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Abstract

We study probability measures on partitions based on symmetric Grothendieck poly-
nomials. These deformations of Schur polynomials introduced in the K-theory of
Grassmannians share many common properties. Our Grothendieck measures are
analogs of the Schur measures on partitions introduced by Okounkov (Sel Math
7(1):57-81,2001). Despite the similarity of determinantal formulas for the probability
weights of Schur and Grothendieck measures, we demonstrate that Grothendieck mea-
sures are not determinantal point processes. This question is related to the principal
minor assignment problem in algebraic geometry, and we employ a determinantal test
first obtained by Nanson in 1897 for the 4 x 4 problem. We also propose a procedure
for getting Nanson-like determinantal tests for matrices of any size n > 4, which
appear new for n > 5. By placing the Grothendieck measures into a new framework
of tilted biorthogonal ensembles generalizing a rich class of determinantal processes
introduced by Borodin (Nucl Phys B 536:704-732, 1998), we identify Grothendieck
random partitions as a cross-section of a Schur process, a determinantal process in two
dimensions. This identification expresses the correlation functions of Grothendieck
measures through sums of Fredholm determinants, which are not immediately suit-
able for asymptotic analysis. A more direct approach allows us to obtain a limit shape
result for the Grothendieck random partitions. The limit shape curve is not particularly
explicit as it arises as a cross-section of the limit shape surface for the Schur process.
The gradient of this surface is expressed through the argument of a complex root of a
cubic equation.
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1 Introduction
1.1 Random partitions from symmetric functions

The study of random integer partitions involving probability weights expressed
through symmetric polynomials has been a long-standing topic in integrable probabil-
ity and related fields [13, 22]. Asymptotic analysis of various measures on partitions
produced law of large numbers and asymptotic fluctuation results in many stochastic
models describing complex real-world phenomena, including longest increasing sub-
sequences [9, 57, 83], interacting particle systems [46], random growth models [10],
random polymer models [30, 67, 75], random matrices [12], and geometry [69, 72].

One of the earliest studied ensembles of random partitions based on symmetric
functions is the Schur measure introduced in [70]. The Schur measure probability
weights have the form

ri+N—i Ai+N—i

1 det[x}’ 1 det[y}’ b

Prob(2) = — L=l L=l (1.1)
Hl§i<j§N(xi — X)) n1§i<j§N(yl —yj)

Sa(X1,0 XN) 5. (Y155 YN)
Here A = (A1 > --- > Ayxy > 0) are integer partitions which we think of as our
random objects, x;, y; > 0 with x;y; < 1 are parameters of the measure. The quanti-
ties s)(x1,...,xy) and s (y1, ..., yn) in (1.1) are the well-known Schur symmetric
polynomials in the variables x1, ..., xy and yi, ..., yn, respectively, indexed by the

same partition A. The probability normalizing constant Z = ]_[lN j=1 (L= xiy j)_l has
a product form thanks to the Cauchy summation identity for Schur polynomials.

The Schur measures are particularly tractable thanks to their determinantal struc-
ture, which allows expressing correlation functions

p(ay,...,ay) ;= Prob (the random set

{A\i + N —i} C Z>p contains each ay, ..., am) (1.2)

of an arbitrary order m as m x m determinants det[ K (a;, a; )]’” =1 of a fixed correlation
kernel K (a, b), where a, b € Zx¢. The kernel has a double contour integral form,
readily amenable to asymptotic analysis by steepest descent.
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Over the past two decades, Schur measures have been generalized to other families
of symmetric polynomials, including Macdonald polynomials [7] and their degenera-
tions such as Jack [12], Hall-Littlewood [15, 23], and g-Whittaker polynomials [22,
62]. More recently, these efforts have extended to symmetric rational functions (like
spin g-Whittaker and spin Hall-Littlewood functions) arising as partition functions
of integrable (in the sense of the Yang—Baxter equation) vertex models [3, 20, 24,
28]. The vertex model approach also naturally included distinguished nonsymmetric
polynomials powering the structure of multispecies stochastic systems [4, 29].

While these more general symmetric polynomials and rational functions share
many properties with the Schur polynomials, the technique of determinantal point pro-
cesses does not straightforwardly extend. This has led to several interesting alternative
approaches, including eigenoperators [7] and duality [8], which brought multiple con-
tour integral formulas for expectations of observables. Recently [44] presented a direct
mapping between g-Whittaker and cylindric Schur measures [17] preserving specific
observables. Since the latter measures are determinantal, this allows for employing
determinantal process methods for the asymptotic analysis of these observables.

1.2 Grothendieck measures on partitions

Our primary focus is on Grothendieck measures on partitions whose probability
weights are expressed through the Grothendieck symmetric polynomials:

Prob().) := b det[xz‘/\jJrN_j(l — ﬁxi)j_l]szl det[y;\erN_f(l _ ﬂyl_—l)N—j]?’/jZI
z Hhsicjznti =3 [izicj<nOi =3
G 01xw) G150 ¥N)
(1.3)

