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ARTICLE INFO ABSTRACT

Keywords: Deep neural networks have played an important role in the automatic classification of sleep stages due to their
Class imbalance strong representation and in-model feature transformation abilities. However, class imbalance and individual
EGAN heterogeneity which typically exist in raw EEG signals of sleep data can significantly affect the classification

Ensemble learning
Individual heterogeneity
Sleep stage classification

performance of any machine learning algorithms. To solve these two problems, this paper develops a generative
adversarial network (GAN)-powered ensemble deep learning model, named SleepEGAN, for the imbalanced
classification of sleep stages. To alleviate class imbalance, we propose a new GAN (called EGAN) architecture
adapted to the features of EEG signals for data augmentation. The generated samples for minority classes
are used in the training process. In addition, we design a cost-free ensemble learning strategy to reduce the
model estimation variance caused by the heterogeneity between the validation and test sets, to enhance the
accuracy and robustness of prediction performance. We show that the proposed method improves classification
accuracy compared to several existing state-of-the-art methods. The overall classification accuracy and macro
Fl-score obtained by our SleepEGAN method on three public sleep datasets are: Sleep-EDF-39: 86.8% and
81.9%; Sleep-EDF-153: 83.8% and 78.7%; SHHS: 88.0% and 82.1%.

1. Introduction and each epoch is manually labeled by sleep specialists and then
classified into one of five stages: Wake (W), Rapid eye movement

Sleep plays a vital role in mental and physical well-being throughout (REM), and three non-REM stages (N1, N2, N3), following the AASM
an individual’s life [1,2]. According to research in [3-5] and the (American Academy of Sleep Medicine) guidance [12]. The task of the

American Sleep Association, about 35.7% of people in the world and manual classification process is labor-intensive and prone to experts’
50-70 million adults in the United States have a sleep disorder. The subjective perception [13]. To this end, an automatic classification
lack of sleep can cause negative cognitive, emotional, and physical system for sleep stages can alleviate these problems and assist sleep spe-

effects [6]. In recent years, the classification of sleep stages has gained a cialists [14]. In recent years, the deep convolutional neural networks

lot of attention in the machine learning community [2,7], as it is crucial (CNNs) [15] together with recurrent neural networks (RNNs) [16,17],
to understanding the quality and quantity of sleep and for diagnosing long short-term memory (LSTM) networks [18-22], or attention-based
and treating various sleep disorders [8,9]. neural networks [23-27] have been successfully applied to sleep stage

rafrieillzsét)a g;ﬁ?f}?rif isofseigzzgyt}fsrfoglr:l]e;itaﬁls:r(ji ofr;rplez};jz;i?r?- classification, as they can effectively learn frequency and time domain
& ’ 8 J signals [10,28] from raw EEG epochs.

human sleep [10]. PSG monitors many body functions during sleep,
p [10] Y Y & P However, the class imbalance and individual heterogeneity of EEG

including brain activity (electroencephalogram, EEG), eye movements ionals. which b in sl d h b
(electrooculogram, EOG), muscle activity (electromyogram, EMG), and signals, which are two common problems in sleep data, have not been
well-addressed in the literature. To be specific, the sleep duration at

heart rhythm (electrocardiogram, ECG). Single-channel EEG signals
have been popularly used for sleep stage scoring because they are all stages is not evenly distributed, resulting in significant differences
convenient and less expensive to monitor and collect [11]. Specifi- in the sample sizes across sleep stages. Stage N2 generally occupies

cally, EEG recordings are typically segmented into epochs of 30 s, most of the sleep time (40.3%) and stage N1 only accounts for 6.3%
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in the sleep-EDF-v1 dataset [29]. In general, the imbalance of data can
seriously affect the classification performance [6]. Individual hetero-
geneity refers to the presence of certain differences in the EEG signals
between individuals, rather than following the same distribution [30].
It is another challenge emerging from the raw data when they originate
from different examining environments [2], channel layouts, recording
setups [31], or emotional and physiological differences in patients [30].
As a result, we may not have a good generalization ability on the test
set based on the model parameters selected by the validation set.

