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Comparing relational languages by their logical expressiveness is well understood. Less well understood is
how to compare relational languages by their ability to represent relational query patterns. Indeed, what are
query patterns other than “a certain way of writing a query”? And how can query patterns be de�ned across
procedural and declarative languages, irrespective of their syntax? To the best of our knowledge, we provide
the �rst semantic de�nition of relational query patterns by using a variant of structure-preserving mappings
between the relational tables of queries. This formalism allows us to analyze the relative pattern expressiveness
of relational language fragments and create a hierarchy of languages with equal logical expressiveness yet
di�erent pattern expressiveness. Notably, for the non-disjunctive language fragment, we show that relational
calculus can express a larger class of patterns than the basic operators of relational algebra.

Our language-independent de�nition of query patterns opens novel paths for assisting database users. For
example, these patterns could be leveraged to create visual query representations that faithfully represent query
patterns, speed up interpretation, and provide visual feedback during query editing. As a concrete example, we
propose Relational Diagrams, a complete and sound diagrammatic representation of safe relational calculus
that is provably (8) unambiguous, (88) relationally complete, and (888) able to represent all query patterns for
unions of non-disjunctive queries. Among all diagrammatic representations for relational queries that we
are aware of, ours is the only one with these three properties. Furthermore, our anonymously preregistered
user study shows that Relational Diagrams allow users to recognize patterns meaningfully faster and more
accurately than SQL.
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1 INTRODUCTION
When designing and comparing query languages, we are usually concerned with logical expres-
siveness: can a language express a particular query or not? For relational languages, questions of
expressiveness have been studied for decades, and formalisms for comparing expressiveness are
well-developed and understood. We do not yet have a similarly developed machinery to reason
∗The title is a reference to Wigner’s 1960 article [55] in which he states that “the enormous usefulness of mathematics in
the natural sciences is something bordering on the mysterious and that there is no rational explanation for it.” While there
have been similar observations of surprising e�ectiveness for both data [36] and logic [37] in our community, our strong
experimental evidence of Relational Diagrams helping users understand relational patterns better is actually quite expected.
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61:2 Wolfgang Ga�erbauer and Cody Dunne

about relational query patterns. Intuitively, a query pattern should capture “a certain way of writing
a query.” To be universally applicable, a formalization would have to be applicable across the
four major relational languages—Datalog, Relational Algebra (RA), Relational Calculus (RC), and
SQL—and thus be orthogonal to questions of syntax and procedural or declarative language design.
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Fig. 1. DFQL [10] visualization of the TRC query
from Example 1. Notice the 3 instances of the
Sailor relation and thus a di�erent “structure” of
the visualization from the original query.

We posit that identifying patterns in queries could
open novel paths for assisting users [33], especially
learners who try to understand the structure be-
hind relational queries written in di�erent languages.
It could help learners spot similarities in queries
across di�erent schemas and thus more easily sep-
arate intent (the logic) from the particular syntactic
expression. On an even more fundamental level, es-
tablishing a separation on “pattern expressiveness”
between relational languages could lead to new in-
sights into the intrinsic properties of relational lan-
guages and algebraic limits of visualizations. An
important insight that we establish in this paper is
that visual languages which build upon the operators
of RA cannot faithfully express all query patterns, and
instead necessitate reformulating queries and thus
changing their patterns.

E������ 1 (U������������ ��� ��������� �� � TRC����). Imagine Kiyana, a theory-leaning
undergraduate student, trying to understand relational query languages better. Kiyana has been
reading the chapters on relational calculus across several books. In the textbook by Ramakrishnan
and Gehrke [44] (page 121 of Sect. 4.3.1) she �nds the query “(Q9) Find the names of sailors who
have reserved all boats” written in “tuple relational calculus” as follows:

{% | 9( 2Sailor 8⌫ 2Boat (9' 2Reserves
(( .sid = '.sid ^ '.bid = ⌫.bid ^ % .sname = ( .sname))} (1)

She tries to understand “the structure” of the query and translates it �rst into RA, and then from
there into DFQL (Data�ow Query Language) [10, 14, 35].1DFQL is a visual representation that is
relationally complete by mapping its visual symbols to the operators of RA. Kiyana quickly notices
that she cannot translate the query into RA without using additional Sailor relations.

Q = csname
�
Sailor 1

�
csidSailor � csid

�
(csidSailor ⇥ c183Boat) � csid,bidReserves

� � �
As a result, she does not �nd the resulting DFQL visualization (Fig. 1) very helpful because there is
an obvious mismatch in “its structure” with 3 instances of Sailor relations. She wonders whether she
is missing an obvious simpler translation into RA or whether there is none. As is, she does not �nd
this query visualization very helpful.

As a consequence, no query visualization that relies on the operators of RA could help Kiyana with
what she would like to see: a simple visual representation that captures the structure of the query
as written in its original logical form.

E������ 2 (C�������� RC������ ���� ���������). Kiyana continues looking through di�erent
textbooks and �nds in Date’s textbook [19] (page 224 of Sect. 8.3) the query “8.3.6 Get supplier names

1DFQL is one of several visual query languages mentioned as relationally complete in a widely cited survey [14]. Kiyana
found a detailed online documentation [35] and worked out examples [30].
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(a)@1: “Find names of sailors who reserved all boats.”
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(b) @2: “Find names of suppliers who supply all parts.”

Fig. 2. Relational Diagrams representating the two queries from Example 1 ([44]) and Example 2 ([19]). Notice
the clearly discernible similar “relational query pa�erns.”

for suppliers who supply all parts” written in “tuple calculus” as follows:
SX.NAME WHERE NOT EXISTS PX (NOT EXISTS SPX

SPX.SNO = SX.SNO AND SPX.PNO = PX.PNO)) (2)

From the natural language description, the query seems to follow a similar pattern as the earlier
one (“Return X which have a relationship with all Y”). But that apparent similarity is di�cult to see
from the two expressions. She wonders whether there is a simple way to see that those two queries
somehow follow a “similar structure.”

In this paper, we show that there is indeed a simple and arguably-natural diagrammatic repre-
sentation (also called visualization, in short) that allows Kiyana to (8) represent her queries in a
way that preserves their logical structure (or pattern), (88) decide whether two logically-equivalent
queries have the same pattern, and (888) see whether any two queries, even across di�erent schemas,
use a “similar pattern.” We call this visualization Relational Diagrams. [47]. See Fig. 2 and notice
how every relation from the two queries maps to exactly one relation in the Relational Diagrams.
Also, notice how the similar structure of both queries becomes natural to see.

Our 1st contribution: query pa�erns.We develop a precise language-independent notion of
relational query pattern that allows us to decide whether two queries use the same pattern. Our def-
inition is semantic (in the sense that the de�nition involves relations over sets of attributes) instead
of syntactic (which would involve structural properties which are inherently language-dependent).
Intuitively, our formalism reasons about mappings between the (existentially or universally) quan-
ti�ed relations referenced in two queries. Yet it is not trivial to turn this intuition into a working
de�nition that can be applied to any relational query and language (we include examples to show
that seemingly easier mapping de�nitions would fail on queries). We believe that this idea is the
“right” approach for de�ning relational pattern and show how to use it to compare relational
query languages by their abilities to express query patterns present in other languages and thus
compare their relative pattern expressiveness. In particular, we contribute a novel hierarchy of
pattern-expressiveness among the non-disjunctive fragments of four relational query languages.
Our 2nd contribution: Relational Diagrams. We formalize an arguably simple and intuitive

diagrammatic representation of relational queries called Relational Diagrams [32] and prove that (8)
it is unambiguous (every diagram has a unique logical interpretation), (88) it is relationally complete
(every relational query can be expressed in a logically-equivalent Relational Diagram), and (888)
that it can express all query patterns in the non-disjunctive fragment of relational query languages
and those with union at the root. In particular, we prove that no prior or future diagrammatic
representation based on RA could represent all relational query patterns from RC. Our user study
(Section 6.2) shows that our formalisms helps users recognize patterns faster than with SQL.

Outline of the paper. Section 2 de�nes the non-disjunctive fragment of relational query lan-
guages for Datalog, Relational Algebra (RA), Tuple Relational Calculus (TRC), and SQL, and proves
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61:4 Wolfgang Ga�erbauer and Cody Dunne

that they have equivalent logical expressiveness. Section 3 shows that the non-disjunctive frag-
ment allows for an arguably natural diagrammatic representation system that we term Relational
Diagrams⇤(with a star). We give the formal translation from the non-disjunctive fragment of TRC
to Relational Diagrams⇤ and back, and de�ne their formal validity. We use Relational Diagrams⇤

for the remainder of the paper to illustrate “query patterns.” Section 4 formalizes the notion of
a relational query pattern and contributes a novel hierarchy of pattern expressiveness among
the above four languages for the non-disjunctive fragment. We prove that Relational Diagrams⇤

have strong structure-preserving properties in that they can express all query patterns in this
fragment. Section 4.4 formalizes “similar patterns” across di�erent schemas. This extended notion
allows us to see similarities across queries that use di�erent relations and are thus not logically
equivalent. Section 5 adds a single visual element (called a union cell) to Relational Diagrams⇤ to
make the resulting Relational Diagrams relationally complete.2 We also show that even without
that element, Relational Diagrams⇤can express all logical statements of �rst-order logic. This allows
us to compare our diagrammatic formalism against a long history of diagrams for representing
logical sentences. Section 6 includes two studies. The �rst shows that more logical queries across
�ve popular textbooks have pattern-isomorphic representations in Relational Diagrams than either
RA, Datalog, QBE, or�eryVis. The second controlled user experiment study that using Relational
Diagrams instead of SQL helps users recognize patterns across di�erent schemas faster and more
often correctly. Section 7 contrasts our formalism with selected related work. In particular, we
discuss the connection to Peirce’s existential graphs [43, 48, 50] and show that our formalism is
more general and solves interpretational problems of Peirce’s graphs which have been the focus of
intense research for over a century.

