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We studied the exciton properties in double layers of transition metal dichalcogenides (TMDs)
with a dielectric spacer between the layers. We developed a method based on an expansion of
Chebyshev polynomials to solve the Wannier equation for the exciton. Corrections to the quasi-
particle bandgap due to the dielectric environment were also included via the exchange self-energy
calculated within a continuum model. We systematically investigated hetero double-layer systems
for TMDs with chemical compounds MX2, showing the dependence of the inter- and intralayer ex-
citons binding energies as a function of the spacer width and the dielectric constant. Moreover, we
discussed how the exciton energy and its wave function, which includes the e↵ects of the changing
bandgap, depend on the geometric system setup.

I. INTRODUCTION

The wide variety of two-dimensional (2D) materials
with di↵erent properties has opened up the possibility of
atomic scale heterogeneous integration and combination
of di↵erent layers, thus creating new hybrid structures
that exhibit totally new physics and allow unique func-
tionalities. A relevant perspective review paper in 2013
named this mixing of isolated layers into stacked het-
erostructures as van der Waals heterostructures1. Such
layer-stacked junctions have been intensively explored in
the past decade, presenting novel optoelectronics and col-
lective quantum phenomena that, in turn, one shows to
be a highly tunable material platform to design new high-
performance nanoelectronic devices tailored to a specific
purpose based on the layers’ compounds choice2–6.

A promising research area within optoelectronics in
semiconductor 2D materials and its layered structures
is related to the fact that they support the formation of
excitons – bound electron-hole pairs – and excitonic com-
plexes with binding energies more than an order of mag-
nitude greater than conventional semiconductors, i.e., on
the order of hundreds of meV, and small Bohr radius in
the range of several manometers7–14. It stems from the
reduced dimensionality and the associated reduced di-
electric screening that, in turn, leads to strong Coulomb
interactions between the charge carriers. Consequently,
the energy levels are renormalized, the quasiparticle
bandgap is modified, and the exciton binding energy can
be tuned by changing the environment15–17. Therefore,
an alternative to control the strength of the Coulomb
interaction via structural, sizable, and dielectric environ-
ment is engineering the van der Waals stacking4,17–19,
and consequently, the interlayer electrostatic coupling
between the constituents, leading to a weakening or
strengthening of the Coulomb binding by increasing or

decreasing the spatial separation between the electron
and the hole.
Owing to the interplay between the layer-dependence

control and the highly sensitive excitonic e↵ects in
van der Waals materials, allowing the existence of
a huge amount of di↵erent combinations of inter-
layer and intralayer excitons in homostructures and
heterostructures20–23, aligned with numerous di↵erent re-
ported techniques to deal with excitonic complexes and
even Bose-Einstein condensate of excitons24, motivates
further exploration of methods to compute exciton prop-
erties given the richness of possibilities to create and con-
trol them.
In this work, we present a simple yet e�cient and accu-

rate method, being less computationally demanding than
the Bethe-Salpeter framework from first-principles and
Monte Carlo approaches and with accurate convergence
in comparison with other semi-analytical methodologies
based on 2D hydrogenic excitonic basis25–28, to solve the
excitonic Wannier equation within the e↵ective mass ap-
proximation by using a basis expansion of the eigenstate
wave function into the Chebyshev’s polynomials. Results
for the dependence of the exciton energy levels (binding
energies) and associated wave functions on the layer sepa-
ration and dielectric constant of dielectric spacers are ob-
tained for interlayer and intralayer excitons in di↵erent
combinations of double-layer transition metal dichalco-
genides (TMDs) composing heterostructures.
The paper is organized as follows. In Sec. II, we present

the theoretical framework used to solve the excitonic
Wannier equation, deriving, in Appendix A, from the
Poisson equation for double-layer system separated by
a spacer the appropriate intralayer and interlayer elec-
trostatic potential contributions, and in Sec. IIA we
demonstrate the solution of Wannier equation for exci-
tons by expanding the excitonic wave function in Cheby-
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shev polynomials to obtain the binding energies and wave
function in real and momentum spaces. Sec. II B is de-
voted to explaining the procedure to find the bandgap
correction for double-layer semiconductors taking into
account the found electrostatic interaction and starting
from the monolayer bandgap. Results for heterostruc-
tures are discussed in Sec. III comparing them with the
previously reported results. Finally, in Sec. IV, we sum-
marize our main findings.

II. METHODOLOGY

We investigate two semiconductor monolayers sepa-
rated by a spacer with width d and dielectric constant
✏2. The substrate (z < �d) and superstrate (z > 0)
have dielectric constants ✏3 and ✏1, respectively, as de-
picted in Fig. 1(a). Here, we consider di↵erent TMDs
semiconductors represented by the symbol MX2, where
M is a metal [molybdenum (Mo) or tungsten (W )] and
X is a chalcogenide [selenium (Se) or sulfur (S)]. Homo
and heterostructures are formed by taking the same or
di↵erent TMDs in the double-layer system, respectively.
In Fig. 1(b), we depict the energy gap values for the
four investigated TMDs here. Note that the resulting
heterobilayers lead to a type II band alignment29, that
strongly favors the formation of interlayer excitons30. To
correctly predict the exciton energies, determined as the
di↵erence between the bandgap and the magnitude of the
exciton binding energy, we consider the e↵ects of the di-
electric geometry on the carrier-carrier interaction as the
solution of the corresponding Poisson equation. We use
the Wannier equation in the e↵ective mass approxima-
tion to calculate the exciton energy, which was proven to
coincide with a microscopic model31. For the bandgap,
we use the exchange self-energy32 within the continuum
model.

