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Summary

Humans and other animals can readily learn to compensate for changes in the dynamics of movement.

Such changes can result from an injury or from changes in weight of carried objects. These changes in

dynamics can not only lead to reduced performance but also to dramatic instabilities. We evaluated the

impacts of compensatory changes in control policies in relation to stability and robustness in Eigenmannia

virescens, a species of weakly electric fish. We discovered that these fish retune their sensorimotor control

system in response to experimentally generated destabilizing dynamics. Specifically, we used an augmented

reality system to manipulate sensory feedback during an image stabilization task in which a fish maintained

its position within a refuge. The augmented reality system measured the fish’s movements in real time.

These movements were passed through a high-pass filter and multiplied by a gain factor before being fed

back to the refuge motion. We adjusted the gain factor to gradually destabilize the fish’s sensorimotor

loop. The fish retuned their sensorimotor control system to compensate for the experimentally induced

destabilizing dynamics. This retuning was partially maintained when the augmented reality feedback was
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abruptly removed. The compensatory changes in sensorimotor control improved tracking performance as

well as control-theoretic measures of robustness, including reduced sensitivity to disturbances and improved

phase margins.
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Introduction

Animals routinely alter their behavior in response to novel sensorimotor dynamics. For example, insects can

retune their neural control systems and maintain function after limb amputation,1–4 antenna trimming,5,6

and wing damage.7–9 Humans and other animals can routinely learn new motor behaviors and retune

existing ones through practice.10 The mechanisms and strategies for such motor learning are currently being

revealed,10 including at the circuit level.11–15

As an animal retunes its sensorimotor control system in response to changes to system dynamics, it must

maintain stability. While there are many definitions of stability,16 here we refer to a system’s convergence to a

desired goal point or trajectory from a local neighborhood of possible initial system states. A complementary

question is, how does the retuned sensorimotor loop affect system robustness, i.e. how well does the system

achieve stability and convergence despite external perturbations17 or changes in internal parameters18?

To address these questions, we studied a well-suited model system, refuge tracking in the weakly elec-

tric glass knifefish Eigenmannia virescens. Eigenmannia has been likened to an “aquatic hummingbird”,19

smoothly hovering in place or making agile movements to track a moving refuge.20 These fish swim back

and forth to sense their position21–24 while tracking the movements of a refuge.20,25,26 Fore-aft swimming

movements are produced in Eigenmannia by rostro-caudal adjustments of the position of the nodal point

where counter-propagating waves of its ventral ribbon fin meet.18,27

Here we examined sensorimotor adaptation to experimentally induced changes in sensorimotor dynamics

in this refuge tracking behavior using an augmented reafferent feedback loop (Figure 1A). Normally (in the

veridical case), fore-aft swimming movements generate one-to-one motion of the refuge across its visual and

electrosensory receptors, but in the opposite direction (corresponding to the negative sign in the veridical

reafferent feedback signal, Figure 1B). Our refuge system augmented this reafferent feedback by digitizing

the fish position in real-time from video camera images, passing the digitized fish position through a high-

pass filter, and feeding the resulting signal back to the refuge position (Figure 1B, augmented reafferent

loop).

A key innovation of the experimental manipulation was to high-pass filter the augmented reafferent feed-

back to gracefully destabilize the closed-loop system. When the fish generated low-frequency movements



(i.e., below the cut-off frequency of the high-pass filter), reafferent feedback was approximately veridical—

little experimental change in feedback was made. In contrast, when the fish rapidly changed direction (i.e.

high frequency back and forth movements), such movements were amplified and fed back to the refuge.

Importantly, the gain of this high-pass-filtered feedback was gradually increased (Figure 1C), incrementally

driving the closed-loop control system towards instability, providing ample opportunity for the fish to learn

to compensate for the manipulation while successfully performing the refuge tracking behavior. This manip-

ulation was “graceful” in comparison to standard paradigms that use abrupt and categorical (broad-band)

gain reversals to destabilize closed-loop dynamics.28–32

Previous efforts to destabilize a feedback loop typically involve inverting the feedback gain28,29 (e.g., a

mirror reversal in visuomotor tasks). Inversion of feedback gain instantaneously and abruptly destabilizes

system dynamics. This destabilization is not graceful—the animal’s performance is dramatically degraded

by the experimental change in feedback.28 Animals can, over extended periods of time, learn to compensate

for these changes in feedback: humans can take many days to learn to compensate for mirror-reversal

manipulations.30 The approach we used here, increasing the gain of the high-pass filter, slowly leads to a

gain reversal for high-frequency movements while leaving low-frequency movements veridical. In this way,

the animal can continuously perform the task while it retunes its sensorimotor control system in response to

increasingly strong destabilizing dynamics. Unlike classic mirror reversals, we found that this retuning under

high-pass-filtered feedback can occur within a single experimental session of about 33 minutes in duration.

As we increased the gain of the high-pass filter in the augmented reafferent feedback loop, we simultane-

ously injected pseudo-random motions of the refuge, allowing us to determine the sensorimotor dynamics of

each fish using a technique known as system identification (i.e., stimulus–response modeling).19,33 We then

removed the augmented reafferent feedback (returning to the veridical condition) to assess any retention in

the sensorimotor controller, using the aftereffect as an indicator of learning. Finally, we performed control-

theoretic analyses as a normative framework to interpret the benefits of the learned controller. Using this

framework, we discovered that the nervous system maintained robustness to both low-frequency disturbances

and uncertain phase lags.

Results

We designed an augmented reafferent feedback loop to alter the closed-loop dynamics that fish experienced

during refuge tracking (Figures 1A, B). Specifically, we fed fish position back through a high-pass filter

in real time and added it to a pre-defined pseudo-random sum-of-sines input (Figure S1A).26,30 To drive

the closed-loop system towards instability, we incrementally increased the augmented feedback gain, k, of



the high-pass filtered feedback (Figure 1C). The experiments started from open-loop, the baseline veridical

condition. This was followed by a closed-loop period in which the gain of the high-pass filtered feedback was

gradually increased. This feedback was designed based on preliminary analysis34 to destabilize the behavioral

system and elicit learning. Finally, we removed the augmented feedback to assess aftereffects.

Fish retuned their controller dynamics in response to destabilizing feedback

We observed that the increase in the augmented feedback gain k caused a commensurate increase in the

refuge and fish velocities (Figure 2A-C). To understand how the augmented feedback changed the fish’s

tracking response, we performed frequency domain system identification from time domain position data

(sampled data shown in Figure S1B-D) of seven individual fish. These experiments allowed us to estimate

the empirical frequency response functions of individual fish. The empirical frequency response estimates,

which compare the Fourier spectra of the fish movement to that of the refuge, are completely data driven

(see Methods). The frequency response functions comprised the entire sensorimotor transform, including

the fish’s veridical reafferent feedback (see black dotted box in Figure 1B), but excluded the augmented

feedback. Using this method, we assessed how changes to the augmented feedback (via the gain k) led to

changes in the fish’s control system (as measured through its frequency response).

We found that fish systematically retuned their controllers under augmented feedback. Fish increased

sensorimotor gain, especially at higher frequencies (above 1 Hz) and added phase leads at intermediate

frequencies (around 0.65 Hz) in response to the increasing augmented feedback gain k (Figure 2D). This

trend of increased gain and phase at the frequencies 1.15 Hz (gain) and 0.65 Hz (phase) was observed in

each of seven fish (Figures. 2E, F). These frequencies were selected post hoc based on visual inspection of

the frequency responses.

