in a semi-supervised model when
auxiliary covariates are available. The model consists of two parts. One part is a low-rank matrix induced by
unobserved latent factors; the other part models the effects of the observed covariates through a coefficient
matrix which is composed of high-dimensional column vectors. We model the observational pattern of the
responses through a logistic regression of the covariates, and allow its probability to go to zero as the sample
size increases. We apply an iterative least squares (LS) estimation approach in our considered context. The
iterative LS methods in general enjoy a low computational cost, but deriving the statistical properties of
the resulting estimators is a challenging task. We show that our method only needs a few iterations, and
the resulting entry-wise estimators of the low-rank matrix and the coefficient matrix are guaranteed to have
asymptotic normal distributions. As a result, individual inference can be conducted for each entry of the
unknown matrices. We also propose a simultaneous testing procedure with multiplier bootstrap for the high-
dimensional coefficient matrix. This simultaneous inferential tool can help us further investigate the effects
of covariates for the prediction of missing entries. Supplementary materials for this article are available
online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Advances in modern technology have facilitated us to collect
large-scale data that are naturally presented in the form of a
matrix with both dimensions increasing vastly. Recovering an
intact matrix from partial observations, known as the matrix
completion problem, has received considerable attention in
different fields. Most existing methods for estimating missing
entries of a matrix only use information from its partial obser-
vations. In many real applications, auxiliary information is often
available in addition to the observed entries. For example, in
a recommender system that aims to predict ratings of users
based on the observed ratings from others, the data often con-
tain additional information such as user demographical profiles,
apart from the observed ratings by users. Indeed, such auxiliary
information can be exploited to enrich the basic model and
improve prediction accuracy, especially when only a few entries
are observed. Because of the increased availability of auxiliary
covariates in real-world datasets, there is a pressing need to
develop matrix completion techniques that can make good use
of the auxiliary information. As a result, a few computational
algorithms have been recently proposed to tackle this problem,
see, for example, Xu, Jin, and Zhou (2013), Chiang, Hsieh, and
Dhillon (2015), Zhu, Shen, and Ye (2016), Alaya and Klopp
(2019), and Jin, Ma, and Jiang (2022), and see Ibriga and Sun
(2023) for tensor completion with covariate information.

In this article, we consider a semi-supervised model for the
matrix completion problem with row-feature information, in
which a target matrix � ∈ R

n×m can be written as

CONTACT Shujie Ma shujie.ma@ucr.edu Department of Statistics, University of California at Riverside, Riverside, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

� = Xβ ′ + �, (1)

where X ∈ R
n×d is an observable row-feature matrix, β ∈ R

m×d

is an unknown coefficient matrix for X, and � ∈ R
n×m is an

unknown low-rank matrix driven by unobserved latent factors,
so that it can be decomposed as � = LF′ with L ∈ R

n×r and F ∈
R

m×r . As a result, we have � = Xβ ′ +� = [X, L][β , F]′. There-
fore, the target matrix � can be learned from both observed
covariates in X and unobserved latent variables in L of the
subjects, while β and F can be considered unknown coefficients
for X and L, respectively. For example, in a recommendation
system, we use the observed baseline characteristics in X and the
unobserved variables in L of users to predict their ratings. This
model was also mentioned in Fithian and Mazumder (2018)
and Mao, Chen, and Wong (2019), and they proposed different
penalized methods for estimating the parameters. Moreover,
Mao, Chen, and Wong (2019) has investigated the convergence
rates of their proposed penalized estimators.

Unlike Fithian and Mazumder (2018) and Mao, Chen, and
Wong (2019) that focus on the estimation of the target matrix, we
aim to perform statistical inferences for the unknown matrix �

and the high-dimensional coefficient matrix β in model (1). Our
goal is to provide an interval estimator associated with a given
confidence level rather than a point estimator for each entry in �

and to test the significance of the covariates for the prediction of
the missing entries. For the matrix completion problem with an
incomplete and noise-corrupted data matrix, estimation error
bounds in terms of entry-wise, Euclidean and spectral norm
losses have been established for the estimators of the unknown
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low-rank matrix, obtained from various convex and nonconvex
optimization algorithms (e.g., Candes and Plan 2010; Koltchin-
skii, Lounici, and Tsybakov 2011; Negahban and Wainwright
2012; Chen et al. 2020; Athey et al. 2021). However, confidence
intervals derived directly from such bounds are expected to be
too conservative, which is mainly caused by the presence of a
nonnegligible bias.

To quantify the uncertainty associated with a parameter esti-
mator, one needs to characterize the (asymptotic) distribution of
the estimator. In general, this is a challenging task to accomplish
when fitting a high-dimensional statistical model, as it involves
nonlinear and non-explicit parametric estimation procedures
(Javanmard and Montanari 2014). It can be even more difficult
to derive the asymptotic distribution when the data matrix has a
large number of missing entries. Thus, the literature on inference
for matrix completion is still scarce. There is some recent devel-
opment in statistical inference for matrix completion without
the observed auxiliary covariates based on either a de-biased
strategy or singular value decomposition (SVD) estimation. Car-
pentier et al. (2018), Chen et al. (2019), and Xia and Yuan (2021)
proposed de-biased estimators to construct confidence intervals
of the unknown underlying matrix with a low-rank structure.
The de-biased estimators are built upon initial estimates that
can be obtained from nuclear norm penalization. A sample
splitting step is needed in the approach considered in Carpentier
et al. (2018) and Xia and Yuan (2021). Jin, Miao, and Su (2021)
proposed an iterative SVD method with the missing entries
replaced by the SVD estimates from the previous step. Their
estimator requires that the number of iterations diverges with
the sample size to have asymptotic normality. Under a block
structure assumption for the observed entries, Bai and Ng (2021)
and Cahan, Bai, and Ng (2022) proposed to impute the missing
values using the estimated factors and loadings obtained from
applying SVD on fully observed sub-matrices. Moreover, Xiong
and Pelger (2023) applied SVD to an adjusted covariance matrix
computed from observed data.

Unlike the aforementioned works, we consider an iterative
least squares (LS) estimation procedure and provide an infer-
ential analysis for the parameters of model (1) with auxiliary
information. The iterative LS method has become a popular
approach for matrix completion due to its computational advan-
tages (Zhou et al. 2008; Hastie et al. 2015; Sun and Luo 2016).
However, the literature on the asymptotic distributions of itera-
tive LS estimators is still scarce. Our algorithm starts from the
initial estimates of β and �, which are obtained from ordinary
LS regression and SVD of the residual matrix, respectively. Based
on these initial estimates, we show that we only need to iterate
the LS estimation a finite number of times, and the resulting
entry-wise estimators of β , � and � are guaranteed to have
asymptotic normality. As a result, a pointwise confidence inter-
val and individual inference can be conducted for each entry
of the unknown matrices. The iterative LS method enjoys low
computational cost compared to the iterative SVD approach
(Jin, Miao, and Su 2021), but the development of its statistical
properties is quite challenging. We show that without including
the covariate matrix in the model, our iterative LS estimator
of the unknown low-rank matrix � has the same asymptotic
distribution as the iterative SVD estimator proposed in Jin,
Miao, and Su (2021). Because our method only requires finite

iterations of LS estimation, it is computationally more efficient
and much faster than their method which needs to iterate the
SVD procedure a diverging number of times. This computa-
tional advantage becomes more significant as the data matrices
are larger. Moreover, we allow that the observational pattern
of the responses depends on the baseline covariates and its
probability goes to zero as the sample size increases, whereas the
existing works on inference for matrix completion require the
observational probability of the responses to be independent of
the baseline covariates and/or be bounded below by a constant.

It is worth noting that each column of the coefficient matrix
β is a high-dimensional vector when m is large. It is of practi-
cal interest to conduct simultaneous inference for these high-
dimensional column-vectors in β , which correspond to the
effects of the covariates for the prediction of all missing entries
jointly. To achieve this goal, we develop a Gaussian multiplier
bootstrap inferential procedure, and provide theoretical justifi-
cation for our bootstrap-based simultaneous inference in this
high-dimensional setting. Gaussian multiplier bootstrap that
involves empirical processes is considered a powerful tool for
conducting tests in classical statistical problems, and has recently
been successfully applied to high-dimensional regression set-
tings (Chernozhukov, Chetverikov, and Kato 2013, 2017). Our
work is the first to apply this technique to the matrix com-
pletion problem with a thorough theoretical investigation. The
proposed multiplier bootstrap inferential method can help us
identify the important auxiliary covariates for the prediction of
all missing entries.

