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Abstract

Evaluations—encompassing computational evaluations, benchmarks and user studies—are essential tools for validating the
performance and applicability of graph and network layout algorithms (also known as graph drawing). These evaluations not
only offer significant insights into an algorithm’s performance and capabilities, but also assist the reader in determining if the
algorithm is suitable for a specific purpose, such as handling graphs with a high volume of nodes or dense graphs. Unfortunately,
there is no standard approach for evaluating layout algorithms. Prior work holds a ‘Wild West’ of diverse benchmark datasets
and data characteristics, as well as varied evaluation metrics and ways to report results. It is often difficult to compare layout
algorithms without first implementing them and then running your own evaluation. In this systematic review, we delve into
the myriad of methodologies employed to conduct evaluations—the utilized techniques, reported outcomes and the pros and
cons of choosing one approach over another. Our examination extends beyond computational evaluations, encompassing user-
centric evaluations, thus presenting a comprehensive understanding of algorithm validation. This systematic review—and its
accompanying website—guides readers through evaluation types, the types of results reported, and the available benchmark
datasets and their data characteristics. Our objective is to provide a valuable resource for readers to understand and effectively
apply various evaluation methods for graph layout algorithms. A free copy of this paper and all supplemental material is available

at osf.io, and the categorized papers are accessible on our website at https://visdunneright.github.io/ gd-comp-eval/.
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1. Introduction

Graph and network layout algorithms map nodes and edges in a
graph to coordinates in space—a.k.a., graph drawing (GD). Sev-
eral aesthetic criteria have been developed to evaluate the quality
of the output of a graph layout algorithm. These criteria are usually
based on factors that influence the readability of the resulting visu-
alization. For example, readability can be dramatically improved by
reducing edge crossings [Pur97]. Graph layout algorithms strive to
optimize the placement of the elements of a graph according to such
criteria, sometimes directly but often indirectly. Aesthetic criteria
are often described by quantitative measures, such as the number of
crossings or the total edge length [Pur02, DRSM15].

The process of presenting a layout algorithm often involves
demonstrating its performance characteristics through experiments

with diverse datasets and a comparison of quantitative results.
These experiments, or computational evaluations, entail running a
set of layout algorithms on a series of graphs and reporting quan-
titative measures about the resulting layouts and/or the execution
of the algorithms. This practice can be referred to as benchmarks,
a concept that other fields of computer science also utilize. For in-
stance, computer graphics techniques are evaluated on their quality
and performance in rendering intricate 3D scenes through graphical
benchmarks. Similarly, benchmarks are used in the testing and
comparison of electronic hardware, such as the latency of a router.

User evaluations and user studies also play an instrumental role
in understanding how a layout algorithm performs in real-world
scenarios. These evaluations can reveal aspects such as an algo-
rithm’s usability, intuitiveness, and overall user experience, provid-
ing a complementary perspective to the more technically oriented
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Figure 1: Ranked lists showing the categories and frequency of features in our collection. The number to the right of each item shows how
many papers it was present in. Categories with fewer than two occurrences have been left out. Each paper was tagged with multiple categories
if appropriate. Our systematic review can be navigated from this table by clicking on the section number near the titles.

computational evaluations. They offer valuable insights into how
end-users will likely receive and use the algorithm, which is an as-
pect that purely computational evaluations may not fully capture.

Assessing the results from both computational and user evalu-
ations can guide a visualization designer in making an appropri-
ate algorithmic choice for their specific data and target user tasks.
For instance, the questions ‘Can this algorithm lay out a graph with
10,000 nodes within 3 seconds?’ or “Which of these two algorithms
produces fewer edge crossings for graphs with many high-degree
nodes?’ can quickly filter out many algorithms. Similarly, user stud-
ies can answer questions about the ease of use and understandability
of the layouts produced by these algorithms.

However, as this systematic review will show, the community
uses a wide variety of computational evaluation approaches. In par-

ticular, there is a diversity of benchmark datasets (graphs) used with
distinct characteristics, various evaluation metrics are proposed, and
results are reported in many different ways. These specifics affect
what we learn from a computational experiment and, naturally, what
a reader can learn from the results about whether a proposed algo-
rithm fits their use case. The wide variety in computational evalu-
ations makes it difficult to perform meta-analyses and compare re-
sults from multiple studies, which is further complicated by missing
supplemental materials.

Our contribution: To aid researchers in designing evaluations
for graph layout algorithms, we performed a systematic review of
206 papers that present graph layout algorithms. We classified each
paper by which graph features the algorithm handles, the evalua-
tion approach used, what datasets were used in the evaluation, the
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Figure 2: There are several design choices to make before running a computational evaluation. Here we show elements to consider in the

design (boxes) and how each choice informs your other options (arrows). For instance, an algorithm designed to work with @ large graphs

is likely to be evaluated based on its scalability, which, in turn, leads to more likelihood of reporting O running time results. Dashed arrows
indicate partial dependencies in which elements are only dependent in some cases.

number and size of the graphs in the datasets, what metrics were
reported and whether supplemental materials were available. We
are particularly interested in how these categories influence each
other. For instance, an algorithm designed to lay out large graphs
will likely be evaluated for scalability, e.g. using run time as a met-
ric on a dataset with large graphs.

The collection of papers we examined and classified is available
on the website for this paper at https://visdunneright.github.io/gd-
comp-eval/. To ensure that the survey stays relevant, the website
lets users add new papers by filling out a form and submitting it as a
GitHub issue. We also provide the data as a JSON file and the source
code of our website at osf.io [DBCSD23].

2. How to use this paper

Designing an evaluation for a graph layout algorithm implies nav-
igating each element in Figure 2—the choice of evaluation type,
choice of metrics to report, dataset size efc.—respecting the impli-
cations of each choice made. Each of these aspects is extensively
detailed in Section 4 which explains our classifications, the impli-
cations of design choices and an analysis of how these aspects of-
ten interact in published evaluations. This section is not meant to
be read sequentially as a narrative. Rather, it is designed so that
researchers can quickly find information relevant to their design
choices. Figure 1 and the list at the beginning of Section 4 provide
an overview of eight aspects to consider when designing the evalua-
tion. Each aspect is assigned a colour (m | 1 W M = W m) so that
references to it in the text or chart can be more readily identified.

We also include a series of co-occurrence matrices, which are
meant to illustrate how these aspects interact in published evalua-
tions and, in particular, how a choice in one aspect informs their
decision space. For instance, a researcher working with N-layered
graphs can use Figure 10 to look up other @ graph features
these graphs commonly have. The top row there shows that these
types of graphs often contain dynamic—discrete elements. Likewise,
Figure 11 would help the researcher find datasets containing N-

layered graphs (perhaps Movie Plots) and Figure 8 to look up what
metrics are commonly reported with N-layered graphs.

‘We will describe how we designed one of our computational eval-
uations to illustrate how a researcher can use this paper. Di Bar-
tolomeo et al. [DBPB*22] were tasked with representing a net-
work of authors collaborating on VIS papers. Thus, the starting
point was the © dataset. As papers may have three or more au-
thors, any co-authorship relationship could logically be modelled
as a hyperedge—making the dataset have @ hypergraph features.
The fact that the dataset was given also determined the @ size of
the graph. After we developed several alternative layout algorithms
for these hypergraphs, we chose to write a @ comparative eval-
uation paper. We used a (G Quantitative Aggregated evaluation,
which necessitated running the layouts against a (DS} large set of
graphs. We also created two case studies as an additional @ eval-
uation type. Finally, we chose which @ results to measure: number
of crossings, edge length and running time in aggregated form for
the quantitative evaluation; individual for the case studies.

Another way you might use this paper is if a peer reviewer asks
you to add a user study before accepting your manuscript. Herein
you may be able to find @ results you can measure in a compu-
tational evaluation that are reasonable proxies for the human per-
formance the reviewer cares about—indeed, many aesthetic criteria
(section 11.2) are grounded in user studies.

3. Methodology

This section describes the methodology for our systematic review,
including how we gathered relevant papers in multiple phases, re-
moved non-relevant papers and validated our categorizations.

3.1. Collecting papers

Our paper collection and analysis process is illustrated in Figure 3.
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Figure 3: Literature sources organized in a flowchart. The numbers on the edges represent how many papers were taken into account. We
started from 264 papers published at graph drawing between 2016 and 2022, then took into account all of their citations, and added papers
collected from IEEE Xplore’s and the Eurographics digital library’s search functions. Additionally, if the results of an algorithm were compared
against something else, we included the compared algorithm as well. After applying our inclusion criteria and filtering out the duplicates, we

ended up with 206 included papers.

Graph layout literature is diverse and widely distributed across
many different venues. To aid us in finding all relevant work, we
divided the paper collection into two phases. We started with the
264 papers published at the GD Symposium over the last 7 years
(2016-2022). The last 7 years of GD provided a good starting point
to find a good overview of the most up-to-date research on graph lay-
out algorithms, and additional important work from previous years
was included through snowballing and using search engines, as de-
scribed later.

We manually examined each candidate paper, skimming the con-
tent but paying particular attention to the abstract, figures and evalu-
ation approach. We included every paper that introduced a 2D layout
algorithm, presented sections of layout algorithms (such as rank as-
signment or edge bundling) or compares different pre-existing lay-
out algorithms. We consider a layout algorithm to be any algorithm
that changes or defines the coordinates of nodes, edges or both. The-
orems, proofs, problem statements, posters and challenge submis-
sions were omitted. We still include papers that contain proof as a
form of validation as long as the paper itself is about a layout al-
gorithm. In addition, we chose to exclude 3D layout algorithms, as
their readability criteria and layout methods are vastly different than
2D ones. For a similar reason, we excluded adjacency matrix visual-
izations. The selection phase left us with 68 layout algorithm papers
from the last 6 years of GD.

GD is not the only venue where layout algorithms and their eval-
uations are presented. In phase two, we expanded our search to ad-
ditional venues to paint a more complete picture. We started with
the 68 selected GD papers and examined any papers they cited. The
objective was to collect the most popular and highly cited layout
algorithm papers that were either not published in GD or were pub-
lished before 2016. Out of 1246 citations, we restricted our list to
those with four or more citations from our subset, resulting in 32
candidate papers. Every time a paper had a journal version, we chose

to report on the journal version (e.g. CFG for EuroVIS and TVCG
for VIS). Duplicates were removed manually.

To include results from other relevant venues (such as TVCG and
VIS), we performed an automated search on IEEE Xplore and on the
Eurographics Digital Library. We did not search the ACM Digital
Library as we are unaware of any predominantly visualization or
GD venue with proceedings published by ACM. However, we en-
courage readers to extend this survey with any relevant papers we
have missed. See the Contribution Instructions on our website for
details. IEEE’s and Eurographics’ search engines returned 451 pa-
pers that had (1) any word in any metadata from this list: [graph, net-
work, layout] AND (2) filtering for categories [graph theory, com-
putational geometry, optimization, neural nets, trees (mathematics),
data structures, computational complexity]. Of these 451 papers, we
took into account the number of citations and computed, for every
year, the average number of citations and their standard deviation.
We restricted our list to papers cited at least the average plus stan-
dard deviation for that year. Afterward, we applied the inclusion and
exclusion criteria we used in phase one, resulting in 47 candidate pa-
pers. This brought the current total to 206 papers. The venues where
they were published are shown in Table 1.

Finally, we examined the citations of any of the 106 included pa-
pers that compared multiple layout algorithms. The 55 algorithm
papers that were cited and fit our criteria went directly into the ac-
cept pile. After removing duplicates, this last round of papers brings
our total to 206 included papers.

3.2. Validation

For consistency, each paper was examined by at least two authors
during all collection and analysis phases. We examined the pa-
pers in two cycles. In the first cycle, we started with a base set of
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Table 1: Venues where the papers in this review were published. Whenever
a paper had both a journal and a conference version, we chose to report on
the journal version.