Due to space constraints, we had to move proofs, several intuitive illustrating examples, all study
details, and more detailed comparison against related work to the online appendix [32].

2 THE NON-DISJUNCTIVE FRAGMENT OF RELATIONAL QUERY LANGUAGES
This section de�nes the non-disjunctive fragment of relational query languages. Throughout, we
assume a linear order over the active domain and thus explicitly allow built-in predicates using
ordered operators such as <, in addition to equality = and disequality <.
We assume the reader to be familiar with Datalog¬ (non-recursive Datalog with negation), RA

(Relational Algebra), TRC (safe Tuple Relational Calculus), SQL (Structured Query Language), and
the necessary safety conditions for TRC and Datalog¬ to be equivalent in logical expressiveness to
RA. We also assume familiarity with concepts such as relations, predicates, atoms, and the named
and unnamed perspective of relational algebra. The most comprehensive exposition of these topics
we know of is Ullman’s 1988 textbook [54], together with resources for translating between SQL
and relational calculus [12, 20]. These connections are also discussed in most database textbooks
[25, 28, 44, 51], though in less detail. We only cover TRC and not Domain Relational Calculus (DRC)
as the 1-to-1 correspondence between DRC and TRC is straight-forward [25, 51], and—as we will
discuss in Section 7.1—TRC has a more natural translation into diagrams than DRC.

2.1 Non-recursive Datalog with negation
We start with Datalog since the de�nition is most straightforward. Datalog expresses disjunction
(or union) by repeating an Intensional Database (IDB) predicate in the head of multiple rules. For

2Although disjunctions can be composed of conjunction and negation using De Morgan’s law (� _ ⌫ = ¬(¬� ^ ¬⌫)), this
additional visual symbol is necessary: for safe relational queries, DeMorgan is not enough, as there is no way to write a safe
Tuple Relational Calculus (TRC) expression “Return all entries that appear in either R or S” that avoids a union operator. This
is part of the textbook argument for the union operator being an essential, non-redundant operator for relational algebra.
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example, consider the following query in Datalog:
& (G) :�'(G,~), ( (G),) (_),~ > 5.
& (G) :�'(G,~), ( (_),) (G),~ > 5. (3)

The underscore stands for a variable that appears only once [28]. This query cannot be expressed
without de�ning at least one IDB at least twice, in our case the result table & (G). This leads to a
natural de�nition of the non-disjunctive fragment of Datalog¬:

De�nition 1 (Datalog⇤). Non-disjunctive non-recursive Datalog with negation (Datalog⇤) is the
non-recursive fragment of Datalog¬ with built-in predicates where every IDB appears in the head
of exactly one rule and can be used maximally once in any body.

Notice that Datalog⇤ inherits all restrictions from non-recursive Datalog¬ with built-in predi-
cates [54], and thus rules out the existence of an IDB in both the head and the body of the same
rule. The restriction of IDB’s being used maximally once rules out views to be used multiple times
(including simple copies of input tables).

2.2 Relational Algebra (RA)
We focus on the subfragment of basic RA (⇥,f,12 , c,�) that contains no union operator [ and
in which all selection conditions are simple (i.e. they do not use the disjunction operator _). A
simple condition is ⇠ = (-\. ) where - is an attribute, . is either an attribute or a constant, and
\ is a comparison operator from {=,<, <, , >, �, }. Notice that conjunctions of selections can be
modeled as concatenation of selections, e.g., f⇠1^⇠2 (') is the same as f⇠1 (f⇠2 (')). The Datalog¬
query from (3) cannot be expressed in that fragment. Assuming the schema '(�,⌫), ( (�), ) (�), a
translation either requires the disjunction operator _ as in:

c�
�
f�=⇠_�=⇡

�
f⌫>5 (') ⇥ d�!⇠ (() ⇥ d�!⇡ () )

� �
or the union operator [ as in:

c�
�
f⌫>5 (') 1 ( ⇥ d�!⇡ () )

�
[ c�

�
f⌫>5 (') 1 ) ⇥ d�!⇠ (()

�
De�nition 2 (RA⇤). The non-disjunctive fragment of basic Relational Algebra (RA⇤) results from

disallowing the union operator [ and by restricting selections to conjunctions of simple predicates.

2.3 Tuple Relational Calculus (TRC)
Recall that some variants of safe TRC only allows existential quanti�cation (and not universal
quanti�cation) [54]. Predicates are either join predicates “A .�\ B .⌫” or selection predicates “A .�\ E”,
with A , B being table variables and E a domain value. WLOG, every existential quanti�er can be
pulled out as early as to either be at the start of the query, or directly following a negation operator.
For example, instead of ¬(9A 2' [A .� = 0 ^ 9B 2( [B .⌫ = A .⌫]]) we rather write this sentence
canonically as ¬(9A 2', B 2( [A .� = 0 ^ B .⌫ = A .⌫]). This canonical representation implies that a set
of existential quanti�ers is always preceded by the negation operator, except for the table variables
outside any scope of negation operators. Also, WLOG, we only allow equality conditions with the
result table. For example, instead of {@(�) | 9A 2', B 2( [@.� = A .� ^ B .� > @.�])]} we rather write
{@(�) | 9A 2', B 2( [@.� = A .� ^ B .� > A .�])]}. Recall that at least one equality predicate for each
output attribute is required due to standard safety conditions [54].

We will de�ne an additional requirement that each predicate contains a local (or what we refer
to as guarded) attribute whose table is quanti�ed within the scope of the last negation. For example,
we do not allow ¬(9A 2' [¬(A .� = 0)]) because the table variable A is de�ned outside the scope of
the most inner negation around the predicate A .� = 0. However, we allow the logically-equivalent
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61:6 Wolfgang Ga�erbauer and Cody Dunne

¬(9A 2' [A .� < 0]) where the table variable A is existentially quanti�ed within the same scope as
the attribute A .� < 0.

De�nition 3 (Guarded predicate). A predicate is guarded if it contains at least one attribute of a
table that is existentially quanti�ed inside the same negation scope as that predicate.

Intuitively, guarding a predicate guarantees that the predicates can be applied in the same logical
scope where a table is de�ned. This requirement also avoids a hidden disjunction. To illustrate,
consider the following TRC query:

{@(�) | 9A 2' [@.� = A .� ^ ¬(9B 2( [A .� = 0 ^ B .⌫ = A .⌫])]}
This query contains no apparent disjunction, however the predicate “A .� = 0” could be pulled
outside the negation, and after applying De Morgan’s law on the expression we get a disjunction:

{@(�) | 9A 2' [@.� = A .� ^
�
A .� < 0_¬(9B 2( [B .⌫ = A .⌫])

�
]}

To avoid both disjunctions and “hidden disjunctions”, the non-disjunctive fragment only allows
conjunctions of guarded predicates:

De�nition 4 (TRC⇤). The non-disjunctive fragment of safe TRC (TRC⇤) disallows both universal
quanti�cation and disjunctions, and restricts predicates to conjunctions of guarded predicates.

In order to express the Datalog¬ query from (3) we need the disjunction operator. A possible
translation is:

{@(�) | 9A 2', B 2(, C 2) [@.�=A .� ^ A .⌫>5 ^ (A .�=B .� _ A .�=C .�)]}

2.4 SQL under set semantics
Structured Query Language (SQL) uses bag instead of set semantics and uses a ternary logic with
NULL values. In order to treat SQL as a logical query language, we assume binary logic and no
NULL values in the input database. It has been pointed out that “SQL’s logic of nulls confuses people”
and even programmers tend to think in terms of the familiar two-valued logic [53]. Our focus
here is devising a general formalism to capture logical query patterns across relational languages,
not on devising a visual representation of SQL’s idiosyncrasies. To emphasize the set semantic
interpretation, we write the DISTINCT operator in all our SQL statements.

We de�ne the non-disjunctive fragment of SQL as the Extended Backus–Naur form (EBNF) [42]
grammar shown in Fig. 3, interpreted under set semantics (no duplicates by using DISTINCT) and
under binary logic (no null values allowed in the input tables). We also require the same syntactic
restriction as for TRC⇤: every predicate needs to be guarded (De�nition 3), i.e., every predicate must
reference at least one table within the scope of the last NOT. This restriction excludes hidden
disjunctions, such as “NOT(NOT(P1) and NOT(P2))” which is equivalent to “P1 or P2”.

De�nition 5. SQL⇤: Non-disjunctive SQL under set semantics (SQL⇤) is the syntactic restriction
of SQL under binary logic (no NULL values in the input tables) to the grammar de�ned in Fig. 3,
and additionally requiring every predicate to be guarded.

Every SQL⇤ query can be brought into a canonical form that maintains a straightforward one-to-
one correspondence with TRC⇤. The idea is to replace membership and quanti�ed subqueries with
existential subqueries (see grammar in Fig. 3) and then unnest any existential quanti�ers, i.e., to
only use “not exists”. This pulling up quanti�cation as early as possible is identical to the way we
de�ned the canonical form of TRC⇤.