In model (1), the rank of matrix �, which is r, is unknown a
priori. We propose a new information criterion (eIC) method for
estimating r based on our iterative LS method, and show that the
proposed eIC approach can consistently estimate r with a high
probability. This method has better finite sample performance
than the commonly used singular-value-based approaches for
rank selection in matrix completion, and its advantage becomes
more significant when the data have more missing entries.

The rest of this article is organized as follows. The proposed
estimators and the theoretical results are given in Section 2
and Section 3. Section 4 provides the information criterion
method for rank estimation. The simultaneous inference for β is
given in Section 5. Sections 6 and 7 provide simulation studies
and analysis of the MovieLens 1M dataset using the proposed
method, respectively. A conclusion is given in Section 8. All
technical proofs and additional numerical results are provided
in the supplementary materials.
Notations. Throughout the article, ‖ · ‖ denotes the spectral
norm, ‖ · ‖∗ the nuclear norm, ‖ · ‖F the Frobenius norm, and
‖ · ‖∞ the maximum absolute value of the entries of a matrix.
Let A ◦ B be the Hadamard product of two matrices A, B of
the same dimensions. Let n ∧ m (n ∨ m) denote the minimum
(maximum) of n and m. For two sequences of positive numbers
an and bn, an 
 bn means an = o(bn) and an � bn means that
an = O(bn).

2. Model and Estimation

2.1. The Model

We consider the following model:
Y = � + ε = Xβ ′ + � + ε, (2)
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where Y , �, ε ∈ R
n×m, X = (X1, . . ., Xn)′ ∈ R

n×d in which
Xi = (1, X̃′

i)
′, and X̃i ∈ R

(d−1)×1 is the vector of baseline
covariates for the ith subject. Moreover, β = (β1, . . ., βm)′ ∈
R

m×d with βj ∈ R
d, so model (2) allows the unknown coef-

ficients of the covariates to be different across j. We assume
that � = {�ij} = LF′ with L = (L1, . . ., Ln)′ ∈ R

n×r and
F = (F1, . . ., Fm)′ ∈ R

m×r . We let r and d be fixed. To identify
β , we assume that E(Li|X̃i) = 0, and Fj are independent of
X̃i and Li. We do not observe all entries in Y = (Yi,j), so let
� = (ξi,j) ∈ R

n×m with each entry ξi,j ∈ {0, 1} denoting the
status of Yi,j: ξi,j = 1 if and only if Yi,j is observed.

We assume that P(ξi,j = 1|X̃i) = η(γ0,n + X̃i
′
γ1) = πi, where

γ0,n = log(αn)+γ0 and η(·) is the logit link function for logistic
regression, so the probability of the observed rate depends on
the baseline characteristics of each subject. We allow αn → 0
as n → ∞, so πi → 0 as n → ∞. The probability of the
observed responses πi can be written as πi = αne(γ0+X̃i

′
γ1)/{1 +

e(γ0,n+X̃i
′
γ1)}, so the rate of αn determines how fast πi can go to

zero, which will be discussed in Section 3.

2.2. The Estimation Procedure

2.2.1. Initial Estimators
To obtain an initial estimator of β , we compute the ordinary
LS estimator β̂ = (β̂1, . . . , β̂m)′ without considering the latent
matrix �, so each β̂j is obtained by

β̂j =
(∑n

i=1
XiX′

iξi,j
)−1 (∑n

i=1
XiYi,jξi,j

)
. (3)

Next, we obtain an SVD estimate of � as follows. Define

Wi,j = π̂−1
i ξi,j(Yi,j − X′

i β̂j). (4)

where π̂i = η(γ̂0,n + X̃i
′
γ̂1) is the estimated observation rate for

the ith subject, in which

γ̂ = (γ̂0,n, γ̂1) = arg min
r0,r1∑n

i=1

∑m

j=1
Yij(r0 + X̃′

ir1) − log(1 + exp(r0 + X̃′
i r1)).

We perform SVD on W such that W = UDV ′ = ∑m∧n
s=1 dsusv′

s
where ds’s are the singular values in D in decreasing order and
us’s, vs’s are the corresponding left and right singular vectors in
U and V . Then for a given rank r, the SVD estimator of � is
�̂ = (�̂i,j) = L̂F̂ = ∑r

s=1 dsusv′
s where L̂ = √

n (u1, . . . , ur)

and F̂ = 1/
√

n (d1 · v1, . . . , dr · vr).

2.2.2. The Iterative LS Estimators
The initial estimator �̂ = L̂F̂′ is actually the minimizer of the
following function:

f (β̂ , L, F) =
∥∥∥LF′ − diag (π̂)−1(Y − Xβ̂ ′) ◦ �

∥∥∥2

F
, (5)

where π̂ = (π̂1, . . . , π̂n)′, and diag (π̂) is an n × n diagonal
matrix with the diagonals being π̂1, . . . , π̂n and the off-diagonal
entries equal to zeros.

In the above function, the missing values are treated as zeros
and contribute to the residuals while fitting, so the resulting

estimates may not be optimal as they ignore the information
about the missing positions. To solve this problem, we consider
another objective function in which the missing entries do not
contribute to the residuals, and propose an updating procedure
(algorithm) that iteratively updates the estimates using the esti-
mates given in Section 2.2.1 as the initial values.

We define the following objective function where the missing
values do not contribute to the residuals:

f ∗(β , L, F) = ∥∥� ◦ [ LF′ − (Y − Xβ ′) ] ∥∥2
F . (6)

Although it is hard to find out the joint minimizers of (6)
explicitly, we can easily obtain its minimizer of each β , L, and
F if the other two are fixed at their current values by solving an
LS problem. Therefore, we can consider the following updating
procedure:

β̃(g) = arg minβ f ∗ (
β , L̃(g−1), F̃(g−1)

)
;

F̃(g) = arg minF f ∗ (
β̃(g), L̃(g−1), F

)
;

L̃(g) = arg minL f ∗ (
β̃(g), L, F̃(g)

)
(7)

for any given g ≥ 1, where g is the step index in the iterative
algorithm. This algorithm requires initial values for L̃ and F̃ to
start with. An obvious option is to use L̃(0) = L̂, and F̃(0) = F̂
given in Section 2.2.1. Then the resulting estimator of � at the
gth step is

�̃(g) = L̃(g)F̃(g)′ . (8)

We call the corresponding estimators β̃(g) and �̃(g) the iterative
LS estimators.

3. Asymptotic Theory

3.1. Assumptions

We make the following assumptions to investigate the asymp-
totic theories about the proposed iterative LS estimator.

Assumption 1.

(i) Yi,j ⊥ ξi,j|(X̃i, Li, Fj).
(ii) Assume ξi,j = 1{γ0,n + X̃′

iγ1 ≥ vi,j}, where {vi,j}1≤i≤n,1≤j≤m
is a sequence of iid logistic random variables independent of
(ε, X, L, F). Denote P(ξij = 1|X̃i) = η(γ0,n + X̃′

iγ1) = πi,
where γ0,n = log(αn) + γ0, η(·) is the standard logistic cdf,
and αn ≤ 1 is some deterministic sequence.

(iii) n1/2 log(m + n) � m � n2 and (n ∨ m)
 
 (n ∧ m)α2
n for

an arbitrarily small constant 0 < 
 < 1.
(iv) There exists a constant C > 0 such that

sup
||u||≤C

∥∥∥∥ 1
nαn

n∑
i=1

�i(u)(1 − �i(u))XiX′
i − H0

∥∥∥∥ = oP(1),

where �i(u) = �i(u0, u1) = η((γ0,n + u0(nmαn)−1/2) +
X̃′

i(γ1 + u1(nmαn)−1/2)), and H0 = E{exp(γ0 + X̃′
iγ1)XiX′

i}
is positive definite.

(v) Entries of X̃i have sub-Gaussian norms bounded by a con-
stant, �X = E

(
XiX′

i
)

and α−1
n E

(
πiXiX′

i
)

have eigenvalues
bounded away from zero and infinity for i = 1, . . . , n.
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(vi) Entries of Li, Fj, and εi,j have sub-Gaussian norms bounded
by a constant.

