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Let (M, τ) be a tracial von Neumann algebra with a separable 
predual and let (Ω, P) be a probability space. A bounded 
positive random linear operator on L1(M, τ) is a map γ : Ω ×
L1(M, τ) → L1(M, τ) so that τ(γω(x)a) is measurable for all 
x ∈ L1(M, τ) and a ∈ M , and x �→ γω(x) is bounded, positive, 
and linear almost surely. Given an ergodic T ∈ Aut(Ω, P), we 
study quantum processes of the form γTnω ◦γTn−1ω ◦· · ·◦γTmω

for m, n ∈ Z. Using the Hennion metric introduced in [21], 
we show that under reasonable assumptions such processes 
collapse to replacement channels exponentially fast almost 
surely. Of particular interest is the case when γω is the 
predual of a normal positive linear map on M . As an example 
application, we study the clustering properties of normal 
states that are generated by such random linear operators. 
These results offer an infinite dimensional generalization of 
the theorems in [21].
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0. Introduction

In quantum information theory, changes in a quantum system are modeled by quantum 
channels. In the Schrödinger picture, quantum channels take the form of trace-preserving 
completely positive maps on states. Dually, in the Heisenberg picture of quantum me-
chanics, observable quantities are represented by operators in a C*-algebra (or von 
Neumann algebra), and quantum channels are then unital completely positive (normal) 
maps on that algebra. Physically, a quantum channel represents the dynamics of observ-
ables when the quantum system is weakly coupled to an environment (or reservoir) into 
which information about the evolving system can escape [5]. Asymptotic properties of 
these dynamics play an important role throughout the mathematical physics literature.

This dynamical interpretation of quantum channels (ucp maps) is not the only way 
of incorporating disorder into a quantum mechanical model. Recent years have seen an 
advance in quantum mechanical models that incorporate large disorder, by randomizing 
the quantum channel that evolves the system (see the non-exhaustive list [4,13,21,25]). 
It is natural, then, to analyze the asymptotic evolution of the system up to probability. 
That is, given a family of random quantum channels {φn : n ∈ N}, one seeks to analyze 
the asymptotic behavior of

φn ◦ · · · ◦ φ1,

or in the dual Schrödinger picture one would instead consider φ∗
1 ◦ · · · ◦ φ∗

n. In the 
work [21], the authors use ergodicity to obtain almost sure asymptotic estimates for 
non-independent homogeneously distributed quantum channels. More precisely, given an 
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ergodic transformation T on a probability space (Ω, P ) and a random variable γω valued 
in quantum channels on states, Movassagh and Schenker prove a number of results for 
the family {γTnω : n ∈ N}, including almost sure convergence of γω ◦ γTω ◦ · · · ◦ γTnω

to a replacement channel (see [21, Theorem 2]). As an application of these results, they 
also show that certain matrix product states exhibit an almost sure clustering estimate 
(see [21, Theorem 3]).

This work aims to provide an effective generalization of the work of [21] to the case 
when the observables form a finite von Neumann algebra; that is, a von Neumann algebra 
admitting a faithful normal tracial state. A basic but infinite dimensional example is 
the hyperfinite II1 factor R, which is physically relevant because it arises as the weak 
operator topology closure of the local algebra associated to a spin chain where the on-site 
observable algebras consist of the 2 × 2 matrices (or more generally, the n × n matrices 
for any integer n ≥ 2). Other sources of examples include representations of discrete 
groups, actions of groups on probability spaces, and measurable equivalence relations.

The principal tool we use to carry out our analysis is the metric first introduced by 
Hennion in his 1997 paper [14]. Hennion was originally concerned with infinite products 
of random positive definite matrices and their convergence properties, and he used his 
metric as a means to study their rates of convergence. Movassagh and Schenker [21]
provide a finite dimensional noncommutative version of Hennion’s results on the n × n

complex matrices Mn. Both papers rely on what we call the m-quantity of two positive 
matrices (or, in the case of [14], vectors) X and Y given by m(X, Y ) := max{λ ∈
R : λY ≤ X}. In the case that M is finite with faithful normal trace τ , we recall that the 
normal state space S ⊂ L1(M, τ) can be canonically identified with the set of unit-trace, 
positive, closed operators affiliated to M [2, Chapter 7]. Thus, from the m-quantity one 
can form a bounded metric d on the normal state space of M via

d(x, y) = 1 −m(x, y)m(y, x)
1 + m(x, y)m(y, x) x, y ∈ S ⊂ L1(M, τ).

We call this Hennion’s metric, and we study its geometric properties in Section 2. In 
addition to extending known results to the infinite dimensional case, we exhibit new 
results about the disconnected components of S (see Theorem 2.12).

To each positive linear map γ on L1(M, τ), one can induce a projective action on S
by γ · x := 1

τ(γ(x))γ(x). Provided that τ ◦ γ is non-zero on S, one can associate to γ the 
Lipschitz constant

c(γ) := sup
x,y∈S
x�=y

d(γ · x, γ · y)
d(x, y) .

When c(γ) < 1, we say γ is a strict Hennion contraction. Many properties of these maps 
are established in Section 3, including a complete classification (see Theorem 3.11). 
The duality L1(M, τ)∗ ∼= M implies strict Hennion contractions can also arise from 
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normal positive linear maps on M , and indeed we determine precisely when this occurs 
in Subsection 3.2.1.

In Section 4, we consider ergodic quantum processes: compositions of random quan-
tum channels on L1(M, τ) evolving under an ergodic transformation. Our first main 
result roughly says that such processes collapse to a replacement channel almost surely, 
provided there is a chance that the process eventually contracts in Hennion’s metric:

Theorem A (Theorem 4.12). Let (M, τ) be a tracial von Neumann algebra with a separa-
ble predual, let (Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), and let 
γω : L1(M, τ) → L1(M, τ) be a bounded positive faithful random linear operator. Suppose 
that

P [∃m : c(γω ◦ γTω ◦ · · · ◦ γTmω) < 1] > 0.

Then there is a state-valued random variable Xω ∈ S so that for all x ∈ S one has

lim
m→−∞

‖γω ◦ γTω ◦ · · · ◦ γTmω · x−Xω‖1 = 0

almost surely.

Separability of the predual L1(M, τ) in the above theorem is used extensively to avoid 
measurability issues, and the probabilistic assumption is analogous to [21, Assumption 
1] (see the discussion preceding Lemma 4.4). The rate of convergence is controlled by 
c(γω ◦ γTω ◦ · · · ◦ γTmω), and so it depends on ω ∈ Ω but is independent of x ∈ S. To 
show that these Lipschitz constants tend to zero almost surely, we use Kingman’s ergodic 
theorem (see Theorem 1.10), and in fact the rate of convergence is exponentially fast 
almost surely (see Lemma 4.7).

Our second main result concerns ergodic quantum processes on M rather than 
L1(M, τ) and is essentially dual to Theorem A. Under similar assumptions, such pro-
cesses also collapse to a replacement channel almost surely:

Theorem B (Theorem 4.17). Let (M, τ) be a tracial von Neumann algebra with a sepa-
rable predual, let (Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), and 
let φω : M → M be a normal unital positive random linear operator. Suppose that

P [∃n : c((φTnω ◦ · · · ◦ φω)∗) < 1] > 0.

Then there is a state-valued random variable Yω ∈ S so that for all a ∈ M one has

lim
n→∞

‖φTnω ◦ · · · · ◦φω(a) − τ(aYω)‖∞ = 0.

almost surely.
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In fact, we are able to prove the above theorem when φω(1) is only assumed to be 
almost surely invertible. In this case, one must instead consider a normalized process of 
the form

a �→
(
φTnω ◦ · · · · ◦φω(1)− 1

2

)
φTnω ◦ · · · · ◦φω(a)

(
φTnω ◦ · · · · ◦φω(1)− 1

2

)
.

Theorems A and B recover the asymptotic results in [21, Theorem 1] for the finite 
dimensional algebra (Mn, 1nTr). Compared to [21, Theorem 1], the above theorems have 
left-right asymmetries that are a consequence of L1(M, τ) ∼= M failing in the infinite 
dimensional case.

The deterministic versions of Theorems A and B can be compared with Yeadon’s mean 
ergodic theorems for semifinite von Neumann algebras (see [30,31]). Indeed, suppose 
γ : L1(M, τ) → L1(M, τ) is a unital τ -preserving positive linear map, and denote its 
dual map by φ := γ∗. Then [31, Theorem 4.2] implies that for every x ∈ L1(M, τ) and 
a ∈ M there exists x̂ ∈ L1(M, τ) and â ∈ M satisfying

lim
n→∞

∥∥∥∥∥ 1
n

n−1∑
k=0

γk(x) − x̂

∥∥∥∥∥
1

= 0 and lim
n→∞

∥∥∥∥∥ 1
n

n−1∑
k=0

φk(a) − â

∥∥∥∥∥
∞

= 0.

If infn≥0 c(γn) < 1, then Theorems A and B imply there exists X ∈ S so that x̂ = X for 
all x ∈ S and â = τ(aX) for all a ∈ M . Moreover, in this case the above convergences 
can be upgraded to

lim
n→∞

‖γn(x) −X‖1 = 0 and lim
n→∞

‖φn(a) − τ(aX)‖∞ = 0.

(Note that γ(x) = γ · x here since γ is τ -preserving.)
Part of the work done in [21] is to understand the clustering properties of certain 

matrix product states which are generated by a family of homogeneously-distributed 
random matrices. Physically, these correspond to random states on a spin chain. There-
fore it is an interesting question to understand what happens in the case when the on-site 
algebras are infinite dimensional. Given a von Neumann algebra M , let {Mn : n ∈ Z} be 
isomorphic copies of M and for a finite subset Λ ⊂ Z we denote

MΛ :=
⊗
n∈Λ

Mn.

Inclusions Λ ⊂ Π of finite subsets of Z induce embeddings MΛ ⊂ MΠ so that one can 
consider the inductive limit C*-algebra

AZ := lim−−→MΛ,

which is called the quasi-local algebra associated to the spin chain with on-site algebras 
Mn = M for all n ∈ Z (see [8, Definition 2.6.3 and Example 4.2.12]). This algebra 
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admits a canonical translation action Z 
α
� AZ, and a state on AZ is said to be locally 

normal if its restriction to each MΛ is normal (see [8, Definition 2.6.6] or [16]). Taking 
inspiration from the classification of translation invariant states in [12], we construct 
a class of random variables taking values in locally normal states which obey a kind of 
translation covariance property relative to the ergodic transformation. As an application 
of our previous main results, we establish the following clustering estimate for our class 
of translation covariant states:

Theorem C (Theorem 5.4). Let (M, τM ) and (W, τW ) be tracial von Neumann alge-
bras with separable preduals, let (Ω, P ) be a probability space equipped with ergodic 
T ∈ Aut(Ω, P ), and let Eω : M⊗̄W → W be a normal unital positive random linear 
operator. Define φω(x) := Eω(1 ⊗ x) and suppose that

P [∃n : c((φTnω ◦ · · · ◦ φω)∗) < 1] > 0.

Then Eω determines (see Theorem 5.3.(4)) a random locally normal state Ψω on the 
quasi-local algebra AZ associated to the spin chain whose on-site algebras are isomorphic 
to M that satisfies

Ψω ◦ αk = ΨTkω ∀k ∈ Z.

Moreover, there is a constant κ ∈ (0, 1) and a random variable Eω ∈ [0, +∞) such that

|Ψω(ab) − Ψω(a)Ψω(b)| ≤ Eωκ
dist(Λ,Π)−1‖a‖∞‖b‖∞ ∀a ∈ MΛ, b ∈ MΠ

almost surely for finite subsets Λ ⊂ (−∞, −1) and Π ⊂ [1, +∞).

In words, we construct a family of random locally normal states that exhibit almost 
sure exponential clustering. Our approach is modeled after [12, Proposition 2.3 and 2.5]
and gives Ψω(a) as an almost sure operator norm limit of

ET−Nω ◦ (1 ⊗ ET−N+1ω) ◦ · · · ◦ (1 ⊗ · · · ⊗ 1 ⊗ ETNω)(a⊗ 1W )

for local observables a ∈ M[m,n] ⊂ M[−N,N ] (see Theorem 5.3.(4)). This result is an 
important step towards a better understanding of many-body systems subject to both 
information loss to a reservoir and large on-site disorder.

Acknowledgments

The authors would like to thank Jeffrey Schenker for bringing the question of an 
infinite dimensional generalization of [21] to their attention, and for many productive 
conversations on the topic. The authors would also like to thank Stefaan Vaes for his 



B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485 7
helpful suggestions. EBR would like to thank BN and Jeffrey Schenker for their hospi-
tality during his visits to Michigan State University in the summer of 2022 and spring 
of 2023, and for their continued mentoring in this area of study. EBR would also like to 
thank his advisor, Robert Sims, for his support and patience while EBR worked on this 
project, a helpful discussion of [9, Section IV.1], and for lending EBR his hard copy of 
[9]. BN was supported by NSF grants DMS-1856683 and DMS-2247047.

1. Preliminaries

1.1. Finite von Neumann algebras

Throughout, M will be a finite von Neumann algebra equipped with a faithful 
normal tracial state τ , and we will refer to the pair (M, τ) simply as a tracial von 
Neumann algebra. We will identify M with its standard representation on L2(M, τ); 
that is, the Gelfand–Naimark–Segal construction associated to τ . For a closed subspace 
H ≤ L2(M, τ) we write [H] for the projection onto H. We denote by J the conjugate 
linear map on L2(M, τ) determined by Jx = x∗, and we recall that JMJ = M ′ the 
commutant of M in B(L2(M, τ)).

One says that a closed, densely-defined operator x on L2(M, τ) is affiliated to M if 
and only if for the polar decomposition x = v|x| one has v, 1[0,t](|x|) ∈ M for all t ≥ 0. 
In this case one writes x ∈̃M . In particular, given x ∈̃M , one has x ∈ M if and only 
if x is bounded. Recall that every operator affiliated to M is maximally extended in the 
sense that if x ∈̃ M and x ⊂ y, then x = y. The set of affiliated operators M̃ forms 
a ∗-algebra under the operations of closing linear combinations and products, with the 
usual adjoint as the involution (see [2, Theorem 7.2.8]). We adopt the notation dom(x)
for the domain of x in L2(M, τ).

Equip M with the norm ‖ · ‖1 := τ(| · |). The completion of M with respect to ‖ · ‖1 is 
written L1(M, τ). It is nontrivially isometrically isomorphic to the predual M∗ (see [2, 
Theorem 7.4.5]). This isomorphism is implemented via x �→ τx(·) := τ(x · ). One can also 
identify L1(M, τ) with the set of x ∈̃M such that ‖x‖1 := supt>0 τ(|x|1[0,t](|x|)) < ∞, 
so we will frequently view elements of L1(M, τ) as unbounded operators on L2(M, τ). 
More generally, for 1 ≤ p < ∞ one defines Lp(M, τ) as the set of x ∈̃ M such that 
‖x‖p := supt>0 τ(|x|p1[0,t])1/p < ∞. For p = 2 one obtains a Hilbert space that is 
naturally isomorphic to the standard representation of M , and so there is no conflict of 
notation. Moreover, as unbounded operators L2(M, τ) correspond to those x ∈̃M with 
1 ∈ dom(x) (see [2, Theorem 7.3.2]). It follows that M ⊂ L2(M, τ) is a core for such x. 
Note that for x ∈ L1(M, τ), |x|1/p ∈ Lp(M, τ) for all 1 ≤ p < ∞, and so in particular 
M ⊂ L2(M, τ) is a core for |x|1/2.

Recall that we say M has a separable predual if L1(M, τ) is separable as a Banach 
space. Examples include finite dimensional von Neumann algebras, the hyperfinite II1
factor, and group von Neumann algebras for countable discrete groups. There are several 
equivalent formulations of this which will be useful.
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Theorem 1.1 ([22, Theorem 1.3.11]). For a tracial von Neumann algebra (M, τ), the 
following are equivalent:

(i) The predual (L1(M, τ), ‖ · ‖1) is a separable Banach space.
(ii) (M, τ) is separable in the σ-WOT.
(iii) L2(M, τ) is a separable Hilbert space.

The following lemma, which is well-known to experts, will be useful in analyzing 
Hennion’s metric d.

Lemma 1.2. For a tracial von Neumann algebra (M, τ), the following are equivalent:

(i) M is infinite dimensional.
(ii) There exists a family {pn : n ∈ N} ⊂ M of non-zero pairwise orthogonal projections 

satisfying 
∑

pn = 1.
(iii) There exists a sequence (pn)n∈N ⊂ M of non-zero projections satisfying τ(pn) → 0.

Proof. (i) ⇒ (ii): Let Z(M) be the center of M , which is isomorphic to L∞(X, μ) for 
some probability space. If (X, μ) has any diffuse subsets or infinitely many inequivalent 
atoms, then we are done. Otherwise, L∞(X, μ) ∼= Cn for some n ∈ N and M is a finite 
direct sum of factors. One of these factors is necessarily infinite dimensional (lest M be 
finite dimensional) and hence contains such a family because it lacks minimal projections.

(ii) ⇒ (iii): Since 
∑

τ(pn) = 1 < ∞, we have τ(pn) → 0.

(iii) ⇒ (i): We proceed by contrapositive. If M is finite dimensional, then it is necessarily 
a multimatrix algebra and τ is a convex combination of traces. It follows that the traces of 
projections in M form a finite discrete subset of [0, 1], and in particular 0 is isolated. �
1.1.1. Positivity

Recall that a ∈ M is positive if a = b∗b for some b ∈ M ; equivalently, if a is positive 
semidefinite as an operator on L2(M, τ). In this case, we write a ≥ 0 and we denote the 
positive cone of M by M+ := {a ∈ M : a ≥ 0}. The positive cone induces an ordering on 
the self-adjoint elements of M : for a, b ∈ Ms.a. we write a ≤ b if b − a ≥ 0.

More generally, for unbounded self-adjoint operators x, y on L2(M, τ) we write x ≤ y

when y−x is positive semidefinite on dom(x) ∩dom(y). Note that for affiliated operators 
x, y ∈̃ M , x ≤ y is equivalent to saying the closure of y − x is positive. In particular, 
x ≤ y and y ≤ x imply x and y agree on dom(x) ∩ dom(y) and therefore x = y. For 
each 1 ≤ p < ∞, we denote Lp(M, τ)+ := {x ∈ Lp(M, τ) : x ≥ 0}, which we recall is the 
‖ · ‖p-closure of M+.
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Remark 1.3. If 0 ≤ x ≤ y and y is bounded, then x is necessarily bounded since

〈xξ, ξ〉 ≤ 〈yξ, ξ〉 ≤ ‖y‖‖ξ‖2

holds for ξ in the dense subspace dom(y − x). �

Also recall that we say a densely defined linear operator x on L2(M, τ) is boundedly 
invertible if there exists b ∈ B(L2(M, τ)) satisfying xb = 1 and bx ⊂ 1, in which case we 
write x−1 := b. Note that if x ∈̃M then x−1 ∈ M .

Remark 1.4. A positive densely defined operator x on L2(M, τ) is boundedly invertible 
if and only if x ≥ δ for some scalar δ > 0, and in this case one can choose δ = ‖x−1‖−1. 
In particular, if x, y ∈̃M satisfy 0 ≤ x ≤ y, then x being boundedly invertible implies y
is boundedly invertible. �

A linear map φ : M → N between von Neumann algebras is said to be positive if 
φ(M+) ⊂ N+, in which case we write φ ≥ 0. More generally, we say φ is n-positive for 
n ∈ N if the map

φ⊗ In : Mn(M) → Mn(N)

(aij)1≤i,j≤n �→ (φ(aij))1≤i,j≤n,

is positive. We say φ is completely positive if it is n-positive for all n ∈ N. Recall the 
following classical result.

Theorem 1.5 (Russo–Dye theorem). Let A be a unital C∗-algebra and φ : A → A be a 
linear mapping. Then

‖φ‖ := sup
x : ‖x‖=1

‖φ(x)‖ = sup
u∈U(A)

‖φ(u)‖,

where U(A) denotes the unitary group of A. In particular, if φ is positive then ‖φ‖ =
‖φ(1)‖.