Fish temporarily retained their learned controller, exhibiting a clear aftereffect

We examined the performance of fish immediately after the closed-loop feedback was abruptly removed:

the presence of aftereffects may suggest the involvement of a plasticity-based mechanism such as cerebellar

learning.30,35,36

If the control system of a fish were retuned by tracking under augmented feedback, evidence of that

retuning should emerge when it is removed. In other words, we expected to measure an aftereffect—a residual

change in behavioral performance compared to baseline performance—immediately after the augmented

feedback was extinguished. To assess aftereffects in the fish’s controller, we averaged the frequency responses

in blocks of three or five trials during the aftereffect period (see Figure 1C) and compared the result with



the baseline frequency response. Figure 3A and Figure S2A show the mean fish frequency response gain

and phase during the aftereffect period, as well as the baseline period, from a representative fish. Note that

in both baseline and aftereffect periods the fish was under veridical feedback with no augmented high-pass

filter in the feedback loop.

Immediately after the augmented feedback was removed, both the gain and phase of this fish remained

elevated (Figure 3A and Figure S2A), revealing that the retuned controller persisted. This is similar to the

persistent retuning of reach direction in visuomotor learning experiments in humans.10 The sensorimotor

gain washed out over a period of about 10 min as indicated by the frequency response gain returning to

baseline (Figure 3A). The elevated phase appeared to persist for longer, returning to baseline on the next

day (Figure S2A).

This result generalized across fish. We compared mean fish frequency response gain and phase at 1.15 Hz

and 0.65 Hz during the aftereffect periods for six fish. As before, these frequencies were selected post hoc

because they showed clear changes in gain and phase during retuning to augmented feedback (see Figure 2D–

F). As shown in Figure 3B, fish partially retained their gain at 1.15 Hz after the augmented reafferent feedback

was extinguished: in the first 5 min in the aftereffect period, the gain was significantly greater than baseline

(p < 0.01, paired-sample t-test in dB; Table S2). Similarly, as seen in Figure S2B, the phase at 0.65 Hz was

also partially retained after learning: the phase at 0.65 Hz during the first 5 min of the aftereffect period

was significantly greater than baseline (p < 0.05, paired-sample t-test; Table S3).

Interestingly, we observed that gain and phase washed out over different time courses. The fish gain

at 1.15 Hz washed out relatively quickly. The gain after the augmented feedback was extinguished was

significantly lower in the second 5 min period than in the first 5 min period (p < 0.05, two-sided sign test;

Figure 3B). Moreover, the gain was statistically indistinguishable from baseline for all subsequent test periods

(p > 0.1, paired-sample t-test in dB; Figure 3B; Table S2). In contrast, the phase at 0.65 Hz washed out

more slowly, as fish frequency response phases were significantly greater than baseline phase for multiple

consecutive 5 min internals (p < 0.05, paired-sample t-test; Table S3), returning to baseline by the next day

(p > 0.2, paired-sample t-test; Figure S2B; Table S3).

The significant aftereffect quantified using frequency response methods was also apparent in the time

domain data. Figure 3C shows the aftereffect in the time domain, comparing the velocity tracking error

ė(t), i.e., ė(t) = ṡ(t) − ẏ(t), in the baseline period with the first 8 sec of the aftereffect period from an

example fish. The velocity tracking error ė(t) in the first 8 sec of the aftereffect period was markedly

different from mean ± standard deviation of baseline. To better highlight the behavioral differences, we

filtered velocity tracking errors in baseline and the first 8 sec of aftereffect with a second-order bandpass

Butterworth zero-phase distortion filter. The lower and higher cutoff frequencies were chosen to be 0.7 Hz



and 1.3 Hz, as we found that fish showed most noticeable changes of their frequency responses in that

frequency band in Figure 2D. The time domain data in this frequency band highlights the higher amplitudes

and a clear phase lead (earlier peaks and troughs) of the velocity error for the retuned and partially retained

sensorimotor system compared with the (untuned) baseline performance (Figure 3D).

Advantage (i): retuned controller improved tracking performance

Fish retuned their controllers under the augmented, destabilizing feedback. To understand the possible

benefits of this adaptive control process, we examined how the retuned controllers impacted fish tracking

performance. We computed the fish’s velocity tracking error ė(t) in each experiment by taking the backward

differences of fish position data. We used the baseline empirical frequency response function (FRF) for each

fish to simulate that fish’s velocity tracking error in each augmented feedback period. This simulation used

phasor analysis based on the raw FRF (without any model fitting) at each stimulus frequency to predict what

would have happened in the theoretical case that the fish had not retuned its controller under destabilizing

augmented feedback (Figure 4A); see Methods and Roth et al.37

To compare the observed and simulated tracking performances, we computed the root-mean-square

(RMS) velocity tracking error: lower RMS velocity tracking errors correspond to better tracking perfor-

mance. We compared observed (retuned) RMS velocity tracking error with the corresponding simulated (no

retuning) error. Across all seven fish and nearly all gains (29 of 33), the observed RMS velocity tracking

error for the retuned controller was significantly less than that of the simulations with no-retuning (p < 0.001,

two-tailed Mann-Whitney-Wilcoxon test; Figure 4B).

To corroborate the time-domain error velocity analysis, we examined the normalized error ∣E(jω)/R(jω)∣

in the frequency domain for all five feedback gains. Similar to the time-domain analysis, we used the

individual baseline controller for each fish to predict what would have happened were the fish not to have

retuned its controller when we introduced the destabilizing augmented feedback. We integrated (area under

the curve in the frequency domain) the normalized observed and predicted tracking error for all seven fish. We

found that across all fish and 32 of 33 gains, the observed frequency-domain error for the retuned controller

was significantly less than that predicted when assuming no retuning (p < 0.001, two tailed Mann-Whitney-

Wilcoxon test; Figure 4D). In sum, the retuned controllers decreased both the RMS velocity tracking error

and the normalized error compared to the prediction assuming no retuning.



Advantage (ii): retuned controller reduced sensitivity to disturbance

The sensitivity function S(jω) (see Methods) reflects how well a feedback system suppresses disturbances at

each radian frequency ω.38 Disturbances comprise perturbations to the motor plant, such as neuromuscular

noise39 and turbulence.40 At frequencies ω for which ∣S(jω)∣ < 1 (indicating robustness), a system attenu-

ates disturbances. Conversely, a system amplifies disturbances when ∣S(jω)∣ > 1 (indicating fragility).38,41

Critically, for many systems, there is a tradeoff between robustness and fragility because of a general result

known as the “waterbed effect”:38 the integral of the natural log of the sensitivity function magnitude—i.e.,

the Bode sensitivity integral—is 0:

∫
∞

0
ln(∣S(jω)∣)dω = 0. (1)

This integral constraint implies that suppressing disturbances (ln ∣S∣ < 0, indicating robustness) at some

frequencies requires amplifying disturbances (ln ∣S∣ > 0, indicating fragility) at other frequencies. This result

depends on certain technical requirements of the system dynamics38 that we believe to be satisfied (see

Methods for details).

We computed the predicted sensitivity function for each augmented feedback gain, k, based on each fish’s

baseline controller (estimated in the veridical condition—no augmented feedback). These calculations were

based on the empirical frequency response data without analytical modeling; see Methods for details. This

predicted sensitivity was compared to the sensitivity function that each fish achieved when the augmented

feedback was applied. If the fish had not changed their controller, then the predicted and observed sensitivity

functions would have been identical.

For both the predicted and observed sensitivity functions, we approximated the Bode sensitivity integral

over the experimental bandwidth of 0.1 − 2.05 Hz (0.63 − 12.9 rad/sec) using trapezoidal integration (with

respect to ω (rad/sec). Figure 5A shows the natural logarithm of sensitivity function magnitude (predicted

and observed) at k = 1.1 from one representative fish over this bandwidth. As the augmented feedback gain

k was increased, the sensitivity integral became increasingly negative compared to the predicted integral

(p < 0.05 for k = 0.3, p < 0.01 for each k > 0.3, paired-sample t-test) (Figure 5B; Table S4). This indicates

that the retuned fish controller improved the overall robustness with respect to disturbances.

