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ABSTRACT
Kokkos provides in-memory advanced data structures, concurrency,
and algorithms to support performance portable C++ parallel pro-
gramming across CPUs and GPUs. The Message Passing Interface
(MPI) provides the most widely used message passing model for
inter-node communication. Many programmers use both Kokkos
and MPI together. In this paper, Kokkos is integrated within an
MPI implementation for ease of use in applications that use both
Kokkos andMPI, without sacrificing performance. For instance, this
model allows passing first-class Kokkos objects directly to extended
C++-based MPI APIs.

We prototype this integrated model using ExaMPI, a C++17-
based subset implementation of MPI-4. We then demonstrate use of
our C++-friendly APIs and Kokkos extensions through benchmarks
and a mini-application. We explain why direct use of Kokkos within
certain parts of the MPI implementation is crucial to performance
and enhanced expressivity. Although the evaluation in this paper
focuses on CPU-based examples, we also motivate why making
Kokkos memory spaces visible to the MPI implementation gen-
eralizes the idea of “CPU memory” and “GPU memory” in ways
that enable further optimizations in heterogeneous Exascale ar-
chitectures. Finally, we describe future goals and show how these
mesh both with a possible future C++ API for MPI-5 as well as the
potential to accelerate MPI on such architectures.

CCS CONCEPTS
• Software and its engineering → Parallel programming lan-
guages.
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1 INTRODUCTION
This paper proposes a series of function bindings for the Message
Passing Interface (MPI) [13] that leverage features of Kokkos [15], a
widely used on-node currencymodel, internal to an implementation
and enable better integration of Kokkos and MPI at the application
level.

This work has strong motivations based on current practice.
While a large number of libraries and applications are still C-based,
modern C++-based libraries are gaining popularity among high-
performance exascale computing projects. However, the mixing
of C++ and legacy C libraries provides many compatibility prob-
lems, including combining interfaces and object types that were
not designed to work together. Like any other programmers, high-
performance computing (HPC) professionals aim to reduce redun-
dant code and increase functionality when possible. There are many
libraries today that target HPC professionals, but some of the most
heavily used are implementations of theMPI standard [13]. TheMPI
standard is focused on multi-processor communication, typically
between nodes on high-performance computers.

ExaMPI is an implementation of MPI written in modern C++
that aims to help researchers adapt to modern challenges, such as
exascale computing [14]. The Kokkos library enables programmers
to manipulate both large datasets and the execution and memory
spaces associated with them [15].

To a significant degree, software development is not about creat-
ing new libraries, programs, etc., but rather improving existing ones,
maximizing their performance and/or enhancing their productivity.
Our work therefore has the following motivations:

• To improve the general programming experience when using
MPI with Kokkos.

• To minimize the possibility of bugs from MPI+Kokkos pro-
grams

• To enable optimizations for MPI+Kokkos at the language
binding level or below.

As the shift towards exascale systems occurs, existing libraries
must be open to improvement. The MPI standard does not have
the ability to interact well with modern classes, causing friction be-
tween the rapidly evolving C++ language and theMPI standard. Our
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work leverages the flexibility of ExaMPI to demonstrate how MPI
could support new features (in this case, Kokkos) faster. Because of
problems with existing implementations, projects like Water et al.
[17] seek to replace MPI with other frameworks [16, 17].

Our work aims to address these concerns by showing how MPI
could integrate new libraries into its functionality. This paper
adopts a philosophy for supporting new features by rewriting small
portions of code (i.e., the language bindings) and keeping the un-
derlying structure as generic as possible, similar to the work of
Trott, Plimpton, and Thompson [16]. The immediate advantage of
the proposed MPI extension is to improve productivity rather than
performance, as the underlying model is still the same. However,
they could open the possibility to some improved performance if
integrated more fully. Therefore, this work has implications beyond
Kokkos, such as how true MPI-based C++ bindings will differ from
classic C bindings.

There is currently no way to holistically utilize both MPI and
Kokkos in modern C++ (as opposed to just C++ style syntax). Cur-
rent practice is to set up MPI and Kokkos at the same time, then ac-
cess the raw pointers Kokkos uses rather than its existing datatypes.
While this is workable, it creates redundant code that could be op-
timized at a lower than user level (e.g., the length of data could be
automatically inferred from the Kokkos data structures). In addi-
tion, this paper discusses the opportunities and the drawbacks of
integrating these two libraries.

Our objectives are as follows:
• To create a series of function bindings within ExaMPI whose
syntax utilizes Kokkos objects in the same manner as stan-
dard MPI buffers

• These function bindings should have at least comparable
performance to existing practices for the majority of use
cases

• Allow for easier building of MPI applications using Kokkos
alongside ExaMPI

These objectives are accompanied by the following questions:
• How useful are these new bindings for users?
• What are the long term opportunities created by these bind-
ings?

• Should these bindings follow the more traditional C-style
MPI bindings or experiment with new parameters?