Under the identification of M∗ with L1(M, τ), the positive linear maps in M∗ corre-
spond to L1(M, τ)+. In fact, one has

x ∈ L1(M, τ)+ ⇐⇒ τ(xa) ≥ 0 ∀a ∈ M+,

a ∈ M+ ⇐⇒ τ(xa) ≥ 0 ∀x ∈ L1(M, τ)+.
(1)

One says a linear map γ : L1(M, τ) → L1(M, τ) is positive if γ(L1(M, τ)+) ⊂ L1(M, τ)+, 
and writes γ ≥ 0. More generally, one can define n-positivity and complete positivity for 
such maps by considering γ ⊗ In defined on Mn(L1(M, τ)) ∼= L1(Mn(M), τ ⊗ ( 1 Tr)).
n
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There is a well-known correspondence between normal linear maps φ : M → M

and bounded linear maps γ : L1(M, τ) → L1(M, τ). Indeed, using that L1(M, τ) ∼=
(M, weak∗)∗, one has that φ∗ : L1(M, τ) → L1(M, τ) is a bounded linear map satisfying

τ(φ∗(x)a) = τ(xφ(a)),

for all x ∈ L1(M, τ) and a ∈ M . From Equation (1), it follows that φ∗ is positive if and 
only if φ is positive. Similarly for n-positivity and complete positivity. Conversely, given 
a bounded linear map γ on L1(M, τ), using M ∼= L1(M, τ)∗ one has that γ∗ : M → M

is a normal linear map satisfying

τ(xγ∗(a)) = τ(γ(x)a),

for all x ∈ L1(M, τ) and a ∈ M . The positivity (resp. n-positivity or complete positivity) 
of γ∗ again follows from that of γ via Equation (1). For future reference, we record these 
observations in Lemma 1.6 below.

Toward refining the above correspondence, we recall a bit more terminology. We say 
a positive linear map φ : M → M is τ -bounded if there exists a constant c > 0 so that 
τ(φ(a)) ≤ cτ(a) for all a ∈ M+. We say a positive linear map γ : L1(M, τ) → L1(M, τ)
is M -preserving if γ(M) ⊂ M . Since each element of M can be decomposed as a linear 
combination of four positive elements, this is equivalent to γ(M+) ⊂ M+. Using a ≤ ‖a‖1
for all a ∈ M+, this is further equivalent to γ(1) ∈ M+ by Remark 1.3. Observe that if 
φ : M → M is normal, positive, and τ -bounded with constant c > 0, then

τ((c− φ∗(1))a) = cτ(a) − τ(φ(a)) ≥ 0

for all a ∈ M+ so that φ∗(1) ≤ c by Equation (1). Thus φ∗ is M -preserving. Conversely, 
if γ : L1(M, τ) → L1(M, τ) is M -preserving, bounded, and positive, then for a ∈ M+ one 
has

τ(γ∗(a)) = τ(γ(1)a) ≤ ‖γ(1)‖τ(a) = ‖γ‖τ(a).

Thus γ∗ is τ -bounded with constant ‖γ‖. Thus the correspondence from before restricts 
to a correspondence between τ -bounded normal positive linear maps on M and M -
preserving bounded positive linear maps on L1(M, τ). We also record this in Lemma 1.6
below.

Finally, we note that for τ -bounded normal positive linear maps φ on M (resp. M -
preserving bounded positive linear maps γ on L1(M, τ)) there is another correspondence 
given by extending (resp. restricting) the maps. Indeed, for a ∈ M let φ(a) = v|φ(a)| be 
the polar decomposition. Then one has

‖φ(a)‖1 = |τ(v∗φ(a))| = |τ(φ∗(v∗)a)| ≤ ‖φ∗(v∗)‖‖a‖1,
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where we have used that φ∗ is M -preserving. It follows that φ admits a unique bounded 

linear extension φ|L1(M,τ) to L1(M, τ). Since L1(M, τ)+ = M+
‖·‖1 one further has that 

the extension is positive, and it is M -preserving since φ(M) ⊂ M . Conversely, if γ is 
an M -preserving bounded positive linear map on L1(M, τ), then γ|M defines a positive 
linear map on M . For a ∈ M+, one has

τ(γ(a)) = ‖γ(a)‖1 ≤ ‖γ‖‖a‖1 = ‖γ‖τ(a)

so that γ|M is τ -bounded and normal (see [2, Proposition 2.5.11]). This is also recorded 
in the following lemma as well as an interaction between the above two correspondences 
(whose proof is left to the reader).

Lemma 1.6. Let (M, τ) be a tracial von Neumann algebra. There is a one-to-one corre-
spondence between normal positive (resp. completely positive) linear maps φ on M and 
bounded positive (resp. completely positive) linear maps φ∗ on L1(M, τ) determined by

τ(φ∗(x)a) = τ(xφ(a)) x ∈ L1(M, τ), a ∈ M.

This correspondence restricts to a one-to-one correspondence between τ -bounded normal 
positive (resp. completely positive) linear maps on M and M -preserving bounded positive 
(resp. completely positive) linear maps on L1(M, τ). The former maps φ also admit 
unique extensions φ|L1(M,τ) to L1(M, τ) that are M -preserving bounded and positive 
(resp. completely positive), and the latter maps φ∗ also have restrictions φ∗|M to M
that are τ -bounded normal and positive (resp. completely positive). In this case, one has 
(φ∗|M )∗ = φ|L1(M,τ).

As with the operators themselves, for linear maps φ, ψ : M → M we write φ ≤ ψ

if ψ − φ ≥ 0. Similarly, for linear maps γ, ρ : L1(M, τ) → L1(M, τ) we write γ ≤ ρ if 
ρ − γ ≥ 0.

Lemma 1.7. Let α, β : M → M be positive normal linear maps. Then α ≤ β if and only 
if α∗ ≤ β∗.

Proof. For x ∈ L1(M, τ)+ and a ∈ M+ we have

τ(x(β − α)(a)) = τ((β∗ − α∗)(x)a).

So α(a) ≤ β(a) for all a ∈ M+ if and only if the above quantity is non-negative for 
all x ∈ L1(M, τ)+ and a ∈ M+, which is in turn equivalent α∗(x) ≤ β∗(x) for all 
x ∈ L1(M, τ)+. �
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1.2. Probability theory

Throughout (Ω, F , P ) will denote a probability space. An automorphism of (Ω, F , P )
is a bijection T : Ω → Ω such that T and T−1 are measurable and measure preserving. 
Denote the automorphisms of (Ω, F , P ) by Aut(Ω, P ). One says T ∈ Aut(Ω, P ) is ergodic
if whenever A ∈ F satisfies T−1(A) ⊂ A then P [A] ∈ {0, 1}. Note that in this case T−1

is also necessarily ergodic. Indeed, if T (A) ⊂ A, then for

B :=
∞⋃

n=0
T−n(A),

we have T−1(B) ⊂ B and P [B] = lim
n→∞

P [T−n(A)] by continuity from below. Thus if T
is measure preserving and ergodic, it follows that P [A] = P [B] ∈ {0, 1}.

Remark 1.8. Any T ∈ Aut(Ω, P ) also induces an automorphism of the von Neumann 
algebra L∞(Ω, P ) via precomposition: f �→ f ◦ T . In fact, one can induce such an au-
tomorphism using bijections of the form T : Ω \ N1 → Ω \ N2 where N1, N2 are null 
sets and T and T−1 are measurable and measure preserving. Also, if T1, T2 are two such 
bijections which agree almost surely then they induce the same automorphism. Thus 
after identifying maps modulo null sets, these bijections form a group Aut0(Ω, P ) that 
embeds as a subgroup of Aut(L∞(Ω, P )). This embedding is a surjection when (Ω, F , P )
is a standard probability space (see [2, Section 3.3]); that is, if there exists a bijection 
S : Ω \ N1 → Ω0 \ N2 where (Ω0, F0, P0) is the disjiont union of the Lebesgue measure 
on [0, 1] and countably many atoms, N1 ⊂ Ω and N2 ⊂ Ω0 are null sets, and S and S−1

are measurable and measure preserving. �

1.2.1. Kingman’s ergodic theorem
We will be interested in multiplicative stochastic processes and their ergodic proper-

ties. So we present the following:

Lemma 1.9. Let (Ω, P ) be a probability space equipped with an ergodic automorphism T
and suppose that Xn : Ω → [0, 1] is a submultiplicative stochastic process in the sense 
that

Xn+m ≤ Xn(Xm ◦ Tn).

Let Fn := σ(X0, . . . , Xn) for n ≥ 0, denote the natural filtration taken with respect to 
(Xn)n≥0. Suppose that P [∃n∗ : Xn∗ < 1] > 0. Then ν(X) := inf{n : Xn < 1} is a finite 
almost-surely stopping time with respect to (Fn)n≥0.

Proof. Since Xn is a decreasing sequence, observe that

{ω : ν(ω) ≤ n} = {ω : Xn < 1} ∈ Fn.
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Ergodicity of T informs us that P [
⋃∞

k=0{Xn∗ ◦ T k < 1}] = 1 and there is a finite almost 
surely random variable K(ω) so that Xn∗+K ≤ XKXn∗ ◦ TK < 1. Whence ν ≤ n∗ + K

is finite almost surely. �
Furthermore, recall the Kingman ergodic theorem:

Theorem 1.10 (Kingman’s ergodic theorem). Let (Ω, P ) be a probability space equipped 
with ergodic T ∈ Aut(Ω, P ). Assume that a stochastic process {Xn : Ω → R}∞n=1 satisfies:

(i) Xn+m(ω) ≤ Xn(ω) + Xm(Tnω) almost surely;
(ii) the positive part E[(Xn)+] < ∞ for all n.

Then, Z(ω) := lim
n→∞

n−1Xn(ω) ∈ [−∞, ∞) exists almost surely, and Z = inf
n∈N

n−1E[Xn]; 
that is, Z is constant almost surely.

This is a corollary to [18, Theorem 2]. See [1, Theorem 1] for a concise proof. One can 
find alternative formulations in [9,27,20] among others. The observation underpinning our 
Lemma 4.7, is that one may apply Theorem 1.10 to the sub-additive process (logXn)n≥0, 
when (Xn)n≥0 is sub-multiplicative.

1.2.2. Random linear operators
We recall some general notions about the theory of random variables in a Banach 

space and random linear operators. The material in this section is largely based upon 
the treatment given in [6, Chapters 1 and 2], although an equally well-written treatment 
in the case X is a Hilbert space may be found in [26].

Let X be a Banach space with norm ‖ · ‖. By B we mean the σ-algebra generated by 
all the closed subsets of X. Let (Ω, F , μ) be a measure space. Given a finite collection of 
sets A1, A2, . . . , An ∈ F and b1, b2, . . . , bn ∈ X, a function of the form

φ(ω) =
n∑

j=1
bj χAj

(ω)

will be called simple function. A strongly measurable function is one f : Ω → X for which 
there is a sequence of simple functions φn so that lim

n→∞
‖f(ω) −φn(ω)‖ = 0 almost surely 

(see [10, Chapter II]). Writing X∗ for the Banach dual space of X, we say that g : Ω → X

is a weakly measurable function if for every x∗ ∈ X∗, one has that x∗ ◦ g(ω) is a C-valued 
Borel-measurable function.

The following is originally due to Pettis [24] but can be found in [28, Proposition 
IV.7.2] or [10, Theorem 2]:

Theorem 1.11 ([24, Corollary 1.11]). Let X be a separable Banach space with Borel σ-
algebra B, then a function f : Ω → X is strongly measurable if and only if it is weakly 
measurable.
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In the case that μ = P is a probability measure, we shall refer to a strongly measurable 
function in X as a random variable in X. A mapping L : Ω × X → X is an (everywhere-
defined) random linear operator if: ω �→ Lω(x) is a random variable in X for all x ∈ X; 
and P [Lω(αx + βy) = αLωx + βLωy] = 1 for all x, y ∈ X and α, β ∈ C. Recall from [6, 
Definition 2.24] that a random linear operator L is bounded if there is a random variable 
M(ω) so that P [M(ω) < ∞, ‖Lωx‖ ≤ M(ω)‖x‖ all x ∈ X] = 1.

In Sections 4 and 5 we will be concerned with dynamics arising from iterations of 
bounded random linear operators. It is not obvious that the composition of bounded 
random linear operators is, however, measurable. We follow the elegant proof given in 
Bharucha-Reid’s [6, Theorem 2.14] below:

Theorem 1.12 ([6, Theorem 2.14]). Let X be a separable Banach space and xω a random 
variable in X. If L is a bounded random linear operator then the function

yω := Lωxω

is a random variable in X. In particular, the composition of bounded random linear 
operators is a bounded random linear operator.

Proof. Let (φn)n∈N be a sequence of simple functions approximating xω. By reducing 
to a subsequence if necessary, we assume ‖φn(ω) − xω‖ → 0 almost surely. Let E :=
{φn(ω) : n ∈ N, ω ∈ Ω}, which we note is a countable subset of X. For each n ∈ N, 
define yn(ω) := Lωφn(ω). Then, for any Borel subset S ∈ B, we obtain the decomposition

[yn ∈ S] =
⋃
b∈E

[L(b) ∈ S] ∩ [φn(ω) = b],

thus demonstrating that yn is a sequence of random variables in X. Using that Lω is 
almost surely bounded, we get that the following limit exists almost surely:

yω = lim
n→∞

yn(ω) = lim
n→∞

Lωφn(ω) = Lωxω.

That composition of random linear operators is a random linear operator is now imme-
diate. �
2. Metric geometry of the normal state space

Let (M, τ) be a tracial von Neumann algebra. We write

S := {x ∈ L1(M)+ : τ(x) = 1}.

Note that S corresponds to the normal states on M . Following [21] we introduce a 
non-standard metric d on the set of normal states S ⊂ L1(M, τ)+ and investigate its 
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properties. We shall show that d admits the same formula (Lemma 2.6) as was shown in 
[21, Lemma 3.6], and use this to show that (S, d) is complete and is finer than S with the 
trace-metric (Theorem 2.7). Unlike [21], whenever M is infinite dimensional S admits 
two additional disconnected components corresponding to affiliated operators that are 
of separate interest and we investigate their properties in Theorem 2.12.

2.1. Hennion’s metric

Lemma 2.1. For x, y ∈ L1(M, τ)+ \ {0} one has {λ ∈ R : λy ≤ x} = (−∞, λ0] for some 
0 ≤ λ0 ≤ τ(x)

τ(y) .

Proof. Certainly 0 ∈ Λ := {λ ∈ R : λy ≤ x}, and if λ ∈ Λ then (−∞, λ] ⊂ Λ since ty ≤
λy ≤ x for all t ≤ λ. Note that if λy ≤ x then by applying τ we obtain λ ≤ τ(x)/τ(y). In 
particular, Λ is bounded and we can find an increasing sequence (λn)∈N ⊂ Λ converging 
to λ0 := sup Λ ≤ τ(x)/τ(y). Then for all a ∈ M+ we have

τ(a(x− λ0y)) = lim
n→∞

τ(a(x− λny)) ≥ 0.

Hence x − λ0y ≥ 0 and λ0 ∈ Λ so that Λ = (−∞, λ0]. �
Definition 2.2. Let x, y ∈ L1(M, τ)+. We define their m-quantity to be the number

m(x, y) := max{λ ∈ R : λy ≤ x}. �

Theorem 2.3 (Properties of m(x, y)). Let x, y, z ∈ L1(M, τ)+ \ {0}.

(1) 0 ≤ m(x, y) ≤ τ(x)
τ(y) .

(2) m(ax, by) = a
bm(x, y) for scalars a, b > 0.

(3) m(x, z)m(z, y) ≤ m(x, y).
(4) m(x, y)m(y, x) = 1 if and only if 1

τ(x)x = 1
τ(y)y.

(5) If x ≤ y then one has

m(x, z) ≤ m(y, z)

m(z, x) ≥ m(z, y).

(6) m(x, y) > 0 if and only if there exists non-zero a ∈ M satisfying y = x
1
2 a∗ax

1
2 with 

a = a[x 1
2M ], in which case m(x, y) = ‖a‖−2.

(7) m(x, y) = 0 if and only if there exists a sequence of vectors (ξn)n∈N ⊂ dom(x) ∩
dom(y) so that ‖x1/2ξn‖2 → 0 and ‖y1/2ξn‖2 ≡ 1.

(8)

m(x, y) = inf
{
τ(xa) : a ∈ M+, τ(ya) > 0

}
.

τ(ya)
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Proof. (1): This follows from Lemma 2.1.
(2): The inequality m(ax, by)by ≤ ax immediately implies m(ax, by) b

a ≤ m(x, y). On the
other hand, m(x, y)y ≤ x is equivalent to m(x, y)ab by ≤ ax, which gives m(x, y)ab ≤
m(ax, by).

(3): We have

m(x, z)m(z, y)y ≤ m(x, z)z ≤ x,

whence m(x, z)m(z, y) ≤ m(x, y).
(4): If 1

τ(x)x = 1
τ(y)y, then m(x, y) and m(y, x) achieve their maximum values of τ(x)

τ(y)

and τ(y)
τ(x) , respectively, and hence their product gives one. On the other hand, 

if m(x, y)m(y, x) = 1 then by part (1) one necessarily has m(x, y) = τ(x)
τ(y) and 

m(y, x) = τ(y)
τ(x) . Therefore τ(x)

τ(y)y ≤ x and τ(y)
τ(x)x ≤ y so that 1

τ(x)x = 1
τ(y)y.

(5): Suppose x ≤ y. Then m(x, z)z ≤ x ≤ y so that m(x, z) ≤ m(y, z). Similarly, 
z ≥ m(z, y)y ≥ m(z, y)x so that m(z, x) ≥ m(z, y).

(6): First suppose y = x1/2a∗ax1/2 for some non-zero a ∈ M . Then y ≤ ‖a‖2x, and so 
m(x, y) ≥ ‖a‖−2 > 0. Conversely, if m(x, y) > 0 then for any b ∈ M we have

‖by1/2‖2
2 = τ(byb∗) ≤ 1

m(x, y)τ(bxb∗) = 1
m(x, y)‖bx

1/2‖2
2.

Hence bx1/2 �→ by1/2 extends to a bounded operator T : Mx1/2 → My1/2 with 
‖T‖ ≤ m(x, y)−1/2. Observe that T is non-zero by virtue of x1/2 and y1/2 being 
non-zero. Let p, q ∈ M be the support projections of τx and τy, respectively, which 
we note satisfy JpJ = [Mx1/2] and JqJ = [My1/2]. Trivially extend T to L2(M)
so that JqJTJpJ = T , and observe that for b, c, d ∈ M we have

〈Tb(cx1/2), dy1/2〉2 = 〈bcy1/2, dy1/2〉2 = 〈cy1/2, b∗y1/2〉2 = 〈Tcx1/2, b∗dy1/2〉2
= 〈bTcx1/2, dy1/2〉2.

It follows that

0 = JqJ(Tb− bT )JpJ = JqJTJpJb− bJqJTJpJ = Tb− bT.

Hence T ∈ M ′ and so is of the form T = JaJ for some a ∈ M . Note that a is 
non-zero since T is non-zero. Additionally, we have for all b ∈ M

τ(yb) = 〈by1/2, y1/2〉2 = 〈bTx1/2, Tx1/2〉2 = 〈bx1/2a∗, x1/2a∗〉2 = τ(x1/2a∗ax1/2b).

Since y is determined by τy ∈ M∗, it follows that y = x
1
2 a∗ax

1
2 . Note that ap =

J(TJpJ)J = JTJ = a and p = J [Mx1/2]J = [x1/2M ].
We saw above that m(x, y) ≥ ‖a‖−2 and ‖T‖ ≤ m(x, y)−1/2. Since ‖T‖ = ‖a‖, this 
gives m(x, y) = ‖a‖−2.
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(7): Assume m(x, y) = 0 so that the closed operator x −λy is not positive for any λ > 0. 
Since x −λy is self-adjoint, this implies there exists some ξ ∈ dom(x −λy) such that

〈(x− λy)ξ, ξ〉2 < 0.