Here x;,y;, and B are parameters such that x;,y; > 0, x;y; < 1, and
B < minj<i<n(x; 1, vi). The latter condition implies that the probability weights
are nonnegative. The Grothendieck symmetric polynomials Gy (xi,...,xy) and
G, (1, ..., yN) are one-parameter deformations of the Schur polynomials appear-
ing in the K-theory of Grassmannians. The normalizing constant is Z' = ]_[lN: (1=
xiﬂ)N_l ]_[f\,’jzl (1 —x; yj)_l. When g = 0, the Grothendieck measure (1.3) reduces
to the Schur measure (1.1). We refer to [27, 31, 35, 58, 84], and [41] for details,
properties, and various multiparameter generalizations of Grothendieck polynomials.
All methods of the present paper apply in a setting when there are multiple 8;’s (see
the polynomials G, and G, in (3.3) in the text). However, in the Introduction and
asymptotic analysis, we restrict to the case of the homogeneous S;’s.
In this paper, we obtain two main results for the Grothendieck measures:

e We show that despite the determinant representation of their probability weights,
Grothendieck measures do not possess a determinantal structure of correlations.
This observation may appear unexpected given the similarity of Grothendieck
probability weights compared to the Schur measures.
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e We establish a link between Grothendieck random partitions and Schur processes,
the latter being determinantal point processes on a two-dimensional lattice. We
perform this connection within an extended framework of tilted biorthogonal
ensembles, which we introduce. This connection provides an essential structure
for the Grothendieck measures. It enables us to derive formulas expressing their
correlations through sums of Fredholm determinants and prove limit shape results.

We formulate these results in the remainder of the Introduction.

Remark 1.1 It was observed in [20, Sections 8.3 and 8.4] that the ¢ = 0 specialization
of spin Hall-Littlewood polynomials produces determinantal partition functions of
vertex models which resemble the Grothendieck polynomials G, in (1.3). Most of
the machinery for computing expectations of observables of the form ¢"®€h breaks
down for g = 0, so it is not immediately clear whether vertex models are applicable
in the analysis of Grothendieck measures. Moreover, limit shape results are not yet
established for random partitions with spin Hall-Littlewood weights or their g = 0
degenerations (see, however, [5] for limit shapes of Macdonald random partitions in
another regime, as g, t — 1).

1.3 Absence of determinantal structure

Theorem 1.2 For certain fixed N and values of parameters x;, y;, and B, the cor-
relations (1.2) of the Grothendieck measures do not possess a determinantal form.
That is, there does not exist a function K : Z2>0 — C for which p(ay,...,an) =
det[ K (a;, aj)]:-’szl for all m and all pairwise distinctay, ..., ay € Z=y.

We show the nonexistence of a correlation kernel K by constructing an explicit
polynomial in the correlation functions p(ay, ..., a;), which vanishes identically
if the correlation functions have a determinantal form (we call such polynomials
determinantal tests). We then show that for a specific choice of parameters, N =
2, x; = y; = 1/2, B = —1, the determinantal test does not vanish. While for
Theorem 1.2, we only need a specific choice of parameters, we expect the absence of
determinantal structure to hold for generic parameters in the Grothendieck measures.

The problem of finding a kernel representing all correlations p(ag, ..., a,) in a
determinantal form is the same as the well-known principal minor assignment problem
in algebraic geometry. This problem seeks an n x n matrix whose all principal (diag-
onal) minors are given, but such an underlying matrix does not exist for all choices of
(prospective) principal minors. Therefore, one has to find relations between principal
minors. These relations are polynomial, and each may be used as a determinantal test.
The variety of n x n principal minors becomes complicated already for n = 4 (it is
minimally generated by 65 polynomials of degree 12), but for Theorem 1.2, it suffices
to show that one generating polynomial does not vanish. In fact, the determinantal test
we employ in our proof was written down by Nanson in 1897 for 4 x 4 matrices [66].
In Sect. 4.2, we discuss the rich history of the principal minor assignment problem and
several instances of its rediscovery within the study of determinantal point processes.
In Sects.4.3 and 4.4, we present a self-contained derivation of the Nanson’s determi-
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nantal test and suggest a generalization of the Nanson’s test to matrices of arbitrary
size. This generalization appears new.

1.4 Tilted biorthogonal ensembles

To connect Grothendieck measures to Schur processes, which are determinantal pro-
cesses on the two-dimensional integer lattice, we consider a more general framework
of tilted biorthogonal ensembles, which is inspired by a talk of Kenyon [48]. The
ordinary biorthogonal ensembles introduced in [21] are measures on partitions with
probability weights of the form

bl =R N = (1)

Prob()) = %det[dJi(Zj)] | det[W; (¢ )]
where ®;, W; are given functions, and Z is the normalizing constant. Biorthogonal
ensembles are determinantal processes on Z>0 in the same sense as the Schur measures.
Moreover, when ®; (k) = x ,Wik) = y the weights (1.4) coincide with (1.1).

We “tilt” the blorthogonal ensemble ¢! 4) by inserting j-dependent difference oper-
ators into the determinants.! When ®; (k) = xf , Witk) = yj? , the action of these
operators results in the factors (1 — ,Bx,-)j_l and (1 — ,Byl._l)N_j in (1.3). In general,
we apply the operator (D)7~ to ®;(€;), where Df (k) = f(k) — Bf(k+ 1), and
(DHYN=J to W;(¢;), where DT f (k) = f(k) — Bf(k — 1)1;>1. Here and throughout
the paper, 14 stands for the indicator of an event or a condition A. We arrive at the
following measure on partitions:

Prob(}) = —det[(D)J Lo, (¢; )]” L det[(DDHN T w; (e )]

i,j=1"

For details, we refer to Sect. 2.1 in the text.

