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Abstract

Tradeoffs between producing costly movements for gathering information (“explore”) and using previously acquired
information to achieve a goal (“exploit”) arise in a wide variety of problems, including foraging, reinforcement
learning, and sensorimotor control. Determining the optimal balance between exploration and exploitation is com-
putationally intractable, necessitating heuristic solutions. Here we show that the electric fish Eigenmannia virescens
uses a salience-dependent mode-switching strategy to solve the explore–exploit conflict during a refuge tracking task
in which the same category of movement (fore-aft swimming) is used for both gathering information and achieving
task goals. The fish produced distinctive non-Gaussian distributions of movement velocities characterized by sharp
peaks for slower, task-oriented “exploit” movements and broad shoulders for faster, “explore” movements. The mea-
sures of non-normality increased with increased sensory salience, corresponding to a decrease in the prevalence of fast
explore movements. We found the same sensory salience-dependent mode-switching behavior across ten phylogeneti-
cally diverse organisms, from amoebae to humans, performing tasks such as postural balance and target tracking. We
propose a state-uncertainty-based mode-switching heuristic that (1) reproduces the distinctive velocity distribution,
(2) rationalizes modulation by sensory salience, and (3) outperforms the classic persistent excitation approach while
using less energy. This mode-switching heuristic provides insights into purposeful exploratory behaviors in organisms,
as well as a framework for more efficient state estimation and control of robots.

Main

Organisms display complex patterns of movement that arise from the interplay between obtaining information (“ex-
plore”)1–3 and using current information (“exploit”).4 Exploratory movements to gain information, and exploitative
movements to achieve the task at hand, are often mediated by the same motor systems. For example, the weakly
electric glass knifefish (Eigenmannia virescens) produces both information-seeking exploratory movements2,3, 5 and
goal-driven exploitative movements to remain within a refuge6,7 using the same ribbon-fin locomotor system.8,9 Both
of these types of movement occur in a single linear dimension, along the rostrocaudal axis. This behavior makes E.
virescens an excellent model system with which to investigate the interplay between explore and exploit movements:
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within a fixed refuge, fish produce ancillary back and forth exploratory movements to sense the refuge,2,3, 5 but these
back and forth (explore) movements conflict with the corrective movements (exploit) required for station keeping.

Resolving this conflict between explore movements5 versus goal-directed exploit movements is a computationally
intractable optimization problem.10–12 How do organisms resolve the explore–exploit conflict? A simple heuristic
to solve this problem would be for an organism to perform goal-directed exploit movements while superimposing
continuous small exploratory sensing movements—in other words to use a persistent excitation approach.13 Indeed,
this heuristic has proven effective (if suboptimal) as an engineering approach to solve the explore–exploit problem
of identifying states and parameters of a dynamical system during task execution.13 If organisms were to employ
such a strategy, they would produce movement statistics that correspond to a single behavioral mode (e.g., a single
component Gaussian distribution) that continuously superimposes explore and exploit behavior.

In contrast, we discovered that E. virescens does not use a persistent excitation strategy; instead, it exhibits a
mode-switching strategy between fast, active-sensing movements (explore) and slow, corrective movements (exploit).
This mode switching is modulated by sensory salience (Fig. 1–2). To assess the generality of this mode-switching
strategy we investigated ten additional tasks performed by ten species ranging from amoebae to humans,14–22 using
five major sensing modalities–vision, audition, olfaction, tactile sensing and electrosensation (Fig. 4). Based on
this extensive reanalysis we found that such mode switching—and its dependence on sensory salience—is found
across diverse behaviors, taxa, and sensing modalities (Fig. 4). Inspired by this widespread biological strategy, we
propose an engineering heuristic for selecting behavioral modes based on state uncertainty (Fig. 5), and show that
this heuristic captures key features of mode switching found across organismal models. Furthermore, we show that
this mode-switching heuristic can achieve better task-level performance, and do so with less control effort, than the
conventional persistent excitation strategy.

E. virescens exhibited fast and slow behavioral modes
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Fig. 1. Velocity distributions are broad-shouldered. (a) Side view (schematic) and (b) bottom view
(infrared image) of a fish inside a stationary refuge. The bright ventral patch on the fish was tracked (green dot)
as the fish swam inside the refuge (magenta dot). (c,d) Position traces during (c) lights-off trials (n = 7), and
(d) lights-on trials (n = 10) from a single representative fish. (e,f) Corresponding velocity traces during lights-off
trials (left) and velocity histogram (right) over the same range of velocities for (e) lights-off, and (f) lights-on
trials, with the kurtosis value κ indicated; note that the time and probability scales of the horizontal axes are
shown below panel (f). A three-component Gaussian mixture model (GMM; blue solid curve) fit the data better
than the normal fit (magenta dashed curve) as indicated by the lower Kullback-Leibler divergence and Bayesian
information criterion values; see Extended Data Table 1 for statistical details. One lights-off trial with large
positive velocity is truncated; see Extended Data Fig. 1a,b for full version.

We examined the behavior of individual E. virescens as they performed untrained station keeping within a fixed
refuge (Fig. 1a,b). Station keeping requires only small corrective movements; therefore any significant movements
by the fish are attributed to information-seeking, exploratory movement.2,3, 5 Previous work23 has demonstrated
that E. virescens use both vision and electrosense for station-keeping. Hence varying light level is an experimental
mechanism to examine the effect of visual salience on the selection between explore and exploit movements.