To solve the aforementioned problems, this paper develops a gen-
erative adversarial network (GAN)-enhanced ensemble deep learning
model, named SleepEGAN, for the imbalanced classification of sleep
stages. To alleviate class imbalance, we propose a new GAN (called
EGAN) architecture adapted to the features of EEG signals for data
augmentation. The generator and discriminator models in our GAN
are motivated by, but different from, the deep neural networks called
TinysleepNet proposed in [19]. TinysleepNet was originally used to
classify sleep stages and was shown to have a great capability to extract
features from raw EEG signals and learn their temporal transition
rules using only a few convolutional layers and a single LSTM layer.
We take advantage of its parsimonious model structure and design a
modified model used for the generator and discriminator in our EGAN
architecture, specially tailored for EEG signal augmentation. We show
that our EGAN achieves a good balance between generalization and
parsimony while having a great ability to learn the structure of EEG
signals and generate high-quality samples for minority classes.

Our proposed EGAN model is shown to be an effective and efficient
tool for generating EEG signals for small classes of sleep stages, such
as stage N1 to match the number of samples in the large classes. It
is worth noting that in the literature, a few works [32,33] directly
employ the existing GAN methods to generate EEG signals, such as
the naive GAN and the Wasserstein GAN [34] originally proposed for
image generation, which may heavily rely on the convolutional layers
and therefore possibly neglect the temporal and transitional features
of EEG signals. Next, we design a new classification network structure
called SleepEGAN to classify the sleep stages with the augmented data.
The synthetic samples generated for the minority classes are used
in the training process of classification. Our neural network model
in the classification step has more filters than Tinysleepnet [19] to
improve the network’s representation ability of EEG signals and has
fewer convolutional layers than VGG16 [35] for model parsimony, to
achieve efficiency and computational convenience.

To tackle the problem of individual heterogeneity of EEG signals, we
design a cost-free ensemble algorithm. Ensemble learning is a proven
favorable and effective strategy to handle heterogeneous data [36].
It uses multiple diverse classifiers to achieve better generalization
performance than a single learner to reduce prediction variance [37].
Throughout the training process, we retain the model parameters ob-
tained in the epochs from the top 10 models chosen based on the
prediction accuracy on the validation set instead of keeping only one set
of model parameters having the best prediction. The stage prediction
on the test set is based on the ensemble result of these 10 models, as
the model parameters in different updated epochs are heterogeneous,
and they can perform well in the validation set, satisfying two sufficient
conditions for a nice ensemble: accurate and diverse [38]. It is worth
noting that we only save the model parameters in each epoch during the
training process, and then build an ensemble model using the retained
parameters from the chosen models evaluated in the validation set. As
a result, our ensemble learning procedure does not increase training
costs, as it does not require training any additional models compared
to the conventional deep neural network algorithms without ensemble
learning.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed GAN-enhanced ensemble deep learning model. The
proposed method is illustrated on three real sleep datasets with the
numerical results reported in Section 3. Concluding remarks are given
in Section 4.
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2. Propose method

In this section, we introduce the proposed GAN-based ensemble
deep learning model (SleepEGAN) for the imbalanced classification of
sleep stages. Our method contains three steps:

» we design a new GAN (EGAN) to generate samples for the minor-
ity classes so that the sample size of each class is balanced on the
training set;

» we elaborately build a classification network architecture based

on convolutional and LSTM layers;

we develop an ensemble learning strategy without additional

computational cost to reduce the variance of the model prediction

caused by heterogeneity.

2.1. Data augmentation with EGAN

Signal and sequence augmentation is considered as a primary tech-
nique to synthesize new training data from the original data for each
training epoch [19] to alleviate the class imbalance problem. We first
use this technique to synthesize new signal patterns for each training
epoch by signal augmentation and generate new batches of multiple se-
quences of EEG epochs in the mini-batch gradient descent by sequence
augmentation. In addition, the weighted cross-entropy loss function is
also introduced to mitigate the class imbalanced problem by setting the
weight for the N1 stage to 1.5 and others to 1. However, these strategies
of data augmentation cannot completely solve the imbalanced problem,
and the learned deep model still prioritizes the majority class.

To solve the above problem, we propose a new generative adversar-
ial network (EGAN) to learn the probability distribution for generating
raw EEG epochs, as an advanced strategy for data augmentation.
The generator of GAN can generate more samples from the estimated
probability distribution. Different from parametric and nonparametric
density estimators, where the density function is explicitly defined in
a relatively low dimension, GAN can be viewed as an implicit density
estimator in a much higher dimension [39].

