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ABSTRACT

Clinical notes present a wealth of information for applications in the clinical domain, but heterogeneity across
clinical institutions and settings presents challenges for their processing. The clinical natural language process-
ing field has made strides in overcoming domain heterogeneity, while pretrained deep learning models present
opportunities to transfer knowledge from one task to another. Pretrained models have performed well when
transferred to new tasks; however, it is not well understood if these models generalize across differences in
institutions and settings within the clinical domain. We explore if institution or setting specific pretraining is
necessary for pretrained models to perform well when transferred to new tasks. We find no significant perfor-
mance difference between models pretrained across institutions and settings, indicating that clinically pre-
trained models transfer well across such boundaries. Given a clinically pretrained model, clinical natural lan-
guage processing researchers may forgo the time-consuming pretraining step without a significant
performance drop.
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INTRODUCTION

The electronic health record (EHR) contains a wealth of rich, un-
structured patient health data, such as clinical text. Natural lan-
guage processing (NLP) techniques allow for clinical text to be
leveraged in a multitude of scenarios, such as information extrac-
tion,"™ understanding clinical workflow,** decision support,® and
question answering.® NLP models often suffer reduced performance
when applied across institutions”® or specialties.” Drops in perfor-
mance are due in part to differences in vocabulary, content, and

style that manifest along axes such as syntax,'®!? 13,14

semantics,
and workflow procedures.” Historically, transferred NLP models
overcome clinical institution differences by retraining models from
scratch” or using domain adaptation techniques' for the down-
stream task of interest.

Recently, pretraining has led to robust methods for creating gen-

eralizable models that can be transferred to downstream tasks across

genres and domains.'®2° In contrast to traditional approaches, in
which a new supervised task is learned from scratch on a training
set, a pretrained model can leverage parameters that have already
been trained to a different (simpler and often self-supervised) task.
The intuition for this approach is that some of these parameters can
generalize to the new task. In this way, previous experiences can be
built upon. Furthermore, pretraining is inspired by the idea that cer-
tain features are learned across multiple tasks. For example, a model
might learn how certain words relate to one another regardless of
the task.?! The fact that pretraining learns parameters that would
otherwise need to be relearned by a new task makes pretraining es-
pecially useful when labeling data is time-consuming and expensive.

In traditional training zapproaches, training occurs in a single
phase in which a model is initialized and trained on a task. This ap-
proach does not leverage shared information between tasks. In con-
trast, pretraining and transferring a model incurs a one-time cost of
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pretraining a model to extract generalizable features and transfer-
ring this same model to multiple tasks. Instead of relearning all
parameters, pretrained parameters are updated to the specific task at
hand. A visual depiction of the difference between approaches can
be seen in Figure 1.

While pretraining has been commonly used to learn low level

22724 recent advances have shown

parameters like word embeddings,
that pretraining is a powerful approach to learning higher level, gen-
eralizable linguistic representations.'®2° Many kinds of approaches
to pretraining have been tried, but language modeling tasks have
proven to be generalizable to many other NLP tasks.> Specifically,
masked language modeling, in which a model learns to identify
masked words given the surrounding context has been a viable pre-
training task.'® Leveraging language modeling tasks, like masked
language modeling, during pretraining is especially useful, as there
are large amounts of text data to be leveraged that do not require
any labeling. A more detailed explanation of language modeling can
be found in the Supplementary Appendix A. Through language
modeling-based pretraining, unlabeled data can be used to improve
performance on a new task instead of the potentially costly step of
labeling more task specific data.

For a variety of pretrained models, pretraining was initially per-
formed using Wikipedia,'®'”'*2° the Book Corpus,'®'®*° the One
Billion Word Benchmark,'® news articles,?® and Web snippets.'**°
These corpora represent a more general domain and contain a wide
variety of topics without specializing in any single topic. Pretraining
on such corpora has worked well for many tasks in the general do-

Traditional Approach

main; however, the clinical domain containsspecializations like lan-
guage, abbreviations, grammar, and semantics are not encountered

in the general domain, leaving room for domain-specific pretraining.
This has led to clinical domain variants of pretrained models,**~>%
which have outperformed their general domain counterparts on a

variety of clinical NLP tasks such as readmission prediction,>’

26:28 reason for visit extraction,?’ natural

30

named entity recognition,
language entailment,”®*® and medication extraction.