Venue Number of papers
Graph Drawing 94
TVCG (incl. VIS) 40
CGF (incl. EuroVis) 28
PacificVIS 3
Other 41
Total 206

categories we were interested in and expanded from there as we no-
ticed trends. For instance, we noted the presence or absence of sup-
plemental materials from the beginning but later decided to expand
our analysis, e.g. including the type of storage used. After complet-
ing the first cycle, we cleaned up the collected data, removed redun-
dant categories and codified properties in each category.

In the second cycle, we checked over all the papers again, stan-
dardizing the tags used across all papers. The results of our collec-
tion and analysis can be accessed on https://visdunneright.github.io/
gd-comp-eval/ , where authors can also add new entries or suggest
modifications. Our data and supplemental material are also available
on osf.io.

4. In-Depth Categorization of Surveyed Papers

In this section, we discuss the process and results of our catego-
rization. Our categorization encompasses how researchers validate
their algorithms in the literature. For each category, we will give a
formal definition, detail how it was coded and finally proved an in-
depth analysis of its results. Some elements of the visual language
(such as Figure 1) we use are inspired by Kucher et al. [KPK18].

« 5 (@D Evaluation Type describes how the authors validate their
contributions. Whether the authors chose to evaluate their algo-
rithms using benchmarks on many graphs or examining a few case
studies, the evaluation type influences many of the other choices
that will be made.

L GF) Graph Features captures the characteristics present in the
graph that need to be taken into account by a layout algorithm. For
instance, the layering in a layered graph is a feature that needs to
be addressed, or the presence of clusters of nodes that must be
kept adjacent.

o 7 Q Dataset refers to the source of data (graphs) used to demon-
strate the effectiveness of a layout algorithm. There is a tendency
to utilize the same data set as previous similar work so as to sup-
port comparison. When available data are insufficient, authors
often generate synthetic data—with varying degrees of repro-
ducibility. We followed different procedures depending on the
origin of the data. If the data came from a previous collection,
we traced the source of the data. If the authors generate the data,
we examined how reproducible the process is by reading through
method descriptions and looking for supplemental material.

« 8 @ Dataset Size covers the number of the graphs used across
the paper. We examined the text of any evaluation section and
searched tables or figures with dataset information.

*9 @ Size of Graphs captures the nodes’ range in each pa-
per. We grabbed the lowest and highest node count reported in
tables or shown in figures. When insufficient details were present,
we estimated the graph size by manually counting nodes in the
figures or finding the data source. In both instances, illustrations
and toy examples are ignored from the count.

- 10 G Paper Type and Technique defines the structure and ex-
pectations of the paper. It is usually linked to the type of evalua-
tion the paper might conduct. For instance, papers proposing new
algorithms are usually expected to compare performance with
previous methods.

e 11 m Results Measured are attributes compared between two
or more methods. Similar to the Evaluation Type, we traverse
through the evaluation and the accompanying figures and tables
to derive the information.

« 12 @ Information Availability covers multiple aspects of how
reproducible the evaluation is, such as the availability of supple-
mental material, what code is provided (if any), the ease of finding
necessary information like data source and graph size and the re-
liability of any external links. Our ability to compare and verify
existing algorithms is intrinsically connected to how easy it is to
access the information needed to reproduce prior work. We first
checked if supplemental material and source code are present or
linked to in the paper, then on a publisher’s site, and finally, we did
a Google search for the paper’s title. Ease of access was checked
alongside the Dataset and Size of Graphs collection processes.

5. (3 Evaluation Type

What do I want to communicate to my reader about the algorithm
I am presenting? How many instances should I use in my dataset
to properly report my findings?

There are many varied ways to communicate computational find-
ings and analytical outcomes. Each method has its unique set of
benefits and potential drawbacks that necessitate careful evaluation
prior to making a decision on the most effective manner of data ex-
position. This decision is especially crucial when revealing the inner
workings of an algorithm and the resultant computations.

Consider, for instance, the seminal work of Fruchterman and
Reingold [FR91a]. Their paper, which introduces an early incar-
nation of the force-directed layout algorithm, places a significant
emphasis on the visual representation of the algorithm’s results. By
opting for a visual narrative, they engage the reader’s intuition and
perceptual cognition, offering an immediate and impactful display
of the algorithm’s output. However, the trade-off of this approach is
that it may sometimes eschew the granularity and precision offered
by numerical or statistical data.

In stark contrast to this approach, Chimani er al. [CMBO0S§]
adopted a rather different strategy. They present an aggregate anal-
ysis of results sourced from multiple algorithm runs executed on
a comprehensive set of graphs. This method effectively captures
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overarching trends and recurrent patterns. Moreover, it helps high-
light the robustness of the algorithm’s performance across a wide
variety of graph structures. But one might argue that this approach,
while providing a statistical overview, might lack the illustrative
clarity that visual diagrams can deliver.

At times, researchers choose to blend multiple presentation
methodologies to leverage the unique advantages of each. A case
in point is the work of Buchheim er al. [BCE*08]. This mixed-
methods approach allows for a more comprehensive and nuanced
understanding of the data, marrying the illustrative power of visual
representations with the statistical rigour of aggregated data. It aims
to provide the reader with both the bird’s-eye view of algorithmic
performance and the specific details of individual results, thus of-
fering a more rounded perspective.

In summary, the choice of how to report the results of an algorith-
mic operation is a matter of balancing visual clarity, statistical rigour
and the intended audience’s requirements. The diversity of these ap-
proaches reflects the complexity of conveying information in an ac-
cessible, informative and engaging manner. This choice heavily in-
fluences all the other categories we discuss below, and the evaluation
type should be picked carefully while considering what it is that the
authors want to communicate to their readers.

Focusing on presenting a limited set of graphs allows for the pre-
sentation of in-depth details about each one of the graphs, possibly
taking into account and discussing edge cases or particular graphs
with special features. A limited number of graphs can also be shown
visually, allowing the reader to form an idea about the result of the
application of the algorithm at a glance, enabling them to quickly
understand if an algorithm could be fit for a specific use case. Con-
versely, taking into account a large number of graphs can instead
offer insights into how the performance of the algorithm changes
when used with graphs with different variables: a classic example is
showing how the running time of an algorithm increases with graphs
of increasing sizes.

Among the papers collected in this survey, we found that most pa-
pers used Quantitative Aggregated evaluations (80 papers, as shown
in Figure 4), followed by Visual Comparisons (67 papers) and Case
Studies (62). As previously mentioned, one of the determining fac-
tors in distinguishing evaluation types is the number of graphs taken

into account in the evaluation, thus the €D dataset size is going
to be vastly influenced by the choice of evaluation type (as high-
lighted in Figure 6). We also found a relation between the choice of

evaluation and the €9 size of the graphs used: evaluations with
a limited number of graphs tended to use larger graphs, often us-
ing them as individual examples to show or compare the visual re-
sults of their algorithms on a few large instances. Conversely, ag-
gregate evaluations often used large collections of smaller graphs,
without many outliers in the number of nodes. The O quality met-
rics reported, too, change based on the evaluation type. Figure 8
shows the co-occurrences between the two. It is easy to see how
user-related metrics go hand-in-hand with user studies and expert
interviews (Figure 4), but it is also interesting to notice that Quanti-
tative Aggregated evaluations are the ones that most often use run-
ning time and crossing number as a metric—as a result of wanting to
produce visualizations that use numerical values such as the one in
Figure 5.

0,
y 2,
D Cx O, .
&0, Ox %,
4o D S G
0,2, ® Y 7
(I (3 fe
GG B8, 0. &
(ORPA o, % R
& 2%, S 7%, 2.5
S S 954 % S A,
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%% o L O total
—
User Study 12 8 2 77 21
Expert Interview 1 1 1 1 H 7 | UserStudies
Informal User Study | 2 1 3 4
Quantitative Aggregated | 8 7 718 80 | Quantitative
Quantitative Individual | 2 1 7 2 1 4
Visual Comparison | 17 1 3 67
Case Study | 7 7 3 7 12 3 62 | Other
Proof 9 1 3 3 28
total 21 7 4 80 42 67 62 28
User Studies Quantitative Other

Figure 4: @D x G Co-occurrence matrix of what evaluation
types are often used together. E.g. a Visual Comparison or Case
Study generally complements any Quantitative study. Unfortunately,
proofs and user studies were never used in the same paper:
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nodes (Rome graphs)

Figure 5: This figure from Chimani et al. [CGMWI10] shows a
Quantitative Aggregate @ evaluation type for comparing mul-
tiple algorithms on the same dataset. The goal of the chart is to
present the performance (here, the number of edge crossings) of
each algorithm with increasing numbers of nodes. At the same time,
it displays the distribution of node count for the graphs in Rome-Lib.
This is an example of reporting dataset information and compara-
tive results simultaneously.

5.1. (@D Quantitative individual and aggregated

Quantitative individual: In these types of evaluations, quantitative
values on a number of relevant metrics are reported for individual
graphs. As each graph taken into account will require at least one
line in a table or individual discussion, these types of evaluations

usually do not take into account more than @ 100 graphs (see
Figure 6). Often this is done to show results on specific instances
that might contain edge cases or to compare results between two
methods in detail, or when the dataset chosen is limited [GSM11].
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Figure 6: The chart describes the distribution of @ dataset sizes
used papers with at least one (ET) type of evaluation. Papers with
user studies, case studies or expert interviews usually had the fewest
graphs (at most 10). Conversely, quantitative aggregated studies
had many more graphs, with a few using up to a million.

These results are often reported on a table where each row is dedi-
cated to a single instance—such as in Ref. [OKB17].

Quantitative aggregated: Here, summarized averages of a num-
ber of metrics are reported for a large set of instances of test graphs.
For example, the average running time or the number of crossings
are very common metrics to report with this evaluation. This is the
most common style of evaluation in the papers included in this sur-
vey, with 80 papers using it. It allows for summary charts to be
reported showing trends—for example, it can be shown how the
running time changes with graphs of growing sizes [DBRGD22].

Quantitative Aggregated allows for @ large numbers of graphs
to be included in the evaluation, and in the papers included in this
survey, it was the category with the most instances included in the
experiment, with papers reporting tests on up to a million graphs
[GLA*21]. Although this style of evaluation does little to quickly
communicate information about the layout’s visual output, it allows
a reader to gauge how the presented algorithm would perform on
graphs with, for instance, a given number of nodes. As the number
of graphs taken into account is often very large, individual results
are not given for every single graph. Instead, authors report aggre-
gated metrics, such as the total average, or the median result, for
a given set of graphs. Well curated examples of this type of evalu-
ation can be found in Refs. [CMBO0S, OKB17, BCE*08, BFG*18,
HJO05b].

5.2. @ User-related

A standard user study can be performed on the results of the al-
gorithm, often collecting both qualitative (such as user preference,
or usability) and quantitative metrics (such as accuracy and time
to complete tasks). While this is a widespread practice in fields
related to human—computer interaction, in the context of layout
algorithms running a user study can help test the results of an

Figure 7: An example Visual Comparison @ cvaluation type
from Frishman et al. [FTO7] (bottom). The authors compared their
algorithm (bottom) against GRIP [GKOO] (top). They chose to use
this rendering to demonstrate the efficacy of their algorithm for a
particularly complicated graph. The rendering effectively shows a
clear difference, although a single example could be cherry-picked
to work in favour of the authors’ method. To supplement this evalu-
ation, Frishman et al. also presented aggregated results.

algorithm when in the presence of specialized tasks, or when
the qualities of the algorithm would be hard to describe through
standard quantitative metrics.

Similar to the previously described user studies, running an expert
interview can help to identify hard-to-classify metrics using spe-
cialized experts. For example, Huang et al. [HZM*16] present an
algorithm specialized for urban networks, and interviews an urban
transportation expert to test the usefulness of their system. Liu et al.
[LSL*17], which presents an algorithm specialized for visualizing
neural networks, used an expert as well to test how well the system
worked within the reasoning structure of someone who was already
used to the context. Both of these evaluation types go hand in hand
with m user-related metrics described in Section 11.5.