(vii) For some constant c > 0,

P
(
σr(L′L/n) > c

) → 1, P
(
σr(F′F/m) > c

) → 1,

P

(
σr

( n∑
i=1

LiL′
iπi/(αnn)

)
> c

)
→ 1,

P

(
σr

( n∑
i=1

XiX′
iπi/(αnn)

)
> c

)
→ 1,

where σr(A) is the rth largest singular value of A.
(viii) Conditional on (X, L, F), εi,j is independent across (i, j)

with E(εi,j | L, F, X) = 0. {X̃i}n
i=1, {Li}n

i=1 and {Fj}m
j=1 are

sequences of iid random variables, respectively.

With the above assumptions and the model identification
assumption that E(�ij|Xi) = 0, we can first show that β̂ and �̂

are consistent estimators of β and � (see supplement B).

Remark (Comments about Assumption 1). Assumption (i)
assumes that the response Yi,j and the variable for missingness
ξi,j are independent conditional on the observed covariates and
the latent variables. Assumption (ii) assumes that the missing-
ness of each response depends on the observed baseline covari-
ates of each individual, and the probability of the missing pattern
is modeled through a logistic regression model, which is called
the propensity score function (Rosenbaum and Rubin 1983).
This assumption is more relaxed and practical than the “missing
uniformly at random” condition imposed in Carpentier et al.
(2018), Chen et al. (2019), and Jin, Miao, and Su (2021) for
statistical inference. For example, in the MovieLens data in
Section 7, whether users rate a movie or not often depends on
their baseline characteristics, including gender, age, etc. It is
worth noting that when the baseline characteristics for movies,
denoted by Zj for the jth movie, are observed, it is possible to
include both X̃i and Zj in the logistic model such that ξi,j =
1{γ0,n +X̃′

iγ1 +Z′
jγ2 ≥ vi,j}. Our proposed estimation procedure

and its statistical properties can be extended to this model. We
can also consider a logistic model for missing probabilities by
including the entries of a latent low-rank matrix, denoted by Ai,j,
so ξi,j = 1{γ0,n + X̃′

iγ1 + Ai,j ≥ vi,j}. The estimation of the
unobserved Ai,j in this nonlinear model and the development of
the associated statistical properties are nontrivial. We leave the
study of extending our method to these two models for future
work.

Assumption (iii) provides the order requirement for n and
m. It is typically assumed to ensure the asymptotic properties
of the estimators of L and F in factor models; see Bai and Ng
(2002) and Jin, Miao, and Su (2021). Moreover, we allow αn to
decay to zero in polynomial order of n ∨ m. Given the sub-
Gaussianity of X̃i in Assumption (v), one has π := E(πi) =
O(αn), so αn is the observation rate that controls how fast the
probability of the observed responses goes to zero. If n and m
are of the same order, then the main restriction in Assumption
(iii) is that αn cannot decay to zero faster than n−1/2. If only
concerning the estimation in matrix completion models, αn can
decay to zero faster than the order given in Assumption (iii). For

example, Klopp (2014) provided a Frobenius norm-based esti-
mation error bound for the nuclear-norm penalized estimators
under the condition that the observation rate is polylog(n)/n.
To establish the distributional theory and uniform convergence
rate of our iterative LS estimators in matrix completion, we
require a higher observation rate, as the higher-order terms in
our estimator involve the term O(α−2

n ). To make the higher-
order terms negligible so the resulting estimator can have an
asymptotic linear expansion, αn needs to satisfy the condition
given in Assumption (iii).

Assumptions (iv)–(vii) are the moment and distribution con-
ditions on the covariates, latent variables, and error terms. These
are typical conditions for convergence rates and asymptotic anal-
ysis; see similar assumptions in Bai and Ng (2002), Chen et al.
(2019), and Jin, Miao, and Su (2021). Specifically, Assumption
(iv) can be directly verified by the uniform law of large numbers.
One sufficient condition for H0 being a positive definite matrix
is that Xi has compact support and EXiX′

i is of full rank. This
condition is common for sparse logistic regressions; see, for
example, Graham (2020, Assumption 3). Under the first condi-
tion in Assumption (viii), model (1) is correctly specified for the
conditional mean of the responses. The second condition can
be relaxed to that {X̃i}n

i=1, {Li}n
i=1 and {Fj}m

j=1 are sequences of
independent random variables. Our theoretical results still hold
under this relaxed condition.

The following two theorems provide the asymptotic repre-
sentations of β̃(g), �̃(g) and their proofs are left in supplement
B–D.

Theorem 1. Let Model (2) and Assumption 1 hold and κn =
(1/n+1/m)α

−3/2
n n1/q for a constant q > 0 that can be arbitrarily

large. The estimator β̃(g) obtained from the updating procedure
(7) has the following asymptotic representation for any finite g ≥
1,∥∥∥β̃(g) − β − n−1 (

� ◦ ε + diag (π)LF′)′ X(EπiXiX′
i)

−1
∥∥∥

2,∞
= OP (κn) ,

where π = (π1, . . . , πn)′, diag (π) is a diagonal matrix with π

as the diagonal, and ‖ · ‖2,∞ is the maximum row 2-norm of a
matrix.

Theorem 2. Let Model (2) and Assumption 1 hold. The estimator
�̃(g) defined in (8) has the following asymptotic representation,
for any finite g ≥ 1,

∥∥∥�̃(g) − � − �

∥∥∥∞ = OP (κn) , where � is
a n × m matrix with its (i, j)th entry being

�i,j = 1
n

L′
i(ELiL′

iπi)
−1

∑n

k=1
Lkξk,jεk,j

+ 1
mπi

∑m

t=1
F′

tξi,tεi,t�
−1
F Fj − 1

n
X′

iE(XiX′
iπi)

−1

∑n

k=1
πkXkL′

kFj, where �F = E
(

FjF′
j

)
.

Remark. Point-wise confidence intervals or inference for each
component in βj and � can be constructed based on the asymp-
totic representations given in Theorems 1 and 2. In addition, we
propose a multiplier bootstrap statistic in Section 5 for conduct-
ing simultaneous inference on the high-dimensional matrix β .
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Remark. The iterative estimation algorithm starts from
the initial ordinary LS estimator β̂ given in (3). Under
Assumption 1 (i), according to the derivation given in
Lemma 1 of the supplement, we can obtain the asymptotic
variance of β̂j, denoted by ṽar

(
β̂j

)
, as ṽar

(
β̂j

)
=

n−1(EπiXiX′
i)

−1{var(ξi,jXiεi,j) + var(ξi,jXiL′
iFj)}(EπiXiX′

i)
−1.

Moreover, from Theorem 1, we obtain the asymptotic
variance of the iterative estimator β̃

(g)

j , for g ≥ 1, denoted

by ṽar
(
β̃

(g)

j

)
, as ṽar

(
β̃

(g)

j

)
= n−1(EπiXiX′

i)
−1{var(ξi,jXiεi,j) +

var(πiXiL′
iFj)}(EπiXiX′

i)
−1. Given that E(ξi,jXiL′

iFj|Xi, Li, Fj) =
πiXiL′

iFj, one has var(ξi,jXiL′
iFj) = E{πi(1 − πi)�

2
ijXiX′

i} +
var(πiXiL′

iFj). Thus,

ṽar
(
β̂j

)
− ṽar

(
β̃

(g)

j

)
= n−1(EπiXiX′

i)
−1E{πi(1 − πi)�

2
ijXiX′

i}(EπiXiX′
i)

−1 ≥ 0.

This means that β̃
(g)

j always has a smaller asymptotic vari-
ance than β̂j. In fact, when the observation rate αn = o(1),
var(πiXiL′

iFj) in ṽar
(
β̃

(g)

j

)
is asymptotically negligible com-

pared to var(ξi,jXiL′
iFj) in ṽar

(
β̂j

)
, and thus the difference

between the asymptotic variances of the initial and iterative
estimators is larger when more observations are missing.