The action of D is the same as the multiplication by the matrix Tg(k, [) := 1= —
B1;—x_1, and DT is the multiplication by Tg on the opposite side. Using this, we
identify (Theorem 2.3) the joint distribution of (Z] > ... > {y) under the tilted
biorthogonal ensemble with that of the points ()cll C> Xy N in the two-dimensional
ensemble {x}” : 1 <m, j < N} which has probab111ty weights proportional to

N—1

det[CD () ]N (ndet[Tlg(xl, ;"+1)]?ij1)det[wi(xj.v)]i]jzl. (1.6)

The two-dimensional process has probability weights given by products of determi-
nants. Thus, it is determinantal thanks to the well-known Eynard—Mehta theorem [26,
34], see also [18, Theorem 4.2].

! Recall that in the Introduction, we only deal with the homogeneous beta parameters f; = 8, see Sect. 2.1
for the general case.
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The above identification allows us to write down certain Fredholm determinantal
formulas for marginal distributions and correlation functions of tilted biorthogonal
ensembles; see Sect.2.5 and Proposition 2.7 in particular.

When ®; (k) = xf and ¥ (k) = y;? for all i, j, the two-dimensional determinantal
process (1.6) becomes the Schur process whose correlation kernel has a double contour
integral form [73]. The particular specializations of the Schur process parameters are
given in Sect. 3.3 in the text. Our Schur process has nonnegative probability weights
only for § < 0, and this is the case we restrict to in our asymptotic analysis (see
Sect. 1.5). The case B = 0 is covered by standard results on Schur measures. It is
plausible that our results on the Grothendieck limit shape still apply to values of
B > 0, even if probabilities in the two-dimensional process are negative, as long as
the Grothendieck probability weights (1.3) remain nonnegative. See Conjecture 5.10
for details.

Remark 1.3 (Application to the five-vertex model) In [48], Kenyon expressed certain
distributions arising in the five-vertex model (see also [32]) as tilted biorthogonal
ensembles. It would be very interesting to apply our results to the asymptotic analysis
of the five-vertex model, but there are three clear obstacles. First, the two-dimensional
process for the five-vertex model is not the Schur process but rather a multiparameter
analog of the more complicated model of lozenge tilings of the hexagon (see, e.g.,
[37, 77] for the determinantal structure of the original tilings of the hexagon). One
does not have as elegant expressions for the correlation kernel in the case of multi-
ple parameters. Second, the probability weights in the two-dimensional process are
complex-valued. This makes probabilistic identification of limit shapes problematic;
see also the discussion in Sect.5.4.4. Third, for the five-vertex model, the multiple
parameters x;, y; are solutions to the Bethe equations. This makes a potential asymp-
totic analysis even more intricate (see, however, [78] and [14] for a related analysis of
TASEP on the ring).

1.5 Limit shape

Consider Grothendieck random partitions (1.3) with homogeneous parameters x; =
x >0,y; =y > 0,such that xy < 1 and 8 < 0. Let us draw Young diagrams of
our Grothendieck random partitions in the (u, v) coordinate system rotated by 45°,
see Fig. 1, left. Each partition is encoded by a piecewise linear function v = 2y (u)
with derivatives =1 and integer maxima and minima. Since our partitions have at most
N parts, we almost surely have 20y (1) > |u| for all u, Wy (1) = |u] if |u| is large
enough, and Wy (u) <u + 2N ifu > —N.

Theorem 1.4 Fixthe parameters x, y, B as above. There exists a continuous, piecewise
differentiable, 1-Lipschitz function W(u) = W | x,y, B) with W(u) > |u| and
W (u) = |u| if |u| is large enough, such that

Wy (uN
lim M = W(u), u € R,
N—+o0 N

where the convergence is pointwise in probability. See Fig. 1, right, for an illustration.
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Fig. 1 Left: The Young diagram for A = (6,6, 5, 3, 1, 1) in the coordinate system rotated by 45°. The
diagonal line v = u 4 2N represents the upper boundary of the shape of A. Right: An example of a limit
shape 20(u) of the Grothendieck random partition for x = 1/3, y = 1/5, and B = —25. We added a
horizontal line to highlight the staircase frozen facet where the limit shape 20 () is horizontal. An exact
sample of a random partition corresponding to the limit shape on the right is given in Fig. 9, right (see also
Sect. 5.5 for a discussion of how to sample Grothendieck random partitions)

The first limit shape result for random partitions (with Plancherel measure, which is
a particular case of Schur measures) was obtained by Logan—Shepp [57] and Vershik—
Kerov [83]. We do not have an analytic formula for our shapes 20(u) in contrast to this
classical VKLS shape. Let us briefly describe how 20 (u) is related to the limit surface
of the Schur process. We used this connection to numerically plot all our examples;
see Sect. 5.4 for details and more discussion.

Let {x;." 1 < m,j < N} be distributed according to the Schur process as in
(1.6). Define the height function Hy (a, t) := #{j: x; > a}, where (a,t) € Z>op X
{1, ..., N}. Using the standard steepest descent analysis of the correlation kernel of the
Schur process (dating back to [73], see also [71, Section 3]), one can show that Hy has
a limit shape H(&, 1) = Nlim N~'Hy(lEN], [tN]), where (£, 7) € R x [0, 1].

— 00
The gradient of ) is expressed through arguments of the complex root z. = z.(§, 7)
of a certain cubic equation depending on (£, 7) and our parameters (x, y, 8), see (5.7)
and (5.9) for the formulas.