Beyond differences between domains, heterogeneity within the
clinical domain such as geography, clinical setting, patient popula-
tion, and de-identification status manifest along multiple axes such
as syntax, %12 semantics,'>'* and workflow procedures.” It is gen-
erally accepted that NLP model performance may degrade when
evaluated on data with a different distribution than what had been
trained on and is nontrivial to deal with.”'* Many pretrained mod-
els in the clinical domain available for download are pretrained us-
ing the Medical Information Mart for Intensive Care-III(MIMIC-III)
dataset.?" Given the differences between clinical institutions and set-
tings, we ask the following questions. Is a single round of clinically
relevant pretraining sufficient to generalize across multiple clinical
institutions and settings? Furthermore, can institution- or setting-
specific pretraining improve downstream task performance over pre-
training at a different institution or setting? These questions are rele-
vant for clinical NLP researchers looking to apply clinically relevant
pretrained models to their own data, in which pretraining their own
model might be prohibitively expensive. Using a meticulous experi-
mental design, we explore whether institutional differences impact
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Figure 1. An overview of the pretraining and transfer phases vs a traditional training approach. The traditional training approach initializes a new model for each
task without sharing knowledge between tasks. In contrast, during the pretraining phase a model learns parameters that can generalize to other natural language
processing tasks by learning a pretraining task. Pretraining datasets can be large, allowing tasks with smaller datasets to take advantage of the “warm start” pro-
vided through pretraining. Pretraining is a one-time cost, allowing for a pretrained model to be transferred to multiple new tasks. During the transfer phase, the
pretrained model is updated to perform a new task and can result in better performance with less data than if the model was randomly initialized.
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performance on downstream tasks when pretraining at the same or
a different institution as the downstream task. Our results indicate
that institution- or setting-specific pretraining does not meaningfully
improve performance and clinically relevant pretraining is all you
need.

MATERIALS AND METHODS

Using EHR data from 2 institutions, we assess the impact of pre-
training on different institutional and setting data on our down-
stream document classification tasks. We collect 1 general and 2
intensive care unit (ICU) corpora from the 2 institutions and 2
downstream task datasets from each institution. Using the 3 pre-
training corpora, we create 3 pretrained models, and evaluate the
performance of each model trained on each downstream task. Here,
training refers to updating a model’s weights from those learned
during pretraining to a new task. In this work we focus on using the
Bidirectional Encoder Representations from Transformers (BERT)'®
model, as it has been shown to be a strong baseline for state-of-the-
art pretrained models. Models are pretrained using the pretraining
tasks outlined in the original BERT article.'® A more detailed expla-
nation of the pretraining methods used in this work can be found in
the Supplementary Appendix A. The proposed experimental design,
outlined in Figure 2A and 2B, allows us to measure the impact of
the pretraining and downstream task data come from the same insti-
tution or setting on. We measure impact using downstream task per-
formance.

Datasets for pretraining

We leverage 3 corpora from 2 different institutions. The first institu-
tional data is a collection of ICU clinical data from Beth Israel Dea-
coness Medical Center®! between 2001 and 2012 (MIMIC). The
second institutional data is from Columbia University Irving Medi-
cal Center (CUIMC) between 2005 and 2015.

One general clinical corpus and 2 ICU specific corpora were gen-
erated. GEN-C is a random selection of notes from CUIMC without
any specification for setting. ICU-M is a random selection of notes
from the ICU-specific dataset MIMIC, while ICU-C is a random se-
lection of ICU notes from CUIMC. In this work, we control for the
number of tokens and training examples in each corpus. The num-
ber of tokens in each corpus is used as a statistic to represent how
much BERT has been pretrained according to the original authors of
BERT.'® In order to avoid data leakage, any data from the test sets
of the downstream task were removed from the pretraining corpora.
Pretraining demographic (raceand ethnicity data have been merged
between MIMIC and CUIMC which collected this information dif-
ferently; specifically, the Hispanic or Latinx category for Gen-C and
ICU-C is not mutually exclusive from the ethnic categories, while
ICU-M kept this category mutually exclusive) and text information
can be found in Tables 1 and 2. More information about the pre-
training data can be found in Supplementary Appendix B.