According to the invariance structure of data, data augmentation
by GAN implicitly enlarges the training dataset by sampling original
data and generating new data, which usually regularizes the model
effectively [40]. However, the naive GAN and other extensions [34,41],
which are originally designed for image generation, may not work well
for EEG signals as they do not consider the temporal and transitional
features of EEG data. Therefore, we design a new GAN architecture
(EGAN) tailored for EEG signal generation. The proposed EGAN has
two features: it can extract the representative temporal components
from the high-dimensional features, and then automatically learn the
transition rules of the EEG signals.

For the generator and discriminator models of our proposed EGAN,
we design a 4+1 learning framework, where the first four convolutional
layers are used to extract frequency signals, followed by an LSTM layer
to learn temporal information. The main structure of EGAN is presented
in Fig. 1. The network structure was motivated by Tinysleepnet which
was originally proposed for the classification purpose instead of sample
generation. We propose a modified architecture used in our genera-
tor and discriminator models to make our EGAN possible to achieve
the high-quality task of sample generation. Specifically, we make the
following contributions:

« for the generator, we add an Upsample layer to expand the
100-dimensional (or 125-dimensional) noise to 3000 (or 3750)
dimensions as inputs;

« for the generator, after the LSTM layer processing, we add a fully
connected layer so that it transforms the learned features into
3000-dimensional (or 3750-dimensional) EEG epochs with Tanh
nonlinear activation functions;
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Fig. 1. The main structure of EGAN. For simplicity, the pooling and dropout layers are ignored here.

« for the discriminator, it only needs to discriminate between true
and false, not its specific sleep stage, so we modify the activation
function of the output layer from Softmax to Sigmoid;

» we change the activation function of ReLU in Tinysleepnet to
leaky ReLU in EGAN to make sure the gradient can flow through
the entire architecture.

The proposed EGAN model plays a vital role in balancing training
samples among different classes, resulting in a superior prediction
performance on the N1 stage in sleep data.

2.2. Classification with SleepEGAN

With the augmented data obtained from the previous step, next we
design a new classification network SleepEGAN to process a sequence of
single-channel EEG epochs and perform the classification of sleep stages
(see Fig. 2). Our SleepEGAN uses a 1+2+2 convolutional network to
extract frequency features, followed by an LSTM layer to extract time
domain features, and it achieves a good balance between model parsi-
mony and efficiency for classification. Our SleepEGAN is motivated by
but different from VGG16 [35] and Tinysleepnet [19] such that it has
more filters than Tinysleepnet to enhance the network’s representation
ability of EEG signals and less network layers than VGG16 for model
parsimony.

To be specific, we segment the EEG signals into n epochs {xi, ...,x,}
of E, seconds, where x; € RE*’s and F, is the sample rating for each
second EEG. We obtain the predicted sleep stage 3; in the test set using
the epoch of x; with the network parameters trained using the training
data set, where y; € {0, 1,2, 3,4} corresponds to the five sleep stages W,
N1, N2, N3 and REM, respectively.

The CNNs block CNN,, that consists of five convolutional layers
(1+2+2), interleaved with three max-pooling and two dropout layers,
is firstly employed to learn time-invariant features from single-channel
signals x;. Then, the LSTM layer LSTM,,_followed by a dropout layer
is used to extract time-dependent information from processed features
X; by CNNs block. The final out y; is activated by Softmax function
o(-) with parameter vector v. In the procedure (1), 6, and 6, are the
learnable parameters of the CNNs and LSTM, respectively, where h; and
¢; are output vectors of hidden and cell states of the LSTM layer after

Input EEG signals x;

[AAN]

v
[Conv, 128, 50, 6]

Convolutional layer:
[Conv, n_filters, filter size, stride]

[Dropout 0.5] Max-pooling layer:
[Max-pool, pooling_size, stride]
[Ma.x-pool 4, 4]
[Dropout 0.5]
hi_i,ciy hi. ¢
[Dropout, 0.5]
[Softmax, 5]
v
Yi

Fig. 2. An overview classification network architecture of SleepEGAN. Each rectangular
box represents one layer in the model, and the arrows indicate the flow of data from
raw single-channel EEG epochs x; to sleep stages .

processing the features X;.