The identification between Grothendieck random partitions and the slice ()cl1 >

- > le\\,’ ) of the Schur process (see Sect. 1.4) helps to express the Grothendieck limit
shape 20 (u) through $(&, 7). Namely, let £(7) be an auxiliary function defined from
the implicit equation

H(L(r),r) =1 forallt € [0, 1]. (1.7)

In other words, the three-dimensional parametric curve (£(t), 7, t) is the cross-section

of the Schur process limit shape surface n = $H(&, t) in the (£, t, n) coordinates

by the plane = 7. From the Schur process limit shape result, we have £(r) =

-7+ Nlim N~'A N7 (the shift by 1 — 7 comes from £; = A; + N — j, see
— 00

(1.5)). Then the Grothendieck limit shape curve (1, 20(u)) as in Fig. 1, right, has the
following parametrization through £(7):

u=4g(>) -1, W =L()—1+27.

) Birkhauser
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The functions £(7) and 20 (u) satisfy differential equations involving the root
z0(&, 1), see (5.17)—(5.18). However, the implicit equation (1.7) turns out to be more
convenient for plotting the shapes.

The flat, “frozen”, facets of the Schur limit shape surface (where the gradient is at a
vertex of its allowed triangle, see (5.5)) lead to the three possible flat facets of 20 (u),
where 20’ (u) is equal to —1, 0, or 1, respectively. The derivatives &1 occur when
M (u) = |u| outside of the curved part of the limit shape. The facet 20’ (1) = 0 always
arises for sufficiently negative 8 (Lemma 5.6). In this facet, the random partition
develops the deterministic frozen staircase behavior, thatis, A; = A;4.1 + 1 for all i in
some interval of order N. See the horizontal part of the limit shape in Fig. 1, right.

Besides limit shapes, the study of random partitions often involves fluctuations in
various regimes (at the edge, in the bulk, and global Gaussian fluctuations). It would
be interesting to obtain fluctuation results for Grothendieck random partitions in these
regimes and compare them to the classical case of the Plancherel random partitions [9,
16, 45, 47]. The tilted nature of the cross-section leading to Grothendieck measures
seems to be affecting all Grothendieck fluctuations except the edge ones. Indeed, for
any fixed k, (A1, ..., Ax) have the same joint distribution as (M}, el ui), where the

partitions w', ..., uk for a Schur process. Moreover, we have Wji — pL}-| < j for
all j (see Sect.5.3.3 for details). Therefore, we expect that the joint distribution of
(Aj — c¢N)/(eN'/3), j =1,..., k, should converge to the Airy, point process, just
like for the Plancherel measure. We also expect that the bulk fluctuations are not given
by the same discrete sine process as in the Plancherel case. It would be interesting to
compute the correlations of the Gaussian limit, and compare them to the Plancherel
case.

1.6 Outline

In Sect. 2, we introduce the framework of tilted biorthogonal ensembles and show that
they are cross-sections of two-dimensional determinantal processes. The correlation
kernel of the latter is given by the Eynard—Mehta theorem. In Sect.3, we specialize
tilted biorthogonal ensembles to Grothendieck measures on partitions and write down
the correlation kernel of the corresponding two-dimensional Schur process in a double
contour integral form (specializing the results of [73]). In Sect. 4, we prove Theorem
1.2 that Grothendieck measures are not determinantal point processes. Section4.2
provides a brief historical account of the relation between the determinantal struc-
ture of probability measures and the principal minor assignment problem. Finally, in
Sect. 5, we establish limit shape results for Schur processes and Grothendieck random
partitions and illustrate these results by several plots and exact sampling simulations.

2 Tilted biorthogonal ensembles

In this section, we present the main framework for measures on particle configurations
in Z>¢ given by a certain product of determinants, and discuss their characteristics.

) Birkhauser
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2.1 Definition of the ensemble

Fix N, and let &4, Wy, k =1, ..., N, be arbitrary complex-valued functions on Zx.
Fix additional complex parameters B, f2, ..., Bn—1. Let us define the following
operators acting on finitely supported functions on Zx:

DY fk) = fk) =B fk+1), DI fk) = flk) = Brfk— D1y,
2.1

where r = 1, ..., N — 1. These operators are conjugate to each other with respect to
the bilinear form Z/fio f(k)g(k) on finitely supported functions on Zxp. Denote

la.b) ._ pl@) plat+1) (b=1)
DS =D DS ... D, (2.2)

and similarly for other types of segments and the conjugate operators D([z“’b”. Clearly,
Dy’l) is the identity operator.
Assign the following weights to N-point configurations on Zxq:

. [1,7) N [j,N)T N
WE(X) = det[Dej d; (Ej)]i,jzl det[Dej ‘yi(ej)]i,j:p 2.3)
where X = (£1 > £, > --- > €y > 0). If the number of points in X is not N, then set

W i (X) = 0. Assume that the series for the partition function for the weights (2.3),

Z’B = Z WB(X)

X=U1>lr>->Ln>0)

converges and is nonzero.”

Definition 2.1 The normalized weights
M;z(X) =W;z(X)/25 (2.4)

define a probability measure on N -particle configurations on Zx(. We call this measure
the B-tilted N-point biorthogonal ensemble.

The term “probability measure” here refers to the fact that the sum of the normal-
ized weights is equal to 1. The weights are generally complex-valued but become
nonnegative real numbers in the specializations we discuss later.

When 8; = 0, the operators (2.1) become identity operators, and the tilted biorthog-
onal ensemble turns into the usual biorthogonal ensemble with probability weights
proportional to

det[@;(¢))]},_, det[ Wi (€], 2.5)

2 Throughout this section (which discusses abstract ensembles) we assume that all similar infinite series
converge.

) Birkhauser
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Biorthogonal ensembles were introduced and studied in [21], see also [18, Section 4]
for a summary of formulas.