We measured the movements of five individual fish in 40 s duration station-keeping trials, in two lighting condi-
tions: lights “off” trials had low illumination (∼0.3 lx, Supplementary Video 1), and lights “on” trials had bright
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illumination (∼80 lx, Supplementary Video 2). We conducted between 7 and 10 trials per condition per fish. We
discarded trials in which the fish changed its swimming direction or exited the refuge. Consistent with prior stud-
ies,2,5 fish moved significantly more in lights-off conditions than in lights-on conditions (Fig. 1c,d, Extended Data
Fig. 1a–d). However, these previous analyses2,5 focused on tracking performance using analytical methods including
Fourier analysis and root-mean-square metrics that masked the temporal structure of active sensing movements that
we seek to undestand in this paper.

We found the patterns of fish swimming velocities were consistent with a mode-switching strategy. The distri-
bution of velocities (v) featured a sharp peak around v = 0 with “broad” shoulders for faster movements (Fig. 1e,f,
right). These empirical distributions differed from a Gaussian distribution in two ways: (i) the distinct central peak,
and (ii) the broad shoulders corresponding to the faster movements. The central peak (near zero velocity) represents
slow movement, and the broad shoulders represent faster movement. These behavioral modes are associated with
exploit and explore respectively, as discussed in greater detail below.

The two behavioral modes were significantly better approximated by three-component Gaussian mixture models
(GMMs) than by single component models (Fig. 1e,f, right). This was shown by three measures, namely Kullback-
Leibler (K-L) divergence, Bayesian information criterion (BIC), and closeness of quantile-quantile (Q-Q) plots to
the reference line (Extended Data Table 1, Extended Data Fig. 1e,f, Supplementary Fig. 1). The three component
GMMs generally comprised a sharp central Gaussian peak, capturing slow, task-oriented station-keeping movements,
and two Gaussian “shoulders”, capturing faster, positive (forward) and negative (backward) exploratory movements.
We found that only modest improvements in the fit of the GMMs occurred when using more than three components
(Extended Data Fig. 1g).

The fast mode movements increased in frequency in lights-off trials, increasing the relative prominence of the
“shoulders”. For example, Fig. 1e,f show representative data from one fish in which there were 48 fast movements
with lights off (Fig. 1e, left) but only 13 fast movements with lights on (Fig. 1f, left). Interestingly, the overall higher
proportion of fast velocities in lights-off trials leads to a surprising result, namely higher kurtosis values for lights-on
versus lights-off trials (Extended Data Fig. 1h). In other words, the increase in frequency of fast motions in the dark
leads to a decrease in the relative prominence of the central, task-oriented velocity peak at v = 0, so that the overall
distribution is closer to Gaussian, and the kurtosis trends toward 3.

We found that the trend towards a Gaussian distribution of movement velocities in lights-off trials (reduced sensory
salience) to be surprising because the exploratory movements for actively sensing the environment are associated
with a nonlinear requirement24,25 to make movements that are potentially in conflict with task goals. Therefore, our
initial hypothesis– that this nonlinearity would produce increased deviation from a Gaussian velocity distribution
as sensory salience was reduced–was not supported. Our initial intuition failed because we did not appreciate that
decreases in sensory salience drives the selection of explore behavior, and that behavior itself is approximately
Gaussian, ultimately reducing the relative prominence of the task-oriented central peak.

Interestingly, reanalysis of data from a previous study of exploratory movements in a similar refuge tracking
paradigm in E. virescens show the same relationship between sensory salience and changes in velocity profiles, but
for modulations of a different sensory modality, namely electrosensation.3 In these previous experiments, artificially
generated electrical signals were used to diminish the salience of electrosensory information as the electric fish per-
formed the refuge tracking. Our reanalysis of these published data (see Supplementary Material and Methods for
details) showed that fish exhibited the distinctive non-Gaussian distribution of velocities. Moreover, the velocity dis-
tributions were modulated in relation to electrosensory salience: lower kurtosis values (corresponding to more normal
distributions) occurred in experimental trials with added artificial electrosensory “jamming” signals (Extended Data
Fig. 2a–f).

Sensory salience drives explore–exploit mode switching

How do changes in sensory salience drive changes in mode switching? To investigate this question, we segregated the
velocity trajectories into “S”, a slow velocity mode (exploit) comprising task-oriented, station-keeping movements,
and “F”, a fast velocity mode (explore) comprising large positive (forward) and negative (backward) movement
velocities (Fig. 2a,b, Extended Data Fig. 3, Supplementary Fig. 2) (see Methods for different clustering algorithms
used).

Fish produced slow and fast velocity modes of movements in both lights-on and lights-off trials. We computed
the residence time in each behavioral mode as a proportion of the total time spent in that mode compared to the
trial duration of 40 s (note that the residence time in slow and fast modes adds up to unity). The residence time τs
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in the slow exploit mode was significantly higher (> 1.7 times) in lights-on trials than the lights-off trials (Fig. 2c).
In contrast, the residence time in the fast explore mode (1 − τs) was higher in light-off than in lights-on trials.