X; = CNN, (x;),
h;,¢; = LSTM, (h;_;.¢,_;.%). €h)
y; = o(vhy).

We develop the SleepEGAN architecture to achieve a good balance
between generalization and parsimony while preserving its ability to
learn the structure of EEG signals. The strategies of bidirectional LSTM
in Deepsleepnet [18], multi-head attention in AttnSleep [23], dual-
stream structure [42] in SalientSleepNet and multi-scale extraction
in [6] may enhance the representative ability of deep learning, but huge
computational resources may incur. Our contribution is not to develop
a deeper and more complicated neural network model with superior
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Fig. 3. Ensemble illustration of predicted stage class. Different marks in the ensemble
rectangle imply different predicted stage classes. The final stage prediction is obtained
by classifier voting.

generalization ability. Instead, we would like to use limited resources
to tackle the problems of individual heterogeneity and class imbalance.

2.3. Ensemble learning

For the classification of sleep stages, typically researchers use EEG
signals from some individuals as the test set. In addition, they split the
individuals in the training data set into the training and validation sets.
In this way, if there exists individual heterogeneity in the training and
test sets, the model parameters selected by the validation set may not
perform well in the test set. This heterogeneity can be inherent to the
raw EEG data. To solve this problem, we introduce a cost-free ensemble
learning strategy to improve the accuracy and stability of the prediction
performance.

Ensemble learning is a machine learning paradigm in which mul-
tiple learners are trained and combined for a specific task, achieving
better generalization performance than single learners [37]. However,
the computational cost of ensemble learning can be much higher than
that of a single classifier, especially when the ensemble is performed
on deep neural networks. To address this issue, we develop a cost-free
algorithm for ensemble learning. Specifically, we record the validation
accuracy and F1-score for each training epoch, and we select the model
parameters of the top M classifiers ranked by their prediction perfor-
mance evaluated in the test set. Each model makes a separate prediction
for each sample, and eventually, all classifiers take a majority vote
on the final prediction class (see Fig. 3). By this method, we reduce
the prediction variance and improve the stability of the prediction
performance without paying any additional computational cost.

3. Experimental results

In this section, we first introduce the sleep datasets and experimen-
tal settings. Then, we show the classification performance of our pro-
posed SleepEGAN, and compare it with several existing classification
methods.

3.1. EEG datasets

We evaluate our method using three popular and public real-life
sleep datasets; namely, Sleep-EDF-39, Sleep-EDF-153, and SHHS (Sleep
Heart Health Study) as shown in Table 1.

The dataset of Sleep-EDF [29] has two versions. One is Sleep-EDF-
39 published in 2013 before data augmentation, in which there were
39 PSG recordings from the study of age effects in healthy subjects
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(SC), collected from 20 subjects. The other one is Sleep-EDF-153,
which expands the number of recordings from 39 to 153, including 78
subjects aged between 25-101 years (37 males and 41 females). These
recordings are segmented into 30 s epochs and manually labeled by
sleep experts in light of R & K (Rechtschaffen and Kales) manual [43].
We evaluated our model using the Fpz-Cz EEG channel provided in
these PSG recordings with a sampling rate of 100 Hz.

We also use a larger sleep dataset named SHHS [44,45] which is a
multicenter cohort study on cardiovascular and other sleep-disordered
breathing diseases to evaluate the performance of the proposed method.
The subjects of this dataset suffer from a wide range of diseases,
such as lung diseases, cardiovascular diseases, and coronary diseases.
Following the study of [23,46], we select 329 subjects with regular
sleep from 6441 subjects for our experiments to reduce the effect of
other diseases. In addition, we select the C4-Al channel with a sampling
rate of 125 Hz.

3.2. Experiment settings

The 20-fold cross-validation (CV) scheme is used to evaluate the
prediction performance on the three datasets. In each fold, we further
allocate 10% of the training set to a validation set to evaluate the
training model in case of overfitting. The models that achieve the top
M overall accuracies are kept for evaluation with the test set. We
use Adam optimizer with 200 epochs to train the classification model,
where the learning rate, Adam’s betal, and beta2 are 10~%, 0.9 and
0.999, respectively. The mini-batch size is set as 8, 32, and 128 for
Sleep-EDF-39, Sleep-EDF-153, and SHHS, respectively. The sequence
length is 20. The number M of learners is 10, which works well in
the trade-off between diversity and accuracy.