5.3. (G Other

Visual comparison: The focus of the evaluation is given to present-
ing final renderings of the results, and comparing them against ren-
derings produced with other methods (see example in Figure 7).
Seeing the final rendering directly grants the reader the ability to
very quickly see if the result would be apt to a specific use case.
Showing individual pictures requires space, thus this style of eval-

uation often uses C fewer graphs in the dataset—in the papers
in this survey, papers using this style of evaluation did not report
more than 100 instances. Like Quantitative Individual evaluations,
when working with a limited set of graphs, it is important to avoid
cherry-picking the graphs used to work in favour of the authors’
method. Visual Comparisons are indeed often accompanied by other
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Figure 8: G x (D What metrics are reported with different evaluation types? It is easy to see, for example, that user-related metrics
naturally go well with user studies, but it is also interesting to notice how Quantitative Aggregate evaluations are the ones to most often use

the number of crossings as a measure.

evaluation types, such as Quantitative Aggregated (29 papers con-
tain this combination, examples are [MHE20, WAA*22, GHN13]),
Quantitative Individual (25 papers, examples: [NOB15, THM15,
WWS#*18]) or they are part of case studies (18 papers, [LWW#*13,
EHP*11, HBH18]). Well curated examples of visual comparisons
can be found in Refs. [GHN13, HJ05a, MMO08b, TM12, HET*19].

Case study: The algorithm was developed with a specific moti-
vating case study in mind, or the authors want to show how apt the
algorithm is for that particular case. For example, Ref. [HFMO7] is
focused on visualizing social networks, or Ref. [BWOS] is instead
focused on train interconnection data. Case studies are often accom-
panied by the author’s (@ observations on how fitting the algorithm
is for the particular case (as in Figure 8, where it is shown that the
most common way of reporting results in case studies is through the
authors’ own observations), and they can also include their own spe-
cialized task analysis that helps to describe criteria for the algorithm
to respect and optimize for.

Proof: Sometimes, authors can use mathematical steps to prove
that a method can achieve a certain objective or perform in a certain
way. The use of proof as an evaluation technique is more preva-
lent in papers published in GD. Through proofs, authors can prove
without graphs that, for instance, a method can provide results
with an optimal number of crossings. Proofs are often accompa-
nied by other evaluation types (most commonly quantitative aggre-
gated with eight papers [ACKN19, NR20, CDMP18], or visual com-
parisons [Kor05, NNB*17, OT18], or case studies [Ber00, Kor05,
BKO02]).

5.4. A brief discussion on which evaluation type to use

Quantitative Aggregate and Quantitative Individual evaluation types
are effective methods to report information about a layout algo-
rithm. While both provide valuable insights, practicality can guide
the choice. When no metric can fully encapsulate the intricacies of

an algorithm, though, a user study may be more fitting. In such sit-
uations, user accuracy and user time are frequently reported (as il-
lustrated in Figure 8), and they serve as a good basis for reporting.
In cases where users cannot be recruited due to the task’s complex-
ity, expert interviews can serve as an alternative, potentially supple-
mented by other evaluation types to demonstrate effectiveness—see,
for instance, Refs. [CKS*16, DI18, LSL*17, EASG*17]. In our re-
view, we found 31 of the papers included user studies and expert in-
terviews.

A proof can be a potent tool for showcasing the significance of a
result, and in our analysis, they tend to be the sole evaluation type
used in papers featuring them [FKR21, KKRS21, BLNN21]. We
encourage readers to explore relevant works on our website for in-
sights into crafting these types of papers.

Visual comparisons and case studies can effectively supplement
other evaluation types. There was a period when a case study alone
was enough to demonstrate an algorithm’s capabilities (as seen in
Figure 18d). From our review, the preferred number of case studies
seems to be three (Figure 6). However, as time passed, reviewers
gradually moved away from relying solely on case studies and began
favouring multiple evaluation types.

Evaluation methods such as visual comparison, case studies,
and to a certain degree, Quantitative Individual, may be subject
to cherry-picking biases. The reviewer may interpret these as in-
stances where the algorithm performs at its best or, conversely, does
not function in other scenarios, regardless of the author’s intent.
Similar issues can arise with quantitative studies. For instance, a
method may reduce edge crossings but result in longer edges than
another method. Without a visual comparison or case study present-
ing the layouts themselves, assessing the less tangible aspects that
contribute to a good layout becomes challenging. Therefore, it is
crucial to present both types of information: those with measurable
results and those that can only be captured through visual represen-
tation.
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Figure 9: @ X @ A co-occurrence matrix showing what graph features have been most commonly reported with what results were
measured. Results and features that appeared fewer than three times have been omitted. Running time and number of crossings were the most
commonly reported measures, as well as observations (discussed in Section 11).

In summary, our recommendation is to employ either Quantita-
tive Aggregated or Quantitative Individual evaluations and supple-
ment the results with a case study or visual comparison. If a metric
cannot adequately capture the nuances of the work, consider sup-
plementing a quantitative experiment with a user study.

6. @ Graph Features

What graph features does my algorithm handle, and how do they
affect the design of my computational evaluation?

Graph features indicate intrinsic properties of the graph or visu-
alization that need to be reflected in the layout algorithm. Intrin-
sic properties include having an assigned layering or hierarchy of
nodes, a dynamic graph with timestamped changes, or labels that
must be visualized. Special requirements for the layout could in-
clude placing all nodes on a line or curve or limiting edges incident
to a node to a specific angle.

Graph features is a key category of this survey as it is closely
tied to several other choices you must make in your evaluation de-
sign. For example, when deciding which m results to report, var-

ious properties will require assessment using distinct metrics, thus
Figure 9 showing D x @ can be used to check which metrics
are most commonly reported for the features you have. Graph fea-
tures should also be reflected in the (@) dataset used for testing, thus
Figure 11 @ x @ can help you identify datasets that have spe-
cific intrinsic properties of interest, such as needing datasets with
temporal features when designing a dynamic layout algorithm.

A few notes about the words used to describe these categories:

* The word generic is used in this context to describe a graph with
no specific requirements.

* In case of ambiguity, we always preferred the author’s words in
their paper. So, in the case of features such as large—that can
widely vary based on context and date of publication—we tagged
the graph as such if the authors’ own wordings defined their data
using the specific word.

The most commonly addressed graph category was generic (65),
followed by N-layered (33) and large (19). The following subsec-
tions describe in detail several macro-categories and detail their cor-
relation with other elements of the evaluation process.
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Figure 10: @ X @ Co-occurrences of different graph features. Categories with fewer than three instances in the collected papers have
been omitted. The colouring of the squares is normalized over rows and capped at 10: anything above 10 will have the same colour—indicating

that many papers have that combination of elements.

6.1. @ Layered graphs

In layered graphs, every node is assigned to a layer, and nodes in
the same layer are drawn aligned. In some instances, layers can be
referred to as ranks. The categorization N-layers is used when the
layered graph contains more than one layer. These types of graphs
require specialized algorithms, which might include a rank/layer as-
signment step, in which nodes are assigned to layers, followed by
sorting within the layers.

From Figure 10, we can see that often N-layer graphs are used
in combination with time-related features (Section 6.2), especially
dynamic—discrete, as layers are often used to represent timesteps.
This is the case for many storyline-style visualization techniques.
This structure of @) data is indeed common in narrative plots: many
papers dealing with N-layers have used the movie plots dataset from
Yuzuru Tanahashi to present their results [vDLMW18, dBZSD21,
DBRGD22, THM15, GILM16, TM12, LWW*13]. Other authors
expanded on using stories and movies by generating additional sim-

ilar datasets [PBH18, PBH19]. Collaboration networks that evolve
through time, IMDB and internet conversations also map well to N-
layered graphs [DPF16]. SQL queries can also be represented on
layered graphs, using the nesting of the queries to represent layers
[DBRGD22]. Another common context is code commits [THM15,
OM10, BVB*11] or layers of neural networks [WSW*18, LSL*17].
In cases where a dataset without explicit layering was used, au-
thors used a rank assignment step to define the layering [vdE-
HBvW13, CGMW10, RESvH16]. Indeed, since one of the most
common datasets used for layered graphs has been lost (the pre-
viously mentioned movie plots by Tanahashi), some authors have
been performing a rank assignment over either the AT&T dataset
[IMM*16, IMS18, Mal19] or Rome-Lib [DBRGD22].

In terms of choice of what m metrics to report, layered graphs
are not particularly noteworthy and often report the most com-
mon metrics such as running time and the number of crossings,
sometimes including edge length [DBPB*22, THM15, DBRGD22,
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IMM*16, JMS18, BGL*00] or edge bends [WZBW20, LWW*13,
BGL*00]. Area and aspect ratio are not particularly concerning
when drawing layered graphs due to the already constraining na-
ture of layers. Still, some authors may be concerned about reporting
on them as well [JMM*16, RESvH16, BGL*00].

Bipartite is the class of graphs where nodes are split into two
groups, and these two groups can be represented as two different
layers. While bipartite graphs are not necessarily layered, we in-
cluded them in this category as a number of papers treat them as
such [JIM96, BIM02, For05]. For Q datasets, researchers have ei-
ther custom generated them [For(05], assigned ranks to non-bipartite
datasets [BIMO02] or used the individual sample included in Stanford
Graphbase, random_bigraph [JM96].

6.2. & Time-related

Graphs can contain temporal elements. Time can be either continu-
ous (such as timestamped events) or a sequence of events. We distin-
guish between dynamic—discrete (which are discussed within Lay-
ered graphs in Section 6.1)) and dynamic—continuous.

Sometimes, continuous time can be sliced and made into discrete
time, according to need [SAK18]. To avoid slicing, continuous time
can be represented through animation [GAM14, LSCL10]. Exam-
ples of datasets used with what can be considered continuous time
are tweets [SAK18, GAM14], or publications in dblp [LSCL10].

6.3. G Imprecise graph features

Large is a vague word that can have different meanings based on
context and year of publication: Figure 14 shows that there are
vast disparities in the graphs defined as ‘large’ by different authors.
Nevertheless, defining an algorithm as targeted to large graphs
immediately communicates that the algorithm is designed with
scalability in mind, and this is reflected in the fact that running time
is reported as a metric in 84.2% of the papers in this survey tagged
as ‘large’ (as opposed to 53% when considering the full set). The
smallest graphs defined as ‘large’ we found are in Ref. [FLM95]
and contain up to 256 nodes, while the largest graph is found in
Ref. [KCHO02] and is claimed to have 7,533,224 nodes, taken from
an unfortunately now lost George Karypis’ collection. Due to the
size, papers dealing with large graphs rarely deal with reporting
the number of crossings, which is often just not a focus of scalable
algorithms, opting instead to report (in addition to running time) on
total edge length [ADLM19, FLM95] or stress [MST*14, OKB17].

Datasets for large graphs are often social networks such as the
ones contained in SNAP [ADLM19], the Network Data Repository
[ADLM19, ENH18] and very commonly C. Walshaw’s graph col-
lection [HJ05a, KCHO02, BP06, HI05a, GKNO5a, HJI06, ENH18], or
the AT&T graph collection [HJ05a, HJ06, HJ05a]. Some have used
maps [MMO08b, MMO08a, NOB15].

6.4. & Trees and hierarchical graphs

We distinguished between hierarchical graphs and trees. The former
has a more general meaning, while the latter requires a root source

for the graph to be clearly defined. The two categories are exclusive
in the survey—hierarchical is classified as anything with a defined
hierarchy, not a tree. An example of a hierarchical graph that is not
a tree is control flow graphs of software execution, which can have
more than one entry point. Wongsuphasawat er al. [WSW#*18], for
instance, use the word hierarchical to describe the graphs they use,
which are dataflow diagrams of deep learning models from Ten-
sorFlow. In some cases, hierarchical can also be synonymous with
compound [GBDO09] if the hierarchy is defined between sections of
the graph.