The carrier-carrier interaction was derived from the
Poisson equation in Appendix A with the geometry pre-
sented in Fig. 1(a) for both intralayer Vii and interlayer
Vij 6=i potentials, defined as the interaction between carri-
ers in the same (intra) layer or in adjacent (inter) layers,
and respectively given by [22]

Vii(q) =
�e

2

q✏0 [✏1 + riq + ✏2Gj(q)]
, (1a)

Vij 6=i(q) = Vii(q) [cosh(qd)�Gj(q) sinh(qd)] , (1b)

where

Gj(q) =
cosh(qd)(✏3 + rjq) + ✏2 sinh(qd)

✏2 cosh(qd) + sinh(qd)(✏3 + rjq)
, (2)

with ri being the screening length of each 2D layer and
i = {1, 2}. Fig. 2(a) shows a comparison between dif-
ferent interactions in momentum space: Rytova-Keldysh
[RK - Eq. (A22)], Coulomb, interlayer [Vi 6=j - Eq. (1a)]
and intralayer [Vii - Eq. (1b)] potentials. Although, they
converge to the same value in the long-wavelength limit,

FIG. 1: (Color online) (a) Schematic illustration of the double
layered TMDs, separated by a spacer of dielectric constant
✏2 (�d  z  0) and width d, immersed in two materials
of dielectric constants ✏1 (z > 0) and ✏3 (z < �d). This
structure sustains both intralayer and interlayer excitons. (b)
Band alignment as measured from the vacuum between the
four TMDs considered in this work. The bandgap energies
and their alignments were obtained from DFT calculations in
Ref. [29].

i.e. when q ⇡ 1/d, the interlayer potential deviates from
the RK and intralayer potentials. Fig. 2(b) emphasizes
the di↵erence between the intralayer and RK interactions
magnitudes, showing a di↵erence of almost 15% between
them for a short spacer width.

A. Chebyshev method

The carrier-carrier interaction in the classical regime
will diverge in the infrared limit, which must be handled
to solve the Wannier equation numerically in momentum
space. Here, we use the method developed by Chawla and
Kumar33 to analytically remove this infrared divergence
of the kernel by expanding in Chebyshev polynomials and
analytically integrating out the divergence via Cauchy
principal value.
We start with the Wannier equation in momentum

space:

Ep (p) +

Z
dp0

(2⇡)2
V (p� p0) (p0) = E (p), (3)

that also corresponds to a simplified version of the Bethe-
Salpeter equation in the ladder approximation, when ne-
glecting the exchange term for a two-band system in the
e↵ective mass regime. Decomposing Eq. (3) in partial
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FIG. 2: (Color online) (a) Comparison between di↵erent
carrier-carrier potentials in momentum space: RK (solid blue
curve), Coulomb (dashed green curve with rhombus symbols),
intralayer (dashed orange curve with circular symbols), and
interlayer (dashed red curve) interactions. The interlayer
[Eq. (1a)] and the intralayer [Eq. (1b)] potentials were cal-
culated considering r1 = r2 = r = 44.68 Å and d = 7.15 Å.
When q is of the order of 1/r, the Coulomb potential deviates
from the other three and a negligible di↵erence between the
intralayer and the RK potentials is observed. The interlayer
potential shows a strong screening that is due to the term
proportional to e�qd of Gj(q) in Eq. (2) when q ⇡ 1/d. (b)
The relative di↵erence between the intralayer and the RK po-
tentials, which can be as high as 15% the shorter the spacer
width d.

waves, we have

Ep `(p) +
1

2⇡

Z 1

0
dp

0
p
0
V`(p, p

0) `(p
0) = E `(p), (4)

with the interaction given by

V`(p, p
0) =

1

2⇡

Z 2⇡

0
d�V (p� p

0
,�) cos(`�). (5)

Now, we consider the hyperbolic conformal mapping

u =
⇠p� 1

⇠p+ 1
, (6)

with u 2 [�1, 1] and ⇠ being a scale parameter, and ex-
pand the momentum space wave function in Chebyshev
polynomials Tn, such as

 `(u) = f(u)
X

n

cn,`Tn(u), (7)

where f(u) is a function used to speed up the conver-
gence. The choice of f(u) shall be discussed later on.
Writing the integrand of Eq. (4) in terms of u, one has

1

2⇡

Z 1

0
p
0
dp

0
V`(p, p

0) `(p
0) =

1

⇠2

Z 1

�1
du

0V`(u, u0) `(u0)(1 + u
0)

⇡(1� u0)3
. (8)

From the electrostatic nature of the RK potential, one
of the numerically slow-step in solving Eq. (4) comes from
the 1/q infrared singularity, that we shall demonstrate
how it can be analytically removed. Now, introducing
the expansion given by Eq. (7) in Eq. (8), one obtains

In,`(u) =
1

⇠2

Z 1

�1
du

0V`(u, u0)(1 + u
0)

⇡(1� u0)3
f(u0)Tn(u

0), (9)

where now the 1/q infrared singularity appears explicitly
when u = u

0:

In,`(u) =
1

⇠2

Z 1

�1
du

0K`(u, u0)Tn(u0)

u� u0 , (10)

with the kernel being set to

K`(u, u
0) =

V`(u, u0)(1 + u
0)

⇡(1� u0)3
f(u0)(u� u

0), (11)

which vanishes for u = u
0. By a careful analysis of

Eq. (11), one has that a convenient choice for the function
f(u) is

f(u) =
1� u

3

1 + u
, (12)

which removes the pole at u = 1 in the kernel and will
be used to compute the exciton eigenstates in Sec. III.
Now, we use Chawla and Kumar’s method33 to com-

pute the integral in Eq. (10). Decomposing the kernel,
Eq. (11), in Chebyshev polynomials, one gets

K`(u, u
0) ⇡

MX

j=0

bj(u)Tj(u
0), (13)

where bj(u)’s are the expansion coe�cients. Analytically
integrating Eq. (10), one obtains

In,`(u) =
1

2⇠2

MX

j=0

bj(u)
⇥
�j+n(u) + �|j�n|(u)

⇤
, (14)

where the �k(u) function is defined in the Appendix
B and can be obtained recursively. Replacing back in
Eq. (8), we have that

1X

n=0

[h(u)f(u)Tn(u) + In,` � Ef(u)Tn(u)] cn,` = 0, (15)

where

h(u) =
~2

2µ⇠2

✓
1� u

1 + u

◆2

. (16)

Truncating the expansion at a maximum value n = N ,
we can solve Eq. (15) as a linear homogeneous system
(generalized eigenvalue problem) by choosing N + 1 dif-
ferent values for u. For this, we can choose the zeros of
the TN+1 Chebyshev polynomial.
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B. Bandgap engineering

The quasiparticle band structure of 2D materials de-
pends on the dielectric environment6. To account for
this dependence, we employ the Semiconductor Bloch
Equations (SBE)34 for the heterostructure depicted in
Fig. 1(a). We neglect the tunneling between the MX2

layers due to the presence of a dielectric spacer between
them. The single particle Hamiltonian for the charge
carriers in each layer can be described by the following
massive Dirac equation35

Ĥ0,i = ⌧i~vF,i� · pi + �z�
0
s,⌧ , (17)

whose the mass term �0
s,⌧ , corresponding to the bare

“bandgap”, depends on the spin (s) and valley (⌧) in-
dexes for each layer i. vF,i denote the Fermi velocity of
the layer i and �z is the z Pauli matrix component.