Remark. Without the existence of the covariate matrix X,
model (2) becomes Y = � + ε. When πi = π such
that missingness does not depend on covariates as consid-
ered in Jin, Miao, and Su (2021), our iterative LS estimator
�̃(g) − � at any finite g ≥ 1 has asymptotic representation:
π−1 (

n−1L�−1
L L′(ε ◦ �) + m−1(ε ◦ �)F�−1

F F′). Therefore, it
achieves the same efficiency as the iterative PCA estimator given
in Jin, Miao, and Su (2021), and it has been shown in Jin, Miao,
and Su (2021) that the iterative estimator has smaller asymptotic
variance than the initial estimator �̂ obtained from one-step
PCA when π < 1. We also note that to achieve such efficiency
improvement, Jin, Miao, and Su (2021) need the number of
iterations to go to infinity, while our iterative LS estimator only
requires a few iterations.

Remark. Based on the asymptotic linear expansions given in
Theorems 1 and 2, one can immediately obtain the error bounds
of our iterative LS estimators in Frobenius norm:

||β̃g − β||2F/m = OP(((n ∧ m)αn)−1 log n); ||�̃g − �||2F/(nm) = OP(((n ∧ m)αn)−1 log n). (9)

Since our iterative LS estimators are asymptotically unbiased, the
rate in (9) comes from the asymptotic variance. Under a similar
model as ours, Mao, Chen, and Wong (2019) proposed a reg-
ularized estimation method penalizing the nuclear and Frobe-
nius norms, and derived the convergence rate of the estimators
for β and �. Without incorporating covariates, regularization
methods based on different norms have been studied in the
matrix completion problems; see, for example, Klopp (2014)
and Cai and Zhou (2016). In general, the regularized estimators
have an inherent bias term from the penalties that can go into
the convergence rate in addition to the rate from the asymp-
totic variance. To conduct inference, a debiasing procedure is

often needed for the regularized estimation, which is nontrivial
in matrix completion problems. Our iterative estimators are
asymptotically unbiased and have an asymptotic linear repre-
sentation based on which we can conduct inference. Moreover,
the iterative LS estimation enjoys computational convenience,
which is important for modern large-scale data analysis.

4. Rank Estimation

In practice, r = rank (�) is often unknown and needs to be
estimated. In this section, we introduce a mean-square-error
(MSE)-based approach to estimating the rank. This method fully
takes advantage of the proposed iterative LS estimates, and it
is described as follows. We compute β̂ following (3). Recall
W defined in (4) and its SVD

∑m∧n
s=1 dsusv′

s. We then define
L̂kF̂k′ = ∑k

s=1 dsusv′
s as the analogues of L̂, F̂ in Section 2.2.1

with a superscript k denoting the rank used. Note that the true
rank is unknown, and thus k could vary and is not necessarily
equal to r. We then consider an estimation procedure similar to
(7) but without updating β :

F̃k,(g+1) = arg minF f ∗
(
β̂ , L̃k,(g), F

)
;

L̃k,(g+1) = arg minL f ∗
(
β̂ , L, F̃k,(g)

)
, (10)

where f ∗(·) is defined in (6). The initial value L̃k,(0) is set as L̂k.
Given a fixed positive integer g and for any k 
 n ∧ m, we

define the following function
mse

(
k, g

) = 1
nm

∥∥∥� ◦
(

Y − Xβ̂ − �̃k,(g)
)∥∥∥2

F
,

where �̃k,(g) = L̃k,(g)F̃k,(g)′ is the rank k iterative LS estimator of
� at step g ≥ 1.

We define the MSE-based rank estimating criterion and the
resulting estimator of the rank given as follows.

eIC(k | g) = log mse
(
k, g

) + k · h(n, m),
r̂eIC(g) = arg min1≤k≤r̄ eIC(k | g), (11)

for k ≥ 1 and a predetermined upper bound r̄, where k · h(n, m)

is a penalty function that depends on n, m. The theorem for the
statistical guarantee of r̂eIC(g) is stated below, and its proof is in
supplement E.

Theorem 3. Let Model (2) and Assumption 1 hold. Assume that
r̄ is fixed and satisfies r̄ ≥ r. The rank estimator r̂eIC(g) defined
in (11) satisfies P

(
r̂eIC(g) = r

) → 1 if h(n, m) = o(1) and√
mnαn
(m+n)

h(n, m) → ∞ in a polynomial rate in n ∨ m.

Remark. Theorem 3 shows that the MSE-based rank estimator
r̂eIC(g) can consistently estimate the true rank r when h(n, m)

satisfies certain conditions. Section 6.2 provides a formula for
calculating h(n, m) in our numerical analysis.

Remark. We have an interesting finding that the MSE-based
method for rank selection cannot be constructed based on the
initial estimates β̂ , L̂k and F̂k, where L̂k and F̂k are rank k
SVD estimates of L and F, because the MSE value may not be
decreasing as k increases when the observation rate is small. A
heuristic argument and the numerical illustration are given in
Section G of the supplementary materials.
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5. Bootstrap Inference of β

In this section, we provide a testing procedure for the null
hypothesis:

H0 : Ajβj = a0
j ∀j ∈ G (12)

where each Aj �= 0 is a given matrix with dimension q × k, and
q ≤ k, each a0

j is a q-dimensional vector, and G is a subset of
{1, . . ., m}. By Theorem 1,

β̃
(g)

j − βj = n−1 ∑n
i=1 ωi,j + smaller terms,

where ωi,j = E(πiXiX′
i)

−1Xi
(
ξi,jεi,j + πi�i,j

)
. Therefore, a sim-

ple test statistic is

T = max
j∈G

‖Ajβ̃
(g)

j − a0
j ‖∞. (13)

We can use a simple multiplier bootstrap procedure to compute
the p-value. Define

ω̂i,j = (
n−1 ∑n

i=1 π̂iXiX′
i
)−1 Xi

(
ξi,jε̂i,j + π̂i�̃i,j

)
,

where ε̂i,j = Yi,j−X′
i β̃j−�̃i,j, in which β̃j and �̃i,j are the iterative

LS estimates of βj and �i,j at the last step.
Let {ιi}n

i=1 be random variables generated from N(0, 1) that
are independent of the data. The bootstrapped test statistic is

T∗ = maxj∈G
∥∥n−1 ∑n

i=1 ιiAjω̂i,j
∥∥∞ . (14)

Conditional on the data, the randomness of T∗ comes from the
generated variables {ιi}n

i=1. By generating many realizations of
T∗, we can compute the (1 − α) quantile of T∗ conditional on
the data, that is, Q(T∗, 1 − α) satisfies P(T∗ ≤ Q(T∗, 1 − α) |
data) = 1 − α.

Assumption 2. Suppose that the following conditions hold:

i) There exists a constant M1 > 0 such that mini,j E(ε2
i,j |

X, L, F) ≥ M1 almost surely.
ii) (log m)5/2 
 min{nm−1/2, mn−1/2}.

Theorem 4. Let Model (2) and Assumptions 1 and 2
hold. Under the null hypothesis (12), if |G| ≤ m, then
P (T > Q(T∗, 1 − α)) = α + o(1), where T and T∗ are
defined in (13) and (14), and Q is the quantile function.

6. Simulation Studies

In this section, we conduct simulation studies to illustrate the
finite sample performance of our proposed iterative LS method.
We generate the responses by model (2): Y = Xβ ′ + � + ε,
where � = LF′, in which L ∈ R

n×r and F ∈ R
m×r . We

then generate the covariates, the coefficients, and the latent
matrices as follows. For i = 1, 2, . . . , n and j = 1, 2, . . . , m,
we independently generate the covariates by Xi ∼ N(0, �X),
the hidden matrix by Li ∼ N(0, �L), Fj ∼ N(0, 4�F), and the
noise by εi,j ∼ N(0, 1). The covariance matrices are (�X)k,k′ =
cov(Xi,k, Xi,k′) = 0.5|k−k′|, (�L)k,k′ = cov(Li,k, Li,k′) = 0.5|k−k′|
and (�F)k,k′ = cov(Fj,k, Fj,k′) = 0.2|k−k′|. We generate the
coefficients by βj ∼ N(0, 4Id). We regenerate (X, L, F, ε) for each
simulation replicate while β remains fixed. The dimension of Xi
and βj is d = 3 while the rank, r = 3, is considered for the latent
factor matrix.

Next, we generate the observed entries of the responses
according to the two data-generating processes (DGPs) with
constant and covariate-dependent observation rates, respec-
tively. For each type of DGP, we consider n = m =
200, 500, 1000 to see how the estimators and their asymptotic
properties behave in different sample sizes.