6.5. @ Structures and other features

Graphs can include a few structural features that layout algorithms
must consider. For example, if you want to visualize node labels,
the layout algorithm often includes avoiding overlaps on nodes that
might have varying sizes.

The applications of graphs with directed edges are multiple
and varied. In particular, several layout algorithm papers discuss
DAGs—directed graphs which are also acyclic—as they can be used
to affect the layout. For example, the direction of edges can be used
to define a rank assignment in layered graphs [JMM*16]. Although
there exist collections of DAGs (such as the NorthDAG collection),
some authors used a custom dataset [BPWv18] or edited another
one to remove cycles [JMS18]. As another property of the edges,
weighted edges might be interesting when the algorithm deals with
forces that can be influenced by their weights [OKB17, GKNO5b]—
thus can be associated with reporting a measure of stress as a metric.

Clusters are groups of nodes that relate to each other, and often the
objective of a layout algorithm that handles clusters is to draw nodes
belonging to the same clusters adjacent. Clusters can be pre-existing
as part of the dataset: they can be people working in the same context
in a collaboration network [OM10, GDL*20] or characters appear-
ing together in the same scene of a movie [vDLMW18, LWW*13,
PBHI1S8, PBH19]. Alternatively, if the clusters are not already de-
fined in the data (in our figures, we called this Clusters (generated)),
the objective of a layout algorithm can be to find and visually high-
light groups of nodes that could be grouped. This is the case for
social networks, for instance, where the objective could be to find
close-knit social circles [NoaO4, RW18, QZZ22, MHEK19]. In this
case, authors of papers might want to report the number of clus-
ters generated as a metric [LSCL10]. Expanding on the concept of
grouping and clustering, the word compound indicates a graph that
includes subgraphs. Subgraphs can also have their own subgraphs.
There are not many publicly available datasets that include com-
pound graphs, so authors have edited the property into pre-existing
datasets through clustering or summarization techniques such as
Refs. [NRS08, DBRGD22].

Hypegraphs are graphs in which edges can connect more than
two nodes. Layout algorithms for hypergraphs have been explored
much less than those for generic graphs, but some real-life cases
do exist that need to be represented through hypergraphs, such
as the VIS collaboration network, where collaboration with N au-
thors can be seen as an N-way edge [DBPB*22]. Hypergraphs have
several representation styles, and evaluating readability metrics
highly depends on the chosen representation style [Md90]. Because
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hyperedges can be represented as groups of nodes (see the set stan-
dard representation described in the previously mentioned [Md90]),
the problem of hypergraph representation can have some overlaps
with drawing groups or clusters, as shown in Ref. [vDLMW18].

We use the word spatial to describe graphs in which nodes have
positioning boundaries given by the context. This is often the case
when dealing with maps, where nodes must be close to their ge-
ographical position. Thus, it is common to test layout algorithms
with spatial features on maps [NSM*19], airline or migration routes
[HvWO09, vLBR*16, EHP*11, WZZY 18, WAA*22] or other trans-
portation maps [GBD09, HZM*16, BW98, MRS*13, NW11].

A few papers in the survey present edge bundling techniques. Per
our inclusion criteria, edge routing is part of a layout algorithm;
thus, edge bundling techniques fit within the criteria. Bundled edges
are not an inherent property of a graph but can be considered a
property of the final drawing and a requirement for the layout al-
gorithm to be taken into account. Papers presenting edge bundling
techniques often use high-density datasets where nodes have fixed
positions (often spatial) and exclusively work on the routing of the
edges [WAA*22, WZZY18, CZQ*08], such as airline or migration
routes. Another instance of a high-density dataset is the neural net-
works used in Ref. [LSL*17]. In terms of metrics, as the objective
of edge bundling is to produce cleaner drawings with less clutter,
Wallinger et al. [WAA*22] include a measure of ink reduction in
their reported metrics and report calculated values to measure am-
biguity and distortion that might be introduced by the bundling tech-
niques as well [NEH13]. Similarly, Wu et al. [WZZY 18] include a
measure of clutter, also discussed in Ref. [LHT17].

7. 0 Dataset

What dataset should I use to test this layout algorithm? What
dataset contains features I want to test?

The selection of the dataset for generating results is tightly in-
tertwined with the graph layout algorithm’s addressed features. For
instance, if an algorithm is designed to manage layered graphs, it is
advisable that each graph in the dataset chosen for the experiment
has an assigned layering. This consideration is a critical element of
our review as we intend to answer fundamental questions about the
optimal dataset selection.

A resource we provide is Figure 11, which acts as a guide to help
identify the most suitable dataset for addressing a specific graph fea-
ture. For instance, if an author devises a layout algorithm for /arge
graphs, the figure shows which datasets have been previously used
to test other large graph layout algorithms. This can help authors
find new datasets to consider. Another resource is Figure 12, which
presents, for each graph feature, a list of datasets that can contain it,
and a reference to every paper in our analysis that uses the dataset.

An interesting approach to reporting dataset features is observed
in Ortmann et al. [OKB17]. In their work, each graph used is pre-
sented alongside a sparkling depicting the distribution of node de-
grees within each graph. This approach immediately links the re-
sults to the graph’s density (or sparsity), inclusive of instances where
graphs may simultaneously exhibit both dense and sparse sections,

S. Di Bartolomeo et al. / Evaluating Graph Layout Algorithms

as illustrated in Figure 13. This becomes particularly relevant when
the algorithm’s complexity correlates with the nodes’ degree (as dis-
cussed in Section 11.6).

In the next subsections, we have grouped datasets into three cate-
gories: ‘Named’, ‘Synthetic’, and ‘Assorted’. Given the vast number
of options, the following sections primarily focus on describing the
properties of the most prominent collections or dataset types.

We would like to draw attention to the prevalence of synthetic,
custom or edited datasets, which could indicate a potential gap in
the availability of datasets encapsulating specific features. This gap
could lead researchers to generate their own datasets due to dif-
ficulty locating datasets naturally endowed with the features they
seek. Creating and popularizing datasets incorporating these absent
features could be a valuable contribution to the field.

As a final, noteworthy enhancement, we also provide a collection
of easy to navigate benchmark datasets [DBPW#*23], which include
many of the statistics that, from this survey, appeared relevant to
report about a dataset, already computed. The website is accessible
at https://visdunneright.github.io/gd_benchmark_sets/.

Recommendation: In terms of data reporting, multiple facets
should be taken into account. Essential information about the dataset
can be effectively reported in three ways: tabulated, as paragraphs,
and in figures that utilize them. Tables are ideal as they allow easy
location and extraction of specific information. At a minimum, the
table should include the dataset’s name, the number of edges, and
number of nodes. We also recommend including small sparklines of
the dataset’s properties and any other relevant information. These
visualizations can effectively illustrate the graphs’ distribution and
convey the data’s variability. Furthermore, if the utilized dataset
contains graphs exhibiting varied features, these features should be
catalogued and reported. Examples of such comprehensive report-
ing can be found in Kruiger ef al. [KRM*17] and Chimani et al.
[CIW21Db].

The information about the data’s origin should be detailed enough
to enable the exact replication of the experiment. For instance, if en-
tire benchmark datasets are used, providing information on where
readers can locate the data would suffice. However, in instances
where authors do not utilize all datasets from a benchmark, they
should indicate which ones were used and provide a detailed ex-
planation in a data section regarding their selection and exclusion.
Moreover, we strongly encourage authors to post their data to reli-
able open archives to enhance reproducibility. See Section 12 (A
Information Availability for details.

7.1. Q Named datasets

Several popular graph repositories and named datasets appeared
multiple times while collecting this information. Listing all exist-
ing repositories of data would be impossible, but in the papers we
surveyed, we found some reoccurring instances that we would like
to describe. The following is a brief list of the most used, accompa-
nied by a short explanation of their usefulness in given contexts.

Rome-Lib [BGL*97] is one of the most popular collections of
graphs, comprised of 11,389 graphs, having 10-100 nodes and 9-
158 edges. It was first introduced in Ref. [BGL*97], and has been
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Figure 11: ED x © Co-occurrence matrix of graph features by datasets used. Features with many instances of custom datasets indicate
probable gaps in the available datasets that our community can try to address. For instance, large and N-layered graphs seem hard to find.

used in many layout algorithm papers. According to Ref. [BGL*97],
it was originally a collection of natural graphs collected from vari-
ous sources, such as government organizations and software compa-
nies. The somewhat uniform distribution of the graphs in size makes
it a great candidate for (@ Quantitative Aggregate evaluation types
(described in Section 5), as it is used to show on charts how the per-
formance of a layout algorithm grows with increasing € size of
the graphs.

The North DAG (often also called AT&T) collection comprises
5114 graphs with up to 7602 nodes. Per Ref. [BGL*00], ‘they are
obtained from a collection of directed graphs that North collected
at AT&T Bell Labs by running for two years Draw DAG, an e-mail
graph drawing service that accepts directed graphs formatted as e-
mail messages and returns messages with the corresponding draw-
ings’. Some of the graphs in the collection are not fully connected.
Like Rome-Lib, this collection of a large number of graphs is often

used in (D aggregate evaluations. Both Rome-Lib and the AT&T
collections are available at Ref. [Dra22].

The Graphviz Examples [Gra08] is a collection of varied sample
graphs used to demonstrate Graphviz’s capabilities. They are few
but contain properties that might be of interest for layout algorithms
that address particular features [GSM11, NNB*17, CPPS19]. C.
Walshaw’s graph collection [Wal01b] (online at: [WalO1la]), SuiteS-
parse Matrix Collection (previously called The University of Florida
collection) [DH11] and Matrix Market [NISO7] are all large col-
lections of varied graphs, all related to each other and have vast
overlaps between them. They are all very popular and have been
used in a plethora of different contexts. Due to the size and vari-
ety of graphs in these collections, authors often cherry-pick graphs.
Cherry-picking datasets might cause layouts to be tested and pre-
sented using graphs that do not include edge cases or particular
cases in which the algorithm might not work. Other popular and
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Generic: Rome-Lib [HK18,DDM™ 18, BFG™ 18, KMP18, GLA™ 21, CIW21b, CHN19, CG12, GM04, CW16, CGMO06, CMB08, BGL™ 97, BCE* 08, BEJ* 06] — C. Walshaw’s graph collection
[HJ05a,Wal01b,FT07,KCH02,Kor05,CMIBR06,Hu05,BP06,HJ05b,GKN05a,HJ05a,ENH18,HJ06] — North DAG - AT&T [HJOSa,HJOSb,HJOSa,BFG*18,HJ06,CG12,DDM*18,KMP18,CIW21b,CW16]
— Custom (Reproducible) [FR91b,NLGG18,DDM* 18, DAL™ 19, ALD™ 20, CIW21b, JVHB14] — Social Networks [Noa04,NOB15,ZJC* 21,NLGG18, PAK™*20,HJ06] — Transportation
Network/Map [Noa04,NOB15,MM08b, MM08a,BW98] — SuiteSparse Matrix Collection [KRM™17,Hu05, GHN13,ENH18,BBP20] — Collaboration Networks [KRM™17,MPL06,GHN13,
ZJC*21]— Matrix Market [Kor05,BP06,GKNO5b,KMP18] — Airlines/Migration Routes [Noa04,EHP*11,CZQ* 08] — KnownCR [CIW21b,CHN19,CG12] — Trade Data [Noa04,NOB15]
— Scotch Collection [HK01,KCH02] — GION [MST™14,ENH18] — SNAP [ADLM19,JVHB14] — Complete Graphs [CIW21b,CHN19] — Pajek [Noa04] — Stanford GraphBase
[KRM*17] — California [MMosb] — Protein Interactions [MM08a] — Autonomous System Network [zJC*21] — Internet Mapping Project [GKN05a] — Network Data
Repository [ADLM19] — Hachul Library [ENH18] — The Network Repository [ENH18] — FM3 [HK18] — RandDAG [KMP18] — Graph Drawing Contest [DAL"19] —
Graphviz Examples [CPPS19] — Planar Graphs [PAK* 20] — Blogposts/Tweets/Forum Posts [PAK*20] — Circuitry [CIW21b] — WebCompute [CW16]