• Do these bindings increase or decrease performance?
Since the primary metric for this effort is not performance gains,

but increased functionality, the results should deliver comparable
performance. If the new bindings perform generally as well as
previous methods, they will be considered acceptable.

The remainder of this paper is organized as follows. Section 2
provides background and relatedwork onMPI, ExaMPI, and Kokkos,
as well as other related work. Section 3 provides details on the APIs
and strategy used to achieve this paper’s objectives, while Section 4
describes specific results obtained for a number of communication
APIs and test programs. Lastly, Section 5 provides conclusions and
outlines future work.

2 BACKGROUND AND RELATEDWORK
First we describe MPI and ExaMPI. Then we discuss Kokkos, as
well as other related work.

2.1 MPI and ExaMPI
The Message Passing Interface (MPI) standard specifies a program-
ming library interface for passing messages between peer processes
[13]. The standard is separate from its various implementations,
such as OpenMPI [6] and ExaMPI. Version 1.0 of MPI was released
in May 1994 and focused on communication between just two pro-
cessors [13]. The basic message model introduced in Version 1.0
uses contiguous data primitives (e.g., int, double, etc) passed via
pointer along with a count for the number of elements. Normally,
messages must be of the same MPI_DATATYPE [13].

Later versions introduced ways to pass non-contiguous data
through derived datatypes and packing. Derived datatypes allow
a developer to specify a list of datatypes and the memory offsets
between them to create a new MPI datatype. This feature is use-
ful for passing structs with defined datatypes. For more complex
and variable examples such as matrix subsets, explicit packing of
elements into a contiguous buffer is also supported [13].

While some innovations have been introduced, MPI datatypes
have remained essentially the same since MPI 1.01.

MPI offers a wide range of functions, but probably the most
popular are MPI_Send and MPI_Recv. A MPI program is launched
on a number of different processes identified by a rank number that
may be on entirely separate nodes (servers), or grouped on a single
node as a virtual concurrent computer. These might be divided up
into groups identified by a communicator that they share, but by de-
fault they share the same communicator “world,” MPI_COMM_WORLD
[13]. A data primitive buffer along with its length and datatype are
provided to MPI_Send to transport this information to its destina-
tion, where MPI_Recv reads that information from the underlying
transport and writes it to a buffer passed to it. Specifics on these
and other functions, along with their new implementations, are
covered later.

2.2 The specifics of ExaMPI
The ExaMPI project is designed to be a springboard for new ideas
in MPI, including fault tolerant concepts, modern C++ support, and
extensions to the standard that require highly effective progress
for communication [14]. The complexity of producing significant
improvements, modifications, and/or changes in design to exist-
ing MPI implementations is a daunting task. Existing open source
middleware implementations, such as OpenMPI [6] and MPICH
[7], consist of hundreds of thousands of lines of legacy code. Thus,
substantially altering MPI, e.g., changing fundamental parts of MPI
that manage internal state or concurrency, is prohibitively time-
consuming and error-prone for most researchers. Other middleware
implementations are closed-source, precluding most researchers
from altering them. ExaMPI targets a smaller subset of the MPI
standard than those middleware products, allowing it to focus on
new functionality. This approach also avoids dead legacy code and
technical debt associated with assumptions about node concurrency
or progress made in the 1990s.

1There has been discussion among the MPI community about getting rid of MPI
datatypes all together. Instead, the size of the message buffer in memory would be
specified another way. This is thought to be faster, and would streamline the interface.
Due to compatibility issues, this proposal has not progressed far as of this time.
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ExaMPI is focused on principles-first design, highlighting the
principles below:

• Enable rapid new development of new features, identify
ways to increase performance, and improve understanding
of the MPI standard

• Support the research interests and experiments of developers,
such as effective overlap of communication and computation

ExaMPI is able to achieve these goals by limiting its scope and fo-
cusing its design on key elements of productivity and performance.
ExaMPI’s underlying structure is as follows. The library bindings
are the top-most layer, and exist separately so they can interface
with the C, C++, and Fortran languages with the same function-
ality. Their primary use is to take in the parameters (buffers, MPI
datatype, etc.) and handle them for communication. Then, the mes-
sage buffers, along with size and datatype information, are wrapped
in a Payload class containing the pointers to the underlying buffer.
These Payloads are wrapped in a Payload organizer, then sent to the
Request class to be processed through the lower-level transports.
This might include transferring or receiving data over the desired
transport medium (for example, TCP, UCX, LibFabric, etc.) to com-
municate with other MPI processes locally or on remote nodes [14].
Depending on the function, the request is specified to send, receive,
broadcast, or perform any of a number of other functions. For ex-
ample, when received, the buffer is still wrapped in a Payload, but
this Payload is written to rather than read from. Once this request
is made, it can be activated and then either waited on within the
binding (blocking communication) or handled as asynchronous,
non-blocking communication. In the latter case, the function can
exit and the MPI_Wait function can be used later to wait on the
message [13, 14].