Fish switched between slow and fast modes more frequently in lights-off trials than in lights-on trials (Fig. 2d).
From the computation of the transition rates between slow (S) and fast (F) modes as a two-state Markov process,
we found that the transition rate S → F was significantly lower in lights-on versus lights-off trials, i.e., the slow
(exploit) state was visited more frequently in the lights-on trials compared to lights-off trials (Extended Data Fig.
3b). This salience-dependent modulation of switching frequency was the key mechanism by which movement velocity
distributions trended toward a Gaussian distribution as a function of decreased sensory salience.
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Fig. 2. Bursts of faster movements are more common in lights-off trials than in lights-on trials.
(a,b) Fish showed two distinct behavioral modes, slow movement and fast movement, as seen in the velocity
(top) and position traces (bottom) of representative trials from the same fish under lights-off (a) and lights-on
(b) conditions. (c) The residence time in the slow mode, computed as the percent of the trial duration (40 s),
was significantly higher during lights-on trials than lights-off trials (one-sided p-values are 0.0002, 0.0001, 0.0001,
0.0014, and 0.0001, respectively). (d) The switching between the fast mode (positive and negative combined)
and slow mode was significantly more frequent in lights-off trials (black) than in lights-on trials (red) (one-sided
p-value are 0.0037, 0.0070, 0.0008, 0.0045, and 0.0001, respectively). All box and whisker plots include the median
line, the box denotes the interquartile range (IQR), whiskers denote the rest of the data distribution and outliers
are denoted by points greater than ±1.5×IQR. For both (c,d), the p-values were calculated using the Mann-
Whitney-Wilcoxon test.The total number of lights-off trials (n) for fish 1 and 3 was 7, and for the rest, it was 10
trials per condition per fish.

Mode-switching across taxa, behaviors, and sensory modalities

Is this mode-switching strategy solution for the explore versus exploit problem found in other species, in other
categories of behavioral tasks, and in control systems that rely on other sensing modalities?

To answer this question we analyzed published data for an additional ten species, representing a wide phyloge-
netic range of taxa, from single-celled organisms to humans, involving categorically different tasks and sensorimotor
regimes.3,14–20,22 These taxonomically diverse species were selected to encompass a wide range of behaviors that
rely on a broad range of sensory systems (Fig. 3). For every example we examined, we found the same distinctive
non-normal distribution of velocities, with a peak at low velocity movements and broad shoulders for higher velocity
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movements (Fig. 4).
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Fig. 3. Diversity of organisms and sensing modalities used for analysing mode-switching strategies.
The major sensing modalities (vision, tactile sensing, audition, olfaction, and eletrosensation) used for task
execution are listed next to the organisms (four species of mammals, a species of ray-finned fish, four species of
insects, and two species of amoebae). The effect of sensory salience is studied for organisms marked with asterisks.
Behaviors and movement statistics of the organisms are shown in greater detail in Fig. 4.

For example, postural sway movements in humans are thought to prevent the fading of postural state information
during balance.26 Our reanalysis of quiescent stance data17 revealed evidence of mode switching (Fig. 4a) that is
remarkably similar to our findings in electric fish. In the quiescent stance task, human subjects used visual and
tactile feedback to maintain an upright posture. The distribution of sway velocities revealed a distinct peak at
low velocities corresponding to the task goal, and broad shoulders for higher velocities produced by the exploratory
movements; the velocity statistics were better captured by a GMM than a normal distribution. Furthermore, the
velocity distribution showed the same surprising relation to changes in salience, becoming more Gaussian as well as
increase in the switching frequency when sensory salience was decreased (Extended Data Fig. 4a–d), as seen in the
electric fish E. virescens.

Mode switching was also observed in invertebrate species. For example, the Carolina sphinx hawkmoth (Manduca
sexta) uses somatosensory feedback from their proboscis to detect the curvature of flowers when searching for nectaries
at dawn and dusk.20 In this search behavior, which has dynamics that are qualitatively similar to vibrissal sensing in
rats,27 the moth sweeps its proboscis across the surface of the flower using a combination of slow- and high-velocity
movements. Our analysis of the distribution of the rate of change of radial orientation angle (angle between the
proboscis tip trajectory and the radial axis of the flower), before the insertion of the proboscis tip into the nectary
shows the characteristic sharp peak with broad-shoulders (Fig. 4g) that is captured by a GMM. Experimental changes
in the shape of artificial flowers that degrade the salience of the curvature of the flower surface20 resulted in a decrease
of the kurtosis value of the proboscis angular velocity distribution (Extended Data Fig. 5a–f), similar to how both
E. virescens and humans responded to changes in sensory salience.

The fact that this salience-based, mode switching strategy was found in two distantly related classes (mammalia
and insecta) performing very different behaviors, using different sensorimotor systems, suggests that the strategy
emerged as a convergent solution to the explore versus exploit problem. We found additional evidence of convergence
of this solution in reanalysis of eight additional datasets: visual saccades in humans (Fig. 4b, Supplementary Fig.
3)21 and in house mice Mus musculus (Fig. 3c, Supplementary Fig. 4),15 movements of the pinnae of echolocating
big brown bats Eptesicus fuscus (Fig. 4d, Supplementary Fig. 5),16 olfaction in Eastern moles Scalopus aquaticus
(Fig. 4e, Supplementary Fig. 6)14 and American cockroaches Periplaneta americana (Fig. 4f, Extended Data Fig.
4e–f),18 and visual tracking of a swaying flower in three species of hawkmoths (Manduca sexta, Deilephila elpenor,
Macroglossum stellatarum) (Fig. 4h, Extended Data Fig. 5 g–p).19 The discovery of a similar, parsimonious velocity
distributions across taxa, behavior, and sensing modalities, with consistent dependency on sensory salience, was
surprising.

Intriguingly, our analysis of the dynamics of transverse exploration by pseudopods of amoebae22 (Amoeba proteus
and Metamoeba leningradensis) reveals similar GMM velocity distributions in response to an electric field (Extended
Data Fig. 6). Although our modeling approach (see next section) includes inertial dynamics, that cannot be directly

5



applied to movement of organisms in the low Reynolds number regimes occupied by single-celled and other microscopic
organisms, these observations are consistent with a mode-switching strategy for the control of movement in these
amoebae.

