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This study presents a solution to the Yakubovsky equations for four-body bound
states in momentum space, bypassing the common use of two-body t — matrices.
Typically, such solutions are dependent on the fully-off-shell two-body t — matrices,
which are obtained from the Lippmann-Schwinger integral equation for two-body
subsystem energies controlled by the second and third Jacobi momenta. Instead,
we use a version of the Yakubovsky equations that does not require t — matrices,
facilitating the direct use of two-body interactions. This approach streamlines the
programming and reduces computational time. Numerically, we found that this
direct approach to the Yakubovsky equations, using 2B interactions, produces four-
body binding energy results consistent with those obtained from the conventional
t — matrix dependent Yakubovsky equations, for both separable (Yamaguchi and
Gaussian) and non-separable (Malfliet-Tjon) interactions.
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1 Introduction

The Yakubovsky equations provide a non-perturbative framework for investigating few-
body bound and scattering systems in different sectors of physics, including atomic, nuclear,
and particle physics. These equations have been utilized extensively in both momentum
[1-24] and configuration [25-45] spaces. The Yakubovsky equations fundamentally rely on
two-body (2B) transition matrices, denoted as #(¢), which are derived from the solution of the
Lippmann-Schwinger (LS) equation, considering either positive (scattering states) or
negative (bound states) 2B subsystem energies €. Notably, solving the LS equation for
positive energies can prove to be a numerically demanding task due to the presence of
singularities. Contrarily, for negative energies, the LS equation must be computed for the 2B
subsystem energies, which are determined by the Jacobi momenta of the third and fourth
particles.

In this study, we utilize a version of the Yakubovsky equations for four-body (4B)
bound states that directly incorporates 2B interactions, eliminating the need for 2B ¢ —
matrices. This ¢ — matrix-free approach to the Yakubovsky equations has been
previously solved in configuration space by Lazauskas et al. [29, 39, 40, 44]. In our

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphy.2023.1232691/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1232691/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1232691/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1232691/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1232691&domain=pdf&date_stamp=2023-12-08
mailto:mhadizadeh@centralstate.edu
mailto:mhadizadeh@centralstate.edu
https://doi.org/10.3389/fphy.2023.1232691
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1232691

Mohammadzadeh et al. 10.3389/fphy.2023.1232691

TABLE 1 The parameters for the Malfliet-Tjon (MT-V), Yamaguchi (Y-1V), and momentum vectors and presenting a simplified form for s — wave
Gaussian potentials utilized in this study. interactions. Section 3. Outlines our numerical results for 4B binding
gy (fm™) energies as calculated from the t — matrix-free Yakubovsky equations,

alongside a comparison with results obtained from conventional ¢ —
155 matrix-dependent Yakubovsky equations. Lastly, Section 4. presents our

1 (MeV-fm™") conclusion and discusses prospects for succeeding studies.

Yamaguchi-IV

2 The t — matrix-free coupled
Yakubovsky equations for 4B bound
states

Gaussian

The conventional form of Yakubovsky equations that describe
work, we present the t — matrix-free coupled Yakubovsky  the bound state of four identical particles interacting through
equations in momentum space. Here, the Yakubovsky  pairwise interactions reads as follows [4].

components linked to the 3 + 1 and 2 + 2 chains are derived
P ¥ =G0t}~)[(1 + Py, +l//2]’ (1)

as a function of the Jacobi momentum vectors, directly including ¥, = GotP[(1+ Ps)y, +v,]
, =Go )Y T Y,

2B interactions. To determine the 4B binding energies, we solve
the coupled Yakubovsky integral equations using separable  where y, and y, denote Yakubovsky components of the 4B wave
potentials with Yamaguchi and Gaussian form factors, as well  function, corresponding to 3 + 1 and 2 + 2 type chains, respectively.
as the non-separable Malfliet-Tjon potential, with all potentials Gy = (E — H,)™' represents 4B free propagator, while P = P;,P,; +
projected into the s — wave channel. Our numerical findings  P,3P,3, P = P3P, and Psy serve as the permutation operators. The
highlight that the ¢ — matrix-free version of the Yakubovsky 2Bt - matrix is determined by the LS equation
integral equations, when utilizing 2B interactions, aligns
perfectly with results derived from the conventional
Yakubovsky integral equations that employ 2B f — matrices. In The coupled Yakubovsky Eq. 1 can be restructured to yield another
a related research, this t — matrix-free approach is successfully  form of Yakubovsky equations as follows
employed for relativistic three-body (3B) bound states [46]. This
led to a version of the relativistic Faddeev equation that directly
employs 2B boosted interactions [47, 48], eliminating the need
for 2B boosted t — matrices [19, 20, 24]. where the 2B interactions V are being directly utilized as input to the
This paper has been structured into several sections. Section 2.  Yakubovsky equations, consequently eliminating the need for the 2B