In order to take into account the corrections to the
bandgap, we employed the procedure derived in Ref. [32],
by considering the aforementioned gapped Dirac equa-
tion, the electron-electron interaction, and a dipole cou-
pling with light. It is well-known that TMDs have a
strong spin-orbit coupling (SOC) originating from the d

orbitals of the metal atoms and, consequently, it induces
a spin splitting of bands in monolayer,36 as illustrated in
Fig. 3. Thus, by applying Heisenberg’s equation to the
polarization operator, we arrive at the following exchange
self-energy expression for each layer j, given by the Ran-
dom Phase-Approximation (RPA) for 2D massive Dirac
Hamiltonian32, such as

⌃j
s⌧ (k) =

Z
dq

4⇡2
Vjj(q)ns⌧ (k� q)

4~2v2Fk · q+ (�0
s,⌧ )

2

4Es⌧
jkE

s⌧
jq

,

(18)
from which we can calculate the dressed bandgap as

�j
s⌧ = �j

s⌧,0 + ⌃j
s⌧ (k = 0), (19)

where �j
s,⌧ denotes the energy di↵erence between the

conduction and valence bands with the same s and ⌧

indexes for each layer j at the K point, the intralayer
potential Vjj is given by Eq. (1a), ns⌧ is the valence elec-
tronic density, and E

s⌧
jk is the eigenvalue of the massive

2D Dirac Hamiltonian. The intralayer interaction de-
pends on the dielectric environment through the spacer
width d, the dielectric constants ✏i, and the monolayer
screening lengths ri. As our goal is to study the depen-
dence of the exciton properties on the system geometry,
we fit the monolayers screening length r0 to reproduce
the experimental exciton energy of the suspended mono-
layer for each MX2 as described in Appendix C.

Using the r0’s given in Table II in Appendix C, we
obtain the bare bandgap �j

s⌧,0 from Eq. (19) for each
material and spin-valley combination for the suspended
monolayer, i.e. for ✏1 = ✏2 = ✏m = 1 and d ! 1. The
obtained values are presented in Table I. With the fitted
values of r0 and �0

s⌧ , we can solve Eq. (18) for di↵erent
geometric setups and study the dependence of the �j

s⌧ ,

FIG. 3: (Color online) Schematic illustration of the lowest
conduction (CB) and valence (VB) bands of monolayer TMDs
in the vicinity of the K (red curves) and K0 (blue curves)
points, emphasizing the band splitting due to SOC and spin
flipping for each band in the opposite valley due to the in-
version symmetry. The up (red) and down (blue) arrows
stand for spin-up and spin-down states. SOCCB (SOCVB)
corresponds to the energetic split of the conduction (valence)
band.

i.e. the spin/valley dependent transition energy at the K
point. In Fig. 4(a), we show that the mutual electrostatic
screening between two monolayers can decrease the value
of �j

s⌧ by 50 meV as the interlayer separation decreases
to 7.15 Å. In Fig. 4(b), we show the dependence of�j

s⌧ on
the spacer dielectric constant. The huge renormalization
of the bandgap due to the electron-electron interaction11

is weakened by the spacer dielectric screening, and as
the dielectric constant is increased, the transition energy
approaches the bare value �s⌧,0. In Figs. 4(a) and 4(b) it
was assumed the MoS2/MoSe2 heterostructure, however
qualitatively similar results are expected for the other
di↵erent TMD layer compound combinations.

TABLE I: Ab initio bandgaps29, Fermi velocity35 and calcu-
lated bare bandgaps using Eq. (19) and the fit r0’s given in
Table II in Appendix C for the four investigated TMDs and
di↵erent combinations of spin and valley indexes.

Materials �" (eV) �# (eV) vF (eV · Å) �0
"(eV) �0

#(eV)
MoS2 2.71 2.85 2.76 1.29 1.39
MoSe2 2.37 2.55 2.53 1.18 1.32
WS2 2.96 3.30 3.34 1.35 1.61
WSe2 2.63 3.01 3.17 1.14 1.40
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FIG. 4: (Color online) K�K transition energies of both spins
for MoS2 at the MoS2/MoSe2 heterostructure with respect to
the changes (a) in the interlayer separation d in a suspended
sample with ✏1 = ✏2 = ✏3 = 1, and (b) in the spacer dielectric
constant ✏2 with a fixed interlayer distance d = 7.15 Å and
external dielectric constants ✏1 = ✏3 = 1. Cyan and red curves

correspond to up
⇣
�MoS2

",⌧

⌘
and down

⇣
�MoS2

#,⌧

⌘
spin results,

respectively. The solid lines in (a) represent a monolayer limit
(d ! 1) of the MoS2.

III. RESULTS

Based on the formalism presented in the previous sec-
tions, in the current section, we shall discuss the exciton
wave functions and energies, as well as the binding ener-
gies, for di↵erent combinations of double-layer TMD het-
erostructures. For that, we solve the truncated Eq. (15)

FIG. 5: (Color online) Binding energies (EB) of the intralayer
A excitons, referred to as an electron-hole pair lying in the
MoS2 layer, by taking di↵erent layer compounds in the TMD
heterostructure formation. Red solid, green dashed, and blue
dotted curves correspond to MoS2�MoSe2, MoS2�WSe2, and
MoS2 � WS2 double-layers, respectively. Panels (a) and (b)
show the dependence of EB on the separation distance of the
layers d, by assuming ✏1 = ✏2 = ✏m = 1, and on the dielectric
constant ✏m, by assuming a fixed interlayer distance of d =
41 Å and dielectric constants of the substrate and superstrate
as ✏1 = ✏2 = 1, respectively. An enlargement as an inset in
panel (b) emphasizes the small energetic di↵erence between
the binding energies for the MoS2�MoSe2 heterojunction and
the other two, MoS2�WSe2 and MoS2�WS2, double-layers.