The examples described above include a broad phylogenetic array of organisms that perform a variety of behavioral
tasks using different control and morphophysiological systems. Just as these behavioral systems evolved within each
of the lineages represented in our reanalyses, we suggest that mode switching likely evolved independently in each
lineage as well. In other words, the similarities we found across taxa are the result of convergent evolution towards
a common solution—mode switching—for the explore versus exploit problem.
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Fig. 4. Broad-shouldered velocity distribution is found across taxa, behaviors, and sensing modal-
ities. Reanalysis of data from eight prior studies reveals a convergent statistical structure of movements across
a range of organisms and behaviors: (a) postural sway in humans (Homo sapiens) during maintenance of quiet
upright stance,17 (b) microsaccades in humans (Homo sapiens) during fixated gaze,21 (c) bilateral eye movements
in mice (Mus musculus) during prey (cricket) capture,15 (d) pinnae movements in big brown bats (Eptesicus
fuscus) while echolocating prey (mealworm),16 (e) olfactory driven head movements in eastern moles (Scalopus
aquaticus) in response to food (earthworms),14 (f) odor plume tracking in American cockroaches (Periplaneta
americana) in response to sex pheromone (Periplanone B),18 (g) tactile sensing by Carolina sphinx hawkmoth
(Manduca sexta) while searching for a flower nectary,20 and (h) visual tracking of swaying flower by hawkmoths19

(three species; only data from elephant hawkmoth, Deilephila elpenor is shown, for the remainder see Extended
Data Fig. 5g–p).The second column shows representative temporal traces of the active exploratory movements,
the third column shows the respective velocity traces. The fourth column presents velocity histograms show-
ing that, unlike the normal distribution (magenta dashed curve), the three-component Gaussian mixture model
(GMM; blue solid curve) captures the broad-shouldered nature of the velocity data across species, behaviors, and
sensing modalities. See Supplementary Materials and Methods for detailed method and Extended Data Table 2
for statistical details. Photo credit: Mice eye image courtesy of authors in Michaiel et al.,15 published under the
terms of the Creative Commons Attribution License.

Heuristic model of the mode-switching strategy

Why might animals use mode switching, rather than the simpler heuristic of applying continual, low-amplitude
exploratory inputs used by control engineers13? To address this question, we propose a parsimonious heuristic model
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that comprises a nonlinear motion-dependent sensor, a linear musculoskeletal plant, a state estimator (also known
as an observer28), and a mode-switching controller (Fig. 5a). For the musculoskeletal plant, we assumed a simplified
second-order Newtonian model:9,24

dx(t)

dt
= v(t),

dv(t)

dt
= − b

m
v(t) +

1

m
u(t) + w1(t).

(1)

Here x(t) is dimensionless position, v(t) is dimensionless velocity, u(t) is the controller input, and w1(t) is process
noise. The process noise includes noise due to physical disturbances29,30 as well as motor noise.31 The system
parameters m and b represent unitless mass and viscous damping, respectively.

The key feature of the model is that the nonlinear sensory system (i.e. “motion dependent sensor”) embodies
the high-pass filtering (i.e., fading or adapting) characteristics found across biological sensory systems.26,32–38 This
sensory system model (“motion dependent sensor” in Fig. 5a) assumes nonlinear measurements that decay to zero
over time in the face of constant stimuli:

y(t) =
d

dt
s(x(t)) + w2(t) = g(x)v(t) + w2(t). (2)

Here, s(x) is the position dependent sensory stimulus experienced by the organism, g(x) is the spatial derivative of the
sensory stimulus (ds(x)/dx), and w2(t) is the sensory noise. The controller includes a state-feedback-based task level
control policy, −f(x̂, v̂), that exploits previously collected sensory information; that information is parsimoniously
encoded (i) in estimates of the position and velocity (x̂, v̂), and (ii) in an ongoing measure of uncertainty, Mε (based
on the covariance of position and velocity estimates). Previous theoretical work has demonstrated that exploratory
movements are required for state estimation in control systems that rely on such high pass (i.e., fading) sensors.24,25

Hence, the controller also includes an active sensing control policy, ua(t), that seeks to gain new information through
exploratory movements.

To find the optimal balance between exploit and explore components, for a given admissible control policy, π and
a given weight, r for an input, u ∈ U (action space), we can define the average steady state cost function:

Jπ = lim sup
t→∞

E[x(t)2 + ru(t)2] (3)

where E is the expectation computed over all the trajectories induced by admissible control policy, π. Note that a
control policy is admissible if it depends causally on the sensor and actuator data. We chose the cost function, Jπ as a
weighted combination of steady state tracking error and control effort. Even with complete knowledge of the system
states, computation of the optimal solution Jπ∗ = infπ∈Π Jπ where Π is the set of all admissible control policies,
is only tractable in the case of linear systems or systems with finite state and action spaces.39 Since the system is
partially observed, existing approaches to optimal control require the solution to an optimal filtering problem and
then formulate feedback laws on the filter states.39 The filtering problem requires computation of the conditional

probability P
([

x(t)
v(t)

] ∣∣ y(τ), u(τ) ∀τ ≤ t

)
. However, due to nonlinearity in the measurement (Eqn. (2)), there is no

tractable method to compute this conditional probability, and so heuristic strategies are required. We tested three
exploratory movement heuristics for the controller to find an approximate answer to this intractable optimal control
problem:

1. Zero Excitation: This is a passive strategy (i.e., no exploration) in which the system provides no input
excitation for the actuation forces (ua(t) = 0 for all t). This is a conventional state-feedback controller.