The Datalog¬ query from (3) cannot be expressed in SQL⇤ and requires either a UNION operator
or disjunction as in Fig. 4.
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Q::= SELECT [DISTINCT] (C {, C} | ⇤) Non-Boolean query
FROM R {, R}
[WHERE P]

| SELECT NOT (P) Boolean query
| SELECT [NOT] EXISTS (Q) Boolean query

C::= [T.]A column or a�ribute
R::= T [[AS] T] table (table alias)
P::= P {AND P} conjunction of predicates

| C O C join predicate
| C O V selection predicate
| NOT ‘(’P‘)’ negation
| [NOT] EXISTS ‘(’Q‘)’ existential subquery
| C [NOT] IN ‘(’Q‘)’ membership subquery
| C O (ALL ‘(’Q‘)’ | ANY ‘(’Q‘)’) quantified subquery

O::= = | <> | < |  | � | > comparison operator
T::= table identifier
A::= a�ribute identifier
V::= string or number

Fig. 3. EBNF Grammar of SQL⇤: Statements enclosed in [ ] are optional; statements separated by | indicate a
choice between alternatives; parentheses without quotation marks ( ) group alternative choices; parentheses
with quotation marks ‘(’ ‘)’ form part of the test. Additionally, the main query requires the DISTINCT keyword
(if non-Boolean), and all join and selection predicates need to be guarded (Definition 3), i.e., reference at least
one table within the scope of the last NOT.

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.B > 5
AND (R.A = S.A OR R.A = T.A)

Fig. 4. Example SQL with disjunction.

2.5 Logical expressiveness of the fragment
We show that the four languages restricted to the non-disjunctive fragment are equivalent in
their logical expressiveness. The proof is available in the optional online appendix [32] and is an
adaptation of the standard proof of equal expressiveness as found, for example, in [54]. However,
the translations also need to pay attention to the restricted fragment (e.g. we cannot use union
to de�ne an active domain) and attempt to keep the numbers of extensional database atoms the
same, if possible. This detail will be important later in Section 4, where we show that those four
fragments di�er in the types of query patterns they can express.

T������ 6. [Logical expressiveness] Datalog⇤, RA⇤, TRC⇤, and SQL⇤ have the same logical expres-
siveness.

3 RELATIONAL DIAGRAMS⇤

This section introduces our diagrammatic representation of relational queries. It details the basic
visual elements of Relational Diagrams⇤(Section 3.1), gives the formal translation from TRC⇤

(Section 3.2) and back (Section 3.3), and shows that there is a one-to-one correspondence between
TRC⇤ expressions and Relational Diagrams⇤, thereby proving their validity (Section 3.4).

3.1 Visual elements
In designing our diagrammatic representation, we started from existing widely-used visual
metaphors and then added the minimum necessary visual elements to obtain expressiveness
for full TRC⇤. In the following �ve points, we discuss both (8) necessary speci�cations for Relational
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61:8 Wolfgang Ga�erbauer and Cody Dunne

Diagrams⇤ and (88) concrete design choices that are not formally required but justi�ed based on
best practices from HCI and visualization guidelines. We use the term canvas to refer to the plane
in which a Relational Diagram⇤ is displayed. We illustrate with Fig. 5.

(1) Tables and attributes: We use the set-of-mappings de�nition of relations [54] in which a tuple
is a mapping from attributes’ names to values, in contrast to the set-of-lists representation in which
order of presentation matters and which more closely matches the typical vector representation.
Thus a table is represented by any visual grouping of its attributes. We use the typical UML
convention of representing tables as rectangular boxes with table names on top and attribute names
below in separate rows. Table names are shown with white text on a black background and, to
di�erentiate them, attributes use black text on a white background. For example, table R with
attribute A . Similar to Datalog and RA (and di�erent from SQL and TRC), we do not use table
aliases. Such table aliases create extra cognitive burden and are only needed in languages where
references to repeated table instances cannot be otherwise disambiguated. We also reduce visual
complexity by only showing attributes that are used in the query, similar to SQL and TRC (and
di�erent from Datalog). Database users are commonly familiar with relational schema diagrams.
Thus, we believe that a simple conjunctive query should be visualized similarly to a typical database
schema representation, as used prominently in standard introductory database textbooks [25, 51].
(2) Selection predicates: Selection predicates are �lters and are shown “in place.” For example,

an attribute “A2.⇠ > 1” is shown as C>1 in the corresponding instance of table '. An attribute
participating inmultiple selection predicates is repeated at least as many times as there are selections
(e.g. to display “A2 .⇠ > 1 ^ A2.⇠ < 3”, we would repeat R.C twice as C>1 and C<3 ). An attribute
participating in : selection predicates is repeated : times.

(3) Join predicates: Equi-join predicates (e.g. “B2.� = C2.�”), which arguably are the most common
type of join in practice, are represented by lines connecting joined attributes. For other less-frequent
theta join operators {<, <, , �, >}, we add the operator as a label on the line and use an arrowhead
to indicate the reading order and correct application of the operator in the direction of the arrow. For
example, for a predicate “A1.� > A2.⌫”, the label is > and the arrow points from attribute A of the
�rst R occurrence to B of the second: A >�!B. Notice that the direction of arrows can be �ipped, along
with �ipping the operator, while maintaining the identical meaning: A < �B. To avoid ambiguity
with the standard left-to-right reading convention for operators, we normalize arrows to never
point from right to left. An attribute participating in multiple join predicates needs to be shown
only once and has several lines connecting it to other attributes. An attribute participating in one
or more join predicates and : selection predicates is shown : + 1 times.3
(4) Negation boxes: In TRC⇤, negations are either avoided (e.g. ¬('.� = ( .⌫) is identical to

'.� < ( .⌫) or placed before the existential quanti�ers. We represent a negation with a closed
line that partitions the canvas into a subcanvas that is negated (inside the bounding box) and
everything else that is not (outside of the bounding box). As a convention, we use dashed rounded
rectangles.4 Recursive partitioning of the canvas allows us to represent a tree-based nesting order
that corresponds to the nested scopes of quanti�ed tuple variables in TRC (and also the nesting
order of subqueries in SQL). We call the main canvas the root of that nesting hierarchy and each
node a partition of the canvas.

3In practice, one can reduce the size of a Relational Diagram⇤ by reusing an existing selection predicate for joins. This comes
at the conceptual complication that the exact graph topology of the Relational Diagram⇤ (which attributes are connected) is
not uniquely determined (though it still allows only one correct interpretation). In our example Fig. 5d, one could remove
the attribute R.C of A2 and connect Q.D to either C>1 or C<3 instead.
4Rectangles allow better use of space than ellipses, and rounded corners together with dashed lines distinguish those
negation boxes clearly from the rectangles with solid edges and right angles used for tables and attributes.
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{"($,	')	| ∃+1∊-,	∃+2∊-,	∃.1∊/[".$=+1.$ ⋀	".'=+2.4 ⋀
+2.4>1	⋀	+2.4<3	⋀	+1.$>+2.9 ⋀	
¬(¬(∃;1∊<[;1.$=+1.$])) ⋀
¬(∃.2∊/,	∃;2∊<,	∃>∊?[.2.$=;2.$ ⋀	.2.9>.1.$ ⋀
¬(∃+3∊-[+3.$≠1]) ⋀	¬(∃+4∊-[+4.9≠.2.9])])]}

(a) TRC⇤

!0 ⋀	
¬(!1 ⋀	
¬(!2)) ⋀

¬(!3 ⋀	
¬(!4) ⋀	
¬(!5))

(b) Negation hierarchy

!4

!1 !2

!3
!0

!5
"1"2#1

$1

#2 $2% "4
"3

(c) Canvas partitions

Q
A
D

R
A

>

S
A

S

B

A

T
A

<

R
B

C
C>1
C<3

T
A

R
B≠

R
A≠1

U

!1

!3
!0

!2
"1

"2

#1

$1

!4

#2

%

$2

"3

!5
"4

(d) Relational Diagram⇤

∃"1∊$,	∃"2∊$,	∃'1∊([	.	.	. ⋀	
¬(
¬(∃.1∊/[	.	.	.	])) ⋀

¬(∃'2∊(,	∃.2∊/,	∃2∊3[	.	.	. ⋀
¬(∃"3∊$[	.	.	.	]) ⋀	
¬(∃"4∊$[	.	.	.	])])]

(e) TRC⇤ stub

Fig. 5. Section 3.2: Example TRC⇤ expression (a), derivation of the negation hierarchy (b, c), and corresponding
Relational Diagram⇤ (d). Colored partitions @8 (purple) and table variables A8 (blue) are not part of the diagram
and shown only to discuss the correspondence. Section 3.3: TRC⇤ stub a�er step 2 of the translation (e).

(5) Output table: We display an output table to emphasize the compositional nature of relational
queries: a relational query uses several tables as input, and returns one new table as output. We use
the same symbol for that output table as the TRC expression, for which we most commonly use & .
We use a gray background Q to make this table visually distinct from input tables.

3.2 From TRC⇤ to Relational Diagrams⇤

We next describe the 5-step translation from any valid TRC⇤ expression to a Relational Diagrams⇤.
We illustrate by translating a TRC⇤ expression (Fig. 5a) into a Relational Diagrams⇤ (Fig. 5d). Notice
that the translation critically leverages three conditions ful�lled by the input: (1) Safe TRC (and
thus also TRC⇤) only allows existential and not universal quanti�cation [54], (2) TRC⇤ only allows
conjunction between predicates, and (3) all predicates in TRC⇤ are guarded (recall De�nition 3).
(1) Creating canvas partitions: The scopes of the negations in a TRC are nested by de�nition.