Large: C.Walshaw’s graph collection [HJ05a,KCH02,BP06,HJ05b, GKN05a,HJ05a,ENH18,HJ06] — North DAG - AT&T [HJ05a,HJ05b,HJ05a,HJ06] — Transportation Network/Map
[NOB15, MM08b, MM08a] — Social Networks [NOB15,HJ06] — Scotch Collection [HK01,KCH02] — GION [MST™14,ENH18] — SuiteSparse Matrix Collection [OKB17,ENH18] —
Trade Data [NOB15] — California [MMosb] — Protein Interactions [MMo08a] — Matrix Market [BP06]— Internet Mapping Project [GKN05a] — Graphviz Examples [NNB™17]
— Control Flow graphs [NNB*17] — Custom (Reproducible) [NNB*17] — SNAP [ADLM19] — Network Data Repository [ADLM19] — Hachul Library [ENH18] — The
Network Repository [ENH18] — Blogposts/Tweets/Forum Posts [GAM14]— IMDB [GAM14] — Collaboration Networks [GAM14]

High degree: Collaboration Networks [HFM07,ADM™19] — Internet Mapping Project [GKN05a] — C. Walshaw’s graph collection [GKN05a] — Neural Networks [WSW™ 18]
— Fiscal Network [ADM™19] — Sparse: Rome-Lib [KMS18]

Dynamic - discrete: Movie Plots [vDLMW18, dBZSD21, THM15, GJLM16, TM12, LWW*13] — Collaboration Networks [OM10, GDL*20, DPF16, DBPB*22] — Padia stories
[PBH18,PBH19] — Enron [vdEHBvW13, THM15] — MID Network data [TM12,LWW™*13] — Airlines/Migration Routes [PS20] — Metro Maps [PS20] — IMDB [DPF16] —
Blogposts/Tweets/Forum Posts [DPF16] — Protein Interactions [DPF16] — Chess Games [dBZSD21]— Custom (Reproducible) [dBzSD21]— Diabetes data [dBzSD21] —
Code commits [THM15]— Stanford GraphBase [GJLM16]

Dynamic - continuous: Collaboration Networks [SAK18,GAM14] — Blogposts/Tweets/Forum Posts [SAK18,GAM14] — Social Networks [SAK18] — DBLP [LSCL10] —
IMDB [GAM14]

N-layers: Movie Plots [vDLMW18,dBZSD21, DBRGD22, THM15, GJLM16, TM12,LWW* 13] — North DAG - AT&T [JMM*16,JMS18, Mal19, RESVH16, BGL™ 00, CGMW10] — Custom
(Reproducible) [BVB™11,JMM™ 16,WZBW20,dBZSD21] — Collaboration Networks [OM10,DPF16,DBPB™ 22] — Rome-Lib [DBRGD22,CGMW10]— Padia stories [PBH18,PBH19] —
Code commits [BVB™11,THM15] — Neural Networks [WSW™* 18,LSL* 17]— Enron [vdEHBvW13,THM15]— MID Network data [TM12,LWwW* 13] — Investment Interdependence
[STT81] — DBLP [BVB*11] — Cable Plans [WzBW20] — IMDB [DPFi6] — Blogposts/Tweets/Forum Posts [DPF16] — Protein Interactions [DPF16] — Chess Games
[dBzSD21]— Diabetes data [dBzSD21]— SQL queries [DBRGD22] — Stanford GraphBase [GJLM16]— Graphviz Examples [GSM11]— World Greenhouse Gas Emissions
[zBD* 18] — Pert DAG [BGL"00] — Multilevel: SuiteSparse Matrix Collection [HET*19] — C. Walshaw’s graph collection [HET" 19]

Bipartite: Stanford GraphBase [JM96,BJM02] — North DAG - AT&T [BJM02] — Tripartite: DBLP [LSCL10]

Hierarchical: AT&T [JMS18]— Investment Interdependence [STT81]— Neural Networks [WSW* 18] — Code commits [Hol0o6] — Transportation Network/Map [GBD09]
Trees: Evolution [CDMP18]— Rome-Lib [KMS18] — Custom (Reproducible) [OMK* 18] — Graphviz Examples [CPPS19]— Binary Trees: Evolution [CDMP18]
Compound graphs: Rome-Lib [DBRGD22] — Code commits [Holo6] — Transportation Network/Map [GBD09]— SQL queries [DBRGD22] — Movie Plots [DBRGD22]

Clusters (pre-existing): Movie Plots [vDLMW18,DBRGD22,LWW ™ 13] — Padia stories [PBH18,PBH19] — Collaboration Networks [OM10,GDL*20] — Rome-Lib [DBRGD22]
— Medical Patient Records [CGSQ11]— Car Features [CGSQ11] — Biological Pathways [WNV20] — SQL queries [DBRGD22] — MID Network data [Lww™ 13] — World
Greenhouse Gas Emissions [7BD™ 18]

Clusters (generated): Social Networks [Noa04, RW18,QzZ22] — Collaboration Networks [KRM™ 17, HFM07,QzZ22] — Transportation Network/Map [Noa04, MM08b] —
Airlines/Migration Routes [Noa04,vLBR*16] — Pajek [Noa04,MHEK19] — Stanford GraphBase [KRM™ 17,RW18] — Neural Networks [WSW™ 18,LSL* 17]— Trade Data [Noa04]
— SuiteSparse Matrix Collection [KRM*17] — C. Walshaw’s graph collection [Wal01b] — California [MMo8b] — SNAP [MHEK19] — DBLP [LSCL10]

Labeled Nodes: Transportation Network/Map [NW11,HZM* 16] — Collaboration Networks [ADM™19,Qzz22] — Neural Networks [WSW™ 18] — Fiscal Network [ADM™19]
— Biological Pathways [WNV20] — Social Networks [0zz22] — Labeled Edges: Neural Networks [WSwW™ 18]

Categorical Nodes: Collaboration Networks [ADM* 19] — Fiscal Network [ADM* 19] — Biological Pathways [WNVv20]

Weighted Edges: Matrix Market [GKNO05b] — Tobler’s flow mapper [BSVi1]— DBLP [BVB*11] — Code commits [BVB*11] — Custom (Reproducible) [BVB*11] —
SuiteSparse Matrix Collection [OKB17] — Social Networks [RW18] — Stanford GraphBase [RW18]— Transportation Network/Map [GBD09]

Directed Edges: North DAG - AT&T [RESvH16,BCD™ 16,BGL™ 00, JMM* 16] — Neural Networks [WSW™18,LSL*17] — Custom (Reproducible) [JMM™* 16,BPWv18] — Trans-
portation Network/Map [GBD09] — Pert DAG [BGL*00] — DAG: AT&T [JMS18]— Custom (Reproducible) [BPWv18]

Bundled edges (generated): Airlines/Migration Routes [CZQ™08,WZzY18,WAA™ 22] — Neural Networks [WSW™18,LSL™17]— Code commits [Holos] — Custom (Repro-
ducible) [WAA™22] — Amazon [WAA™22]

Planar: North DAG - AT&T [CKW16] — Rome-Lib [CKW16] — SuiteSparse Matrix Collection [KRM*17] — Stanford GraphBase [KRM*17] — Collaboration Networks
[KRM*17] — SteinLib [CKW16]

Spatial: Transportation Network/Map [MRS™13,NW11,HZM™ 16, GBD09, BW98] — Airlines/Migration Routes [EHP™11,HvW09, vLBR™ 16, WZZY18, WAA*22] — SuiteSparse

Matrix Collection [KRM*17]— Stanford GraphBase [KRM*17]— Collaboration Networks [KRM*17]— Medical Patient Records [CGSQ11]— Car Features [CGSQ11] —
Tobler’s flow mapper [BSV11]— World Maps [NSM™19]— Custom (Reproducible) [WAA*22] — Amazon [WAA™22]
Multivariate: Medical Patient Records [CGSQ11]— Car Features [CGSQ11]— Neural Networks [WSW™ 18]

Hypergraphs: Custom (Reproducible) [Lk21]— Collaboration Networks [DBPB™22]

Port Constraints: Cable Plans [WzBW20]— Custom (Reproducible) [WzBW20]

Figure 12: Every © dataset mention, divided by what [ GF graph features were addressed by the algorithm presented in each paper. This
table can be used as a reference to answer the question ‘my algorithm handles this graph feature—which dataset should I use to evaluate it?’.
Following the references, you can see how each dataset was used, and if edits or particular modifications have been taken by the authors.
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graph n m §(G) A(G) D(G) {deg(i)} {di;} such as Barabdsi-Albert [BA99] or Erdés-Rényi [ER*60]. The last
dwt1005 1005 3808 3 26 34 k.. category, custom (reproducible), indicates instead that the experi-
Jsicbue Hes i L o T ment can be repeated using the same graphs. This is mostly the case
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3elt 4740 13722 3 9 65 L for papers that distribute their dataset as supplemental material. In
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commanche 7920 11880 3 3 43800 W M ated, such as when authors use complete graphs of increasing sizes
LeHavre 11730 15133** 1 7 33800.67 A
pesa 11738 33914 2 9 208 .1 A [C.IW21b, CHN19, dCKN19]. ¥n our survey, we found .68 papers
bodyy5 18589 55346 2 8 132 1 M using custom datasets, 25% being replicable, 26.5% being repro-
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Figure 13: This table from Ortmann et al. [OKB17] details the Q
dataset used in their computational evaluation. It shows the number
of nodes, edges, the min. and max. degree and the diameter, but the
last two are of note, showing the distribution of degree and distance.
Asterisks indicate bipartite graphs.

varied collections are the Stanford SNAP repository [LS16] and Pa-
jek [BMO6]—both offer loose graph descriptions and some informa-
tion regarding their sizes. These collections are particularly fitting
for (@D visual comparison evaluation types and quantitative indi-
vidual evaluations, as usually a limited number of graphs is selected
from them to showcase in detail the effect of the algorithm on the
particular case.

In some instances, it might be useful to know in advance the opti-
mal number of crossings, especially if trying to compare a heuristic-
based method against optimality, as in Ref. [CHN19]. Chimani et al.
[CIW21b] provide a collection of graphs with a known crossing
number, accessible at Ref. [CIW21a], as well as the optimal number
of crossings for Rome-Lib.

The Enron dataset [Coh22] is a collection of around 500,000
emails between 150 Enron executives and other employees. Its ad-
vantage, when employees are represented as nodes and emails as
edges, is the large diversity in node degrees, with nodes that are
highly connected and others that are sparsely connected.

7.2. Q Generated

Some layout algorithms are designed to handle certain (GF) graph
features that might be more difficult to find in large public datasets.
For instance, dynamic graphs can be much harder acquire but are
still an important object of study in GD. To address this issue, many
authors have either crafted their own dataset programmatically (ex-
amples: Refs. [HJ06, ALD*20, HKNN19]) or modified another one
to fit their needs (discussed in the next section).

We made a distinction between custom (non-replicable), cus-
tom (replicable) and custom (reproducible). All three mean that the
dataset was custom-made for a specific paper, but the first (non-
replicable) indicates that the paper contains either too few or no
descriptions of the generation process, making the computational
evaluation impossible to replicate. The second, custom (replicable),
indicates that the generation process is described in enough detail
that similar graphs with similar properties could be generated. This
is the case when the authors use established generation methods

‘synthetic’ and ‘natural’. The first word describes a dataset that has
been programmatically altered, while ‘natural’ describes a dataset
that has been collected from a real use case and underwent no al-
terations in structure and number of elements (no slicing, no adding
features). The two approaches can have different advantages and
disadvantages. Using a natural dataset ensures that the algorithm is
tested on realistic use cases with realistic purposes. If, for example,
a given use case has quirks that might not be known to a researcher
developing a layout algorithm, such as a high variance in node de-
gree distribution, this feature might be missed if the dataset used
for the computational experiment is synthetically generated. Con-
versely, synthetically generated data can (a) replace non-existing or
private data by simulating it, and (b) create edge cases for testing
that might not appear in natural datasets but might still be useful
for testing, such as an entire set of complete graphs with varying
amounts of nodes.