using the carrier-carrier potentials given by Eq. (1a) for
the case of intralayer excitons and by Eq. (1b) for the
interlayer excitons. All system parameters assumed here
for each one of the four investigated TMDs that com-
poses the double-layer are expressed in Tables I and II,
as for instance the e↵ective masses, material’s bandgap,
and the 2D material screening length r0 that was fitted
to give the exciton binding energy as explained in Ap-
pendix C. It is worth mentioning that tunneling e↵ects of
the charge carriers between the two layers are neglected
here, i.e. we consider the approximation that the elec-
tron and hole wave functions of each TMD layer do not
overlap.
Figures 5(a) and 5(b) show the binding energy of

the intralayer A excitons, which are formed when the
electron-hole pair lies on the MoS2 layer, as a function of
the separation distance (spacer width) d and the dielec-
tric constant of the spacer ✏m, respectively. Results for
three di↵erent layer compounds in the heterostructure
formation are shown: (red solid curve) MoS2 � MoSe2,
(green dashed curve) MoS2 � WSe2, and (blue dotted
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FIG. 6: (Color online) Binding energies (EB) of the inter-
layer excitons in the MoSe2 layer by taking di↵erent layer
compounds in the TMD heterostructure formation. Red solid
and cyan dashed curves correspond to MoSe2 � WS2 and
WS2 � MoSe2, respectively, with the interlayer exciton be-
ing formed by the electron (hole) of the first (second) re-
ferred compound. Panels (a) and (b) show the dependence
of EB on the separation distance of the layers d, by assuming
✏1 = ✏2 = ✏m = 1, and on the dielectric constant ✏m, by as-
suming a fixed interlayer distance of d = 41 Å and dielectric
constants of the substrate and superstrate as ✏1 = ✏2 = 1,
respectively. An enlargement as an inset in panel (b) empha-
sizes the energetic di↵erence between the binding energies for
the MoSe2 �WS2 and WS2 �MoSe2 double-layers.

curve) MoS2 � WS2. As a consequence of the fact that
MoSe2 has the larger r0 value (see Table II) of the four
investigated TMD layers, it was already expected that it
would screen more e↵ectively the electron-hole interac-
tion by the charge-image e↵ect. As verified in Fig. 5(a),
it lowers the exciton binding energy by almost 20meV,
whereas the WSe2 and WS2 cases present almost identi-
cal binding energies due to their very similar r0 values.
From Fig. 5(b), one notices that the intralayer A exci-
ton binding energies are strongly a↵ected by the spacer’s
dielectric constant ✏m changes, exhibiting an energetic
variation on the order of 300meV when ✏m varies from
1 to 4. Qualitatively similar results were reported in
the TMD monolayer case in Refs. [6,37], being physically
understood by the spatial localization of the interlayer A
exciton depicted in Fig. 5 that lies only in one of the lay-
ers of the double-layer TMD system. Moreover, a small
energetic di↵erence of the order of a few meV is noted
in Fig. 5(b) for the binding energies of the intralayer A
excitons in the MoS2 when one compares the di↵erent
investigated heterostructures. It is emphasized by the

FIG. 7: (Color online) Exciton energy dependency on (a)
the layer separation and (b) the dielectric media ✏m for the
MoSe2-WSe2 heterostructure. IXi denotes the i-th interlayer
exciton, such that IX1 (IX2) is formed by the electron from the
lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) ma-
terial with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the in-
tralayer excitons for WSe2 and MoSe2 cases, respectively. (a)
All dielectric constants are held fixed with the value of 1, and
(b) the layer separation is fixed to d = 41 Å. The shaded gray
region corresponds to the continuum.

enlargement shown as an inset of Fig. 5(b). It reveals
structural independence in the heterostructure formation
on the binding energy as a function of the dielectric con-
stant, i.e. ✏m changes similarly a↵ect the binding ener-
gies regardless of the adjacent TMD layer of the MoS2-
formed heterostructure.
Let us now focus on the interlayer exciton. When

stacking di↵erent TMD monolayers, the corresponding
Dirac K points in the reciprocal space of each TMD
monolayer will not coincide, and the distance between
the respective K points of each layer depends both on
the relative rotation of the crystallography orientation
and the mismatch of the lattice parameters of each layer.
Here, within the e↵ective mass approximation, we are ig-
noring both e↵ects. Considering only the uppermost va-
lence band and the lowest conduction band of each layer,
there are two di↵erent kinds of interlayer excitons for the
type II band alignment case (see Fig. 1): (i) the lowest
conduction band between the two 2D materials hosting
the electron, whereas the hole is hosted in the valence
band of the adjacent layer that possesses the highest en-
ergy, and (ii) the opposite formation, i.e the highest con-
duction band between the TMD monolayers hosting the
electron, whereas the hole is hosted in the valence band
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of the adjacent layer that possesses the lowest energy. If
the corresponding exciton binding energy has a magni-
tude smaller than the conduction band o↵set, this will
result in an excitonic resonance, as the exciton energy
lies inside the conduction band.

Results for these two mentioned kinds of interlayer
excitons in double-layer heterostructures composed by
MoSe2 and WS2 compounds are shown in Fig. 6. The
solid red (dashed cyan) curve corresponds to the in-
terlayer exciton formed by an electron (hole) from the
MoSe2 (WS2) and a hole from the WS2 (MoSe2). Both
interlayer exciton configurations show a binding energy
increase when the layer separation d decreases, attain-
ing values of almost 400 meV for shorter distances of
the order of 10 Å [see Fig. 6(a)]. Such behavior is eas-
ily understood by the electrostatic interaction nature
of the electron-hole attraction, which is enhanced the
shorter the interlayer distance. One also observes in
Fig. 6(a) that the energetic di↵erence of the binding en-
ergies for the two configurations of interlayer excitons,

i.e. |EMoSe2�WS2
b �E

WS2�MoSe2
b |, increases when the

interlayer distance decreases. Knowing that the inter-
layer interaction depends on the layer separation and the
screening parameters r0 of heterostructures’ compounds,
and in addition to that, here we are switching the layers
where the electron and hole are positioned, one can link

this energetic di↵erence |EMoSe2�WS2
b �E

WS2�MoSe2
b |

in view of the interlayer exciton formation and the con-
sequent overall strength switching of the role of the elec-
trostatic interaction at each layer. Note that the electro-
static interaction of an electron-hole pair separated by
a dielectric media has its amplitude modulated by the
electrostatic screening of the layers damped by the sep-
aration between them. Thus, by exchanging the config-
uration of the electron-hole layer location, one leads to
dampening/enhancing the screening of the adjacent layer
owing to the layer separation and consequently to an en-
ergetic di↵erence in the binding energy of the exciton. A
similar feature is observed in the case that we fixed the
layer separation and vary the dielectric constants of the
environment. This is present in Fig. 6(b). Note that the
interlayer exciton binding energy exhibits the same ten-
dency as the intralayer one [see Fig. 5(b)] as a function of
the spacer dielectric constant ✏m, except for the increased
energetic distancing between the two MoSe2 �WS2 and
WS2 � MoSe2 cases when ✏m assumes high values, as
emphasized in the inset of Fig. 6(b).