Because dom(x) ∩ dom(y) is a core for all x − λy, we can in fact find ξ ∈ dom(x) ∩
dom(y) satisfying the above, and by scaling we can further assume ‖y1/2ξ‖2 = 1. 
For each n ∈ N, let ξn be the vector obtained in this way for λ = 1

n . Then

‖x1/2ξn‖2
2 = 〈xξn, ξn〉2 <

1
n
〈yξn, ξn〉2 = 1

n
‖y1/2ξn‖2

2 = 1
n
→ 0,

as desired.
Conversely, if m(x, y) > 0 then y = x

1
2 a∗ax

1
2 for some a ∈ M by part (6). So for 

any ξ ∈ dom(x) ∩ dom(y) we have

‖y1/2ξ‖2
2 = 〈yξ, ξ〉2 = 〈x 1

2 a∗ax
1
2 ξ, ξ〉2 = ‖ax1/2ξ‖2 ≤ ‖a‖2‖x1/2ξ‖2.

Consequently, for (ξn)n∈N ⊂ dom(x) ∩ dom(y) the condition ‖x1/2ξn‖2 → 0 pre-
cludes ‖y1/2ξn‖2 ≡ 1.

(8): If m(x, y) = 0 then the equality follows from part (7). Indeed, for ε > 0 let ξ ∈
dom(x) ∩dom(y) be such that ‖x1/2ξ‖2 < ε

2 and ‖y1/2ξ‖2 = 1. Since M ⊂ L2(M, τ)
is a core for x1/2 and y1/2, we can find b ∈ M satisfying ‖x1/2b‖2 < ε and ‖y1/2b‖2 >

1 − ε. Letting a = bb∗ ∈ M+, we have τ(ya) = ‖y1/2b‖2
2 > 1 − ε > 0 and

τ(xa)
τ(ya) = ‖x1/2b‖2

2
‖y1/2b‖2

2
<

ε2

(1 − ε)2 .

Thus the infimum is also zero.
Now suppose, m(x, y) > 0, then y = x

1
2 c∗cx

1
2 for some non-zero c ∈ M with 

c = c[x 1
2M ] by (4). Moreover,

m(x, y) = 1
‖c‖2 = 1

sup{‖cξ‖2/‖ξ‖2 : ξ ∈ L2(M) \ {0}}2

= inf
{

‖ξ‖2
2

‖cξ‖2
2

: ξ ∈ L2(M), ‖cξ‖2 > 0
}
.

The condition c = c[x 1
2M ] implies that in the infimum one can restrict to ξ = x1/2η

for η ∈ dom(x) with ‖cx1/2η‖2 > 0. Since M ⊂ L2(M) is a core for x1/2, we can 
further restrict to ξ = x1/2b for b ∈ M with ‖cx1/2b‖2 > 0. Using ‖x1/2b‖2

2 = τ(xbb∗)
and ‖cx1/2b‖2

2 = ‖y1/2b‖2
2 = τ(ybb∗), we obtain the claimed equality. �

Definition 2.4. For x, y ∈ S, let

d(x, y) = 1 −m(x, y)m(y, x)
.
1 + m(x, y)m(y, x)
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Theorem 2.5. The function d forms a metric on S such that diamd(S) = 1 when M �= C.

Proof. The proof that d is a metric is the same as in [21]. Note that d is valued in 
[0, 1] since m is, and so diamd(S) ≤ 1. Also for M �= C there exists a non-trivial 
projection p ∈ M , and one has λ1 �≤ 1

τ(p)p for all λ > 0. Hence m( 1
τ(p)p, 1) = 0 and so 

d( 1
τ(p)p, 1) = 1. �
The following lemma provides some alternate formulas for the Hennion metric d that 

are more geometric in nature.

Lemma 2.6. Let x, y ∈ S be distinct. Then

d(x, y) = t+ − t−
t− + t+ − 2t−t+

, (2)

where

t+ := sup{t ∈ R : tx + (1 − t)y ∈ S} ∈
[
1, 2

‖x− y‖1

]
,

t− := inf{t ∈ R : tx + (1 − t)y ∈ S} ∈
[

−2
‖x− y‖1

, 0
]
.

Equivalently, if A± = t±x +(1 − t±)y are the extreme points of the convex set {tx +(1 −
t)y : t ∈ R} ∩ S then

d(x, y) =
∣∣∣∣r(1 − s) − (1 − r)s
r(1 − s) + (1 − r)s

∣∣∣∣ = |r − s|
r + s− 2rs , (3)

where r, s ∈ [0, 1] are determined by x = rA− + (1 − r)A+ and y = sA− + (1 − s)A+.

Proof. Since S is convex we immediately have t+ ≥ 1 and t− ≤ 0. To see their other 
bounds, let x −y = v|x −y| be the polar decomposition. Since v∗ ∈ (M)1, if tx +(1 −ty) ∈
S then we have

|t|‖x− y‖1 = |τ(tv∗(x− y))| = |τ(v∗[tx + (1 − t)y]) − τ(v∗y)| ≤ 2.

Hence t+ ≤ 2/‖x − y‖1 and t− ≥ −2/‖x − y‖1.
Consider A+ := t+x + (1 − t+)y and A− := t−x + (1 − t−)y, which both belong to S

since it is ‖ ·‖1-closed. Additionally, A± are the extreme points of the ‖ ·‖1-compact convex 
set {tx + (1 − t)y : t− ≤ t ≤ t+}, and so x = rA− + (1 − r)A+ and y = sA− + (1 − s)A+

for some r, s ∈ [0, 1]. In fact, one can explicitly solve a linear system as in [21] to show 
that
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r = t+ − 1
t+ − t−

1 − r = 1 − t−
t+ − t−

s = t+
t+ − t−

1 − s = −t−
t+ − t−

.

We claim that m(A+, A−) = 0 and m(A−, A+) = 0. Indeed, if there existed λ > 0 so 
that λA− ≤ A+ then we would further have λA− ≤ A+ + λx. Hence

0 ≤ A+ + λ(x−A−) = (t+ + λ[1 − t−])x + (1 − (t+ + λ[1 − t−]))y,

and t++λ[1 −t−] > t+ contradicts the supremacy of t+. Thus we must have m(A+, A−) =
0, and a similar argument using t− shows m(A−, A+) = 0.

Now, m(A+, A−) = 0 implies by Theorem 2.3.(7) that there is (ξn)n∈N ⊂ dom(x) ∩
dom(y) so that ‖A1/2

− ξn‖2 ≡ 1 while ‖A1/2
+ ξn‖2 → 0 as n → ∞. Since

m(x, y)(sA− + (1 − s)A+) = m(x, y)y ≤ x = rA− + (1 − r)A+, (4)

for all ε > 0 there is N ∈ N so that for all n ≥ N one has

m(x, y)s = m(x, y)〈sA−ξn, ξn〉 ≤ 〈rA−ξn, ξn〉 + ε = r + ε.

Letting ε → 0 we see that m(x, y) ≤ r
s . A similar argument using m(A−, A+) = 0 yields

m(x, y) ≤ min
{
r

s
,
1 − r

1 − s

}
.

In fact, the above is an equality: using y = sA− + (1 − s)A+ one has

min
{
r

s
,
1 − r

1 − s

}
y ≤ rA− + (1 − r)A+ = x.

Reversing the roles of x and y and using the resulting version of (4) gives

m(y, x) = min
{
s

r
,
1 − s

1 − r

}
.

Thus one has

0 ≤ m(x, y)m(y, x) = min
{
r

s
,
1 − r

1 − s

}
min

{
s

r
,
1 − s

1 − r

}
= min

{
r(1 − s)
s(1 − r) ,

(1 − r)s
(1 − s)r

}
.

One then explicitly calculates

d(x, y) = 1 −m(x, y)m(y, x)
1 + m(x, y)m(y, x) =

∣∣∣∣r(1 − s) − (1 − r)s
r(1 − s) + (1 − r)s

∣∣∣∣ = t+ − t−
t− + t+ − 2t+t−

,

as claimed. �
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Theorem 2.7. One has for all x, y ∈ S

1
2‖x− y‖1 ≤ d(x, y). (5)

Furthermore, (S, d) is a complete metric space.

Proof. Let A± ∈ S and r, s ∈ [0, 1] be as in Lemma 2.6. Note that

r − s = (1 − s) − (1 − r) = r(1 − s) − (1 − r)s,

and r(1 − s) + (1 − r)s ≤ 1. Using these observations we have

‖x− y‖1 = ‖(r − s)A− + ((1 − r) − (1 − s))A+‖1

= |r − s|‖A− −A+‖1 ≤ 2|r − s| ≤ 2
∣∣∣∣r(1 − s) − (1 − r)s
r(1 − s) + (1 − r)s

∣∣∣∣ ,
which equals 2d(x, y) by Equation (3).

To see that (S, d) is complete, let (xn)n∈N ⊂ S be a Cauchy sequence with respect to d. 
The first part of the proof implies (xn)n∈N is also Cauchy with respect to ‖ ·‖1 and hence 
converges to some x ∈ S with respect to ‖ · ‖1. In particular, one has τ(xna) → τ(xa) for 
all a ∈ M+. Given ε > 0, set η := (1 − ε)/(1 + ε). Let N ∈ N be such that for m, n ≥ N

one has d(xm, xn) < (1 − η1/4)/(1 + η1/4), which implies

min{m(xm, xn),m(xn, xm)} ≥ m(xm, xn)m(xn, xm) > η1/4.

Fix n ≥ N . For a ∈ M+ with τ(xa) > 0, let m ≥ N be large enough so that |τ(xma) −
τ(xa)| < (1 − η1/4)τ(xa) and τ(xma) �= 0. Then using Theorem 2.3.(8) one has

τ(xna)
τ(xa) = τ(xna)

τ(xma)
τ(xma)
τ(xa) ≥ m(xn, xm)τ(xa) − (1 − η1/4)τ(xa)

τ(xa)

= m(xn, xm)η1/4 > η1/2.

Taking an infimum over a ∈ M+ with τ(xa) > 0 yields m(xn, x) ≥ η1/2. Next, for a ∈ M+
with τ(xna) > 0 let m ≥ N be large enough so that |τ(xma) −τ(xa)| < (η−1/4−1)τ(xa)
(and note τ(xma) �= 0 lest m(xm, xn) = 0 and d(xm, xn) = 1). Then

τ(xa)
τ(xna)

= τ(xma)
τ(xna)

τ(xa)
τ(xma) ≥ m(xm, xn) τ(xa)

τ(xa) + (η−1/4 − 1)τ(xa)

= m(xm, xn)η1/4 > η1/2.

Taking an infimum gives m(x, xn) ≥ η1/2. Altogether this gives d(xn, x) ≤ (1 − η)/(1 +
η) = ε, so that xn → x with respect to the metric d. �
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Remark 2.8. Superficially, there is striking visual resemblance between Inequality (5) and 
the famous Pinsker’s inequality [17, Theorem 3.1] for the relative entropy: 1

2‖φ − ψ‖2
1 ≤

S(φ|ψ). Moreover the norm of the Radon-Nikodym derivatives of states (when defined) 
satisfies ‖ dφ

dψ‖2 = inf{λ : ψ ≤ λφ} [3, Theorem 12], [15, Appendix 7] which is inversely 

proportional to m(dφdτ , 
dψ
dτ ).

In light of Inequality (5), it is natural to ask if the metric d is equivalent to the metric 
induced by ‖ · ‖1. This is always false when M is infinite dimensional (see Remark 2.13), 
but nevertheless the Hennion metric is jointly lower semicontinuous with respect to ‖ ·‖1:

Theorem 2.9. Suppose (xn)n∈N , (yn)n∈N ⊂ S satisfy

lim
n→∞

‖xn − x‖1 = 0 and lim
n→∞

‖yn − y‖1 = 0,

for some x, y ∈ S. Then

lim sup
n→∞

m(xn, yn) ≤ m(x, y),

and

lim inf
n→∞

d(xn, yn) ≥ d(x, y).

Proof. The definition of d implies its joint lower semicontinuity will follow from the joint 
upper semicontinuity of m. To see the latter, let η > m(x, y) and use Theorem 2.3.(8) 
to find a ∈ M+ such that

m(x, y) ≤ τ(xa)
τ(ya) < η.

Then we can find N ∈ N so that

m(xn, yn) ≤ τ(xna)
τ(yna)

< η

holds for all n ≥ N . Thus

lim sup
n→∞

m(xn, yn) ≤ η,

and letting η → m(x, y) completes the proof. �
Remark 2.10. This is another striking similarity between the Hennion metric and the 
relative entropy. We recall that the relative entropy is jointly lower semicontinuous in its 
arguments [19, Theorem 4.1].
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2.2. On components of S

We demonstrate below that S is the disjoint union of at least four connected compo-
nents. Recall that we say a densely defined linear operator x on L2(M, τ) is boundedly 
invertible if there exists b ∈ B(L2(M, τ)) satisfying xb = 1 and bx ⊂ 1, in which case we 
write x−1 := b. Note that if x ∈ L1(M, τ) (and hence affiliated with M), then necessarily 
x−1 ∈ M .

Notation 2.11. We let S× denote the set of operators x ∈ S that are boundedly invertible, 
and we denote S◦ := S \ S×. We also set the following notation:

S×
b := S× ∩M S×

u := S× \M
S◦
b := S◦ ∩M S◦

u := S◦ \M.

Observe that

S = S×
b � S×

u � S◦
b � S◦

u,

and S× = S×
b � S×

u and S◦ = S◦
b � S◦

u. We shall also write Sb := S ∩M(= S×
b � S◦

b ) and 
Su := S \M(= S×

u � S◦
u). Also note the sets S×, Sb, and S×

b are convex. �

Theorem 2.12. Let (M, τ) be a tracial von Neumann algebra. We have the following:

(1) Suppose x, y ∈ S satisfy d(x, y) < 1. Then, x is bounded if and only if y is bounded; 
and x is boundedly invertible if and only if y is boundedly invertible. In particular, 
S×
b , S×

u , S◦
b , S

◦
u are disjoint d-clopen sets that are distance one apart (provided they 

are non-empty).
(2) For all x, y ∈ S×

b , one has d(x, y) < 1.
(3) If M �= C, then diam(S×

b ) = 1 and diam(S◦
b ) = 1, and the latter is achieved.

(4) If M is infinite dimensional, then diam(S×
u ) = 1 and diam(S◦

u) = 1, and both are 
achieved.

(5) If M is infinite dimensional, S×
b is not d-totally bounded.

Proof. (1): Notice that d(x, y) < 1 implies that m(x, y), m(y, x) > 0. We have 
m(x, y)y ≤ x ≤ m(y, x)−1y, hence x is bounded if and only if y is bounded by 
Remark 1.3, and x is boundedly invertible if and only if y is boundedly invertible 
by Remark 1.4.
Now, if x, y ∈ S belong to distinct subsets S×

b , S◦
b , S×

u , or S◦
u, then the above implies 

d(x, y) = 1. Consequently, one has

S×
b =

⋃
×

Bd(x,
1
2),
x∈Sb
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and similarly for S◦
b , S×

u , and S◦
u. Thus each of these sets are open, and since they 

partition S they are also closed.
(2): Note that m(x, y) ≥ 1

‖y‖‖x−1‖ > 0 (by Remark 1.4) and similarly m(y, x) > 0. Hence 
d(x, y) < 1.

(3): Let p ∈ M be a non-trivial projection, and for ε ≥ 0 let

xε := 1
1 + ε

(p + ε(1 − p)) yε := 1
1 + ε

(εp + (1 − p)).

For ε > 0, xε, yε ∈ S×
b with m(xε, yε) = m(yε, xε) = ε, and therefore d(xε, yε) → 1

as ε → 0. For ε = 0, x0, y0 ∈ S◦
b with m(x0, y0) = m(y0, x0) = 0, and therefore 

d(x0, y0) = 1.
(4): Since M is infinite dimensional, Lemma 1.2 yields a family {pn : n ∈ N} ⊂ M of 

non-zero pairwise orthogonal projections mutually orthogonal projections satisfying ∑
pn = 1. Note that τ(pn) → 0 as n → ∞. Pick a subsequence (pnk

)k∈N so that 
τ(pnk

) < (k2k)−1 and nk is even. Let A = {n ∈ N : n �= nk for all k}. Set xk = kpnk

and observe that

τ

( ∞∑
k=1

xk

)
=

∞∑
k=1

kτ(pnk
) <

∞∑
k=1

1
2k = 1,

while by pairwise orthogonality,

∥∥∥∥∥
d∑

k=1

xk

∥∥∥∥∥ = d.

Now, set α :=
∑∞

k=1 τ(xk) < 1 and δ := (1 − α)(
∑

n∈A τ(pn))−1. Note that

α >

∞∑
k=1

τ(pnk
) = 1 −

∑
n∈A

τ(pn)

implies δ < 1. Thus if we let

x :=
∞∑
k=1

xk + δ
∑
n∈A

pn,

then x ∈ S×
u with x ≥ δ. Repeat the above construction but this time choosing the 

subsequence (pmk
)k∈N so that mk is odd to obtain y ∈ S×

u with y ≥ δ. Then for 
any λ > 0, λy ≤ x fails since multiplying by pmk

with k > δ
λ gives the contradiction 

λkpmk
≤ δpmk

. Hence d(x, y) = 1 and diam(S×
u ) = 1 and is achieved.

The same construction with δ = 0 shows diam(S◦
u) = 1 and is achieved.
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(5): Let {pn : n ∈ N} ⊂ M be as in the previous part. Put sn =
∑

k>n pk and observe 
that τ(sn) → 0 as n → ∞. Pick a subsequence snk

so that τ(snk
) ≤ (2k)−1, and set 

xk = 1
2
∑nk

j=1 pj + ksnk
. Note that αk := 1

τ(xk) ∈ (1, 2).
Now, (αkxk)k∈N is a sequence of states that are bounded below by 1

2 and above by 
2k, and so (αkxk)k∈N ⊂ S×

b . For k > k′ one has m(xk, xk′) ≤ 1
2k′ and m(xk′ , xk) ≤

k′

k . Indeed, we see m(xk, xk′)xk′ ≤ xk demands m(xk, xk′)k′
∑nk

j=nk′+1 pj ≤
1
2
∑nk

j=nk′+1 pj , while m(xk′ , xk)xk ≤ xk′ implies m(xk′ , xk)ksnk
≤ k′snk

. There-
fore by Theorem 2.3.(2),

d(αkxk, αk′xk′) ≥
1 − k′

k
1

2k′

1 + k′

k
1

2k′

= 2k − 1
2k + 1 ≥ 1/3,

uniformly in k. Thus S×
b does not admit a finite cover by balls of radius 16 or less. �

Remark 2.13. Note that unlike in the finite dimensional case (see [21, Lemma 3.9]), for 
infinite dimensional M the d-topology and ‖ ·‖1-topologies are not homeomorphic on S×

or even on S×
b . Indeed, let (pn)n∈N ⊂ M be as in Lemma 1.2.(iii). Then for 0 < α < 1

and

xn := 1
α + (1 − α)τ(pn) (pn + α(1 − pn)),

xn → 1 in L1(M, τ) but it is not a Cauchy sequence with respect to d. �

Lemma 2.14. Let (M, τ) be a tracial von Neumann algebra with Hennion metric d. Let 
(xn)n∈N ⊂ Sb and x ∈ S.

(1) If d(xn, x) → 0 then x ∈ Sb and ‖xn − x‖ → 0.
(2) Let (xn)n∈N ⊂ S×

b with ‖xn − x‖ → 0 and suppose x ∈ S×
b . Then, d(xn, x) → 0.

Consequently, (S×
b , d) and (S×

b , ‖ · ‖) are homeomorphic.