Similarly to programmatically generating a dataset, some authors
edited another pre-existing dataset to have the feature they needed,
such as performing a layer assignment on Rome-Lib to obtain a lay-
ered dataset (examples: Refs. [CGM06, DBRGD22]). Common ed-
its are listed in Section 1. Editing or generating a synthetic dataset
can impact the reproducibility of the experiment. Therefore, either
the method used needs to be explained in complete detail, the gen-
erated dataset needs to be made accessible, or the code used needs
to be distributed (ideally all three).

7.3. Q Assorted

Authors sometimes used data from different large sources such as
transportation networks and protein interactions. We aggregated the
different datasets under the same category in cases that come from
similar natural scenarios, which we could assume had similar struc-
tures, features and purposes.

Contexts such as a collaboration network can be useful for mul-
tiple particular properties: collaborations can involve more than
one participant, making them a good metaphor for hypergraphs
[DBPB*22, QZZ22] or for clusters [GDL*20, OM10]. Addition-
ally, collaborations often occur over periods of time, so they can be
useful for dynamic graph visualization as well [BPF14, SAK18], or
for a combination of all of these properties. A common collabora-
tion network used often in layout algorithm papers is the VIS col-
laboration network [IHK*17]. Actors’ participation in movies on
IMDB can also be used for the same purpose [DPF16, GAM14].
Another context sharing the same properties (being able to be
mapped to hypergraphs or clusters, and being dynamic) is movies
or book plots. The original movie plots dataset from Tanahashi is
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difficult to find (as discussed in Section 12.1), but other authors have
started contributing with their own movie plot datasets, such as Ref.
[KBI*18].

Blog posts, tweets and forum discussions can offer good hier-
archical or directed networks, as multiple threads of conversations
can span from a root post or linkage between them can serve as di-
rected edges.

Social networks are good examples when the layout algorithm
is trying to highlight non-predefined clusters, such as wanting to
identify close-knit groups of friends [Noa04, RW18, NOB15]. One
example of a commonly used dataset akin to a social network is
Zachary’s karate club introduced in Ref. [GNO02], the popular Les
Miserables dataset found in the SparseMatrix collection.

Transportation networks, maps and airlines or migration routes
are especially useful when the layout addresses spatial constraints.
When nodes have positioning constraints, often the layout algorithm
either focuses on minimizing the distortion compared to the original
positioning (13 papers—examples: Refs. [WXW*20, CZQ*08]) or
focuses on edge bundling or routing instead of node placement (15
papers—examples: Refs. [WAA*22, ZSJT19]). Due to the fact that
they are contained in size and must be represented particularly well,
metro maps have been an especially interesting problem for exact
layout algorithms [NW11, NR20].

8. D Dataset Size
How many graphs should I use in my evaluation?

The size of the dataset, referring to the count of unique graph
instances used in the evaluation process, is a key aspect of compu-
tational analysis. Figure 6 offers guidance on the number of graphs
that should be deployed in an evaluation. This largely depends on
the chosen (G type of evaluation. For instance, authors tend to
use fewer graphs to illustrate their findings in Quantitative Individ-
ual evaluations, Case Studies and Visual Comparisons—where the
focus is on a meticulous exploration of an algorithm’s impact on
singular graphs. For these categories, the median lies at or slightly
above 10. On the other hand, authors tend to use a much larger col-
lection of graphs in Quantitative Aggregate evaluations that aim to
analyse the results of an algorithm on a vast array of graphs with
different node counts. In fact, the median for this category rises to
536 graphs per evaluation, based on the papers assessed in this sur-
vey. Different graph instances may be created in certain scenarios
by sampling subgraphs from a larger graph. Under these circum-
stances, even if the subgraphs overlap with each other, we classify
them as distinct graphs. For instance, if an evaluation utilizes a sin-
gle graph, such as the Enron dataset, divided into 100 subgraphs,
we count it as 100 individual graphs.

The decision regarding the number of graphs to use is influenced
by the availability of datasets, but Figure 6 can provide a rough es-
timate, based on median values and charts, of how many graphs
should be employed in an evaluation. Once the authors have settled
on the type of evaluation and the metrics to be reported, another per-
tinent question arises: what is the appropriate number of datasets to
utilize? Figure 14b details the distribution of dataset sizes employed

S. Di Bartolomeo et al. / Evaluating Graph Layout Algorithms

for each type of evaluation. For example, the median dataset size
in a Quantitative Individual evaluation is 11, while in a Quantita-
tive Aggregate evaluation, the median ascends to 486. The specific
count will inevitably depend on data availability.

Authors should consider employing datasets that vary in terms of
their source, application and scale. For instance, dissecting a book
into chapters and considering each as a separate dataset will not
yield the same diversity as using several independent books. The
fewer the datasets used, the more diversity is required to effectively
showcase the extensive range of algorithm applications.

In light of these insights, our recommendation for authors is to
use a dataset size comparable or larger to those used in recent re-
lated work. Ideally, the data should be derived from a benchmark
dataset or gathered from various sources and applications to ensure
its diversity. This approach will not only enrich the breadth of the
evaluation but also potentially contribute to the reproducibility and
generalizability of the research findings.

9. €O Size of Graphs

The size of the graphs indicates how many nodes are found in the
graphs used in the evaluation. It should be noted that the number of
nodes is not the only measure of a graph’s size, and the number of
edges should also be taken into account. However, we decided to
focus on the number of nodes as it is most frequently made explicit
and considered when discussing graph size.

The data we collected are stored as a range for each paper, as the
dataset used can contain larger and smaller graphs. The size of the
graphs used is mostly dependent on the method’s target graph fea-
tures and type of algorithms: if a method is made to handle larger
graphs, it will test the results presented on sets or individual graphs
that contain large graphs. Figure 14 shows that the size is dependent
on the type of algorithm used as well, as some types are more scal-
able than others, thus able to handle larger graphs—an aspect that
is discussed in the next section, Section 10. The same figure also
shows that large graphs are more frequent in evaluation types that
focus on individual graphs, where a quarter of the papers use graphs
with more than 100,000 nodes.

If a specific graph size is required to show the scalability of an
algorithm, this should inform the decision on the choice of Q
dataset.

10. GD Paper Type and Technique

We classified the papers in the survey in ‘algorithm’, ‘compari-
son’ and ‘proof’. Indeed, the papers in this survey do not exclu-
sively present algorithms: they might also compare them. This is
the case when either (a) the authors introduce a new method and test
it against a pre-existing method, or (b) the paper is about compar-
ing different pre-existing methods for a specific objective. In a few
of the papers included in this survey, the efficacy of the algorithm is
proven through mathematical proofs. In addition, we included a few
papers that define or test new quality metrics (such as Ref. [MHE20]
or [KMP18]) while still running computational evaluations.
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Figure 14: The range in the @ sizes of graphs (in terms of nodes)
that have particular @ graph features, @ evaluation types and
@ techniques. Each horizontal line represents a paper, extending
from the size of the smallest graph to the size of the largest one used
in its evaluation. Size is shown on a logarithmic scale. Categories
with fewer than three papers are omitted. Papers that used a single
graph (or multiple graphs with the same node count) are shown with
a single dot. Darker lines indicate more recent papers.

In parallel with the paper type, we classified papers loosely re-
garding what type of algorithm they used. If they, for example, men-
tioned their method being an improvement over other force-directed
methods, we classified the paper as belonging to force-directed

methods. This can be used to inform decisions like the @ size
of graphs used in the evaluation (see Figure 14b): ILP-based meth-
ods are constrained to smaller graphs due to being more demanding
in computational resources, while force-directed and MDS-based
methods are usually more scalable, thus have been used with larger
graphs in their evaluations. Because of their heaviness of computa-
tional resources, ILP-based methods are often more frequently the
object of Quantitative Aggregated evaluation types and often require
a number of precautions when reporting their results (as described
in Section 11.4), while other types of techniques are used with a
more diverse set of evaluation types and reported metrics. The other
category indicates layout algorithms that are not based on other, pre-
existing methods or whose roots are unclear.

11. m Results Measured
What metrics are reported for graphs with these features?

Different layout algorithms are optimized for various metrics that

must be reported accordingly. Additionally, [ GF ] graph features
may also require distinct metrics for accurate representation. The
primary objective of this categorization is to assist researchers in
identifying the results they need to report for a given graph. The
metrics to be reported can be influenced by the (ET) type of eval-
uation being conducted, evident from the co-occurrences shown in
Figure 8. For instance, metrics related to the user experience are
reported when user experiments are executed. Likewise, graph fea-
tures also play a pivotal role in guiding the metrics to be reported, as
illustrated in Figure 9. E.g. algorithms that revolve around clustering
might report on the number of clusters generated. A visualization of
what metrics are reported together can be found in Figure 15.

In situations where authors did not report any quantitative or qual-
itative metric, but merely provided comments on their results, we
classified them as observations. Although less objective than other
reporting methods, observations can offer insights that might be
challenging to express otherwise. Observations are most useful if
they are accompanied by other metrics.

Our recommendation: The decision of what information to
evaluate can be complex. The metrics employed can vary signifi-
cantly from one work to another, and hinge on the work’s contri-
bution and the explored graph features. For instance, reporting on
running time is logical when dealing with large graphs for a quanti-
tative study. However, an algorithm designed to minimize the num-
ber of edge crossings would also benefit from reporting running
time (along with the number of edge crossings). Reporting multiple
metrics becomes crucial when there is a trade-off between a met-
ric and running time. While there is no universal solution, a general
guideline when unsure about which metrics to use is to start with
those used by the algorithms that the authors intend to compare their
work against. There will be cases when authors have to replicate
someone else’s algorithm. Replication can be necessary when pre-
vious authors provided only pseudocode or no information about the
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Figure 15: @ x @ What metrics are usually reported together? Running time and number of crossings are the most common combination,
but we also have a relationship between area, aspect ratio and the number of crossings and edge length. In addition, multiple user-related

metrics are often reported together.

implementation. In such cases, it is essential to provide implemen-
tation details either in supplementary materials or directly within
the paper. This step aids in offering a more holistic experiment and
can assist others who have conducted a similar experiment or are
planning to do so.

11.1. @D Computational resources

Running time and memory used both refer to the requirement of
computational resources and not the quality of the result. Running
time is by far the most reported metric and was used in 80 of the
papers we surveyed. Computational resources are always going to
be limited, and reporting running time gives readers an understand-
ing of the algorithm’s practical utility. Far fewer papers report the
amount of memory required, such as in Ref. [vDLMW18].

While running time can be a great form of comparison between
different algorithms within the same paper, it cannot be directly
compared across papers because even slightly different machines
with slightly different setups or conditions are going to invalidate
the results of the experiment. Thus, authors should report at least a
few details indicative of the machine used for the experiment. Re-
gardless, reporting running time can (a) still give a loose indication
of how long it might take to run an algorithm on a graph of a given
size, (b) indicate how the algorithm scales if done on graphs of grow-
ing sizes, or allow for comparison between different experiments
run on the same machine. Reporting the running time is particularly
common in (&P Quantitative Aggregated evaluations.

The number of iterations can sometimes be reported [BFG*18,
Coh97, MMO08a] and it can give an idea of how long it takes to
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reach convergence or to terminate an execution for algorithms that
run in iterations, without having to rely on the running time, which
is dependent on hardware and current conditions of the system. Co-
hen [Coh97] uses iterations as the x-axis on a chart to show how
their chosen metrics improve progressively less at every iteration.
Muelder and Ma [MMO8a] integrate iterations in their results of
comparing different algorithms to discuss how different methods
take longer per iteration, and how many iterations are needed to
reach termination.