Fundamental to most MPI implementations are MPI_Init and
MPI_Finalize, which bracket the portion of the program where
MPI code is executed. At compile-time, an MPI compiler front-end
is used (normally, mpicc, mpicxx, etc). At run-time, a program such
as mpirun is passed MPI parameters and coordinates background
information such as threading. In ExaMPI, this mpirun consists of
Python Dæmons [13, 14].

The main version of ExaMPI targets the same traditional C func-
tions as all other MPI implementations. MPI is a large standard with
hundreds of functions (many of which are de-facto if not techni-
cally deprecated), so in order to keep itself small, ExaMPI includes
157 C functions at present. Additionally, Fortran bindings are in
development for ExaMPI. While they are not C++ per se, ExaMPI’s
C bindings are compatible with it. There are only 16 C++ bindings
in ExaMPI currently (which are not described in any standard),
along with the new work featured in this paper.

2.3 Kokkos, its data structures and model
Kokkos is a library ecosystem and programming model for C++
that provides data structures, concurrency features and algorithms
to support advanced C++ parallel programming across different
memory spaces [15]. Created to support the needs of USDepartment
of Energy (DOE) applications, Kokkos is a newer library than MPI
and exists for similar reasons to ExaMPI: to facilitate new exascale
architectures and services.

Exascale computers with large heterogeneous architectures com-
posed of a mixture of traditional CPUs, GPUs, and other accel-
erators are incredibly powerful. However, differences in vendor
preferred programming models among various architectures make
performance portability between them a challenging problem for
application developers. Kokkos addresses this problem by provid-
ing a programming model with a modern C++ interface based on
template metaprogramming for the expression of data management
and parallelism [15]. Its implementation comprises a set of back-
ends that target vendor preferred programming models such Nvidia
CUDA, AMD HIP, and Intel DPC++, as well as OpenMP. A major
focus of the Kokkos effort is to transition capabilities into future
versions of the C++ language itself, e.g., MDSpan, accepted into the
C++ standard as Proposal P0009R9 [8].

2.3.1 The View Data Structure. The primary feature of Kokkos
relevant to our work is the View data structure, a datatype similar
to a tensor, which handles multidimensional arrays (currently up to
eight dimensions) [1, 15]. Views may or may not refer directly to a
given array, but they are always containers for data that handles the
number of dimensions, layout, and element access [1]. Unlike tensor
implementations, the View datatype is low-level, more an extension
of the C array class than an implementation of the mathematical
concept of tensors. At its core, it consists of a template object pointer
to an underlying object, normally a C array [1].

As the Kokkos implementation of Views is essentially a smart
pointer wrapper with additional functions, a large amount of meta-
information can exist in the View [5, 15]. This includes elements
traditionally included in vectors (i.e., length, datatype) along with
the given memory and execution spaces. Kokkos offloads a large
amount of processing to compile-time features such as using type-
defs. A key feature is that Kokkos Views can be declared to specific
memory and execution spaces, such as GPUs, accelerators, etc
[5, 15].

Similar to traditional C pre-processor macros, the View templates
let the C++ compiler push run-time processing of data types to
compile-time, allowing both speed-up at run-time and complex
data type work that would be difficult to analyze at run-time. In
the case of Kokkos, these compile-time features sometimes have
the side effect of obfuscating the objects themselves (i.e., there is
no function or class member that describes the entire dimensional
layout of View objects available at run-time). Instead it must be
iterated over one dimension at a time with the extent function
[5, 15].

1 int n = 5;

2 Kokkos ::View <int*> B("B View",n);

3 int* buf = {...};

4 Kokkos ::View <int*> C(buf , n);

5 // C.data() == buf;

6 // int m = ...;

7 Kokkos ::View <int**> D("2D View", n, m);

8 // int o, p, q, r, s, t = ...;

9 Kokkos ::View <int ******[10][2] > E(

10 "2D View", n, m, o, p, q, r, s, t);

Listing 1: Kokkos View Creation

This section covers initialization of four basic Views as shown
in Listing 1. Similar to ExaMPI, there are Kokkos::initialize
and Kokkos::finalize functions to outline the Kokkos portion
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of the code [5, 15] In the first constructor, View A is created with
template parameters within angle brackets alongside parentheses
parameters, the label string and the length. It specifies the datatype
for the underlying data (int) followed by the length (in this case, 5
elements) of the first dimension. This is analogous to creating an
array of 5 integer elements or int[5]. Instead of using a static length
as in View A, View B has an asterisk “*” allowing its dimensions to
be determined at run-time instead of compile-time. Compile-time
dimensions should be passed both as constant template arguments
(View<...>) and parameters. However Views are not dynamically
sized, so View A and B are basically the same [5, 15].