t=V +VGot. (2)

¥, = GoVP[(1+ Py, + ,] + G Vy,

3
v, = GoVP[(1 + Py, + v, + GV, ®

provides a brief overview of the Yakubovsky equations for 4B bound ¢ — matrices. The representation of the t — matrix-free form of the
states, bypassing the use of 2B ¢ — matrices. Herein, we formulate the ~ coupled Yakubovsky Eq. 3 in momentum space leads to the
coupled Yakubovsky equations in momentum space, considering Jacobi  following coupled 3D integral equations

TABLE 2 Convergence of the 4B binding energy obtained from the t -matrix-free (E,), Eq. 6, and the conventional t —-matrix-dependent (E,.natrix), Eq. (A4), versions
of the coupled Yakubovsky equations. The convergence is shown as a function of the number of mesh points for the magnitude of Jacobi momenta u; and v;,
denoted as N, = N,,. Results are presented for MT-V, Yamaguchi-IV, and Gaussian potentials. The number of mesh points for angle variables is 40. All calculations
were performed with h?/m =41.47 MeV - fm?.

E, (MeV) Et-matrix (MeV) E, (MeV) Et-matrix (MeV) E, (MeV) Et-matrix (MeV)
s — wave MT-V Yamaguchi-IV Gaussian
30 -30.323 -30.668 -36.156 —-36.151 -31.281 -31.276
40 —-30.206 -30.367 -36.236 -36.233 -31.272 -31.272
50 -30.313 -30.220 -36.258 -36.256 -31.272 -31.271
60 -30.182 —30.145 —36.266 —36.264 -31.271 -31.271
70 -30.135 -30.116 -36.270 —36.268 -31.271 -31.271
80 -30.103 -30.098 —36.272 -36.270 -31.271 -31.270
90 -30.092 -30.089 -36.273 -36.271 -31.270 -31.270
100 -30.087 —-30.084 -36.273 -36.271 -31.270 -31.270
150 -30.078 -30.077 -36.274 -36.272 -31.270 -31.270
- -30.07 [58] - -36.3 [59] - -
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1
v, (u,wp,u3) = Gy (ul,uz,uz)(J d3uz’Vs(u1, Jw uz’)
X {w (uz +1u2’,u2’,u3> +y (uz +1uz’,luz’ +—us,uy —7u3)
! 2 ! 273 9 3
. ( +1 , o, 2 1, 2 )}
w, + -u),—uy — —us, Uy — -u
V| »2 2 % 2 3 3 2 ) 3 3

o [ v udy, fww)),
1
VLV, Vsl Y,) = EGO(VI’VZ’V3)<J vV, (V1)V3I)
2 2 ! 1 ! !
x {21{/1(v3, vV, + Vi, =V, — v3> +Y, (v3,—v2,v3)}
3 3772
#[@iv. vy, (e ), )

with the symmetrized 2B interaction defined as V(a, b) = V(a, b)
+ V(a, — b) and 4B free propagators characterized through the
following expressions

Go (uy, us,u3) = <E_*_7_7

2
GO(VI’VZ)VB}) :<E ————— = (5)

The Jacobi momenta u;and v; (i =1, 2, 3) correspond to 3 + 1 and 2 +
2 chains, respectively [11]. The coupled Yakubovsky Eq. 4 can be
simplified for the s — wave interactions as

l//1 (ul) U, u3)

=41 Gy (U1, Uz, U3)

©o 1

x ( J duz'u;zj dx' V (u, T0, (1, u3, x7))
0 -1

X [‘//1 (T (uz, t2, X"), ug, u3)