2. Persistent Excitation: This scheme tests a common continuous exploration strategy used in the field of
adaptive control.13 The controller continually injects a Gaussian input ua(t).

3. Triggered Excitation: This mode-switching strategy depends on lower and upper thresholds, Tmin and Tmax;
the controller only injects Gaussian input when the uncertainty in the state estimator Mε exceeds Tmax, and
then continues to inject input until this uncertainty drops below a lower threshold, Tmin (Fig. 5b).
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Fig. 5. Template model illustrating three different exploration strategies. (a) Schematic of the
Triggered Excitation (mode-switching) strategy. The musculoskeletal plant for animal locomotion has two states—
position (x) and velocity (v). The state estimator has access to noisy measurements from a nonlinear adaptive
sensor (g(x)v). The state estimator (extended Kalman filter) is designed to work in tandem with the mode
switching controller. The controller output, u comprises both state-feedback (−f(x̂, v̂)) and an active sensing
component (ua(t)). See Methods for details. (b) Triggered Excitation (TE) strategy showing the temporal
traces of measure of uncertainty (Mε, trace of the error covariance) with threshold levels Tmin = 4.8× 10−3 and
Tmax = 6× 10−3 (top), input u (bottom; active sensing component, ua(t): light blue; state-feedback component,
−f(x̂, v̂): dark blue). The triggering started as Mε exceeded Tmax and the triggering continued till Mε dropped
below Tmin. (c–e) Simulated position traces (actual states: teal, estimated states: red) using three different
exploratory movement strategies for ua(t): Zero Excitation (c), Persistent Excitation (d), and Triggered Excitation
(e) along with the state-feedback. The respective RMS values of the tracking error (eRMS) are shown in the panels.
(f-k) Controller input traces (f–h) and velocity histograms (i–k) for various schemes as in (c–e). Respective RMS
values of the inputs (uRMS) are shown in the panels of (f–h). In (i–k) the fits with a normal distribution (magenta
dashed) and three-component Gaussian mixture model (blue solid) are shown along with the respective kurtosis
(κ) values. (l) Effect of exploratory movement (variance of ua(t)) on tracking error (e) and control effort (u) in
Persistent Excitation (PE). The minimum RMS tracking error and the corresponding control effort are denoted as
ePE,min and uPE,min, respectively. (m,n) Effect of threshold pair ( Tmax, Tmin) in Triggered Excitation on tracking
error (m) and control effort (n) at optimum variance of ua(t) corresponds to ePE,min. The solid lines in (m,n)
show the respective mean and the shaded regions in (m) correspond to respective SEM (n = 300 independent
simulations). Note that with the right choice of threshold pair, Triggered Excitation scheme can achieve lower
tracking error with substantially lower control effort.
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As prior theoretical work shows,25 the Zero Excitation strategy (i.e., traditional state-estimate feedback) cannot
minimize the state estimation error and hence, not surprisingly, results in poor tracking performance (Fig. 5c), thus
illustrating the need for an additional active sensing component in the face of adaptive sensing and perceptual fading.
The Persistent Excitation and Triggered Excitation strategies both facilitate substantially better position control than
does the Zero Excitation strategy (Fig. 5c,d). Though these two strategies resulted in comparable tracking errors
(eRMS, Fig. 5b,c), the Triggered Excitation was more efficient, requiring substantially lower control effort (uRMS,
Fig. 5g,h). Moreover, unlike the Persistent Excitation strategy, Triggered Excitation generated a distinctive broad-
shouldered velocity distribution that featured a sharp peak near zero, with broad shoulders corresponding to bursts
of fast movement (Fig. 5j,k). This distribution was strikingly similar to experimental observations across organisms
(Fig. 1, Fig. 4, Extended Data Fig. 4, Extended Data Fig. 5, Extended Data Fig. 6), suggesting that such broad
shoulders are a signature (if not definitive proof) of a mode-switching strategy.

We showed that active exploration is essential for better tracking performance as it improves state estimation.
But, there is a point of diminishing returns: although higher (more energetic) active excitation can result in excellent
state estimation, there is a point beyond which these additional active sensing movements lead to greater tracking
errors.

To contrast between Persistent and Triggered Excitaiton we performed a numerical study to obtain the variance of
the active sensing signal ua(t) that minimizes RMS tracking error for the Persistent Excitation(PE) strategy, ePE,min.
Note that Persistent Excitation is the limiting case of Triggered Excitation with extremely low threshold values (i.e.,
insuring that the active sensing mode is always “on”). With that optimum stimulation obtained from Persistent
Excitation, we next performed a parameter sweep involving threshold pair (Tmax, Tmin) in the Triggered Excitation.
We discovered that the choice of thresholds in the Triggered Excitation strategy plays an important role—with
the right choice of parameters we could achieve better tracking performance (Fig. 5m) at reduced control effort
(Fig. 5n). The choice of thresholds also shapes the velocity to best extract sensory information; with low thresholds,
the statistics approach that of the Persistent Excitation, whereas high thresholds lead to velocity distributions with
higher kurtosis (departure from normality), while requiring less control effort (Extended Data Fig. 7a–c).