View C in Listing 1 shows a useful but problematic feature of
Kokkos. The line above View C creates a integer array called 𝑏𝑢𝑓 .
The constructor for View C takes this existing buffer and the length
𝑛 as parameters. This makes 𝑏𝑢𝑓 the underlying data structure
C points to, creating what is known as an unmanaged View (as
opposed to Managed Views) [15]. This is not legal C++ as it deals
directly with the raw pointer; however, most compilers will accept
it, as it is legal C syntax. These unmanaged Views lack most of
the debugging information of their peers, such as the label string
[5, 15]. According to discussions with the Kokkos team, a raw
pointer constructor that still offers full debugging information is
planned, but has not made its way into Kokkos.

Finally, View D shows the creation of a two-dimensional View.
The first difference is that in the template parameters, there are 2
asterisks/dimensions instead of 1. Similarly, 2 size parameters (n
and m) are passed in parentheses. This can be continued for up to 8
dimensions, with View E showing that these dimensions can be set
at both compile and run-time, so long as compile-time dimensions
are last. It is also possible to make an illegal raw pointer View as
with View C in this manner, by putting the additional dimensions
as parameters as with D [5, 15].

2.3.3 Memory Space. Another feature of Kokkos is its ability to de-
clare in which kind of memory and execution spaces a View resides.
For example, if a GPU is available, then a View can be declared
as follows 𝑉𝑖𝑒𝑤 < 𝑖𝑛𝑡∗,𝐺𝑃𝑈𝐸𝑥𝑒𝑐𝑆𝑝𝑎𝑐𝑒,𝐺𝑃𝑈𝑀𝑒𝑚𝑆𝑝𝑎𝑐𝑒 > 𝐴 [15].
This feature is key to some of the ideas discussed later.

1 Kokkos ::View <double*> check("check",n);

2 Kokkos :: parallel_for(check.extent (0), KOKKOS_LAMBDA(int i){

3 check(i) = i*i;

4 });

Listing 2: Kokkos View parallel for example

Kokkos has several parallel execution patterns similar to those
used in OpenMP:
parallel_for, parallel_reduce, and parallel_scan. The pri-
mary pattern relevant to our work is the parallel_for, which
iterates through Views. This for loop takes a label string, a range
(number of iterations, analogous to int i in traditional for loop),
and a lambda or functor object to be executed [5, 15]. This lambda
is a more modern language feature available only in newer versions
of C++. As seen in Listing 2, The parallel_for and lambda are
normally formatted to resemble a single for loop, but the lambda
contains the actual code to be executed [3, 5, 15].

2.4 Related Work
1 int n = 5;

2 // int destination_rank , my_rank , tag , comm = ...;

3 Kokkos ::View <int[5]> A("A View",n);

4 if (my_rank) {

5 MPI_Send(A.data(), int(A.size()), MPI_DOUBLE ,

destination_rank ,

6 tag , comm);

7 } else if (my_rank ]) {

8 MPI_Recv(A.data(), int(A.size()), MPI_DOUBLE ,

destination_rank ,

9 tag , comm);

10 }

Listing 3: Kokkos View Send

We now consider existing work on the use of MPI and other
system-wide programming models with Kokkos. Despite the popu-
larity ofMPI and Kokkos, no framework currently exists to integrate
both MPI and Kokkos in an application. However, Kokkos since
its inception has been used alongside MPI in numerous applica-
tions of DOE and other HPC users. The Kokkos documentation
itself includes a halo exchange that uses both MPI and Kokkos [15],
which is a common application use case. A halo exchange is when
data (in this case, part or all of a View) is exchanged among nearest
neighbors in the Communicator group of MPI processes. The listing
3 shows the traditional way to transfer a Kokkos View by accessing
the underlying data pointer (.data()) and size (.size()) along
with passing the MPI datatype [15].

Previous work using both Kokkos and traditional MPI together
has yielded interesting results. For example, Khuvis et al. [11] have
a shown a speedup of General Matrix Multiplication (GEMM) code
and the Graph500 benchmark using their version of MPI+Kokkos.
They use the Intel implementation of MPI, MVAPICH and standard
Kokkos. The GEMM code leverages Kokkos for parallelism of matrix
multiplication alongside MPI to distribute the matrices; this code
has noticeable improvement with each additional process for up
to 64 processes [11]. Their Graph500 evaluation includes an MPI
only baseline and MPI+Kokkos implementations with and without
locks. The Graph500 results show a speed-up with the locking
implementation over the MPI-only on up to forty processes, and
continued speed-up with the non-locking implementation of up to
5x on 64 processes.

Other frameworks have used MPI+Kokkos to improve their
strong scaling. For example, the Uintah framework for modeling
chemical reactions uses MPI + Kokkos to consolidate the use of
both MPI + Pthreads and MPI + Cuda into a single approach that
also enables added portability [9, 10]. Another distributed memory
framework, the UPC++ framework, has demonstrated its ability
to work with Kokkos to replace MPI in simulating heat conduc-
tion without radical changes in performance compared to the IBM
vendor version of MPI [17]. Con et al. demonstrated use of the
distributed many-task MPI alternative Legion with Kokkos to of-
fload "boiler-plate code" away from the user[2]. Daiß et al.[4] fo-
cuses on integrating support for Kokkos parallel constructs (e.g.,
parallel_for) into HPX, a parallelism framework based on asyn-
chronous futures [4].