Proof. (1): Suppose (xn)n∈N ⊂ Sb converges to some x with respect to d. Note that 
necessarily x ∈ Sb by Theorem 2.12. Let N0 ∈ N be sufficiently large so that 
d(xn, x) < 1

2 for all n ≥ N0. Then, we see from the definition of d that,

1
3 < m(xn, x)m(x, xn) ≤ min{m(xn, x),m(x, xn)}

using the fact that m(x, y) ≤ 1 for states. In particular, this means that for any 
n ≥ N0, we have xn ≤ 3x whence ‖xn‖ ≤ 3‖x‖. Let R = max1≤j≤N0−1{‖xj‖, 3‖x‖}
so that (xn)n∈N ⊂ (M)R.
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Now, for 1 > ε > 0 let N ∈ N be sufficiently large so that for n ≥ N , we have 
d(xn, x) < ε. In particular, this implies that

1 − ε

1 + ε
≤ m(xn, x)m(x, xn) ≤ min{m(xn, x),m(x, xn)}.

This yields the following inequalities

1 − ε

1 + ε
x ≤ xn and 1 − ε

1 + ε
xn ≤ x,

for all n ≥ N . Rearranging, we get

xn ≤ x + 2εR and x ≤ xn + 2εR,

for any n ≥ N . Therefore

−2εR = x− 2εR− x ≤ xn − x ≤ 2εR + x− x = 2εR,

whence for any ξ ∈ L2(M, τ) with ‖ξ‖2 = 1 we have

|〈(xn − x)ξ, ξ〉| ≤ 2εR,

for any n, k ≥ n0. Taking the supremum over ξ this yields ‖xn − x‖ < 2εR. Hence 
xn → x in operator norm.

(2): Suppose (xn)n∈N ⊂ S×
b converges to x ∈ S×

b with respect to the operator norm. 
Let ε > 0. Since x ∈ S×

b , there exists δ > 0 so that x ≥ δ. So for sufficiently large 
n ∈ N we have

xn ≤ x + ‖xn − x‖ < x + εδ ≤ (1 + ε)x,

and hence m(xn, x) ≥ (1 + ε)−1. Next, for sufficiently large n one has

xn ≥ x− ‖x− xn‖ ≥ δ

2 .

Increasing n if necessary, we then obtain

x ≤ xn + ‖x− xn‖ < xn + ε
δ

2 ≤ (1 + ε)xn,

so that m(x, xn) ≥ (1 + ε)−1. Thus

lim
n→∞

d(xn, x) ≤ 1 − (1 + ε)−2

1 + (1 + ε)−2 ,

and letting ε → 0 completes the proof. �
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Part (2) of Lemma 2.14 fails when the limit is not boundedly invertible—even in the 
finite dimensional case—as the following example demonstrates. Moreover, this example 
also shows that the Hennion metric is not equivalent to metric induced by the operator 
norm on S×

b , despite inducing the same topology by Lemma 2.14.

Example 2.15. Let M = M2×2 be the algebra of 2 × 2 matrices and consider the family 
of states (with respect to the normalized tracial state)

Xη := 2
1 + η

[
1 0
0 η

]
.

As η → 0, the state Xη converges in operator norm to the re-scaled projection P =[
2 0
0 0

]
. However, for any η′ < η, one can calculate that

m(Xη, X
′
η)m(Xη′ , Xη) = η′

η
.

Therefore by choosing η ≥ 3η′, one obtains d(Xη, Xη′) ≥ 1
2 , thus (Xη)η>0 has no sub-

sequences which are Cauchy with respect to the Hennion metric. We also mention that 
because of [21, Lemma 3.3(4)], d(Xη, P ) ≡ 1 for all η > 0. �

3. Contraction mappings on S

In this section we will consider linear maps γ on L1(M, τ) and their contraction 
properties with respect to the Hennion metric. We completely characterize faithful maps 
that contract on S in terms of an operator inequality (see Theorem 3.11). Of particular 
interest for application are those γ which arise as the preduals of normal positive maps 
on M which are investigated in Section 3.2.1.

3.1. The class of mappings and projective actions

Lemma 3.1. For a positive linear map γ on L1(M, τ), ker γ ∩ S is open in the Hennion 
metric. If γ is bounded, then this set is also closed.

Proof. For any x ∈ ker γ∩S, the open ball Bd(x, 1) is contained in ker γ∩S. Indeed, since 
y ∈ Bd(x, 1) implies that m(x, y)m(y, x) > 0, we then have y ≤ 1

m(x,y)x and applying γ
gives y ∈ ker γ ∩ S. If γ is bounded, then ker γ ∩ S is closed with respect to ‖ · ‖1, and 
so Theorem 2.7 implies it is also closed in the Hennion metric. �
Definition 3.2. Let γ be a positive map on L1(M, τ). The projective action of γ on x ∈ S

is the map γ · : S \ ker γ → S given by

γ · x = 1
γ(x).
τ(γ(x))
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Remark 3.3. Although the projective action is non-linear, it does preserve lines in the 
following sense. Given x, y ∈ S \ ker γ, for any t ∈ R satisfying tx + (1 − t)y ∈ S \ ker γ
there exists s ∈ R so that

γ · (tx + (1 − t)y) = sγ · x + (1 − s)γ · y;

namely, s := τ(γ(tx))τ(γ(tx + (1 − t)y))−1. In particular, if t ∈ [0, 1] then s ∈ [0, 1]. �

The following lemma implies projective actions of positive maps are always Lipschitz 
continuous with respect to the Hennion metric. We explore the associated Lipschitz 
constants in greater detail in Section 3.2.

Lemma 3.4. For a positive linear map γ on L1(M, τ),

d(γ · x, γ · y) ≤ d(x, y), (6)

for all x, y ∈ S \ ker γ.

Proof. First observe that m(γ · x, γ · y)m(γ · y, γ · x) = m(γ(x), γ(y))m(γ(y), γ(x)) by 
Theorem 2.3.(2). Thus

d(γ · x, γ · y) = 1 −m(γ · x, γ · y)m(γ · y, γ · x)
1 + m(γ · x, γ · y)m(γ · y, γ · x) = 1 −m(γ(x), γ(y))m(γ(y), γ(x))

1 + m(γ(x), γ(y))m(γ(y), γ(x)) .

Next, applying γ to m(x, y)y ≤ x yields m(x, y)γ(y) ≤ γ(x) so that m(x, y) ≤
m(γ(x), γ(y)). Since 1−t

1+t is decreasing, we can continue the above computation with

d(γ · x, γ · y) ≤ 1 −m(x, y)m(y, x)
1 + m(x, y)m(x, y) = d(x, y). �

For faithful maps, the above inequality can be refined as follows.

Lemma 3.5. Let γ be a faithful positive linear map on L1(M, τ). For any x, y ∈ S, we 
have

d(γ · x, γ · y) ≤ d(γ ·A−, γ ·A+)d(x, y) (7)

where A± are defined as in Lemma 2.6.

Proof. The proof is essentially the same as in [21, Lemma 3.10(1)]. Let x, y ∈ S be 
distinct and note that we can assume γ · x, γ · y are also distinct since otherwise the 
inequality is trivially true. Applying Lemma 2.6 to the pairs x, y and γ · x, γ · y gives 
A±, B± ∈ S, t±, w± ∈ R, and r, s, u, v ∈ [0, 1] satisfying
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A± = t±x + (1 − t±)y x = rA− + (1 − r)A+ y = sA− + (1 − s)A+

B±=w±γ · x+(1 − w±)γ · y γ · x = uB−+(1 − u)B+ γ · y=vB−+(1 − v)B+.

(8)

Additionally, we have

d(x, y) =
∣∣∣∣r(1 − s) − (1 − r)s
r(1 − s) + (1 − r)s

∣∣∣∣ d(γ · x, γ · y) =
∣∣∣∣u(1 − v) − (1 − u)v
u(1 − v) + (1 − u)v

∣∣∣∣ .
By Remark 3.3, we have

γ ·A± = τ(γ(t±x))
τ(γ(t±x + (1 − t±)y))γ · x + τ(γ((1 − t±)y))

τ(γ(t±x + (1 − t±)y))γ · y.

In particular, γ ·A± lie in the convex set

{wγ · x + (1 − w)γ · y ∈ S : w− ≤ w ≤ w+} ∩ S,

and therefore {pγ ·A− +(1 − p)γ ·A+ : p ∈ R} ∩S has the same extreme points; namely, 
B±. Thus there exist p, q ∈ [0, 1] satisfying

γ ·A− = pB− + (1 − p)B+

γ ·A+ = qB− + (1 − q)B+,

and

d(γ ·A−, γ ·A+) =
∣∣∣∣p(1 − q) − (1 − p)q
p(1 − q) + (1 − p)q

∣∣∣∣ ,
by Lemma 2.6. Using the above formulae we have

uB− + (1 − u)B+ = γ · x

= 1
τ(γ(x)) (rγ(A−) + (1 − r)γ(A+))

= τ(γ(A−))rp + τ(γ(A+))(1 − r)q
τ(γ(x)) B−

+ τ(γ(A−))r(1 − p) + τ(γ(A+))(1 − r)(1 − q)
τ(γ(x)) B+.

This determines u, 1 − u since B± are distinct states (the line connecting them contains 
the distinct states γ · x and γ · y) and are therefore linearly independent. A similar 
computation yields
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v = τ(γ(A−))sp + τ(γ(A+))(1 − s)q
τ(γ(y))

1 − v = τ(γ(A−))s(1 − p) + τ(γ(A+))(1 − s)(1 − q)
τ(γ(y)) .

Writing α := τ(γ(A−)) and β := τ(γ(A+)), we have:

d(γ · x, γ · y)

=
∣∣∣∣u(1 − v) − (1 − u)v
u(1 − v) + (1 − u)v

∣∣∣∣
= αβ|p(1 − q) − (1 − p)q||r(1 − s) − (1 − r)s|

2α2p(1 − p)rs + αβ(p(1 − q) + (1 − p)q)(r(1 − s) + (1 − r)s) + 2β2q(1 − q)(1 − r)(1 − s)

≤ |p(1 − q) − (1 − p)q||r(1 − s) − (1 − r)s|
(p(1 − q) + (1 − p)q)(r(1 − s) + (1 − r)s) = d(γ ·A−, γ ·A+)d(x, y),

where the second equality follows from an abundance of arithmetic and the inequality 
follows from 2α2p(1 − p)rs + 2β2q(1 − q)(1 − r)(1 − s) ≥ 0. �
3.2. Contraction mappings

Given a metric space (X, ρ), recall that a mapping T : X → X is said to be a 
contraction mapping if there is a constant 0 ≤ q < 1 so that ρ(T (p1), T (p2)) ≤ qρ(p1, p2)
for all p1, p2 ∈ X. Since we have shown (Theorem 2.7) that the normal state space 
S ⊂ L1(M, τ) is complete in Hennion’s Metric, we shall aim to give a characterization 
of a large class of contractions with respect to Hennion’s metric.

Definition 3.6. The Hennion contraction constant of a faithful positive linear map γ on 
L1(M, τ) is the quantity

c(γ) := sup
x,y∈S

d(γ · x, γ · y)
d(x, y) . (9)

We say γ is a strict Hennion contraction if c(γ) < 1, and we denote by SHC(M) the 
family of all such maps.

Lemma 3.4 implies c(γ) ≤ 1 for all faithful positive linear maps γ on L1(M, τ). Using 
Lemma 3.5 we actually have

d(γ · x, γ · y)
d(x, y) ≤ d(γ ·A−, γ ·A+),

and consequently c(γ) ≤ diam(γ ·S). The reverse inequality is a consequence of d(x, y) ≤
1 for all x, y ∈ S, and so we have proven the following:
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Proposition 3.7. For a faithful positive linear map γ on L1(M, τ) one has

c(γ) = diam(γ · S).

If we further assume γ is bounded as linear operator on L1(M, τ), then the joint 
lower semicontinuity of d with respect to ‖ · ‖1 (see Theorem 2.9) implies the contraction 
constant can be witnessed on any ‖ · ‖1-dense subset of L1(M, τ).

Proposition 3.8. Let γ be a bounded faithful positive linear map on L1(M, τ). For any 
‖ · ‖1-dense subset S0 ⊂ S, one has

c(γ) = diam(γ · S0).

Proof. Let η < c(γ) and let x, y ∈ S be such that

η < d(γ · x, γ · y) ≤ c(γ).

Letting (xn)n∈N , (yn)n∈N ⊂ S0 be sequences converging to x and y, respectively, with 
respect to ‖ · ‖1. Then γ · xn → γ · x and γ · yn → γ · y with respect to ‖ · ‖1, and so 
Theorem 2.9 implies

diam(γ · S0) ≥ lim inf
n→∞

d(γ · xn, γ · yn) ≥ d(γ · x, γ · y) > η.

Letting η → c(γ) completes the proof. �
Example 3.9. Let (M, τ) = (Mn, 1nTr) be the n ×n matrices equipped with its normalized 
trace. If γ : Mn → Mn is strictly positive in the sense that γ · S ⊂ S×, then it is a strict 
Hennion contraction. Indeed, S is compact in this case and therefore

c(γ) = diam(γ · S) = d(γ · x, γ · y),

for some x, y ∈ S. Using Theorem 2.12.(2), we see that c(γ) < 1. Conversely, if γ is a 
strict Hennion contraction and γ · 1 ∈ S×, then γ is strictly positive by Theorem 2.12.

�

Example 3.10 (A Non-Example). Let (M, τ) = (Mn, 1nTr) be the n ×n matrices equipped 
with its normalized trace. The transpose map x �→ xT is a unital and tracial map 
that is well known to be positive but not completely positive (see [23]). Moreover, for 
x, y ∈ (Mn)+ one has x ≤ y iff xT ≤ yT . Thus S � x �→ xT is an isometry with respect 
to d and is therefore not a strict Hennion contraction. �

We have seen in Theorem 2.7 that (S, d) is a complete metric space, and so the Banach 
Fixed Point Theorem implies a strict Hennion contraction γ has a unique fixed point: 
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γ ·x0 = x0 for some x0 ∈ S. In fact, this along with the partial order on the normal state 
space can be used to characterize when one has a strict Hennion contraction:

Theorem 3.11. For a faithful positive linear map γ on L1(M, τ), the following are equiv-
alent:

(i) γ is a strict Hennion contraction.
(ii) For some x0 ∈ S there exists η ∈ (0, 1] so that

ηx0 ≤ γ · x ≤ η−1x0 ∀x ∈ S.

In this case, x0 can be taken to be the unique fixed point of the projective action. Moreover, 
if (γ · S) ∩ S×

b �= ∅ then the above are further equivalent to

(iii) For each y0 ∈ S×
b there exists κ ∈ (0, 1] so that

κy0 ≤ γ · x ≤ κ−1y0 ∀x ∈ S.

In this case, one has γ · S ⊂ S×
b .

Proof. (i) ⇒ (ii): By the discussion preceding the statement of the theorem, there exists 
a unique x0 ∈ S so that γ · x0 = x0. Then Proposition 3.7 gives

d(γ · x, x0) = d(γ · x, γ · x0) ≤ c(γ) < 1,

for all x ∈ S. Arguing as in Theorem 2.7, we see that

min{m(γ · x, x0),m(x0, γ · x)} ≥ 1 − c(γ)
1 + c(γ) =: η,

for all x ∈ S. Thus

ηx0 ≤ m(γ · x, x0)x0 ≤ γ · x ≤ m(x0, γ · x)−1x0 ≤ η−1x0,

as claimed.

(ii) ⇒ (i): It follows from ηx0 ≤ γ · x ≤ η−1x0 that m(γ · x, x0)m(x0, γ · x) ≥ η2 for all 
x ∈ S0. Using Theorem 2.3.(3), we then have

m(γ · x, γ · y)m(γ · y, γ · x) ≥ η4

for all x, y ∈ S, and therefore

d(γ · x, γ · y) ≤ 1 − η4

4 .
1 + η



32 B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485
Thus

c(γ) = diam(γ · S) ≤ 1 − η4

1 + η4 < 1,

where the first equality follows from Proposition 3.7.

Now suppose (γ · S) ∩ S×
b �= ∅. If γ is a strict Hennion contraction, then γ · S ⊂ S×

b

holds by Theorem 2.12. Consequently, for the fixed point x0 = γ · x0 if we let δ :=
min{‖x0‖−1, ‖x−1

0 ‖−1} ∈ (0, 1] then δ1 ≤ x0 ≤ δ−11. Let y0 ∈ S×
b , let η ∈ (0, 1) be as in

(ii), and set κ := δηmin{‖y0‖−1, ‖y−1
0 ‖−1}. Then one has

κy0 ≤ δη ≤ ηx0 ≤ γ · x ≤ η−1x0 ≤ (δη)−11 ≤ κ−1y0,

for all x ∈ S. The converse (namely, (iii) ⇒ (ii)) is immediate. �
Example 3.12. Fix a non-zero m ∈ L1(M, τ)+ and η ∈ (0, 1]. Let {(ai, mi) ∈ M+ ×
L1(M, τ)+ : i ∈ I} be a family satisfying:

(1) a :=
∑

i∈I ai converges in the strong operator topology;
(2) τ(xa) > 0 for all x ∈ L1(M, τ)+ \ {0};
(3) ηm ≤ mi ≤ η−1m for all i ∈ I.

For x ∈ L1(M, τ), we claim that

γ(x) :=
∑
i∈I

τ(xai)mi

converges. Indeed, let x = v|x| be the polar decomposition and let ε > 0. The strong 
summability of the ai implies there exists a finite F0 ⊂ I so that whenever a finite subset 
F ⊂ I satisfies F ∩ F0 = ∅ then∥∥∥∥∥∑

i∈F

ai|x|
1
2

∥∥∥∥∥
2

,

∥∥∥∥∥∑
i∈F

aiv|x|
1
2

∥∥∥∥∥
2

< ε.

Let F, G ⊂ I be finite subsets both containing F0 so that FΔG is disjoint from F0. Let 
w be the polar part of

∑
i∈F

τ(xai)mi −
∑
i∈G

τ(xai)mi.

Then using ‖mi‖1 = τ(mi) ≤ η−1τ(m) we have
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∥∥∥∥∥∑
i∈F

τ(xai)mi −
∑
i∈G

τ(xai)mi

∥∥∥∥∥
1

≤
∑

i∈FΔG

|τ(aix)||τ(w∗mi)|

≤
∑

i∈FΔG

|〈a
1
2
i v|x|

1
2 , a

1
2
i |x|

1
2 〉2|η−1τ(m)

≤
( ∑

i∈FΔG

‖a
1
2
i v|x|

1
2 ‖2

2

) 1
2
( ∑

i∈FΔG

‖a
1
2
i |x|

1
2 ‖2

2

) 1
2

η−1τ(m)

=
〈 ∑

i∈FΔG

aiv|x|
1
2 , v|x| 12

〉 1
2

2

〈 ∑
i∈FΔG

ai|x|
1
2 , |x| 12

〉 1
2

2

η−1τ(m)

< ε‖x‖
1
2
1 η

−1τ(m).

Thus the net of partial sums is Cauchy and converges in L1(M, τ). We therefore have 
a positive linear map γ on L1(M, τ), which is faithful by (2). One can also show γ is 
bounded using similar estimates as above:

|τ(γ(x)b)| ≤
∑
i∈I

|τ(xai)τ(mib)| ≤
∑
i∈I

|τ(xai)|η−1τ(m)‖b‖

≤ 〈av|x| 12 , v|x| 12 〉
1
2
2 〈a|x|

1
2 , |x| 12 〉

1
2
2 η

−1τ(m)‖b‖ ≤ ‖a‖‖x‖1η
−1τ(m)‖b‖,

for all b ∈ M . Hence ‖γ‖ ≤ ‖a‖η−1τ(m).
Now, by applying τ to the inequalities in (3), one can show that

τ(mi)η2 m

τ(m) ≤ mi ≤ τ(mi)η−2 m

τ(m) .

Since

τ(γ(x)) =
∑
i∈I

τ(xai)τ(mi),

for x ∈ L1(M, τ)+, it follows that for x0 := m
τ(m) ∈ S one has

γ(x) ≤
∑
i∈I

τ(xai)τ(mi)η−2x0 = τ(γ(x))η−2x0,

and similarly one has γ(x) ≥ τ(γ(x))η2x0. This shows that γ is a strict Hennion contrac-
tion by Theorem 3.11. In particular, there exists a fixed point; that is, γ(x) = τ(γ(x))x
for some x ∈ L1(M, τ). Note that m controls the component of S in which the projective 
action of γ is valued. �
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The following lemma will be needed in later sections once we start considering quan-
tum processes, which in the context of this article are compositions of positive maps.