We translate this hierarchy of the scopes for each negation (the negation hierarchy) into a nested
partition of the canvas. Fig. 5c illustrates the nested partitions as derived from the negation hierarchy
Fig. 5b of the original TRC⇤ expression. Notice that the double negation “¬(¬(. . .))” results in the
scope @1 of the negation hierarchy to be empty.
(2) Placing tables: Each table variable de�nes a table that gets placed into the canvas partition

that corresponds to the respective negation scope. For example, the tables corresponding to the
table variables A1, A2, and B1 are outside any negation scope and thus placed in the root partition @0.
Similar to Datalog and RA (and in contrast to TRC and SQL) Relational Diagrams⇤ do not need
table aliases.

(3) Placing selection predicates: The predicates within each scope are combined via conjunction and
are thus added one after the other. Since all selection predicates are guarded, the selection predicates
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can be placed in the same partition as their respective table, which allows correct interpretation
(see Section 3.3). For example, for ¬(9A3 2 ' [A3.� < 1]), the predicate “� < 1” is placed directly
below ' in @4. An example of a predicate that is not guarded would be 9A3 2' [¬(A3 .� = 1)]: the
scope of the negation contains a predicate of a table that is not existentially quanti�ed in that scope.
(4) Placing join predicates: For each join predicate, we add the two attributes (if not already

present) and connect them via an edge with any comparison operator drawn in the middle. An
attribute participating in multiple join predicates needs to be shown only once. Equi-joins are the
standard and no operator is shown. Asymmetric joins include an arrowhead at one end of the
edge (see Section 3.1). As for guarded join predicates one or both attributes are in the partition
of a local table, the negation can be correctly interpreted. An example of an unguarded predicate
would be ¬(A4.⌫ = B2 .⌫). What is possible is the logically-equivalent A4.⌫ < B2.⌫ (as long as one
of the two attributes is in the local scope of the last negation. In our example, this is the case in
¬(9A4 2' [A4.⌫ < B2 .⌫]).

(5) Place and connect output table: The safety conditions for TRC [54] imply that output predicates
can only be chosen from tables outside of all negations, thus in the root scope or partition @0. If the
query is non-Boolean, we add a new table named & for query with a unique gray background Q
to imply the di�erence from table references. If the query is Boolean, there is no output table and
the query represents a logical sentence that is true or false.
Completeness. This �ve-step translation guarantees uniqueness of the following aspects: (1)

nesting hierarchy (corresponding to the negation hierarchy), (2) where tables are placed (canvas
partitions corresponding to the negation scope), (3) which attributes have selection predicates, and
(4) which attributes participate in joins and how. The following aspects are not uniquely de�ned
(without impact on the later interpretation): (1) the order of attributes below each table; (2) the
direction of arrows can be �ipped with a simultaneous label �ip e.g., B1.�

> �B2 .⌫ and B1.�
<�!B2 .⌫

are identical (by convention we avoid arrows from right-to-left, but allow them up-to-down and
down-to-up); (3) the size of visual elements and their relative arrangement; and (4) any optional
changes in style (e.g. other than dashed negation boxes, distinct visual appearance between tables
and attributes).

3.3 From Relational Diagram⇤to TRC
We next describe the reverse �ve-step translation from any valid Relational Diagram⇤ to a valid
and unique TRC⇤ expression. At the end, we summarize the conditions of a Relational Diagram⇤ to
be valid, which are the set of requirements listed for each of the �ve steps. We again illustrate with
the examples from Fig. 5.

(1) Determine the nested scopes of negation: From the nested canvas partitions (Fig. 5c), create the
nested scopes of the negation operators of the later TRC⇤ expression (Fig. 5b).
(2) Quanti�cation of table variables: Each table in a partition corresponds to an existentially-

quanti�ed table variable. WLOG, we use a small letter indexed by the number of occurrence for
repeated tables. We add those quanti�ed table variables in the respective scope of the negation
hierarchy (Fig. 5c). For example, table) in @2 becomes 9C1 2) [. . .] and replaces @2 in Fig. 5e. Notice
that partition @1 is empty and the resulting negation scope does not contain any expression other
than another negation scope. We require that the leaves of the partition are not empty and contain
at least one table. Otherwise, expressions ^¬() and ^¬(¬()) would both have to be true, leaving
the meaning of an empty leaf partition ambiguous. This also implies that an empty canvas (there is
only one partition, in which root and leaf are empty) is not a valid Relational Diagram⇤.

(3) Selection predicates: Selection attributes are placed into the scope in which its table is de�ned.
For example, the predicate '.� < 1 in partition @4 leads to ¬(9A3 2' [A3.� < 1]).
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(4) Join predicates: For join predicates (lines connecting attributes in Relational Diagrams⇤ with
optional direction and operator), we have a validity condition that they can only connect attributes
of tables that are in the same partition or di�erent partitions that are in a direct-descendant
relationship. In our example,) .� in @2 connects to '.� in @0 (here @0 is the root and grandparent of
@2.) However, we could not connect any attribute in @5 with any attribute in @4 (which are siblings
in the nesting hierarchy). This requirement is the topological equivalent of scopes for quanti�ed
variables in TRC and guarantees that only already-de�ned table variables are referenced. Each
such predicate is placed in the scope of the lower of the two partitions in the hierarchy, which
guarantees the predicate to be guarded. For example, the inequality join connecting ( .⌫ in @3 and
'.⌫ in @5 is placed in the scope of @5.

(5) Output table: The validity condition for the output table is that each of its one ormore attributes
is connected to exactly one attribute from a table in the root partition @0. This corresponds to the
standard safety condition of safe TRC. This step adds the set parentheses, the output tables, and its
attribute and output predicates shown in green in Fig. 5a for non-Boolean queries.

Soundness. Notice that this �ve-step translation guarantees that the resulting TRC⇤ is uniquely
determined up to (1) renaming of the tuple variables; (2) reordering the predicates in conjunctions,
and (3) �ipping the left/right positions of attributes in each predicate. It follows that Relational
Diagrams⇤ are sound, and their logical interpretation is unambiguous.

3.4 Valid Relational Diagrams⇤

In order for a Relational Diagrams⇤to be valid we require that each of the conditions for the �ve-step
translation process is ful�lled.

De�nition 7 (Validity). A Relational Diagram⇤ is valid i�:
(1) The nested hierarchy of optional negation boxes partitions the canvas (any two dashed boxes

are either disjoint or one is completely contained within the other).
(2) Each table, its attributes, and its selection predicates are discernible and reside in exactly one

canvas partition.
(3) Each leaf in the canvas partition contains at least one table.
(4) Joins only happen between attributes of tables in partitions that are descendants (not siblings

or their descendants). Join predicates with asymmetric operators such as < and > require a
line with directionality (e.g. an arrowhead).

(5) If there is an output table, then it has at least one attribute, and each attribute connects to
exactly one attribute in the root partition @0 (safety condition of TRC).

T������ 8 (U���������� R��������� D�������⇤). Every valid Relational Diagram⇤ has an
unambiguous interpretation in TRC⇤.

The constructive translations from Sections 3.2 and 3.3 form the proof. Also notice that there is
an additional validity condition that we will add later in De�nition 16 that will extend the logical
expressiveness to include disjunction and go beyond TRC⇤.

3.5 Logical statements
Boolean queries (or logical sentences) are formulas without free variables. Being able to express
relational sentences (or constraints) allows us to compare our formalism against a long history of
formalisms for logical statements [31]. An additional freedom with sentences is that the otherwise
important safety conditions of relational calculus vanish. Thus, we need to be able to express
statements that do not have any existentially-quanti�ed relations in the main canvas. We next give
an intuitive example, with more examples given in the online appendix [32].
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SELECT not exists
(SELECT *
FROM Sailor s
WHERE not exists
(SELECT b.bid
FROM Boat b, Reserves r
WHERE b.color = �red �
AND r.bid = b.bid
AND r.sid = s.sid))

(a)

Sailor
sid

Reserves

sid
bid

Boat
bid

color = 'red'

(b)

Fig. 6. Example 3: All sailors reserve some red boat.

E������ 3. Consider the statement: “All sailors reserve a red boat.”
¬(9B 2Sailor [¬(91 2Boat, A 2Reserves[1 .color = 0red0^

A .bid = 1 .bid ^ A .sid = B .sid])]) (4)

The �rst 4 steps of the translation in Section 3.2 still work: the root canvas @0 does not contain any
relation (Fig. 6b). Similarly, the equivalent canonical SQL⇤ statement contains no FROM clause before
the �rst NOT. Notice that De�nition 12 of query pattern isomorphism still works as it is de�ned
based on the relational tables.

3.6 A note on implementation
Creating valid Relational Diagrams⇤ programmatically requires a spatial layout algorithm that
ensures that tables, predicates, and nested multi-layer canvas partitions are drawn unambiguously.
To improve readability, it should also reduce edge crossings and edge bendiness. For initial work in
that direction, please see our optimization model approach called STRATISFIMAL LAYOUT [21].

