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0. Introduction

In quantum information theory, changes in a quantum system are modeled by quantum
channels. In the Schrédinger picture, quantum channels take the form of trace-preserving
completely positive maps on states. Dually, in the Heisenberg picture of quantum me-
chanics, observable quantities are represented by operators in a C*-algebra (or von
Neumann algebra), and quantum channels are then unital completely positive (normal)
maps on that algebra. Physically, a quantum channel represents the dynamics of observ-
ables when the quantum system is weakly coupled to an environment (or reservoir) into
which information about the evolving system can escape [5]. Asymptotic properties of
these dynamics play an important role throughout the mathematical physics literature.

This dynamical interpretation of quantum channels (ucp maps) is not the only way
of incorporating disorder into a quantum mechanical model. Recent years have seen an
advance in quantum mechanical models that incorporate large disorder, by randomizing
the quantum channel that evolves the system (see the non-exhaustive list [4,13,21,25]).
It is natural, then, to analyze the asymptotic evolution of the system up to probability.
That is, given a family of random quantum channels {¢,: n € N}, one seeks to analyze
the asymptotic behavior of

pn o001,

or in the dual Schrédinger picture one would instead consider ¢ o --- o ¢F. In the
work [21], the authors use ergodicity to obtain almost sure asymptotic estimates for
non-independent homogeneously distributed quantum channels. More precisely, given an
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ergodic transformation T on a probability space (£, P) and a random variable ~,, valued
in quantum channels on states, Movassagh and Schenker prove a number of results for
the family {yrn,: n € N}, including almost sure convergence of 7, © Yy, © « -+ 0 ypn,,
to a replacement channel (see [21, Theorem 2]). As an application of these results, they
also show that certain matrix product states exhibit an almost sure clustering estimate
(see [21, Theorem 3]).

This work aims to provide an effective generalization of the work of [21] to the case
when the observables form a finite von Neumann algebra; that is, a von Neumann algebra
admitting a faithful normal tracial state. A basic but infinite dimensional example is
the hyperfinite II; factor R, which is physically relevant because it arises as the weak
operator topology closure of the local algebra associated to a spin chain where the on-site
observable algebras consist of the 2 x 2 matrices (or more generally, the n X n matrices
for any integer n > 2). Other sources of examples include representations of discrete
groups, actions of groups on probability spaces, and measurable equivalence relations.

The principal tool we use to carry out our analysis is the metric first introduced by
Hennion in his 1997 paper [14]. Hennion was originally concerned with infinite products
of random positive definite matrices and their convergence properties, and he used his
metric as a means to study their rates of convergence. Movassagh and Schenker [21]
provide a finite dimensional noncommutative version of Hennion’s results on the n x n
complex matrices M,,. Both papers rely on what we call the m-quantity of two positive
matrices (or, in the case of [14], vectors) X and Y given by m(X,Y) := max{\ €
R: AY < X}. In the case that M is finite with faithful normal trace 7, we recall that the
normal state space S C L'(M, ) can be canonically identified with the set of unit-trace,
positive, closed operators affiliated to M [2, Chapter 7]. Thus, from the m-quantity one
can form a bounded metric d on the normal state space of M via

_ 1—m(z,y)m(y, )
d(z,y) = iz yymly o) z,y€ S C LY(M,7).

We call this Hennion’s metric, and we study its geometric properties in Section 2. In
addition to extending known results to the infinite dimensional case, we exhibit new
results about the disconnected components of S (see Theorem 2.12).

To each positive linear map v on L'(M,7), one can induce a projective action on S
by v-x = mv(x) Provided that 7 o <y is non-zero on S, one can associate to -y the

Lipschitz constant

e(y) = sup T TYY)
z,YyeS d(gj’ y)
TFy

When c(v) < 1, we say « is a strict Hennion contraction. Many properties of these maps
are established in Section 3, including a complete classification (see Theorem 3.11).
The duality L'(M,7)* = M implies strict Hennion contractions can also arise from
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normal positive linear maps on M, and indeed we determine precisely when this occurs
in Subsection 3.2.1.

In Section 4, we consider ergodic quantum processes: compositions of random quan-
tum channels on L*(M,7) evolving under an ergodic transformation. Our first main
result roughly says that such processes collapse to a replacement channel almost surely,
provided there is a chance that the process eventually contracts in Hennion’s metric:

Theorem A (Theorem /4.12). Let (M, 1) be a tracial von Neumann algebra with a separa-
ble predual, let (2, P) be a probability space equipped with ergodic T € Aut(2,P), and let
Yo : LY(M,T) = LY(M,T) be a bounded positive faithful random linear operator. Suppose
that

P[Em: c(Yw 0 Yrw 0 - - 0 yrmy) < 1] > 0.
Then there is a state-valued random variable X, € S so that for all x € S one has

lim ||y, 0y7w o - 0ypmy -2 — Xyll1 =0
m——oo

almost surely.

Separability of the predual L!(M, 7) in the above theorem is used extensively to avoid
measurability issues, and the probabilistic assumption is analogous to [21, Assumption
1] (see the discussion preceding Lemma 4.4). The rate of convergence is controlled by
(Y ©YTw © -+ 0 Yrmy,), and so it depends on w € € but is independent of x € S. To
show that these Lipschitz constants tend to zero almost surely, we use Kingman'’s ergodic
theorem (see Theorem 1.10), and in fact the rate of convergence is exponentially fast
almost surely (see Lemma 4.7).

Our second main result concerns ergodic quantum processes on M rather than
L'(M,7) and is essentially dual to Theorem A. Under similar assumptions, such pro-
cesses also collapse to a replacement channel almost surely:

Theorem B (Theorem 4.17). Let (M, T) be a tracial von Neumann algebra with a sepa-

rable predual, let (2, P) be a probability space equipped with ergodic T € Aut(§, P), and
let ¢,: M — M be a normal unital positive random linear operator. Suppose that

P[3n: c((drnwo -0 du)s) < 1] > 0.
Then there is a state-valued random variable Y, € S so that for all a € M one has
T [|grne 0+ - o (@) — 7(a¥0)||oo = 0.

almost surely.
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In fact, we are able to prove the above theorem when ¢, (1) is only assumed to be
almost surely invertible. In this case, one must instead consider a normalized process of

).

Theorems A and B recover the asymptotic results in [21, Theorem 1] for the finite

the form

=

RN (¢T% S O(bw(l)_%) N () ((anw o odu(1)”

dimensional algebra (M,,, - Tr). Compared to [21, Theorem 1], the above theorems have
left-right asymmetries that are a consequence of L*(M,7) = M failing in the infinite
dimensional case.

The deterministic versions of Theorems A and B can be compared with Yeadon’s mean
ergodic theorems for semifinite von Neumann algebras (see [30,31]). Indeed, suppose
v: LY(M,7) — L*(M,7) is a unital 7-preserving positive linear map, and denote its
dual map by ¢ := v*. Then [31, Theorem 4.2] implies that for every z € L*(M,7) and
a € M there exists £ € L'(M,7) and a € M satisfying

n—1 n—1
. - k A _ . - k A~ —
nh_)ngo - kg 0 ¥ (x) — & 0 and nh_}ngo - kg O ¢%(a) — a 0.
= 1 = 00

If inf,,>0 ¢(7y™) < 1, then Theorems A and B imply there exists X € S so that £ = X for
all x € S and @ = 7(aX) for all a € M. Moreover, in this case the above convergences
can be upgraded to

lim ||v"(xz) — X|1 =0 and lim ||¢"(a) — 7(aX)]|co = 0.
n—oo n—oo
(Note that y(z) = 7 - « here since v is 7-preserving.)

Part of the work done in [21] is to understand the clustering properties of certain
matrix product states which are generated by a family of homogeneously-distributed
random matrices. Physically, these correspond to random states on a spin chain. There-
fore it is an interesting question to understand what happens in the case when the on-site
algebras are infinite dimensional. Given a von Neumann algebra M, let {M,,: n € Z} be
isomorphic copies of M and for a finite subset A C Z we denote

My = QM,.

neA

Inclusions A C II of finite subsets of Z induce embeddings M) C My so that one can
consider the inductive limit C*-algebra

oy = lim My,

which is called the quasi-local algebra associated to the spin chain with on-site algebras
M, = M for all n € Z (see [8, Definition 2.6.3 and Example 4.2.12]). This algebra
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admits a canonical translation action Z ~ o7, and a state on 7 is said to be locally
normal if its restriction to each M, is normal (see [8, Definition 2.6.6] or [16]). Taking
inspiration from the classification of translation invariant states in [12], we construct
a class of random variables taking values in locally normal states which obey a kind of
translation covariance property relative to the ergodic transformation. As an application
of our previous main results, we establish the following clustering estimate for our class
of translation covariant states:

Theorem C (Theorem 5.4). Let (M, 1ar) and (W, 7w) be tracial von Neumann alge-
bras with separable preduals, let (Q,P) be a probability space equipped with ergodic
T € Aut(Q,P), and let £,: MW — W be a normal unital positive random linear
operator. Define ¢, (x) := E,(1 ® x) and suppose that

PlEn: ¢((¢rny 00 Puw)s) < 1] > 0.
Then &, determines (see Theorem 5.3.(4)) a random locally normal state U, on the

quasi-local algebra /g, associated to the spin chain whose on-site algebras are isomorphic
to M that satisfies

U, oar =Ygk, Vk € Z.
Moreover, there is a constant k € (0,1) and a random variable E,, € [0,+00) such that
[P, (ab) — ¥, (a)T,(b)| < l*?L,J/#“St(A’H)*lHaHopoH(><> Ya € My, b€ My
almost surely for finite subsets A C (—o0,—1) and I C [1,4+00).

In words, we construct a family of random locally normal states that exhibit almost
sure exponential clustering. Our approach is modeled after [12, Proposition 2.3 and 2.5]
and gives ¥, (a) as an almost sure operator norm limit of

Ep-ny, 0 (1 ® ET—NJrlw) 0--+0 (1 R --Q1® ETNw)(a ® 1w)
for local observables a € M, ,j C My n] (see Theorem 5.3.(4)). This result is an
important step towards a better understanding of many-body systems subject to both
information loss to a reservoir and large on-site disorder.
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1. Preliminaries
1.1. Finite von Neumann algebras

Throughout, M will be a finite von Neumann algebra equipped with a faithful
normal tracial state 7, and we will refer to the pair (M,7) simply as a tracial von
Neumann algebra. We will identify M with its standard representation on L?(M,T);
that is, the Gelfand—Naimark—Segal construction associated to 7. For a closed subspace
H < L*(M,7) we write [H] for the projection onto H. We denote by J the conjugate
linear map on L?(M,7) determined by Jz = z*, and we recall that JMJ = M’ the
commutant of M in B(L*(M,T)).

One says that a closed, densely-defined operator z on L?(M,7) is affiliated to M if
and only if for the polar decomposition x = v|z| one has v, 1j 4(|z|) € M for all t > 0.
In this case one writes € M. In particular, given € M, one has x € M if and only
if = is bounded. Recall that every operator affiliated to M is mazimally extended in the
sense that if x € M and # C y, then z = y. The set of affiliated operators M forms
a x-algebra under the operations of closing linear combinations and products, with the
usual adjoint as the involution (see [2, Theorem 7.2.8]). We adopt the notation dom(x)
for the domain of x in L?(M, 7).

Equip M with the norm || - ||; := 7(] - |). The completion of M with respect to || - ||1 is
written L'(M, 7). It is nontrivially isometrically isomorphic to the predual M, (see [2,
Theorem 7.4.5]). This isomorphism is implemented via 2 — 7,.(+) := 7(x - ). One can also
identify L'(M,7) with the set of 2 € M such that [|z]|y := sup;~ 7(|2|1j0(|z])) < oo,
so we will frequently view elements of L'(M,7) as unbounded operators on L?(M, 7).
More generally, for 1 < p < oo one defines LP(M,7) as the set of x+ € M such that
x|, = supt>07(|x\p1[0,t])1/p < oo. For p = 2 one obtains a Hilbert space that is
naturally isomorphic to the standard representation of M, and so there is no conflict of
notation. Moreover, as unbounded operators L?(M, 7) correspond to those x € M with
1 € dom(z) (see [2, Theorem 7.3.2]). It follows that M C L?(M, ) is a core for such x.
Note that for z € L' (M, 1), |z|'/? € LP(M,7) for all 1 < p < oo, and so in particular
M C L*(M, 1) is a core for |z|'/2.

Recall that we say M has a separable predual if L!(M, 1) is separable as a Banach
space. Examples include finite dimensional von Neumann algebras, the hyperfinite 11y
factor, and group von Neumann algebras for countable discrete groups. There are several
equivalent formulations of this which will be useful.
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Theorem 1.1 (/22, Theorem 1.8.11]). For a tracial von Neumann algebra (M, ), the
following are equivalent:

(i) The predual (L*(M,7),| - |l1) is a separable Banach space.
(ii) (M, T) is separable in the o-WOT.
(iii) L*(M, ) is a separable Hilbert space.

The following lemma, which is well-known to experts, will be useful in analyzing
Hennion’s metric d.

Lemma 1.2. For a tracial von Neumann algebra (M, 7), the following are equivalent:

(i) M is infinite dimensional.
(ii) There exists a family {p,: n € N} C M of non-zero pairwise orthogonal projections
satisfying > pn = 1.
(iii) There exists a sequence (Pp)nen C M of non-zero projections satisfying 7(pn) — 0.

Proof. (i) = (ii): Let Z(M) be the center of M, which is isomorphic to L*>(X, u) for
some probability space. If (X, 1) has any diffuse subsets or infinitely many inequivalent
atoms, then we are done. Otherwise, L>°(X, u) = C™ for some n € N and M is a finite
direct sum of factors. One of these factors is necessarily infinite dimensional (lest M be
finite dimensional) and hence contains such a family because it lacks minimal projections.

(i4) = (iii): Since Y. 7(p,) = 1 < oo, we have 7(p,,) — 0.

(#i1) = (i): We proceed by contrapositive. If M is finite dimensional, then it is necessarily
a multimatrix algebra and 7 is a convex combination of traces. It follows that the traces of
projections in M form a finite discrete subset of [0, 1], and in particular 0 is isolated. O

1.1.1. Positivity

Recall that a € M is positive if a = b*b for some b € M; equivalently, if a is positive
semidefinite as an operator on L?(M, 7). In this case, we write a > 0 and we denote the
positive cone of M by M, :={a € M: a > 0}. The positive cone induces an ordering on
the self-adjoint elements of M: for a,b € My, we write a < bif b—a > 0.

More generally, for unbounded self-adjoint operators z,y on L?(M,7) we write z < y
when y — x is positive semidefinite on dom(x) Ndom(y). Note that for affiliated operators
x,y € M, x < y is equivalent to saying the closure of y — z is positive. In particular,
x < yand y <z imply z and y agree on dom(x) N dom(y) and therefore z = y. For
each 1 < p < oo, we denote LP (M, 1)y := {x € LP(M,7): = > 0}, which we recall is the
I - |l,-closure of M, .
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Remark 1.3. If 0 < 2z <y and y is bounded, then x is necessarily bounded since

(2€,€) < (y€,€) < llyllligll®

holds for £ in the dense subspace dom(y —z). W

Also recall that we say a densely defined linear operator x on L?(M,7) is boundedly
invertible if there exists b € B(L?(M, 7)) satisfying b = 1 and bz C 1, in which case we
write 271 := b. Note that if x € M then 2~ € M.

Remark 1.4. A positive densely defined operator x on L?(M, 1) is boundedly invertible

if and only if x > § for some scalar § > 0, and in this case one can choose ¢ = ||z ~L.