For the generative networks (EGAN), we also use the Adam opti-
mizer to train the generator and discriminator, where the learning rate,
Adam’s betal, and beta2 are 2 x 10~*, 0.5 and 0.999, respectively. For
the generated tasks for Sleep-EDF-39 and SHHS, we set up 660 and
843 training epochs. The batch sizes are 16 and 64, respectively. The
input to the generator is 100-dimensional (or 125-dimensional) noise
for Sleep-EDF-39 (or SHHS).

We use three metrics to evaluate the performance of our pro-
posed method, namely, overall accuracy (ACC), macro-averaged F1-
score (MF1), and Cohen’s Kappa coefficient (x). The second one is a
common metric to evaluate the performance of imbalanced datasets,
and the last one is used to assess the consistency of the prediction
results.

We implement the EGAN method to generate EEG signals using
Pytorch 2.1.0, and perform sleep stage classification using Tensor-
flow 1.13.1. Pytorch and Tensorflow are two popular Python libraries
for high-performance computation of deep learning models. We train
our model using the GPU nodes with 64 GB memory at the High-
Performance Computing Center of UC-Riverside. Our source code is
publicly available at https://github.com/ChengXuewei/SleepEGAN.

3.3. Generation of minority class samples by EGAN

We generate EEG signals for the minority classes using our EGAN
method for two sleep datasets Sleep-EDF-39 and SHHS, respectively,
and the results of the generated samples are shown in Table 1. Specif-
ically, for Sleep-EDF-39 and SHHS, N1 is the minority class, so we
generate samples in the N1 stage to balance the proportion of each
class. For Sleep-EDF-153, the sample size is balanced across sleep
stages, so we dropped out of the generation procedure. We gener-
ate samples for the smallest class to match the sample size of the
penultimate class.

Fig. 4 shows the EEG epochs in the five sleep stages for the dataset
Sleep-EDF-39. Clearly, we can see that the EEG signals follow different
patterns in the five sleep stages. Moreover, Figs. 5 and 6 show the real
and the generated fake EEG signals in the N1 stage, respectively. We see


https://github.com/ChengXuewei/SleepEGAN

X. Cheng et al.

Biomedical Signal Processing and Control 92 (2024) 106020

Table 1
The details of three datasets before and after data augmentation.
Datasets Subjects Channel Sampling rate Type w N1 N2 N3 REM Epochs
10197 2804 17799 5703 7717
Before 44220
0, 0, 0/ 0, 0/
Sleep-EDF-39 2 Fpz-Cz 100 Hz 23.1% 6.3% 40.3% 12.9% 17.5%
10197 8120 17799 5703 7717
After 20.6% 16.4% 35.9% 11.5% 15.6% 49536
69824 21522 69132 13039 25835
Sleep-EDF-153 78 Fpz-Cz 100 Hz Before 35.0% 10.8% 34.7% 6.5% 13.0% 199352
46319 10304 142125 60153 65953
Before 324854
0, 0, 0, 0, 0,
SHHS 329 CaAL 125 Ha 14.3% 3.2% 43.8% 18.5% 20.3%
46319 46272 142125 60153 65953
After 12.8% 12.8% 39.4% 16.7% 18.3% 360822
100 that the generated samples are generally quite similar to the real ones.
0 MWWWAMMM The successful training of EGAN can make a good balance of different
100 i Wake classes of sleep data for classification to improve prediction accuracy.
504 It also indicates that EGAN has the ability to learn the distribution
0 of temporal data so that it may have potential applications in signal
_zg 1 : : : : : s denoising and detection.
0 “WWWWWA‘NZ 3.4. Comparison of classification performance by different methods
50 We evaluate the prediction performance of our SleepEGAN model
_58: 3 against several state-of-the-art approaches. The comparison results
o T T T T T T among different methods are shown in Table 2. We observed that our
o n sleepEGAN reasonably outperforms the other models in all three real
504 — REM datasets, thanks to the assistance of EGAN and ensemble learning.
: =00 1000 1500 2000 900 2000 Specifically, the more 1.mbalanced the datase.t is, the better the
performance of our method is after data augmentation. For example, for
Fig. 4. The real EEG signals in the five stages of Sleep-EDF-39. the dataset SHHS, after applying our EGAN and the ensemble learning,
the size of N1 epochs increases from 10,304 to 46,272, and the F1-Score
25 4 for the N1 class is improved from 40.5% to 54.1% by 13.6%/40.5% =
0 33.6% compared to the second best method. The overall accuracy also
. RN1-1 improved to 88.0%. In conclusion, the proposed SleepEGAN method
s . . g . . . . has a promising performance for sleep stage prediction and is expected
0 to work well for sleep data with imbalanced classes and individual
-25 1 RN1-2 heterogeneity.
o = : : : : : :
04 3.5. Ablation study
RN1-3
25 1 Our method SleepEGAN contains two strategies to tackle the prob-
22 i R lems of class imbalance and individual heterogeneity. To analyze the
50 = ; ; ; ; ; 5 effectiveness of each strategy in our SleepEGAN, we provide an ablation
study based on Sleep-EDF-39 as shown in Table 3. To be specific, we
%1 s develop four model variants as follows.
0 500 1000 1500 2000 2500 3000