In what follows, we study the exciton energy, which is
defined by

Eexc = Ec � Ev � |Eb|, (20)

where |Eb| is the magnitude of the exciton binding en-
ergy, Ec the bottom of the conduction band, and Ev the
top of the valence band associated with the electron and
hole, respectively, that contributes to the exciton forma-
tion. For a bright exciton, this value also corresponds to
the energy of the photon that creates the electron-hole
bound-state.

FIG. 8: (Color online) Exciton energy dependency on (a) the
layer separation and (b) the dielectric media ✏m for the MoS2-
MoSe2 heterostructure. IXi denotes the i-th interlayer exci-
ton, such that IX1 (IX2) is formed by the electron from the
lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) ma-
terial with result represented by the solid red (dashed cyan)
curve. Solid blue and yellow curves correspond to the in-
tralayer excitons for MoSe2 and MoS2 cases, respectively. (a)
All dielectric constants are held fixed with the value of 1, and
(b) the layer separation is fixed to d = 41 Å. The shaded gray
region corresponds to the continuum. An enlargement around
small layer separation is shown as an inset of panel (a).

From now on, for an MX2-M0X0
2 heterostructure, we

define the interlayer exciton IX1 as the bound-state of the
electron from the lowest conduction band of the first ma-
terial and the hole from the highest valence band of the
second material and IX2, as the opposite. In Fig. 7, we
show the evolution of the exciton energies, both intralayer
and interlayer, and the bottom value of the conduction
band as a function of [Fig. 7(a)] the interlayer spacing
and [Fig. 7(b)] the dielectric constant of the spacer. It
is worth mentioning that we use as a reference energy
level the top of the valence band, considering the band
alignment of Ref. [29]. One can see in Fig. 7(a) that the
intralayer exciton energies (solid blue and yellow curves
for WSe2 and MoSe2, respectively) are very robust with
respect to the layer separation due to the simultaneous
changes of the bandgap and the exciton binding energy,
which cancel each other out, keeping the energies of the
intralayer exciton unaltered. As the interlayer separa-
tion d increases, the value of each intralayer exciton en-
ergy converges to the suspended monolayer value minus
the band alignment energy. For the interlayer exciton
(see solid red and dashed cyan curves for IX1 and IX2,
respectively), we have that the exciton energy increases
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FIG. 9: (Color online) (a,b) Intralayer and (c,d) interlayer
exciton wave function for the MoS2-MoSe2 heterostructure as
a function of (a,c) the layer separation and (b,d) the dielectric
constant. The dielectric constants are held fixed at 1 for pan-
els (a) and (c), whereas the value for the interlayer distance
is fixed of d = 41 Å in panels (b) and (d).

due to the weakening of the binding energy, which arises
from the sensitivity of the interlayer interaction with re-
spect to the layer separation. For instance, notice in
Fig. 7(a) that the interlayer exciton IX1 energy (dashed
cyan curve) increases 0.15 eV for d = 50 Å. By Fig. 7(b),
one observes that the intralayer exciton energy is more
sensitive to changes in the dielectric media. By increas-
ing the dielectric constant of the space ✏m, the screening
is enhanced and, therefore, weakening the Coulomb in-
teraction. Although the interlayer exciton binding energy
varies less with respect to the dielectric screening, the gap
correction is more acute, leading to a larger fluctuation
of the interlayer exciton energy.

Similarly to Fig. 7, in Fig. 8 we present results for the
exciton energy for (a) di↵erent layer separations and (b)

dielectric media of the spacer, but now for the MoS2-
MoSe2 heterostructure. By comparing Figs.7 and 8, one
observes a similar overall behavior for the interlayer and
intralayer excitons, owing to the screened interaction and
the geometrical disposition of the heterostructure, show-
ing qualitative physical trends that are independent of
the TMD layers composition. Unlike the MoSe2-WSe2
case [see Fig. 7(a)], for the MoS2-MoSe2 case, the lowest
exciton energy for small layer separation is the interlayer
IX1, as emphasized in the inset of Fig. 8(a). As seen
in Fig. 8(b), the dielectric media allows tuning both in-
terlayer and intralayer exciton states, lowering their fre-
quencies as larger the dielectric constant, exhibiting a
more pronounced e↵ect on the interlayer case.
Finally, we explore the spatial distribution of the ex-

citon wave function (see Appendices D and E for the
analytical formulation of the configuration space wave
function and the comparison of the assumed methodol-
ogy here with other theoretical methods). Figures 9(a,b)
and 9(c,d) show color maps of the intralayer and inter-
layer exciton wave functions by varying (a,c) the inter-
layer distance d and (b,d) the dielectric constant ✏m of the
spacer. Figure 9(a) depicts no pronounced change in the
spatial distribution of the intralayer exciton wave func-
tion when changing the interlayer distance. This can be
linked to the energetic negligible changes in the binding
energy as shown by the very small energetic scale varia-
tion in Fig. 5(a). On the other hand, as already expected,
since by changing the dielectric constant the electron-hole
interaction should vary, Fig. 9(b) shows di↵erent spatial
distributions of the intralayer exciton wave function when
varying the dielectric constant of the spacer. The higher
✏m value the lower the electron-hole interaction and con-
sequently the binding energy value becomes smaller [see
Fig. 5(b)] and thus the exciton wave function spreads
more, i.e. increasing the exciton size. Figures 9(c,d)
demonstrate that the interlayer exciton wave function is
much more sensitive to changes in the layer separation
[Fig. 9(c)] than the intralayer case [Fig. 9(a)]. This is to
be expected because the Coulomb interaction for inter-
layer exciton gets weaker with the increase of the layer
separation, leading to spreading out the in-plane wave
function. From Figs. 9(c,d), one notices that the wave
function covers a larger spatial region for the interlayer
case compared to the intralayer case [Figs. 9(a,b)], for
both cases of changing the layer separation (being up to
35 Å in panel (c)) and the interlayer dielectric constant
(being up to 50 Å in panel (d)).