In particular, if z,y € M satisfy 0 < 2 < y, then 2 being boundedly invertible implies y
is boundedly invertible. W

A linear map ¢: M — N between von Neumann algebras is said to be positive if
¢(M) C Ny, in which case we write ¢ > 0. More generally, we say ¢ is n-positive for
n € N if the map

p1I,: My(M)— M,(N)
(aij)i<ij<n = (P(aij))i<ij<n,

is positive. We say ¢ is completely positive if it is n-positive for all n € N. Recall the
following classical result.

Theorem 1.5 (Russo—Dye theorem). Let A be a unital C*-algebra and ¢ : A — A be a
linear mapping. Then

ol := sup |lo(x)| = sup [lp(u)],

z: ||z]|=1 u€U(A)

where U(A) denotes the unitary group of A. In particular, if ¢ is positive then ||¢|| =
lo(L)]-

Under the identification of M, with L! (M, T), the positive linear maps in M, corre-
spond to L'(M, 7). In fact, one has

xe LY (M, 1), = T(za) Ya € M.,

>0
. (1)
a€ M, — 7(za) >0 Ve e L' (M,7)4.
One says a linear map «: LY(M,7) — LY(M, 1) is positive if v(L*(M, 7)) € LY (M, 7)1,
and writes v > 0. More generally, one can define n-positivity and complete positivity for
such maps by considering v ® I, defined on M, (L*(M,7)) = L' (M, (M), ® (+Tr)).
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There is a well-known correspondence between normal linear maps ¢: M — M
and bounded linear maps «: L'(M,7) — L'(M,7). Indeed, using that L'(M,7) =
(M, weak#)*, one has that ¢,: L'(M,7) — L*(M, ) is a bounded linear map satisfying

(¢« (2)a) = 7(xd(a)),

for all z € L*(M,7) and @ € M. From Equation (1), it follows that ¢, is positive if and
only if ¢ is positive. Similarly for n-positivity and complete positivity. Conversely, given
a bounded linear map v on L'(M,7), using M = L*(M,7)* one has that v*: M — M
is a normal linear map satisfying

(27" (a)) = T(v(2)a),

for all z € L*(M, 1) and a € M. The positivity (resp. n-positivity or complete positivity)
of v* again follows from that of v via Equation (1). For future reference, we record these
observations in Lemma 1.6 below.

Toward refining the above correspondence, we recall a bit more terminology. We say
a positive linear map ¢: M — M is 7-bounded if there exists a constant ¢ > 0 so that
7(¢(a)) < er(a) for all a € M. We say a positive linear map ~v: L*(M,7) — LY(M, 1)
is M -preserving if vy(M) C M. Since each element of M can be decomposed as a linear
combination of four positive elements, this is equivalent to y(M;) C M. Using a < |ja||1
for all @ € My, this is further equivalent to (1) € M} by Remark 1.3. Observe that if
¢: M — M is normal, positive, and 7-bounded with constant ¢ > 0, then

7((c = ¢.(1))a) = er(a) — 7(d(a)) 2 0

for all @ € M, so that ¢.(1) < ¢ by Equation (1). Thus ¢, is M-preserving. Conversely,
if v: LY(M,7) — L*(M, ) is M-preserving, bounded, and positive, then for a € M, one
has

(v (a)) = T(v(Da) < [y (DIT(a) = Iv]7(a).

Thus ~* is 7-bounded with constant ||7||. Thus the correspondence from before restricts
to a correspondence between 7-bounded normal positive linear maps on M and M-
preserving bounded positive linear maps on L!(M, 7). We also record this in Lemma 1.6
below.

Finally, we note that for 7-bounded normal positive linear maps ¢ on M (resp. M-
preserving bounded positive linear maps v on L!(M, 7)) there is another correspondence
given by extending (resp. restricting) the maps. Indeed, for a € M let ¢(a) = v|p(a)| be
the polar decomposition. Then one has

I¢(a)ll = |7(v*¢(a))] = [7(¢«(v7)a)| < [« (v™)|[lall1,
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where we have used that ¢, is M-preserving. It follows that ¢ admits a unique bounded
linear extension ¢|L1(M77) to LY(M, 7). Since L' (M,7), = m“"ll one further has that
the extension is positive, and it is M-preserving since ¢(M) C M. Conversely, if 7 is
an M-preserving bounded positive linear map on L*(M, 7), then 7|y defines a positive
linear map on M. For a € M, one has

T(v(a)) = (@)l < [Iyllllally = (17l (a)

so that 7|ps is 7-bounded and normal (see [2, Proposition 2.5.11]). This is also recorded
in the following lemma as well as an interaction between the above two correspondences
(whose proof is left to the reader).

Lemma 1.6. Let (M, 7) be a tracial von Neumann algebra. There is a one-to-one corre-
spondence between normal positive (resp. completely positive) linear maps ¢ on M and
bounded positive (resp. completely positive) linear maps ¢, on L*(M,T) determined by

7(p«(z)a) = 7(z¢(a)) ze LY(M,7), ac M.

This correspondence restricts to a one-to-one correspondence between T-bounded normal
positive (resp. completely positive) linear maps on M and M -preserving bounded positive
(resp. completely positive) linear maps on L*(M,T). The former maps ¢ also admit
unique extensions ¢|L1(M’T) to LY(M,7) that are M-preserving bounded and positive
(resp. completely positive), and the latter maps ¢, also have restrictions ¢u|p to M
that are T-bounded normal and positive (resp. completely positive). In this case, one has

(Galnr)e = 6|2 V7).

As with the operators themselves, for linear maps ¢,v: M — M we write ¢ < ¢
if p — ¢ > 0. Similarly, for linear maps ~,p: L'(M,7) — L'(M,7) we write v < p if
p—v=0.

Lemma 1.7. Let o, 3: M — M be positive normal linear maps. Then o < B if and only

if o < Py
Proof. For z € L'(M, 1), and a € M, we have
T(z(5 — a)(a)) = 7((B« — a.)(x)a).
So a(a) < B(a) for all a € M, if and only if the above quantity is non-negative for

all z € LY(M,7)+ and a € M, which is in turn equivalent a.(z) < B.(z) for all
x e Lt (M, T)+. O
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1.2. Probability theory

Throughout (£2, F,P) will denote a probability space. An automorphism of (Q, F,P)
is a bijection T: Q@ — § such that T and 7! are measurable and measure preserving.
Denote the automorphisms of (Q2, F,P) by Aut(2,P). One says T' € Aut(f2, P) is ergodic
if whenever A € F satisfies T=!(A) C A then P[A] € {0,1}. Note that in this case 7!
is also necessarily ergodic. Indeed, if T(A) C A, then for

B:= L_JOT*”(A),

we have T~}(B) C B and P[B] = lim P[T"(A)] by continuity from below. Thus if T
n—0o0
is measure preserving and ergodic, it follows that P[A] = P[B] € {0, 1}.

Remark 1.8. Any T' € Aut(Q2,P) also induces an automorphism of the von Neumann
algebra L>(Q2, P) via precomposition: f — f o T. In fact, one can induce such an au-
tomorphism using bijections of the form T: Q\ Ny — Q\ N2 where Ny, Ny are null
sets and T and 7! are measurable and measure preserving. Also, if T}, 75 are two such
bijections which agree almost surely then they induce the same automorphism. Thus
after identifying maps modulo null sets, these bijections form a group Autg($2,P) that
embeds as a subgroup of Aut(L>°(Q2,P)). This embedding is a surjection when (Q, F, P)
is a standard probability space (see [2, Section 3.3]); that is, if there exists a bijection
S:Q\ Ny — Qo \ Na where (Qq, Fo, Po) is the disjiont union of the Lebesgue measure
on [0, 1] and countably many atoms, N; C  and Ny C Qg are null sets, and S and S~1
are measurable and measure preserving. H

1.2.1. Kingman’s ergodic theorem
We will be interested in multiplicative stochastic processes and their ergodic proper-
ties. So we present the following;:

Lemma 1.9. Let (Q,P) be a probability space equipped with an ergodic automorphism T
and suppose that X,, : Q — [0,1] is a submultiplicative stochastic process in the sense
that

Let F,, := 0(Xo,...,X,) for n > 0, denote the natural filtration taken with respect to
(Xn)n>0. Suppose that P[3n, : X,,, < 1] > 0. Then v(X) :=inf{n : X,, < 1} is a finite
almost-surely stopping time with respect to (Fp)n>o.

Proof. Since X, is a decreasing sequence, observe that

{w:rv(w) <n}={w:X, <1} e F,.



B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485 13

Ergodicity of T informs us that P[J;—,{Xn. oT" < 1}] = 1 and there is a finite almost
surely random variable K (w) so that X,,, 1 x < XgX,, o T¥ < 1. Whence v < n, + K
is finite almost surely. O

Furthermore, recall the Kingman ergodic theorem:

Theorem 1.10 (Kingman’s ergodic theorem). Let (2, P) be a probability space equipped
with ergodic T € Aut(Q,P). Assume that a stochastic process {X,, : Q@ — R}, satisfies:

(i) Xpm(W) < Xp(w) + X (T"w) almost surely;
(ii) the positive part E[(X,)T] < oo for all n.

Then, Z(w) := lim n~'X,(w) € [~00,00) exists almost surely, and Z = inlf\] nE[X,];
n—00 ne
that is, Z is constant almost surely.

This is a corollary to [18, Theorem 2]. See [1, Theorem 1] for a concise proof. One can
find alternative formulations in [9,27,20] among others. The observation underpinning our
Lemma 4.7, is that one may apply Theorem 1.10 to the sub-additive process (log Xy, )n>0,
when (X,,),>0 is sub-multiplicative.

1.2.2. Random linear operators

We recall some general notions about the theory of random variables in a Banach
space and random linear operators. The material in this section is largely based upon
the treatment given in [6, Chapters 1 and 2], although an equally well-written treatment
in the case X is a Hilbert space may be found in [26].

Let X be a Banach space with norm || - ||. By B we mean the o-algebra generated by
all the closed subsets of X. Let (Q, F, u) be a measure space. Given a finite collection of
sets A1, As,..., A, € F and by,bs,...,b, € X, a function of the form

B() = Db X, (@)

will be called simple function. A strongly measurable function is one f : Q — X for which
there is a sequence of simple functions ¢,, so that nILH;o | f(w) — én(w)|| = 0 almost surely
(see [10, Chapter II]). Writing X* for the Banach dual space of X, we say that g: Q@ — X
is a weakly measurable function if for every x* € X*, one has that z* o g(w) is a C-valued
Borel-measurable function.

The following is originally due to Pettis [24] but can be found in [28, Proposition
IV.7.2] or [10, Theorem 2]:

Theorem 1.11 (/24, Corollary 1.11]). Let X be a separable Banach space with Borel o-
algebra B, then a function f : Q — X is strongly measurable if and only if it is weakly
measurable.
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In the case that p = P is a probability measure, we shall refer to a strongly measurable
function in X as a random wvariable in X. A mapping L :  x X — X is an (everywhere-
defined) random linear operator if: w — L, (z) is a random variable in X for all z € X;
and P[L,(ax + By) = aL,x + BLyy] =1 for all z,y € X and «a, f € C. Recall from [6,
Definition 2.24] that a random linear operator L is bounded if there is a random variable
M (w) so that P[M (w) < oo, ||[Luz| < M(w)||z|| all x € X] = 1.

In Sections 4 and 5 we will be concerned with dynamics arising from iterations of
bounded random linear operators. It is not obvious that the composition of bounded
random linear operators is, however, measurable. We follow the elegant proof given in
Bharucha-Reid’s [6, Theorem 2.14] below:

Theorem 1.12 (6, Theorem 2.14]). Let X be a separable Banach space and ., a random
variable in X. If L is a bounded random linear operator then the function

Yo = waw

is a random wvariable in X. In particular, the composition of bounded random linear
operators is a bounded random linear operator.

Proof. Let (¢n)nen be a sequence of simple functions approximating z,,. By reducing
to a subsequence if necessary, we assume ||¢,(w) — | — 0 almost surely. Let E :=
{¢n(w): n € N, w € Q}, which we note is a countable subset of X. For each n € N,
define y,, (w) := Ly, ¢n (w). Then, for any Borel subset S € 9B, we obtain the decomposition

[y € S] = | JI[L() € 81N [pn(w) = 1],

beE

thus demonstrating that y, is a sequence of random variables in X. Using that L, is
almost surely bounded, we get that the following limit exists almost surely:

Yo = lim y,(w) = lim L,¢,(w) = Lyx,.
n—roo n—oo

That composition of random linear operators is a random linear operator is now imme-
diate. O

2. Metric geometry of the normal state space
Let (M, 7) be a tracial von Neumann algebra. We write
S:={rec L' (M), : 1(z)=1}.

Note that S corresponds to the normal states on M. Following [21] we introduce a
non-standard metric d on the set of normal states S C L'(M, 1), and investigate its
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properties. We shall show that d admits the same formula (Lemma 2.6) as was shown in
[21, Lemma 3.6], and use this to show that (S, d) is complete and is finer than S with the
trace-metric (Theorem 2.7). Unlike [21], whenever M is infinite dimensional S admits
two additional disconnected components corresponding to affiliated operators that are
of separate interest and we investigate their properties in Theorem 2.12.

2.1. Hennion’s metric

Lemma 2.1. For x,y € L'(M,7)4 \ {0} one has {\ € R: Ay < 2} = (=00, \g] for some

0< ) < ng

Proof. Certainly 0 € A :={A € R: Ay <z}, and if A € A then (—o0, A] C A since ty <
Ay < z for all t < A. Note that if Ay < z then by applying 7 we obtain A < 7(z)/7(y). In
particular, A is bounded and we can find an increasing sequence (\,)en C A converging
to Ao :==sup A < 7(z)/7(y). Then for all @ € M we have

T(a(z — Aoy)) = nh—{%o T(a(z — Apy)) > 0.
Hence z — Aoy > 0 and Ao € A so that A = (—o0, \g]. O
Definition 2.2. Let x,y € L'(M, 7),. We define their m-quantity to be the number
m(z,y) := max{\ € R: Ay < z}. [ |

Theorem 2.3 (Properties of m(z,y)). Let x,y,z € L*(M, 1) \ {0}.

(1) 0<m(z,y) < 7
(2) m(az,by) = % a: y) for scalars a,b > 0.
(3) m(z, 2)m(z,y) < m(z,y).
(4) m(x,y)m(y,z) =1 if and only if %x = %y
(5) If x <y then one has
m(z,z) < m(y, z)
m(z,x) = m(z,y).

(6) m(z,y) > 0 if and only if there exists non-zero a € M satisfying y = x2a*ax? with
a = a[zz M|, in which case m(z,y) = |lal| 2.

(7) m(z,y) = 0 if and only if there exists a sequence of vectors (£,)nen C dom(z) N
dom(y) so that ||z'/2&, ]| — 0 and ||y*/?€,]l2 = 1.

ca € My, 7(ya) >0}.
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Proof. (1): This follows from Lemma 2.1.

(2):

(3):

: If

: First suppose y = x

The inequality m(az, by)by < ax immediately implies m(ax, by) < m(z,y). On the
other hand, m(x,y)y < x is equivalent to m(z,y)3by < ax, which gives m(x,y)§ <

m(azx, by).
We have

m(z, z)m(z,y)y < m(z,2)z <z,

Whence m(z, z)m(z,y) < m(z,y).