Lemma 3.13. For faithful positive linear maps α, β on L1(M, τ), one has

c(α ◦ β) ≤ c(α)c(β).

Consequently, the family of strict Hennion contractions is invariant under (pre or post) 
composition with faithful positive linear maps on L1(M, τ).

Proof. For x ∈ L1(M, τ)+ \ {0} one has

(α ◦ β) · x = 1
τ(α(β(x)))α(β(x)) = 1

τ (α(β · x))α(β · x) = α · (β · x),

so that

d((α ◦ β) · x, (α ◦ β) · y)) = d(α · (β · x), α · (β · y)) ≤ c(α)d(β · x, β · y) ≤ c(α)c(β)d(x, y).

Hence c(α ◦ β) ≤ c(α)c(β). �
3.2.1. Strict Hennion contractions from normal maps

A positive normal map φ : M → M can induce bounded positive maps on L1(M, τ)
in two ways: by the predual map φ∗, or by extending φ itself L1(M, τ) provided it is 
τ -bounded (see Lemma 1.6). We will investigate when these induced maps are strict 
Hennion contractions, but we must first characterize when they are faithful:

Lemma 3.14. Let φ : M → M be a normal completely positive map.

(1) φ∗ is faithful if and only if φ(M)M is weak* dense in M .
(2) φ admits a bounded faithful extension to L1(M, τ) if and only if φ∗ is M -preserving 

and φ∗(M)M is weak* dense in M .

Proof. (1): The weak* closure of φ(M)M is a weak* closed right ideal in M and hence 
of the form pM for p := [φ(M)M ]. Thus φ(M)M is weak* dense if and only if p = 1.
Now, suppose φ∗ is not faithful and let x ∈ L1(M, τ)+ be a non-zero element in its 
kernel. For all a, b ∈ M we then have

‖x 1
2φ(a)b‖2

2 = τ(b∗φ(a)∗xφ(a)b) = τ(x1/2φ(a∗)∗b∗bφ(a∗)x1/2)

≤ ‖b‖2‖φ(1)‖τ(x1/2φ(aa∗)x1/2) = ‖b‖2‖φ(1)‖τ(φ∗(x)aa∗) = 0.

Thus φ(M)M
‖·‖2 ⊂ kerx 1

2 . Since x is non-zero, so is x 1
2 , and therefore φ(M)M

‖·‖2

must be a proper subspace of L2(M, τ). The projection onto this subspace is p by 
definition, so p �= 1.
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Conversely, if p �= 1 then for all a ∈ M we have

τ(φ∗(1 − p)a) = τ((1 − p)φ(a)) = 〈(1 − p)φ(a), 1〉2 = 0.

Since this holds for all a ∈ M , it follows that φ∗(1 − p) = 0.
(2): The equivalence of φ admitting a bounded extension to L1(M, τ) and φ∗ being M -

preserving follows from Lemma 1.6. The rest is then a consequence of part (1), with 
the roles of φ and φ∗ reversed. �

Note that if φ is unital or even satisfies that 1 belongs to the weak* closure of φ(M), 
then φ∗ is faithful by the previous lemma. Another way to guarantee faithfulness of 
φ∗ (which avoids assuming that φ is completely positive) is to assume that φ(1) is 
invertible. Indeed, this implies φ(1) ≥ δ1 for some δ > 0, which is equivalent via duality 
to τ(φ∗(x)) ≥ δτ(x) for all x ∈ L1(M, τ)+.

Remark 3.15. In the proof of Lemma 3.14.(1), complete positivity was only used for the 
Schwarz inequality:

φ(x)∗φ(x) ≤ ‖φ(1)‖φ(x∗x) ∀x ∈ M.

Thus it would be sufficient to assume φ was merely 2-positive (see [23, Proposition 
3.3]). �

As a consequence of the following lemma, it will turn out one of φ∗ or the extension 
of φ is a strict Hennion contraction if and only if the other is, provided both maps exist 
and are faithful (see Corollaries 3.17 and 3.18).

Lemma 3.16. Let φ : M → M be a positive normal map with a bounded faithful extension 
to L1(M, τ) and a faithful predual φ∗. Then c(φ) = c(φ∗).

Proof. By Proposition 3.7 it suffices to show diam(φ · S) = diam(φ∗ · S), and by the 
formula for d in terms of m along with Theorem 2.3.(8) it further suffices to show

inf
{
τ(aφ(x))
τ(aφ(y))

τ(bφ(y))
τ(bφ(x)) : x, y ∈ L1(M, τ)+, a, b ∈ M+, τ(bφ(x)), τ(aφ(y)) > 0

}
= inf

{
τ(aφ∗(x))
τ(aφ∗(y))

τ(bφ∗(y))
τ(bφ∗(x)) : x, y ∈ L1(M, τ)+, a, b ∈ M+, τ(bφ∗(x)), τ(aφ∗(y)) > 0

}
.

Since φ and φ∗ are both bounded on L1(M, τ), neither of the above infima is changed if 
we restrict to x, y ∈ M+. But then

τ(aφ(x))
τ(aφ(y))

τ(bφ(y))
τ(bφ(x)) = τ(φ∗(a)x)

τ(φ∗(a)y)
τ(φ∗(b)y)
τ(φ∗(b)x) = τ(xφ∗(a))

τ(xφ∗(b))
τ(yφ∗(b))
τ(yφ∗(a))

implies the two infima are equal. �
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The next results are corollaries to Theorem 3.11.

Corollary 3.17. Let φ : M → M be a positive normal map with faithful predual φ∗. Then 
φ∗ is a strict Hennion contraction if and only if for some x0 ∈ S there exists η ∈ (0, 1]
so that

ητ(x0a)φ(1) ≤ φ(a) ≤ η−1τ(x0a)φ(1) ∀a ∈ M+.

Moreover, φ∗ · S ⊂ S×
b if and only if one can choose x0 = 1, and in this case φ extends 

to a bounded faithful map on L1(M, τ) which is also a strict Hennion contraction.

Proof. Noting that

(a �→ τ(x0a)φ(1))∗ = x �→ τ(φ∗(x))x0,

we see that from Lemma 1.7 that the inequalities on φ are equivalent to

ητ(φ∗(x))x0 ≤ φ∗(x) ≤ η−1τ(φ∗(x))x0 ∀x ∈ L1(M, τ)+.

These are in turn equivalent to φ∗ being a strict Hennion contraction by Theorem 3.11. 
The last part of this theorem also implies the second if and only if statement.

Now, suppose ητ(a)φ(1) ≤ φ(a) ≤ η−1τ(a)φ(1) holds for all a ∈ M+. Taking the 
trace yields ητ(φ(1))τ(a) ≤ τ ◦ φ(a) ≤ η−1τ(φ(1))τ(a). This shows φ admits a bounded 
faithful extension to L1(M, τ) and it is necessarily a strict Hennion contraction by 
Lemma 3.16. �
Corollary 3.18. Let φ : M → M be a positive normal map with a bounded faithful exten-
sion to L1(M, τ). Then φ is a strict Hennion contraction if and only if for some b0 ∈ Sb

there exists η ∈ (0, 1] so that

ητ(φ(a))b0 ≤ φ(a) ≤ η−1τ(φ(a))b0 ∀a ∈ M+.

Moreover, φ · S ⊂ S×
b if and only if one can choose b0 = 1, and in this case φ∗ is a 

bounded faithful map on L1(M, τ) which is also a strict Hennion contraction.

Proof. The first if and only if statement follows immediately from Theorem 3.11, and 
the last part of this theorem also implies the second if and only if statement.

Now, suppose ητ(φ(a)) ≤ φ(a) ≤ η−1τ(φ(a)) holds for all a ∈ M+. Invoking 
Lemma 1.7 we obtain

ητ(x)φ∗(1) ≤ φ∗(x) ≤ η−1τ(x)φ∗(1) ∀x ∈ L1(M, τ)+.

This implies φ∗ is faithful, and hence is a strict Hennion contraction by Lemma 3.16. �
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Corollary 3.19. Let φ : M → M be a positive normal map. Then the following are equiv-
alent.

(i) There exists η ∈ (0, 1] so that ητ ≤ φ ≤ η−1τ .
(ii) There exists δ ∈ (0, 1] so that δτ ≤ τ ◦ φ ≤ δ−1τ , and φ has a bounded faithful 

extension to L1(M, τ) which is a strict Hennion contraction valued in S×
b .

(iii) There exists δ∗ ∈ (0, 1] so that δ∗τ ≤ τ ◦ φ∗ ≤ δ−1
∗ τ , and φ∗ is a faithful map on 

L1(M, τ) which is a strict Hennion contraction valued in S×
b .

Proof. (i) ⇒ (ii), (iii): By Lemma 1.7, ητ ≤ φ ≤ η−1τ is equivalent to ητ ≤ φ∗ ≤ η−1τ , 
since τ∗ = τ . Applying τ to these inequalities gives ητ ≤ τ ◦φ ≤ η−1τ , so that φ extends 
to a bounded faithful map on L1(M, τ), and ητ ≤ τ ◦ φ∗ ≤ η−1τ , so that φ∗ is faithful. 
Since

η2τ(φ(a)) ≤ ητ(a) ≤ φ(a) ≤ η−1τ(a) ≤ η−2τ(φ(a)),

for all a ∈ M+, Corollary 3.18 implies φ and φ∗ are strict Hennion contractions. They 
are both necessarily valued in S×

b since η ≤ φ(1), φ∗(1) ≤ η−1.

(ii) ⇒ (i): Theorem 3.11 yields a κ ∈ (0, 1] satisfying κτ ◦φ ≤ φ ≤ κ−1τ ◦φ, and therefore

κδτ ≤ κτ ◦ φ ≤ φ ≤ κ−1τ ◦ φ ≤ κ−1δ−1τ.

So we take η := κδ.

(iii) ⇒ (i): Since φ∗ · 1 ∈ M , we have that φ∗|M : M → M is a positive normal map (see 
[2, Proposition 2.5.11]). So the same argument as in (ii) ⇒ (i) gives ητ ≤ φ∗ ≤ η−1τ for 
some η ∈ (0, 1], and appealing to Lemma 1.7 completes the proof. �
Theorem 3.20. Let φ : M → M be a normal completely positive map such that τ ◦ φ ≤ τ

(φ is subtracial), φ(1) ≤ 1 (φ is subunital), and 1 − φ(1) belongs to the weak* closure of 
φ(M+). If φ∗ is a strict Hennion contraction then the unital tracial map

φ̃∗(x) := φ∗(x) + (τ − τ ◦ φ∗)(x)
(τ − τ ◦ φ∗)(1) (1 − φ∗(1))

is a strict Hennion contraction valued in S×
b . In this case, the extension of

φ̃(x) := φ(x) + (τ − τ ◦ φ)(x)
(τ − τ ◦ φ)(1) (1 − φ(1))

to L1(M, τ) is also a strict Hennion contraction valued in S×
b .
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Proof. We first observe that the assumption on φ implies 1 = (1 − φ(1)) + φ(1) belongs 
to the weak* closure of φ(M)M so that φ∗ is faithful by Lemma 3.14. We also claim that 
for all x, y ∈ L1(M, τ)+ \ {0} one has

m(φ∗(x), φ∗(y))(τ − τ ◦ φ∗)(y) ≤ (τ − τ ◦ φ∗)(x).

Indeed, if (τ − τ ◦ φ∗)(y) = 0 then this holds trivially, so suppose (τ − τ ◦ φ∗)(y) > 0. If 
we let (ai)i∈I ⊂ M+ be a net such that φ(ai) → 1 − φ(1) weak*, then

(τ − τ ◦ φ∗)(x)
(τ − τ ◦ φ∗)(y)

= τ(x(1 − φ(1))
τ(y(1 − φ(1)) = lim

i→∞

τ(xφ(ai))
τ(yφ(ai))

= lim
i→∞

τ(φ∗(x)ai)
τ(φ∗(y)ai)

≥ m(φ∗(x), φ∗(y)),

where we have used Theorem 2.3.(8) in the last inequality. Using this we have

m(φ∗(x), φ∗(y))φ̃∗(y) =m(φ∗(x), φ∗(y))φ∗(y)

+ m(φ∗(x), φ∗(y))(τ − τ ◦ φ∗)(y)
(τ − τ ◦ φ∗)(1) (1 − φ∗(1)) ≤ φ̃∗(x).

Thus m(φ∗(x), φ∗(y)) ≤ m(φ̃∗(x), φ̃∗(y)), and consequently

m(φ̃∗(x), φ̃∗(y))m(φ̃∗(y), φ̃∗(x)) ≥ m(φ∗(x), φ∗(y))m(φ∗(y), φ∗(x))

= m(φ∗ · x, φ∗ · y)m(φ∗ · y, φ∗ · x),

where the equality is due to Theorem 2.3.(2). From this we obtain d(φ̃∗(x), φ̃∗(y)) ≤
d(φ∗ · x, φ∗ · y) for all x, y ∈ S, and hence

diam(φ̃∗(S)) ≤ diam(φ∗ · S).

Thus if φ∗ is a strict Hennion contraction, then Proposition 3.7 implies φ̃∗ is as well, 
and in fact we have φ̃∗(S) ⊂ S×

b because it is unital. Since φ̃∗ is the predual map of φ̃, 
Corollary 3.19 gives that the extension of φ̃ is also a strict Hennion contraction valued 
in S×

b . �
Recall [11] that a positive normal map φ : M → M is said to be reducible if there is a 

nontrivial projection p ∈ M and a constant λ > 0 so that φ(p) ≤ λp. This is equivalent 
[11, Proposition 1] to the statement that φ(pMp) ⊂ pMp. If there is no such nontrivial 
projection, φ is said to be irreducible.

Corollary 3.21. If γ is a bounded strict Hennion contraction valued in S×
b , then γ|M is 

irreducible.

Proof. Note that γ(M) ⊂ M by virtue of γ · S ⊂ S×
b . Thus if γ is bounded as a map 

on L1(M, τ) then γ|M : M → M is normal. Theorem 3.11 then gives a κ ∈ (0, 1] so that 
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γ(p) ≥ κτ(γ(p))1 for all projections p ∈ M . Thus if γ(p) ≤ λp for some λ > 0, then 
necessarily p = 1. �
4. Ergodic quantum processes

Definition 4.1. Let (M, τ) be a tracial von Neumann algebra, let (Ω, P ) be a probability 
space equipped with T ∈ Aut(Ω, P ), and let γω : L1(M, τ) → L1(M, τ) be a bounded 
random linear operator. We call the family of bounded random linear operators

ΓT
n,m(ω) = γTnω ◦ γTn−1ω ◦ · · · ◦ γTmω n,m ∈ Z, n ≥ m,

an (interval) quantum process on L1(M, τ). If T is ergodic, then we call the above an
ergodic quantum process on L1(M, τ). When no confusion can arise, we will suppress 
the superscript T .

In order to avoid measurability issues, we will from now on assume our von Neumann 
algebras all have separable predual. In Section 4.3 we establish a number of convergence 
properties for ergodic quantum processes under the assumptions that γω is bounded, 
positive, and faithful almost surely and that with positive probability Γn,m is eventually 
a strict Hennion contraction. These results are infinite dimensional generalizations of [21, 
Theorems 1 and 2]. Of course, here one lacks the reflexivity Mn(C)∗ ∼= Mn(C) present 
in the finite dimensional case, so in Section 4.2 we consider quantum processes on M .

4.1. Contraction constant asymptotics

This first lemma addresses some technical aspects of measurability. Recall that in 
Section 3 we rarely required boundedness of the positive maps on L1(M, τ). However, 
it will be essential in this section in order to apply Proposition 3.8 and leverage our 
assumption that L1(M, τ) is separable.

Lemma 4.2. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space, and let γω : L1(M, τ) → L1(M, τ) be a random linear 
operator that is positive and faithful almost surely. For any x, y ∈ S one has m(γω ·x, γω ·
y) ∈ L∞(Ω, P ). Furthermore, if γω is bounded almost surely then c(γω) ∈ L∞(Ω, P ).

Proof. Since L1(M, τ) is separable, there is a countable σ-WOT dense subset {an}n∈N ⊂
M+ by Theorem 1.1. By setting an �→ τ(γ(y))

τ(γ(x))
τ(anγ(x))
τ(anγ(y)) equal to +∞ whenever τ(γω(x)) =

0 or τ(anγ(y)) = 0, we see that

m(γ · x, γ · y) = τ(γ(y))
τ(γ(x)) inf

{
τ(aγ(x))
τ(aγ(y)) : a ∈ M+ \ {0}

}
= τ(γ(y))

τ(γ(x)) inf
n≥1

τ(anγ(x))
τ(anγ(y)) .

We have therefore expressed m(γ · x, γ · y) as the infimum of a sequence of random 
variables, hence it is also a random variable.
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Now suppose γω is bounded almost surely. Fix a countable ‖ · ‖1-dense subset S0 ⊂ S. 
Then,

c(γω) = diam(γω · S0) = sup
x,y∈S0

d(γω · x, γω · y)

almost surely by Proposition 3.8. The first part of the proof implies d(γω · x, γω · y) is 
measurable for each x, y ∈ S0, and hence the right-most expression above is measurable as 
the supremum of a countable set of measurable functions. Since the contraction constant 
is always bounded, we get c(γω) ∈ L∞(Ω, P ). �
Remark 4.3. For γω as in Lemma 4.2, when γω is bounded almost surely the separability 
of L1(M, τ) also implies that ω �→ ‖γω‖ is measurable. Indeed, let A0 and X0 be countable 
subsets of the unit balls of M and L1(M, τ), respectively, that are dense in the σ-weak 
operator and ‖ · ‖1 topologies, respectively. Then,

‖γω‖ = sup
a∈A0
x∈X0

|τ(aγω(x))|,

almost surely, and thus ‖γω‖ is measurable since each τ(aγω(x)) is measurable by as-
sumption. It follows that

P [‖γω‖ < ∞ and ‖γω(x)‖1 ≤ ‖γω‖‖x‖1 ∀x ∈ L1(M, τ)] = 1.

In this case, one says that γω is a bounded random linear operator (see [6, Definition 
2.24]). �

In light of the above remark, we henceforth adopt the convention of saying a random 
linear operator γ : Ω ×L1(M, τ) → L1(M, τ) has a property associated to linear maps on 
L1(M, τ) if for almost every ω ∈ Ω the map L1(M, τ) � x �→ γω(x) has the corresponding 
property (e.g. bounded, positive, completely positive, faithful etc.). Provided the list of 
properties is countable, the event that γω has all of the properties still occurs with 
probability one.

Recall from Definition 3.6 that SHC(M) denotes the set of all strict Hennion con-
tractions on M . The following lemma analyzes a standard hypothesis in our convergence 
results. It tells us that as long as the event [Γn,m ∈ SHC(M)] occurs with positive prob-
ability for some n ≥ m, then for any m ∈ Z the sequence Γm,m, Γm+1,m, . . . will almost 
surely land in SHC(M) (and by Lemma 3.13 remain there forever after), and likewise 
for the sequence Γn,n, Γn,n−1, . . . for any n ∈ Z. This is comparable to [21, Assumption 
1] by Example 3.9 (see also [21, Lemma 2.1]).

Lemma 4.4. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let γω : L1(M, τ) →
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L1(M, τ) be a bounded positive faithful random linear operator, and let Γn,m be the 
associated interval quantum process. Suppose

P [∃n,m ∈ Z such that n ≥ m and Γn,m ∈ SHC(M)] > 0.

Then

P [∀m ∈ Z ∃n ≥ m

such that Γn,m ∈ SHC(M)] = P [∀n ∈ Z ∃m ≤ n such that Γn,m ∈ SHC(M)] = 1.