2.2 Normalization
Let us compute the normalizing constant Z, it

Proposition 2.2 We have

25 = det[Gj (B)];\,]jﬂ’ (2.6)
where
Gij(B) =Y W;(k) DY ;). 2.7
k=0

Proof Observe that for any 0 < a < b, we have the following summation by parts:

b b
Y D) =Y gy D f (k) = Brg®) (b +1) — Brf(@)gla— Dlaz1.
k=a k=a

2.8)

We have

L [1.1) [1.N) L, N
p= 2 (oY pl Vo] )

Ly1>lr>->Ln>0

[N,N)t [1,N)T N
(PN DM ded ]! y)

15,

Z

N

_ N [1,N) ~[1,N) [1,N)
= > det[W;(€p)];;_y Dy, Dy, Dy det[ @i €]y

Uy >0y>>ln>0

where we moved each of the operators D% ‘T (o the other function and observed that

the presence of the determinants eliminates the boundary terms arising from (2.8).
Writing

[1,N) 5[1,N) [1,N) N _ [LLN) 4.
DV DI DI der[@i(e)],, = det D cpl(k)’k:e,]i,j:l’

we can use the Cauchy—Binet summation to replace the sum of products of two deter-
minants over {1 > £, > --- > £n > 0 by the determinant of single sums. O

) Birkhauser
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2.3 Two-dimensional process

We will show in Sect.4 that a E -tilted N -point biorthogonal ensemble on Z is not
necessarily a determinantal point process, even though its probability weights are
products of determinants.

On the other hand, each B-tilted biorthogonal ensemble can be embedded into a
two-dimensional determinantal point process on X := Zso x {1, ..., N}. A similar
construction for TASEP first appeared in [11] (and was later exploited to construct the
KPZ fixed point [63]). The embedding which we describe below in this subsection is
suggested in the talk by Kenyon [48].

This process lives on particle configurations X2 = {x;." 11 <m, j < N} satisty-
ing

XN o<xy_; << xy <axy, 1<m<N. 2.9
Denote |x™"| := x{" +--- 4+ x}. Let
Tﬁ(x, y) = 1y:x - ﬂly:x—l’ X,y € ZZO-

One readily sees that

N

my__|,m+1

det[Tﬂ(xlm, x;n+l)]£v,j:1 — (—ﬁ)lx |—]x | l—[ lx;?l_x;f1+l:00r - (210)
j=1

Using the given notation, assign (possibly complex) weights to configurations X2¢:

W2 (x2d) :det[cp»(xl.)]N (1\/]__[1
B : =t a2

N N
det [Tﬁ G, x'ﬂ“)] det [\p,- N )] .
" J i j=1 J i j=1
2.11)

In the proof of the next statement and throughout the rest of the section, we
use the notation “x” for discrete convolution of functions on Zx(, and assume that
all series thus arising converge absolutely. For example, we write (f x h)(x) =
Z;io f(x, y)h(y) for functions f(x, y) and i (x). See also [18, Section 4] for further
examples of this notation.

Theorem 2.3 The normalizing constant of the two-dimensional distribution

2d .__ 2d 2d
23 ._Zwﬁ (X%
X2d

is equal to the one-dimensional normalizing constant Z i given by (2.6)—(2.7). More-

over, under the normalized two-dimensional probability distribution M%d(XZd) =

) Birkhauser
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W%d (X212 5 the marginal distribution of xl1 > x% > > xg coincides with that

of by >4y >--- Uy underMB.

For complex-valued probabilities, the coincidence of marginal distributions means
that for any finitely supported function f in N variables, we have

> f(x},...,xg)M%d(XM) = > F, o ) MG,

XZd:{x;”} X=(1>>LlNy>0)
(2.12)

Proof of Theorem 2.3 By the Cauchy—Binet summation, we have

2d N
ZB = det[CD,- x T x...xTgy | * qu]i,j:l'
Next, for any function i (y) on Zx>o we have (h * Tg.)(y) = h(y) — Bh(y + 1) =
D;r)h(y). By (2.7), this implies the first claim about the normalizing constant.

The second claim essentially follows from the LGV (Lindstrom—Gessel-Viennot)
lemma, which expresses the partition function of nonintersecting path collections in
a determinantal form [40, 54]. By the first claim, it suffices to prove (2.12) for unnor-
malized weights W%d and Wj. Next, the weights W%‘I(XZ”I) (2.11) and W5(X) (2.3)
are multilinear in (®y, ..., Py; ¥y, ..., ¥y), so it suffices to prove the summation
identity in the case of delta functions

Qi(x)=1x=ki7 \I,l(x)zlx:kl/s i:1,...,N,

where kj > --- > ky > O and k| > --- > k) > 0 are arbitrary but fixed. With
this choice of ®;, V;, the distribution of X 2d is the same as the distribution of the
nonintersecting path ensemble on the graph shown in Fig.2, where the paths connect

ki,....kntoky, ..., ky.