1 1
+ E,[ dx {1//1 (Hl (uz', U, X’), I, (uzl, us, x), 113 (le, us, x))
-1
s (10 (), T, (o 5, ), T (u;,u3,x))}]

[e0)
+J dulul V (uy,ul) v, (u{,uz,u3)>>
0

v, (v1, v2, v3)
=41 Gy (v1,v2,v3)

x(j dviv2V (v, v})

0
1

X “ dax] , (vs, g (v, v3, 54), Th; (v, v, %) ) + 5, (v, v V3’)]
-1

+J dviv2V (vi,v) v, (V{,VZ,Va)), (6)
0

where the shifted momentum arguments are defined as [49].
1

= L, n ) 2,15, A%
II, = (7u2 +u, +u2u2x> , II, = (uz +-u, +u2u2x) s

4 ; 4 s
1 64 , 16 : 1, 2 :
I, = §<u§ + Euﬁ + ?uzusx') » M= <u§ + 5”? - 5”2“3"') ’
L, 4, 2 Y 2,4, 4 Ay
I = (Zuz gl T FtathsX ) » s = (uz +ghs T 3thtsX ) >
M= 2(2 + 7 + 2vmx)s T = (V24 02 - '
s=3n+0 +21v3x)%, 7=+ 22 T Vavx

@)

For comparison purposes, the representation of the conventional
t — matrix-dependent form of the coupled Yakubovsky Eq. 1 in

Frontiers in Physics

10.3389/fphy.2023.1232691

momentum space can be found in Appendix A. Upon comparing
the ¢ — matrix-free and conventional ¢ — matrix-dependent forms of the
Yakubovsky equations - specifically, Eqs. 4 and (A1) - it is evident that
the t — matrix-free form incorporates an extra term. This term involves
integration over the 2B interaction and the Yakubovsky components
without interpolations on momenta or angles. Despite this, its
numerical solution proves to be more straightforward and cost-
effective than that of the conventional ¢t — matrix-dependent that
necessitates solving the LS equation to compute the 2B t — matrices
for all required 2B subsystem energies, which depend on the magnitude
of the second and third Jacobi momenta.

3 Numerical results

The numerical solution of the coupled Yakubovsky integral Eq. 6
for the calculation of 4B binding energy demands solving an
eigenvalue equation, where the physical binding energy
corresponds to an eigenvalue equal to one. The Lanczos iterative
method is implemented for solving such eigenvalue equation [24,
49-52]. We employ Gauss-Legendre quadratures to discretize the
continuous momentum and angular variables with a hyperbolic
mapping for Jacobi momenta and a linear mapping for angle
variables [53]. This allows us to properly capture the behavior of
the Yakubovsky components of the 4B wave function at both small
and large momenta. In each iteration step of solving the coupled
Yakubovsky integral equations, to accurately perform multi-
dimensional interpolations on the shifted momentum arguments
given in Eq. 7, we employ the Cubic-Hermite spline method due to
its combination of high accuracy and computational speed [54].

Our numerical analysis presents a comparison between 4B binding
energy obtained from the ¢ — matrix-free approach and the conventional
t — matrix-dependent formulation of the coupled Yakubovsky equations,
namely, Eqs. 6 and A4. For our numerical analysis, we employ two

models of one-term separable potential with the following general form

V(p.p')=21g9(p)g(p") (8)

where A represents the potential strength. The potential form factor
g(p) for the Yamaguchi-type potential is defined as g(p) = 1/(p* + %)
[55], while for the Gaussian potential, it takes the form g(p) =
exp(—p*/A*) [56]. Furthermore, to provide a comprehensive
validation of our formalism and code, we also incorporate an s-
wave non-separable Malfliet-Tjon (MT) potential, comprises two
attractive and repulsive terms [57].