Fig. 5. The real EEG signals in the N1 stage of Sleep-EDF-39.

25
04 Pl
-25 4 — FN1-1
50
0 - ulwn
_50 A — FN1-2
50
i -
0 = FN1-3
—50
25
ol b
— FN1-4
55 4
25 4
0
_25 4 — FN1S

T T T T T T
0 500 1000 1500 2000 2500 3000

Fig. 6. The generated fake EEG signals in the N1 stage of Sleep-EDF-39.

+ Naive: only use main network structure to perform training pro-
cess for classification.

» Naive + EGAN: only use EGAN to generate naturalistic EEG
epochs.

+ Naive + Ensemble: only use the ensemble strategy to enhance the
prediction performance.

+ SleepEGAN: use both strategies to train EEG samples.

Table 3 shows that the prediction performances of SleepEGAN
without using EGAN and/or ensemble need to be further improved,
especially for the F1-Score of N1. The Naive method has employed the
weighted cross-entropy loss function as well as data augmentation with-
out using EGAN. These simple strategies cannot significantly improve
the prediction performance for the N1 stage. Then, we use EGAN to
generate fake EEG samples in N1, but the performance is still inferior
to that of SleepEGAN. Although the distribution of the training data is
balanced in this scenario, the optimal model parameter selected by the
validation set may not have good generalization ability in the test set
due to individual heterogeneity. Therefore, we add a cost-free ensemble
learning step, resulting in SleepEGAN, which improves not only the
prediction accuracy of N1 but also the overall accuracy.
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Comparison results between our method and other methods. The best performance on each dataset is highlighted in bold.