Proof. Since

0 < P [∃n,m ∈ Z such that n ≥ m and

Γn,m ∈ SHC(M)] ≤
∑
m∈Z

P [∃n ≥ m such that Γn,m ∈ SHC(M)],

it follows that

P [∃n ≥ m0 such that Γn,m0 ∈ SHC(M)] > 0

for some m0 ∈ Z. Observe that Γn,m0(ω) = Γn+m−m0,m(Tm0−mω) for each m ∈ Z and 
consequently

[∃n ≥ m such that Γn,m ∈ SHC(M)] = Tm0−m[∃n ≥ m0 such that Γn,m0 ∈ SHC(M)].
(10)

Also note that for any m ≥ m′ one has

[∃n ≥ m such that Γn,m ∈ SHC(M)] ⊂ [∃n ≥ m′ such that Γn,m′ ∈ SHC(M)]

by Lemma 3.13. In particular, we have

T−1[∃n ≥ m0 such that Γn,m0 ∈ SHC(M)]

= [∃n ≥ m0 + 1 such that Γn,m0+1 ∈ SHC(M)]

⊂ [∃n ≥ m0 such that Γn,m0 ∈ SHC(M)].

Thus this event occurs with probability one by the ergodicity of T . Since T is measure 
preserving, this along with Equation (10) yields

P [∃n ≥ m such that Γn,m ∈ SHC(M)] = P [∃n ≥ m0 such that Γn,m0 ∈ SHC(M)] = 1

for all m ∈ Z. Finally, it follows from continuity from above that

P [∀m ∈ Z ∃n ≥ m such that Γn,m ∈ SHC(M)] = 1. �
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Remark 4.5. If one removes the ergodicity assumption in Lemma 4.4, the same proof 
shows

P [∃n ≥ m such that Γn,m ∈ SHC(M)] = P [∃n ≥ m0 such that Γn,m0 ∈ SHC(M)] > 0

for all m ∈ Z, and consequently

P [∀m ∈ Z ∃n ≥ m

such that Γn,m ∈ SHC(M)] = P [∃n ≥ m0 such that Γn,m0 ∈ SHC(M)] > 0.

Similarly, P [∀n ∈ Z ∃m ≤ n such that Γn,m ∈ SHC(M)] > 0. �

These processes induce a natural filtration on the probability space. We will see that 
one can define a stopping time with respect to the following filtration:

Notation 4.6. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let γω : L1(M, τ) →
L1(M, τ) be a bounded positive faithful random linear operator, and let Γn,m be the 
associated interval quantum process.

(a) Fix an integer m ∈ Z. For n ≥ m let

F+(n,m) := σ(c(ΓT
n,m), c(ΓT

n−1,m), . . . , c(ΓT
m,m)),

so that the family F+(•, m) := (F+(n, m))n∈[m,∞) is the natural filtration with 
respect to the stochastic process c(Γ•,m) := (c(Γn,m))n∈[m,∞).

(b) Similarly, we will denote by F−(n, •) := (F−(n, m))m∈(−∞,n] the natural filtration 
associated with c(Γn,•) := (c(Γn,m))m∈(−∞,n] given by

F−(n,m) := σ(c(ΓT
n,n), c(ΓT

n,n−1), . . . , c(ΓT
n,m)).

The following lemma is similar to [21, Lemma 3.11] and uses many of the ideas present 
in its proof as well as the proof of [21, Lemma 2.1].

Lemma 4.7. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let γω : L1(M, τ) →
L1(M, τ) be a bounded positive faithful random linear operator, and let Γn,m be the 
associated interval ergodic quantum process. Suppose that

P [∃n,m ∈ Z : n ≥ m and Γn,m ∈ SHC(M)] > 0.

(1) There exists a constant C ∈ [0, 1) so that for all m ∈ Z

lim c(Γn,m)
1

n−m+1 = C

n→+∞
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almost surely, and for all n ∈ Z

lim
m→−∞

c(Γn,m)
1

n−m+1 = C

almost surely.
(2) For κ ∈ (C, 1) and each k ∈ Z, there exist finite almost surely random variables D•,k

and Dk,• satisfying

D•,k(T �ω) = D•,k+�(ω) and Dk,•(T �ω) = Dk+�,•(ω)

for all � ∈ Z, and

c(Γn,k) ≤ D•,kκ
n−k+1

c(Γk,m) ≤ Dk,•κ
k−m+1,

almost surely for all n ≥ k ≥ m. In particular, c(Γn,k), c(Γk,m) → 0 exponentially 
fast almost surely as n → +∞ and m → −∞.

(3) For each k ∈ Z, with respect to F+(•, k) (resp. F−(k, •)) the random variable 
ν(Γ•,k) := inf{n ≥ k : Γn,k ∈ SHC(M)} (resp. ν(Γk,•) := inf{m ≤ k : Γk,m ∈
SHC(M)}) is a stopping time that is finite almost surely.

Proof. (1): Fix m ∈ Z and let Xk := log[c(Γm+k−1,m)] for k ∈ N. By Lemma 3.13,

Xk+�(ω) ≤ Xk(ω) + log[c(Γm+k+�−1,m+k(ω)] = Xk(ω) + X�(T kω),

holds almost surely. Additionally, X+
k ≡ 0 since c(Γm+k−1,m) ≤ 1. Thus, by writ-

ing n = m + k − 1, an application of Theorem 1.10 tells us that the sequence 
(c(Γn,m)

1
n−m+1 )n : n≥m converges almost surely to the constant

Cm := exp
(

inf
n:n≥m

1
n−m + 1E[log(c(Γn,m))]

)
.

Now, Lemma 4.4 tells us that⋃
n≥m

[c(Γn,m) < 1] = [∃n ≥ m such that Γn,m ∈ SHC(M)],

occurs with probability one. Therefore there exists n1 ≥ m so that P [c(Γn1,m) <
1] > 0. Consequently,

log(Cm) = inf
n≥m

1
n−m + 1E[log(c(Γn,m))] ≤ 1

n1 −m + 1E[log(c(Γn1,m))] < 0,

and so Cm < 1. Also, since T is measure preserving for any m, m′ ∈ Z we have
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Cm = inf
k≥0

1
k + 1E[log(c(Γm+k,m))]

= inf
k≥0

1
k + 1E[log(c(Γm+k,m ◦ Tm′−m))]

= inf
k≥0

1
k + 1E[log(c(Γm′+k,m′))] = Cm′ .

So we set C := C0.
Now, using Yk := log[c(Γn,n−k−1)], k ∈ N and the fact that T−1 is also ergodic, the 
same argument as above yields another constant C ′ ∈ [0, 1) such that for all n ∈ Z

C ′ = exp
(

inf
m:m≤n

1
n−m + 1E[log(c(Γn,m))]

)
and

lim
m→−∞

c(Γn,m)
1

n−m+1 = C ′

almost surely. Given ε > 0, let n ≥ 1 be large enough so that

exp
(

1
n
E[log(c(Γn,1))]

)
≤ C + ε.

Then

C ′ = exp
(

inf
m : m≤n

1
n−m + 1E[log(c(Γn,m))]

)
≤ exp

(
1
n
E[log(c(Γn,1))]

)
≤ C + ε.

Letting ε → 0 yields C ′ ≤ C, and reversing the roles of n and m gives C ′ = C.
(2): Fix κ ∈ (C, 1) and k ∈ Z and define

D•,k := 1 ∨ sup
n:n≥k

c(Γn,k)
κn−k+1 and Dk,• := 1 ∨ sup

m:m≤k

c(Γk,m)
κk−m+1 ,

which are random variables by Lemma 4.2. By the previous part, for almost every 
ω ∈ Ω

lim
n→+∞

c(Γn,k)
1

n−k+1 = lim
m→−∞

c(Γk,m)
1

k−m+1 = C < κ.

Consequently there is an �0 ≥ 0 (depending on κ, k, and ω) so that

c(Γn,k)
κn−k+1 ,

c(Γk,m)
κk−m+1 ≤ 1

for all n > k + �0 and m < k − �0, which implies
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D•,k(ω) = 1 ∨ max
n:k≤n≤k+�0

c(Γn,k(ω))
κn−k+1 ≤ 1

κ�0+1 < ∞,

Dk,•(ω) = 1 ∨ max
m:k−�0≤m≤k

c(Γk,m(ω))
κk−m+1 ≤ 1

κ�0+1 < ∞.

Hence D•,k and Dk,• are finite almost surely, and the remaining properties follow 
from their definition.

(3): This is an immediate consequence of Lemma 1.9. �
4.2. Ergodic quantum processes from normal maps

As noted above, in order to emulate the proofs of [21] it is necessary to consider the 
duals of quantum processes, which according to Lemma 1.6 should correspond to random
normal positive linear maps on M . In fact, from the perspective of von Neumann algebras, 
such maps may be even more natural than those on L1(M, τ). The goal of this section 
is to formalize this notion and relate it to random linear operators on L1(M, τ).

Definition 4.8. Let (M, τ) be a tracial von Neumann algebra and (Ω, P ) be a proba-
bility space. A weak* random variable is a function f : Ω → M such that τ(f(ω)x) is 
measurable for all x ∈ L1(M, τ). We say that a mapping φ : Ω × M → M is a weak* 
random linear operator if ω �→ φω(a) is a weak* random variable for all a ∈ M and 
P [φ(αa + b) = αφ(a) + φ(b)] = 1 for all a, b ∈ M and α ∈ C.

As we did with random linear operators on L1(M, τ), we adopt the convention of 
saying a weak* random linear operator φ : Ω × M → M has a property associated 
to linear maps on M if for almost every ω ∈ Ω the map M � a �→ φω(a) has the 
corresponding property (e.g. normal, positive, completely positive, τ -bounded).

We first establish the random version of the correspondence in Lemma 1.6 between 
normal linear maps on M and bounded linear maps on L1(M, τ).

Lemma 4.9. Let (M, τ) be a tracial von Neumann algebra with separable predual, and let 
(Ω, P ) be a probability space. Up to almost sure equality, there is a one-to-one correspon-
dence between normal positive (resp. completely positive) weak* random linear operators 
φω on M and bounded positive (resp. completely positive) random linear maps (φω)∗ on 
L1(M, τ) determined by

τ((φω)∗(x)a) = τ(xφω(a)) ω ∈ Ω, x ∈ L1(M, τ), a ∈ M. (11)

This correspondence restricts to a one-to-one correspondence between τ -bounded nor-
mal positive (resp. completely positive) weak* random linear operators on M and 
M -preserving bounded positive (resp. completely positive) random linear operators on 
L1(M, τ). The former maps φω also admit unique extensions φω|L

1(M,τ) to L1(M, τ)
that are M -preserving bounded and positive (resp. completely positive), and the latter 
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maps (φω)∗ also have restrictions (φω)∗|M to M that are τ -bounded normal and positive 
(resp. completely positive). In this case, one has ((φω)∗|M )∗ = φω|L

1(M,τ).

Proof. By Lemma 1.6, it suffices to check measurability. For the first correspondence, 
this is a consequence of Equation (11). (Note that we are invoking the separability of 
L1(M, τ) here to reduce checking that (φω)∗(x) is a random variable to checking that it 
is weakly measurable.) For the measurability of extensions and restrictions, note that if 
(bn)n∈N ⊂ M converges to x ∈ L1(M, τ) in ‖ · ‖1-norm, then for any a ∈ M one has

τ(φω(x)a) = lim
n→∞

τ(φω(bn)a) = lim
n→∞

τ(bn(φω)∗(a)) = τ(x(φω)∗(a))

almost surely. Each τ(φω(bn)a) is measurable, from which it follows that the extension 
φω|L

1(M,τ) is a random linear operator and the restriction (φω)∗|M is a weak* random 
linear operator. �
Remark 4.10. Note that if cω denotes the norm of φω on L1(M, τ) whenever the extension 
exists, then ω → cω is a random variable by Remark 4.3. Thus when L1(M, τ) is sepa-
rable, φω being τ -bounded almost surely is equivalent to there existing a (finite almost 
surely) random variable c : Ω → [0, ∞] so that P [τ ◦ φω(x∗x) ≤ cωτ(x∗x) ∀x ∈ M ] = 1.

�

Of course, the first correspondence in Lemma 4.9 is still true without any positivity 
assumptions, and consequently compositions of normal weak* random linear operators 
on M give normal weak* random linear operators. Indeed, the predual maps are bounded 
random linear operators on L1(M, τ) whose composition (in the reverse order) is also a 
bounded random linear operator by Lemma 1.12. The dual of this then gives a weak* 
random linear operator that is almost surely equal to the composition of the original 
weak* random linear operators.

Definition 4.11. Let (M, τ) be a tracial von Neumann algebra, let (Ω, P ) be a probability 
space equipped with T ∈ Aut(Ω, P ), and let φω : M → M be a normal weak* random 
linear operator. We call the family of normal weak* random linear operators

ΦT
n,m(ω) := φTnω ◦ · · · ◦ φTmω n,m ∈ Z, n ≥ m

an (interval) quantum process on M . If T is ergodic, then we call the above an ergodic
quantum process on M . When no confusion can arise, we will supress the superscript T .

The most common example of a quantum process on M that we shall consider is the 
following. Suppose ΓT

n,m is a quantum process on L1(M, τ) associated to some bounded 
positive random linear operator γω and T ∈ Aut(Ω, P ). Denote φω := γ∗

ω, which is a 
normal positive weak* random linear operator on M by Lemma 4.9. Then quantum 
process ΦT−1

n,m on M associated to φω and T−1 satisfies
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(ΦT−1

n,m (ω))∗ = ΓT
−m,−n(ω),

(ΓT
n,m(ω))∗ = ΦT−1

−m,−n(ω),
(12)

for all n ≥ m and ω ∈ Ω.

4.3. Convergence properties

We now prove the first main result of this section. This is the analogue of [21, Lemma 
3.14], which gives roughly half the proof of [21, Theorem 1] (see Remark 4.15 below). 
The key observation is that Γn,m−1 · S ⊂ Γn,m · S and that the diameter of these sets 
tends to zero almost surely as m → −∞ by Lemma 4.7. This is more or less the same 
proof as in the finite dimensional case, where one can also treat the limit n → +∞ by 
considering the dual process Γ∗

n,m(ω). This limit is analyzed in [21, Lemma 3.12], which 
forms the other half of the proof of [21, Theorem 1]. However, in the infinite dimensional 
setting Γ∗

n,m is a process on M rather than L1(M, τ) and therefore requires a separate 
argument that we present as Theorem 4.14 (see also the proof of Corollary 4.16).

Theorem 4.12 (Theorem A). Let (M, τ) be a tracial von Neumann algebra with a sepa-
rable predual, let (Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let 
γω : L1(M, τ) → L1(M, τ) be a bounded positive faithful random linear operator, and let 
Γn,m be the associated interval ergodic quantum process. Suppose that

P [∃n,m ∈ Z : n ≥ m and Γn,m ∈ SHC(M)] > 0.

Then there exists a family of random variables Xn : Ω → S, n ∈ Z, satisfying

γTn+1ω ·Xn(ω) = Xn+1(ω) and Xn(T±1ω) = Xn±1(ω) (13)

almost surely, and for all x ∈ S

lim
m→−∞

‖Γn,m · x−Xn‖1 = 0

almost surely for all n ∈ Z.

Proof. For each ω ∈ Ω define the family of (random) sets Sn,m(ω) := Γn,m(ω) ·S, m ≤ n, 
and observe that Sn,m−1 ⊂ Sn,m by construction. By Proposition 3.7 and Lemma 4.7, 
we know that diam(Sn,m) = c(Γn,m) → 0 almost surely as m → −∞. Moreover, since S
is complete by Theorem 2.7, we may invoke the Cantor intersection theorem to conclude⋂

m : m≤n

Sn,m(ω)

consists of a single element Xn(ω) for almost every ω. Note that the relations in Equa-
tion (13) follow from the relations
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γTn+1ω · Sn,m(ω) = Sn+1,m(ω) and Sn,m(T±1ω) = Sn±1,m±1(ω)

for each ω ∈ Ω.
Now, fix n ∈ Z and x ∈ S. By Theorem 2.7 we have

‖Γn,m · x−Xn‖1 ≤ 2d(Γn,m · x,Xn) ≤ 2 diam(Sn,m) = 2c(Γn,m),

which tends to zero almost surely as m → −∞ by Lemma 4.7. Consequently, for all 
a ∈ M we have

τ(Xna) = lim
m→−∞

τ((Γn,m · x)a),

almost surely so that Xn is weakly measurable, and hence a random variable by Theo-
rem 1.11. �
Example 4.13. Let (M, τ) be a tracial von Neumann algebra with separable predual 
and let (Ω, P ) be a locally compact Hausdorff space with a Radon probability measure. 
Denote N := M⊗̄L∞(Ω, P ) and ϕ := τ ⊗

∫
Ω · dP . By [28, Theorem IV.7.17] L1(N, ϕ)

can be identified with functions f : Ω → L1(M, τ) such that ω �→ fω(a) is measurable 
for all a ∈ M and ∫

Ω

‖fω‖1 dP (ω) < ∞

(see also [28, Propositions IV.7.2 and IV.7.4]). In particular, if f ∈ L1(N, ϕ)+ then 
fω ∈ L1(M, τ)+ almost surely. Fix f ∈ L1(N, ϕ)+ which is non-zero almost surely and 
η ∈ (0, 1]. Let {(ai, f (i)) ∈ M+ × L1(N, ϕ)+ : i ∈ I} be a countable family satisfying:

(1) a :=
∑

i∈I ai converges in the strong operator topology;
(2) τ(xa) > 0 for all x ∈ L1(M, τ)+ \ {0};
(3) 0 < f (i) ≤ η−1f almost surely for all i ∈ I;
(4) P [∀i ∈ I ηf ≤ f (i)] > 0.

Then by Example 3.12,

γ(x) :=
∑
i∈I

ϕ(x(ai ⊗ 1))f (i)

defines a bounded positive faithful linear map on L1(N, ϕ) satisfying γ · x ≤ κ−1f (0), 
where f (0) = f

ϕ(f) and κ = η2. Consequently,

γω(x) := γ(x⊗ 1) =
∑

τ(xai)f (i)
ω

i∈I
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defines a bounded random linear operator on L1(M, τ). Moreover, γ is positive and 
faithful almost surely. Indeed, recalling that I is countable we see that f (i) ∈ L1(M, τ)+
almost surely implies γ(x) is positive almost surely for x ∈ L1(M, τ)+. Next (3) implies 
f (i) is non-zero almost surely so that

P [∃i ∈ I such that f (i)
ω = 0] = 0.

Thus for x ∈ L1(M, τ)+ \ {0}

P [γ(x) = 0] = P [∀i ∈ I τ(xai) = 0] = P [τ(xa) = 0] = 0

by (2). We also note that κf (0) ≤ γ · x ≤ κ−1f (0) holds with positive probability by (3) 
and (4), which tells us that γω is a strict Hennion contraction with positive probability 
by Theorem 3.11.

Now, let T ∈ Aut(Ω, P ) be an ergodic automorphism. Then the associated interval 
ergodic quantum process is given by

[Γn,m(ω)](x) =
∑

im,...,in∈I

τ(xaim)τ(f (im)
Tmωaim+1) · · · τ(f (in−1)

Tn−1ωain)f (in)
Tnω,

and satisfies

P [∃n,m ∈ Z : n ≥ m and Γn,m ∈ SHC(M)] > 0

since we noted above that Γ0,0 = γ is a strict Hennion contraction with positive proba-
bility. Theorem 4.12 therefore yields a family of random variables Fn : Ω → S (which we 
can identify with elements of L1(N, ϕ)+) so that

lim
m→−∞

1
τ([Γn,m(ω)](x)

∑
im,...,in∈I

τ(xaim)τ(f (im)
Tmωaim+1) · · · τ(f (in−1)

Tn−1ωain)f (in)
Tnω = Fn(ω)

in ‖ · ‖1-norm almost surely. Additionally, one has

Fn+1(ω) = γTn+1ω · Fn(ω) = 1
τ(γTn+1ω(Fn(ω)))

∑
i∈I

τ(Fn(ω)ai)f (i)
ω

almost surely by Equation (13). �

The following uses the second part of Lemma 4.9 to extend a τ -bounded weak* random 
linear operator on M to a bounded random linear operator on L1(M, τ).