T(x %y, then m(x,y) and m(y,x) achieve their maximum values of :Ezg

and TE%, respectively, and hence their product gives one. On the other hand,

7(x)
T(y)

if m(z,y)m(y,2) = 1 then by part (1) one necessarily has m(x,y) = and

m(y,r) = :Ey; Therefore :Exgy <z and TEy;x < y so that ( La= %y

: Suppose < y. Then m(z,2)z < & < y so that m(z,z) < m(y,z). Similarly,

z > m(z,y)y > m(z,y)z so that m(z,z) > m(z,y).
1/2*ax/? for some non-zero a € M. Then y < ||a|?z, and so

m(z,y) > ||al| =2 > 0. Conversely, if m(z,y) > 0 then for any b € M we have

by /213 = 7(byp”) < b3

2-

T(bxd*) =

1
m(z,y)

Hence bz'/? — by'/? extends to a bounded operator T': Mz1/2 — My'/2 with
1/2

m(z,y)

|T|| < m(x,y)~ /2. Observe that T is non-zero by virtue of 2'/2 and 3'/? being

non-zero. Let p,q € M be the support projections of 7, and 7, respectively, which
we note satisfy JpJ = [Mxz/?] and JqJ = [My'/?]. Trivially extend T to L*(M)
so that JqJT JpJ = T, and observe that for b,c,d € M we have
(Tb(ca'/?), dy"?)s = (bey'/?, dy' /%)y = (cy?, b"y" /%)y = (Tea'/?, b dy' /%),
= (bTcx'/?, dy'/?),.

It follows that
0=JqJ(Tb—bT)JpJ = JqJTIpJb—bJqJT JpJ = Tb — bT.

Hence T € M’ and so is of the form T = JaJ for some a € M. Note that a is
non-zero since T is non-zero. Additionally, we have for all b € M

T(yb) — (byl/Q,y1/2>2 — <bTCL‘1/2,T.T,‘1/2>2 — (bxl/za*,xl/Qa*>2 — ( 1/2@*&1’1/21)).

Since y is determined by 7, € M,, it follows that y = zza*axz. Note that ap =
J(TJpJ)J = JTJ = a and p = J[Mx'/?]J = [z'/2M].

We saw above that m(zx,y) > |lal| =2 and ||T|| < m(x,y)~ /2. Since |T|| = |||, this
gives m(x,y) = ||al| 2.
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(8):
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Assume m(z,y) = 0 so that the closed operator = — Ay is not positive for any A > 0.
Since z — Ay is self-adjoint, this implies there exists some £ € dom(z — Ay) such that

((z = Ay)E, €)2 < 0.

Because dom(x) Ndom(y) is a core for all x — Ay, we can in fact find £ € dom(z) N
dom(y) satisfying the above, and by scaling we can further assume |jy*/2¢||; = 1.
For each n € N, let £, be the vector obtained in this way for A\ = % Then

1 1 1
Hxl/zfnng = <$§na€n>2 < E(ygnagnb = E”ylﬂgn”% = E - 07

as desired.
Conversely, if m(z,y) > 0 then y = z2a*az? for some a € M by part (6). So for
any £ € dom(z) Ndom(y) we have

y'/2€]3 = (Y€, €)o = (xZa*ax?€, £)s = |Jaz’/2¢|? < ||a|?||="/2¢||2.

Consequently, for (&,)nen C dom(z) N dom(y) the condition ||z!/2£,|2 — 0 pre-
cludes [|y/2&,]2 = 1.

If m(x,y) = 0 then the equality follows from part (7). Indeed, for e > 0 let £ €
dom(z) Ndom(y) be such that [|z'/2¢|[> < § and ||y*/2¢||s = 1. Since M C L?(M, )
is a core for #'/2 and y'/2, we can find b € M satisfying ||z/2b||s < € and ||y*/2b||s >
1 — e. Letting a = bb* € M, , we have 7(ya) = ||y*/?b||3 > 1 — ¢ > 0 and

rwa) _ 203 &
rya) ~ 7 T o7

Thus the infimum is also zero.
Now suppose, m(z,y) > 0, then y = z2c*cxz for some non-zero ¢ € M with
¢ = c[z2 M] by (4). Moreover,

m(z.g) = 1 1
IR T sup{lic€lla/N€llz: € € L2(M) \ {0}

= inf{ HE (€€ LA(M), ||c€ll2 > 0}.
€13

The condition ¢ = ¢[z2 M] implies that in the infimum one can restrict to & = z1/2y

for n € dom(z) with ||cz'/?n||2 > 0. Since M C L?*(M) is a core for /2, we can
further restrict to & = 2'/2b for b € M with ||cz'/?b||y > 0. Using ||z/2b||3 = 7(xbb*)
and |lcz'/?b|13 = ||ly'/?b||3 = T(ybb*), we obtain the claimed equality. O

Definition 2.4. For z,y € 5, let

1L —m(z, y)m(y, z)

dz.y) = 17 m(z,y)m(y, =)
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Theorem 2.5. The function d forms a metric on S such that diam4(S) = 1 when M # C.

Proof. The proof that d is a metric is the same as in [21]. Note that d is valued in
[0,1] since m is, and so diamg4(S) < 1. Also for M # C there exists a non-trivial
projection p € M, and one has A1 £ ﬁp for all A > 0. Hence m(ﬁp, 1) = 0 and so

A1) =1. O
The following lemma provides some alternate formulas for the Hennion metric d that
are more geometric in nature.

Lemma 2.6. Let x,y € S be distinct. Then

io.9) t—t_
z,y) =——"""
T oty

where

2
tp=sup{teR:te+(1—-t)ye S} e [1,7},
[ =yl
. -2
t_:=inf{teR:tz+(1—-t)yeS}e [—,0].
l =yl

Equivalently, if Ay =tix+ (1 —ty)y are the extreme points of the convex set {tx+ (1 —
ty:t € R}INS then

r = sl

= (3)

r(1
d =
(@,9) r+s—2rs’

where r,s € [0,1] are determined by x =rA_ + (1 —r)A4 andy =sA_ + (1 —s)A;.

Proof. Since S is convex we immediately have t; > 1 and t_ < 0. To see their other
bounds, let z—y = v|x —y| be the polar decomposition. Since v* € (M), if tz+(1—ty) €
S then we have

tlllz =yl = [t (z = y)| = [7 (" [tz + (1 = )y]) — 7(v7y)[ < 2.

Hence t4 < 2/[|z —y[l1 and t— > =2/[|z — yl}:.

Consider A, :=tix+ (1 —ty)yand A_ :=t_z + (1 —t_)y, which both belong to S
since it is ||-]|1-closed. Additionally, A1 are the extreme points of the ||-||;-compact convex
set {te+(1—t)y:t_- <t<ty},andsoz=rA_+(1—r)Ar andy=sA_+ (1 —s)Ay
for some r,s € [0, 1]. In fact, one can explicitly solve a linear system as in [21] to show
that
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t,—1 1—t_
r=—t 1—r=
ty —1_ ty —t_
t —t_
s = + 1—s= .
ty —1_ ty —t_

We claim that m(A;,A_) = 0 and m(A_, A;) = 0. Indeed, if there existed A > 0 so
that AMA_ < A, then we would further have AA_ < A, + Az. Hence

0< Ay + Mo — A) = (b4 + AL =tz + (1= (b= + AL — ),

and t4 +A[1—¢_] > t4 contradicts the supremacy of ¢. Thus we must have m(A4,, A_) =
0, and a similar argument using ¢t_ shows m(A_, Ay) = 0.
Now, m(A4+, A_) = 0 implies by Theorem 2.3.(7) that there is (,)nen C dom(z) N
dom(y) so that ||A1_/2£nH2 = 1 while ||Ai_/2§n|\2 — 0 as n — oo. Since
(@, y)(sA_ + (1 - 5)Ay) = m(z,y)y < 7 = rA_+ (1 - 1)A,, (1)
for all € > 0 there is V € N so that for all n > N one has

m(x,y)s = m(xvy)<5Af£na£n> < <TA7£n7§n> +e=r+e

Letting € — 0 we see that m(z,y) < £. A similar argument using m(A_, Ay) = 0 yields

(2,y) < mi r 1l—r
m(x min< —, —— ».
W)= s'1—s

In fact, the above is an equality: using y = sA_ + (1 — s) A one has
—s

min{%,%}ygrA_—i—(l—T)A_,_ =uz.

Reversing the roles of x and y and using the resulting version of (4) gives

( ) . s 1—s
m(y,x) = min < — .
v r’l—r

Thus one has

0<m(m,y)m(y,x)=min{r 1_T}min{§,1:j} :min{r(iig, 8:3;}

s’1—s

One then explicitly calculates

_l—m(x,y)m(y,z) ty —t_
M) = T )

as claimed. O
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Theorem 2.7. One has for all z,y € S

e — il < dz.). o)
Furthermore, (S,d) is a complete metric space.
Proof. Let Ay € S and r,s € [0,1] be as in Lemma 2.6. Note that
r—s=(1-s8)—(1-r)=r(1—s)—(1—r)s,
and (1 — s) 4+ (1 — r)s < 1. Using these observations we have
[z =yl =l(r =) A+ (1 =) = (1 =5) A1

rl—s)—(1—-r)s
= |r — A_—-A <2lr—s <2
= sllA- — Ayl < 2 —of <2 FE= S ST,

which equals 2d(x,y) by Equation (3).

To see that (S, d) is complete, let (2, ),en C S be a Cauchy sequence with respect to d.
The first part of the proof implies (2, )ren is also Cauchy with respect to || -||; and hence
converges to some z € S with respect to || - ||1. In particular, one has 7(z,a) — 7(za) for
alla € M. Given € > 0, set n:= (1 —€)/(1+¢€). Let N € N be such that for m,n > N
one has d(2m, x,) < (1 —n'/*)/(1+n/*), which implies

min{m (L, Zn), M(Tn, Tm)} = M( Ty, T )T, T) > 771/4.

Fix n > N. For a € M, with 7(za) > 0, let m > N be large enough so that |7(z,,a) —
7(za)| < (1 —nY*)7(za) and 7(z,,a) # 0. Then using Theorem 2.3.(8) one has

7(za) — (1 — n/*)7(za)
7(za)

T(zpa)  T(zpa) T(Tma)

> m(Tn, Tm)

r(za)  T(xma) T(va)

1/4 o 771/2.

=m(Tp, Tm)N
Taking an infimum over a € M, with 7(za) > 0 yields m(x,, ) > n'/2. Next, fora € M
with 7(xna) > 0 let m > N be large enough so that |7(z,a) —7(za)| < (n~/* —1)7(za)
(and note 7(xma) # 0 lest m(xmy,, z,) = 0 and d(zm, z,) = 1). Then

7(za)
7(za) + (n~1/* = D)7 (xa)

T(za)  7T(xma) T(za) P
T($na) a T(xna) T(mma) 2 ( m n)
)

1/4 o 771/2.

= m(Tpm, Tn)N
Taking an infimum gives m(z,z,) > n'/2. Altogether this gives d(z,,z) < (1 —n)/(1 +

1) = ¢, so that x,, — = with respect to the metric d. 0O
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Remark 2.8. Superficially, there is striking visual resemblance between Inequality (5) and
the famous Pinsker’s inequality [17, Theorem 3.1] for the relative entropy: (/¢ — ||} <
S(4l1). Moreover the norm of the Radon-Nikodym derivatives of states (when defined)
satisfies H%Hz = inf{\ : ¢ < A¢} [3, Theorem 12}, [15, Appendix 7] which is inversely

do @)_

proportional to m(52, 72

In light of Inequality (5), it is natural to ask if the metric d is equivalent to the metric
induced by | - ||1. This is always false when M is infinite dimensional (see Remark 2.13),
but nevertheless the Hennion metric is jointly lower semicontinuous with respect to |- ||1:

Theorem 2.9. Suppose (n)neN, (Yn)neN C S satisfy
lim ||z, — x| =0 and lim ||y, —y|1 =0,
for some x,y € S. Then

lim sup m(xy, yn) < m(x,y),
n—oo

and

lim inf d(z,,, yn) > d(z,y).

n—oo
Proof. The definition of d implies its joint lower semicontinuity will follow from the joint
upper semicontinuity of m. To see the latter, let n > m(x,y) and use Theorem 2.3.(8)
to find a € M, such that

holds for all n > N. Thus

lim sup m(x,, yn) <7,

n—oo

and letting n — m(x,y) completes the proof. O

Remark 2.10. This is another striking similarity between the Hennion metric and the
relative entropy. We recall that the relative entropy is jointly lower semicontinuous in its
arguments [19, Theorem 4.1].
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2.2. On components of S

We demonstrate below that .S is the disjoint union of at least four connected compo-
nents. Recall that we say a densely defined linear operator x on L?(M, ) is boundedly
invertible if there exists b € B(L?(M, 7)) satisfying b = 1 and bz C 1, in which case we
write 271 := b. Note that if v € L'(M, 1) (and hence affiliated with M), then necessarily
x~te M.

Notation 2.11. We let S* denote the set of operators z € S that are boundedly invertible,
and we denote S° := S\ §*. We also set the following notation:

Sri=85*NM  SX:=8"\M
Sp=S8°NM S0 = S°\ M.

Observe that
S=S5 U8 uUS;usy,

and S* =5 US) and S° = Sy U SS. We shall also write S, := SN M(= S, USy) and
Su =S\ M(= 5 USg). Also note the sets S*, Sy, and S are convex. W

Theorem 2.12. Let (M, T) be a tracial von Neumann algebra. We have the following:

(1) Suppose z,y € S satisfy d(x,y) < 1. Then, x is bounded if and only if y is bounded;
and x is boundedly invertible if and only if y is boundedly invertible. In particular,
Sy, 8%, Sy, Sy are disjoint d-clopen sets that are distance one apart (provided they
are non-empty).

(2) For allz,y € Sy, one has d(z,y) < 1.

(3) If M # C, then diam(S;)*) =1 and diam(Sy) = 1, and the latter is achieved.

(4) If M is infinite dimensional, then diam(S)) = 1 and diam(S?) = 1, and both are
achieved.

(5) If M is infinite dimensional, S;° is not d-totally bounded.

Proof. (1): Notice that d(x,y) < 1 implies that m(z,y),m(y,z) > 0. We have
m(x,y)y < x < m(y,z) 'y, hence x is bounded if and only if y is bounded by
Remark 1.3, and z is boundedly invertible if and only if y is boundedly invertible
by Remark 1.4.

Now, if 2,y € S belong to distinct subsets S, Sy, S5, or Sg, then the above implies
d(x,y) = 1. Consequently, one has

1
be = U Bd(xv§)7

zESY



(4):

: Note that m(z,y) >
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and similarly for Sp, S, and S;. Thus each of these sets are open, and since they
partition S they are also closed.
= > 0 (by Remark 1.4) and similarly m(y, z) > 0. Hence

HyHH:r
d(z,y) < 1.

: Let p € M be a non-trivial projection, and for € > 0 let

—((+e(l—p)) Ye :zli€(€p+(1—p))~

Te = e

For € > 0, z.,y. € S;° with m(z¢,ye) = m(ye, zc) = ¢, and therefore d(z,,y.) — 1
as € = 0. For € = 0, xo,y0 € Sy with m(zo,%0) = m(yo,z0) = 0, and therefore
d(z0,90) = 1.

Since M is infinite dimensional, Lemma 1.2 yields a family {p,: n € N} C M of
non-zero pairwise orthogonal projections mutually orthogonal projections satisfying
> pn = 1. Note that 7(p,) — 0 as n — oo. Pick a subsequence (p,, )ren so that
7(pn,,) < (k2%)~! and ny is even. Let A = {n € N : n # ny, for all k}. Set x;, = kpy,,,
and observe that

()

. (Zxk> =S ko) <Y o =1,

k=1
while by pairwise orthogonality,

d

S

k=1

Now, set o := Y27 7(x) < 1 and § := (1 — a)(>,,c4 T(pn)) . Note that

a>Y 7(pn) =1-Y 7(pa)
k=1

neA

implies 6 < 1. Thus if we let

= Z-'L'k +90 Z Pn,
k=1 ncA

then x € S;¢ with © > §. Repeat the above construction but this time choosing the
subsequence (pm, )keN so that my is odd to obtain y € SX with y > 4. Then for
any A > 0, Ay < x fails since multiplying by p,,, with k& >34 % gives the contradiction
Akpp,. < 0ppm,,. Hence d(z,y) = 1 and diam(S,0) = 1 and is achieved.