How does sensory salience affect performance of the Triggered Excitation (mode-switching) heuristic? To simulate
the effects of changes in sensory salience, we parametrically varied the sensory noise variance while keeping constant
the switching thresholds Tmin and Tmax. As the sensory noise variance was increased (simulating a decrease in
salience), the kurtosis value of the velocity distribution decreased, numerically approaching normality in the limit of
high sensory noise (Extended Data Fig. 7d–g). This trend of decreased kurtosis in the face of increased noise variance
captures the widespread observation that in animals the velocity statistics tend toward a Gaussian distribution
as sensory salience is decreased. Moreover, the underlying mechanism, namely increasing frequency of bursts of
exploratory movements, matches our experimental observations in E. virescens, which performed more frequent
transitions to fast movements and spent less time in the slow mode in the lights-off trials than in the lights-on
trials (Fig. 2c,d). These analyses clarify that this trend toward a Gaussian distribution with decreased salience
is an epiphenomenon of mode-switching: as the frequency of fast movement bursts increases, it overwhelms the
task-oriented movements, diminishing the prominence of the central peak.

Discussion

We examined explore–exploit tradeoffs in the context of goal-direct motor behaviors, such as station keeping, postural
balance, and plume tracking, that require active, exploratory movements to enhance sensation. We discovered that
the velocity distributions that emerge from the interplay between exploratory movements and goal-directed control
are broad-shouldered across taxa, and that this distinctive distribution of movements is robustly modulated by
sensory salience. The bouts of ancillary movements that comprise the broad shoulders of these velocity distributions
are commonly described as “active sensing”, i.e., the expenditure of energy by organisms for the purpose of sensing,40

for example, ancillary movements described here. Active sensing also includes the emission of energetically costly
signals such as electric fields by weakly electric fishes41 and echolocation calls in dolphins, birds, and bats.42–45 Active
sensing research in humans, in relation to touch, was popularized in the 1960’s by J.J. Gibson,1 and the original
ideas date back at least to the 18th century (for a historical account, see Zweifel et al.40).

Surprisingly, active sensing is largely avoided in engineering design despite being ubiquitous in animals. The
performance of engineered systems may benefit from the generation of movement for improved sensing. An algorithm
known as Ergodic Information Harvesting (EIH)3 could be used to control movements for sensing in artificial systems.
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This algorithm balances the energetic costs of generating movements against the expected reduction in sensory
entropy. The EIH has been tested in relation to several animal model systems, and produces plausible animal
trajectories.3

Interestingly, the EIH algorithm produces the opposite trend in kurtosis of velocity distributions in relation to
sensory salience (Extended Data Fig. 2g–l, Extended Data Table. 3) that we observed in our experiments, reanalysis
of prior data, and in our model: as sensory salience decreases, there is an increase in active sensing movements but
a decrease in kurtosis (Extended Data Table. 2). That EIH leads to decrease in kurtosis occurs in part because
EIH generates continuous sensing movements, and does not incorporate mode switching. A refined EIH model,
that generates the temporally distinct periods of sensing movements that characterize mode switching, would better
reflect our findings in animals, and is a promising strategy for improving the performance of robotic control systems.

How mode switching is manifest across the diverse biological systems we examined is a compelling open question.
Many of these control systems have evolved via convergent evolution in which adaptive strategies emerge indepen-
dently across lineages. One result of convergent adaptation is that species often rely on idiosyncratic features, such as
feathers or skin flaps, to achieve the same adaptive strategy, such as flapping flight. We infer that the mechanisms for
mode switching is present in control systems that range from sub-cellular systems46 to neural systems in vertebrates.

The mechanisms for mode switching in vertebrate nervous systems may emerge at different levels within senso-
rimotor control pathways. For example, neurophysiological recordings show that sensory salience can be encoded in
brain circuits via synchronization and desynchronization of spiking activity.47 Such population coding of salience,48–50

when coupled with a threshold, could trigger discrete bursts of motor activity for sensing.8 Motor circuits for the
production of discrete bursts of movement occur in spinal circuits.51

These discrete bursts of movements could arise from reflex-like, threshold-based activity in animals, akin to how
Mauthner cells trigger a cascade of motor activity when sensory inputs exceed a threshold.52 A key difference
between reflex-like, threshold-based behaviors and the mode-switching we describe in this paper would be that the
signal in question would arise from an internal representation of sensory uncertainty, rather than from the overall
level of sensory excitation. Such a reflex-like action could produce stereotyped forms of interactions with the external
environment in relation to sensing.8

A common engineering approach to sensing and control is to add sensors and improve sensor performance,
particularly at low frequencies, effectively side-stepping the need for active sensing movements altogether. Such
improved sensing enhances observability without relying on movement. In stark contrast, organismal sensor systems
are almost invariably adapting (high-pass), necessitating active sensing. Irrespective of whether organisms have
achieved an optimal solution to the control problem (or instead are limited by evolutionary constraints on sensor
performance), the widespread convergent evolution of a common active sensing strategy nevertheless suggests an
alternate engineering design paradigm. The confluence of adapting sensors53 and the uncertainty-triggered mode-
switching heuristic presented in this paper provides a new roadmap for movement control of robotic systems.