Theorem 4.14. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let φω : M → M be a 
τ -bounded normal positive weak* random linear operator. Suppose that the extension of 
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φω to L1(M, τ) is faithful almost surely and that the associated ergodic quantum process 
Φn,m on L1(M, τ) satisfies

P [∃n,m ∈ Z : n ≥ m and Φn,m ∈ SHC(M)] > 0.

Then there exists a family of random variables An : Ω → Sb, n ∈ Z, satisfying

γTn+1ω ·An(ω) = An+1(ω) and An(T±1ω) = An±1(ω)

almost surely, and for all x ∈ S

lim
m→−∞

‖Φn,m · x−An‖1 = 0

almost surely for all n ∈ Z. Moreover, the above convergence holds in ‖ · ‖∞-norm for 
x ∈ Sb.

Proof. Applying Theorem 4.12 gives us this family of random variables An, n ∈ Z, 
though we must argue they are almost surely valued in Sb. Using Lemma 4.7 for almost 
every ω, c(Φn,m) < 1 for sufficiently small m (depending on ω). When this occurs, 
Φn,m(M) ⊂ M implies Φn,m · S ⊂ Sb by Theorem 2.12. Recalling from the proof of 
Theorem 4.12 that An ∈

⋂
m≤n Φn,m · S, we thus have An ∈ Sb almost surely. The final 

statement then follows from Lemma 2.14.(1): Φn,m · Sb ⊂ Sb since φω is M -preserving 
and the proof of Theorem 4.12 in fact shows d(Φn,m · x, An) → 0 as m → −∞. �
Remark 4.15. Theorems 4.12 and 4.14 can be used to recover [21, Lemmas 3.12 and 
3.14], respectively, which together yields [21, Theorem 1]. Indeed, the hypotheses of 
Theorems 4.12 and 4.14 follow for Γn,m and Γ∗

n,m, respectively, from [21, Assumption 
1 and Lemma 2.1] (or are automatic in the finite dimensional case). Consequently, any 
fixed points of the projective actions of Γn,m and Γ∗

n,m converge to Xn as m → −∞ and 
Am as n → +∞, respectively. In fact, our results are slightly more general than those of 
[21] because our hypotheses allow Xn and Am to be valued outside of S×

b . �

As a corollary to Theorems 4.12 and 4.14, we also obtain an analogue of [21, Theorem 
2]. The discrepancy between that result and the one below is due to the inequivalence of 
the ‖ · ‖1-norm and ‖ · ‖∞-norm in the general case, but it is clear how to reconcile the 
difference in the finite dimensional case.

Corollary 4.16. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let γω : L1(M, τ) →
L1(M, τ) be an M -preserving bounded positive faithful random linear operator, and let 
Γn,m be the associated interval ergodic quantum process. Suppose that the extension of 
γ∗
ω to L1(M, τ) is faithful almost surely and that
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P [∃n,m ∈ Z : n ≥ m and Γn,m ∈ SHC(M)] > 0.

Fix k ∈ Z and let C be as in Lemma 4.7. Then for any κ ∈ (C, 1) and n ≥ k > m, there 
exist random variables Xn, Bm : Ω → Sb and Ek : Ω → [0, ∞) such that for all a ∈ M∥∥∥∥ 1

τ(Γn,m(1))Γn,m(a) − τ(Bma)Xn

∥∥∥∥
1
≤ Ekκ

n−m+1‖a‖∞

almost surely.

Proof. Applying Theorem 4.12 gives the random variables Xn, which we note are valued 
in Sb almost surely since γω is M -preserving (see the proof of Theorem 4.14). Also recall 
from the proof of Theorem 4.12 that we actually have

‖Γn,m · x−Xn‖1 ≤ 2c(Γn,m) (14)

for all x ∈ S almost surely.
Next, denote φω := γ∗

ω, which by Lemma 4.9 is a τ -bounded normal positive weak* 
random linear operator. It also almost surely has a faithful extension to L1(M, τ) be 
assumption. Denote by ΦT−1

n,m the ergodic quantum processes associated to φω and T−1

so that one has (ΓT
n,m)∗ = ΦT−1

−m,−n. Using Lemma 3.16, it follows that

P [∃n,m ∈ Z : n ≥ m and ΦT−1

n,m ∈ SHC(M)]

= P [∃n,m ∈ Z : n ≥ m and ΓT
n,m ∈ SHC(M)] > 0.

Thus we can apply Theorem 4.14 to obtain random variables An : Ω → Sb satisfying

‖Φn,m · x−An‖1 ≤ 2c(Φn,m) = 2c(Γ−m,−n),

for all x ∈ S almost surely. If we denote Bm := A−m, then by the above we have

|τ([Γ∗
n,m · 1 −Bm]a)| ≤ 2c(Γm,n)‖a‖∞ (15)

for a ∈ M almost surely.
Now, observe that

1
τ(Γn,m(1))Γn,m(a) = τ(Γn,m(a))

τ(Γn,m(1))Γn,m · a = τ([Γ∗
n,m · 1]a)Γn,m · a.

Thus combining Estimates (14) and (15), for a ∈ Sb we have∥∥∥∥ 1 Γn,m(a) − τ(Bma)Xn

∥∥∥∥ ≤ |τ([Γ∗
n,m · 1]a)|‖Γn,m · a−Xn‖1
τ(Γn,m(1)) 1
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+ |τ([Γ∗
n,m · 1 −Bm]a)|‖Xn‖1

≤ 4c(Γn,m)‖a‖∞.

Applying the above estimate to arbitrary a ∈ M by decomposing it into a linear com-
bination of four positive elements and scaling gives an upper bound of 16c(Γn,m)‖a‖∞. 
For n ≥ k > m, using Lemmas 3.13 and 4.7, we can further bound this by

16c(Γn,k)c(Γk−1,m)‖a‖ ≤ 16D•,kκ
n−k+1Dk−1,•κ

k−m‖a‖∞ = 16D•,kDk−1,•κ
n−m+1‖a‖∞.

So Taking Ek(ω) := 16D•,k(ω)Dk−1,•(ω) completes the proof. �
We next prove the second main result of the section, which is essentially a dual version 

of Theorem 4.12 for ergodic quantum processes on M . Interestingly, this result and the 
next do not have analogues in [21].

Theorem 4.17 (Theorem B). Let (M, τ) be a tracial von Neumann algebra with a sepa-
rable predual, let (Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let 
φω : M → M be a normal positive weak* random linear operator, and let Φn,m be the 
associated ergodic quantum process. Suppose that φω(1) is invertible almost surely and

P [∃n,m ∈ Z : n ≥ m and ητx0 ≤ Φm,n ≤ η−1τx0 for some η ∈ (0, 1], x0 ∈ S] > 0.

Then there exists a family of random variables Ym : Ω → S, m ∈ Z, satisfying

(φTm−1ω)∗ · Ym(ω) = Ym−1(ω) and Ym(T±1ω) = Ym±1(ω)

almost surely, and for all a ∈ M

lim
n→∞

∥∥∥Φn,m(1)− 1
2 Φn,m(a)Φn,m(1)− 1

2 − τ(aYm)
∥∥∥
∞

= 0

almost surely for all m ∈ Z.

Proof. Denote γω := (φω)∗, which is a bounded positive random linear operator on 
L1(M, τ) by Lemma 4.9. Moreover, γω is faithful almost surely by the discussion following 
Lemma 3.14. Letting ΓT−1

n,m denote the associated ergodic quantum process on L1(M, τ), 
we have

(ΦT
n,m(ω))∗ = ΓT−1

−m,−n(ω),

by Equation (12). Lemma 3.17 implies Γ−m,−n ∈ SHC(M) if and only if there exists 
x0 ∈ S and η ∈ (0, 1] so that ητ(x0a)Φm,n(1) ≤ Φm,n(a) ≤ η−1τ(x0a)Φm,n(1) for all a ∈
M+. Since Φn,m(1) is invertible almost surely by assumption, the latter is almost surely 
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equivalent to ητx0 ≤ Φn,m ≤ η−1τx0 after adjusting η as necessary. Thus, altogether our 
hypotheses imply

P [∃n,m ∈ Z : n ≥ m and ΓT−1

n,m ∈ SHC(M)] > 0.

Let Xn : Ω → S, n ∈ Z, be the family of random variables obtained by applying Theo-
rem 4.12 to ΓT−1

n,m . Set Ym := X−m for each m ∈ Z so that the claimed relations follow 
from Equation (13) with T replaced by T−1.

Now, fix a ∈ M and x ∈ S and denote y := Φn,m(1)− 1
2xΦn,m(1)− 1

2 ∈ L1(M, τ)+. We 
have

τ
([

Φn,m(1)− 1
2 Φn,m(a)Φn,m(1)− 1

2 − τ(aYm)
]
x
)

= τ(a[Γ−m,−n(y) − Ym])

= τ(a[Γ−m,−n · y −X−m]),

where in the last equality we have used τ(Γ−m,−n(y)) = τ(Φn,m(1)y) = τ(x) = 1. Denote 
y0 := y

τ(y) , which satisfies y0 ∈ S and Γ−m,−n · y0 = Γ−m,−n · y. We can therefore use 
the above computation to obtain the following estimate:∣∣∣τ ([

Φn,m(1)− 1
2 Φn,m(a)Φn,m(1)− 1

2 − τ(aYm)
]
x
)∣∣∣ ≤ ‖a‖‖Γ−m,−n · y0 −X−m‖1.

Recall from the proof of Theorem 4.12 that the second factor in the last expression is 
bounded almost surely by 2c(Γ−m,−n), and the ω for which this fails does not depend 
on y0. Consequently, decomposing an arbitrary x ∈ L1(M, τ) into a linear combination 
of four positive elements and scaling gives∣∣∣τ ([

Φn,m(1)− 1
2 Φn,m(a)Φn,m(1)− 1

2 − τ(aYm)
]
x
)∣∣∣ ≤ ‖a‖4‖x‖12c(Γ−m,−n)

almost surely. Therefore

‖Φn,m(1)− 1
2 Φn,m(a)Φn,m(1)− 1

2 − τ(aYm)‖ ≤ 8‖a‖c(Γ−m,−n)

almost surely by the duality M ∼= L1(M, τ)∗, and as n → ∞ the above tends to zero 
almost surely by Lemma 4.7. �

Finally, we conclude with a dual version of Theorem 4.14.

Theorem 4.18. Let (M, τ) be a tracial von Neumann algebra with a separable predual, let 
(Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ), let γω : L1(M, τ) →
L1(M, τ) be an M -preserving bounded positive faithful random linear operator, and let 
Γn,m be the associated ergodic quantum process. Suppose that γω(1) is boundedly invert-
ible almost surely and

P [∃n,m ∈ Z : n ≥ m and Γn,m ∈ SHC(M)] > 0.
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Then there exists a family of random variables Bm : Ω → Sb, m ∈ Z, satisfying:

γTm−1ω ·Bm(ω) = Bm−1(ω) and Bm(T±1ω) = Bm±1(ω)

almost surely, and for all a ∈ M

lim
n→+∞

∥∥∥Γn,m(1)− 1
2 Γn,m(a)Γn,m(1)− 1

2 − τ(aBm)
∥∥∥
∞

= 0

almost surely for all m ∈ Z. Furthermore, whenever m ∈ Z satisfies
supn ‖Γ∗

n,m(Γn,m(1)−1)‖∞ < ∞ almost surely, then for all x ∈ S

lim
n→+∞

∥∥∥Γn,m(1)− 1
2 Γn,m(x)Γn,m(1)− 1

2 − τ(xBm)
∥∥∥

1
= 0

almost surely.

Proof. Denote φω := (γω)∗, which is a normal positive weak* random linear operator on 
M by Lemma 4.9. Moreover, the assumptions on γω(1) imply φω is τ -bounded with a 
faithful extension to L1(M, τ) almost surely. Letting ΦT−1

n,m denote the associated ergodic 
quantum process on M , we have that

(ΓT
n,m(ω))∗ = ΦT−1

−m,−n(ω),

by Equation (12). Lemma 3.16 implies c(ΓT
n,m) = c(ΦT−1

−m,−n) and hence

P [∃n,m ∈ Z : n ≥ m and ΦT−1

n,m ∈ SHC(M)]

= P [∃n,m ∈ Z : n ≥ m and ΓT
n,m ∈ SHC(M)] > 0.

Let An : Ω → S, n ∈ Z, be the family of random variables obtained by applying Theo-
rem 4.14 to ΦT−1

n,m . Set Bm := A−m for each m ∈ Z. Arguing exactly as in the proof of 
Theorem 4.17, for a ∈ M we have

lim
n→+∞

∥∥∥Γn,m(1)− 1
2 Γn,m(a)Γn,m(1)− 1

2 − τ(aBm)
∥∥∥
∞

= 0

almost surely for all m ∈ Z.
Finally, suppose R := supn ‖Γ∗

n,m(Γn,m(1)−1)‖∞ < ∞ almost surely. Then for x ∈
L1(M, τ) and a ∈ M we have

|τ
(
Γn,m(1)− 1

2 Γn,m(x)Γn,m(1)− 1
2 a

)
| = |τ(xΓ∗

n,m

(
Γn,m(1)− 1

2 aΓn,m(1)− 1
2

)
)|

≤ ‖x‖1

∥∥∥Γ∗
n,m(Γn,m(1)− 1

2 aΓn,m(1)− 1
2 ))

∥∥∥
∞

.
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Since a �→ Γ∗
n,m(Γn,m(1)− 1

2 aΓn,m(1)− 1
2 )) is a positive linear map on M , its norm is 

given by ‖Γ∗
n,m(Γn,m(1)−1)‖∞ ≤ R. Thus, the last expression above is further bounded 

by R‖x‖1‖a‖∞, implying that

∥∥∥Γn,m(1)− 1
2 Γn,m(x)Γn,m(1)− 1

2

∥∥∥
1
≤ R‖x‖1.

Now, fix x ∈ S, and given ε > 0 let a ∈ M+ be such that ‖x − a‖1 < ε. Then using that 
the ‖ · ‖1-norm is dominated by the ‖ · ‖∞-norm we have

lim sup
n→∞

‖Γn,m(1)− 1
2 Γn,m(x)Γn,m(1)− 1

2 − τ(xBm)‖1

≤ lim sup
n→∞

‖Γn,m(1)− 1
2 Γn,m(x− a)Γn,m(1)− 1

2 ‖1

+ |τ((a− x)Bm)| ≤ ε(R + ‖Bm‖∞)

almost surely. Hence the limit is zero almost surely. �
Note that the hypotheses in the previous theorem strong are enough that both The-

orems 4.12 and Corollary 4.16 can be applied. In fact, the identity

1
τ(Γn,m(1))Γn,m(a) − τ(aBm)Xn

= (Γn,m · 1) 1
2

[
Γn,m(1)− 1

2 Γn,m(a)Γn,m(1)− 1
2 − τ(aBm)

]
(Γn,m · 1) 1

2

+ [Γn,m · 1 −Xn]τ(aBm)

offers an alternative proof of Corollary 4.16 in this case.

Remark 4.19. In the finite dimensional case of (MN , 1
N Tr) the condition

supn ‖Γ∗
n,m(Γn,m(1)−1)‖∞ < ∞ is always satisfied since

‖Γ∗
n,m(Γn,m(1)−1)‖∞ ≤ Tr(Γ∗

n,m(Γn,m(1)−1)) = N( 1
N

Tr)
(
Γn,m(1)Γn,m(1)−1) = N.

That is, the condition is automatic because the ‖ ·‖1-norm and ‖ ·‖∞-norm are equivalent. 
Another assumption that guarantees the condition (even in the infinite dimensional case) 
is that γω is unital. Indeed, then Γ∗

n,m is tracial and

‖Γ∗
n,m(Γn,m(1)−1)‖∞ ≤ ‖Γ∗

n,m · 1 −Bm‖∞ + ‖Bm‖∞ → 0,

as n → ∞ almost surely by the final statement in Theorem 4.14. �
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5. Application to locally normal states

In [12], Fannes, Nachtergaele, and Werner characterize translation invariant states on 
spin chains and establish clustering properties of finitely correlated states for local ob-
servables. In particular, this characterization offers a way to construct translate invariant 
states. Taking inspiration from this, we find a wide class of random variables Ψω taking 
values in the locally normal states of a spin chain that satisfy a translation covariance
condition. Moreover, these states also exhibit clustering properties for local observables, 
and through averaging can yield deterministic translation invariant states.

5.1. Spin chains and their quasi-local algebras and locally normal states

The theory of spin chains arises as a class of quantum mechanical models from quan-
tum statistical mechanics [8,7]. We shall recall some basic facts about spin chains formed 
from tracial von Neumann algebras and translation invariant states.

Let (M, τ) be a fixed tracial von Neumann algebra. Consider an isomorphic copy of M
for each site n ∈ Z, written (Mn, τn). These algebras represent the observable algebras 
of some physical quantity localized to n. For each finite subset Λ ⊂ Z we denote the von 
Neumann algebraic tensor product

MΛ :=
⊗
n∈Λ

Mn,

which is equipped with the tensor product trace τΛ. Set inclusions in Z naturally induce 
inclusions in the corresponding von Neumann algebras so that we may consider the 
inductive limit C*-algebra

AZ := lim−−→MΛ,

which we call the quasi-local algebra associated to the spin chain with on-site algebras 
Mn. Note that this algebra can be faithfully represented in the infinite von Neumann al-
gebra tensor product (MZ, τZ) :=

⊗
n∈Z(Mn, τn), and consequently AZ admits a faithful 

tracial state τZ|AZ
(see [29, Chapter XIV]). Identifying MΛ ⊂ AZ for each finite subset 

Λ ⊂ Z, we call the unital ∗-subalgebra

A loc
Z :=

⋃
Λ⊂Z

MΛ

the local algebra and its elements are called local observables. The support of a local 
observable a is the smallest Λ ⊂ Z such that a ∈ MΛ. Given a state ψ on AZ, after [16]
we say it is locally normal if ψ|MΛ is normal for all finite subsets Λ ⊂ Z.

For n, k ∈ Z, the map Mn � a �→ a ∈ Mn+k extends to a group action Z 
α
� AZ. We 

say a state ψ on AZ is translation invariant if ψ ◦ αk = ψ for all k ∈ Z.
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Theorem 5.1 (Proposition 2.3 and 2.5 [12]). Let ψ be a locally normal state on AZ. 
Then, the following are equivalent:

(i) ψ is translation invariant
(ii) there exists a finite von Neumann algebra W , a normal unital completely positive 

map E : M⊗̄W → W , and a normal state � on W so that for all am ⊗ · · · ⊗ an ∈
M[m,n],

ψ(am ⊗ · · · ⊗ an) = � ◦ E ◦ (1 ⊗ E) ◦ · · · ◦ ( 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(n−m) times

⊗E)(am ⊗ · · · ⊗ an ⊗ 1W ).

Proof. (i) ⇒ (ii): Put W = MN , viewed as a subalgebra of MZ. Observe that the 
automorphism α1 extends to a normal automorphism of MZ because it preserves τZ. 
In particular, α1(W ) ⊂ M[2,+∞) so that we can define E := idM ⊗ α1. Then, taking 
� = ψ|W , the claimed identity holds since the translation invariance of ψ means it is 
index agnostic.

(ii) ⇒ (i): Mimicking [12, Proposition 2.3], we see that the family of maps

E(n+1) : M⊗̄M⊗̄ · · ·M︸ ︷︷ ︸
n times

⊗̄W → W (16)

via E(n+1) = E ◦ (idM ⊗E(n)) and E(1) := E is completely positive and normal for each n
and moreover

ψ(a1 ⊗ · · · ⊗ an) := �(E(n)(a1 ⊗ · · · ⊗ an ⊗ 1W )),

is positive and normal. Translation invariance of ψ follows from the fact that E is a 
function of the observable and is independent of its index (translation does not change 
the operator itself, just its index). �
Remark 5.2. Assuming M �= C, the W constructed in the above proof is necessarily 
infinite dimensional. However, Fannes, Nachtergaele, and Werner considered conditions 
on ψ that were necessary and sufficient to guarantee that W could be chosen to be a 
finite dimensional algebra (see [12, Propositions 2.1 and 2.3]). �

5.2. Locally normal states with random generating map

Throughout this section, let (M, τ) be a tracial von Neumann algebra with a separable 
predual, and let (Ω, P ) be a probability space equipped with ergodic T ∈ Aut(Ω, P ). We 
will write (W, τW ) for an auxiliary finite von Neumann algebra possessing a separable 
predual. When it is clear from context, we shall drop the subscript on τW .