11.2. @D Aesthetics

Many aesthetic criteria can be used to evaluate the readability of a
layout [Pur02, DRSM15]. Human-subjects studies have been used
to determine which criteria affect user task performance and their
relative optimization importance, as well as measures such as user
preference. Dunne et al. reference many such studies [DRSM15].

According to Purchase [Pur97] (and much follow-up work), the
number of crossings is the criterion that most negatively affects
readability. This is reflected in the results reported in the papers
we reviewed, where the number of crossings is the second-most re-
ported metric (39 papers). It does not have particular dependencies
associated with graph features or datasets. In the case of @D non-
exact algorithms, sometimes authors might want to use datasets in
which the optimal number of crossings is already known, such as
Ref. [CIW21a], to be able to compare their results against the opti-
mum. It should be noted that there is a debate around which metric
should be used to count the number of crossings, and authors should
consider specifying the metric used in their results [PT00].

A few algorithms care about minimizing edge length as part of
their optimization function—reducing the distance between con-
nected nodes, as long edges can also hinder readability. When the
rendering allows for edges to be drawn as splines, minimizing the
bends in edges can also be important. Such a problem is common in
[ GF) layered visualizations that allow bends, where the curviness of
the paths may make them harder to follow [LWW*13, WZBW20].
Niedermann [NR20] defines an exact method to minimize bends in
orthogonal drawings.

Researchers might also care about angles—from two different
points of view: (a) edges incident to a node should be drawn at
evenly spaced angles, if possible, to improve how distinguishable
they are (defined as angular resolution [FHH*93, BST00]), and (b)
edges that cross should do so at an ample angle to help following
both edges without creating confusion [DL13] (between 70° and 90°
according to Ref. [HHEOS]).

11.3. D Rendering size and structure preservation

A number of layout algorithms take into account the final size of
the rendering and the proportions of the resulting drawing. The
area needed to represent a drawing is the canvas surface needed
to properly represent a graph and can be reported when algorithms
take into account (&3 features that need proper space to be rep-
resented, such as node sizes or labels. It is also implied when the
nodes are constrained to integer coordinates. It is relevant in the

case of @D force-directed/ spring-embedder methods, as the repul-
sive forces used in them might cause drawings to take up more space
than needed. Hu et al. [HuO05], for example, include diameter in the
metrics used to compare different methods. Because a larger draw-
ing area is undesirable due to difficulties navigating the visualization
or resolving the marks [DAL*19], restricting the drawing area has
been the objective of two GD contests [DGNS13, GLNR14].

The aspect ratio is a key metric in algorithms that adjust the em-
bedding of existing drawings and is used to measure the preserva-
tion of the original global shape. Examples of these can be seen in
node overlap removal algorithms [LENOS, CPPS19, SSS*12]. The
goal is to maintain the overall structure of the graph while eliminat-
ing overlaps. Node movement minimization is another metric of-
ten used to evaluate the structural preservation of a graph [CPPS19,
SAK18]. This metric quantifies how much each node in the graph
needs to move to resolve any issues, such as overlaps or crossings.
Displacement is yet another metric relevant to structure preserva-
tion [CPPS19, NSM*19, FT04]. It measures the total movement of
all nodes in the graph during the layout adjustment. Neighbourhood
preservation is a measure of how well the graph theoretic neighbours
match the realized neighbours (via distance) in the layout [GLA*21,
ALD*20, DAL*19, KRM*17]. Finally, distortion is a metric used
to assess how much the relative positions of the nodes change after
the layout adjustment [WAA*22, SAK18, WZZY18, FT08]. The
goal here is to minimize the change in distances between nodes.
it is worth noting that some of these metrics can overlap in certain
cases. However, we have adhered to the authors’ specific terminolo-
gies when categorizing these metrics to ensure clarity.

11.4. @ Metrics related to linear programming

ILP-based methods often include additional ILP-related metrics that
are relevant to be addressed. One example that stands out is report-
ing the number of variables and constraints being generated dur-
ing the formulation of the problem [BCE*08, NW11, CGMO06], as
this can vastly affect the time spent solving an LP problem. An-
other common metric to be reported by LP paper is the success rate,
discussed below. When comparing a heuristic against an LP-based
method, the optimality rate [vDLMW 18] has also been included in
the results reported (example in Figure 16a).

Reporting running time without termination guarantees:
ILP-based methods have exponential growth in computational com-
plexity with respect to the input size. For this reason, computational
execution results sometimes include graphs where a computation
could not terminate within an allotted time. In the case of aggre-
gate reports, this might cause a problem, as having a set of in-
stances that could not terminate might cause issues in computing
an average—indeed, the running time of a computation that could
not terminate is not the upper bound of the allotted time (it could
take much more than that), and neither is infinite time. Indeed, a
number of papers report the percentage of graphs that could be
solved [CGM06, CKW 16, CvGM*18, CW16, DBRGD22, CMBO0S,
BCE*08, BEJ*06] within a certain timeframe (Figure 16a). A solu-
tion to this is to report the median, and not the average running time,
such as in Ref. [DBRGD22], where the charts are interrupted when-
ever at least 75% of the graphs with a specific number of nodes could
not be computed. Reporting the median guarantees that the value is
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Figure 16: @ Results measured: Two examples of dealing with
algorithms that do not always terminate in a given amount of time.

not influenced by the running time of instances that could not termi-
nate, whose time is unknown (it can neither be considered infinite,
nor the maximum allotted time)—see Figure 16b.

11.5. m User-related metrics

In some instances, computational evaluations are accompanied by
a @D user study to reinforce the claims that the proposed algo-
rithm improves the results [HZM*16, dBZSD21]. Such user stud-
ies can include qualitative elements or quantitative elements. In
case of quantitative user studies, the authors reported user accuracy
[MRS*13, CGSQI11, HZM*16, BPF14, KMS18, MA19, PAK*20,
DRMM13, QZZ22, dBZSD21] and user time [MRS*13, CGSQI 1,
BPF14, KMS18, MA19, PAK*20, DRMM13, QZZ22, dBZSD21]
spent solving a task. When the evaluation included a qualitative
element, usability [NW11, CGSQI11] and preference [BPWv18,
KMS18, DRMM13, QZZ22,dBZSD21] were also included. We in-
cluded in our survey some papers that exclusively have user eval-

uations: [MRS*13, CGSQ11, BPF14, BPWv18, KMS18, MA19,
PAK*20, DRMM13, QZZ22].

11.6. (D Reporting complexity

The reported complexity of a layout algorithm expressed in the num-
ber of nodes and edges does not necessarily explain the difficulty
of solving a problem thoroughly. An example is the barycentric
method [STT81], whose complexity is expressed as O(|N| * |E|),
where N is the set of nodes, and E the set of edges in a graph. How-
ever, this is the worst-case scenario, and the time spent computing
a layout will vastly differ based on the average degree of the nodes.
For this reason, it would be preferable to include in the description
of the dataset information such as the average degree of the nodes
in a given graph, or, when possible, use an approach such as the one
used by Ortmann et al. [OKB17] (Figure 13) where the degree dis-
tribution is represented on a chart for each of the graphs they used
in their experiment.

12. @) Information Availability

A primary objective of this survey is to explore ways to enhance
the reproducibility of computational experiments. Thus, the acces-
sibility and availability of supplementary materials, as well as clear
information about datasets employed, become crucial.

In the course of our analysis, we evaluated the availability and
nature of supplementary resources accompanying the papers. It
emerged that a substantial number of papers provided additional
materials, often in the form of expanded paper versions or appen-
dices available on arXiv (65 papers, of which 41 are on arXiv)—a
trend particularly prominent among papers submitted to GD. How-
ever, we also discovered that several links to these supplementary re-
sources have unfortunately become defunct, particularly when they
were hosted on university websites or similar platforms requiring
regular maintenance, or where the URL was subject to change. The
implications and underlying reasons for this are discussed further in
Section 12.1.

Another pivotal component when it comes to replicability is the
provision of code. Although a paper may present a thorough expla-
nation of the algorithms and methodologies used, providing access
to the code or pseudocode can prevent potential misinterpretations.
Of the papers in our survey, 69 offered at least pseudocode, while
others stored their full code on external repositories. it is noteworthy
that code sharing appears to be a more common practice in recent
times. Older papers less frequently offer access to their code, but the
most impactful among these have seen their code incorporated into
tools, thereby enhancing the precision of replication and the overall
utility of their research.

The dissemination of supplemental materials has grown increas-
ingly prevalent, supported by publisher websites that permit these
materials to be included alongside the main body of the paper. Fur-
thermore, reliable open-access repositories have provided a plat-
form to upload various files. As a result, it is now more straightfor-
ward than ever to provide all necessary resources—layout algorithm
code, benchmark graphs, analysis code and results—for reviewers
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and readers to verify and reproduce the experiments detailed in the
paper, and even to build upon the original work.

However, there are circumstances where sharing materials can
pose challenges, such as when the code forms part of proprietary
software, or when the data employed is owned by a company. We
recommend that authors share as many relevant materials as possi-
ble and provide a clear rationale for any materials that are omitted.
For example, pseudocode can serve as the next-best option if shar-
ing the full code is not viable. Similarly, sharing a synthetic example
graph mirroring the properties of a private graph can facilitate code
execution and partial validation of results. With substantial storage
space available for supplementary materials on reliable open-access
repositories, providing readers with necessary information has never
been easier.

We also urge reviewers to adopt a more discerning approach to
papers lacking essential supplementary materials. Ask yourself—
will this paper withstand the scrutiny of future researchers? Would
an independent team be able to reproduce or build upon this work
based solely on the provided resources? Are there materials that, if
included, would expedite and improve these processes?

As a recommendation, we advocate for authors to include all
supplementary materials necessary for verifying or reproducing the
computational experiments they report. This encompasses any code
used to create or modify datasets, layout algorithms used, analysis
code and the raw results. We further advise that all supplemental ma-
terial be hosted on reliable open-access repositories such as osf.io,
arxiv.org, biorxiv.org, psyarxiv.org and hal.*.fr. Ideally, the exis-
tence of supplementary materials and its location should be men-
tioned at the outset of the paper and referenced throughout the paper
whenever relevant to the discussion at hand.

12.1. @ Type of storage—Avoiding dataset loss

The disappearance of supplemental material can cause huge issues
in instances where other researchers are trying to replicate or ex-
tend a work of research. One outstanding example is the movie plots
dataset, first introduced in Ref. [TM12] by Yuzuru Tanahashi and
crafted manually by collecting which characters appear together in
subsequent scenes of popular movies. The dataset was a popular
one because it was particularly useful for storyline-style visualiza-
tion, and temporal event sequences are hard to come across. Several
papers cite it as their dataset source [LWW*13, THM15, GILM16,
vDLMW18, dBZSD21]. However, the dataset was stored on Tana-
hashi’s personal page on UC Davis’ website, and in the time be-
tween 2012 (when it was uploaded) and now, the page is no longer
available, resulting in the movie plot dataset being lost. The same
dataset is not found in any of the previously mentioned paper’s sup-
plemental materials, each one of them referring to the original now-
inaccessible webpage as a source. The loss of this dataset caused all
the papers using it to become far less reproducible.

In 2018, Haroz [Har18] analysed where supplemental material
was stored in VIS papers to discuss the phenomenon of ‘link rot’,
discovering that 5% of papers published at VIS have their supple-
mental material go missing within 2 months. Vines et al. [VAA*14]
reports that the availability of a dataset goes down by 17% per year
after the year of publication of a paper. The risk for supplemental

material to go missing is much higher if it is stored on a personal
website or lab webpage, or, even worse, if it is kept on a private
storage device and available upon request to the authors. A solution
to this problem is to store the material on reliable open-access
repositories such as osf.io, arxiv.org, biorxiv.org, psyarxiv.org
and hal.*.fr (and more, as listed in Ref. [Har18]). Any chosen
repository should enable (1) free access to the data without cost
or requiring creating an account, (2) persistent identifiers to avoid
link rot and allow citations, (3) post-submission updates for errata,
(4) immutable versioning (for pre-registration) and (5) a long-term
plan for providing materials in perpetuity. GitHub, like CodePlex
before it, would not satisfy (5) as it is owned by Microsoft and
subject to corporate pressures.