Then the marginal distribution of ¢1, ..., £; can be expressed through the prod-
uct of two determinants: One for the nonintersecting paths connecting ki, ..., ky
to £1,..., ¢y, and the other one for the nonintersecting paths from £, ..., ¢y to
k/l el k;v. These determinants are immediately identified with the two determinants
in (2.3), and so we are done. O

2.4 Determinantal kernel

The two-dimensional ensemble X?¢ defined in Sect.2.3 is a determinantal point
process. This means that for any p > 1 and pairwise distinct points (y;, #) €
Zsox{l,...,N},i=1,..., p, wehave

> M X = det K ity )]} o (@13)

X% X% cointains each
(isti), i=1,....p
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Fig.2 The directed graph with ]{?3 k2 kl
vertices Z>q x {1, ..., N} and

edges which can be vertical . I . : 61
(with weight 1) or diagonal
(with weight — By,

m=1,..., N). We consider an g
ensemble of N nonintersecting P Byt — By
paths connecting kq, ..., ky to A
k/1 e k;\,. The particles x;." .
encode the intersections of the '

paths with the m-th horizontal ’ ’ ’
line,m =1, ..., N k3 k2 kl

0 1 2 3 4 5

Here K éd (x, t; y, s) is afunction called the correlation kernel. Both the determinantal

structure and an expression for the correlation kernel follow from the well-known
Eynard—Mehta theorem [26, 34], see also [18, Theorem 4.2].

Proposition 2.4 The correlation kernel (2.13) for the point process X*¢ has the form

Kéd(x, 6y,8) = —1imy (Tg, % ... % Tp,_,) (3, %)

N
+ 3 G DM@ (x) - DIV (). (214)
ij=1

Proof By [18, Theorem 4.2], the correlation kernel has the form
K%d(x, t;y,s) = —1;sg (T,gs *Tg k... % TﬁH) (v, x)

N
+ ) G B (@i Tpy %k Tp ) () -
i =1

(Tﬂs *...0x Tgy_ | * lIJj)(y).

As in the proof of Theorem 2.3, we can rewrite the convolutions with the Tg’s as
applications of the difference operators (2.1):

(@i * Tp, * ... % Tp,_, ) (x) = DIV d; (x);
(Tp, ... Tpy_, * Wj)(y) = DM (y).

This completes the proof. O
Note that the variables ¢, s € {1, ..., N} inthe correlation kernel (2.14) correspond

to the vertical coordinates in Fig.2 which increases from top to bottom. We use this
convention throughout the rest of the paper.
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Remark 2.5 From the fact that x; ={;,j =1,..., N,asjoint distributions (where the
X j ’s come from M/zgd and the £;’s come from M B)’ one may think that the probabilities

M j are expressed through the correlation kernel K éd as

. N
Ms(e1, ..., EN) =det[Kﬂ%d(fi,l;ﬂj,])]i‘jzl, 0> >Ly. (215
However, identity (2.15) is generally false when ¢; 1 = ¢; + 1 for some i. Indeed,
this is because the correlation event in the right-hand side of (2.15) includes more
configurations of nonintersecting paths (as in Fig.2) than just the ones with x/ = ¢ j
forall j =1,..., N.One can check thatif £; — £;41 > 2forall j =1,..., N, then

identity (2.15) holds.

2.5 Marginals and correlations of the tilted biorthogonal ensemble

Fixk>1landZ=1{ij <--- <ix} C{l,...,N}.Letag = (a;; > --- > a;, = 0)
be a fixed integer vector, and also let X7 = (¢;; > .-+ > {; > 0) be a random
vector, which is a marginal of the B -tilted biorthogonal ensemble M E(X ) defined by
(2.3)~(2.4). Using Theorem 2.3 and Proposition 2.4, we can express the probability
M E(X 7 = ag) through the correlation kernel K éd in a polynomial way.

We use the following statement adapted to our space X = Z>o x {1,..., N}:

Lemma 2.6 ([79, Theorem 2]) Fix a finite number of disjoint subsets of X and denote
them by By, ..., Bp. Let B = By U---U B),. For a determinantal point process on X
with kernel K, let #p, be the random number of points of the process which belong to
B;. Then we have the following identity of generating functions in zy, ..., zp:

P
(" o) =det(1—x, 31— 2) K x ), 2.16)

i=1

where 1 is the identity operator, in the right-hand side there is a Fredholm determinant,
and X, X are the indicator functions of these subsets.
1

In our applications, the sets B; will be finite, and thus the Fredholm determinants in
(2.16) are simply finite-dimensional determinants of the corresponding block matrices.
In general, the right-hand side of (2.16) is an infinite series, see, for example, [79,
Remark 3].

To illustrate the general formula of Proposition 2.7, let us first look at the case
k = 1. For fixed a and i, the event ¢; = a is equivalent to #p,,) = N — i, #c,;(a) = 1,
where

Bi(a) :={0,1,...,a— 1} x {i}, Ci(a) :={a} x {i},
Fi(a) := Bi(a) U Ci(a).
(2.17)

) Birkhauser
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Indeed, for ¢; = xl.i = a, we need to have exactly N — i points of the configuration
X% to the left of a, and exactly one point at a. Thus, we can write by Lemma 2.6:

W%wi:ay:quwhk(l—(l—mxmmK?XW@—(L—wmﬂ@K?me>
(2.18)

where [z ~/w] is the operator of taking the coefficient of a polynomial by z¥ " w.