DGP 1 (Constant observation rate π). In this design, we
consider constant observed rates and run simulations for π =
1, 0.8, 0.5, 0.2 to see how the observed rate would affect the
performance (the data is fully observed when π = 1).

DGP 2 (Covaraiate-dependent observation rate πi). In this
design, we let the observational rates of the response variables
depend on the observed covariates of each individual, so we
generate πi from the logistic model: P(ξi,j = 1|Xi) = πi =
η(γ0,n + X′

iγ1), where γ0,n = log(αn) with αn = Cn−1/2 log n
and γ1 = (0.2, . . ., 0.2)′. We see that αn controls the sparseness
of the observed values of each response, and we allow that αn →
0 as n → ∞, so that πi → 0 as n → ∞. We let C = 1.0, 1.5, 2.0.
When the C value is larger, it corresponds to larger observation
rates of the responses.

When data are generated from DGP 1, we compare the
performance of our proposed iterative LS method with that of
the iterative PCA method given in Jin, Miao, and Su (2021). In
Jin, Miao, and Su (2021), they assume that the observed rate is
a constant π which is bounded below by a constant. As a result,
their setting only satisfies the condition on the observation rate
in DGP1, not the one in DGP2.

Without the presence of the covariates X, Jin, Miao, and Su
(2021) proposed to estimate � using an iterative PCA method
with the missing values of Y replaced by the PCA estimate of �

from the previous step. To make the iterative PCA method in Jin,
Miao, and Su (2021) be accommodated to our model (2), once
we obtain the estimate of � by PCA, we use the same LS method
to obtain the estimate for β . To distinguish the estimators from
our proposed method and the one from Jin, Miao, and Su (2021),
we denote our gth step iterative LS estimator by �̃

(g)

ls , and their
iterative PCA estimator by �̃

(g)
pca. The estimator �̃

(g)

ls is obtained
as described in Section 2.2.2. To adapt the iterative PCA method
given in Jin, Miao, and Su (2021) for our model, at the gth step,
g ≥ 1, we replace the missing values in W by the corresponding
values of the estimates obtained from the previous step, and then
�̃

(g)
pca is the rank r SVD of the updated W. Once the estimate of �

is obtained, the estimate of β is obtained by the same LS method.
The same initial estimator �̃

(0)
pca = �̂ is used. In each simulation,

we obtain �̃
(g)
pca and �̃

(g)

ls at the steps g = 1, 2, 3 and g → ∞.
The estimate at convergence denoted by �̃(c) is obtained by
iterating the algorithm until convergence, that is, the maximum
difference between the estimates from two consecutive steps,
‖Xβ̃(g) + �̃(g) − Xβ̃(g−1) − �̃(g−1)‖2∞, is smaller than the small
threshold 10−6.

The iterative PCA method in Jin, Miao, and Su (2021)
requires that the number of iterations go to infinity to have
the desired convergence rate and the asymptotic distribution of
the estimator for �. We will show that our iterative LS estima-
tor for � only needs a finite number of iterations to achieve
the same asymptotic distribution, so our method enjoys great
computational advantage, especially in the large dimensional
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Table 1. The MSE of different estimators in DGP 1.

DGP 1 Initial Iterative PCA Iterative LS

n, m π β̂ �̂ β̃
(3)
pca β̃

(c)
pca �̃

(3)
pca �̃

(c)
pca β̃

(3)
ls β̃

(c)
ls �̃

(3)
ls �̃

(c)
ls

200 0.2 0.614 7.469 0.258 0.157 3.075 0.419 0.197 0.176 0.631 0.457
0.5 0.230 1.121 0.126 0.125 0.321 0.283 0.125 0.125 0.285 0.285
0.8 0.145 0.430 0.119 0.119 0.258 0.258 0.119 0.119 0.258 0.258
1 0.117 0.250 − − − − − − − −

500 0.2 0.224 2.354 0.068 0.057 0.835 0.150 0.058 0.058 0.152 0.152
0.5 0.087 0.399 0.047 0.047 0.116 0.108 0.047 0.047 0.108 0.108
0.8 0.054 0.167 0.044 0.044 0.099 0.099 0.044 0.044 0.099 0.099
1 0.043 0.096 − − − − − − − −

1000 0.2 0.110 0.726 0.030 0.029 0.246 0.074 0.029 0.029 0.074 0.074
0.5 0.044 0.195 0.024 0.024 0.057 0.055 0.024 0.024 0.055 0.055
0.8 0.028 0.084 0.023 0.023 0.050 0.050 0.023 0.023 0.050 0.050
1 0.023 0.048 − − − − − − − −

setting. Moreover, we will illustrate the performance of our
proposed multiplier bootstrap inferential method for testing the
high-dimensional coefficient matrix and the rank estimation
methods.

In the following sections, we show partial simulation results
due to the space limit. For the complete numerical results, we
refer to Section H of the supplementary materials.

6.1. Performance of The Estimators

To evaluate the performance, we repeat the simulation under
each setting 500 times and, for any estimator θ̃ for a parameter
θ0, we calculate the average mean-square-error: MSE(θ̃) =

1
500|θ0|

∑500
s=1

∥∥∥θ̃s − θ0,s

∥∥∥2

F
, where θ̃s, θ0,s are the estimator and

the true parameter in sth repetition, and |θ0| is the number of
elements in θ0.

We first compare the performance of our iterative LS esti-
mator with that of the iterative PCA estimator using DGP 1.
Table 1 shows the MSE of different estimators obtained with
the true rank based on the 500 simulation replicates in each
setting of DGP 1 for g = 3 and g = c (at convergence), and
r = 3. Results for other cases are similar, and are provided in the
supplementary materials.

For larger sample sizes n, m = 500, 1000, we see that �̃
(3)

ls
has much smaller MSE than the initial estimator �̂, and it has
the same MSE as �̃

(c)
ls at all values of π . It indicates that our LS

estimate of � at a finite step performs better than the initiate
estimate, and it has a similar performance as the LS estimate at
convergence. Moreover, �̃(3)

ls and �̃
(c)
pca have similar MSE values,

both of which are significantly smaller than the MSE obtained
from �̃

(3)
pca. The difference between the MSE values of �̃

(3)

ls and
�̃

(3)
pca becomes more dramatic as the observation rate π is smaller.

This result corroborates our theoretical finding that the pro-
posed iterative LS estimator at a finite step g ≥ 1 achieves the
same convergence rate and asymptotic property as the iterative
PCA estimator at g → ∞. For small sample size n, m = 200, we
can observe the same pattern for �̃

(3)

ls at π = 0.5, 0.8. The MSE
of �̃(3)

ls is almost the same as that of �̃(c)
ls and �̃

(c)
pca at π = 0.5, 0.8,

but it is slightly worse at π = 0.2. However, the MSE of �̃
(3)
pca is

much larger than that of the other three estimates. This result
further shows that the iterative PCA method needs a diverging

Table 2. Computing time in seconds∗ in each setting.

Time in sec Number Ave. time
DGP 1 to get estimators of iterations for 1 iteration

n, m π �̂ �̃
(c)
ls �̃

(c)
pca �̃

(c)
ls �̃

(c)
pca ls pca

200 0.8 0.04 0.16 0.38 4.0 9.3 0.041 0.041
0.4 0.05 0.28 1.37 7.0 33.6 0.040 0.041
0.2 0.04 0.60 4.01 15.7 99.9 0.038 0.040

500 0.8 0.41 0.44 3.18 3.6 7.5 0.124 0.423
0.4 0.42 0.58 10.06 5.0 23.5 0.115 0.429
0.2 0.41 0.80 27.54 7.4 64.5 0.108 0.427

1000 0.8 3.43 1.05 24.24 3.0 6.9 0.351 3.514
0.4 3.03 1.16 62.22 4.0 19.9 0.287 3.130
0.2 2.96 1.39 149.12 5.5 48.8 0.252 3.056

∗The values are calculated based on 100 simulation replicates.

number of iterations to achieve the desired convergence rate as
proven in Jin, Miao, and Su (2021). The performance of the
estimators of β is similar for both methods. Only in the case
n = m = 200 and π = 0.2, β̃(3)

pca is slightly worse than β̃
(3)

ls .
Next, we compare the computing time of the iterative LS and

the iterative PCA methods. When missing values exist, our pro-
posed iterative LS method has a great computational advantage
over the iterative PCA method in two aspects. First, for one
complete iteration, the computational complexity of PCA on the
updated matrix W is O(mn2 + m3), and it is only O(r2πmn) for
solving the two LS systems defined in (7) for L and F. Since we
have the low-rank assumption, r is fixed and r 
 min(m, n), we
see that our LS method is much more computationally efficient
than the PCA method for one complete update. Second, our
estimator only needs a finite number of iterations, while the iter-
ative PCA estimator requires a diverging number of iterations
to have the same asymptotic properties. This result was already
demonstrated by the performance comparison in Table 1.