The 3 corpora, GEN-C, ICU-M, and ICU-C, allow for model
performance comparisons on downstream tasks while either varying
or holding constant the pretraining setting or institution. Models
pretrained using GEN-C and ICU-C data are examples of pretrained
models at the same institution but different settings. While models
pretrained using ICU-C and ICU-M are examples of models pre-
trained with same setting but different institutions. Finally, models
pretrained using GEN-C and ICU-M are examples of different insti-
tutions and different settings. All 3 of these scenarios provide insight

into the importance of pretraining models at the same institution or
setting.

Datasets for downstream tasks

Two multilabel document classification tasks were chosen to train
and evaluate on. International Classification of Diseases—Ninth Re-
vision (ICD-9) code classification was chosen, as ICD-9 codes are
prevalent across many institutions and represents tasks with large
but biased datasets. Social determinants of health (SDH) classifica-
tion was chosen as a representative task for scenarios with smaller
datasets. More importantly, these 2 downstream tasks were chosen
as they can vary greatly between institutions or settings. SDH have
been shown to have high lexical variation even when discussing the
same concepts and can vary greatly by population and geogra-
phy.?>33 For example, homelessness can be indicated by naming a
local homeless shelter in which a patient resides, which would not
be a readily identifiable indicator for homelessness at other institu-
tions. Furthermore, an SDH task is a practical example for pretrain-
ing because labeling SDH is time-consuming and requires expert
knowledge. ICD-9 code distribution can also vary by setting, as was
shown in our datasets in which the top 50 ICD-9 codes for MIMIC
(ICU setting) and CUIMC (setting agnostic) only shared 24 codes.
Beyond these reasons, access to these datasets at both intuitions
made the experimental design possible.

Each institution, MIMIC and CUIMC, have training, validation,
and test sets for both downstream tasks. ICD codes are extracted
from the EHR at each institution and matched to clinical notes. We
limit ourselves to classifying the top 50 ICD-9 codes at each institu-
tion but do not remove notes without any of these codes. The SDH
classification corpora are annotated at a document level with 5 SDH
categories: smoking status, illicit drug use status, housing status,
sexuality documented;, and sexual history documented. Further
details provided in previous work.** All training, validation, and
test splits are made at the patient level to avoid data leakage and
each model uses the same training, validation, and test sets. Table 3
summarizes dataset sizes, while Table 4 summarizes dataset demo-
graphics (race and ethnicity data have been merged between MIMIC
and CUIMC, which collected this information differently; specifi-
cally, the Hispanic or Latinx category for CUIMC data is not mutu-
ally exclusive from the ethnic categories, while MIMIC kept this
category mutually exclusive). More information about the distribu-
tion of ICD and Social and Behavioral Determinants of Health
(SBDH)codes can be found in Supplementary Appendix C.

Experimental design for pretraining

The BERT pretrained model,'® which is not specialized on clinical
or biomedical data, and the PubMedBERT pretrained model,*®
which consists of BERT further pretrained on biomedical articles,
are the 2 baselines pretrained models for our experiments. Both
models were pretrained using the same tasks as the current work but
relied on different pretraining data. Practically, further pretraining
consists of another round of pretraining, following the BERT proce-
dures.

Starting from PubMedBERT, we further pretrain 3 different pre-
trained models: BERT-IM leveraging ICU-M, BERT-GC leveraging
GEN-C, and BERT-IC leveraging ICU-C. BERT models further pre-
trained with biomedical data have been shown to outperform BERT

on clinical datasets,>®*®

and PubMed presents a much larger dataset
than any single clinical dataset, thus making PubMedBERT an ideal

initialization for clinically relevant pretraining.
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Figure 2. (A) Experimental design for pretraining. Further pretraining is performed on PubMedBERT using 3 corpora to create 3 new models. (B) Clinical and non-
clinical Bidirectional Encoder Representations from Transformers (BERT) models are transferred and then evaluated on downstream tasks at each institution.