The same construction with § = 0 shows diam(SJ) = 1 and is achieved.
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(5): Let {pn: n € N} C M be as in the previous part. Put s, = ), pr and observe
that 7(s,) — 0 as n — co. Pick a subsequence s, so that 7(s,,) < (2k)~!, and set
Tk = 5 215, pj + ksn, . Note that aj, := ﬁ € (1,2).
Now, (apzk)keN is a sequence of states that are bounded below by % and above by

2k, and so (agzi)gen C Sy . For k > k' one has m(zg, 2x) < 55 and m(zy, zy) <

K / ng
7. Indeed, we see m(wy,zp)rr < wp demands m(zg,zr )k Zjink,+1pj <
%Z?gnk,ﬂpj, while m(xp, xp)xr < xp implies m(ag, xg)ksn, < k'sp,. There-

fore by Theorem 2.3.(2),

V
e
®
X

d(agxy, ap ) >

uniformly in k. Thus S;° does not admit a finite cover by balls of radius % orless. O

Remark 2.13. Note that unlike in the finite dimensional case (see [21, Lemma 3.9]), for
infinite dimensional M the d-topology and || - ||1-topologies are not homeomorphic on S*
or even on S;°. Indeed, let (p,),en C M be as in Lemma 1.2.(iii). Then for 0 < o < 1
and

1

Ty 1= at(l—a) () (Pn +a(l = pn)),

x, — 11in LY(M,7) but it is not a Cauchy sequence with respect to d. W

Lemma 2.14. Let (M, 1) be a tracial von Neumann algebra with Hennion metric d. Let
(Zn)neny C Sp and z € S.

(1) If d(zyn,x) — 0 then x € Sy and ||z, — x| — 0.
(2) Let (zn)neny C Sy with ||z, — x| = 0 and suppose x € S;°. Then, d(x,,z) — 0.

Consequently, (S,,d) and (Sy, || - ||) are homeomorphic.
Proof. (1): Suppose (z,)neny C Sy converges to some x with respect to d. Note that

necessarily € S, by Theorem 2.12. Let Ny € N be sufficiently large so that
d(zn,x) < 5 for all n > Np. Then, we see from the definition of d that,

3 < m(xp, x)m(z,z,) < min{m(z,,z), m(z,z,)}
using the fact that m(z,y) < 1 for states. In particular, this means that for any

n > Ny, we have x,, < 3z whence ||z, || < 3||z|. Let R = maxi<j<n,—1{llz;l, 3|z}
so that (zn)nen C (M)R.
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Now, for 1 > € > 0 let N € N be sufficiently large so that for n > N, we have
d(zp,z) < e. In particular, this implies that

1—
T ‘< m(zy, 2)m(z, z,) < min{m(z,,z), m(z, x,)}.
€

This yields the following inequalities

1—¢ 1—¢
<z, and —x
1+e 1+e

n <,
for all n > N. Rearranging, we get
T, <+ 2R and r <z, + 2R,
for any n > N. Therefore
—2eR=2x—-2cR—x <z, —x<2eR+x—2x=2R,
whence for any & € L?(M, 1) with [|£]]2 = 1 we have

[((zn — )€, §)| < 2€R,

for any n, k > ng. Taking the supremum over ¢ this yields ||z, — x| < 2¢R. Hence
T, — T in operator norm.

: Suppose (Zn)nen C S converges to x € S, with respect to the operator norm.

Let € > 0. Since z € S, there exists § > 0 so that « > §. So for sufficiently large
n € N we have

Tn <z+|zn—z|| <+l < (14 €z,

and hence m(z,,z) > (1 + €)~ L. Next, for sufficiently large n one has

N

Increasing n if necessary, we then obtain
1)
x<zp+llz—z, < xn+e§ < (14 €)an,

so that m(x,z,) > (1 +€)~t. Thus

1-(1 -2
lim d(z,,z) < ﬁ,
n—oo 1—|—(1—|—€)_2

and letting ¢ — 0 completes the proof. 0O
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Part (2) of Lemma 2.14 fails when the limit is not boundedly invertible—even in the
finite dimensional case—as the following example demonstrates. Moreover, this example
also shows that the Hennion metric is not equivalent to metric induced by the operator
norm on S;°, despite inducing the same topology by Lemma 2.14.

Example 2.15. Let M = My be the algebra of 2 x 2 matrices and consider the family
of states (with respect to the normalized tracial state)

2 1 0
X, =— .
K 1—1—77{0 77}

As n — 0, the state X, converges in operator norm to the re-scaled projection P =

[8 8} . However, for any ' < 7, one can calculate that

nl

m(Xanfly)m(Xn’aXn) = E
Therefore by choosing n > 37, one obtains d(X,, X,/ ) > %, thus (X,),>0 has no sub-
sequences which are Cauchy with respect to the Hennion metric. We also mention that
because of [21, Lemma 3.3(4)], d(X,,,P) =1foralln>0. N

3. Contraction mappings on S

In this section we will consider linear maps v on L'(M,7) and their contraction
properties with respect to the Hennion metric. We completely characterize faithful maps
that contract on S in terms of an operator inequality (see Theorem 3.11). Of particular
interest for application are those « which arise as the preduals of normal positive maps
on M which are investigated in Section 3.2.1.

3.1. The class of mappings and projective actions

Lemma 3.1. For a positive linear map v on L*(M, ), kery N S is open in the Hennion
metric. If v is bounded, then this set is also closed.

Proof. For any x € ker yN.S, the open ball By(x,1) is contained in ker yN.S. Indeed, since

y € By(x,1) implies that m(z,y)m(y,x) > 0, we then have y < mx and applying ~y

gives y € kery N S. If 7 is bounded, then kery N S is closed with respect to || - ||1, and
so Theorem 2.7 implies it is also closed in the Hennion metric. O

Definition 3.2. Let v be a positive map on L!(M, 7). The projective action of v on z € S
is the map v-: S\ kery — S given by
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Remark 3.3. Although the projective action is non-linear, it does preserve lines in the
following sense. Given z,y € S \ ker~y, for any ¢ € R satisfying tx 4+ (1 —t)y € S\ kery
there exists s € R so that

v(tz+ (1 -y)=sy-x2+(1-35)7 v
namely, s := 7(y(tz))7(y(tz + (1 — t)y))~!. In particular, if ¢ € [0,1] then s € [0,1]. W
The following lemma implies projective actions of positive maps are always Lipschitz
continuous with respect to the Hennion metric. We explore the associated Lipschitz
constants in greater detail in Section 3.2.
Lemma 3.4. For a positive linear map v on L*(M,T),
d(y-z,v-y) < d(z,y), (6)

for all x,y € S\ ker~y.

Proof. First observe that m(y - x,v - y)m(y-y,v-z) = m(y(z),v(y))m(v(v),v(x)) by
Theorem 2.3.(2). Thus

L—m(y-zy-ymly-y,v-z) _ 1=m(y(x),1(y)mH(y),7(x))
L+m(y-z,y-y)m@y-y,v-z)  L+m(y(x),v(y)m((y),v(z))

d(y-z,v-y) =

Next, applying v to m(z,y)y < « yields m(z,y)y(y) < ~(x) so that m(z,y) <
m(y(x),¥(y)). Since %—3 is decreasing, we can continue the above computation with

1-— m(x, y)m(ya ‘T)

d(y-z,v-y) < =d(z,y). O

~ 1+m(x,y)m(x,y)

For faithful maps, the above inequality can be refined as follows.

Lemma 3.5. Let v be a faithful positive linear map on L'(M,7). For any x,y € S, we
have

dly -,y y) <d(y-A_,y- Ap)d(z,y) (7)
where Ay are defined as in Lemma 2.0.

Proof. The proof is essentially the same as in [21, Lemma 3.10(1)]. Let =,y € S be
distinct and note that we can assume v - x,7y - y are also distinct since otherwise the
inequality is trivially true. Applying Lemma 2.6 to the pairs z,y and v - z,v - y gives
Ay,By € S, ty,wy € R, and r,s,u,v € [0,1] satisfying
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Ar =tix+ (1 —ty)y x=rA_+(1—1)A4 y=sA_+(1—-s)A4
Bi=wyy-z+(1-wi)yy  y-o=uB+(1-u)By v y=vB_+(1-v)B;.
(8)

Additionally, we have

|l =s) = (1—1r)s CJu(l=v) = (1 —u)v
d@y) = i+ 1 =r)s A2y 9) = i T =
By Remark 3.3, we have
T(y(t£)) T(y (1 —t1)y))

v-Ay = vz

T(Y(trz + (1 —t1)y)) T(y(txz + (1= ts)y))

In particular, v - A lie in the convex set
{wy-z2+1-w)y-yeS:w_ <w<wi}NSs,

and therefore {py-A_ + (1 —p)y-Ay: p € R} NS has the same extreme points; namely,
By. Thus there exist p, ¢ € [0, 1] satisfying

v-A-=pB_+(1-p)By
v Ay =qB_ +(1-¢q)By,

and

_|p(1—=q)—(1-p)g
dly-A-yy-Av) = p(1—q)+(1-p)g

by Lemma 2.6. Using the above formulae we have

uB_+(1—u)By=v-z

T(y(A))rp + (v (A1) (A —7)q
7(y(7)) N
T(y(A))r(l —p) + 7(v(A+)A ~ 7)1 —q)
7(y(7)) -

+

This determines u, 1 — u since By are distinct states (the line connecting them contains
the distinct states 7 - « and 7 - y) and are therefore linearly independent. A similar
computation yields
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T(y(A-))sp +7(v(A))(A = 5)g

v =

7(v(y))
|y T0(A))s( = p) +7(y(A4+))(A = 5)(1 —q)
(v(y)) '

Writing o := 7(y(A-)) and g8 := 7(y(44)), we have:

d(y-z,7v-y)
CJu(l=v) = (1 —u)v
u(l =) + (1 —u)v
_ aBlp(l —gq) — (L —p)g|lr(1 —s) — (1 —r)s]
20°p(1 = p)rs +af(p(l —q) + (1 = p)g)(r(1 — s) + (1 —r)s) +28%¢(1 — ¢)(1 — r)(1 — s)
PA—-q) ~A-plallrA—s) = A—r)s| _ . _ 4
S — 0+ 0Pl —s)+a-ns (AT A,

where the second equality follows from an abundance of arithmetic and the inequality
follows from 2a%p(1 — p)rs +26%¢(1 —q)(1 —7r)(1 —s) > 0. O

3.2. Contraction mappings

Given a metric space (X, p), recall that a mapping T : X — X is said to be a
contraction mapping if there is a constant 0 < ¢ < 1 so that p(T(p1),T(p2)) < gp(p1,p2)
for all p1,ps € X. Since we have shown (Theorem 2.7) that the normal state space
S C LY(M,7) is complete in Hennion’s Metric, we shall aim to give a characterization
of a large class of contractions with respect to Hennion’s metric.

Definition 3.6. The Hennion contraction constant of a faithful positive linear map + on
LY (M, ) is the quantity

d(v-xm-y). )

c(vy) := sup
( ) z,yeS d(x,y)

We say + is a strict Hennion contraction if ¢(y) < 1, and we denote by SHC(M) the
family of all such maps.

Lemma 3.4 implies ¢() < 1 for all faithful positive linear maps v on L'(M, 7). Using
Lemma 3.5 we actually have

d(y-z,7v-y)
RV BT Y < gy A~y Ay,
d(m,y) <d(y v-AL)

and consequently ¢(y) < diam(~-S). The reverse inequality is a consequence of d(x,y) <
1 for all z,y € S, and so we have proven the following:
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Proposition 3.7. For a faithful positive linear map v on L*(M, ) one has
c(y) = diam(y - S).

If we further assume ~ is bounded as linear operator on L!'(M,7), then the joint
lower semicontinuity of d with respect to || -||; (see Theorem 2.9) implies the contraction
constant can be witnessed on any || - ||;-dense subset of L!(M, 7).

Proposition 3.8. Let v be a bounded faithful positive linear map on L*(M, 7). For any
| - [|1-dense subset So C S, one has

(7) = diam(y - So).

Proof. Let n < ¢(v) and let x,y € S be such that

n<d(y-z,v-y) <c(v).

Letting (z)neN, (Yn)neN C So be sequences converging to z and y, respectively, with
respect to || - ||l1. Then v -2, — v -2 and -y, — -y with respect to || - ||1, and so
Theorem 2.9 implies

diam(y - Sp) > liminfd(7y - @p, v - yn) > d(v - 2,7 y) > .
n—oo
Letting n — ¢(y) completes the proof. O

Example 3.9. Let (M, 7) = (M, %Tr) be the n xn matrices equipped with its normalized
trace. If v: M,, — M, is strictly positive in the sense that ~v-.S C S, then it is a strict
Hennion contraction. Indeed, S is compact in this case and therefore

c(y) = diam(y - S) = d(y - z,7 - y),

for some z,y € S. Using Theorem 2.12.(2), we see that ¢(y) < 1. Conversely, if ~ is a
strict Hennion contraction and -1 € §*, then ~ is strictly positive by Theorem 2.12.
]

Example 3.10 (A Non-Ezample). Let (M, 7) = (M, - Tr) be the n x n matrices equipped

T is a unital and tracial map

with its normalized trace. The transpose map = — x
that is well known to be positive but not completely positive (see [23]). Moreover, for
2,y € (M) one has z < y iff 27 < yT. Thus S > 2 — 27 is an isometry with respect

to d and is therefore not a strict Hennion contraction. M

We have seen in Theorem 2.7 that (S, d) is a complete metric space, and so the Banach
Fixed Point Theorem implies a strict Hennion contraction v has a unique fixed point:
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~v-x9 = x¢ for some xy € S. In fact, this along with the partial order on the normal state
space can be used to characterize when one has a strict Hennion contraction:

Theorem 3.11. For a faithful positive linear map v on L*(M,T), the following are equiv-
alent:

(i) v is a strict Hennion contraction.
(ii) For some xg € S there exists n € (0,1] so that

nro <vy-x <nlag Vz € S.

In this case, xo can be taken to be the unique fixed point of the projective action. Moreover,
if (v-S)N S, # @ then the above are further equivalent to

(iii) For each yo € S there exists r € (0,1] so that
/iyogfy-ngi_lyo Vo € S.
In this case, one has y-S C Sy°.

Proof. (i) = (ii): By the discussion preceding the statement of the theorem, there exists
a unique xg € S so that v - x¢g = x¢. Then Proposition 3.7 gives

d(’}/ ) I‘7$0> = d<7 TX, SU()) < c(’Y) < 17
for all z € S. Arguing as in Theorem 2.7, we see that

L—c(y) .
}> Tre) =7

min{m(y - z,zg), m(zg, v - )
for all z € S. Thus
nre <m(y-x,x0)xo < v-x < mxg,y- x)flxo < n 1z,
as claimed.

(1) = (4): It follows from nxg < -z < n~txg that m(y -z, z0)m(zo,v - ) > n? for all

x € Sp. Using Theorem 2.3.(3), we then have

m(y -,y -y)m(y-y,v-z) >n*

for all z,y € S, and therefore
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Thus

. 1
() = diam(y - §) < 7

<1,
where the first equality follows from Proposition 3.7.