To test the actual computing time of the two estimators, we
run simulations using the data generated from DGP 1 when the
true rank r = 3, and the sample sizes, n = m = 200, 500, 1000,
with observation rate π = 0.8, 0.5, 0.2, respectively. Based on
100 simulation replications of each setting, Table 2 reports the
average computing time and the number of iterations needed to
obtain the converged estimate for each method, and the average
computing time of one iteration (one complete update). For a
fair comparison, all simulations are run on a regular laptop with
specs: Intel(R) Core(TM) i7-8750H CPU, 2667MHz 16 GB RAM
without the help of GPU or CPU parallel computing.

The last two columns in Table 2 show the average time for
one update by both methods at different sample sizes n, m. We
see that the iterative PCA method has a more dramatic increase
(from 0.04 for n, m = 200 to 3 sec for n, m = 1000) than our
proposed iterative LS method (from 0.04 to 0.3 instead) when
the sample size increases. We can also see that the number of
iterations needed to converge increases as the observation rate π

decreases. From the “Number of iterations” columns, we observe
that the iterative PCA method in general needs more iterations
to converge, and the difference between the PCA and the LS
methods becomes more prominent as the π value becomes
smaller even in the settings with large sample sizes. For instance,
in the case with n, m = 1000, the iterative LS method needs
around 3 iterations at π = 0.8 and 5 iterations at π = 0.2,
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Table 3. The MSE of different estimators in DGP 2.

DGP 2 Initial Iterative LS

n, m C β̂ �̂ β̃
(3)
ls β̃

(c)
ls �̃

(3)
ls �̃

(c)
ls N(c)

ls
[2]

200 1 0.420 5.993 0.183 0.178 0.516 0.456 12.7
1.5 0.318 3.612 0.155 0.154 0.379 0.375 9.7
2 0.268 2.315 0.142 0.141 0.337 0.334 8.4

500 1 0.192 3.271 0.067 0.066 0.185 0.182 8.9
1.5 0.143 1.472 0.057 0.057 0.147 0.147 7.2
2 0.119 0.888 0.053 0.053 0.132 0.132 6.3

1000 1 0.115 1.535 0.034 0.034 0.094 0.094 7.3
1.5 0.085 0.721 0.030 0.030 0.077 0.077 6.1
2 0.070 0.482 0.028 0.028 0.071 0.071 5.6

The average number of complete iterations to get converged results.

whereas the number of iterations for the iterative PCA method
grows from 7 to 49.

Next, we show in Table 3 the MSE of our iterative LS esti-
mators based on the 500 simulation replicates in each setting
of DGP 2 for g = 3 and r = 3. We can observe similar
patterns as shown in DGP 1; the estimators at g = 3 have
almost the same MSE as the converged estimators in every case
when n, m = 500 or 1000. Even for C = 1, n, m = 200,
the estimator at g = 3 performs quite well. When the C value
is larger, the response matrix is more densely observed, so the
estimators are expected to have better performance. The last
column shows the average number of iterations to obtain the
converged estimator, and we can see that the numbers are all
small. With the low computational complexity, it is possible to
use the converged solution in practice, or use the estimate at
g = 3 if the algorithm is implemented on large datasets and we
need a faster computational speed.

In the last of this section, we construct pointwise confidence
intervals for �i,j and μi,j = E(Yi,j | Li, Xi, Fj) for some given
i, j based on the asymptotic representations in Theorem 1 and
Theorem 2. For g ≥ 1, let Ỹi,j = X′

i β̃
(g)

j + �̃
(g)

i,j and σ 2 =
E(ε2

i,j), then (Ỹi,j − μi,j)/σn,m(Ỹi,j) and (�̃
(g)

i,j − �i,j)/σn,m(�̃
g)

i,j )

asymptotically follow N(0, 1), where

σ 2
n,m(�̃

(g)

i,j ) = σ 2
[

n−1L′
iE(πiLiL′

i)
−1Li + (mπi)

−1F′
j�

−1
F Fj

]
+ n−1ζ 2

i,j

σ 2
n,m(Ỹi,j) = σ 2 [

n−1 (
L′

iE(πiLiL′
i)

−1Li + X′
iE(πiXiX′

i)
−1Xi

)
+(mπi)

−1F′
j�

−1
F Fj

]
, (15)

and ζ 2
i,j = X′

iE(πiXiX′
i)

−1E(π2
k XkL′

kFjF′
jLkX′

k | Fj)E(πiXiX′
i)

−1Xi.
The unknown terms in the above representations can be
replaced by empirical estimators so that we can get the estimated
standard error σ̂n,m(·).

In the literature, the latent factor model is often considered
for matrix completion without considering the covariates. In this
model, the matrix � is directly decomposed as � = L∗F∗′,
where L∗ and F∗ are latent factors and their loadings, both of
which are unknown and need to be estimated. Compared to
model (1), we can write L∗ = [X, L] and F∗ = [β , F], but
both X and β are treated as unknown variables in the latent
factor model. When E(XiL′

i) = 0 and E(βjF′
j) = 0, it can be

shown that the asymptotic variance of the estimator Ỹi,j := �̃i,j

Table 4. Average bias and 95% CI coverage rate for some estimators∗ .

DGP 2 Bias (10−2) 95% CI coverage rate

n, m C �̃11 �̃23 �̃35 Ỹ11 Ỹ23 Ỹ35 �̃11 �̃23 �̃35 Ỹ11 Ỹ23 Ỹ35

200 1 0.3 −1.9 −1.9 −0.5 −2.6 −1.7 0.93 0.90 0.92 0.92 0.92 0.92
1.5 −1.0 −0.1 −1.1 −0.5 −0.4 0.5 0.92 0.92 0.94 0.95 0.95 0.96
2 −0.1 −0.0 −2.0 −0.0 0.2 −0.4 0.92 0.92 0.94 0.93 0.95 0.95

500 1 0.7 −0.4 −0.4 0.3 −0.3 2.0 0.92 0.93 0.93 0.94 0.95 0.93
1.5 0.5 −0.4 0.6 0.2 −0.4 1.9 0.94 0.94 0.93 0.95 0.96 0.95
2 0.1 −0.8 0.5 −0.1 −0.4 1.4 0.95 0.95 0.93 0.95 0.96 0.95

1000 1 0.3 −2.1 1.3 −0.9 −1.0 −1.1 0.94 0.92 0.94 0.94 0.94 0.96
1.5 0.7 −2.4 1.8 −0.3 −0.7 0.0 0.95 0.92 0.96 0.93 0.96 0.95
2 0.9 −1.9 1.3 0.0 −0.4 0.0 0.96 0.93 0.95 0.93 0.95 0.95

∗�̃i,j = �̃
(3)
i,j and Ỹi,j = X′

i β̃
(3)
j + �̃

(3)
i,j .

based on the latent factor model with � having rank r + d
is σ 2

n,m(Ỹi,j) = σ 2 [
n−1 (

L′
iE(πiLiL′

i)
−1Li + X′

iE(πiXiX′
i)

−1Xi
)

+(mπi)−1(F′
j�

−1
F Fj + β ′

j�
−1
β βj)

]
, where

�β = E
(
βjβ

′
j

)
, and �̃ is the iterative LS estimator of �

and has the rank of d + r. We can see that this asymptotic
variance has one additional term (mπi)−1β ′

j�
−1
β βj compared to

the one given in (15), so it is larger than the asymptotic variance
of the estimator for model (1) that incorporates the observed
covariates. When the estimator �̃ has a rank smaller than d + r,
it has an asymptotically nonnegligible bias.