2 Y 2 2 24 2pp!
Vipp)=Y ln<u,+p tp’+2pp ) ©)
i=1

2mpp"\ui + p*+ p? = 2pp’

In Table 1, we provide the parameters for the potentials employed in
our calculations, which include MT model V (MT-V), Yamaguchi
potential model IV (Y-IV), and a Gaussian potential. The strength of the
Gaussian potential was adjusted to reproduce the deuteron binding
energy of —2.225 MeV, with a form factor parameter A = 0.7 fm™".
Table 2 presents the convergence of the 4B binding energy as a
function of the number of mesh points for the Jacobi momenta
magnitudes #; and v;. The table provides a side-by-side comparison
of results obtained using both the f-matrix-free and conventional
t-matrix-dependent forms of the coupled Yakubovsky equations.
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Specifically, our results show that the ¢ — matrix-free Yakubovsky
equations yield a 4B binding energy of —30.08 MeV for the MT-V
potential and -36.27 MeV for the Yamaguchi-IV potential. These
values closely align with the —30.07 MeV [58] and —36.3 MeV [59]
obtained by other groups using the ¢t - matrix-dependent
Yakubovsky calculations. The comparison validates the potential
of the t — matrix-free adoption of Yakubovsky formulation to solve
4B bound state problems efficiently, matching the precision of the
conventional method but potentially offering more straightforward
computational requirements. Moreover, the convergence behavior
remains consistent across different numbers of mesh points for the
magnitude of Jacobi momenta, emphasizing the computational
robustness of the t — matrix-free formulation.

4 Summary and outlook

The Yakubovsky approach is a powerful method to study few-body
bound and scattering systems. However, the solution of these equations
can be computationally demanding due to inherent singularities in 2B
t — matrices when dealing with scattering problems and the need to
calculate them for 2B subsystem energies dictated by second and third
Jacobi momenta when 4B bound state problems are considered. This
study utilizes a version of the coupled Yakubovsky equations for 4B
bound states that directly incorporates 2B interactions in momentum
space, avoiding the use of the 2B ¢ — matrices. The efficacy of this
approach is validated through the calculation of 4B binding energies in
momentum space using, both the separable potentials with Yamaguchi
and Gaussian form factors, and the non-separable Malfliet-Tjon
potential. Our findings align well with results from the conventional
form of the coupled Yakubovsky integral equations incorporating 2B t —
matrices. The extension of calculations to include more general
interactions, beyond just the s — wave, is currently in progress.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.
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Appendix A: Representation of
conventional t — matrix-dependent
coupled Yakubovsky equations in
momentum space

The conventional form of the coupled Yakubovsky Eq. 1 in
momentum space is represented as follows [11].

1
v, (uy,up,u3) = Go (uy, Uy, u3) Id3uf fs(“1)5“2 +“2’§€)
1, , 1,1, 8 , 1
X {%(“2 + 5023“2)03) + ll/l(uz + W, s + U3, Uy — —“3)

’ , 2 2
+, llz+—112,—ll2—§ 5 3

W, g — U
1 ) ! %
Y, (Vi,V2,V3) = EGO (v, v, v3) | dv3 £ (vi,v35€*)
x{2<z+g’l—’>+ (vs,— ’)}
Yyl V3 3Vz 3V3, 2V2 V3 Yy (V3 =V, V3 ) s
(A1)
with the symmetrized 2B ¢ — matrices defined as
t;(a,b;€) = t(a,b;€) + t(a, -b;e). (A2)

The matrix elements of 2B t — matrices t(a, b; €) needs to
be calculated from the solution of the LS Eq. 2 for the 2B
subsystem energies associated with the 3 + 1 and 2 + 2
chains, given by
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(A3)

The coupled Yakubovsky equations (A1) can be simplified for the s —

wave interactions as

v, (uy, Uy, U3)

= 41 Gy (1, s, U3)

o 1
X j duz'u;zj dx" t (uy, 0 (2, uz, x'), €)
0

-1

X (1//1 (T0 (143, w2, X"), 13, u3)

1 1
+ EJ dx {1//1 (Hl (”z,, U, X’), I, (Uz’) us,X), I1; (Uzr» H3>x))
-1

+v, (Hl (uzl,uz, X’), I, (“2’; us, X), 115 (u2’: ua,X))}),

W, (Vi,v2, v3)

= 47TGO (Vl, V2, V3)

[ee)
1.)2 !
X J dvivit(vi,vi,e*)
0

1
. (j by, (v, Tl (v, v 00, T (v, 71 )
-1

+y, (v;,vz,m’)).
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