Now suppose (y-S5) NS # @. If  is a strict Hennion contraction, then - S C S
holds by Theorem 2.12. Consequently, for the fixed point x¢g = 7 - zg if we let § :=
min{||zo[| 71, lzg |71} € (0,1] then 61 < a9 < 7 '1. Let yo € S;°, let n € (0,1) be as in
(i), and set & := dnpmin{[jyo|| =", [lyo I ~*}. Then one has

Kyo < 0N <nwo <y x < we < (6n) 'L < Ky,
for all x € S. The converse (namely, (i7i) = (i¢)) is immediate. O

Example 3.12. Fix a non-zero m € L'(M,7); and n € (0,1]. Let {(a;,m;) € M4 x
LY(M,7);: i € I} be a family satisfying:

(1) a:=)_;c;a; converges in the strong operator topology;
(2) 7(xa) >0 for all x € LY(M, 7)1 \ {0};
(3) pqm <m; <n~*mforallicl.

For x € L*(M, 1), we claim that
y(z) = Zr(xai)mi
i€l

converges. Indeed, let x = v|z| be the polar decomposition and let ¢ > 0. The strong
summability of the a; implies there exists a finite Fy C I so that whenever a finite subset
F c I satisfies F'N Fy = & then

> ailal?

icF

Zaiv\xﬁ

i€l

)

2

< €.
2

Let F,G C I be finite subsets both containing Fj so that FAG is disjoint from Fy. Let
w be the polar part of

Z T(zai)m; — Z 7(za;)m;.

icF i€G

Then using ||m;|j; = 7(m;) < n~1r(m) we have
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Z T(za;)m; — Z 7(za;)m;

el 1eG 1
< > fr(asw)|r(wm;)]
1€EFAG
1 1 1 1
< > Wavlz|2,a? |z]2)2ln~ 7 (m)
e FAG
1 1
3 12 ’ k2 ’ 1
<| > llaZvlz|?|3 S llaZ x|z 3] ntr(m)
1€FAG 1€EFAG
1 1
2 2
< 3 awm|%,v|x|%> < > ai|x|%,|a:%> =l (m)
iIEFAG 2 \iEFAG 2

1
< ellzl|fn~ r(m).

Thus the net of partial sums is Cauchy and converges in L!'(M, 7). We therefore have
a positive linear map v on L'(M,7), which is faithful by (2). One can also show 7 is
bounded using similar estimates as above:

2)0)| < Y |r(zai)r(md)] < Y |r(xag)|n~ r(m)|[b]
i€l i€l
< (avla|?, vle|2)3 (ala]2, |212)F " r(m)[B] < llallzlln~" 7 (m)]bl,
for all b € M. Hence ||v|| < [la|ln~ 7 (m).
Now, by applying 7 to the inequalities in (3), one can show that

5 m

7(mi)n m) <m; < T(my)n~ g

Since

T((@)) = Y 7(xai)r(mi),

icl

for x € L'(M, 7)4, it follows that for zg := € S one has

'r(m

) < Z 7(za;)T(mi)n 2-%O = 7(7(@)7772%0,
el

and similarly one has y(x) > 7(v(z))n?zo. This shows that v is a strict Hennion contrac-
tion by Theorem 3.11. In particular, there exists a fixed point; that is, v(x) = 7(vy(x))x
for some x € L'(M, 7). Note that m controls the component of S in which the projective
action of v is valued. W
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The following lemma will be needed in later sections once we start considering quan-
tum processes, which in the context of this article are compositions of positive maps.

Lemma 3.13. For faithful positive linear maps a, 3 on L*(M,T), one has

(o B) < c()e(P).

Consequently, the family of strict Hennion contractions is invariant under (pre or post)
composition with faithful positive linear maps on L*(M,T).

Proof. For z € L'(M,7)4 \ {0} one has

(@of) = ——
so that

d((aop) -z, (o f)-y)) =dla-(B-z),a-(8-y)) <cla)dB-x,b-y) < c(a)c(B)d(z,y).

Hence c(ao ) < c(a)e(8). O

3.2.1. Strict Hennion contractions from normal maps

A positive normal map ¢: M — M can induce bounded positive maps on L'(M,7)
in two ways: by the predual map ¢., or by extending ¢ itself L'(M,7) provided it is
7-bounded (see Lemma 1.6). We will investigate when these induced maps are strict
Hennion contractions, but we must first characterize when they are faithful:

Lemma 3.14. Let ¢: M — M be a normal completely positive map.

(1) ¢ is faithful if and only if p(M)M is weak* dense in M.
(2) ¢ admits a bounded faithful extension to L*(M,T) if and only if ¢. is M -preserving
and ¢.(M)M is weak* dense in M.

Proof. (1): The weak* closure of ¢(M)M is a weak* closed right ideal in M and hence
of the form pM for p := [¢p(M)M]. Thus ¢(M)M is weak* dense if and only if p = 1.
Now, suppose ¢, is not faithful and let z € L*(M,7), be a non-zero element in its
kernel. For all a,b € M we then have

2 g(a)bll3 = 7(b"d(a) w(a)b) = T('/*¢(a”)*b*be(a")z"/?)
< Bl le()lI7 (@' $laa*)at/2) = Bl [$(1) |7 (d (2)aa”) = 0.

lI-ll2

VE VAL vilE

Thus ¢(M)M'"* C kerz=. Since  is non-zero, so is 22, and therefore ¢(M )M
must be a proper subspace of L?(M, 7). The projection onto this subspace is p by
definition, so p # 1.
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Conversely, if p # 1 then for all « € M we have

7(¢«(1 = p)a) = 7((1 = p)é(a)) = ((1 = p)¢(a), 1)2 = 0.

Since this holds for all @ € M, it follows that ¢.(1 —p) = 0.

(2): The equivalence of ¢ admitting a bounded extension to L!(M,7) and ¢, being M-
preserving follows from Lemma 1.6. The rest is then a consequence of part (1), with
the roles of ¢ and ¢, reversed. 0O

Note that if ¢ is unital or even satisfies that 1 belongs to the weak™ closure of ¢(M),
then ¢, is faithful by the previous lemma. Another way to guarantee faithfulness of
¢, (which avoids assuming that ¢ is completely positive) is to assume that ¢(1) is
invertible. Indeed, this implies ¢(1) > 01 for some § > 0, which is equivalent via duality
to 7(¢(z)) > o7(z) for all z € LY (M, 7)4.

Remark 3.15. In the proof of Lemma 3.14.(1), complete positivity was only used for the
Schwarz inequality:

o(x) o(z) < [lp(Dll¢(z"2) Vo e M.

Thus it would be sufficient to assume ¢ was merely 2-positive (see [23, Proposition
3.3]). W

As a consequence of the following lemma, it will turn out one of ¢, or the extension
of ¢ is a strict Hennion contraction if and only if the other is, provided both maps exist
and are faithful (see Corollaries 3.17 and 3.18).

Lemma 3.16. Let ¢: M — M be a positive normal map with a bounded faithful extension
to LY(M,7) and a faithful predual ¢.. Then c(¢) = c(¢.).

Proof. By Proposition 3.7 it suffices to show diam(¢ - S) = diam(¢. - S), and by the
formula for d in terms of m along with Theorem 2.3.(8) it further suffices to show

i { 2802)

Eyig s,y € LYM, 7)1, a,be My, 7(bp(x)), m(ag(y)) > 0}

cxyy € LNM, 1)y, a,b€ My, 7(bp.(x)), T(ad.(y)) > 0} .

Since ¢ and ¢, are both bounded on L!(M, 7), neither of the above infima is changed if
we restrict to z,y € M. But then

T(ag(x)) T(bp(y)) _ T(P«(a)z) T(9x(b)y) _ T(x¢.(a)) T(yP«(b))
T(a¢(y)) T(bo(z))  T(dx(a)y) T(du(b)z)  T(264()) T(yds(a))

implies the two infima are equal. O
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The next results are corollaries to Theorem 3.11.

Corollary 3.17. Let ¢: M — M be a positive normal map with faithful predual ¢.. Then
¢« 1s a strict Hennion contraction if and only if for some xo € S there exists n € (0, 1]
so that

n7(zoa)p(1) < d(a) < n'r(zoa)p(l)  Va € My.

Moreover, ¢, - S C S) if and only if one can choose xg =1, and in this case ¢ extends
to a bounded faithful map on L*(M,T) which is also a strict Hennion contraction.

Proof. Noting that

(@ = 7(20a)p(1))s = 2 = 7(u(2)) 0,

we see that from Lemma 1.7 that the inequalities on ¢ are equivalent to

n7(dx(2))z0 < () <7 (Pu(2))z0 Vo € LY(M,7)4.

These are in turn equivalent to ¢, being a strict Hennion contraction by Theorem 3.11.
The last part of this theorem also implies the second if and only if statement.

Now, suppose n7(a)p(1) < ¢(a) < n~ir(a)¢(1l) holds for all a € M, . Taking the
trace yields n7(¢(1))7(a) < 7o ¢(a) < n~17(¢(1))7(a). This shows ¢ admits a bounded
faithful extension to L'(M,7) and it is necessarily a strict Hennion contraction by
Lemma 3.16. O

Corollary 3.18. Let ¢: M — M be a positive normal map with a bounded faithful exten-
sion to L*(M, 7). Then ¢ is a strict Hennion contraction if and only if for some by € Sy,
there exists n € (0,1] so that

n7(é(a))bo < ¢la) <~ r(d(a))by  Va € My.

Moreover, ¢ - S C S, if and only if one can choose by = 1, and in this case ¢, is a
bounded faithful map on L*(M, 1) which is also a strict Hennion contraction.

Proof. The first if and only if statement follows immediately from Theorem 3.11, and
the last part of this theorem also implies the second if and only if statement.

Now, suppose n7(¢(a)) < ¢(a) < n~'7(¢(a)) holds for all a € M. Invoking
Lemma 1.7 we obtain

N7 ()« (1) < pu(x) <t (2) (1) Vo e LN M, 7).

This implies ¢, is faithful, and hence is a strict Hennion contraction by Lemma 3.16. O
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Corollary 3.19. Let ¢: M — M be a positive normal map. Then the following are equiv-
alent.

(i) There exists n € (0,1] so that nT < ¢ < =17,
(ii) There exists § € (0,1] so that 61 < 7o ¢ < 6~ ', and ¢ has a bounded faithful
extension to L' (M, ) which is a strict Hennion contraction valued in Sy’ .
(iii) There exists 6, € (0,1] so that 6,7 < 7o ¢u < 0.7, and ¢ is a faithful map on
L*(M, 1) which is a strict Hennion contraction valued in Sy
Proof. (i) = (ii), (#i): By Lemma 1.7, n7 < ¢ < n~17 is equivalent to n7 < ¢, < n~ i1,
since 7, = 7. Applying 7 to these inequalities gives nT < To¢ < n~!7, so that ¢ extends
to a bounded faithful map on L'(M, 1), and n7 < 70 ¢, < 17, so that ¢, is faithful.
Since

1°7(¢(a)) < n7(a) < pla) < n~'r(a) < n7?7(¢(a)),

for all @ € M, Corollary 3.18 implies ¢ and ¢, are strict Hennion contractions. They
are both necessarily valued in S since n < ¢(1), . (1) < n~ 1.

(ii) = (i): Theorem 3.11 yields a & € (0, 1] satisfying kTo¢ < ¢ < k™ 170¢, and therefore
KOT < kTop < ¢ < kK lrogp <k l5Tlr
So we take 1 := k0.

(#i1) = (4): Since ¢y -1 € M, we have that ¢.|p: M — M is a positive normal map (see

1

2, Proposition 2.5.11]). So the same argument as in (i) = (i) gives n7 < ¢, < n~'7 for
[ p g gives 7] "

some n € (0,1], and appealing to Lemma 1.7 completes the proof. O

Theorem 3.20. Let ¢: M — M be a normal completely positive map such that To¢p < T
(¢ is subtracial), p(1) <1 (¢ is subunital), and 1 — ¢(1) belongs to the weak* closure of
d(My). If ¢u is a strict Hennion contraction then the unital tracial map

" (T —70¢.)(x)

Bule) = 0ula) + TS (= 6.(1)

is a strict Hennion contraction valued in Sy’ . In this case, the extension of

7 (T —71o¢)(x)

3w) = (o) + T (1= (1)

to LY (M, 1) is also a strict Hennion contraction valued in S;°.
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Proof. We first observe that the assumption on ¢ implies 1 = (1 — ¢(1)) + ¢(1) belongs
to the weak* closure of ¢(M)M so that ¢, is faithful by Lemma 3.14. We also claim that
for all z,y € L*(M, 1) \ {0} one has

m(x(x), ¢« (Y))(T = 7 0 ¢:)(y) < (T — 70 du)(2).

Indeed, if (7 — 70 ¢, )(y) = 0 then this holds trivially, so suppose (7 — 70 ¢,)(y) > 0. If
we let (a;)ier C M4 be a net such that ¢(a;) — 1 — ¢(1) weak™, then

(r-rod)@) _rla(l-6() . r(o(a)) _ . r(b(x)a)
(T=700)(y) T —0(1) imeeT(yd(ai)) iwoo T(Pu(y)ai)

= m(§«(x), ¢+(y)),
where we have used Theorem 2.3.(8) in the last inequality. Using this we have

(¢4(2), 4 (Y)) (T — 7 0 B:)(y)
(T—To¢)(1)

Thus m(¢. (), o« (v)) < m(d«(x), d«(y)), and consequently

+ I (1= u(1)) < ).

(s (), 2 (1)) (y), B () = M (), D (¥)) MU D4 (1), D4 ()
= m(¢s - T, G - Y)M(P - Y, Ps - T),

where the equality is due to Theorem 2.3.(2). From this we obtain d(¢.(z), d.(y)) <
d(¢ps -z, ¢ - y) for all z,y € S, and hence

diam (¢, (S)) < diam(e, - ).

Thus if ¢, is a strict Hennion contraction, then Proposition 3.7 implies ¢, is as well,
and in fact we have ¢,(S) C S;° because it is unital. Since ¢, is the predual map of ¢,
Corollary 3.19 gives that the extension of ¢ is also a strict Hennion contraction valued
inSS. O

Recall [11] that a positive normal map ¢: M — M is said to be reducible if there is a
nontrivial projection p € M and a constant A > 0 so that ¢(p) < Ap. This is equivalent
[11, Proposition 1] to the statement that ¢(pMp) C pMp. If there is no such nontrivial
projection, ¢ is said to be irreducible.

Corollary 3.21. If v is a bounded strict Hennion contraction valued in S;°, then ~|p is
irreducible.

Proof. Note that v(M) C M by virtue of v - S C S;°. Thus if v is bounded as a map
on LY(M, ) then v|pr: M — M is normal. Theorem 3.11 then gives a x € (0, 1] so that



B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485 39

~v(p) > k7(y(p))1 for all projections p € M. Thus if v(p) < Ap for some A > 0, then
necessarily p=1. 0O

4. Ergodic quantum processes

Definition 4.1. Let (M, 7) be a tracial von Neumann algebra, let (Q,P) be a probability
space equipped with T' € Aut(Q,P), and let v,,: L*(M,7) — L*(M,7) be a bounded
random linear operator. We call the family of bounded random linear operators

T
I‘n,m("‘)) = VTnw O Yn—1uy O+ O YTmy n,mec Z, n >m,

an (interval) quantum process on L'(M, 7). If T is ergodic, then we call the above an
ergodic quantum process on L!'(M, 7). When no confusion can arise, we will suppress
the superscript 7'

In order to avoid measurability issues, we will from now on assume our von Neumann
algebras all have separable predual. In Section 4.3 we establish a number of convergence
properties for ergodic quantum processes under the assumptions that -+, is bounded,
positive, and faithful almost surely and that with positive probability I';, ,, is eventually
a strict Hennion contraction. These results are infinite dimensional generalizations of [21,
Theorems 1 and 2]. Of course, here one lacks the reflexivity M, (C), = M, (C) present
in the finite dimensional case, so in Section 4.2 we consider quantum processes on M.