Table 4 shows the biases and the empirical coverage rates of
95% CI of three arbitrarily chosen estimators obtained at g = 3.
Each value is calculated based on 500 simulation replicates. We
observe that all the biases are very small, and the coverage rates
are close to the nominal value except for the cases with a very
small effective size (n = m = 200, C = 1). The empirical
distributions of the Z-statistics of Ỹi,j for (i, j) = (2, 3) are
shown in Figure 1. We can see that the distributions are close
to the standard normal (shaded area) in those cases with larger
effective sample sizes. Results for settings in DGP 1 are similar
and provided in the supplementary materials.

6.2. Rank Estimation

The number of factors r is often unknown in practice. Section 4
introduces the estimator r̂eIC to estimate the unknown rank r.
With large n, m, Theorem 3 shows that this estimator can find
the correct rank with a high probability if the penalty h(n, m)

satisfies the stated condition. We let

h(n, m) = Chnδh
√

(m + n)/(mnα̂n), (16)

with Ch = 0.9 and δh = 0.1, where α̂n = π = n−1 ∑n
i=1 π̂i

for DGP1 and α̂n = eγ̂0,n for DGP2, so that h(n, m) satisfies
the condition given in Theorem 3. To see the performance of
the eIC method for rank estimation, we use the 500 simulation
replicates in each setting of DGP 1 and DGP 2, and estimate the
rank using the eIC criterion given in (11). We set g = 3 for the
eIC method because our iterative LS estimates perform well with
three iterations as shown in Section 6.1.

We report the accuracy (the percentage of obtaining the true
rank) along with the average of the rank estimates based on 500
simulation replicates for all settings in Table 5. Note that cases
with π = 1 in DGP 1 are omitted since we aim to find a method
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Figure 1. The empirical distribution of Ỹ23−μ23
σ̂n,m(Ỹ23)

in different simulation settings. The shaded area is the density of standard normal distribution.

Table 5. The rank estimation results of r̂eIC(3) based on 500 simulations in each
setting with the true rank r = 3.

DGP 1 DGP 2

n, m π Acc.∗ Ave.[2] C Acc.∗ Ave.[2]
200 0.2 93.8 2.95 1.0 97.8 3.02

0.5 100.0 3.00 1.5 99.8 3.00
0.8 100.0 3.00 2.0 99.8 3.00

500 0.2 100.0 3.00 1.0 100.0 3.00
0.5 100.0 3.00 1.5 100.0 3.00
0.8 100.0 3.00 2.0 100.0 3.00

1000 0.2 100.0 3.00 1.0 100.0 3.00
0.5 100.0 3.00 1.5 100.0 3.00
0.8 100.0 3.00 2.0 100.0 3.00

The percentage of r̂eIC(3) = r.
The average of r̂eIC(3) .

that can accurately estimate the rank when the data have missing
entries. We see that our proposed eIC method performs well in
all settings for both DGP 1 and DGP 2. Even with a relatively
small sample size (n = m = 200) and low observation rate (π =
0.2 or C = 1.0), the eIC method can correctly estimate the true
rank with high probability. Its performance further improves as
the sample size becomes larger.

6.3. Simultaneous Inference for The Coefficients

In this section, we conduct hypothesis tests on H0 : Aj · βj =
a0

j for j ∈ G at the significant level α = 0.05 by the multiplier
bootstrap method given in Section 5. We consider the following
hypotheses: (i) H0 : βj,p = 0 ∀ j, p; (ii) H0 : βj,p0 = 0 ∀ j.
Note that in (ii), p0 is a fixed value (could be 1, 2 or 3 in our
DGPs).

Remark. To follow the notation in Section 5, Aj = I in (i), and
Aj = (1, 0, 0), (0, 1, 0), (0, 0, 1) in (ii) for p0 = 1, 2, 3 respectively,
and G = {1, . . . , m} in all the tests.

To see the performance of the testing procedure under null
and different alternative hypotheses, we generate our β from
N(0, 4ρ2I) in DGPs 1 and 2. We run 500 simulation replications
in each setting with ρ = 0, e−3, e−2.5, e−2, e−1.5, and e−1,
respectively. Note that the null hypothesis H0 is true when
ρ = 0. For each setting and ρ value, we compute the empirical
rejection rate of each test based on the 500 simulation replicates.

The results for DGP 2, r = 3 are presented in Figure 2. The
numerical results of all scenarios are relegated to the supplemen-

tary materials. We observe that except for the case with a small
sample size n = m = 200 and π = 0.2, the rejection rate is
very close to the significant level 0.05 under the null hypothesis
(ρ = 0). The power approaches 1 quickly as the ρ value
becomes larger or the sample size increases. This corroborates
our theoretical results for the proposed simultaneous testing
method given in Section 5. The rejection rate for the case with
n = m = 200 and π = 0.2 is slightly larger due to the small
effective sample size.

7. Application

In this section, we apply the proposed method to the MovieLens
1M dataset.1 MovieLens is a website where people can sign up
and rate movies in their database, and it is run by a lab at the
University of Minnesota called GroupLens. They provide movie
recommendations to the users based on their rating history. The
1M dataset contains 1,000,209 ratings on 3952 movies from 6040
users. Some demographic information of users is provided using
an assigned ID, including the user’s gender, age, occupation, and
zip code. Each rating is a number between 0.5 and 5 with 0.5
gaps between two ratings, linked to a user and a movie. The
timestamp at which a rating was given was also recorded. In
the dataset, each user has rated at least 20 movies. To provide
appropriate recommendations to users, our goal is to : (i) esti-
mate the ratings based on the proposed low-rank model with
covariates given in Model (2) through our iterative LS procedure,
(ii) conduct pointwise inference for each rating based on the
established asymptotic distribution, and (iii) conduct simulta-
neous inference for the coefficients of the covariates based on
our bootstrap procedure.

7.1. Application of The Proposed Method to MovieLens 1M

To apply our method to the MovieLens 1M dataset, we use Y to
represent the rating matrix in which the ith row and jth column
correspond to the ith user and jth movie, respectively. As a
result, the dimension of Y should be 6040 × 3952. We consider
gender and age as the covariates in Model (2); both of them
may have effects on the movie ratings and the missingness of
the ratings. Then, in the covariate matrix, the gender is encoded
as “0” (female) and “1” (male); the age is factorized into four

1website: https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
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Figure 2. Empirical rejection rates at level α = 0.05. Each column represents a hypothesis, and each row represents a sample size. When x = ln(ρ) = −Inf, the null
hypothesis is true.

groups: “0-24”, “25-34”, “35-49”, “50+”, and it is represented by
three dummy variables. We also include the interactive terms
between gender and age groups in the covariate matrix X, and
then the dimension of X including the intercept is m = 6040 by
d = 8. The dataset is split into a training set and a test set, and
the test set contains 60, 400 ratings with 10 ratings from each
user.

Let Gi be the indicator of the gender for the ith user, and Ai,k,
1 ≤ k ≤ 3, be the indicator of age groups “25-34”, “35-49”, “50+”,
respectively. Both gender and age may affect the missingness of
movie ratings, so we fit a logistic model for πi = P(ξi,j = 1|Xi):

logit(πi) = γ0 + Giγ1 + Ai,1γ2 + Ai,2γ3 + Ai,3γ4

+(Gi · Ai,1)γ5 + (Gi · Ai,2)γ6 + (Gi · Ai,3)γ7,
(17)

where logit(x) = log(x/(1 − x)). Moreover, we fit the following
model for the responses:

Yi,j = βj,0 + Giβj,1 + Ai,1βj,2 + Ai,2βj,3 + Ai,3βj,4 + (Gi · Ai,1)

βj,5 + (Gi · Ai,2)βj,6 + (Gi · Ai,3)βj,7 + L′
iFj + εi,j. (18)

We also consider the sub-model with only the main effects of G·
and A·,k as well as other sub-models which include only partial
interactions between gender and age groups to see which model
has the best prediction. We use the eIC method with the penalty
given in (16) with Ch = 0.2, δh = 0.1 to obtain the estimated
rank r̂ = r̂eIC(c). Tables 2 and 3 in Section 6.1 show that the
iterative LS algorithm in general only needs a few iterations to
converge. Then, in the real data analysis, we estimate βj and
�i,j by running the iterative LS algorithm until convergence or
stopped at step=30. With the estimated rank, we then obtain the
estimated ratings in the training set and the predicted ratings
in the test set by Ỹi,j = X′

i β̃j + �̃i,j where β̃ = β̃(c) and

Table 6. The fitting result for the logistic model for πi .