Table 1. Summary statistics for the pretraining corpora

Table 2. Pretraining corpora patient demographics

ICU-M GEN-C ICU-C ICU-M GEN-C ICU-C
Patients 35000 109 000 32000 White 24 692 27 660 12728
Notes 134 000 280 000 148 000 Black/African American 2888 8110 3214
Tokens 254 000 000 255 000 000 255000 000 Hispanic or Latinx 1261 24 031 15307
Examples 260 000 000 255 000 000 255000 000 Asian 1163 1240 678
Native American/Alaskan Native 34 97 85
Number of examples is calculated as the number of individual text chunks Native Hawaiian or Pacific Islander 11 349 86
(ie, observations) in the pretraining dataset. Unknown/not specified 5281 71 709 15307

We used a learning rate of 1 x 10™, a linear warm up schedule
of 10% of the total number of steps, a batch size of 500. Finally,
each observation was a maximum length of 128 tokens. Following
the original pretraining data generation in Devlin et al,'® we
concatenated nonoverlapping sentences up to 128 tokens in length.

Masking was carried out following the masking procedure of the
original BERT article'® by masking, replacing, or leaving a token
unchanged. These observations consisted of 2 segments, in which
50% of the time the second segment followed the first segment in
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Table 3. Downstream task observation splits

CUIMC MIMIC

ICD SDH ICD SDH

Training  Validation Test Training  Validation = Test  Training  Validation  Test Training  Validation = Test
28 000 14 000 12000 3000 625 689 24 000 1600 33000 91 37 56

CUIMC: Columbia University Irving Medical Center; ICD: International Classification of Diseases; MIMIC: Medical Information Mart for Intensive Care;

SDH: social determinants of health.

Table 4. Downstream task race and ethnicity splits

CUIMC MIMC
ICD SDH ICD SDH
White 9064 110 14 503 44
Black/African American 2869 190 1740 11
Hispanic or Latinx 6412 239 699 3
Asian 325 3 533 0
Native American/Alaskan 28 0 19 0
Native
Native Hawaiian or Pacific 64 3 7 0
Islander
Unknown/not specified 11130 647 2893 40

CUIMC: Columbia University Irving Medical Center; ICD: International
Classification of Diseases; MIMIC: Medical Information Mart for Intensive
Care; SDH: social determinants of health.

the document and the other 50% of the time the second segment
was randomly selected from the corpus. The 2 segments were used
for the additional pretraining task next sentence prediction. Learn-
ing was performed on 1 NVIDIA GeForce RTX 2080 Ti GPU using
PyTorch with mixed precision. Each model pretrained for 10 epochs
over approximately 2.5 days.

Experimental design for downstream tasks

We train and test 2 downstream tasks, ICD and SDH document-
level classification. For each task, we want to assess whether align-
ing the pretraining data and the data used for training the task itself
(either by institution or setting) benefit its performance.

Given a task and institution, for instance ICD classification and
CUIMC, we control for training, validation, and testing sets and
compare performance on the task when using different pretrained
models. As such, for each corpus and task, there are 5 models that
are trained, validated, and tested. We use the validation set to tune
the maximum number of epochs (3, 4, 10) used during downstream
task training.

Because both tasks operate at the document level, and because
clinical notes are particularly long documents, each clinical note is
broken down into up to 10, nonoverlapping, 128-token chunks (n).
Following the approach of Huang et al,?” the probability of a docu-
ment’s classification into category k is based on the n classified
chunks. Rather than computing an average probability over the n
chunks for category k, it also takes into consideration the maximum
probability over all chunks using a combination of average and max
pooling. Letting P} .. and P} be the mean and max probability
over all n c)h“unnks, respectively, the probability is
P(k = 1) = ‘o mend,

final

2
All results are measured in macro-averaged average precision.
Average precision summarizes the precision-recall curve by summing

the precision at different thresholds weighted by the change in recall
from the previous threshold.>* Bootstrapped performances and 95%
confidence intervals are calculated by evaluating all models on 1000
bootstrapped test sets. For a given downstream task all models are
trained on the same training set and evaluated on the same 1000
bootstrapped test sets. All results are presented using the boot-
strapped average performance and 95% confidence intervals.

RESULTS

All clinical models outperform the baseline models on the 2 down-
stream tasks of ICD and SDH classification and across institutions.
Similarly, PubMedBERT outperforms the original BERT on both
downstream tasks and across institutions. We note however that on
the SDH downstream task, the confidence intervals of PubMed-
BERT and BERT overlap.