Overall, the literature shows a large demand for further inte-
gration of Kokkos with other HPC frameworks both for general
use and from specific scientific application domains. Additionally,
there are many programs in which Kokkos and MPI coexist but
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are not bound together. The primary innovation that distinguishes
our work from previous forms of MPI+Kokkos interaction is the
ability to process Kokkos Views as native first class objects in the
MPI implementation.

3 IMPLEMENTATION
1 // old method

2 int *recv_buf = (int*) malloc(n * sizeof(int));

3 MPI_Recv(recv_buf , n, MPI_INT , 1, 0,

4 MPI_COMM_WORLD , MPI_STATUS_IGNORE);

5 Kokkos ::View <int*> recv_check(recv_buf , n);

6 // new method

7 Kokkos ::View <int*> A(''New Method View'', n);

8 MPI_Kokkos_Recv <Kokkos ::View <int*>, int >(A, n,

9 MPI_INT , 1, 0, MPI_COMM_WORLD);

Listing 4: Techniques for passing Views using MPI and
Kokkos.

In this section, we describe the individual bindings created for
our API extensions. Consider first the status quo for a programmer
using Kokkos Views with MPI: The View’s underlying pointer must
be accessed by the programmer, opening up the possibility for
memory leaks. In contrast, the functions in our MPI extensions
accept Kokkos Views.

All that is required to receive a View is to create an existing View
of the correct size and copy to it. For example, MPI_Kokkos_Send
sends the underlying View as a Payload. Its counterpart, MPI_-
Kokkos_Recv receives this Payload, then wraps it back into a View
object (either a View pointer or copying to full array with a perfor-
mance penalty). This model is used for all the other MPI bindings
as well. Note that Currently this method is only compatible with
contiguous arrays currently.

3.1 MPI Extension API Functions
Each of the functions in the MPI + Kokkos implementation is
based on a common MPI equivalent. The proposed MPI extension
functions are listed below. The naming of these functions is MPI_-
Kokkos_X for simplicity of implementation (avoiding overloading
errors) and to distinguish them from the original versions. How-
ever, there is no reason why these functions could not be overloads
of their standard counterparts or placed inside a namespace. In
future versions of MPI+Kokkos, these functions and others (e.g.,
non-contigous versions of these functions) will be implementated
as overloads of the MPI standard functions. Note that scalar and
contiguous one-dimensional sub-Views can be sent using these
functions.

(1) MPI_Kokkos_Send
(2) MPI_Kokkos_Recv
(3) MPI_Kokkos_Isend
(4) MPI_Kokkos_Irecv
(5) MPI_Kokkos_Bcast
(6) MPI_Kokkos_Allgather
(7) MPI_Kokkos_Allreduce
Each section shows the function’s name, then the template pa-

rameters, followed by the normal function parameters. Templates,
especially for complex structures such as Views, contain more than

just type information, so a more generic template allows compati-
bility with different Views. Each binding uses roughly the following
template to accept any View class, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 < 𝑐𝑙𝑎𝑠𝑠 𝑉 𝑖𝑒𝑤_ 𝑡 >

along with any additional template parameters.

3.1.1 MPI_Kokkos_Send and MPI_Kokkos_Recv.
MPI_Kokkos_Send⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

TEMPL View_t View type
TEMPL Datatype underlying datatype
IN buf address of View
IN count number of elements
IN datatype datatype of View’s elements
IN dest destination rank
IN tag message tag
IN comm handle to communicator

MPI_Kokkos_Recv⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm)

TEMPL View_t View type
TEMPL Datatype underlying datatype
OUT buf address of View
IN count number of elements
IN datatype datatype of View’s elements
IN source source rank
IN tag message tag
IN comm handle to communicator

These are variations of MPI_Send and MPI_Recv which take
Views as first class objects, MPI_Kokkos_Send and MPI_Kokkos-
_Recv. MPI_Kokkos_Send takes a View as the first parameter in the
place of the usual buffer and sends this over as an ExaMPI Payload.
MPI_Kokkos_Send’s counterpart, MPI_Kokkos_Recv receives the
Payload sent by MPI_Kokkos_Send, thenwraps that in a View object
and sends that to the pointer passed as a parameter.

All functions have the same template parameter, View_t for tak-
ing in Views, along with Datatype, which allows the user to pass
the underlying datatype for the View. These functions assume that
the Views are identically shaped on both ranks for MPI transport,
similar to howMPI standard functions assume buffers are sized. This
places responsibility on the user and avoids having to communicate
details about the View, such as dimensions, type, etc. Similarly,
Kokkos reductions require the same View on both ends. We con-
sidered two ways to add templates to the bindings. The first was
to write the bindings in the primary MPI header, but this approach
would have increased its size substantially. The second, which we
chose, was to include a template instantiation for View type and di-
mensions (e.g., Kokkos::View<int*> and Kokkos::View<int**> each
required different instantiations).