4 RELATIONAL QUERY PATTERNS
Example 1 illustrated that—while two languages may well have the same logical expressiveness—
one of them may have more ways to represent “logical patterns” than the other. We are interested in
making this intuition more precise and establishing a language-independent formalism that captures
the so-far vague notion of a relational query pattern. The formalism should allow us to study
the “relative pattern expressiveness” of languages, i.e.: Can languages L2 express all patterns that
language L1 can? We will then apply this formalism to the non-disjunctive fragment and compare
the four previously-de�ned relational query languages by their relative abilities to represent “the
same set of patterns” as other languages.

In the following, we often need to distinguish between a query as the query expression (the actual
syntax in a particular query language) and a query as a logical function that maps a set of input
tables to an output table. If we need to be precise, we refer to the function implied by a query as
the query semantics and the actual syntax as the query expression. We use the word signature to
refer to an ordered argument list as the input to a function, and use bracket notation for indexing.
For example, the signature of 5 (G,~) is S = (G,~), and the �rst element is S[1] = G .

4.1 Defining relational query pa�erns
Intuition. Our goal is to de�ne relational patterns in a way that allows us to analyze and compare
any relational query languages irrespective of their syntax. Our idea is to formalize patterns based
on the only common symbols in queries across languages: references to the input relations from the
database. Since every relational query language needs to use input tables, the resulting formalism
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generalizes. Intuitively, we will de�ne two queries to be pattern-isomorphic5 if there is a one-to-one
correspondence that pairs each table in one query with a table in the other query that “plays the
same semantic role.” This means that when applying identical changes to these paired input tables
(e.g. inserting a tuple), both queries will make identical changes to their outputs. However, for
queries with multiple occurrences of the same input table (also called self-joins), we need to treat
such repeated occurrences of the same input table as if they were independent tables. We will refer
to such repeated table occurrences as “table references.”
For example, consider @ = ' �

�
c�' ⇥ (

�
. The semantics of this query expression is a function

@(', () that maps input relations ' and ( to an output table, and its signature would be just its
relational input (', (). However, we will not be interested in the signature of a query semantics, but
rather the signature of a query expression, since we need to capture that two occurrences of ' play
di�erent semantic roles in the query. In order to capture these di�erent roles, we assign unique
names to each table reference, resulting in what we call the dissociated query @0 = '1�

�
c�'2⇥(

�
. We

then formally de�ne the relational query pattern of @ as the logical function @0 ('1,'2, () expressed
by the dissociated query @0. Notice that our de�nition of “dissociation” is inspired by, yet slightly
di�erent from its original use in the context of probabilistic inference [34] and the complexity of
resilience and causal responsibility [26].

Formalization. To make our de�nitions precise across relational query languages with di�erent
syntax, we need to unambiguously refer to the individual occurrences of relational input tables in
a given query expression, irrespective of the language used.

De�nition 9 (Query signature). A table reference in a query expression @ is any existentially or
universally quanti�ed reference to an input table. The signature S of @ is the ordered list of its table
references.

For example, the symbol “'” is a table reference in the SQL fragment “FROM R as R1”, the TRC
fragment “9A1 2'”, the RA fragment “c�'”, and the Datalog fragment “'(G, _)”.6 In contrast, the
symbol “'” is not a table reference in the SQL fragment “WHERE R=1” as it is part of a reference
to an attribute of a previously-de�ned table variable and not part of an existentially-quanti�ed
statement. The signature of a conjunctive SQL query with FROM clause “FROM R as R1, R as R2, S”
is S = (',', ().

De�nition 10 (Dissociated query). A dissociation of a query expression @ with signature S is a
modi�ed query @0 with S being replaced with a table signature S0 of same size (i.e. |S0 | = |S|),
where every table in S0 has a di�erent name, and every table S0 [8] has the same schema as table
S[8] for all 8 2 [|S|].

We call S0 the dissociated signature of @. It is easy to dissociate a query by simply replacing
duplicate names in S with fresh names. For simplicity, we will use subscripts when dissociating
tables.
E������ 4 (D�����������). The RA query @ = ' �

�
c�' ⇥ (

�
has signature S = (',', () with two

of the three table references referring to the same input table '. Replacing the signature S with a
dissociated signature S0 = ('1,'2, () leads to the dissociated query @0 = '1 �

�
c�'2 ⇥ (

�
. Since the

dissociated tables '1,'2 inherit the schema information from table ', the dissociated query is still a

5Recall that an isomorphism is a reversible structure-preserving mapping between two structures. For it to be reversible,
it needs to be surjective (each element in the target is mapped to) and injective (di�erent elements in the source map to
di�erent elements in the target) [27]. We use the term pattern-isomorphic (instead of structure-isomorphic) since our focus
is on particular relational structures we refer to as patterns.
6Existential quanti�cation either happens explicitly as in TRC, or implicitly as in RA.
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valid query and represents a new relational function @0 ('1,'2, () that maps three di�erent input
tables to an output.

The intuition behind this formalism is that the dissociated query de�nes a function that maps a
set of table references (not just a set of input tables) to an output table. Thus, the dissociated query
is a semantic de�nition of a relational query pattern across di�erent relational query languages.
Two queries use the same query pattern if their dissociated queries are logically equivalent, up to
renaming and reordering of the input tables.

De�nition 11 (Relational pattern). Given a query expression @ with signature S. The relational
pattern of @ is the logical function de�ned by its dissociated query @0 (S0).

De�nition 12 (Pattern isomorphism). Given two logically-equivalent queries @1 and @2 with
signatures S1 and S2, and dissociated queries @01 (S01) and @02 (S02), respectively. The queries are
pattern-isomorphic i� @01 (S01) = @02 (c (S01)) for some permutation c . In that case, we call the bijection
S1 [8] 7! S2 [c (8)] between the query signatures a pattern-preserving mapping.

E������ 5 (P�������). Next, consider the Datalog query
� (G,~) :�'(G, _), ( (~).

&1 (G,~) :�'(G, I),¬� (G,~).
with signature S1= (', (,'). Then its dissociated query is

� (G,~) :�'1 (G, _), (2 (~).
& 0 (G,~) :�'3 (G, I),¬� (G,~).

with signature S01 = ('1, (2,'3). Notice that & 0 de�nes a logical function & 0 ('1, (2,'3) mapping
two input tables with the same schema as ' and an input table ( to a binary output table.
Next, consider the RA query @ from Example 4 with signature S2 = (',', (). Notice that above

Datalog query & and this RA query @ are pattern-isomorphic since their dissociated queries de�ne
the same logical function up to permutation in the signatures: & 01 ('1, (2,'3) = @0 ('3,'1, (2) =
@0 (c ('1, (2,'3)) for permutation c = (2, 3, 1). Thus the mapping (S1 [1],S1 [2],S1 [3]) 7!
(S2 [2],S2 [3],S2 [1]) is a pattern-preserving mapping.

Complexity of deciding pattern isomorphism. Deciding whether two relational queries
are pattern-isomorphic is undecidable, in general (we need to determine whether two queries are
equivalent, both before and after dissociation). This follows from Trakhtenbrot’s theorem stating
that the problem of validity in �rst-order logic on �nite models is undecidable, and thus also the
logical equivalence of relational queries (see, e.g., the reduction in [6]). However, we get a one-sided
guarantee: if we can determine whether two queries are logically equivalent, then we can also
determine whether they are pattern-isomorphic. In practice, equivalence of relational queries can
often be determined, even for sophisticated SQL queries with grouping and aggregation evaluated
over bags or sets [13].

4.2 Discussion with illustrating example
We next give an example of queries that have di�erent query patterns although they are logically
equivalent and have the same table signature. This detailed example motivates to a large extent why
we de�ne query patterns based on the dissociated signature.
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SELECT DISTINCT R1.A
FROM R R1 , R R2
WHERE R1.A = R2.A

(a)

Q
A

R
A

R
A

(b)

SELECT DISTINCT R1.A
FROM R R1 , R R2
WHERE R1.B = R2.B

(c)

Q
A

R
A R

BB

(d)

Fig. 7. Example 6: Two queries (a) and (c) with identical signatures that are logically equivalent but not
pa�ern-isomorphic. Their associated Relational Diagrams are shown in (b) and (d), respectively.

E������ 6 (D�������� ��������). Consider table '(�,⌫) and the two Datalog queries &1 (') and
&2 (') with

&1 (G) :�'(G, _),'(G, _).
&2 (G) :�'(G,~),'(_,~).

Both queries are logically equivalent to & (G) :�'(G, _), and thus also logically equivalent to each
other. However,&1 and&2 represent di�erent patterns:&1 never uses the second attribute of ' whereas
&2 uses that attribute to join both occurrences of '. This di�erence becomes even more apparent in
SQL: Fig. 7a would even work if ' was unary, whereas Fig. 7c requires ' to be at least binary.
We next show that table dissociation allows us to formally distinguish the two patterns. First,

notice that both queries have two occurrences of ' as table references, and hence we need to associate
each individual appearance to the “role” it plays semantically in the query. We achieve this by �rst
dissociating the two occurrences of ' into two fresh input tables (with the same schema). The two
dissociated queries are & 01 ('1,'2) and & 02 ('3,'4) with

& 01 (G) :�'1 (G, _),'2 (G, _).
& 02 (G) :�'3 (G,~),'4 (_,~).

It is easy to verify that neither of the two possible mappings ⌘1 = {('1,'3), ('2,'4)} and
⌘2 = {('1,'4), ('2,'3)}, preserves logical equivalence for the dissociated queries. For example,
'1 (1, 2),'2 (1, 3) returns an answer for & 01 but not for &

0
2, under neither ⌘1 nor ⌘2.