For the ICD classification downstream task, we first note that a
model’s performance on MIMIC ICD is better than its performance
on CUIMC ICD across all models. This is not surprising: while the
MIMIC dataset contains only ICU admissions, the CUIMC dataset
is more heterogeneous with different settings, leading to higher-
perplexity tasks.

We also note that, as expected, the range of the confidence inter-
vals for the different models across tasks and institutions is directly
related to the size of training and testing data. That is, the SDH
tasks, especially MIMIC SDH, have larger and possibly overlapping
confidence intervals due to how small these datasets are compared
with the easier and cheaper-to-label ICD datasets.

Of interest to our original research question, we see that there
are slight differences in performance from one setting to the next
and from one institution to the next. On balance, taking their confi-
dence intervals into account, all clinical pretrained models yield sim-
ilar performance to each other across all tasks. These results are
summarized in Figures 3 and 4.

DISCUSSION

The pretrain and transfer paradigm in NLP has led to an explosion
of domain-specific models that have achieved state-of-the-art perfor-
mance across many tasks. In this work, we explored how well pre-
trained BERT models transfer across institutional and setting
boundaries. We confirm previous results that as BERT is pretrained
on data closer to the clinical domain, model performance improves.
The clinically adapted BERT variants outperform nonclinical BERT
models in 3 of 4 experiments, in which in the fourth experiment the
performances are tied. Overall, clinical BERT models perform simi-
larly across institutional and setting boundaries regardless of the
pretraining setting or institution.



Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 9 1975

ICD Classifcation Performance

02 BERT-IM
g s BERT-GC
2 = BERT-IC
2 0.6 = PubMedBERT
E s BERT
B 1
Cm" 0.5
| -
]
E
oo 0.4 1
]
o
o
g 0.3
=
o
0.2
o]
=

0.1-

“\(.a @\(; @C.r @\O @\(.r “z\\(; “}(J ‘z\\b @‘\(‘ “ﬁ("
S & O O 0 & & & &8
Institution

Figure 3. Macro-averaged average precision for International Classification of
Diseases (ICD) classification across institutions. The ICU-M, GEN-C, and ICU-
C corpora are used to pretrain BERT-IM, BERT-GC, and BERT-IC. PubMed-
BERT and Bidirectional Encoder Representations from Transformers (BERT)
are baseline models. CUIMC: Columbia University Irving Medical Center;
MIMIC: Medical Information Mart for Intensive Care.
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Figure 4. Macro-averaged average precision for social determinants of health
(SDH) classification across institutions. The ICU-M, GEN-C, and ICU-C corpora
are used to pretrain BERT-IM, BERT-GC, and BERT-IC. PubMedBERT and Bidi-
rectional Encoder Representations from Transformers (BERT) are baseline
models. CUIMC: Columbia University Irving Medical Center; MIMIC: Medical
Information Mart for Intensive Care.

To answer the question of whether institution-specific pretrain-
ing is helpful, we conclude that there is no statistical difference be-
tween clinical BERT variants. There is evidence of a small
differences, specifically BERT-IC and BERT-GC on MIMIC-ICD, in
which BERT-IC outperforms BERT-GC, while this result is reversed
on CUIMC-ICD. This could be evidence of the importance of
matching the setting when transferring models to new institutions.
However, this difference, and others, are small enough as not to be
considered meaningfully different.

While testing all available clinical BERT models might provide
some performance improvement, there is no guarantee of a statisti-

cally significant performance increase even if the downstream and
pretraining data match across institution or setting. These results
raise the question of whether the investment into setting or institu-
tion pretraining is warranted. We note that the results presented
here are not at odds with the practice of adapting specific NLP task
models to new institutions or settings. While it may not be necessary
to adapt pretrained models to new institutions or settings at the level
of pretraining, it is likely still necessary to adapt such models when
they have been specialized to a specific NLP task. It should be noted
that this work only explores 2 document classification tasks. There
might also be downstream tasks on specialized corpora in which fur-
ther pretraining does confer a meaningful improvement. In the fu-
ture, we plan to explore entity-level classification tasks, and
performance on the BLUE dataset,”® though we cannot perform a
bidirectional comparison in this case without parallel datasets.
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