We also computed “sensitivity crossover frequency” for each feedback gain for all seven fish, i.e., the

frequency at which the natural logarithm of sensitivity function magnitude ln ∣S(jω)∣ crossed 0 for the first

time. A total of 28 of 32 points are located below the identity line, showing that the retuned controller

increased the sensitivity crossover frequency compared to the predicted crossover frequency across all seven

fish and for nearly all gains (28 of 32) (p ≈ 0.001, two-tailed Mann-Whitney-Wilcoxon test). Thus, the

retuned controller attenuated disturbances over a wider bandwidth than had it not been retuned.



These findings indicate that the retuning of fish controllers significantly reduced sensitivity to distur-

bances. This enhancement became more pronounced with ever-increasing augmented feedback gains, as

the difference between the observed and simulated Bode integral decreased with increased gain k (p < 0.05,

correlation coefficient ρ(3) = −0.94 for the mean across seven fish in five feedback periods).

Advantage (iii): retuned controller improved phase margin

We examined how changes in the fish’s sensorimotor controller affected closed-loop stability robustness, i.e.

the ability of a system to maintain stability despite changes in internal system parameters. Similar to

our previous analyses, we used the fish’s baseline frequency response—before the destabilizing augmented

feedback was introduced—to mathematically predict closed-loop performance, and compared this baseline

prediction to the observed retuned control system. We observed that fish maintained or improved measures

of stability robustness compared to what would be expected if the fish had not retuned their controller.

To quantify stability robustness, we used two concepts from control theory, namely, the Gain Margin and

Phase Margin which provide measures of how much a system can be perturbed before it becomes unstable.

Under technical assumptions (see Methods), the Gain Margin (GM) measures how close the gain of the

loop function is to unity gain (0 dB) at the frequency where the phase of the loop function crosses −180○.

Likewise, the Phase Margin (PM) measures how much the phase of the loop function is above −180○ at the

frequencies where the gain crosses 0 dB (see Figure 6A). Here, the loop function L = CP (1 −DH) includes

the fish’s own controller and plant, C(s) and P (s), the setup delay in the forward loop D(s), as well as the

augmented high-pass filter feedback, H(s).

For the sensorimotor dynamics considered here, these measures of robustness are simple and intuitive:

if at any frequency the loop function L reaches the −1 point, then at that frequency the sensory slip e(t)

experiences positive feedback due to the negative sign in the reafferent loop (Figure 1B), rendering the system

unstable. Further, the −1 point has unity gain (0 dB) and −180○ phase. Therfore, when L gets close to the

−1 point, small changes in the sensorimotor dynamics could push the system into instability. In this way

the gain margin and phase margin are measures of stability robustness, i.e., measures of the safety margin

between the observed loop function and the −1 point.

If the fish were to have maintained its baseline performance, the PM would have decreased substantially

as we increased the augmented feedback gain k (Figure 6B). Note that this predicted PM demonstrates

that the augmented feedback achieved the goal of destabilizing the system, i.e. driving down the PM. The

difference between observed PM and predicted PM was significantly above 0○ for all augmented feedback

gains (p < 0.05, paired-sample t test; Figure 6C; Table S5). Moreover, as the augmented feedback gain k



increased, the difference between observed PM and predicted PM increased (p < 0.01, correlation coefficient

ρ(3) = 0.97 for the mean across seven fish in five feedback periods). Notably, the improvement in PM for

k = 1.1 was around 50○, indicating that the retuning seen in Figure 2D–F led to a substantial improvement in

phase margin. Note that the statistical results for PM did not include data from one fish in feedback period

k = 0.8 and a different fish in period k = 1.0 because both of their observed loop functions did not cross 0 dB.

Nevertheless, these excluded data also support our finding (i.e., infinite observed PM versus finite predicted

PM). In summary, fish improved their PM compared to prediction.

For the GM, as the augmented high-pass feedback gain k was increased, the mean difference between

observed and predicted GM across seven fish remained near 0 dB (Figure 6D). At two gains (0.3 and 0.6),

the retuned controller decreased GM when outliers were removed (before removing outliers: p < 0.01 for

k = 0.3, p > 0.2 for remaining periods, paired-sample t test; after removing outliers: p < 0.01 for k = 0.3,

p < 0.001 for k = 0.6, p > 0.2 for remaining periods, paired-sample t test; Table S6). There was no significant

trend as a function of k (p = 0.583, ρ(3) = −0.33 before removing outliers and p = 0.818, ρ(3) = −0.14 after

removing outliers).

In sum, the fish’s retuned closed-loop system was robust with respect to augmented feedback, which was

designed to drive the closed-loop system toward instability. These results indicate that the retuned controller

maintained GM and substantially improved PM, two common measures of stability robustness.

Discussion

We examined how weakly electric fish changed their refuge tracking behavior in response to an innovative

experimental paradigm—the gradual introduction of destabilizing dynamics via the application of high-

pass-filtered augmented feedback. The changes in behavior reflected a retuning of the control system for

refuge tracking. We discovered that this retuning improved tracking performance, reduced sensitivity to

disturbances, and improved phase margin. The effects of the retuning of the control system persisted after

the destabilizing dynamics were removed, returning to baseline during a washout period. Interestingly, the

time course of the return to baseline performance differed between the gain and phase of the sensorimotor

transform.

This difference in the time course of return of gain and phase to baseline may be related to stability.

To understand the effects of the different rates of return to baseline of gain (faster) and phase (slower) on

closed-loop performance during the aftereffect period, it is helpful to consider the following counterfactual:

what if the return to baseline did not occur? In other words, what if the controller that had been retuned in

response to exposure to the augmented feedback at k = 1.1 did not return to baseline after the experiment?



In this case, our calculations (not presented) indicate that the increased gain that resulted from retuning

would have had substantial impacts on stability margins via a reduction of both the gain and phase margins

during the aftereffect period compared to the baseline controller. In other words, the retuned controller was

not well suited for the veridical condition.

This potentially destabilizing effect may be the reason for the relatively short timescale for the return

of sensorimotor gain back to baseline. However, based on our calculations for this counterfactual exercise,

the decreased phase lag that resulted from retuning would not have had a substantial impact on stability

margins, creating less impetus for rapid de-adaptation of phase back to baseline. This finding is reminiscent

of sensory reweighting in human postural control. Postural response gain decreases as stimulus switched to

a higher amplitude, but phase of the response remained roughly constant.42

Neural substrates for retuning feedback control systems

The retuning of the controller for refuge tracking in Eigenmannia may be mediated, at least in part, by

plasticity in cerebellum-like circuits.43–46 Pairing of stimuli such as tail bending and electrosensory signals

results in compensatory retuning of neurophysiological activity.45 If pairing initially leads to an increase in

firing, that firing may decrease as the pairing is repeated over periods of tens of seconds to minutes. Release

of the pairing, in this example, results in a reduction in firing, known as a ‘negative image’.45 This negative

image washes out over roughly the same time course as the initial retuning.

Such retuning has also been observed in cerebellar neurons that respond to moving objects.43 These

cerebellar neurons and other midbrain neurons exhibit direction-selective responses to moving objects.45,47–52

Such direction-selective and other movement-sensitive neurons53 may contribute to locomotor control used

in the refuge tracking task, and may be functionally linked to cerebellar retuning via the pretectum.54

Interestingly, experimental manipulation of the spectrum of background electrosensory noise results in

a retuning of cerebellum-like55 neurons in the ELL, a hindbrain electrosensory nucleus in Gymnotiform

fishes.46 Specifically, the frequency tuning curves of neurons shift to maintain a ‘whitened’ neurophysiological

encoding across the behaviorally relevant spectrum.56 These changes are mediated by a feedback pathway

that also contributes to the perception of moving electrosensory stimuli.57 While speculative, the mechanisms

underlying such retuning of the frequency responses of individual neurons may contribute to the frequency

shift in the sensorimotor transform caused by the high-pass filtered augmented feedback in this study.