IV. CONCLUSIONS

In summary, we have presented a theoretical frame-
work based on an appropriate expansion for the exci-
tonic wave function basis composed here of the Cheby-
shev polynomials to solve the excitonic Wannier equa-
tion for double-layer heterostructure formed by di↵erent
TMDs separated by a dielectric spacer. The employed
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method showed a fast convergence and numerical reli-
ability with a computationally cheap scheme, owing to
the recursive relations of the Chebyshev polynomials and
the Chawla-Kumar decomposition that allowed us to in-
tegrate out the infrared divergence of the electron-hole
interaction.

Based on the mentioned theoretical formalism, we ex-
plored the excitonic spectrum for intralayer and inter-
layer exciton configurations and its tunability through
dielectric engineering, which arises from the screened
Coulomb interaction. We reported that there is a robust-
ness of the intralayer state with respect to the layer sep-
aration, while the interlayer exciton energy increases due
to the binding energy sensitiveness to layer separation.
By changing the dielectric media, the intralayer exciton
energy decreases, although not as sharply as the inter-
layer exciton, which has the weakest binding for a large
dielectric constant. Moreover, we also have obtained cor-
rections to the bandgap using the semiconductor Bloch
equations formalism, which enables us to understand how
to layer separation and dielectric media a↵ect the exci-
ton energy. Our findings showed that even the energetic
ordering relative to the intralayer and interlayer excitons
can be modified by changes in the layer separation and
in the dielectric constant of the spacer. Therefore, by di-
electric engineering of the surrounding environment, we
showed that the excitonic properties in double-layer van
der Waals materials can be modified, enabling a bandgap
control that suits di↵erent technological applications.

We hope that our theoretical framework and results
based on Chebyshev’s polynomial basis for Wannier ex-
citonic complexes will prove useful for the exploration of
optoelectronics properties in di↵erent van der Waals ma-
terials with a layer-by-layer stacking and surrounding en-
vironment controlling, and moreover being a simple and
e�cient tool for explaining cutting edge experiments in
double layer 2D semiconductors, such as nonlinear opti-
cal susceptibilities.
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Appendix A: RK potential in a heterostructure

In order to derive the RK potential for the chosen het-
erostructures, the Poisson equation has to be solved con-
sidering three dielectric regions separated by two layers
located at z = 0 and z = �d (see Fig. 1). Each layer has
a polarization coe�cient denoted by r1 and r2, respec-
tively. Considering a charge Q1 at z = 0, we look for the
potential distribution. The presence of a charge at the
uppermost layer will induce a charge density ⇢ind(~r) due
to polarization. Therefore, the equation which we must
solve is

�r2
�(~r) =

1

✏0
⇢(~r). (A1)

Replacing the charge density ⇢(~r), one gets

�r2
�(~r) =

1

✏0
(Q1�(~r) + ⇢ind(~r)) . (A2)

The induced charge density term is

⇢ind = �1�(z = 0) + �2�(z + d)� ~r · ~P , (A3)

where ~P is the medium polarization. If we consider that
the medium polarization is linear, we can write the last
term of Eq. (A3) as

~r · ~P = ✏0�i
~r · ~E = �✏0�ir2

�(~r) , (A4)

which leads to the following partial di↵erential equation

�r2
�(~r)=

1

✏0

⇥
Q1�(~r)+�1�(z)+�2�(z+d)+✏0�ir2

�(~r)
⇤
.(A5)

Next, we apply a planar Fourier transform and rearrange
Eq. (A5), which yields for z > 0 to

(1 + �1)

✓
q
2 � @

2

@z2

◆
�(~q, z) = 0, (A6)

where ~q denotes the planar Fourier components. A pos-
sible solution for Eq. (A6) is

�(~q, z) = Ae
�qz +A

0
e
qz
, (A7)

and by noting that in the limit of large z the potential
should tend to zero, resulting to

�(~q, z) = Ae
�qz

, z > 0. (A8)

Performing a similar procedure for the surrounded re-
gions associated with the spacer and the substrate, we
obtain, respectively

�(~q, z) = B sinh qz + C cosh qz , �d < z < 0 , (A9a)

�(~q, z) = De
qz

, �d < z . (A9b)
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Using the continuity of the potential, let us now rear-
range Eq. (A5) and integrate it around each of the layers,
leading to a system of equations that allows us to deter-
mine the coe�cients of the potential. Thus, rearranging
Eq. (A5), we obtain

�(1+�i)r2
�(~r)=

1

✏0
[Q1�(~r)+�1�(~z)+�2�(z+d)] , (A10)

and integrating around z = 0, we get

Z +�

��
dz ✏i

✓
q
2 � @

2

@z2

◆
�(~q, z) = �✏1

✓
@�(~q, z)

@z

◆

z=�

+ ✏2

✓
@�(~q, z)

@z

◆

z=��

=
Q1

✏0
+

⌃1

✏0
. (A11)

Next, by evaluating the derivatives and taking the limit
� ! 0, we arrive at

✏1qA+ ✏2qB =
Q1

✏0
+ ⌃1✏0. (A12)

The planar Fourier transform of �1 and ⌃1 can be found
by using the in-plane polarization

�1 = �~r · ~Pk = �r1✏0

⇥
r2
�(~r)

⇤
k , (A13)

which leads to

⌃1 = �r1✏0q
2�(~q, z = 0) = �r1✏0q

2
A . (A14)

Replacing Eq. (A14) into Eq. (A12), one gets one of the
equations to obtain the coe�cients A, B, C, and D [see
below Eq. (A15a)]. Moreover, due to the continuity of the
potential at the interface at z = �d, using Eqs. (A9a),
(A9b), and (A10), and also by taking the limit such that
� ! 0, noting that A = C, one obtains the other two
equations [Eqs. (A15b) and (A15c)] of the system of equa-
tions

(✏1q + r1q
2)A+ ✏2qB =

Q1

✏0
, (A15a)