The implementation code does not just redirect the View’s data
to MPI_Send/Recv, but to the same underlying Request layer as all
other buffers. The first approach would work, but is less interesting
and has less flexibility for future work. It also introduces the slight
overhead of another function call.
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3.1.2 MPI_Kokkos_Isend and MPI_Kokkos_IRecv.
MPI_Kokkos_Isend⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,MPI_Request
*request)

TEMPL View_t View type
TEMPL Datatype underlying datatype
IN buf address of View
IN count number of elements
IN datatype datatype of View’s elements
IN dest destination rank
IN tag message tag
IN comm handle to communicator
OUT request handle to communication request

MPI_Kokkos_Irecv⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,MPI_Request
*request)

TEMPL View_t View type
TEMPL Datatype underlying datatype
INOUT buf address of View
IN count number of elements
IN datatype datatype of View’s elements
IN source source rank
IN tag message tag
IN comm handle to communicator
OUT request handle to communication request

MPI_Kokkos_Isend and MPI_Kokkos_IRecv are the non-blocking
versions of MPI_Kokkos_Send/Recv, where the function call is re-
turned before communication is finished. MPI_Kokkos_IRecv is
the counterpart of MPI_Kokkos_Irecv in the same way as MPI_-
Kokkos_Recv is to MPI_Kokkos_Send. Like MPI_Kokkos_Recv, an
existing View address is received from a send side and its data is
written to a existing View.

We used existing query functions, rather than creating new ones,
to ease the process of porting applications. For example, if an exist-
ing ExaMPI program is converted to our API, any use of MPI_Wait
will not have to be changed. Otherwise, this function differs from
its non-Kokkos counterpart only in its ability to handle a Kokkos
View as a first class object. Note that only MPI_Wait has been used
in the evaluation.

3.2 Collective Functions
3.2.1 MPI_Kokkos_Bcast. MPI_Kokkos_Bcast⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩

(View_t * buf, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

TEMPL View_t View type
TEMPL Datatype underlying datatype
INOUT buf address of View
IN count number of elements
IN datatype datatype of View’s elements
IN root root rank
IN comm handle to communicator

MPI_Kokkos_Bcast is a version of MPI_Bcast. The primary dif-
ference from the point-to-point bindings is the use of a collective
operation and the need to ensure that the Views would be handled
correctly whether the process was a root or not.

3.2.2 MPI_Kokkos_Allgather. MPI_Kokkos_Allgather
⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * buf, int count, MPI_Datatype datatype,
View_t * recv_buf, int recv_count,
MPI_Datatype recv_type, MPI_Comm comm)

TEMPL View_t View type
TEMPL Datatype underlying datatype
INOUT buf address of View to be sent
IN count number of elements for buf
IN datatype datatype of sender View’s elements
INOUT recv_buf address of receiving View
IN recv_count number of elements for recv_buf
IN recv_type datatype of receiver View’s elements
IN comm handle to communicator

Next is the collective communication function,
MPI_Kokkos_Allgather. This is a version of MPI_Allgather, a
function which collects (gathers) an input View from all processes
then arranges them into a Viewwith inputs from each View ordered
by their sending process’s index ranking [13]. Unlike the previous
functions, this function requires the creation of two payloads, one
for sending and another for receiving.

3.2.3 MPI_Kokkos_Allreduce. MPI_Kokkos_Allreduce
⟨𝑉𝑖𝑒𝑤_𝑡, 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒⟩
(View_t * send_buf, View_t * recv_buf, int count,
MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

TEMPL View_t View type
TEMPL Datatype underlying datatype
INOUT send_buf address of View to be sent
INOUT recv_buf address of View to be written to
IN count number of elements for buf
IN datatype datatype of sender View’s elements
IN op operation to be performed
IN comm handle to communicator

MPI_Kokkos_Allreduce is a collective function that collects val-
ues from several processes, performs an operation on them (MPI_Op)
and broadcasts the result to all processes involved. The MPI_Op can
be any of a number of operations such as sum, max, etc. This func-
tion required more conceptual work than previous function. The
key design choice is whether this extension should return the result-
ing buffer from the reduce operation as a View or as a data primitive.
To be more consistent with the previously covered functions, this
function uses Views for both the send and receive buffers.
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Figure 1: One-dimensional pingpong test using MPI Exten-
sion bindings versus traditional method (higher is better)

4 RESULTS
1 Kokkos ::View <int*> check("Example View", n);

2 // old method

3 MPI_Recv(check.data(), n, MPI_INT , 1, 0,

4 MPI_COMM_WORLD , MPI_STATUS_IGNORE);

5 // new method

6 MPI_Kokkos_Recv <Kokkos ::View <int*>, int >(&A, n, MPI_INT , 1, 0,

7 MPI_COMM_WORLD);

Listing 5: Kokkos View + MPI examples

In this section, we evaluate the performance of our extended
Kokkos-aware MPI functions compared to using Kokkos with the
corresponding existing MPI functions. First we present results for a
one-dimensional MPI_Send and MPI_Recv test, followed by results
for two and three dimensional arrays, along with a slightly different
test using MPI_Bcast. Finally, we demonstrate performance using
our MPI extensions in a heat diffusion mini-application.