In larval zebrafish (Danio rerio), several neural populations may contribute to adaptation of motor

systems to experimental manipulations of reafferent signals.58–60 Zebrafish have an internal representation

of the anticipated visual feedback for a given motor output—differences between the anticipated and actual



feedback are error signals.59 Zebrafish can use these error signals to adapt motor responses to changes in

visual feedback. The activity of neurons recorded using two-photon calcium imaging in immobilized larval

zebrafish suggest retuning occurs in widespread neural populations, including populations in the inferior

olive and cerebellum.58 Lesions of the inferior olive reduced the ability of zebrafish to adapt their motor

output to experimentally induced changes in feedback gain.58

The retuning of sensorimotor control circuits is also found in humans. Retuning can be seen, for example,

in visuomotor tasks where participants reach towards a target.10 Experimental rotations of visual feedback

leads to a retuning of reaching dynamics. This retuning persists after the removal of the experimental

manipulation,10 which we also observed in Eigenmannia. A similar effect can be seen in experiments in

which feedback during walking was manipulated using a split-belt treadmill.61 In both of these examples,

the time course of retuning is consistant with measures of cerebellar mechanisms. The effects of lesions to

cerebellar circuits in humans provides further evidence of the cerebellum’s role in sensorimotor retuning, as

such lesions result in impaired sensorimotor control adaptation.62,63

These neurophysiological and behavioral reports across species suggest that the sensorimotor retuning

we observed in response to destabilizing reafferent dynamics are mediated at least in part by cerebellar or

cerebellum-like circuits. Future neurophysiological and lesion studies of the ELL, cerebellum, and midbrain

in Eigenmannia may reveal how retuning of sensorimotor gains in neural circuits leads to improvements in

robustness.

Species differences in adaptation to altered feedback

In contrast to our findings in electric fish, fruit flies Drosophila melanogaster do not appear to adapt their

optomotor response to changes in augmented feedback gain of wide-field stimuli.29 A possible mechanism for

this difference is that smooth pursuit object tracking (as in our study) and wide-field optic flow stabilization

are mediated by fundamentally different learning and control mechanisms.64–66 However, Drosophila may

be able to adapt to gain reversals during object fixation.28

In humans and other vertebrates, visuomotor behavior readily adapts to a changing gain applied to

wide-field optic flow stimuli, such as the gain adaptation and recalibration of the vestibulo-ocular reflex

(VOR).67–70 Moreover, it has been shown that modifying the gain between self motion and optic flow cues

induces plasticity in path integration.71,72 Such wide-field gain adaptation, readily elicited in vertebrate

species but not in Drosophila, may be related to adaptive control mechanisms in vertebrate nervous systems

manifest in the cerebellum or cerebellum-like structures.10



Neural and mechanical contributions to robust performance

Robustness describes how well a system achieves stability and convergence despite external perturbations17

or changes in internal parameters.18 Retuning of control in response to novel dynamics is one mechanism

to achieve such robust performance. We showed that Eigenmannia retune their control systems, and in so

doing, increase phase margin and reduce sensitivity to low-frequency disturbances under augmented feedback.

The maintenance of a robust phase margin, as we show here, is ecologically relevant because phase lag in

sensory systems can depend greatly on environmental features such as illumination73 or conductivity22,74

that can affect sensorimotor delay.73 Likewise, maintenance of robustness to mechanical disturbances enables

hawkmoths readily track moving flowers during feeding despite experiencing perturbations in the form of

vortices shed from flowers,75 and humans to robustly reject mechanical disturbances during reaching.76

However, in closed-loop neuromechanical systems, robustness is not solely the purview of the nervous

system. Indeed, failure to account for the dynamics of the musculoskeletal plant can lead to erroneous

conclusions about neural control.18,77,78 Stability and robust performance18,20,79–82 result from the interplay

between the mechanical and neural systems.77 For example, mutually opposing forces produced by the ribbon

fin of Eigenmannia enhance both stability and maneuverability, simplifying neural control.27 Similarly, flies

with damaged wings increase their damping coefficients to maintain stability during yaw gaze stabilization.9

The flies achieve this through a decrease of closed-loop gain in the coupled system comprising body dynamics

and neural control.
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Figure 1. Experimental protocol and stimulus design.
(A) Schematic of the augmented, destabilizing feedback system. The longitudinal fish position, y(t), was
measured in real time using a custom video tracking system and processed through a high-pass filter, H(s)
with gain k and cut-off frequency fc = 0.16 Hz, where s is the complex frequency domain parameter. The
high-pass-filtered position, yf(t), was then added to a pseudo-random (sum-of-sines) reference signal r(t),
and fed to the refuge, i.e., s(t) = yf(t) + r(t), creating an augmented reafferent loop.
(B) Block diagram of the closed-loop system depicted in (A). The augmented, high-pass filtered feedback
loop is closed around the fish sensorimotor system (black dotted box). The fish senses the difference between
the longitudinal refuge position s(t), and its own reafferent feedback y(t). This difference e(t) (“sensory
slip”21) is then processed by the nervous system, C(s), and swimming dynamics, P (s).
(C) Protocol: Experiments started from an experimental open-loop baseline period (k = 0), followed by a
closed-loop period in which we incrementally increased the gain k of the high-pass filtered augmented feedback
from 0.3 to 1.1 over a period of about 33 minutes. Finally, we extinguished the augmented feedback (k = 0)
to test for aftereffects. The sensorimotor controller was tested at five time intervals during the aftereffect
period: 0 to 5 minutes, 5 to 10 minutes, 10 to 15 minutes, 15 to 21 minutes, and the next day.

Figure 2. Fish retuned their controller dynamics in response to destabilizing feedback.
(A-C) From top row to bottom row: fish velocity ẏ(t), refuge velocity ṡ(t), and reference velocity ṙ(t) in
time domain in (A) veridical baseline, (B) closed-loop k = 0.8, and (C) closed-loop k = 1.1. The thick lines
are the mean and thin lines are individual trials. We observed that as the gain in augmented high-pass
feedback increased, both fish and refuge had higher velocity magnitude (see Figure S1 for position data).
(D) Frequency response of a representative fish. As the feedback gain was increased, the gain of the frequency
response function also increased (especially around 1.15 Hz) and the phase lag decreased (most strikingly at
frequencies around 0.65 Hz).
(E-F) (E) Gain of fish frequency response functions at 1.15 Hz and (F) phase at 0.65 Hz as a function of
feedback gain k (seven fish for most points, except for k = 1.1 where two fish were excluded due to poor
data quality). Linear functions (blue lines) were fitted to the mean gains (pink dots) in logarithmic scale at
1.15 Hz, and mean phases (pink dots) in linear scale at 0.65 Hz across all individual fish (gray curve). Six
out of seven fish exhibited significant (p < 0.05) positive correlations between high-pass gain k and common
logarithm (log10) of gain at 1.15 Hz (ρ(3) = 0.93 for one fish, ρ(4) > 0.91 for the other five fish) or phase at
0.65 Hz (ρ(3) = 0.92 for one fish, ρ(4) > 0.86 for the other five fish); one fish (red line) exhibited positive, but
non-significant correlations for both gain (ρ(3) = 0.76, p > 0.1) and phase (ρ(3) = 0.80, p > 0.1). Statistical
details are in Table S1.