However, &1 is pattern-isomorphic to the TRC query @3 (') with
{@3 (�) | 9A1 2', A2 2' [@.� = A1 .� ^ A1.� = A2.�]}

To see that, notice that its dissociated query @03 ('5,'6) with

{@03 (�) | 9A1 2'5, A2 2'6 [@.� = A1 .� ^ A1.� = A2 .�]}
allows the isomorphism ⌘3 = {('1,'5), ('2,'6)} from & 01 to @

0
3 that preserves logical equivalence.

By the same arguments, &1 is pattern-isomorphic to the SQL query in Fig. 7a, and &2 is pattern-
isomorphic to the SQL query in Fig. 7c.

By design, our de�nition excludes views and intermediate tables such as Intensional Database
Predicates inDatalog from the de�nition of table references. To see why, consider a query returning
nodes that form the starting point of a length-3 directed path:

&1 (G) :�⇢ (G,~), ⇢ (~, I), ⇢ (I,F).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 61. Publication date: February 2024.



61:16 Wolfgang Ga�erbauer and Cody Dunne

Datalog⇤

RA⇤
TRC⇤
SQL⇤

RD⇤

(a)

RA⇤ Datalog⇤ TRC⇤ SQL⇤ RD⇤

/ /

(b)

Fig. 8. Theorem 14: (a) A diagram summarizing the representation hierarchy between the non-disjunctive frag-
ments of 4 query languages and Relational Diagrams⇤ (shown as RD⇤). (b) Directions of pa�ern-preservation
(and non-preservation) used in the proofs.

The following Datalog query uses the same logical pattern (�nd three edges that join and keep the
starting node), even though it de�nes the intermediate intensional database predicate � :

� (~) :�⇢ (~, I), ⇢ (I,F).
& 01 (G) :�⇢ (G,~), � (~).

4.3 Comparing the “pa�ern-expressiveness” of relational languages
We next add the �nal de�nition needed to formally compare relational query languages based on
their relative abilities to represent relational query patterns.

De�nition 13 (Representation equivalence). We say that a query language L2 can pattern-represent
a query language L1 (written as L1 ✓rep L2) i� for every legal query expression @1 2 L1 there
is a pattern-isomorphic query @2 2L2. We call a query languages L2 pattern-dominating another
language L1 (written as L1 (rep L2) i� L1 ✓rep L2 but L1 +rep L2. We call L1,L2 representation
equivalent (written as L1 ⌘rep L2) i� L1 ✓rep L2 and L1 ◆rep L2, i.e., both language can represent
the same set of relational patterns.

We are now ready to state our result on the hierarchy of pattern expressiveness of the non-
disjunctive fragment of the four languages de�ned earlier (Section 2) and our proposed relational
diagrammatic representation Relational Diagrams⇤ (Section 3):

T������ 14 (R������������� ���������). RA⇤ (rep Datalog⇤ (rep TRC⇤ ⌘rep SQL⇤ ⌘rep
Relational Diagrams⇤ (see Fig. 8).

In addition to containing all proofs, our optional online appendix [32] shows how the separation
between RA⇤ and Datalog⇤ disappears after adding the antijoin operator to the basic operators
of RA⇤, while the separation from TRC⇤ remains. The proof demonstrates that relational calculus
has relational patterns that cannot be expressed in relational algebra. The important consequence
is that RA⇤, Datalog⇤ or any diagrammatic language modeled after them would not be a suitable
target language for helping users understand all existing relational query patterns (including those
used by SQL⇤). Our related work (Section 7) shows that most existing visual query representations
are modeled after relational algebra in that they model data �owing between relational operators,
which implies they cannot faithfully represent all relational query patterns from TRC⇤ or SQL⇤.

4.4 Similar pa�erns across schemas
We next extend the notion of pattern equivalence to allow comparing queries across di�erent
schemas. We call this concept “pattern similarity” and de�ne it as a Boolean condition: two queries
either have a similar pattern or not. The intuition is simple and best illustrated with the two
queries from Fig. 2: As written those queries are not logically equivalent and thus they can’t be
pattern-isomorphic. However, if we �rst replace the table and attribute names from @1 with table
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names from @2 in a reversible (thus bijective) way, then the thus modi�ed query @01 would be
pattern-isomorphic to @2.
More formally, call a schema mapping _ from query @1 to @2, a bijective mapping that replaces

table names, attribute names, constants, and attribute order appearing in @1 with those from @2.

De�nition 15 (Similar Patterns). Given two queries @1 and @2. The queries use a similar pattern i�
there is a schema mapping _ from @1 to @2 s.t. _(@1) and @2 are pattern-isomorphic.

E������ 7. For our example from Fig. 2, consider a mapping _ that replaces ‘Sailor’ with ‘SX’,
‘Reserves’ with ‘SPX’, ‘Boat’ with ‘PX’, ‘sname’ with ‘sname’, ‘sid’ with ‘sno’, and ‘bid’ with ‘pno’.
Then the thus modi�ed query _(@1) is pattern-isomorphic with @2.

5 RELATIONAL COMPLETENESS
Tomake Relational Diagrams relationally complete, we now remove the non-disjunction restrictions
and allow disjunctions and unions in all four relational query languages (Section 2). This means
we must also add a corresponding syntactic device to Relational Diagrams that achieves logical
equivalence to the other relational query languages. Unfortunately, this means that Relational
Diagrams are no longer representation-equivalent to TRC. Can this be addressed in the future by a
better diagram design? Based on the current understanding of the inherent limits of diagrams to
express disjunctive information [49, 50] (see also the colored car example in the online appendix
[32]), such an extension would require adding non-diagrammatic abstractions (also called “syntactic
devices”).
The syntactic device that makes Relational Diagrams relationally complete is inspired by the

representation of disjunction in Datalog. It was also proposed by Peirce in his discussion of Euler
diagrams [43, 4.366] (see also [49, sect. 2.3.1]): we allow placing several Relational Diagrams⇤ on the
same canvas, each in a separate union cell. Each cell of the canvas then represents only conjunctive
information, yet the relation among the di�erent cells is disjunctive (a union of the outputs).

We next illustrate with two examples logical transformations that are not pattern-preserving but
that guarantee relational completeness. These transformations, together with union cells, make
Relational Diagrams relationally complete: every query expressible in full RA, safe TRC,Datalog¬, or
our prior SQL⇤ fragment extended by union and disjunctions of predicates7 can then be represented
as a logically-equivalent Relational Diagram. The �rst example shows how to avoid disjunctions if
they are not at the root level. The second shows how to replace disjunctions in the root by unions
of queries.
E������ 8 (R�������� ������������). Consider the SQL query from Fig. 9a which contains a
disjunction and is not in SQL⇤. Using De Morgan’s Law with quanti�ers ¬9A 2' [� _ ⌫] = ¬(9A 2
' [�] _ 9A 2' [⌫]) = ¬9A 2' [�] ^ ¬9A 2' [⌫], we can �rst reformulate the conditions including
disjunction as DNF, and then distribute the quanti�er over the conjuncts. This leads to a disjunction-
free query, yet leads to an increased number of table references:

{@(�) | 9A 2' [@.�=A .� ^ ¬(9B 2(
[¬(9A2 2' [(A2.⌫=B .⌫ _ A2 .⇠ =B .⇠) ^ A2.�=A .�])])]}

={@(�) | 9A 2' [@.�=A .� ^ ¬(9B 2(
[¬(9A2 2' [A2 .⌫=B .⌫ ^ A2.�=A .�]) ^
¬(9A3 2' [A3.⇠ =B .⇠ ^ A3.�=A .�])]]}

7Extend the grammar from Fig. 3 with one additional rule: P::= ‘(’P OR P‘)’ and making adjustments for allowing the UNION
clause between non-Boolean queries.
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SELECT DISTINCT R.A
FROM R
WHERE not exists
(SELECT *
FROM S
WHERE not exists
(SELECT *
FROM R AS R2
WHERE (R2.B = S.B
OR R2.C = S.C)
AND R2.A = R.A))

(a)

SELECT DISTINCT R.A
FROM R
WHERE not exists
(SELECT *
FROM S
WHERE not exists
(SELECT *
FROM R AS R2
WHERE R2.B = S.B)
AND R2.A = R.A)

AND not exists
(SELECT *
FROM R AS R2
WHERE R2.C = S.C
AND R2.A = R.A))

(b)

Q
A

R
A

R

B
A

S
B
CR

C
A

(c)

(SELECT
DISTINCT R.A

FROM R)
UNION
(SELECT
DISTINCT S.A

FROM S)

(d)

Q
A

R
A

Q
A

S
A

(e)

Fig. 9. Illustrations for Example 8 on replacing disjunctions: (a) SQL with disjunctions, (b) logically-equivalent
(yet not representation-equivalent) SQL⇤ statement, and (c) Relational Diagrams. Illustrations for Example 9
on creating the union of queries: (d) union of SQL⇤ statements, and (e) Relational Diagrams with union cells.

Fig. 9b shows this query as representation-equivalent SQL⇤ query, and Fig. 9c as Relational Diagram.