4.1. Contraction constant asymptotics

This first lemma addresses some technical aspects of measurability. Recall that in
Section 3 we rarely required boundedness of the positive maps on L'(M, 7). However,
it will be essential in this section in order to apply Proposition 3.8 and leverage our
assumption that L'(M,7) is separable.

Lemma 4.2. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(Q,P) be a probability space, and let vy, : L*(M,7) — LY(M,7) be a random linear
operator that is positive and faithful almost surely. For any x,y € S one has m(v,-x, v,
y) € L>®(Q, P). Furthermore, if 7, is bounded almost surely then c(y,) € L>(Q,P).

Proof. Since L'(M, ) is separable, there is a countable o-WOT dense subset {a, }nen C
M, by Theorem 1.1. By setting a,, — % % equal to +o00 whenever 7(v,(z)) =
0 or T(any(y)) = 0, we see that

g ey) = 7(v(y)) in T(ay(z)) a _ 7(v(y)) 0 T(any(z))
My @7 9) 7(v(2)) f{ ay(y)) €M+\{O}} 7(y(z)) nzfl T(any(y))

We have therefore expressed m(y - z,7 - y) as the infimum of a sequence of random
variables, hence it is also a random variable.
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Now suppose 7, is bounded almost surely. Fix a countable || - ||;-dense subset Sy C S.
Then,

¢(yw) = diam(y, - So) = sup d(Ve T, Y+ Y)
z,y€So
almost surely by Proposition 3.8. The first part of the proof implies d(v,, - @, v, - y) is
measurable for each x, y € Sy, and hence the right-most expression above is measurable as
the supremum of a countable set of measurable functions. Since the contraction constant
is always bounded, we get ¢(v,) € L*(Q,P). O

Remark 4.3. For v, as in Lemma 4.2, when ~,, is bounded almost surely the separability
of L'(M, 1) also implies that w + |7, || is measurable. Indeed, let Ay and X be countable
subsets of the unit balls of M and L'(M, 1), respectively, that are dense in the o-weak
operator and || - |1 topologies, respectively. Then,

[Ywll = sup |7(aye (2))];
ac€Agp
zeXo

almost surely, and thus ||, is measurable since each 7(a7y,(x)) is measurable by as-
sumption. It follows that

P(llvll < o0 and yu(@)llx < v llllzll: Vo € LY (M, 7)] = 1.

In this case, one says that v, is a bounded random linear operator (see [6, Definition
2.24]). N

In light of the above remark, we henceforth adopt the convention of saying a random
linear operator v: Qx L'(M, 1) — L'(M,7) has a property associated to linear maps on
LY (M, 7) if for almost every w € Q the map L*(M,7) 3 x — 7, (x) has the corresponding
property (e.g. bounded, positive, completely positive, faithful etc.). Provided the list of
properties is countable, the event that -, has all of the properties still occurs with
probability one.

Recall from Definition 3.6 that SHC(M) denotes the set of all strict Hennion con-
tractions on M. The following lemma analyzes a standard hypothesis in our convergence
results. It tells us that as long as the event [Ty, ,,, € SHC(M)] occurs with positive prob-
ability for some n > m, then for any m € Z the sequence I'y, 1, I'pyp1,m, - - - Will almost
surely land in SHC(M) (and by Lemma 3.13 remain there forever after), and likewise
for the sequence I'y, ,, Iy n—1, ... for any n € Z. This is comparable to [21, Assumption
1] by Example 3.9 (see also [21, Lemma 2.1]).

Lemma 4.4. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(,P) be a probability space equipped with ergodic T € Aut(Q,P), let v, : L*(M,7) —
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LY(M,T) be a bounded positive faithful random linear operator, and let Ty, ., be the
associated interval quantum process. Suppose

P[3n,m € Z such that n >m and T, ,,, € SHC(M)] > 0.
Then

PVmeZ In>m
such that Ty, ,, € SHC(M)] =P[Vn € Z 3m < n such that T, ,, € SHC(M)] = 1.

Proof. Since

0 < P[3n,m € Z such that n > m and

Tpm € SHC(M)] < Y P[3n > m such that T, € SHC(M)],
meZ

it follows that
P[3n > mg such that Ty, ,,, € SHC(M)] > 0

for some mg € Z. Observe that 'y, 1, (W) = Tngm—mg,m (T "w) for each m € Z and
consequently

[3n > m such that T, ,,, € SHC(M)] = T™°~™[3In > myg such that Ty, ,,,, € SHC(M)].
(10)

Also note that for any m > m/ one has
[3n > m such that T, ,, € SHC(M)] C [3n > m/ such that T, v € SHC(M)]
by Lemma 3.13. In particular, we have

T~ [3n > my such that T, ,,,, € SHC(M))]
= [3n > mg + 1 such that Ty, ,,,+1 € SHC(M)]
C [3n > myg such that I',, ,,, € SHC(M)].

Thus this event occurs with probability one by the ergodicity of T'. Since T is measure
preserving, this along with Equation (10) yields

P[3n > m such that 'y, ,,, € SHC(M)] = P[3In > myg such that Ty, ,,, € SHC(M)] =1
for all m € Z. Finally, it follows from continuity from above that

P[Vm € Z 3n > m such that T, ,, € SHC(M)]=1. O



42 B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485

Remark 4.5. If one removes the ergodicity assumption in Lemma 4.4, the same proof
shows

P[3n > m such that T, ,,, € SHC(M)] = P[3In > my such that I',, ,,,, € SHC(M)] >0
for all m € Z, and consequently

PVmeZ In>m
such that T, ,, € SHC(M)] = P[3n > mg such that T, ,,,, € SHC(M)] > 0.

Similarly, P[v¥n € Z 3m < n such that I';, ,, € SHC(M)] >0. W

These processes induce a natural filtration on the probability space. We will see that
one can define a stopping time with respect to the following filtration:

Notation 4.6. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(€2, P) be a probability space equipped with ergodic 7' € Aut(Q, P), let v, : L' (M, 1) —
LY(M, ) be a bounded positive faithful random linear operator, and let Iy, ,, be the
associated interval quantum process.

(a) Fix an integer m € Z. For n > m let
FH(n,m) = o(c(Ty ), eTh_1m)s - (T ),

so that the family F*(e,m) := (F*(n,m))necm,) is the natural filtration with
respect to the stochastic process ¢(I's ) := (¢(T'nm))nejm,o0)-

(b) Similarly, we will denote by F~(n, ) := (F~(n,Mm))me(—occ,n the natural filtration
associated with ¢(I'n o) := (¢(I'ym))me(—oo0,n] given by

Fo(n,m) = o(e(Ty ), e(Tn 1), - oo (T m))-

The following lemma is similar to [21, Lemma 3.11] and uses many of the ideas present
in its proof as well as the proof of [21, Lemma 2.1].

Lemma 4.7. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(Q,P) be a probability space equipped with ergodic T € Aut(Q,P), let v, : L*(M,7) —
LY(M,7) be a bounded positive faithful random linear operator, and let Iym be the
associated interval ergodic quantum process. Suppose that

PEn,meZ:n>m and T, ,,, € SHC(M)] > 0.
(1) There exists a constant C € [0,1) so that for all m € Z

lHm  ¢(Dp )7t = C

n—-+oo
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almost surely, and for alln € Z

lim C(me)n,}n“ =C

m—r—o0

almost surely.
(2) Fork e (C,1) and each k € Z, there exist finite almost surely random variables D j,
and Dy, o satisfying

Da 1(T*w) = Dy gy o(w) and Dy.o(T*'w) = D ir.e(w)
forallt € Z, and

c(Tp) < Dy prmF 1

C(Fk,m) < Dk,oﬁk_m+1v

almost surely for all n > k > m. In particular, ¢(Tpn k), c(Tkm) — 0 exponentially
fast almost surely as n — 400 and m — —oo.

(3) For each k € Z, with respect to Ft(e,k) (resp. F~(k,e)) the random wvariable
V(ley) == inf{n > k: Ty, € SHC(M)} (resp. v(Tg,e) = inf{m < k: Ty €
SHC(M)}) is a stopping time that is finite almost surely.

Proof. (1): Fix m € Z and let X}, :=log[c(T'm+k—1,m)] for £ € N. By Lemma 3.13,
Xpre(w) < Xp(w) +log[e(Tmiht—1,mrk(@)] = Xp(w) + Xo(THw),

holds almost surely. Additionally, X ,j = 0 since ¢(Ty4k-1,m) < 1. Thus, by writ-
ing m = m+ k — 1, an application of Theorem 1.10 tells us that the sequence
(c(Th,m) R Jn: n>m converges almost surely to the constant

Cpy = exp( inf ;Euog(c(rn,m))]) .

nn>mn —m+ 1

Now, Lemma 4.4 tells us that

U [e(Tym) < 1] = [3n > m such that T, ,,, € SHC(M)],

n>m

occurs with probability one. Therefore there exists ny > m so that Plc(Ty,, m) <
1] > 0. Consequently,

1

1
— - <
log(Cyn) inf EUOg(C(Fn,m))] = mi—-m+1

ne>mn—m+ 1 E[log(¢(I'n,,m))] <0,

and so C,, < 1. Also, since T is measure preserving for any m,m’ € Z we have



44

B. Nelson, E.B. Roon / Journal of Functional Analysis 287 (2024) 110485

_ 1;20 =y IE[log(C(Fm+k,m))]

= inf = Ellog(c(Tmtim 0 T ™))

= 1 F ’ ’ = ’.
o0k + 1E[Og(c( m/+k,m ))] Cm

So we set C' := Cy.
Now, using Y}, := log[c¢(T'yn—k—1)], k € N and the fact that 7~! is also ergodic, the
same argument as above yields another constant C’ € [0,1) such that for all n € Z

1
! : - E
C = exXp (mlﬁfgn n—m-+ ]. [log(C( n,m))})

and

1
lim (T )7t =C'
m——0o0

almost surely. Given € > 0, let n > 1 be large enough so that

exp (%Euog(c(rn,l))}) <C+e
Then

C' = exp (m:h’lnf@ n_;HEuog(C(rn,m))O < exp (TlZIE[log(c(le))]) <Cte

Letting € — 0 yields C’ < C, and reversing the roles of n and m gives ¢’ = C.

: Fix k € (C,1) and k € Z and define

c(Lr,m)
k—m+1"

C(Fn,k)
n—k+1

Doy :=1V sup
nn>k K

and Dye:=1V sup
m:m<k K

which are random variables by Lemma 4.2. By the previous part, for almost every
w e N

lim C(ka)"—}c‘*l = lim C(Fk,m)k—}n“ =C < k.
n—-+oo m——o0

Consequently there is an ¢y > 0 (depending on k, k, and w) so that

c(Tng) c(Lrm)
ankr+1’ kaerl S 1

for all n > k + £y and m < k — £y, which implies
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(T k(w)) 1

Dy p(w) =1V n:kgr%agliHo s < e < 00,
_ c(Lgm (W) 1
Dk’.(w) =1v m:kz?f%{mgk gk—m+1 = Ko+l <o

Hence D, j, and Dy, . are finite almost surely, and the remaining properties follow
from their definition.
(3): This is an immediate consequence of Lemma 1.9. O

4.2. Ergodic quantum processes from normal maps

As noted above, in order to emulate the proofs of [21] it is necessary to consider the
duals of quantum processes, which according to Lemma 1.6 should correspond to random
normal positive linear maps on M. In fact, from the perspective of von Neumann algebras,
such maps may be even more natural than those on L!'(M, 7). The goal of this section
is to formalize this notion and relate it to random linear operators on L*(M, 7).

Definition 4.8. Let (M, 7) be a tracial von Neumann algebra and (2,P) be a proba-
bility space. A weak* random variable is a function f: Q — M such that 7(f(w)z) is
measurable for all € L'(M, 7). We say that a mapping ¢: Q x M — M is a weak*
random linear operator if w — ¢, (a) is a weak* random variable for all @ € M and
Plp(aa 4+ b) = ad(a) + ¢(b)] =1 for all a,b € M and o € C.

As we did with random linear operators on L'(M,7), we adopt the convention of
saying a weak*® random linear operator ¢: Q x M — M has a property associated
to linear maps on M if for almost every w € Q the map M 3> a — ¢, (a) has the
corresponding property (e.g. normal, positive, completely positive, 7-bounded).

We first establish the random version of the correspondence in Lemma 1.6 between
normal linear maps on M and bounded linear maps on L*(M, 7).

Lemma 4.9. Let (M, ) be a tracial von Neumann algebra with separable predual, and let
(Q,P) be a probability space. Up to almost sure equality, there is a one-to-one correspon-
dence between normal positive (resp. completely positive) weak™ random linear operators
¢ on M and bounded positive (resp. completely positive) random linear maps (¢y,)« on
LY(M,T) determined by

T((Pw)«(x)a) = T(xzdy(a)) weQ, xe L' (M,T), a€ M. (11)

This correspondence restricts to a one-to-one correspondence between T-bounded nor-
mal positive (resp. completely positive) weak* random linear operators on M and
M -preserving bounded positive (resp. completely positive) random linear operators on
LY(M,7). The former maps ¢., also admit unique extensions ¢W|L1(M’T) to LY(M,T)

that are M-preserving bounded and positive (resp. completely positive), and the latter
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maps (Pw)« also have restrictions (¢, )«|p to M that are T-bounded normal and positive
1
|L (M,T)'

(resp. completely positive). In this case, one has ((¢w)«|nr)s = Pu
Proof. By Lemma 1.6, it suffices to check measurability. For the first correspondence,
this is a consequence of Equation (11). (Note that we are invoking the separability of
L'(M, 1) here to reduce checking that (¢,,)«(7) is a random variable to checking that it
is weakly measurable.) For the measurability of extensions and restrictions, note that if
(bp)nen C M converges to x € LY(M,7) in || - ||;-norm, then for any a € M one has

H(0u(@)a) = Tm_ (6, (b)a) = Tim_7(bu(0.).()) = 7(2(6). ()
almost surely. Each 7(¢,,(b,)a) is measurable, from which it follows that the extension
¢|F M) is a random linear operator and the restriction (¢y)s|as is a weak* random
linear operator. O

Remark 4.10. Note that if ¢, denotes the norm of ¢,, on L!(M, 7) whenever the extension
exists, then w — ¢, is a random variable by Remark 4.3. Thus when L'(M,7) is sepa-
rable, ¢, being T-bounded almost surely is equivalent to there existing a (finite almost
surely) random variable ¢: Q — [0, 00] so that P[r o ¢, (x*z) < ¢, 7(z*x) Vo € M] = 1.

|

Of course, the first correspondence in Lemma 4.9 is still true without any positivity
assumptions, and consequently compositions of normal weak* random linear operators
on M give normal weak™ random linear operators. Indeed, the predual maps are bounded
random linear operators on L'(M, ) whose composition (in the reverse order) is also a
bounded random linear operator by Lemma 1.12. The dual of this then gives a weak™
random linear operator that is almost surely equal to the composition of the original
weak* random linear operators.

Definition 4.11. Let (M, 7) be a tracial von Neumann algebra, let (2, P) be a probability
space equipped with T' € Aut(Q,P), and let ¢,: M — M be a normal weak*® random
linear operator. We call the family of normal weak* random linear operators

(I)Z,m(w) = @ny, 0 0 Prmy, nm~eZ, n>m

an (interval) quantum process on M. If T is ergodic, then we call the above an ergodic
quantum process on M. When no confusion can arise, we will supress the superscript 7.