Figure 3. Fish temporarily retained learned controller during an aftereffect period.
(A) Mean frequency response gain from an example fish for the baseline (pre-learning) and five time periods
after the augmented feedback was removed (aftereffect). The gain of the frequency response remained
elevated immediately after the augmented feedback was removed (0 to 5 min), washing out within about
10 min. Changes in the phase of the frequency response during aftereffect period are in Figure S2.
(B) Gain Ratio for six fish (black) and their mean (pink dots). Gain Ratio was calculated as the mean
fish frequency response gain divided by baseline mean frequency response gain at 1.15 Hz. Time windows
include the augmented feedback k = 1.1 period, four non-overlapping windows after the augmented feedback
was removed, and the next day. The gain in the first 5 min after the removal of the augmented feedback was
significantly lower than that in k = 1.1 (p < 0.05, two-sided sign test) but remained higher than baseline (p <
0.01, paired-sample t-test in dB; Table S2), indicating retention of the learned controller. The gain in the
subsequent periods were not significantly higher than baseline (p > 0.1, paired-sample t-test in dB; Table S2).
(C) Comparison of velocity tracking error ė(t) = ṡ(t) − ẏ(t) in baseline (pink, veridical) and first 8 sec of
aftereffect (blue, also veridical but after learning) from a single fish. Shaded region indicates standard
deviation. During the first 8 sec after the removal of the augmented reafferent feedback, the amplitude of
velocity tracking error was greater than that in baseline most of the time, reflecting the temporary retention
of the controller obtained during learning.
(D) Filtered velocity tracking errors in baseline and first 8 sec of aftereffect from the fish in (C). The filter
used was a second-order bandpass Butterworth zero-phase distortion filter (pass band: 0.7 Hz to 1.3 Hz,
grey shaded region in (A)). Filtering to this frequency band clearly illustrates that during the first 8 sec of
aftereffect, fish exhibited higher amplitude velocity tracking errors and substantial phase lead compared to
baseline.



Figure 4. Retuned controller improved tracking performance.
(A) Simulated velocity tracking error (prediction, purple) during the k = 1.1 period using the baseline
controller of one fish and the observed velocity tracking error from the same fish during that period (observed,
pink). The observed tracking error was generally lower in amplitude than the prediction made using the
baseline controller, most notably as a result of large spikes in the predicted error.
(B) Scatter plot showing the simulated and observed root-mean-square (RMS) velocity tracking error for
each feedback gain, for seven fish. A total of 29 of 33 points from all seven fish are located above the identity
line, showing that the retuned controller decreased RMS velocity tracking error (p < 0.001, two-tailed Mann-
Whitney-Wilcoxon test).
(C) The predicted normalized error ∣E(jω)/R(jω)∣ was computed by assuming that the fish did not retune
their baseline controller as the feedback gain was increased; R(jω) and E(jω) are the frequency domain
reference signal r(t) and sensory slip e(t), respectively. As can be seen for a representative fish (top), when
the high-pass gain k increased, the predicted normalized error increased substantially below about 0.6 Hz,
and decreased slightly for higher frequencies. In contrast, the observed error below about 0.6 Hz measured
for the same fish (bottom) was substantially lower than predicted error in that frequency range, as the
retuned controller largely mitigated the effects of the destabilizing feedback.
(D) Scatter plot showing the predicted and observed averaged frequency response error, integrated across
the frequency range 0.1 − 2.05 Hz, for each feedback gain, for seven fish. A total of 32 of 33 points from
across all fish are located above the identity line, showing that the retuned controller decreased normalized
tracking error over predicted normalized tracking error (p < 0.001, two-tailed Mann-Whitney-Wilcoxon test).



Figure 5. Tuned controller reduced sensitivity to disturbance.
(A) Predicted (based on baseline controller) and observed (based on fish’s retuned controller) Bode sensitivity
functions for k = 1.1, from one representative fish. The natural logarithmic magnitude of observed Bode
sensitivity function has a larger negative region than predicted (See Figure S3 for larger frequency range).
(B) For each individual fish, and at each gain k, we computed the difference between the observed and
predicted Bode sensitivity integrals over the frequency range 0.1 − 2.05 Hz (0.2π–4.1π rad/sec). Box and
Whisker plots of these values are shown for all seven fish for k = 0.3 − 1.0, five fish for k = 1.1. The mean
value across all fish was < 0 for each gain (p < 0.05 for k = 0.3, p < 0.01 for the remaining gains, paired-sample
t test for observed vs. predicted Bode sensitivity integral). Statistical details are in Table S4.
(C) Scatter plot showing the predicted and observed sensitivity crossover frequency for each feedback gain,
for seven fish. Note that here we report only the frequency at which natural logarithm of sensitivity function
magnitude ln ∣S(jω)∣ crosses 0 for the first time. A total of 28 of 32 points are located below the identity
line, showing that the retuned controller increased sensitivity crossover frequency over predicted sensitivity
crossover frequency for all seven fish, and for nearly all gains (28 of 32) (p ≈ 0.001, two-tailed Mann-Whitney-
Wilcoxon test).



Figure 6. Tuned controller improved phase margin and maintained gain margin, measures of
stability robustness.
(A) Illustration of the Gain Margin (GM) and Phase Margin (PM) with raw data (black circles) and fitted
model (green line) from one fish in k = 0.8 period. We used fitted models (see Methods) when computing the
GM and PM because the exact gain and phase cross-over frequencies must be interpolated or extrapolated
from the raw data, as shown.
(B) Predicted PM in k = 0 (baseline) and all five closed-loop periods from seven fish, computed from
the model. As feedback gain increased, the predicted PM dropped, showing that the experimental design
destabilized the closed-loop system as expected.
(C) Box plot of the difference between observed and predicted PM as a function of feedback gain k for seven
fish (computed from model). The difference is significantly greater than 0○ in all feedback periods (p < 0.05,
paired-sample t test; Table S5), indicating that the retuned controller enhanced PM. Note that two data
points (fish 1, k = 0.8 and fish 4, k = 1.0) were excluded from the statistical analysis, because they had
infinite observed PM (loop function gain never crossed 0 dB) despite a finite predicted PM.
(D) Box plot of the difference between observed and predicted GM as a function of feedback gain k for
seven fish (computed from model); a value > 0 dB (or < 0 dB) implies the retuned controller increased (or
decreased, respectively) GM. The difference is not consistently above or below 0 dB as a function of feedback
gain k (Table S6), and there is no significant correlation (p > 0.1) between high-pass gain k and the difference
between observed and predicted GM averaged across seven fish. Therefore, the retuned controller did not
significantly enhance GM.
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Lead Contact

Further information and requests for data/protocols should be directed to and will be fulfilled by the Lead

Contact, Noah J. Cowan (ncowan@jhu.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The archived version of datasets and the analysis code supporting this article are available through the Johns

Hopkins University Data Archive with the following DOI: https://doi.org/10.7281/T1/F5PD42.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

Adult weakly electric glass knifefish Eigenmannia virescens (length: 10–15 cm) were obtained from com-

mercial vendors and housed following published guidelines.83 Temperature and conductivity of the water in

the experimental aquarium were kept at 76○F–80○F and 10 µS/cm–150 µS/cm, respectively. All fish were

transferred to the experimental aquarium 12–24 hours before the start of the experiments. The experiments

were conducted under an illuminance level of approximately 80 lux. Experimental procedures were approved

by the Johns Hopkins Animal Care and Use Committee and followed guidelines established by the National

Research Council and the Society for Neuroscience.

METHOD DETAILS

Experimental Apparatus

The experimental apparatus was similar to that used by Biswas et al. (2018).21 This system measured the

position of the fish within a moving refuge in real-time. The measurement of fish position was available

for the control of the movement of the refuge, allowing adjustment of refuge movement in relation to fish

behavior. The movement of the shuttle was determined by two signals: (i) a high-pass filtered measurement
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of the velocity of the fish, and (ii) a static sum-of-sines velocity signal.34 We refer to this high-pass-filtered

feedback as “augmented reafferent feedback.”

Innovations in Augmented Reafferent Feedback

To facilitate the experimental investigation of the learning process, we used a high-pass filter for the aug-

mented feedback. The high-pass filtered feedback, unlike a simple static gain, enables the graceful, parametric

destabilization of the closed-loop system. To understand this distinction, consider the k = 1.0 case. For static

feedback (i.e., a pure gain with no high-pass filter), k = 1.0 cancels the veridical reafferent feedback leading to

a singularity: the refuge would track the fish in 1-to-1 fashion, making it impossible for the fish to volitionally

swim to a desired location within the refuge and therefore making it physically impossible for any retuning

of the controller to stabilize the system.