In this context, it is also worth mentioning that in recent years,
several initiatives have been aimed at encouraging reproducible and
replicable research. The graphics replicability stamp [Sta] is one of
these, meant to be an endorsement of the reproducibility of at least
one figure presented in a paper. Authors can opt to have their work
scrutinized by another reviewer, who focuses entirely on ensuring
that some results can be reproduced. ACM has a more robust badge
initiative for open practices [ACM], or the SIGMOD availability
and reproducibility initiative [SIG], which goes one step further
and publishes full reports on how reproducible a paper is. Finally,
Figure 17 describes how graph features inform evaluation types.

13. Changes in Computational Evaluations Through Time

When looking at the papers across time, it is clear that the inter-
net influenced how papers are written. First, starting with O sup-
plemental material, appendices were pretty rare in the 2000s; see
Figure 18a. If they existed, they are found at the end of the pa-
per, after the references. As the years went on, supplemental ma-
terial started to become more common. From 2006 to 2016, more
dead links appeared as individuals hosted the material on their own
websites or school sites. After 2016, one of the largest shifts was
the rise of research-specific sites like arXiv and OSF and the rising
popularity of version control sites like Github. The research sites
made posting and maintaining files easier, while the version con-
trol made it easier to provide code. Around this time, there was also
a shift for publishing websites, like IEEE Xplore, to host supple-
mental material within the website. An interesting trend occurred
around 2020, with a large influx of papers containing appendices.
GD around 2016 officially recognized arXiv as where all paper will
be hosted. Afterward, papers in the GD conference started to refer-
ence the full or extended version of the paper on the arXiv site. We
are unsure what started this trend, but by 2022, most GD papers had
an extended version.

We see a similar internet influence regarding €9 code availabil-
ity. Early on, it was common to find pseudocode in papers, as papers
were distributed physically; see Figure 18b. If an implementation
of the layout existed, it was on popular layout algorithms and im-
plemented by others like Fruchterman & Reingold and Kamada &
Kawai. As the popularity of and shift to using the internet for reading
and sharing increased, the number of papers containing pseudocode
started to decline.

Interestingly, by 2012, the shift was not from pseudocode to ex-
ternal links, but that code was not shared at all. Based on our own
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Figure 17: @ x @D Do graph features inform the appropriate
type of evaluation? Some features are widely treated in the context of
case studies—such as generated clusters, which are especially com-
mon for social network analysis. Others, such as large graphs, are
more difficult to test in large quantities with quantitative aggregate
evaluations and are tested more with visual comparisons.

experience publishing papers during this time, we argue that several
factors led to this shift. First, reviewers were lenient on needing to
provide access to code. Most likely assumed the software and im-
plementation had a good reason for not being shared, such as being
proprietary. Second, the field of visualization and, in turn, graph lay-
outs, exploded in popularity. This popularity caused an arms race of
sorts, where it was not advantageous to share the code for fear of
someone scooping your work. It is important to note that this anec-
dotal evidence, based on the authors’ experience at the time, should
be taken as such. Recently, there has been an increase in code be-
ing provided on sites like GitHub, though more can still be done in
this regard. A larger push for open science and the need for repro-
ducibility could be the driving force.

One area that has changed considerably over time is the @ re-
sults measured. Running time was the most popular metric and one
of the few reported (see Figure 18b). Over time, other metrics started
to appear as researchers figured out how to quantify a ‘good layout’.

S. Di Bartolomeo et al. / Evaluating Graph Layout Algorithms
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(a) QInformation availability : It is becoming more common to include
supplemental material, especially in appendices. Many links from even 5
years ago are now dead.
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(b) O Information availability: Around 2000, algorithms were mainly
shared as pseudocode within the paper. Since 2014, it has become more
common to share code in external repositories or not at all. The lack of
code limits our ability to verify and reproduce published results.
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(c) @ Results measured: New ways of quantifying performance have been
introduced over time, leading to a wide variety in use. Running time, while
the main measure for many years, is less frequently used in recent papers.
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(d) @Evaluation type: There has been little change in what is used.
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(e) QDatasets: The C. Walshaw dataset was especially popular 2002—
2008, but was supplanted by other collections. New datasets and improved
availability mean researchers now have a plethora of options, but some,
such as Rome-Lib, have maintained their popularity over time.

Figure 18: How the frequency of several surveyed features have
changed over time. To reduce the disparity for years in which there
were fewer papers, the values shown are binned in 2-year intervals.
The charts show the nine categories with the most occurrences each:
everything else is grouped into ‘Other’.
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The space for Results Measured expanded with a push to better un-
derstand graph aesthetics and conduct user studies. Running time is
still the most reported metric, as it applies almost to every layout
method. The significant change is the inclusion of other metrics to
capture different aspects of a graph.

(D Evaluation types over the years have stayed mostly steady
with an increase in Quantitative Aggregated Experiments in recent
times; see Figure 18d. There are several possible explanations as to
why this is occurring. First, the field is maturing. Similar to how
more varied results are reported, it becomes easier to represent am-
biguous elements like how good the layout is aesthetically through
metrics. Second, accessing large data is easier than ever, and com-
puters can run more experiments. As a culmination of both fields
maturing and access to more resources, we are seeing more papers
using machine learning to train layout algorithms.

14. Related Surveys

Graphs are among the most-surveyed topics, perhaps due to
their wide application and complexity. We found relevant surveys
through three approaches. We first examined the 86 surveys in vi-
sualization venues that were detailed in the ‘Survey of Surveys’ pa-
per [ML17]. Next, we searched for relevant surveys using an online
repository called ‘Computer Graphics Forum: All STARs, Surveys,
and Reviews’ [For23]. The repository covers 199 papers from 1985
to 2020. Finally, we used Google Scholar to find surveys on graphs
and networks published since 2020.

The structure, classification and ideas in this survey are based
on the most relevant ones we found through our search. One no-
table contribution by von Landesberger et al. [VLKS*11] is their
discussion on techniques for visual analysis of large graphs. They
classify graphs according to both time dependency and structure.
Time dependency can be split into static or time-dependent repre-
sentations. The structure comprises trees, generic graphs (directed,
undirected or mixed) and compound graphs, where multiple nodes
are collapsed into a metanode representation. To provide a complete
picture, they also discuss algorithms for pre-processing graphs, what
interactions can be applied to graphs, and future challenges.

In a more focused investigation, Beck et al. [BBDW14] delve
deeper into dynamic graph visualization by hierarchically catego-
rizing publications based on their treatment of time. Either time is
shown through animation, or as a static representation with a time-
line. These categories are further broken down by the purpose of
the layout (general or special-purpose) for animation and the type
of representation for static graphs (node-link or matrix). A similar-
ity between our work and theirs is the discussion of the evaluation
process. They focus on evaluating animated approaches for dynamic
graphs while we take a broader approach and examine the evalua-
tion of all layouts.

Vehlow et al. [VBW17] survey visualizations that display the
group features of graphs. Their taxonomy breaks down visualiza-
tion techniques along two axes. One shows four main visualization
categories—visual node attributes, juxtaposed, superimposed and
embedded—while the other separates group structure into disjoint

flat, overlapping flat, disjoint hierarchy and overlapping hierarchy.
Vehlow et al.’s work also contains a section on evaluation through
the lens of group-related tasks. They group similar tasks and sum-
marize the results from user studies, reporting which area in group
structures would benefit from further exploration.

Yoghourdjian et al. [YAD*18] surveyed user studies involving
node-link diagrams. They wanted to better understand relative terms
like ‘large’ or ‘complex’ in the context of human-centred experi-
ments. Specifically, how different features and characteristics of a
graph affect visual complexity in practice. They also outline the
types of tasks and networks and their experiment design. Both of
our works address how network diagrams are evaluated; while theirs
focuses more on user studies, ours is evaluation in general.

Filipov er al. [FAM23] provide a comprehensive overview of net-
work visualization research. Their survey consolidates various sur-
veys and task taxonomies in this field, identifying both saturated
and less-explored areas. They aim to unify terminology and catego-
rizations across different studies, offering a structured meta-survey
highlighting current research trends, commonalities and differences
in network visualization.

Perhaps the survey that is closest in purpose to our own is Burch
et al.’s [BHW*21] STAR paper on empirical user evaluation for
graph visualization. They classify user evaluation based on graph
interpretation, memorability and expression. Where interpretation
is the ability of the user to understand the drawn graph, memorabil-
ity is the ability to recall information from the graph and expression
is the ability to generate the desired graph. They explicitly exclude
computational experiments from their survey, which is the focus of
this systematic review.

This systematic review aims to fill a gap left by these prior studies
by closely examining the computational approaches used to evalu-
ate graph layout algorithms. Our review complements Burch et al.’s
[BHW#*21] survey of human-subjects approaches to evaluation. Our
report focuses on how to evaluate graph layout methods in general,
while most of these existing surveys either target a specific type
of graph or evaluation type. We sought answers to questions such
as, ‘What is the data set size used for a given graph feature’, ‘How
reproducible is the experiment, including code and supplementary
material availability’, or “‘What evaluation types were used and the
results measured’.

15. Conclusion

Evaluating graph layout algorithms requires careful consideration of
multiple aspects of the evaluation, which are all interconnected. The
motivation for this study came from the authors’ own experiences
in running evaluations for graph layout algorithms and included dis-
cussions and proposed solutions for many of the challenges faced in
their own work. The objective is to create a navigable resource for
other authors that can be used to search for answers to the many
questions that can come up during the development and evaluation
of a layout algorithm.

As quantitative readability criteria have been defined to evalu-
ate the quality and readability of GDs, running user studies has not
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been deemed a requirement for evaluating graph layouts for quite
a while. The quality and usefulness of a layout algorithm can be
measured with just comparisons of numerical values, for instance,
in terms of the number of crossings produced or in terms of run-
ning time. However, if we want to use computational evaluations to
prove the usefulness of graph layout algorithms, we might consider
moving towards the more rigid standards of fields that have used
similar evaluations for a much longer time, such as those that are
used in computer graphics, or for security tools. This would require
a standardization process and the definition of rigid constraints. This
paper does not intend to define a standard but is meant as an en-
couragement to make computational experiments as reproducible
as possible, to allow for fair comparisons.

There is still much future work to be done in this field. One im-
portant aspect is the classification of datasets, which would help
researchers find suitable datasets for their algorithms. It would be
beneficial to provide more insights into these datasets, such as the
distribution of node degrees and information about clusters within
graphs. Although there are websites like Konect [Kun13] and SNAP
[LS16] that offer statistics about downloadable datasets, there is cur-
rently no dedicated website specifically focused on graph layout al-
gorithms. Additionally, most existing websites provide information
about individual graphs rather than entire collections, which makes
it difficult to evaluate algorithms quantitatively. Creating a website
that aggregates and preserves important datasets for graph layout
algorithms would be helpful.

Another crucial step is establishing clear benchmarking stan-
dards for different evaluation types. This would involve determin-
ing the minimum number of graphs and their variety needed for
a meaningful benchmark. We would also need guidelines on re-
porting the hardware and computational resources used in evalu-
ations. While this paper can provide resources and examples for
researchers evaluating their own algorithms, it does not aim to
define specific benchmarking guidelines. However, it serves as a
starting point for discussions and provides valuable resources for
researchers.

By addressing these areas of future work, researchers can make
better decisions when selecting datasets for algorithms and ensure
consistency and comparability in evaluations. This will contribute
to advancements in graph layout algorithms and improve their effi-
ciency and effectiveness. Overall, further exploration in these areas
will drive the growth and development of the field.
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