Datasets Methods Epochs Overall metrics Per-class F1-Score (F1)
Acc MF1 K w N1 N2 N3 REM
DeepSleepNet [18] 41950 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
IITNeT [47] 42308 84.0 77.0 0.78 87.9 44.7 88.0 85.7 82.1
SleepEEGNet [16] 42308 84.3 79.7 0.79 89.2 52.2 86.8 85.1 85.0
Sleen-EDF.39 ResnetLSTM [48] 42308 82.5 73.7 0.76 86.5 28.4 87.7 89.8 76.2
P MultitaskCNN [49] 42308 83.1 75.0 0.77 87.9 33.5 87.5 85.8 80.3
AttnSleep [23] 42308 84.4 78.1 0.79 89.7 42.6 88.8 90.2 79.0
Tinysleepnet [19] 44220 85.4 80.5 0.80 90.1 51.4 88.5 88.3 84.3
Our method 44220 86.8 81.9 0.82 91.7 53.6 89.2 89.1 86.1
DeepSleepNet [18] 195479 77.8 71.8 0.70 90.9 45.0 79.2 72.7 71.1
SleepEEGNet [16] 195479 74.2 69.6 0.66 89.8 42.1 75.2 70.4 70.6
ResnetLSTM [48] 195479 78.9 71.4 0.71 90.7 34.7 83.6 80.9 67.0
Sleep-EDF-153 MultitaskCNN [49] 195479 79.6 72.8 0.72 90.9 39.7 83.2 76.6 73.5
AttnSleep [23] 195479 81.3 75.1 0.74 92.0 42.0 85.0 82.1 74.2
Tinysleepnet [19] 199352 83.1 78.1 0.77 92.8 51.0 85.3 81.1 80.3
Our method 199352 83.8 78.7 0.82 93.1 51.7 85.8 81.2 82.0
DeepSleepNet [18] 324 854 81.0 73.9 0.73 85.4 40.5 82.5 79.3 81.9
SleepEEGNet [16] 324854 73.9 68.4 0.65 81.3 34.4 73.4 75.9 77.0
SHHS ResnetLSTM [48] 324854 83.3 69.4 0.76 85.1 9.4 86.3 87.0 79.1
MultitaskCNN [49] 324854 81.4 71.2 0.74 82.2 25.7 83.9 83.3 81.1
AttnSleep [23] 324 854 84.2 75.3 0.78 86.7 33.2 87.1 87.1 82.1
Our method 324854 88.0 82.1 0.83 89.6 54.1 89.2 87.1 90.6
Table 3 sleep stage classification on three popular sleep datasets. The success of
Ablation study conducted on Sleep']_EDF'gg dataset. SleepEGAN is mainly attributed to two aspects: first, we employ EGAN
Methods Overall metrics Per-class F1-Score (F1) to generate fake EEG samples for the minority class so that the data
Ace MF1 « w Nt N2 N3 REM become balanced during the training process; second, we develop a
Naive 851 798 0.80 90.1 494 878 875 842 cost-free ensemble algorithm to reduce the estimation variance caused
Naive + EGAN 856 79.8 080 915 466 88.6 888 837 by individual h - d h . h h b
Naive + Ensemble 86.0 811 081 908 53.0 884 89.2 841 y individual heterogeneity, and hence it enhances the robustness
SleepEGAN 86.8 819 082 917 53.6 892 891 86.1 of our model. Through ablation experiments, we find that these two
strategies are effective to improve classification performance. Finally,
Table 4 we perform a sensitivity analysis on the number of base learners in
Sensitivity analysis conducted on Sleep-EDF-39 dataset. the procedure of ensemble learning and show that our model works
# Classifiers  Overall metrics Per-class F1-Score (F1) reasonably well using an arbitrary hyperparameter in a given range.
Acc  MF1  « w N1 N2 N3 REM In addition, it is noteworthy that the fake EEG signals generated by
M=5 86.5 81.5 0.82 91.4 519 891 894 856 our EGAN are quite similar to the real EEG signals. The EGAN method
M=6 867 8L7  0.82 916 528 891 893 856 can successfully learn the temporal and transitional structure of the
M=7 869 819 0.82 91.6 53.0 894 895 86.2 FEG sienal dith ial applications in sienal ition 150
M—s8 867 818 082 016 530 892 893 858 signals, and it has potential applications in signal recognition [50],
M=09 86.9 819 0.82 91.7 532 893 892 863 signal processing [51,52], signal synthesis [53], among others. These
M = 10 868 819  0.82 91.7 536 892 891 86.1

3.6. Sensitivity analysis for the number of classifiers in the ensemble learn-
ing

The number of base learners M is a hyper-parameter in the en-
semble procedure and needs to be specified beforehand. We expect
this hyper-parameter to be overly insensitive with respect to predic-
tion performance. Therefore, we choose the dataset Sleep-EDF-39 for
parameter sensitivity experiments. We fix the other parameters and
vary M € {5,6,7,8,9, 10} to investigate the fluctuation of its prediction
result shown in Table 4.

We observe that the parameter M hardly affects the prediction
performance of our model. For all values of M, the overall accuracy
does not vary by more than 0.4%. Thus, our model is very robust to
the hyper-parameter M, and the user can choose it arbitrarily in light
of the experiment’s purpose.

4. Conclusion

We propose a new GAN-enhanced ensemble deep learning model,
called SleepEGAN, for sleep stage classification with imbalanced classes
and individual heterogeneity from raw single-channel EEG signals. The
proposed SleepEGAN outperforms several existing deep models for

can be interesting future research topics to explore.
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