In this augmented environment, a static gain of k > 1 is analogous to a mirror reversal in virtual visuo-

motor tasks, since, as the fish swims forward relative to the tank, the refuge moves forward even more, so

that the sign of the error signal is reversed (i.e. the fish ends up further back within the refuge, even though

it swam forward in this hypothetical scenario). Thus, experimentally transitioning from stable augmented

feedback k < 1 to destabilizing mirror reversal k > 1 would require discretely jumping over the inescapable

singularity at k = 1, thereby introducing dramatic and abrupt changes in stability.

The key innovation of the high-pass filter approach is that it does not alter the low-frequency dynamics

(i.e., below the filter cut-off frequency), yet still can reverse the sign of the high-frequency feedback (i.e., above

the filter cut-off frequency), destabilizing the system as the gain increases—but with no singularity. This is

seen in our experiments in which we gracefully transition to high-frequency mirror reversal, incrementally

increasing the gain from k = 0 to k = 1.1, gradually reversing the sign of high-frequency error feedback while

leaving low-frequency feedback unchanged.

Experimental Protocol

Our intention was to drive the entire closed-loop system towards instability by increasing the gain of the

augmented feedback. We examined the sensorimotor transform that fish used to maintain their position with

the refuge before (“baseline”), during the augmented feedback period of increasing gain (“closed-loop”), and

after the augmented feedback period (“aftereffect”). Both “baseline” and “aftereffect” periods were open-loop

(no high-pass-filter feedback); the “closed-loop” period had the high-pass-filter feedback.

During the baseline period, we conducted five 60 sec stimulus–response trials, with a 20 sec “rest” period

between each trial. The input stimulus during each trial comprised a 10 sec ramp-up, 40 sec of sum-of-sines



inputs, and 10 sec ramp-down (see Figure S1A), described in detail below in relation to Eqn. (2). Rest

periods had zero movement instead of the sum-of-sines stimulus (r(t) = 0).

In the closed-loop period, there was a first order high-pass filter in the augmented feedback loop. The

high-pass filter gain k was increased incrementally: from 0.3, 0.6, 0.8, and 1.0, to 1.1 (Figure 1C). The

upper limit of k = 1.1 was chosen based on preliminary analysis34 that indicated gains above approximately

1.3 would completely destabilize the baseline controller. Preliminary attempts to approach this gain led to

frequent transient movements of the refuge that hit travel limits of the apparatus.34 For this reason, we set

the upper limit to k = 1.1 as a balance between driving the system toward instability while respecting the

practical constraints of the experimental apparatus.

In each feedback period (k = 0.3,0.6,0.8,1.0,1.1), there were five trials (60 sec each) with four rest periods

(20 sec each, r(t) = 0)) in between. Critically, the augmented feedback remained enabled during these rest

periods. There were also 20 sec rest periods connecting the last trial of each feedback period to the first trial

in the next feedback period. During these inter-trial rest periods, the feedback gain was linearly increased

as a function of time from the last value of k to the next value (so that the gain changed gradually, rather

than abruptly). During all rest periods, no pre-defined reference inputs were used, i.e., r(t) = 0.

At the start of the aftereffect period, the augmented feedback was abruptly extinguished (k = 0). Afteref-

fects were measured during five non-overlapping time intervals after the closed-loop augmented feedback was

extinguished: “0 to 5 min,” “5 to 10 min,” “10 to 15 min,” “15 to 21 min,” and “next day.” The input stimulus

and the duration of rest periods were the same as those in baseline period. Three trials were conducted for

each subsequent 5 min period and five trials were conducted for the 15 to 21 min and next day after periods.

The pre-designed reference stimulus signal had three periods: “ramp-up,” “sum-of-sines,” and “ramp-

down,” as illustrated in Figure S1A. In ramp-up and ramp-down periods, the designed signal oscillated at

0.45 Hz with modulated amplitude, and was added to the modulated sum-of-sines signal (Figure S1A). The

sum of 12 single sinusoidal functions, r1(t), is given (in centimeters) as follows:

r1(t) = 0.8
12

∑
i=1

1

2π0.05ki
⋅ cos(2π0.05kit +Φi). (2)

Here, ki = 2,3,5,7,11,13,19,23,29,31,37,41 are prime numbers and the phase of each single sine compo-

nent Φi is randomized. This function creates a pseudo-random, unpredictable stimulus, suitable for system

identification.26



Online and Offline Tracking

The refuge position and fish position were both measured in real time by a template matching tracker in

LabVIEW,21 with a sampling rate of 25 frames per sec. We also performed offline tracking of fish and refuge

motion using the tracking software DeepLabCut.84

System Identification

After obtaining the refuge and fish position in the time domain, we performed system identification with seven

fish. The system identification procedure was similar to Yang (2020).85 For each of the three experimental

periods (baseline, closed-loop, and aftereffect), we processed the middle 40 sec sum-of-sines part of each

trial and divided it into two halves to double the replicates of data (since the stimulus was designed to

repeat every 20 sec). We then took the mean of each batch of 20 sec input and output position data in each

period (baseline, five feedback periods in closed-loop period, and five time intervals in aftereffect period)

and transformed the mean positon data into the frequency domain using discrete Fourier transforms (DFT).

We then used an empirical transfer function estimate (ETFE) to estimate the Frequency Response Function

(FRF) for each period.

Note that for two fish (fish 1 and 4), due to data quality of baseline trials and the similarity of trials in

baseline and next day after, we combined the time domain data in these periods to estimate the baseline

FRF. Trials with tracking loss were discarded. Data from two fish (fish 2 and 3) were excluded for k = 1.1

due to tracking loss by the control system during the experiment.

Observed and Simulated Velocity Tracking Error

The velocity tracking error ė(t) is defined as the difference of refuge velocity ṡ(t) and fish velocity ẏ(t),

i.e., ė(t) = ṡ(t) − ẏ(t). The refuge and fish velocities were computed using the backward difference of the

position time series data and filtered through a second-order Butterworth zero-phase distortion filter using

the MATLAB filtfilt command with 5 Hz cutoff. To examine how the retuned controllers affected fish

tracking performance, we simulated the velocity tracking error in each augmented feedback period using each

fish’s baseline controller under the assumption that fish did not retune their controllers under augmented

feedback, and compared the simulated velocity tracking error with experimental data.

We followed the following steps to simulate the velocity tracking error in each augmented feedback period.

Step 1: We computed the FRFs from the reference sum of sines signal r(t) to the sensory slip e(t) in each



augmented feedback period from control theory:

E(jω)
R(jω) =

D(jω)
1 +C(jω)P (jω) −C(jω)P (jω)D(jω)H(jω) , (3)

where j =
√
−1, ω is the frequency in rad/sec,

H(jω) = kjω

jω + 1 (4)

is a first order high-pass filter in augmented reafferent feedback, D(jω) is a delay caused by experimental

apparatus latencies (Figure S4), and C(jω) and P (jω) are the FRF of the fish controller and plant, respec-

tively (Figure 1B and Figure S4). All terms on right hand side of Eqn. (3) were either known or could be

estimated: we knew the designed augmented reafferent feedback H(jω); we estimated D(jω) from online

to offline refuge position via ETFE; the multiplication of FRF of C(jω) and P (jω) was computed from the

estimated fish’s FRFs by opening the fish’s veridical reafferent feedback loop.