The most common example of a quantum process on M that we shall consider is the
T

n,m

following. Suppose I' is a quantum process on L'(M,7) associated to some bounded

positive random linear operator v, and T € Aut({2,P). Denote ¢, := v, which is a

normal positive weak* random linear operator on M by Lemma 4.9. Then quantum
-1

process ® . on M associated to ¢, and T~! satisfies
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for all n > m and w € Q.
4.8. Convergence properties

We now prove the first main result of this section. This is the analogue of [21, Lemma
3.14], which gives roughly half the proof of [21, Theorem 1] (see Remark 4.15 below).
The key observation is that I',, ;,—1 - S C I'y, - S and that the diameter of these sets
tends to zero almost surely as m — —oo by Lemma 4.7. This is more or less the same
proof as in the finite dimensional case, where one can also treat the limit n — 400 by
considering the dual process I}, ,, (w). This limit is analyzed in [21, Lemma 3.12], which
forms the other half of the proof of [21, Theorem 1]. However, in the infinite dimensional

*
n,m

setting I" is a process on M rather than L!'(M,7) and therefore requires a separate

argument that we present as Theorem 4.14 (see also the proof of Corollary 4.16).

Theorem 4.12 (Theorem A). Let (M, T) be a tracial von Neumann algebra with a sepa-
rable predual, let (2, P) be a probability space equipped with ergodic T € Aut(Q2,P), let
Yo LY(M,7) — L*(M,7) be a bounded positive faithful random linear operator, and let
Ty m be the associated interval ergodic quantum process. Suppose that

PEn,meZ:n>m and T, € SHC(M)] > 0.
Then there exists a family of random variables X,,: Q — S, n € Z, satisfying
Yrntie - Xn(W) = Xpng1(w) and X, (THw) = Xpa1 (W) (13)
almost surely, and for all x € S

lim |Tppm-z—X,)1=0

m——0oQ0

almost surely for alln € Z.

Proof. For each w € € define the family of (random) sets S, m(w) := Ty (w)-S, m < n,
and observe that Sy, ,,—1 C Sp,m by construction. By Proposition 3.7 and Lemma 4.7,
we know that diam(Sy, ) = ¢(I'ym) — 0 almost surely as m — —oo. Moreover, since S
is complete by Theorem 2.7, we may invoke the Cantor intersection theorem to conclude

ﬂ Sn,m(w)

m: m<n

consists of a single element X, (w) for almost every w. Note that the relations in Equa-
tion (13) follow from the relations
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Y1+ Snom(W) = Spt1m(w) and Sn’m(Tilw) = Spt1,ma1(w)

for each w € Q.
Now, fix n € Z and « € S. By Theorem 2.7 we have

T m -z — Xl <2d(Th - 2, X)) < 2diam(Sy,m) = 2¢(Tyn m),

which tends to zero almost surely as m — —oo by Lemma 4.7. Consequently, for all
a € M we have

T(Xpa) = lim 7((Tpm - x)a),
m——0o0
almost surely so that X, is weakly measurable, and hence a random variable by Theo-
rem 1.11. 0O

Example 4.13. Let (M,7) be a tracial von Neumann algebra with separable predual
and let (2,P) be a locally compact Hausdorff space with a Radon probability measure.
Denote N := M®L>®(Q,P) and ¢ := 7 ® [, dP. By [28, Theorem IV.7.17] L*(N,¢)
can be identified with functions f: Q — L'(M,7) such that w +~ f,(a) is measurable

for all a € M and
[l dPw) < oc
Q

(see also [28, Propositions IV.7.2 and IV.7.4]). In particular, if f € L'(N,¢); then
fo € LY (M, 7)4 almost surely. Fix f € L'(N, ), which is non-zero almost surely and
n € (0,1]. Let {(as, f?) € M, x L*(N,p): i € I} be a countable family satisfying:

1
2
3
4

S

= Zz’e 1 a; converges in the strong operator topology;
7(za) > 0 for all x € LY (M, 1), \ {0};

0 < f <=1 f almost surely for all i € I;
PVieInf<f® >0

/_\/_\,_\A
— O T —

Then by Example 3.12,

=Y ple(a; 1)

el

defines a bounded positive faithful linear map on L'(N, ) satisfying v -z < k=1 f(©),

where f(0) = ﬁ and k = n?. Consequently,

Yol(z) =7z ®1) = ZT(xai)fu(f)

icl
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defines a bounded random linear operator on L!(M, 7). Moreover, v is positive and
faithful almost surely. Indeed, recalling that I is countable we see that f*) € L'(M, 1),
almost surely implies () is positive almost surely for z € L'(M, 7). Next (3) implies
f® is non-zero almost surely so that

P[3i € I such that f(?) = 0] = 0.
Thus for z € LY(M,7)4 \ {0}
Ply(z) =0 =P[Vi € I 7(xa;) =0 =P[r(za) =0]=0
by (2). We also note that kf(®) < -2 < x~' £ holds with positive probability by (3)
and (4), which tells us that 4, is a strict Hennion contraction with positive probability
by Theorem 3.11.

Now, let T € Aut(£2,P) be an ergodic automorphism. Then the associated interval
ergodic quantum process is given by

Com@)(@) = 3 w(xay, )r(fmlai, ) m(forai ) fir),

and satisfies
PEn,meZ:n>mand T, ,, € SHC(M)] >0

since we noted above that I'g g = <y is a strict Hennion contraction with positive proba-
bility. Theorem 4.12 therefore yields a family of random variables F,: @ — S (which we
can identify with elements of L*(N,®)) so that

1

lim ——F—— g r(za;, )T (£ a; : G2 g, ) fY) = B (w
m——o00 T([anm(w)](x) B ( m) ( Tmw m+1) (f 1w n) Tw ( )
in || - |;-norm almost surely. Additionally, one has
1 ,
F, = Y+, - Fp(w) = E F, DD
+1(w) Yrntt (w) T('YT"+1w(Fn<W))) T( (w)a )fw

i€l
almost surely by Equation (13). W

The following uses the second part of Lemma 4.9 to extend a 7-bounded weak* random
linear operator on M to a bounded random linear operator on L'(M, 7).

Theorem 4.14. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(Q,P) be a probability space equipped with ergodic T € Aut(2,P), let ¢,: M — M be a
T-bounded normal positive weak™ random linear operator. Suppose that the extension of
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b to LY (M, T) is faithful almost surely and that the associated ergodic quantum process
®,m on L1 (M, 1) satisfies

P[En,me Z: n>m and @, ,,, € SHC(M)] > 0.
Then there exists a family of random variables A, : Q — Sy, n € Z, satisfying
Yty - Ap(w) = Apyr1(w) and An(Tilw) = Apt1(w)
almost surely, and for all x € S

lim || ®pm-2— Apll; =0
m—r—0o0
almost surely for all n € Z. Moreover, the above convergence holds in || - ||eo-norm for
T € Sy.

Proof. Applying Theorem 4.12 gives us this family of random variables A,, n € Z,
though we must argue they are almost surely valued in Sp. Using Lemma 4.7 for almost
every w, ¢(®p,m) < 1 for sufficiently small m (depending on w). When this occurs,
D, (M) C M implies @, ,, - S C Sy by Theorem 2.12. Recalling from the proof of
Theorem 4.12 that A, € D, - S, we thus have A,, € S, almost surely. The final
statement then follows from Lemma 2.14.(1): ®,, ,, - Sy C Sy since ¢, is M-preserving
and the proof of Theorem 4.12 in fact shows d(®,, - ¢, 4,) = 0as m — —oco. O

m<n

Remark 4.15. Theorems 4.12 and 4.14 can be used to recover [21, Lemmas 3.12 and
3.14], respectively, which together yields [21, Theorem 1]. Indeed, the hypotheses of
Theorems 4.12 and 4.14 follow for I'y, ,,, and I}, ., respectively, from [21, Assumption
1 and Lemma 2.1] (or are automatic in the finite dimensional case). Consequently, any
fixed points of the projective actions of I'y, , and I'}, . converge to X, as m — —oo and
A, as n — 400, respectively. In fact, our results are slightly more general than those of

[21] because our hypotheses allow X,, and A,, to be valued outside of S;. W

As a corollary to Theorems 4.12 and 4.14, we also obtain an analogue of [21, Theorem
2]. The discrepancy between that result and the one below is due to the inequivalence of
the || - [[i-norm and || - ||oo-norm in the general case, but it is clear how to reconcile the
difference in the finite dimensional case.

Corollary 4.16. Let (M, 1) be a tracial von Neumann algebra with a separable predual, let
(2, P) be a probability space equipped with ergodic T € Aut(Q),P), let ~,: L*(M,7) —
LY(M,T) be an M-preserving bounded positive faithful random linear operator, and let
I'y,m be the associated interval ergodic quantum process. Suppose that the extension of
v: to LY (M, 7) is faithful almost surely and that
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PE3n,meZ:n>m and Ty, € SHC(M)] > 0.

Fiz k € Z and let C be as in Lemma 4.7. Then for any k € (C,1) and n > k > m, there
exist random variables X,,, Bp,: Q — Sy and Ey: Q — [0,00) such that for all a € M

1

mf‘mm(a) — 7(Bna)X,

< Epi" " allo
1

almost surely.

Proof. Applying Theorem 4.12 gives the random variables X,,, which we note are valued
in Sy almost surely since =, is M-preserving (see the proof of Theorem 4.14). Also recall
from the proof of Theorem 4.12 that we actually have

”Fn,m = Xyl < 2C(Fn,m) (14)

for all z € S almost surely.

Next, denote ¢, := v, which by Lemma 4.9 is a 7-bounded normal positive weak*
random linear operator. It also almost surely has a faithful extension to L*(M,7) be
assumption. Denote by @,Tl: the ergodic quantum processes associated to ¢, and 7!
so that one has (7, )* = &7, _ . Using Lemma 3.16, it follows that

-1

P[En,m € Z: n > m and (I)z;m € SHC(M))
=PEn,meZ:n>mand '}, € SHC(M)] > 0.

Thus we can apply Theorem 4.14 to obtain random variables A,,: 0 — S} satisfying
[Prm -z = At < 26(Ppm) = 2¢(T'—p,—n),

for all z € S almost surely. If we denote B,, := A_,,, then by the above we have

IT([m - 1 = Bmla)| < 2¢(Um.n)llallo (15)
for a € M almost surely.
Now, observe that
1 Tom
Tpom(a) = (L, (a))l"mm ca = T([F:L’m -1)a)Ty m - a.

T(Fn,m(l)) T(Fn,m(l))

Thus combining Estimates (14) and (15), for a € S, we have

L Tpom(a) — 7(Bpa) X,

n,m <[ ([T5, - 1]a)|||rn,m ca—Xnlh
T(Fn,m(l)) ’

1
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+ 7([L5 - 1 = Bma)|[| Xy
< de(Tn,m)llalloo-

Applying the above estimate to arbitrary a € M by decomposing it into a linear com-
bination of four positive elements and scaling gives an upper bound of 16¢(I'y, 1) |||l co-
For n > k > m, using Lemmas 3.13 and 4.7, we can further bound this by
16¢(Tp ) c(Tk—1.m)||all < 16De k5™ F Dy ok ™ ||a]loo = 16De xDi_1.06™ ™ 0| -
So Taking Ey(w) := 16D, j(w)Dy—_1.e(w) completes the proof. O

We next prove the second main result of the section, which is essentially a dual version
of Theorem 4.12 for ergodic quantum processes on M. Interestingly, this result and the
next do not have analogues in [21].
Theorem 4.17 (Theorem B). Let (M, T) be a tracial von Neumann algebra with a sepa-
rable predual, let (2, P) be a probability space equipped with ergodic T € Aut(Q2,P), let
¢w: M — M be a normal positive weak™ random linear operator, and let @, ,,, be the
associated ergodic quantum process. Suppose that ¢,,(1) is invertible almost surely and

PEn,me€Z:n>m and N7y, < Py <1 170, for somen € (0,1], z9 € S] > 0.
Then there exists a family of random variables Y,,: Q2 — S, m € Z, satisfying

(Grm-14)x - Y (w) = Yi_1(w) and Y (TH'w) = Va1 ()

almost surely, and for all a € M

lim || @ (1)@ (@) (1)~F = 7(a¥en)| =0
n—oo o0
almost surely for all m € 7.
Proof. Denote v, := (¢ )«, which is a bounded positive random linear operator on

LY(M, ) by Lemma 4.9. Moreover, 1,, is faithful almost surely by the discussion following
Lemma 3.14. Letting FZ; denote the associated ergodic quantum process on L'(M, 1),
we have

(‘I’Z,m(w))* = anll,—n(w)a

by Equation (12). Lemma 3.17 implies I'_,, _,, € SHC(M) if and only if there exists
zo € S and n € (0,1] so that n7(20a) P n(1) < Py pla) < n7t7(xea)®, (1) for all a €
M, . Since ®,, ,,(1) is invertible almost surely by assumption, the latter is almost surely
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1

equivalent to N1y, < @, < n7 7y, after adjusting n as necessary. Thus, altogether our

hypotheses imply
P[En,meZ:n>mand I'L,. € SHC(M)] > 0.

Let X,,: Q — S, n € Z, be the family of random variables obtained by applying Theo-
rem 4.12 to 1“5;; Set Y, := X_,, for each m € Z so that the claimed relations follow
from Equation (13) with 7" replaced by T~1.

Now, fix a € M and z € S and denote y := ®,, 1, (1) 22®,, (1)~ 2 € LY (M, 7)4. We

have

r ([@n,m(l)*%@n,m(a)@n,mu)*% — T(aym)} x) = 7(a[T—m—n(y) — Yi])
=T1(a[l—m,—n -y = X)),

where in the last equality we have used 7(I'_,,, _,(y)) = 7(®s,m(1)y) = 7(x) = 1. Denote

Yo = %, which satisfies yo € S and I'_,, _p, - yo = 'y, —n, - y. We can therefore use

the above computation to obtain the following estimate:

7 ([@nm (D) 5@ (@)@ (1) 75 = 7(@¥i)] 2) | < lalT—nn - 30 = Xl

Recall from the proof of Theorem 4.12 that the second factor in the last expression is
bounded almost surely by 2¢(I'_,, _,), and the w for which this fails does not depend
on 7. Consequently, decomposing an arbitrary € L*(M,7) into a linear combination
of four positive elements and scaling gives

1

7 ([nm() 2 @ (@) @0 (1) = 7(a¥m)| 2) | < llall4l2]126(0 )
almost surely. Therefore
1@ (1) 72 By (@)@ (1) 72 = 7(a¥in) | < 8l al|e(T )

almost surely by the duality M = L*(M,7)*, and as n — oo the above tends to zero
almost surely by Lemma 4.7. O

Finally, we conclude with a dual version of Theorem 4.14.

Theorem 4.18. Let (M, 7) be a tracial von Neumann algebra with a separable predual, let
(Q,P) be a probability space equipped with ergodic T € Aut(Q,P), let ~,: L*(M,7) —
LY(M,T) be an M-preserving bounded positive faithful random linear operator, and let
Tp.m be the associated ergodic quantum process. Suppose that v,(1) is boundedly invert-
ible almost surely and

PEn,meZ:n>m and T, ,,, € SHC(M)] > 0.
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Then there exists a family of random variables B, : Q — Sy, m € Z, satisfying:
Yrm—1y * Bm(w) = Bm—1(w) and B (THw) = Byt ()

almost surely, and for all a € M

Lo (1) (@) ()74 = r(aBy)| =0

oo

lim
n—-+oo

almost surely for all m € Z. Furthermore, whenever m € Z salisfies
sup,, |15, (Crm (1) ™ 1)]loe < 00 almost surely, then for all x € S

1

Lim(1) " (@) (1) 72 = 7(@B) | =0

lim
n——4oo

almost surely.