58 B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485
Consider the von Neumann tensor product M⊗̄W and let Eω : M⊗̄W → M⊗̄W be a 
normal unital positive weak* random linear operator such that

Eω(M⊗̄W ) ⊂ C⊗̄W ∼= W

almost surely. Associated to such a weak* random linear operator, there is a family of 
normal weak* random linear operators Eω,a : W → W indexed by a ∈ M and given by

W � x �→ Eω,a(x) := Eω(a⊗ x).

We denote φω := Eω,1, which is a normal unital positive weak* random linear operator 
on W , and we let ΦT−1

n,m be the associated quantum process on W . Similarly, we denote 
γω := (φω)∗, which is a bounded tracial (hence faithful) positive random linear operator 
on L1(W, τW ) by Lemma 4.9, and we let ΓT

n,m be the associated quantum process on 
L1(W, τW ). Recall that these two processes are dual to each other by Equation (12).

Given integers m < n and ω ∈ Ω, we define a map E [m,n]
ω : M[m,n] → W by

E [m,n]
ω (a) := ETmω ◦ (1 ⊗ ETm+1ω) ◦ · · · ◦ (1 ⊗ · · · ⊗ 1 ⊗ ETnω)(a⊗ 1W ),

which is almost surely normal unital and positive. Using our previous notation, for 
a = am ⊗ · · · ⊗ an ∈ M[m,n] we have

E [m,n]
ω (a) = ETmω,am

◦ · · · ◦ETnω,an
(1W ).

Consequently, for m < k < � < n and a ∈ M[k,�] ⊂ M[m,n] one has

E [m,n]
ω (a) = ΦT−1

−m,−k+1 ◦ E [k,�]
ω (a) (17)

almost surely.

Theorem 5.3 (Thermodynamic limit). With the assumptions and notation as above, sup-
pose that

P [∃n,m ∈ Z : n ≥ m and ητx0 ≤ ΦT−1

m,n ≤ η−1τx0 for some η ∈ (0, 1], x0 ∈ S] > 0.

Then there exists a map Ψ: Ω × AZ → C satisfying:

(1) Ψω is a locally normal state on AZ for almost every ω ∈ Ω;
(2) Ψω(a) ∈ L∞(Ω, P ) for all a ∈ AZ;
(3) Ψω ◦ αk = ΨTkω almost surely for all k ∈ Z;
(4) and for any local observable a ∈ MΛ one has

lim ‖E [−N,N ]
ω (a) − Ψω(a)‖∞ = 0
N→∞
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almost surely.

Proof. Let Ym : Ω → S(W ), m ∈ Z, be the family of random variables obtained by 
applying Theorem 4.17 to the ergodic quantum process ΦT−1

m,n on W . Then the family 
Zm := Y−m+1, m ∈ Z, satisfies

(φTmω)∗(Zm(ω)) = Zm+1(ω) and Zm(T±1ω) = Zm±1(ω)

almost surely. Using Equation (17), we also have for a ∈ M[m,n] that

lim
N→∞

∥∥∥E [−N,N ](a) − τW (E [m,n](a)Zm)
∥∥∥
∞

= lim
N→∞

∥∥∥ΦT−1

N,−m+1(E [m,n](a)) − τW (E [m,n](a)Y−m+1)
∥∥∥
∞

= 0

almost surely. For m < k < � < n and a ∈ M[k,�] ⊂ M[m,n], using Equation (17) again 
and the above properties of Zm we have

τW (E [m,n]
ω (a)Zm(ω))

= τW ([ΦT−1

−m,−k+1(ω)](E [k,�]
ω (a))Zm(ω))

= τW (E [k,�]
ω (a)(φTk−1ω)∗ ◦ · · · ◦ (φTmω)∗(Zm(ω))) = τW (E [k,�]

ω (a)Zk(ω))

almost surely. Noting that the ω where the above fails is independent of a, it follows that

Ψω(a) := τW (E [−n,n]
ω (a)Z−n(ω)) a ∈ M[−n,n]

almost surely gives a well-defined state on the ∗-subalgebra of local observables. As the 
local observables are norm dense in the quasi-local algebra, Ψω almost surely admits a 
unique extension to a locally normal state on AZ. Thus (1) holds and (4) follows from 
our limit computation above.

To see (2), recall that the separability of L1(W, τW ) implies Zm : Ω → S(W ) is 
strongly measurable and can therefore be approximated by simple functions. Conse-
quently, Ψω(a) ∈ L∞(Ω, P ) with ‖Ψω(a)‖L∞(Ω,P) ≤ ‖a‖ for local observables a by 
definition of Ψω. This then holds for all elements of the quasi-local algebra through 
approximation by sequences of local observables.

Finally, towards showing (3) we first observe that for a ∈ M[m,n] and k ∈ Z one has

E [m+k,n+k]
ω (αk(a)) = E [m,n]

Tkω
(a).

Combined with the properties of Zm above, we therefore have

Ψω(αk(a)) = τW (E [m+k,n+k]
ω (a)Zm+k(ω)) = τW (E [m,n]

Tkω
(a)Zm(T kω)) = ΨTkω(a).

By density, this extends to a ∈ AZ. �
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Theorem 5.4 (Theorem C). Let Ψ: Ω × AZ → C be as in Theorem 5.3. There exists 
κ ∈ [0, 1) and a family of random variables Ek : Ω → [0, ∞), k ∈ Z, satisfying

Ek(T �ω) = Ek+�(ω)

almost surely for all � ∈ Z, and

|Ψω(ab) − Ψω(a)Ψω(b)| ≤ Ek(ω)κdist(Λ,Π)−1‖a‖∞‖b‖∞ a ∈ MΛ, b ∈ MΠ

almost surely for finite subsets of integers Λ ⊂ (−∞, k − 1) and Π ⊂ [k + 1, +∞).

Proof. Let C ∈ [0, 1) be the constant obtained from applying Lemma 4.7.(1) to the dual 
quantum process ΓT

n,m = (ΦT−1

−m,−n)∗. Set κ to be any number in (C, 1). For k ∈ Z, we 
set

Ek(ω) := 8D•,k(ω)Dk−1,•(ω),

where D•,k, Dk−1,• are the random variables from Lemma 4.7.(2). Now, for finite subsets 
of integers Λ ⊂ (−∞, k − 1) and Π ⊂ [k + 1, +∞), let a ∈ MΛ and b ∈ MΠ. Denote 
c := b − Ψω(b) ∈ MΠ so that

Ψω(ab) − Ψω(a)Ψω(b) = Ψω(ac)

almost surely. Let N ∈ N be large enough so that Λ ∪ Π ⊂ [−N, N ] and denote m :=
max Λ and n := min Π. Note that m < (m + 1) ≤ k − 1 < k ≤ (n − 1) < n and 
dist(Λ, Π) = n −m. We have

|Ψω(ab) − Ψω(a)Ψω(b)| = |Ψω(ac)|

=
∣∣∣τW (E [−N,N ]

ω (ac)Z−N (ω))
∣∣∣

=
∣∣∣τW (E [−N,m]

ω

(
a⊗ ΦT−1

−(m+1),−(n−1) ◦ E [n,N ]
ω (c)

)
Z−N (ω))

∣∣∣
≤ ‖a‖∞‖ΦT−1

−(m+1),−(n−1) ◦ E [n,N ]
ω (c)‖∞‖(E [−N,m]

ω )∗(Z−N (ω))‖1

≤ ‖a‖∞‖ΦT−1

−(m+1),−(n−1) ◦ E [n,N ]
ω (b) − τW (E [n,N ]

ω (b)Zn(ω))‖∞,

where in the last inequality we have used that ΦT−1

−(m+1),−(n−1) ◦ E [n,N ]
ω is unital and 

(E [−N,m]
ω )∗ is tracial, almost surely. By the proof of Theorem 4.17, we can estimate the 

second term in the last expression by

‖ΦT−1

−(m+1),−(n−1) ◦ E [n,N ]
ω (b) − τW (E [n,N ]

ω (b)Zn(ω))‖∞ ≤ 8‖b‖∞c(ΓT
n−1,m+1)

where we have used that E [n,N ]
ω is unital and positive almost surely. Returning to our 

original estimate, the above and the properties of D•,k, Dk−1,• from Lemma 4.7.(2) yield
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|Ψω(ab) − Ψω(a)Ψω(b)| ≤ 8c(ΓT
n−1,m+1)‖a‖∞‖b‖∞

≤ 8c(ΓT
n−1,k)c(ΓT

k−1,m+1)‖a‖∞‖b‖∞
≤ 8D•,k(ω)κ(n−1)−k+1Dk−1,•(ω)κ(k−1)−(m+1)+1‖a‖∞‖b‖∞
= 8D•,k(ω)Dk−1,•(ω)κn−m−1‖a‖∞‖b‖∞
= Ek(ω)κdist(Λ,Π)−1‖a‖∞‖b‖∞,

almost surely. �
Corollary 5.5. Let Ψ: Ω × AZ → C be as in Theorem 5.3. Then

Ψ̄(a) := E[Ψω(a)]

defines a locally normal translation invariant state on AZ such that

Ψ̄(a) = lim
N→∞

1
2N + 1

N∑
n=−N

ΨTnω(a)

almost surely for all a ∈ AZ.

Proof. That Ψ̄ is well-defined and a state follows from parts (1) and (2) of Theorem 5.3, 
while part (3) and the fact that T is measure preserving gives that Ψ̄ is translation 
invariant. The limit formula follows from Birkhoff’s strong ergodic theorem.

It remains to show that Ψ̄ is locally normal, and it suffices to show its restriction to 
M[m,n] is normal. Recall that for a ∈ M[m,n] that one has

Ψω(a) = τW (E [m,n]
ω (a)Zm(ω)),

which is almost surely normal since Eω is almost surely normal and Zm(ω) ∈ L1(M, τW ). 
When this is the case, set Xm(ω) ∈ S(M) so that

τ(aXm(ω)) = Ψω(a),

and otherwise let Xm(ω) = 1. Part (2) of Theorem 5.3 implies Xm : Ω → S(M) is weakly 
measurable, and hence a random variable by Theorem 1.11. Consequently, there exists 
a sequence of simple functions φk : Ω → L1(M, τ) satisfying ‖Xm(ω) − φk(ω)‖1 → 0
as k → ∞ almost surely. Note that we may assume φk(ω) ∈ S(M) almost surely, and 
therefore the dominated convergence theorem implies

lim
k→∞

∫
‖Xm(ω) − φk(ω)‖1 dP (ω) = 0.
Ω
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It follows that (
∫
Ω φk dP )k∈N is a Cauchy sequence in L1(M, τ), and if we denote the 

limit by E[Xm] then

Ψ̄(a) =
∫
Ω

τ(aXm) dP = lim
k→∞

∫
Ω

τ(aφk) dP = lim
k→∞

τ(a
∫
Ω

φk dP ) = τ(aE[Xm]),

for all a ∈ M[m,n]. �
Data availability

No data was used for the research described in the article.

References

[1] A. Avila, J. Bochi, On the subaddive ergodic theorem.
[2] C. Anatharaman-Delaroche, S. Popa, An introduction to II1 factors, https://www .math .ucla .edu /

~popa /Books /IIun .pdf, 2019.
[3] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-

commutative Radon-Nikodym theorem with a chain rule, Pac. J. Math. 50 (2) (1974) 309–354.
[4] J-F. Bougron, A. Joye, C-A. Pillet, Markovian repeated interaction quantum systems, Rev. Math. 

Phys. 34 (09) (2022) 2250028.
[5] H-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, 01 

2007.
[6] A.T. Bharucha-Reid, Chapter 2 operator-valued random variables, in: Random Integral Equations, 

in: Mathematics in Science and Engineering, vol. 96, Elsevier, 1972, pp. 64–97.
[7] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics II, 1 ed., 

Springer Berlin, Heidelberg, 1981.
[8] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1, 2 ed., 

Springer Berlin, Heidelberg, 1987.
[9] R. Carmona, J. Lacroix, Products of random matrices, Birkhäuser Boston, Boston, MA, 1990, 

pp. 175–240.
[10] J. Diestel, J.J. Uhl Jr., Vector Measures, Mathematical Surveys, vol. 15, American Mathematical 

Society, 1977.
[11] D.R. Farenick, Irreducible positive linear maps on operator algebras, Proc. Am. Math. Soc. 124 (11) 

(1996) 3381–3390.
[12] M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains, Com-

mun. Math. Phys. 144 (3) (1992) 443–490.
[13] C.E. González-Guillén, M. Junge, I. Nechita, On the spectral gap of random quantum channels, 

2018.
[14] H. Hennion, Limit theorems for products of positive random matrices, Ann. Probab. 25 (4) (1997) 

1545–1587.
[15] F. Hiai, Quantum f-Divergences in von Neumann Algebras, 1 ed, Mathematical Physics Studies, 

Springer, Singapore, 2021.
[16] R.L. Hudson, G.R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, 

Z. Wahrscheinlichkeitstheor. Verw. Geb. 33 (4) (1976) 343–351.
[17] F. Hiai, M. Ohya, M. Tsukuda, Sufficiency, KMS condition and relative entropy in von Neumann 

algebras, Pac. J. Math. 96 (1) (1981) 99–109.
[18] J.F.C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (6) (1973) 883–899.
[19] H. Kosaki, Relative entropy of states: a variational expression, J. Oper. Theory 16 (2) (1986) 

335–348.
[20] S. Lalley, Kingman’s subadditive ergodic theorem, 2019.
[21] R. Movassagh, J. Schenker, An ergodic theorem for quantum processes with applications to matrix 

product states, Commun. Math. Phys. 395 (3) (2022) 1175–1196.

https://www.math.ucla.edu/~popa/Books/IIun.pdf
https://www.math.ucla.edu/~popa/Books/IIun.pdf
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE07B3E6731CD470965B545A859300B09s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE07B3E6731CD470965B545A859300B09s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib5517FCDF387ADE937D4318E3664F6C38s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib5517FCDF387ADE937D4318E3664F6C38s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib976BE3DA85EF2E118D000D174E43D552s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib976BE3DA85EF2E118D000D174E43D552s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib14EA12A8FCB9003711A97B996A043A87s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib14EA12A8FCB9003711A97B996A043A87s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib6A44FCC930D960507A96DC393A5854B0s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib6A44FCC930D960507A96DC393A5854B0s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib22EBD97C7E2D8C6A32504DB32F1A29F2s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib22EBD97C7E2D8C6A32504DB32F1A29F2s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib670BDCA7465F213C8D71192549CC0242s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib670BDCA7465F213C8D71192549CC0242s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibBBB80CACDEE23DAE68D6876310FED4E2s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibBBB80CACDEE23DAE68D6876310FED4E2s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE820D9D5814A953473DAF13473987BE3s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE820D9D5814A953473DAF13473987BE3s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibAF578FD18CD679E5D3AA7C6299442F21s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibAF578FD18CD679E5D3AA7C6299442F21s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE3ACFD9F145E07CB467E7CAFBE998784s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibE3ACFD9F145E07CB467E7CAFBE998784s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib5BBA304E7C61227658B5AA486367342As1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib5BBA304E7C61227658B5AA486367342As1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib1C0B6D976E88C301A7DF1790FB802807s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib1C0B6D976E88C301A7DF1790FB802807s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib1E10267038D60623EA223C4D6B6C6E64s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib1E10267038D60623EA223C4D6B6C6E64s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA96E0374A4C35C58893CE3909EC3A30Bs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA96E0374A4C35C58893CE3909EC3A30Bs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibB2086154F101464AAB3328BA7E060DEBs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibC882FA24B1DA90953E0E2E922E9D6385s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibC882FA24B1DA90953E0E2E922E9D6385s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib30B60CBABCF2A4CE0B068BDB5F1FAB4Cs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib166EE015C0E0934A8781E0C86A197C6Es1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib166EE015C0E0934A8781E0C86A197C6Es1


B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485 63
[22] K.K. Olesen, The Connes Embedding Problem Sofic groups and QWEP conjecture, 2012.
[23] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced 

Mathematics, Cambridge University Press, 2003.
[24] B.J. Pettis, On integration in vector spaces, Trans. Am. Math. Soc. (44) (1938) 277–304.
[25] L. Pathirana, J. Schenker, Law of large numbers and central limit theorem for ergodic quantum 

processes, 2023.
[26] A.V. Skorohod, Random Linear Operators, Mathematics and Its Applications (Soviet Series), D. 

Reidel Publishing Company, 1984.
[27] J.M. Steele, Kingman’s subadditive ergodic theorem, Ann. Inst. Henri Poincaré Probab. Stat. 25 (1) 

(1989) 93–98 (en). MR 995293.
[28] M. Takesaki, Theory of operator algebras. I, in: Operator Algebras and Non-commutative Geometry, 

vol. 5, in: Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint 
of the first (1979) edition. MR 1873025.

[29] M. Takesaki, Theory of operator algebras. III, in: Operator Algebras and Non-commutative Geome-
try, vol. 8, in: Encyclopaedia of Mathematical Sciences, vol. 127, Springer-Verlag, Berlin, 2003. MR 
1943007.

[30] F.J. Yeadon, Ergodic theorems for semifinite von Neumann algebras. I, J. Lond. Math. Soc. (2) 
16 (2) (1977) 326–332. MR 487482.

[31] F.J. Yeadon, Ergodic theorems for semifinite von Neumann algebras. II, Math. Proc. Camb. Philos. 
Soc. 88 (1) (1980) 135–147. MR 569639.

http://refhub.elsevier.com/S0022-1236(24)00173-3/bib8FA2114337A5889C15D72D9F50D4B595s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibEAA6266D0EC44E6E31D1E12E40005923s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibEAA6266D0EC44E6E31D1E12E40005923s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib8AFAF4215311D59A636A3C365E13B9D2s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib963F1D5CF9DF798C1B61FCC75106AA3Fs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib963F1D5CF9DF798C1B61FCC75106AA3Fs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib97E3D64DF5D86DA4DF64E6C733259B7Bs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib97E3D64DF5D86DA4DF64E6C733259B7Bs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib78B6802EED9C7A038B2EE2C8B66234A5s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib78B6802EED9C7A038B2EE2C8B66234A5s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA25D786EB15D0B008505B535EF8BEFCBs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA25D786EB15D0B008505B535EF8BEFCBs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA25D786EB15D0B008505B535EF8BEFCBs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib12FBA98B9365AC5E33BE3341A46305DFs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib12FBA98B9365AC5E33BE3341A46305DFs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bib12FBA98B9365AC5E33BE3341A46305DFs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA48B424E6FE6FEDDA9F35528A17A8F74s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibA48B424E6FE6FEDDA9F35528A17A8F74s1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibB7A51C8850297FE37DC5D75CE5589E8Bs1
http://refhub.elsevier.com/S0022-1236(24)00173-3/bibB7A51C8850297FE37DC5D75CE5589E8Bs1

	Ergodic quantum processes on finite von Neumann algebras
	0 Introduction
	1 Preliminaries
	1.1 Finite von Neumann algebras
	1.1.1 Positivity

	1.2 Probability theory
	1.2.1 Kingman’s ergodic theorem
	1.2.2 Random linear operators


	2 Metric geometry of the normal state space
	2.1 Hennion’s metric
	2.2 On components of S

	3 Contraction mappings on S
	3.1 The class of mappings and projective actions
	3.2 Contraction mappings
	3.2.1 Strict Hennion contractions from normal maps


	4 Ergodic quantum processes
	4.1 Contraction constant asymptotics
	4.2 Ergodic quantum processes from normal maps
	4.3 Convergence properties

	5 Application to locally normal states
	5.1 Spin chains and their quasi-local algebras and locally normal states
	5.2 Locally normal states with random generating map

	Data availability
	References