E������ 9 (U���� �� ������). Consider two unary tables '(�) and ( (�) and the TRC query

{@(�) | 9A 2' [@.� = A .�] _ 9B 2( [@.� = B .�]}
We can write this query as a union of disjunction-free TRC⇤ queries:

{@(�) | 9A 2' [@.� = A .�]} [ {@(�) | 9B 2( [@.� = B .�]}
Figure 9d shows a pattern-isomorphic SQL query, and Fig. 9e shows it as Relational Diagrams with
two separate Relational Diagrams⇤ queries, each in a separate union cell, and each with the same
attribute signature in the output table. This query cannot be rewritten without the union operator in
RA, nor Relational Diagrams⇤ without union cells.

The additional validity criterion for multiple union cells follows the conditions of union or
disjunction in the named perspective [1] of query languages: for disjunction in TRC, each operand
needs to have the same arity, and the mapping between them is achieved by reusing the same
variables.

De�nition 16 (Validity—extending De�nition 7)).

(6) The output tables in multiple cells for the same query need to have the same name and same
set of attributes.

T������ 17 (C�����������). Relational Diagrams (Relational Diagrams⇤ extended with union
cells) are relationally complete.

The proof is in the optional online appendix [32]. It uses the earlier proven logical expressiveness
of Relational Diagrams⇤ and the fact that disjunctions can either be rewritten with DeMorgan or
be pushed to the root. It also immediately follows that Relational Diagrams⇤ (without union cells)
can already express any logical statement.

��������� 18 (C�����������). Any logical statement in �rst-order logic can be expressed by a
logically-equivalent Relational Diagrams⇤.
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Group 1 SQL RD SQL RD... RD SQL RD

Group 2 RD SQL RD SQL... SQL RD SQL

1 2 3 16 30 31 32

1st half (16 questions) 2nd half (16 questions)

SQL ...

RD ...

17

• All participants see the jth question on the jth schema.
• The actual question they see is chosen from 4 patterns and 2 conditions.

Fig. 11. Illustration of the randomization and counterbalancing in our within-subjects study design.

6 TWO APPLICABILITY STUDIES
6.1 Relational Diagrams for Textbook�eries

47 (80%)
48 (81%)
49 (83%)

53 (90%)
53 (90%)

56 (95%)

Datalog
Relational Algebra

QBE
QueryVis

Non-disjunctive fragment
Relational Diagrams

Fig. 10. Section 6.1: Fraction among 59 queries from 5 textbooks
with pa�ern-isomorphic representations in listed languages.

We analyzed the proportion of re-
lational calculus queries encoun-
tered in learning scenarios that have
pattern-isomorphic representations
in either Relational Diagrams, RA,
Datalog,�eryVis [18], or QBE [57].
For that purpose, we identify 59
queries across 5 popular textbooks
with sections on relational calculus
[15, 19, 25, 44, 51].

Among those 59 queries, the number of queries that have pattern-isomorphic representations are
56 (94.9%) for Relational Diagrams, 53 (89.8%) for �eryVis, 49 (87.5%) for QBE, 48 (85.7%) for RA,
and 47 (79.7%) for Datalog. The fraction for�eryVis happens to be identical to the non-disjunctive
fragment. Standard Datalog cannot express disjunctions in the body of a query and thus performs
worse than RA.8 For QBE, notice that QBE 1) can express disjunctions within the same relations,
yet 2) also requires the same safety conditions as Datalog. Furthermore, theta joins require the use
of a non-diagrammatic conditions box [25, Appendix C]. RA extended with a primitive antijoin
operator covers the same fraction as QBE. More details and all queries are given in the online
appendix [32].

6.2 Controlled user study
We conducted a controlled experiment on Amazon Mechanical Turk (MTurk) [5] to evaluate the
utility of Relational Diagrams for recognizing patterns. Our study investigates 3 main questions:
(1) Can SQL users identify common relational query patterns faster using Relational Diagrams
than SQL? (2) Can participants identify patterns faster over time, thus can users learn the patterns
under repeated exposure to the same patterns? (3) Do participants have a similar accuracy (i.e. a
comparable numbers of correct responses) using Relational Diagrams or SQL? We chose SQL as a
baseline for comparison because we expect that fewer workers on MTurk understand TRC.
Open practices. Following best practices in user design, we preregistered the study design on

OSF before collecting the data [32]. All code for generating the stimuli, the stimuli, the tutorial
provided to participants, the resulting data (pilot = = 13, study = = 50), the analysis code, and
changes from the preregistration are available on OSF [32]. More details on the study design and
procedure are provided on arXiv [32].

8Modern variants of Datalog exist that can express disjunctions in the body, such as Sou�e [52], but those are not standard.
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Counterbalanced within-subjects study with randomization. We asked participants 32
questions, each having them identify which of 4 relational query patterns was presented. The
exposure for each participant alternates between two conditions (Relational Diagrams and format-
ted SQL text). Each question uses a di�erent relational schema found or adapted from common
textbooks. We used counterbalancing and randomization to reduce ordering e�ects. Concretely,
we start half the participants using SQL (group 1) and the rest using Relational Diagrams (group
2), after which participants alternate conditions with each question (see Figure 11). Moreover, we
randomize the order in which patterns are presented such that each pattern-condition combination
appeared twice in the �rst 16 questions (1st half) and twice in the second 16 questions (2nd half).
The result is that each participant sees each of 4 patterns, in each of 2 conditions, exactly 2 times
(16 = 4 ⇥ 2 ⇥ 2), in each of the 2 halves (�rst and second 16 questions). This randomization helps
reduce cheating as well as order e�ects. This setup necessitated creating 256 di�erent stimuli
(32 schemas ⇥ 4 patterns ⇥ 2 conditions), creation of which we semi-automated. The 4 patterns,
illustrated with the sailors-reserve-boats schema, were:
(1) Find sailors who have reserved some boat.
(2) Find sailors who have not reserved any boat.
(3) Find sailors who have not reserved all boats.
(4) Find sailors who have reserved all boats.

We chose these patterns because we are interested in how Relational Diagrams can be used in
educational settings, and they represent 4 di�erent query structures. In particular, double-negation
from pattern (4) is challenging for novice users to understand and is easy to misinterpret [40].
Moreover, pattern (4) does not have a pattern-isomorphic representation in RA.

Several prior user studies [39, 45, 46] have shown that diagrammatic representations of queries
can help users understand queries faster. Key innovations in our design are: (1)We repeatedly expose
participants to 4 identical patterns across 32 di�erent schemas, allowing us to semi-automatically
design 256 questions instead of a few hand-curated ones (each participant saw only 32, one for
each schema). (2) Our questions are balanced across the �rst 16 and second 16 questions, which
allows us to track learning over time. We are not aware of prior study design that allowed studying
learning in an online study. (3) Our setup is randomized and parameterized, which creates a space
of 2 · 25404 possible treatments, i.e., participants are unlikely to see the same question sequence,
reducing the chance of cheating. (4) We used monetary incentives for both time and accuracy,
inspired by our recent work on �eryVis [39],
Participants. We conducted an = = 13 pilot study in the lab. After registering our study on

OSF [32] and receiving approval from our Institutional Review Board (IRB), we began recruiting
participants on MTurk [5]. Participants needed to have at least 500 completed tasks approved by
requesters and at least 97% of their completed tasks approved. For us to approve their task, they
needed to have at least 50% accuracy (i.e. answer at least 16 of our 32 questions correctly). Thus
a participant who answered every question in SQL correctly and every question in Relational
Diagrams incorrectly (or v.v.) would be included. Among the 120 task submissions, only 58 were
approved. Our preregistration speci�ed 50 participants, so we dropped 8 records and kept the
counterbalancing intact by using the data from the �rst 25 participants who started in each condition.
Tutorial. Participants were given a self-paced 8-page tutorial on Relational Diagrams. The

tutorial introduced our basic visual notations by showing SQL examples and their diagrams.
The mean (resp. median) time spent on the tutorial and consent form was approximately 6.33
(respectively 3.5) minutes. The tutorial is available in our supplemental material [32].

Analysis. (1) As a within-subjects study, we �rst determined the per-participant median time
for each condition. We used the median (instead of mean) for time because it is robust to outliers,
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(a) Result 1. (Speed) (b) Result 3. (Accuracy)

(c) Result 2. (Learning)

Fig. 12. User study: Triangles show median times per condition or mean accuracy for each of the = = 50
successful participants. Violin plots show the data distribution, the median with a solid line, and the 25% and
75% quantiles with dashed lines. Error bars show the 95% BCa bootstrapped confidence intervals (CI) around
the mean or median. Lines connect related marks. Relational Diagram is abbreviated here by RD.

although the median often requires more participants for the same statistical power. We computed
the relative time Relational Diagrams/SQL needed per participant and again calculated themedian
across all participants. Here we used the median of the ratios as the median creates an unbiased
estimator (in contrast to the mean of ratios, see the online appendix [32] for details). (2) Likewise,
we computed the median per-participant time for each condition spent on the 1st half (16 questions),
on the 2nd half (16 questions), and the median ratio of the 2nd/1st times. (3) We also computed the
per-participant accuracy for each condition and their di�erence. Then, across all participants, we
calculated the mean of the di�erences in accuracy. Here we used the mean (instead of median)
since the values are bounded within [0, 1] (i.e. there are no outliers) and mean is more appropriate
for discrete values like accuracies (i.e. 16/16, 15/16, ...). We analyzed these mean/median e�ect
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sizes [17, 23] and used bias-corrected and accelerated (BCa) 95% con�dence intervals (CIs) to show
their range of plausible values [22, 24].