The matrix in the right-hand side (2.18) has dimensions (@ + 1) x (a + 1) and looks
as

1+@@—-DK0;0) (z—DK®O:1) ... (w—1DK(®:a)
z—DK1:0) 1+@E—DKM D ... (w—DK(:a)

(Zz—DK@—-1,0) z—DK@—1:1) ... (w— DHK(a — 1; a)
(z—=1DK(a;0) (z—DK(@a;1) ...14+(w-—1K(a;a)

where we abbreviated K (x; y) = K%d(x, i;y,1).
Finally, to get the correlation function, we simply have to sum (2.18) over all
i=1,...,N:

N
W%QXammmsm==E:MNﬂwym%l—(y—nxmwK?X&W

i=1

+(1—'w)X@m)K§chNw)- (2.19)
Notice that this is a polynomial in the entries Kéd (x, t; v, s) of the correlation kernel

(2.14).
The next statement for general k follows from an argument for several points which
is analogous to the above computations:

Proposition 2.7 For arbitrary k > 1 and T = {i1 < - -+ < iy}, the marginal distribu-
tion of X1 under M K has the form

k
N—i N—i
ME(XI =ag) = [Z] 3 cea 2y ‘kwl oo wi] det(l ~ Xrpap E (1— ZP)KédXB
p=1

ip @ip)

k

2d
+XFI<¢I) Z(l - wP)KE Xcip(ai]}))' (2.20)
p=1

Here the square matrix has dimensions 21;7:1 (ai, + 1), the union of all the sets is
denoted by Fr(az) := Ul;:l (Bip (ai,) UCi, (aip)), and the determinant is a polyno-
mial in the entries of the correlation kernel Kéd.
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The correlation functions of M j are finite sums of determinants of the form (2.20).
Namely, for any k and any pairwise distinct ay, . .., ax € Z=o, we have

ME(X contains ay, . ..,ay) = Z MB Xz={ai,...,ar}).
I={1<ij<--<ix <N}
3 Grothendieck random partitions
Here, we specialize the setup of E -tilted biorthogonal ensembles developed in Sect.2
to Grothendieck random partitions. A crucial feature in this special case is that the

corresponding two-dimensional ensemble X>¢ becomes the well-known Schur process
introduced in [73].

3.1 Specialization of tilted biorthogonal ensemble

Fix N > 1 and parameters xy, ..., Xy, y1, ..., yny such that |x;y;| < 1 for all i, j,
and specialize

Oi(k) =xf, Wik =)k kel (3.1)

Then the operators (2.1) act as
D @itk =xf(1 = Bx). DW= i1 = By L=, (B2)
For a configuration X = ({1 > --- > £y > 0),denote A; :=¢; + j— N, j =
I,...,N,s0¢f; = Aj + N — j. Clearly, we have A = (A; > --- > Ay > 0), and

A is an integer partition with at most N parts. The E—tilted biorthogonal weight (2.3)
specializes to

ri+N—j
Wi () = det[x” (1= o) ... (1 - ﬁj_lxi)]jszl
Ai+N—j _ _
xdetly; = gy = By D]

¥

Observe that in the second determinant, the operators D% T are applied in

L1, ...,€n_1, which are strictly positive. Therefore, the special case k = 0 in D,ﬁrﬁ
in (3.2) does not occur.
The normalizing constant in Proposition 2.2 becomes

o d=Bix) . (= Byorxi) N
Z’ﬁ;Gr _det[ I —xyj ]

N, N__l 1— iPr
_ [ [Lo d—xiBy) 1_[ (xi —x;)(yi —yj)s

N
l_[i,j:l (I —xiyj) 1<i<j<N

i,j=1
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where the matrix elements are geometric sums, see (2.7), and the well-known Cauchy
determinant is evaluated in a product form.
Let us denote

Aj+N—
detlx) (A= gy (= B
Gu(xy,...,xN) = 5
[TicicjenGi —x))
Ai+N _
_ detly, V= gy =y Y
G.(y1,-..,YN) = . (3.3)

Hl§i<j§N(yi = Yj)

Since A; + N — j > N — j and in the matrix elements in G, there are N — j factors
of the form (1 — B, y; 1), we see that both G, and G, are symmetric polynomials in N

variables. We thus see that the E—tilted biorthogonal ensemble with the specialization
(3.1) has the form

Y21 = xiy))
| A AR Y

Mz (M) = Gu(xt, oo XN GaV1, - yN). (B4

We call (3.4) the (multiparameter) Grothendieck measure on partitions. This distribu-
tion is analogous to the Schur measure introduced in [70] which is a particular case
of Mﬁ;Gr for B, = 0.

Note that the probability weights (3.4) may be complex-valued. In Sect.3.2 we
discuss conditions on the parameters x;, y;, 8, which make the weights nonnegative
real.

3.2 Grothendieck polynomials and positivity

Here, we comment on the relations between the polynomials G, G and Grothendieck
polynomials appearing in the literature. We also discuss the nonnegativity of the mea-
sure ME;Gr (3.4) on partitions.