�B sinh(qd) +A cosh(qd) = De
�qd

, (A15b)

✏2 [B cosh(qd)�A sinh(qd)] = (✏3 + r2q)De
�qd

. (A15c)

Using Eq. (A15c), we can write

De
�qd = ✏2

B cosh(qd)�A sinh(qd)

✏3 + r2q
, (A16)

which in turn implies that only A and B are relevant. By
defining the function Gj(q) as

Gj(q) =
cosh(qd)(✏3 + rjq) + ✏2 sinh(qd)

✏2 cosh(qd) + sinh(qd)(✏3 + rjq)
, (A17)

the solution of the system of equations [(A15a)-(A15c)]
for A and B results in

A =
�Q1

q✏0 [✏1 + r1q + ✏2G2(q)]
, (A18a)

B = G2(q)
Q1

q✏0 [✏1 + r1q + ✏2G2(q)]
. (A18b)

The potential in momentum space is then given by

�(~q, z)=

8
><

>:

Ae
q(z+d) [cosh(qz) +G2(q) sinh(qz)] ; z < �d,

A [cosh(qz)�G2(q) sinh(qz)] ;�d < z < 0,

Ae
�qz; z > 0.

(A19)
Since we are particularly interested in the intralayer
and interlayer e↵ects, we can write explicitly, using
Eqs. (A17), (A18a), (A18b), (A19), and by also doing
some relabeling, the following expressions

Vii(q) =
�e

2

q✏0 [✏1 + riq + ✏2Gj(q)]
, (A20a)

Vi,j 6=i(q) =
e
2 [cosh(qd)�Gj(q) sinh(qd)]

q✏0 ["1 + riq + "2Gj(q)]
, (A20b)

where Vii(q) and Vi,j 6=i(q) are the intralayer and the in-
terlayer potentials, respectively. A interesting property
of the Gj(q) function [Eq. (A17)] is that

lim
d!1

Gj(q) = lim
d!1

e
qd(✏3 + rjq) + ✏2e

qd

✏2e
qd + eqd(✏3 + rjq)

= 1. (A21)

Using this result in Eq. (A20a), we arrive at a fairly fa-
miliar result

VRK(q) =
�e

2

q✏0(1 + r̄1q)
, (A22)

where r̄1 = r1/(✏1+✏2). Equation (A22) is the RK poten-
tial in momentum space. A comparison between the de-
rived intralayer [Eq. (A20a)] and interlayer [Eq. (A20b)]
potentials and the Coulomb potential is shown in Fig. 2.

Appendix B: � recurrence relations

We define

�i(u) =

Z 1

�1
du

0 Ti(u0)

u� u0 , (B1)

that obeys the following relations

�0(u) = ln

����
1 + u

1� u

����, (B2)

�1(u) = �2 + u�0(u), (B3)

�k+1(u)� 2u�k(u) + �k�1(u) = 2
[1 + cos(k⇡)]

k2 � 1
. (B4)

Such recurrence relations and definitions are used in the
analytic solution of In,l in Eq. (10) in the Chebyshev
method’s Section IIA.

Appendix C: Fitting procedure

Our goal is to describe the electrostatic e↵ects due to
the geometry presented in Fig. 3, starting from the exci-
ton binding energy and bandgap of suspended monolayer
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TABLE II: E↵ective masses, screening factor r0, and the
bandgap of each material. The masses are obtained from
Ref. [35] and the screening factors are obtained via a fitting
procedure.

Materials me
35 mh

35 r0 r0
42 �K

29(eV) Eb(meV)
MoS2 0.47 0.54 27.04Å 23.45Å 2.71 �753.038

MoSe2 0.58 0.6 35.34Å 26.13Å 2.37 �711.739

WS2 0.27 0.36 20.85Å 16.59Å 2.91 �900.040

WSe2 0.29 0.36 21.80 Å 20.09Å 2.57 �890.041

samples. For this, we consider the experimental A exci-
ton energy EA measured for suspended samples38–41, the
bandgap �K calculated in Ref. [29], and the SOC split-
ting of Ref. [35]. The electron and hole of a bright exciton
come from bands with the same spin and valley indexes,
thus, for negative SOCCB (see Fig. 3), the exciton bind-
ing energy is blue-shifted for the same magnitude.

First, we obtain the screening length r0 fitting the
value of the binding energy of Table II for each MX2

by solving the Wannier equation (3) with the RK po-
tential (A22). With this value of r0, we solve the gap
equation (19), also considering the RK potential, to ob-
tain the “bare” transition energy �s⌧,0, which gives the
transition energy calculated by Ref. [29].

Appendix D: Configuration space wave function

Once Eq. (15) is solved, we can obtain the wave func-
tion in configuration space using the Fourier transform

 n,`(r) =

Z
d
2p e

ip·r
 `(p)e

i`�0
. (D1)

By implementing the angular integration, we have that

 n,`(r,�) =
2

⇠2
e
i`�

X

n

cn,`

Z 1

�1
du

1 + u

(1� u)3

⇥ J`

✓
r

⇠

1 + u

1� u

◆
f(u)Tn(u), (D2)

with J` being the Bessel function of order `. A compu-
tationally convenient choice for f(u) is given by

f(u) ⌘ (1� u)3

1 + u
, (D3)

since it demonstrated a fast convergence. To understand
the assumed procedure, let’s exemplify with the calcula-
tion of the following quantity F (q) of interest

hF i =
Z

dqqF (q) n1(q)... nN (q). (D4)

To do this, first, we write the above equation in terms of
u

hF i =

Z
duF (q(u))


1 + u

(1� u)3
f(u)

�nN

⇥
X

j1...jnN

c
n1
j1
Tj1(u)...c

nN
jnN

TjnN
(u). (D5)

The next step is to write the integrand of Eq. (D5) in
terms of a single Chebyshev expansion

F (q(u))


(1� u)3

1 + u

�nN�1

⇥
X

j1...jnN

c
n1
j1
Tj1(u)...c

nN
jnN

TjnN
(u)

=
X

k

bkTk(u). (D6)

To do this, we use the procedure of convolution explained
in Appendix B. After that, we can use the Clenshaw-
Curtis to obtain

hF i =
1X

k=0

2b2k
1� (2k)2

. (D7)