The following tests were run on the Blake testbed at Sandia Na-
tional Laboratories. Blake contains 40 24-core Intel Xeon Platinum
nodes with the Intel Omnipath Interconnect.

4.1 One-Dimension MPI_Send And MPI_Recv
Tests

This section covers the tests comparing the new Kokkos bindings
for sending and receiving using a View (MPI_Kokkos_Send and
MPI_Kokkos_Recv) and traditional C bindings. Figure 1 shows the
results for MPI ping-pong using one-dimensional data. In a ping-
pong test, one process sends a buffer (here a View) and another
receives and alters the buffer. Finally, the buffer is sent back to
the original sending process. The primary difference between the
two methods is shown in Listing 5: The old method for receiving
an array must touch the .data() method directly, while the new
method accepts the Kokkos View.

Aside from the differing methods, the main variable is the size
of the View, each consisting of a single dimensional array ranging
in size from 64 to 32768 elements (or as mapped on the X-axis,
roughly 10 to 104 elements) multiplying by 2 at each step. For each

Figure 2: Two-dimensional pingpong test using MPI Exten-
sion bindings versus traditional method (higher is better)

length of the array, 500 runs were done with each point in Figure 1
representing the average message rate. The times recorded in the
figure are from the original sending side as it will have the longest
overall time. This is equivalent to a latency test, as the message
rate is the number of messages per second, as determined by the
ping-pong’s overall time/latency. The standard deviation of the
mean is plotted as the shaded areas.

In Figure 1, the bindings have roughly identical performance
at most points. The outliers are roughly between 1000 and 8000
elements and after 10,000 elements, where the C-bindings perform
better. In the other portions of the graph, the C bindings are slightly
below the Kokkos bindings. Since these regimes exhibit an increased
standard deviation generally, it it possible that the underlying Ex-
aMPI code tends to be more variable in these cases. Overall, these
results seem to be comparable for both methods with both types of
bindings. Since the primary goal was roughly equal performance
for each method, the bindings performed well by our metrics.

4.2 Two- and Three-dimensional Send And Recv
Tests

The next series of tests use two and three dimensional Views, but
their code is otherwise identical to the code in the single dimension
experiment, and the experimental configurations are likewise the
same. The results are shown in Figures 2 and 3, respectively. For
each , the x-axis number is the length of one dimension, so the axis
label 2 indicates 2 × 2 = 4 elements in the two dimensional case
and 2 × 2 × 2 = 8 elements in the three dimensional case.

For both graphs, the performance with the new bindings and
old bindings are mostly equivalent in execution time and has sim-
ilar standard error. Again, there are narrow regimes that exhibit
increased standard deviation and a stronger performance for one
binding or another.
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Figure 3: Three-dimensional pingpong test using MPI Exten-
sion bindings versus traditional method (higher is better)

Figure 4: MPI Extension bindings versus traditional method
for broadcast (higher is better)

4.3 MPI_Kokkos_Bcast Tests
This experiment runs a MPI_Bcast test with both the new Kokkos
bindings and without. It does not run a pingpong, instead transport-
ing a single one-dimensional View using MPI_Bcast with between
100 and 800 elements increasing by increments of 100 with two
processes. The time it takes to run this test is recorded for every
process, then the maximum is found using the MPI_Allreduce
function. We ran each of these tests 500 times for a given number
of processes then averaged the results.

As shown in Figure 4, the average time and standard error varies
more significantly than the previous tests. This behavior is likely
due to the fact that the default broadcast algorithm is a series of
linear sends, meaning each is dependent on the non-deterministic
nature of not just one transport, but every transport. Again, this is
mostly pronounced when N is between 103 and 104. The C bindings

Figure 5: Heat Conduction with 256 elements (lower is better)

Figure 6: Heat Conduction with 1024 elements (lower is bet-
ter)

here have generally more messages per second, but normally within
standard deviation. Within the area of increased standard deviation,
the Kokkos bindings reaching their highest rate at just over 40,000
messages/second but for larger sizes the C bindings perform best.

4.4 MPI Heat Conduction
This section covers a series of timing tests using the Kokkos heat
conduction mini-application included in the Kokkos tutorials [12].
As with the previous tests, one version uses ExaMPI’s C bindings
and another uses Kokkos bindings. However, Unlike the previous
tests, the MPI functions constitute a relatively small part of the
entire program, namely “halo exchange” point-to-point operations
and a few collectives. The rest of the program consists of local
computations using the View data that are not dependent on MPI.

Figure 5 and Figure 6 each show two different series of runs.
The first has the x,y, and z dimensions for the program set to 256
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elements, while the second was set to 1024 elements. Each run
computed 20 time steps for each combination of nodes (either 1,
2, and 4 nodes) and was launched three times in order to quantify
variance.