In this paper, the explore–exploit tradeoff arises from the need for active state estimation28 in a subset of tasks
in which movement is used both for acquisition of information and achieving task goals. However, similar tradeoffs
arise in a wide variety of potentially more complex behaviors. For example, in foraging where the resources are found
in patchy distributions, organisms balance the tradeoffs between exploiting a local food source, exploring for distant
sources,54 and the costs of predation across the habitat.55 Similarly, reinforcement learning involves choosing whether
to adhere to a familiar option with a known reward or taking the risk to explore unknown options that can lead to
increased rewards over the longer term.56 We do not have direct evidence that the broad-shouldered feature we have
identified in animal movements described here (Fig. 1, Fig. 4)—reflecting the manifestation of mode switching—are
also found in these behavioral domains across taxa. Recent evidence from studies of human reinforcement learning,
however, appear to be consistent with mode-switching behavior.
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Methods

Tracking of glass knifefish

Subjects

We obtained adult, weakly electric, glass knifefish Eigenmannia virescens (10 – 15 cm in length) from commercial
vendors, and housed the fish according to the published guidelines.57 Water temperature in the experimental tank
was kept between 24 – 27 ◦C, and conductivity ranged from 10 – 150 µS/cm. Fishes were transferred from the holding
tank to the experimental tank 12 – 24 hours prior to the experiments, to allow for acclimation. All experimental
procedures were approved by the Johns Hopkins Animal Care and Use Committee, and followed guidelines established
by the National Research Council and the Society for Neuroscience.

Experimental apparatus

The experimental apparatus was similar to that used in previous studies.2,6, 8, 23,58 The refuge was machined from a
152 mm long segment of 46 × 50 mm rectangular PVC tubing, with the bottom surface removed to allow the camera
to record the ventral view of the fish. On both sides of the refuge, a series of six rectangular windows (6 mm wide
× 31 mm high, spaced 19 mm apart) were machined, through which to provide visual and electrosensory cues.

A computer sent designed digitized input stimuli (25 Hz) from LabVIEW (National Instruments, Austin, TX,
USA) to a FPGA based controller for a stepper motor (STS-0620-R, HW W Technologies, Inc., Valencia, CA, USA).
The stepper motor drove a linear actuator, leading to the one degree of freedom refuge movement in real time. A
video camera (pco.1200, PCO AG, Kelheim, Germany) captured fish movements through mirror reflection at 100 Hz.
The captured frames (width × height: 1280 pixels × 276 pixels) were saved as 16 bits .tif files via camera application
software (pco.camware, PCO AG, Kelheim, Germany).

Experimental procedure

The experiments were conducted in two illuminance levels—around 0.3 lx (lights off) and 80 lx (lights on). Each trial
lasted for 60 s. During the initial 10 s of each trial, the refuge was actuated to follow a 0.45 Hz sinusoidal trajectory,
the amplitude of which was gradually increased to 3 cm, and then decreased to 0 at the end of the 10 s interval, in
a similar fashion as described in Biswas et al.2 After the initiation phase, the refuge remained stationary for 40 s,
finally followed by a termination phase for 10 s, during which the refuge was actuated in a similar fashion as during
the initiation phase.

Tracking Algorithm

To observe fine details of the fish movement, we used a high frame rate in our video recordings. High tracking
accuracy was essential as the position and velocity data were likely to be contaminated by measurement noise.
To ensure high tracking accuracy, the refuge and fish position were analyzed by custom video tracking software59

developed by Balázs P. Vágvölgyi from the Laboratory for Computational Sensing and Robotics (LCSR), at Johns
Hopkins University.

The tracking algorithm worked in two phases. The first phase was template matching, which roughly located
the targets (fish or refuge). In the first frame of a given video, a rectangular region was manually selected around
the target to create a template. On subsequent frames, a neighborhood region around the template (± 20 pixels)
from the previous frame was selected for the computation of a normalized 2-D cross-correlation matrix. If the target
changed its orientation in the new frames, before computing the normalized 2-D cross-correlation, the new image
frame was first rotated to match the orientation of the template from previous frame. If needed, the areas of the
image were sampled (then scaled and interpolated if necessary) with subpixel accuracy.

After creating the template, the second phase applied the Levenberg-Marquardt algorithm to find the global
maximum of the normalized cross-correlation function. This step produced a match between the template and target
at each frame, with subpixel accuracy. We performed extensive preliminary testing and analysis to confirm that the
remaining measurement errors had smaller variance than the stochastic movements of the fish.

11



Data Processing

The tracking algorithm stored the fish position in both horizontal and vertical directions, (originally in pixels, along
with the respective pixel to meter conversion factor), and the angle of orientation (in degree) in .csv files. We used
only the data while the refuge was stationary (40 s, 4000 data points in total) for each trial. To further reduce
the measurement noise, the position data was filtered through a Butterworth zero-phase distortion filter (filtfilt
command in MATLAB) with a 10 Hz cutoff frequency. Fish velocity in the horizontal direction was computed as
forward differences of the horizontal position time series.

Identification and Characterization of Behavioral Modes

For the identification of the behavioral modes, we used three different clustering approaches—(1) Gaussian mixture
model (GMM) with inflection point based clustering, (2) hidden Markov model (HMM) based clustering, and (3)
GMM with maximum a posteriori probability (MAP) based clustering.

For GMMwith inflection point based clustering, the velocity (v) data from each individual fish at a specific lighting
condition were clustered into three components, slow, fast positive, and fast negative (Extended Data Fig. 3a,b),
using two velocity thresholds, vL and vH (vL < vH), resulting in two behavioral modes—slow and fast (fast positive
and negative were combined). The velocity threshold values were computed by finding the inflection points of the
GMM fits to the velocity data, fGMM, specific to a lighting condition. To numerically identify the inflection points
of fGMM, we numerically computed the spatial second-order derivative of fGMM (f ′′