Proof. Denote ¢, := (7,,)*, which is a normal positive weak* random linear operator on
M by Lemma 4.9. Moreover, the assumptions on (1) imply ¢, is 7-bounded with a
faithful extension to L'(M, 7) almost surely. Letting @f; denote the associated ergodic
quantum process on M, we have that

(L (W) =L, _ (),

by Equation (12). Lemma 3.16 implies ¢(T'},,) = c(‘bf;nl,_n) and hence

—1

P[3n,m € Z: n>mand ], € SHC(M)]
=P[In,m € Z: n > m and Fz,m € SHC(M)] > 0.

Let A,: Q — S, n € Z, be the family of random variables obtained by applying Theo-
-1

rem 4.14 to @Z’m. Set B, := A_,, for each m € Z. Arguing exactly as in the proof of
Theorem 4.17, for a € M we have

. _1 _1
Jim T ()7 (@) ()73 = 7(aBy)| =0

almost surely for all m € Z.
Finally, suppose R := sup,, ||}, ,,(Tnm(1)"")|loc < oo almost surely. Then for z €
LY(M,7) and a € M we have

1

7 (Tan () AT (@) (1)~ Ha) | = 7Ty (T (1) 2l (1)74))

<zl |

T (Do (1)l (1) 74))
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Since a F;‘L’m(I‘n’m(l)_%aFnﬁm(l)_%)) is a positive linear map on M, its norm is
given by [T ., (Tn.m(1)7")|loo < R. Thus, the last expression above is further bounded
by Rlz[[1]|afe, implying that

Now, fix x € S, and given € > 0 let a € M, be such that ||x — al|; < e. Then using that
the || - ||;-norm is dominated by the || - ||so-norm we have

Fn,m(1)7%Fn,m(x)rn,m(l)ié

< R[]
1

tim supl| T (1) 72 Dy () D (1) 72 — 7(2Bi) |1

n—oo

< i sup T (1) 720 (@ = @), (1) 724

n—oo

+[7((a = 2)Bm)| < €(R+ || Bmlloo)
almost surely. Hence the limit is zero almost surely. O

Note that the hypotheses in the previous theorem strong are enough that both The-
orems 4.12 and Corollary 4.16 can be applied. In fact, the identity

1

an,m(a) —1(aBm)Xn

Nl

= (Do - 1)% [rnvmu)*%rn,m(a)rn,m(nfé — 7(aBw)] T - 1)

s

+ [Fn,m -1— Xn]T(a'Bm)
offers an alternative proof of Corollary 4.16 in this case.

Remark 4.19.In the finite dimensional case of (My, %Tr) the condition
sup,, [T, (Crm (1) 71)[loo < 00 is always satisfied since

Hrz,m(rn,m(1)71)||oo < Tr(F:;,m(Fn,m(l)il)) = N(%Tr) (Fn,m(l)rn,ma)il) =N.

That is, the condition is automatic because the ||-||;-norm and || || -norm are equivalent.
Another assumption that guarantees the condition (even in the infinite dimensional case)
is that v, is unital. Indeed, then I, |, is tracial and

T3 o (o (1) ™ Hlloo < T3 - 1= Binlloo + [ Binlloo = 0,

as n — oo almost surely by the final statement in Theorem 4.14. W
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5. Application to locally normal states

In [12], Fannes, Nachtergaele, and Werner characterize translation invariant states on
spin chains and establish clustering properties of finitely correlated states for local ob-
servables. In particular, this characterization offers a way to construct translate invariant
states. Taking inspiration from this, we find a wide class of random variables ¥, taking
values in the locally normal states of a spin chain that satisfy a translation covariance
condition. Moreover, these states also exhibit clustering properties for local observables,
and through averaging can yield deterministic translation invariant states.

5.1. Spin chains and their quasi-local algebras and locally normal states

The theory of spin chains arises as a class of quantum mechanical models from quan-
tum statistical mechanics [8,7]. We shall recall some basic facts about spin chains formed
from tracial von Neumann algebras and translation invariant states.

Let (M, 7) be a fixed tracial von Neumann algebra. Consider an isomorphic copy of M
for each site n € Z, written (M, 7,). These algebras represent the observable algebras
of some physical quantity localized to n. For each finite subset A C Z we denote the von
Neumann algebraic tensor product

My = @Mny

neA

which is equipped with the tensor product trace 75. Set inclusions in Z naturally induce
inclusions in the corresponding von Neumann algebras so that we may consider the
inductive limit C*-algebra

oy = lim My,

which we call the quasi-local algebra associated to the spin chain with on-site algebras
M,,. Note that this algebra can be faithfully represented in the infinite von Neumann al-
gebra tensor product (Mz,7z) := @nGZ(M"’ Tn), and consequently <7z admits a faithful
tracial state 774, (see [29, Chapter XIV]). Identifying My C <7z for each finite subset
A C Z, we call the unital *-subalgebra

MZIOC = U My
ACZ

the local algebra and its elements are called local observables. The support of a local
observable a is the smallest A C Z such that a € My. Given a state 1) on o7, after [16]
we say it is locally normal if |, is normal for all finite subsets A C Z.

For n,k € Z, the map M,, > a — a € M, 4 extends to a group action Z A y. We
say a state ¢ on @7z is translation invariant if ¢ o o, = ¢ for all k € Z.
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Theorem 5.1 (Proposition 2.3 and 2.5 [12]). Let ¢ be a locally normal state on fy.
Then, the following are equivalent:

(i) @ is translation invariant

(ii) there exists a finite von Neumann algebra W, a normal unital completely positive
map € : MW — W, and a normal state 0 on W so that for all a,, @ -+ ® ay, €
M)

Mm@ @ap)=00E0(1@E) o 0(1® @1 RE)(am @+ @ a, @ ly).
V(ay Q@ - Ray) =000 (l®E) o 0(l® Q1 RE) (A, Q@ Ra, 1w)

(n—m) times

Proof. (i) = (i1): Put W = My, viewed as a subalgebra of Mz. Observe that the
automorphism «; extends to a normal automorphism of Mz because it preserves 7z.
In particular, a1 (W) C M ;o) so that we can define £ := idy; ® . Then, taking
0 = ¥|w, the claimed identity holds since the translation invariance of ¥ means it is
index agnostic.

(#3) = (4): Mimicking [12, Proposition 2.3], we see that the family of maps

EMD MOME - MW — W (16)
N—_——

n times

via £ = €0 (idas ®5(")) and £M) := £ is completely positive and normal for each n
and moreover

(a1 ® - ®an) =o€ (a1 @ @ an @ Iw)),

is positive and normal. Translation invariance of ¥ follows from the fact that £ is a
function of the observable and is independent of its index (translation does not change
the operator itself, just its index). O

Remark 5.2. Assuming M # C, the W constructed in the above proof is necessarily
infinite dimensional. However, Fannes, Nachtergaele, and Werner considered conditions
on v that were necessary and sufficient to guarantee that W could be chosen to be a
finite dimensional algebra (see [12, Propositions 2.1 and 2.3]). W

5.2. Locally normal states with random generating map

Throughout this section, let (M, 7) be a tracial von Neumann algebra with a separable
predual, and let (2, P) be a probability space equipped with ergodic T € Aut(2, P). We
will write (W, ) for an auxiliary finite von Neumann algebra possessing a separable
predual. When it is clear from context, we shall drop the subscript on 7.
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Consider the von Neumann tensor product M@W and let &, : MW — MW be a
normal unital positive weak* random linear operator such that

EL(MAW) C COW =W

almost surely. Associated to such a weak™ random linear operator, there is a family of
normal weak* random linear operators E,, , : W — W indexed by a € M and given by

Wz E,o(z) =E,(a®x).

We denote ¢, := £, L which is a normal unital positive weak* random linear operator

on W, and we let @T be the associated quantum process on W. Similarly, we denote

Yo = (¢w)«, which is a bounded tracial (hence faithful) positive random linear operator

on LY(W, ) by Lemma 4.9, and we let I‘gm be the associated quantum process on

LY (W, 7). Recall that these two processes are dual to each other by Equation (12).
Given integers m < n and w € €, we define a map ng,n] : M) — W by

EMml(a) .= Epmy 0 (1@ Epmiry) o 0(1®---®1® Epny)(a® 1yw),

which is almost surely normal unital and positive. Using our previous notation, for
a=am®- - Qa, € My, , we have

ng,n] (a) = Eme,am ©:--0 ET"w,an(]-W)~

Consequently, for m < k <{ <n and a € M g C My, ) one has

1

ebrrl(a) =T, iy 0 Ea) (17)
almost surely.

Theorem 5.3 (Thermodynamic limit). With the assumptions and notation as above, sup-
pose that

P3n,m € Z:n>m and nry, < ®L . <n7 1y, for somen € (0,1], z9 € S] >0

Then there exists a map V: Q x oty — C satisfying:

(1) Wy, is a locally normal state on <y, for almost every w € §2;
(2) Uy(a) € L*®(Q,P) for all a € o7;

(3) U, 0ar = Ugk, almost surely for all k € Z;

(4) and for any local observable a € My one has

lim [|E5Y N (a) = Wy (a)]|oe = 0
N —o0
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almost surely.

Proof. Let Y,,: Q@ — S(W), m € Z, be the family of random variables obtained by
applying Theorem 4.17 to the ergodic quantum process ®L " on W. Then the family

m,n

L =Y _ 41, m € Z, satisfies

(Grm)e(Zm(@)) = Zmpa(w)  and  Zp(T*'w) = Zyar (w)

almost surely. Using Equation (17), we also have for a € My, ) that

lim Hg[fN,Nl (a) — rw (E™™ (a) Z,)

N —oo

= lim )@ﬁfjmﬂ(dmv”l(a))—rW(s[m~nl(a)Y_m+1)H =0

N—o0 00

almost surely. For m < k < ¢ <n and a € M, g C M, ), using Equation (17) again
and the above properties of Z,,, we have

T (EL™ (@) Zin ()
= 1w (187, i1 (@)(EL (@) Zim(w))
— 1w (EFD(0) (dra-10)s 0 -+ 0 ($1me) (Zn (W) = Tw (EF(0) Z(w))

almost surely. Noting that the w where the above fails is independent of a, it follows that

U, (a) == mw (EL™(a) Z_n (w)) a € Mi_p 5

w

almost surely gives a well-defined state on the -subalgebra of local observables. As the
local observables are norm dense in the quasi-local algebra, ¥, almost surely admits a
unique extension to a locally normal state on «z. Thus (1) holds and (4) follows from
our limit computation above.

To see (2), recall that the separability of L'(W, 7y ) implies Z,,: @ — S(W) is
strongly measurable and can therefore be approximated by simple functions. Conse-
quently, ¥, (a) € L>(Q,P) with ||V, (a)lr~@p) < |la| for local observables a by
definition of W,. This then holds for all elements of the quasi-local algebra through
approximation by sequences of local observables.

Finally, towards showing (3) we first observe that for a € M, ,) and k € Z one has

Ely ey, (a)) = 8 ),
Combined with the properties of Z,, above, we therefore have
W, (ar(a) = 7w (EL (@) Zyan () = rw (€73 (@) 2 (THw)) = W (a).

By density, this extends to a € @77. O
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Theorem 5.4 (Theorem C). Let V: Q x oty — C be as in Theorem 5.3. There exists
k €10,1) and a family of random variables Ei: Q@ — [0,00), k € Z, satisfying
Ep(T'w) = Ejyo(w)
almost surely for all € € 7, and
| W, (ab) — Uy (a) Uy (b)| < Er(w)c® D=1 o 116]lso a € My, be My
almost surely for finite subsets of integers A C (—oo,k — 1) and I C [k + 1, +00).

Proof. Let C € [0,1) be the constant obtained from applying Lemma 4.7.(1) to the dual
quantum process ', = (@Z;nl_n)* Set x to be any number in (C,1). For k € Z, we
set

Ei(w) := 8Dq (w)Dj—_1,e(w),

where Dq i, D_1,6 are the random variables from Lemma 4.7.(2). Now, for finite subsets
of integers A C (—oo,k— 1) and IT C [k + 1,+00), let a € Mp and b € Mp. Denote
c¢:=b—U,(b) € My so that

U, (ab) — U, (a)¥,(b) = ¥, (ac)

almost surely. Let N € N be large enough so that AUII C [-N, N] and denote m :=
max A and n := minIl. Note that m < (m+1) < k-1 < k < (n—1) < n and
dist(A, II) = n — m. We have

| (ab) — Wo(a)¥u (b)| = [Wo (ac)|
= | (€M (ae) 2y (w))|
= |rw 5N (a9 @7 )y 2 €N ()) 2o ()
. )
< Nalloell @7 (1) a1y © EX ) oo HEL ) (Zw (@)
-1
< Nalloell @7 (1), a1y © E ) = 7 (€5 (6) Z0 () ooy
71
—(m+1),—

(&[,_N’m])* is tracial, almost surely. By the proof of Theorem 4.17, we can estimate the
second term in the last expression by

where in the last inequality we have used that & (n—1) © SL"’N] is unital and

—1

NPT (1), — (1) © EEN(0) = 7w (EFM (8) Zi (@)oo < BlIblooe(T_1 1)

gLn,N]

where we have used that is unital and positive almost surely. Returning to our

original estimate, the above and the properties of D, , D_1,e from Lemma 4.7.(2) yield
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[Py (ab) — Voo (@) o (b)] < 8Ty pyr) oo bl
< 8e(T 1 k)T 1 m1) lallsoIb]l o
< 8D4 (W) D o (w)sFTD D g bl o
= 8D k() Di—1,0 (W)E" ™" lal| o |B] 0

= B (w) A la| o [1B]] o
almost surely. O

Corollary 5.5. Let U: Q x a7y — C be as in Theorem 5.5. Then

defines a locally normal translation invariant state on 7y such that

N

_ . 1
o) = Jim gy 2. el

almost surely for all a € a7z,

Proof. That ¥ is well-defined and a state follows from parts (1) and (2) of Theorem 5.3,
while part (3) and the fact that T is measure preserving gives that W is translation
invariant. The limit formula follows from Birkhoff’s strong ergodic theorem.

It remains to show that U is locally normal, and it suffices to show its restriction to
My, ) is normal. Recall that for a € Mj,, ,,; that one has

Voo(a) = 7w (E5""(a) Zin (w)),

which is almost surely normal since &, is almost surely normal and Z,,(w) € L (M, w ).
When this is the case, set X,,,(w) € S(M) so that

T(aXm(w)) = Vy(a),

and otherwise let X,,, (w) = 1. Part (2) of Theorem 5.3 implies X, : 2 — S(M) is weakly
measurable, and hence a random variable by Theorem 1.11. Consequently, there exists
a sequence of simple functions ¢r: Q — L'(M, 1) satisfying || X,,(w) — ¢k (w)|li — 0
as k — oo almost surely. Note that we may assume ¢p(w) € S(M) almost surely, and
therefore the dominated convergence theorem implies

dim [ X) = 6u(@)]s dP(w) =0,
Q
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It follows that ([, ¢x dP)ren is a Cauchy sequence in L'(M,7), and if we denote the
limit by E[X,,] then

U(a) = [ 7(aX,,) dP = lim [ 7(apy) dP = lim 7(a [ ép dP) = 7(aE[X,]),
SZ k:—)ooﬂ/ k—o00 Q/

for all @ € My, ). O
Data availability
No data was used for the research described in the article.
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