Step 2: We reconstructed the simulated sensory slip esim(t) by following equation:

esim(t) = 0.8
12

∑
i=1

∣E(jωi)
R(jωi)

∣ ⋅ 1
ωi
⋅ cos(ωit +Φi +∠

E(jωi)
R(jωi)

). (5)

where, ωi = 2π × 0.05 × [2,3,5,7,11,13,19,23,29,31,37,41], Φi is the randomized phase of each single sine

component in the reference signal r(t), ∣E(jωi)/R(jωi)∣ and ∠E(jωi)/R(jωi) are the amplitude and phase

of the complex number E(jωi)/R(jωi).

Step 3: Finally, to mimic the way we processed position real data to obtain velocity data, we computed the

simulated velocity tracking error ėsim(t) using backward differences of esim(t), filtered through a second-order

Butterworth zero-phase distortion filter using MATLAB filtfilt command with 5 Hz cutoff frequency.

Normalized Error and Averaged Frequency Response Error

To evaluate fish tracking performance, the normalized frequency domain error was computed in each aug-

mented feedback period by taking the magnitude of the ratio of the mean sensory slip E(jω) to reference

signal R(jω) (at frequency components contained by the reference signal). The frequency domain sensory

slip E(jω) and the reference signal R(jω) were computed using the DFT. The sensory slip was calculated

(in the time domain) as e(t) = s(t) − y(t).

From each fish’s baseline controller, we predicted the normalized error that would have occurred during

a feedback period (assuming the fish had not retuned its controller), and compared that predicted error with

the normalized error measured from experimental data (where the fish had ample opportunity to retune its



controller). To quantify the impacts of the retuned controller on tracking error across the frequency range

0.1 − 2.05 Hz, we estimated the integral of the normalized error using trapezoidal integration, and divided

this integral by the frequency range to obtain the averaged frequency response error. Note that although

in Figure 4A the x and y axes are both shown using a logarithmic scale, we computed the intergal of the

normalized error using a linear scale.

Stability Robustness Analysis

The two margins of stability, gain margin (GM) and phase margin (PM), reflect the stability robustness of

the closed-loop system. When the margins of stability decrease, the system becomes less robust. To compute

stability margin, one must compute the loop function

L(s) = C(s)P (s) −C(s)P (s)D(s)H(s), (6)

where s = jω, j =
√
−1, H(s) is the first order high-pass filter in augmented reafferent feedback, and D(s)

is the setup delay in the forward loop. The multiplication of transfer function of controller, i.e., C(s), and

that of plant, i.e., P (s), could be computed from the estimated fish’s FRFs by opening the fish’s reafferent

feedback loop. The transfer function in the augmented feedback was known, so the loop function was then

computed, and another array of complex numbers was obtained.

The system becomes unstable if L(jω) = −1 (i.e., 0 dB with phase −180○). So, the GM was computed

as 0 minus the gain (in dB) at the phase cross-over frequency (the frequency at which the phase of L(jω)

crosses −180○). Likewise, the PM was calculated by computing the phase at the gain cross-over frequency

(the frequency at which ∣L(jω)∣ crosses 0 dB), and subtracting −180○. These computations make certain

technical assumptions on L that are satisfied by a wide range of systems. For example, we must assume that

the Nyquist stability criterion for L requires that L(jω) must have no encirclements of the −1 point on the

complex plane, an assumption that is consistent with our fitted models.

A key question was to determine how the modified controller during closed-loop experiments impacted

the stability robustness of the closed-loop system. To address this, we compared the observed GMs and PMs

from the fish loop function at each feedback period with predicted gain and phase margins.

Bode Sensitivity Integral

The sensitivity function is defined as follows:

S(s) = 1

1 +L(s) , (7)



where s = jω, j =
√
−1 and L(s) is the loop function defined above. Thus, we could directly compute the

sensitivity function from the loop function. Plugging in (6) to (7) yields S = 1/(1 +CP −CPDH).

To calculate the Bode sensitivity integral over the frequency range 0.2π−4.1π rad/sec, we used trapezoidal

integration of Eqn. (1) (Figure 5A).

The Bode integral condition in (1) assumes that the loop function L satisfies two conditions: 1) has no

unstable poles (a pole at s = 0 is allowed), and 2) has at least two more poles than zeros. The electric fish

plant dynamics P (s) have been modeled using physics27 and system identification18 as a relative-degree 2,

second-order transfer function with no zeros, a pole at 0, and a pole in the open left-half-plane. Assuming

the fish controller C(s) is causal and stable, and thus is proper, then one can show that the loop function

L = CP −CPDH satisfies the two conditions above for the Bode sensitivity integral to be 0.

Model Fitting

The calculation of PM and GM is the only analysis in the paper that involved model fitting. This is because

the exact gain and phase cross-over frequencies must be interpolated or extrapolated from the data, and we

used fitted models. We fitted the fish controller and plant cascade, C(s)P (s), with a second order model

(relative degree one: 2 poles, 1 zero with delay),

C(s)P (s)model1 =
k1s + k2

s2 + k3s + k4
e−τds, (8)

and a third order model (relative degree two: three poles, 1 zero with delay)

C(s)P (s)model2 =
k1s + k2

s3 + k3s2 + k4s + k5
e−τds. (9)

Note that parameters of these two models were fitted independently. Both models fitted the C(s)P (s) data

well. The third order model fitted the data slightly better than the second order model as expected (because

the former contained one additional parameter); however, the third order model was prone to overfitting.

Therefore, for the purpose of analysis, we used the simpler second order model in Eqn. (8).

To select the best fit model, we followed three steps.

Step 1: Define the fitting error.

The frequency response of each feedback period was represented as a vector of 12 complex numbers:

Graw = [m1 + jn1,m2 + jn2, . . . ,m12 + jn12], (10)

one for each frequencies that was contained in the reference sum-of-sines stimulus,26,86 where j =
√
−1.



Similarly, we obtained frequency response functions at these 12 frequencies directly from the fitted model

with s = jω, noted as:

Gmodeled = [p1 + jq1, p2 + jq2, . . . , p12 + jq12]. (11)

The fitting error is defined as the mean-squared error between Graw and Gmodeled, i.e.,

Fitting Error = 1

12
∥Graw −Gmodeled∥2 , (12)

where ∥⋅∥ is the 2-norm of vector.

Step 2: Use MATLAB function to obtain sets of optimal parameters in candidate model that

minimize the fitting error corresponding to different initial conditions.

As an example, the second order model (relative degree one: 2 poles, 1 zero with delay) has five pa-

rameters: k1, k2, k3, k4, and τd. We randomly generated 500 sets of initial values for each of those five

parameters. Then we used MATLAB function fminseasrch to find 500 sets of optimal parameters [k1, k2,

k3, k4, τd] that made the fitting error reach the local minimum from each initial condition.

Step 3: Select the least fitting error among sets of optimal parameters.

Finally, we selected a set of parameters, among all 500 sets of optimal parameters corresponding to each

initial condition, that gave the least fitting error.

Setup Delay Analysis

The latencies in the experimental setup can impact the accuracy of estimated fish’s FRF in system identifi-

cation, and this needs to be taken into consideration when analyzing our data. In our system, the delay was

mainly the latencies between reading the reference files from the PC and trigger of the linear actuator to con-

trol the refuge movement. There were only negligible delays caused by other factors such as asynchronously

saving the videos and tracking files, and the augmented feedback processing delay from FPGA.

Delay is modeled by the transfer function e−τs, where τ is the delay. Here we denote the system delay

as D(s). To generate the offline refuge movement data, we processed recorded experimental videos with the

tracking software DeepLabCut,84 and estimated the delay in the frequency domain by taking the ratio of

the Fourier domain offline refuge trajectories, to the Fourier domain online refuge trajectories saved from

the experimental setup.



QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical analysis was performed in MATLAB (Mathworks, Natick, Massachusetts, USA). Specif-

ically, we used function corrcoef to test correlation coefficients of data points. We used function ttest

to perform paired-sample t-test, used function signtest to perform two-sided sign test, and used function

mwwtest87 for the two tailed Mann-Whitney-Wilcoxon (MWW) test. For all tests, the significance level

was 0.05.
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Figure S1. Reference signal design and position data in different experimental periods, related
to Figure 2.
(A) Pre-designed reference signal r(t). In each 60 sec trial, the first and last 10 sec were ramp-up and
ramp-down periods, in which the pre-designed signal oscillated at 0.45 Hz with modulation (upper part) and
was added to modulated sum of sines signal (lower part). The 10 − 50 sec was the sum-of-sines period, in
which the designed signal followed summation of sinusoids in Eq (2). Details are in STAR Methods.
(B-D) From top row to bottom row: Fish position y(t), refuge position s(t), and reference position r(t) in
time domain in (B) open-loop baseline, (C) closed-loop k = 0.8, and (D) closed-loop k = 1.1 periods. The
thick lines are the average and thin lines are individual trials. We observed that as the gain in augmented
high-pass feedback increased, both fish and refuge had higher position magnitude.
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Figure S2. Fish also temporarily retained learned frequency response phase during an after-
effect period, related to Figure 3.
(A) Averaged fish frequency response phase from periods: baseline, 0 to 5 min, 5 to 10 min, 10 to 15 min,
15 to 21 min, and next day after the end of closed-loop experiments from online tracking data for one fish.
The frequency response phase of the mean over the 0 to 5 min after period remained elevated until 21 min,
but washed out on the next day.
(B) Phase Difference: mean frequency response phase at 0.65 Hz in baseline period subtracted from mean
fish frequency response phase at 0.65 Hz in late learning (k = 1.1) and five periods after the augmented gain
was extinguished for six fish. The black solid lines are for individual fish, while pink dots are mean of these
solid lines across fish. All fish partially retained their phase at 0.65 Hz because phase difference in 0 to 5
min after period was significantly lower than that in k = 1.1 (p < 0.05, two-sided sign test). Phase differences
from all periods are significantly greater than 0 (p < 0.05, paired-sample t-test; Table S3) except for the next
day after period (p > 0.2, paired-sample t-test; Table S3), suggesting that phase washed out more slowly
than gain.
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Figure S3. The natural logarithmic magnitude of observed Bode sensitivity function with
larger frequency range, related to Figure 5.
(A) Fitted sensitivity function using Eqn. (9) in k = 1.0 period from one fish (green) with frequency range
of 0 − 25 Hz (0 − 50π rad/sec) and raw observed data (blue). A distinct peak above zero indicates that the
retuned controller of the fish reduced its sensitivity to low frequency disturbances (< 2.05 Hz), possibly as a
cost of sacrificing the sensitivity to frequency band 1.7 − 5 Hz (most of which was beyond our experimental
design).
(B) Enlarged version of portion of (A) to show the frequency range in our experiments.
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Figure S4. Block diagram of the fish refuge tracking system with setup delay, related to STAR
methods. The setup delay block D(s) is at the forward loop. Identification of setup delay helped accurately
estimate the sensitivity function.



Gain at 1.15 Hz Phase at 0.65 Hz
Pearson’s correlation

coefficient
p-value Pearson’s correlation

coefficient
p-value

Fish 1 ρ(4) = 0.92 0.009 ρ(4) = 0.87 0.025
Fish 2 ρ(3) = 0.76 0.138 (n.s.) ρ(3) = 0.80 0.101 (n.s.)
Fish 3 ρ(3) = 0.93 0.024 ρ(3) = 0.92 0.027
Fish 4 ρ(4) = 0.95 0.004 ρ(4) = 0.95 0.003
Fish 5 ρ(4) = 0.95 0.004 ρ(4) = 0.90 0.016
Fish 6 ρ(4) = 0.99 1.372 × 10−4 ρ(4) = 0.88 0.021
Fish 7 ρ(4) = 0.92 0.010 ρ(4) = 0.97 0.002

Averaged (N = 7) ρ(4) = 0.94 0.006 ρ(4) = 0.96 0.003

Table S1. Correlation between Gain and Phase with the augmented feedback gain k, related to
Figure 2E and Figure 2F. Pearson’s correlation coefficient values and p values are reported here, showing
that six out of seven fish exhibited significant (p < 0.05) positive correlations between high-pass gain k and
both gain (dB) at 1.15 Hz and phase at 0.65 Hz. Fish 2 exhibited non-significant (n.s.) positive correlations
for both gain and phase.

Gain Aftereffect at 1.15 Hz
mean

difference
(dB)

standard
deviation

(dB)

t df p-value

0 to 5 min 2.049 1.067 4.71 5 0.005
5 to 10 min 0.533 0.770 1.70 5 0.151 (n.s.)
10 to 15 min 0.847 1.310 1.58 5 0.174 (n.s.)
15 to 21 min 0.087 0.855 0.25 5 0.814 (n.s.)

next day 0.139 1.376 0.25 5 0.815 (n.s.)

Table S2. Paired-sample t-test between the gain for each time period and the baseline gain
(dB) for six fish, related to Figure 3B. The result confirms that sensorimotor gain at 1.15 Hz washed
out over a period of about 10 min.

Phase Aftereffect at 0.65 Hz
mean

difference
(deg)

standard
deviation

(deg)

t df p-value

0 to 5 min 11.7 7.7 3.75 5 0.013
5 to 10 min 15.1 6.8 5.41 5 0.003
10 to 15 min 13.8 9.2 3.68 5 0.014
15 to 21 min 9.0 8.3 2.66 5 0.045

next day 3.9 6.8 1.40 5 0.221 (n.s.)

Table S3. Paired-sample t-test between phase for each time period and baseline phase for six
fish, related to Figure S2B. The result confirms that sensorimotor phase at 0.65 returned to baseline by
the next day.



Difference between Observed and Predicted Bode Sensitivity Integral
mean

difference
standard
deviation

t df p-value

k = 0.3 -0.4758 0.3704 -3.40 6 0.015
k = 0.6 -0.6705 0.3177 -5.58 6 0.001
k = 0.8 -0.7357 0.4321 -4.50 6 0.004
k = 1.0 -1.1285 0.4086 -7.31 6 3.4 × 10−4
k = 1.1 -1.3686 0.4113 -7.44 4 0.002

Table S4. Differences between the observed and predicted Bode sensitivity integrals, related
to Figure 5B. Paired-sample t-test for all seven fish from k = 0.3−1.0 and five fish for k = 1.1. The difference
was significantly < 0.

Difference between Observed and Predicted PM (deg)
mean

difference
(deg)

standard
deviation

(deg)

t df p-value

k = 0.3 12.7 11.2 3.01 6 0.024
k = 0.6 26.7 16.9 4.18 6 0.006
k = 0.8 28.3 26.5 2.61 5 0.047
k = 1.0 43.3 32.7 3.25 5 0.023
k = 1.1 51.3 30.8 3.72 4 0.021

Table S5. Paired-sample t-test between Observed and Predicted PM (deg), related to Fig-
ure 6C. The result indicates that the retuned controller significantly (p < 0.05) enhanced PM.

Difference between Observed and Predicted GM (dB)
mean

difference
(dB)

standard
deviation

(dB)

t df p-value

k = 0.3 -1.061 0.683 -4.11 6 0.006

k = 0.6 with outlier -1.139 3.575 -0.84 6 0.431 (n.s.)
without outlier -2.461 0.808 -7.46 5 6.8 × 10−4

k = 0.8 -1.764 3.374 -1.38 6 0.216 (n.s.)
k = 1.0 -0.251 4.298 -0.15 6 0.883 (n.s.)
k = 1.1 -2.766 5.029 -1.23 4 0.286 (n.s.)

Table S6. Paired-sample t-test between Observed and Predicted GM (dB), related to Fig-
ure 6D. The result indicates that the observed GM from retuned controller was not significantly different
from the predicted GM.