GMM), and located the first and

the last indices of the array
f ′′
GMM

fGMM
such that the condition

f ′′
GMM

fGMM
< c was satisfied for a given c. This method

separated the central peak of the fGMM, velocity distribution around zero velocity, from the broad shoulders. We
chose c = 0.005 for all the individual fish irrespective of the lighting conditions, except for fish 1 lights-off trials
(c = 0.02), (the different c value for fish 1 lights-off trials was chosen so that the relative area under the central
peak of the distribution was less than 0.6 (similar to other fish during lights-off trials). For further analysis of these
behavioral modes, we assumed a continuous time Markov chain model (Extended Data Fig. 3c,d). For infinitesimal
dt, the transition probabilities, Qij are given as follows:

Pr(v(t+ dt) = j|v(t) = i) = Qijdt+ o(dt), i ̸= j (4a)

Qii = −
∑
i̸=j

Qij (4b)

and the probability matrix P with pij = Pr(v(t) = j|v(0) = i) and transition rate matrix Q with entries Qij satisfy
the first order differential equation

d

dt
P = PQ, (5)

whose solution is given by,

P = etQ =
∞∑

n=0

(tQ)n

n!
. (6)

For every trial from each individual fish, we computed the probability matrix P with entries pij , i = 1, 2, j = 1, 2
where state 1 and 2 correspond to slow (exploit) and fast (explore) modes, respectively. We used the approximation

to the matrix exponential in Eqn. (6), Q ≈ 1

h
(P− I) for the computation of the transition rates between slow and

fast modes in each trial from the respective probability matrix, P.
For HMM clustering, we combined all the positional trial data (xt) from all the five fish at a specific lighting

condition along with their negatives (−xt). (We included the negative data to eliminate any directional bias.)
We assumed that the observed measurements of position, xt, follow a homogeneous Markov switching first-order
autoregressive model:

xt = αst
0 + αst

1 xt−1 + σεt (7)

where the superscript st ∈ {1, 2, 3} refers to the hidden discrete state and ε is Gaussian white noise. We fit this
model using the NHMSAR package in R.

The HMM fitting resulted in three clusters similar to slow, fast positive, and fast negative as obtained with GMM
with inflection point based clustering method (Extended Data Fig. 3e–h). Finally by combining fast positive and

12



negative, we ended up with two behavioral modes—fast and slow for further computation of switching frequency and
residence time.

In GMM with MAP based clustering, GMM models with three components were fitted to the velocity data from
each individual fish at a specific lighting condition. We assigned the cluster index for each data point based on the
maximum a posteriori probability using Bayes’ rule. This method required a post hoc assignment of which cluster
or clusters correspond to the “slow” behavioral mode in order to compute residence time; see for example Extended
Data Fig. 3i–m.

All analysis was performed using code written in R and MATLAB.

Simulation

Sensory adaptation is a robustly observed phenomenon among organisms ranging from unicellular amoebae37,38 to
humans26 where the sensory systems stop responding to constant stimuli. Here, we modeled this adaptive/ high-pass
nature of the sensory receptors as a “motion dependent sensor” for which we assumed a nonlinear measurement
model24,25 with sensory noise w2(t):

y(t) =
d

dt
s(x(t)) + w2(t) =

d

dx
s(x(t))v(t) + w2(t) = g(x)v(t) + w2(t). (8)

Here, s(x) is the position dependent sensory scene experienced by the organism. For the present study, we assumed a
quadratic sensory scene s(x) = 1

2αx
2+βx with nonzero constant sensory scene parameters α and β. This assumption

on sensory scene yields g(x) = αx+ β, a linear function of position, x.
Due to the presence of the nonlinearity in the measurement, we used an extended Kalman filter (EKF) for state

estimation, a common heuristic. For the state-feedback component we applied f(x̂, v̂) = k1x̂+ k2v̂. In the Triggered
Excitation scheme, for the uncertainty measure (Mε) we used the trace of the state estimation error covariance
matrix, Tr(P (t)). When the uncertainty measure Tr(P (t)) rose above a maximum threshold, Tmax, the controller
generated active sensing component, ua(t) as a Gaussian input with fixed power spectral density and it continued to
inject the input until Tr(P (t)) dropped below a lower threshold, Tmin. At this point the controller switched back to
traditional state-feedback form. For the Persistent Excitation scheme, the controller continued to inject a Gaussian
input ua(t) for all time.

To obtain the critical excitation level of the active sensing component ua,crit(t) for optimum tracking performance
in Persistent Excitation, we chose 30 logarithmically spaced variance values of ua(t) from 1 to 100. From the mean
of 100 independent simulations for each variance value, we obtained ua,crit(t) ≈ 9.33 which achieved the minimum
RMS tracking error of ePE,min ≈ 0.071 and RMS control effort uPE ≈ 10. Using this critical value for the excitation
ua,crit(t), we studied the effect of thresholds in Triggered Excitation by varying Tmax and Tmax/Tmin linearly from
4× 10−3 to 10× 10−3, and 0.5 to 1, respectively, and performed 300 independent simulations for each pair of values.

The system parameters were chosen from prior studies6,24 as follows: b = 1.7, m = 1, α = 3, β = 5, k1 = mω2
n,

k2 = (2mζωn + b), ζ = 0.56, ωn = 1.05× 2π. The process noise, w1(t) and sensor noise, w2(t) were chosen as fixed
Gaussian noise inputs with variances 0.03 and 10, respectively.

Statistics

All the statistical analysis was performed with sign test and Mann-Whitney-Wilcoxon test using custom codes written
in R (R core team, Indianapolis, Indiana, USA) and MATLAB (Mathworks, Natick, Massachusetts, USA). For all
tests, the significance level was set to 0.05. The experimental and simulation data are provided as either mean plus
or minus the standard deviation (µ±SD) or mean plus or minus the standard error of the mean (µ±SEM).
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