(Intercept) G A1 A2 A3 G · A1 G · A2 G · A3

Estimate –3.347 0.148 0.140 –0.037 –0.304 0.061 0.083 0.072
Std. error (10−3) 4.53 5.25 5.71 5.97 7.87 6.58 6.93 9.07
p-value * * * 10−9 * * * 10−14

*Value < 10−15.

�̃i,j = L̃(c)′
i F̃(c)

j . In addition, since the rating is limited to be
between 0.5 and 5, we define the adjusted estimated rating as
Ỹadj

i,j = (Ỹi,j ∨ 0.5) ∧ 5, so as to enable the estimated ratings to
have values between (0.5, 5).

7.2. The Fitting Results

The fitting result of the logistic model for πi given in (17) is
shown in Table 6. It shows the estimate and the standard error
of each coefficient, and the p-values for testing whether each
coefficient is zero or not. Table 6 shows that the p-values are
all close to zero, indicating that all the coefficients for both the
main and interaction effects are significantly different from zero.
This result further demonstrates that the two baseline covariates,
gender and age, and their interactions should have significant
effects on the missing pattern of the movie rates. We will use the
full model (17) for πi in the follow-up analysis.

Next, we calculate the root mean square error
(RMSE) of the estimated ratings, where RMSE =[
(nS)−1 ∑

(i,j)∈S(Yi,j − Ỹi,j)2
]1/2

, respectively, for the training
and test datasets, to check the prediction performance of each
model. In the above formula, the S is the set of observed indices
in the training set or the indices in the test set, and nS = |S| is
the number of elements in S. The RMSEs for the training and
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Table 7. RMSE of different models in training and test set.

Model RMSE adj. RMSE[2]

Covariate(s) p r̂ Training Tested Training Tested

1 + G + A1 + A2 + A3 + G · A1 8 2 0.8381 0.9067 0.8379 0.8993
+G · A2 + G · A3

1 + G + A1 + A2 + A3 + G · A1 + G · A2 7 2 0.8395 0.9046 0.8393 0.8982
1 + G + A1 + A2 + A3 + G · A1 + G · A3 7 2 0.8398 0.9057 0.8396 0.8980
1 + G + A1 + A2 + A3 + G · A2 + G · A3 7 2 0.8398 0.9064 0.8396 0.8982
1 + G + A1 + A2 + A3 + G · A1 6 2 0.8411 0.9032 0.8409 0.8962
1 + G + A1 + A2 + A3 + G · A2 6 2 0.8411 0.9043 0.8409 0.8966
1 + G + A1 + A2 + A3 + G · A3 6 2 0.8415 0.9044 0.8413 0.8968
1 + G + A1 + A2 + A3 5 2 0.8428 0.9020 0.8426 0.8949
1 1 2 0.8582 0.9813 0.8581 0.9010

adj. RMSE uses Ỹadj
i,j in stead of Ỹi,j in the RMSE formula.

Table 8. The hypothesis testing results for all contrasts.

H0 Meaning Test p-value∗
statistic

βj1 = 0 ∀ j No difference in gender 5.25 <0.001
βj2 = 0 ∀ j No difference in age group (–24) and (25–34) 5.50 <0.001
βj3 = 0 ∀ j No difference in age group (–24) and (35–49) 10.75 <0.001
βj4 = 0 ∀ j No difference in age group (–24) and (50+) 6.15 <0.001
βj2 − βj3 = 0 ∀ jNo difference in age group (25–34) and (35–49) 10.75 <0.001
βj2 − βj4 = 0 ∀ j No difference in age group (25–34) and (50+) 7.81 <0.001
βj3 − βj4 = 0 ∀ j No difference in age group (35–49) and (50+) 10.75 <0.001

∗Each p-value is calculated through 1000 bootstrap results.

test datasets are provided in Table 7. Note that in this table,
we also calculate the RMSE using the adjusted rating Ỹadj

i,j .
According to Table 7, we can see that all the estimated rank r̂ by
the eIC method is 2 for all cases, and the best prediction which
gives the lowest RMSE in the test set is the model with only the
main effects, no matter we use the original estimators or the
adjusted ones. As a result, we will use the model with only the
main effects in the follow-up analysis, and it is formulated as

Yi,j = βj,0+Giβj,1+Ai,1βj,2+Ai,2βj,3+Ai,3βj,4+L′
iFj+εi,j. (19)

7.3. Insight into MovieLens 1M

With the selected model (19), we can run contrast tests on
the coefficient matrix β to see if any category in the covariates
is unnecessary or if any two (or more) of them can be com-
bined. Since the tests concern the high dimensional coefficient
matrix β , we use the multiplier bootstrap method provided in
Section 5 to conduct simultaneous inference, and the results

are presented in Table 8. All the p-values in Table 8 are very
small, indicating that the different age and gender groups have
significant effects on the prediction of movie ratings. For further
illustration, Figure 3 shows the boxplots of the estimated movie
ratings in different gender and age groups for some movies. We
can see that for the movie “Antonia’s Line,” the ratings are very
different between genders, but they are similar among different
age groups of the same gender. However, for some other movies
such as “The Brain That Wouldn’t Die,” in which both age and
gender significantly affect the movie ratings; see more boxplot
examples in the supplementary materials.

While the overall effects of different covariates on the ratings
can be investigated through Table 8, examples in Figure 3 moti-
vate us to perform individual tests on each movie, so that we
can understand the effect of covariate on each movie. A z-test is
then conducted for each movie based on the asymptotic result
in Theorem 1. Table S5 in Section H.1 of the supplementary
materials shows the top 10 movies with the smallest p-values
in each test. All the p-values shown in Table S5 are significant
after a Bonferroni adjustment. In Figure 4, we select two movies
in which either gender or age has a significant effect and draw
a quantile plot with 90% point-wise confidence intervals (CI)
to further illustrate the effects. The movie “ Set It Off ” is the
one in which the ratings are significantly different in gender
(nonoverlapping CI bands), but not at all in age, and “Boys and
Girls” shows the other way. Note that only the most significant
pair of age groups are shown in this figure. We refer to the sup-
plementary materials for the numerical results of more movie
examples.

8. Conclusion

This article studies statistical inference for noisy matrix com-
pletion with auxiliary information when the missing pattern of
the responses depends on baseline covariates and the observed
rates can go to zero as the sample size increases. We show that
the iterative LS method has a computational advantage over the
iterative PCA method, and it is supported by reliable statistical
properties for inference. With only a finite number of iterations,
the resulting estimators of the latent low-rank matrix and the
coefficient matrix for the observed covariates are asymptotically
unbiased and guaranteed to have asymptotic normality under
mild conditions. A new information criterion eIC method based
on the iterative LS estimation is proposed for rank estimation. It

Figure 3. Boxplots of the estimated ratings in different gender and age groups for some movies.
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Figure 4. Estimated ratings and 90% point-wise confidence intervals in different groups. The y-axis is the rating and the x-axis is the percentile. Ratings are grouped by
gender or age.

is supported by the consistency property and is demonstrated
to have better numerical performance than the widely used IC
criterion method based on the singular value estimation.

Moreover, we propose a simultaneous testing method for the
high dimensional coefficient matrix β via a Gaussian multi-
plier bootstrap procedure. This inferential procedure can help
us investigate the effects (or contrast effects) of the auxiliary
covariates for the prediction of the missing entries. We have dis-
cussed in Section 6.1 and have shown in the real data application
Section 7 that the use of the observed covariates in matrix com-
pletion does help the prediction and improves the prediction
accuracy. Our proposed method has immediate applications
in collaborative filtering, biological and social network recov-
ery, recommender systems, and so forth. The semi-supervised
model considered in our article makes use of row-feature infor-
mation such as the user’s demographic information to help the
prediction of movie ratings. It is worth noting that Zhu, Shen,
and Ye (2016) have considered a different model that incor-
porates user-specific and content-specific predictors by letting
their coefficients be the same across all j and i, respectively. As an
extended work, we can also consider incorporating the column-
feature information into our proposed framework. Moreover,
the development of the asymptotic distributions of the iterative
LS estimators in the setting with the growing number of factors
(Mao, Chen, and Wong 2019) or � with high rank is also an
interesting future research topic to explore.

Supplementary Materials

All the technical proofs and additional numerical results are provided in the
online supplementary materials.
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