Figure 5 has roughly equal performance in execution time for
both. Kokkos bindings perform slightly better than C bindings on
one node with high standard deviation, slightly worse on two nodes
with lower standard deviation, and almost exactly equal on four
nodes with very low standard deviation. Figure 6 tells a slightly
different story for the larger problem size, as the Kokkos bindings
perform slightly better than C bindings at each step. There is an
increased standard deviation when running 2 nodes, but this seems
to be an outlier in the results.

5 CONCLUSIONS & FUTURE WORK
Here, we present conclusions and outline future work, including
work already on-going beyond the scope of this communication.

5.1 Conclusions
Our work set about to integrate two programming models, MPI and
Kokkos, without negatively impacting performance. Kokkos was
chosen due to its prevalence in HPC codes targeting performance
portability and its use of modern C++ data structures. Our survey
of related work that utilizes both MPI and Kokkos indicate that
demand exists for this work, but an interface between its data
structures and MPI has not yet been created. Since the ExaMPI
implementation of MPI is written in C++, using it to prototype our
API enabled the use of templates that would not have been possible
in many other implementations.

The primary design decision for our MPI extensions was that
users should not have to touch the .data() method for Kokkos
Views and should instead be able to use Views as buffers directly in
MPI. Several MPI bindings were implemented to use Kokkos View
objects as their primary buffers alongside template parameters for
internal use.

The evaluation of our extensions implemented in ExaMPI found
that the new Kokkos bindings performed similarly to the existing
C bindings. This was particularly true for the two and three dimen-
sional View tests, which displayed almost identical performance for
the majority of View sizes and only small differences in other cases.
The broadcast tests were less conclusive in that the performance
of both the MPI extension bindings and the traditional methods
varied somewhat more for certain message sizes. Finally, we applied
our extensions to a Kokkos+MPI heat diffusion mini-application,
demonstrating performance commensurate to that of the original
code based on C MPI bindings. Unlike previous efforts that used
both MPI and Kokkos, we were able to implement several MPI bind-
ings using Kokkos View objects natively in MPI, and did so without
significant loss of performance. These bindings also preserve the
C++ idiom of the Kokkos View by allowing templates.

5.2 Future Work
Going forward, this work will encompass a wider array of stan-
dard MPI functions and more Kokkos-specific functions, with work
beginning on additional collective functions such as All-To-All,
Scatter and Gather in the near future. The bindings covered in this

paper will eventually be function overloads for their standard MPI
equivalents and the MPI_Kokkos_X scheme will be dropped. An-
other future goal of this project is more device specific support (i.e.,
MPI_Send<View, class, Device>) for GPUs and other hardware.

Currently, the Kokkos MPI bindings closely follow existing MPI
functions from the C Interface with their primary difference being
the introduction of View template parameters. One alternative to
our current approach would be bindings that return Views directly,
rather than MPI_Success codes, upon completion. Such a scheme
could be desirable and alleviate some issues with View declaration
on the user’s part. However, it would be more difficult to implement
while maintaining our fundamental goal of extending the MPI
interface for Kokkos without performance benefit.

A major use case not covered by the MPI extension so far is
the support of non-contiguous Views. Generally, non-contiguous
arrays can be of several different types: arrays/data structures that
are placed into multiple segments or pages of memory or arrays
whose elements are out of order within a contiguous memory block
(such as a transposed array). While both the MPI standard and
Kokkos have methods for dealing with non-contiguous arrays or
Views, they are not directly compatible. MPI has derived datatypes
where strides are defined for new data structures, allowing disparate
memory to be packed into a contiguous space. Kokkos has the ability
to adjust the defined strides for non-contiguous memory.

As mentioned previously, the extension shown in this paper
assumes some things users (e.g., that Views are similarly shaped.).
The goal of this work is to overload MPI functions so that when
different types of Views are sent, their equivalents functions are
substituted using SFINAE rules and std::enable_if. For example,
when a non-contiguous

The primary path forward for the non-contiguous case is to
create a separate transport back-end. Kokkos provides an is_-
contiguous method for this purpose, along with a stride interface
to indicate the spaces between memory (strides) [15]. The back-end
would use the stride information to send chunks of the View in
parallel for non-contiguous Views. This mechanism would have
improved performance over the more general case of manually
packing the Views. The use of MPI datatypes would be eliminated
in this path forward; this direction is promising because the authors
and many others have found that direct packing/unpacking (mar-
shaling/unmarshaling) of data generally works faster than using
MPI derived datatypes in practice. Even when the datatypes are
optimized for certain situations, other use cases often arise.

Further, a new back-end could be created for existing use cases
and enabling support for Views within the lower levels of ExaMPI.
A related notion is to create an alternative back-end for ExaMPI
that only deals with data on a byte level instead of by datatype.
This back-end would be more flexible for Views as it could just take
in memory size or strides.
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