Appendix E: Comparison with other methods

In order to corroborate our obtained results in Sec. III,
it is important to compare the Chebyshev method with a
di↵erent method for solving the integral equation Eq. (3).
For this purpose, let’s compare the method discussed in
the paper with the more traditional quadrature method:
the Gauss-Legendre quadrature. Let’s rewrite Eq. (3) as

 `(p) =
1

E � Ep

Z 1

0

dp
0

2⇡
p
0
V`(p, p

0) `(p
0), (E1)

by rewriting the integration as a Gauss-Legendre quadra-
ture and applying a hyperbolic mapping, we have

 `(p) =
1

E � Ep

X

i

!i(1 + xi)V`(p, xi) `(xi)

⇡(1� xi)3
, (E2)

which is a system of equations in which we search for unit
eigenvalues with di↵erent input energies E. Results ob-
tained via the Gauss-Legendre quadrature for the exciton
ground state binding energy of MoS2 for di↵erent num-
bers of mesh points for the radial momenta and fixed
angular mesh points are shown in Table III. From Ta-
ble III, one can see that the Chebyshev method, whose
resulting value is Eb = �753.0 meV, agrees with the in-
terpolated Nyström method very well, which is a more
computationally demanding method and for a quadratic
extrapolation (Np ! 1) gives Eb = �753.1 meV, i.e.
showing an energetic di↵erence between the methods of
0.1 meV.
To further validate our method, we also compare the

wave functions for the first four states, i.e. ground,
first excited, second excited, and third excited states,
obtained via the Chebyshev method (solid cyan curves)
and the Gauss-Legendre quadrature (dashed red curves)
in Fig. 10, assuming the RK potential for the interlayer
electron-hole interaction. Figure 10 shows that both
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TABLE III: The convergence of exciton ground state bind-
ing energy as a function of the number of radial momenta
mesh points Np, obtained with RK potential for the MoS2

from the Gauss-Legendre quadrature method. The number
of angular mesh points is 61. The exciton binding energy of
�753.1meV for Np ! 1 is obtained with a quadratic extrap-
olation, while the Chebyshev Method yields a binding energy
of �753.0meV.

Np Eb (meV)
300 �788.3
400 �778.8
500 �773.3
600 �769.5
700 �768.2
800 �765.4
900 �764.1
1000 �762.9
Np ! 1 �753.1

FIG. 10: (Color online) Comparison of wave functions ob-
tained via (dashed red curves) the Gauss-Legendre quadra-
ture method and (solid cyan curves) the Chebyshev method
for the first four states of the MoS2 exciton using the RK po-
tential.  i(p) is the i-th excited state for the s-wave. Note
that the y-axis is in log scale and the number of peaks repre-
sents the number of nodes in the excitonic wave function.

methods are very reliable and generated similar quan-
titative and qualitative results. However, the Chebyshev
method exhibits some oscillations for large momenta,
where the wave function is in the order of 10�22.

Another good comparison for the binding energy value
could be achieved with variational-like methods such as
the one by Gri�n, Hill, and Wheeler (GHW)43,44. Here,
we consider a basis with a set of parameters ⇣ and calcu-
late the secular equation generated by the inner product
with the Hamiltonian in real space. The basis chosen is

 n,`(~r) = Anr
|`|
e
i`�

X

j

c
n
j e

�⇣jr, (E3)

which yields

X

j

[H(⇣i, ⇣j)� S(⇣i, ⇣j)En] c
n
j = 0, (E4)

where

H(⇣i, ⇣j) =

Z
dr ⇤

n,`(~r)H n,`(~r), (E5a)

S(⇣i, ⇣j) =

Z
dr ⇤

n,`(~r) n,`(~r). (E5b)

The set of values for the parameter ⇣ is chosen in a log-
arithmic grid, such as ⌦ = ��1 ln ⇣. Here, we take � = 5
and set the interval [�2, 2]. The number of points by
which we subdivide the interval is obtained by trial and
error, which yields N = 48. By choosing this set of
parameters and grid, we arrive at a binding energy of
Eb = 752meV, which shows a good agreement with our
Chebyshev results.

⇤ Electronic address: luiztenorio@fisica.ufmt.br
† Electronic address: teldo@fisica.ufmt.br
‡ Electronic address: kmohseni@ita.br
§ Electronic address: tobias@ita.br
¶ Electronic address: mhadizadeh@centralstate.edu
⇤⇤ Electronic address: diego rabelo@fisica.ufc.br
†† Electronic address: andrejck@ita.br
1 A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
2 M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, Materials Today

19, 322 (2016).
3 A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F.
Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn,
et al., Nature Communications 8, 1 (2017).

4 W. Zhang, Q. Wang, Y. Chen, Z. Wang, and A. T. Wee,
2D Materials 3, 022001 (2016).

5 K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).
6 A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa,
R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He,

mailto:luiztenorio@fisica.ufmt.br
mailto:teldo@fisica.ufmt.br
mailto:kmohseni@ita.br
mailto:tobias@ita.br
mailto:mhadizadeh@centralstate.edu
mailto:diego_rabelo@fisica.ufc.br
mailto:andrejck@ita.br


13

J. Zhou, et al., npj 2D Materials and Applications 4, 1
(2020).

7 T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman,
Physical Review B 88, 045318 (2013).

8 C. Zhang, A. Johnson, C.-L. Hsu, L.-J. Li, and C.-K. Shih,
Nano Letters 14, 2443 (2014).

9 K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao,
and J. Shan, Physical Review Letters 113, 026803 (2014).

10 Z. Ye, T. Cao, K. O’brien, H. Zhu, X. Yin, Y. Wang, S. G.
Louie, and X. Zhang, Nature 513, 214 (2014).

11 M. M. Ugeda, A. J. Bradley, S.-F. Shi, H. Felipe, Y. Zhang,
D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen,
et al., Nature Materials 13, 1091 (2014).

12 T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys-
ical Review B 85, 205302 (2012).

13 L. S. R. Cavalcante, D. R. da Costa, G. A. Farias, D. R.
Reichman, and A. Chaves, Physical Review B 98, 245309
(2018).

14 A. Chaves, G. O. Sousa, K. Khaliji, D. R. da Costa, G. A.
Farias, and T. Low, Physical Review B 103, 165428 (2021).

15 M. Bernardi, C. Ataca, M. Palummo, and J. C. Grossman,
Nanophotonics 6, 479 (2017).
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