Results. We summarize 3 key takeaways. The executed Python notebook has more details [32].

Result 1. (Speed) We have strong evidence that participants were meaningfully faster at identifying
patterns using Relational Diagrams than SQL: median ratio Relational Diagrams/SQL = 0.70, 95% CI
[0.63, 0.77].

Our choice of visualization is a variant of Raincloud plots [4] and is inspired from recent work in the
visualization literature [16] discussing various ways to juxtapose multiple visualizations (“clouds +
rain + lightning”) in the same chart for increasing information content. In that framework, each
of our charts consists of (8) density plots that show an overview of the shape of the distribution
(the “cloud”), (88) unjittered dot plots that show the raw data (the “rain”: here we deviate from [16]
in using triangles instead of circles which, in our opinion, are more easily countable due to their
visible vertices), and (888) 95% con�dence intervals that provide summary statistics (the “lightning”).
Furthermore, whenever we compare alternative modalities (“repeated measures”), we also use (4)
paired plots with lines connecting summary statistics and/or raw data.
Figure 12a (top) uses a paired plot to show the individual median per-participant times (and

overall median across participants together with con�dence interval) for both SQL (13.61, 95% CI
[12.37, 16.43] in blue on the top) and Relational Diagrams (10.11 95% CI [8.38, 11.26] in orange on
the bottom). Fig. 12a (bottom) shows the per-participant ratios between median times. Notice that
the 95% con�dence interval of the overall median [0.63, 0.77] does not overlap 1.00, which gives
strong evidence for our conclusions.

Result 2. (Learning) Participants got meaningfully faster during the study in both conditions.

Figure 12c shows the individual times for H1 (1st half, i.e. the �rst 16 questions) and H2 (2nd half,
i.e. the last 16 questions), for both SQL (in blue on the top) and Relational Diagrams (in orange on
the bottom), together with medians and CIs. We see that the overall trend (Relational Diagrams
being faster than SQL) is repeated across both halfs, and additionally that learning is taking place
(participants need less time in H2 than in H1 in both conditions). The median ratios H1/H2 we
used for inference (not shown but in our supplemental material) are 0.71, 95% CI [0.63, 0.79] for
Relational Diagrams, and 0.70, 95% CI [0.51, 0.79] for SQL.

Result 3. (Accuracy) Participants were considerably more often correct with Relational Diagrams
than with SQL: mean di�erence in accuracy Relational Diagrams � SQL = 21%, 95% CI [13%, 29%].

Figure 12b (top) shows that the per-participant accuracies and the overall mean accuracies were
meaningfully higher with Relational Diagrams than with SQL. Notice that each participant an-
swered 16 questions in each condition, thus possible scores are 16/16 = 1, 15/16 ⇡ 0.94, etc. Thus
accuracy per user and modality is discretized in multiples of 1/16 (in contrast to completion time,
which is a continuous value and di�ers, even if slightly, between any two users). We thus use
stacked triangles akin to a Wilkinson dot plot [56] to avoid overplotting and show individual data
points. Figure 12b (bottom) shows the per-participant di�erence in mean accuracy. As the 95% CI
of the overall mean [13%, 29%] does not overlap 0, we have strong evidence for our conclusion.
Participant comments. Participants could optionally write feedback at the end of the study.

Few participants did, but those who did were encouraging, such as, “I found your diagrams very
helpful in understanding the queries. At �rst I didn’t get it, but after staring at the diagrams for a
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few minutes it clicked and everything became super simple. I saw the patterns and it became just
looking for the correct pattern to know which query was being used.”

7 RELATEDWORK
7.1 Peirce’s beta Existential Graphs
Relational Diagrams represent nested quanti�ers similarly as the in�uential and widely-studied
Existential Graphs by Charles Sanders Peirce [43, 48, 50] for expressing logical statements (i.e.
Boolean queries). Peirce’s graphs come in two variants called alpha and beta. Alpha graphs represent
propositional logic, and beta graphs represent �rst-order logic (FOL). Both variants use so-called
cuts to express negation (similar to our negation boxes), and beta graphs use a syntactical element
called the Line of Identity (LI) to denote both the existence of objects and the identity between objects.

Di�erences. The four key di�erences of beta graphs vs. Relational Diagrams are: (1) beta graphs
can only represent sentences and not queries; (2) beta graphs cannot represent constants, thus
selections cannot be modeled and instead require dedicated predicates; (3) beta graphs can only
represent identity predicates (and no comparisons); and (4) Lines of Identity (LIs) in beta graphs
have multiple meanings (existential quanti�cation and identity between objects) and are a primary
symbol.9 This function overload of LIs can make reading the graphs ambiguous. We, in contrast, have
predicates inspired by TRC. Lines only connect two attributes and have no loose ends. Interpreting
a graph as a TRC formula is straightforward and can be summarized in a simple set of rules (recall
Section 3). We discuss this important conceptual di�erence in detail in the online appendix [32].

7.2 �eryVis
Some of our design decisions are similar to an earlier query representation called �eryVis [18,
29, 39]. In �eryVis diagrams, grouping boxes are used to group all tables within a local scope,
i.e., for each individual query block. Those boxes thus cannot show their respective nesting, and an
additional symbol of directed arrows is needed to “encode” the nesting. The high-level consequence
of those design decisions is that (1)�eryVis does not guarantee to unambiguously visualize nested
queries with nesting depth � 4 (please see our online appendix [32] for a minimum example), (2)
each grouping box needs to contain at least one relation (thus�eryVis cannot represent the query
in Fig. 5), and (3) �eryVis cannot represent general Boolean sentences (e.g. the sentence “All
sailors have reserved some red boat”). Thus�eryVis is not sound and not relationally complete,
even for the disjunctive fragment.

7.3 Other relationally-complete formalisms
The online appendix [32] compares Relational Diagrams to other related visualizations like DFQL
(Data�ow Query Language) [10, 14]. On a high level, all visual formalisms that we are aware
of and that were proven to be relationally complete (including those listed in [10]) are at their
core visualizations of relational algebra operators. This applies even to the more abstract graph
data structures (GDS) from [9] and the later graph model (GM) from [11], which are related to our
concept of query representation. The key di�erence is that GDS and GM are formulated inductively
based on mappings onto operators of relational algebra. They thus mirror data�ow-type languages
where visual symbols (directed hyperedges) represent operators like set di�erence connecting
two relational symbols, leading to a new third symbol as output. Even QBE [57] uses the query
pattern from RA and Datalog¬ of implementing relational division (or universal quanti�cation) in a
data�ow-type, sequential manner. Similarly, SIEUFERD [7], a direct manipulation spreadsheet-like
interface, uses direct translation of relational algebra operators to prove SQL-92 completeness. This
9Every beta graph has lines, and graphs with lines but no predicates have meanings. See, e.g., the de�nition in [50, p. 41].
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translation involves expressing set di�erence with outer joins and “IS NULL” conditions. We have
proved that there are simple queries in relational calculus that cannot be represented in relational
algebra with the same number of relational symbols. Thus any visual formalism based on relational
algebra cannot represent the full range of relational query patterns.

7.4 Other diagrammatic and non-diagrammatic query representations
Visual SQL [38] is a visual query language that also supports query visualization. With its focus on
query speci�cation, it maintains the one-to-one correspondence to SQL, and syntactic variants of
the same query lead to di�erent representations. SQLVis [41] shares motivation with �eryVis.
Similar to Visual SQL, it places a stronger focus on the actual syntax of a SQL query and syntactic
variants like nested EXISTS queries change the visualization, and join conditions are expressed
as text. StreamTrace [8] focuses on visualizing temporal queries with work�ow diagrams and a
timeline. It is an example of visualizations for spatiotemporal domains and not the logic behind
general relational queries. DataPlay [2, 3] allows a user to specify their query by interactively
modifying a query tree with quanti�ers and observing changes in the matching/non-matching
data. It does not have a union operator and is thus not relationally complete. For a more detailed
discussion we refer to two recent tutorials on visual representations of relational queries [30, 31].

8 CONCLUSIONS AND FUTUREWORK
We motivated a criterion called pattern-isomorphism that captures the patterns across relational
languages and gave evidence for its importance in designing diagrammatic representations. We
formulated the non-disjunctive fragments of Datalog¬, RA, safe TRC, and corresponding SQL
(interpreted under set semantics) that naturally generalize conjunctive queries to nested queries
with negation. We prove that this important fragment allows a rather intuitive and, in hindsight,
natural diagrammatic representation that can preserve the query pattern used across all four
languages. We further prove that this formalism, extended with a representation of union, is
complete for full safe relational calculus (though not pattern-preserving) and showed via user
studies strong evidence that this diagrammatic representation allows users to understand query
patterns faster and more accurately than SQL, even with minimal training.

Finding a pattern-preserving diagrammatic representation for disjunction and even more general
features of SQL (such as grouping and aggregates) is an open problem. For example, it is not clear
how to achieve an intuitive and principled diagrammatic representation for arbitrary nestings
of disjunctions, such as “'.� < ( .⇢ ^ ('.⌫ < ( .� _ '.⇠ < ( .⌧)” or “('.� > 0 ^ '.� < 10) _ ('.� >
20 ^ '.�< 30)” with minimal additional notations. Grounded in a long history of diagrammatic
representations of logic, we gave intuitive arguments for why visualizing disjunctions is inherently
more di�cult than conjunctions, with some experts believing it is not possible [49, 50] unless one
adds non-diagrammatic abstractions.
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