Grothendieck polynomials are well-known in algebraic combinatorics and geome-
try, going back to at least [58], see also [27]. Their one-parameter B-deformations
appeared in [35]. The recent paper [41] introduced and studied the most general
(to date) deformations called refined canonical stable Grothendieck polynomials
Gy (x1,...,xN; O, B). These objects generalize most known Grothendieck-like poly-
nomials in the literature, in particular, the ones in [27, 35], as well as more recent
extensions in, e.g., L31, 84]. The refined canonical stable Grothendieck polynomials
G;. (x1,...,xy; @, B) depend on two sequences of parameters @ = (g, a2, ...) and
,5 = (B1, B2, .. .), and are defined as

dm{xM+Njﬂ'-ﬁxﬂ-n(l—ﬂp4x0]N

! (I —onxi) ... (1 —a;;x;)

Gr(x1, ... XN @, f) = =l 3.5

H1§i<j§N(xi —Xxj)
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Note that for nonzero «;’s, Gy (x1, ..., Xn; a, ,5) are not polynomials but rather are
generating series in the x;’s. When o; = Oforall j (which drops the word “canonical”
from the terminology), expressions (3.5) become polynomials and reduce to our G, ’s
from (3.3). The polynomials G in (3.3) are expressed through the G;’s as follows.
Denote 8,V := By—r,r =1,...,N=1and A" := (0> —Any > —Ay_1 = --- >
—A1). Then, one readily sees that

Gr(x1, s xn | B) = G (67  xy BTN, (3.6)

where we explicitly indicated the dependence on the parameters B.. Moreover,

since G, satisfies the index shift property Gy, 1)(X1,...,XN) = X1...XN -
G, (x1,...,xN), one can shift the negative coordinates A"“" to obtain a nonnegative
partition.

The sum to one property of the Grothendieck measure Mz. ;. (3.4) is equivalent to
the following Cauchy-type summation identity for the polynomials (3.3):

N N-1
= i1 | =1 (1 —xiB))
Z Gu(xt,....,xN)GL(y1, ..., ¥N) = [T, lNl_[r 1 e
A= 2= Ay 20) [T =1 (1 —xiy))
lx;iy;l < 1. (3.7)

Itis instructive to compare this identity to Cauchy identities for Grothendieck symmet-
ric functions, for example, see [84, (36)] or [41, Corollary 3.6]. The latter identities
involve sums of products in the form G, g,, where g, are the dual Grothendieck
symmetric functions. The products in the right-hand side of these summation identi-
ties have the form ]_[?’szl(l — x;y;)”", and a possible analogue in our case would

be [1752, 1:2 f, j . However, in this paper, we will not explore a symmetric function
extension of the identity (3.7).

Let us now discuss the nonnegativity of the probability weights M3, (3.4). Using
the tableau formula for G, (for example, [41, Corollary 4.5]) and the relation (3.6)
between G and G, we see that the probability weights M 7 Gr(A) are nonnegative

for all A when the parameters satisfy
x>0, yi=>0, B =<0 lxiy;l < 1; 1<i,j<N, 1<r<N-Q@3.3)

Indeed, under (3.8) we have nonnegativity (and even Schur-nonnegativity, cf. [41,
Theorem 4.3]) of G and G, as well as the convergence of the series (3.7).

Furthermore, we can extend the nonnegativity range of the Grothendieck measures
to certain positive values of §,:

Proposition 3.1 Let x;,y; > 0 and B, < x;l, Br < yj foralli,j,r. Then the
Grothendieck polynomials G (x1, ..., xy) and Gy (y1, ..., yn) defined by (3.3) are
nonnegative.
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Proof We consider only the case G, as G, is completely analogous. For a nonnegative
function f on Z=( we have under our conditions:

DY F) = fU) =B fle+1) = f) —x, ' flk+ 1),
Therefore, replacing 8, by x,~ !in the application of D,(:) can only decrease the result.

The Grothendieck polynomial G, (x1, ..., xy) is obtained by applying the opera-
tors D,((r) to the Schur polynomial s (x1, ..., xXy):

AN
det[D([gi,’])x.e"]

1

i, j=1 1,1 I.N
G)(xt,...,xN) = L = El )...DéN )sx(xl,...,xN).
Hl§i<j§N(xi —x;)
It follows that G, (x1, ..., xn) = G (x1,...,XN) fr=xi! forall r* On the other hand,

when B, = x ! for all r, the matrix in the numerator in G, (3.3) becomes triangular,
and we have

detx/ (1= xifx) .. (0 =i/ 0] = [T (1-2),

I<i<j<N

Cancelling the product over i, j with the denominator in G;, we see that after the
substitution, the resulting expression G, (xq, ..., XN) Byr=x" forall r is clearly non-
negative. This completes the proof. O

Proposition 3.1 implies that the Grothendieck probability weights M j.Gr(A) are
nonnegative for all A when the parameters satisfy the extended conditions

x>0, y; >0, ﬂrsx,-_l, Br <vyj: lxiyjl<1l, 1=<i,j<N,

l<r<N-1 (3.9

3.3 Two-dimensional Schur process and its correlation kernel

By Theorem 2.3, the Grothendieck measure is embedded into the two-dimensional
ensemble X3¢ (2.9). Our specialization (3.1) implies that X>¢ is distributed as the
Schur process. Schur processes are a vast family of determinantal point processes on
the two-dimensional lattice introduced and studied in [73].

Assume that the parameters satisfy (3.8), and define u!" := x/" +i — N, i,m =
1,..., N, where the particles xl?" come from the two-dimensional ensemble X2¢.
Clearly, each u™ = (uf' > --- > ply = 0) is a partition with at most N parts.
From (2.10)—(2.11) we conclude that the probability weight of the tuple of partitions
(', uNyis

M%?Gr(ul, ooty S (xr, .o xXN)
XS(M])//(MZ)/(_ﬁ]) ce S(MN—I)//(MN)/(—,BNfl)SMN (yl yoeeey yN) (310)
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Here () / (" T1)’ denote skew transposed partitions, and we used a basic property
of skew Schur functions evaluated at a single variable (for example, see [60, Chapter
L5)):

det [Tﬂm @, ’?1“)] = Sy jgenity (—Bu)-

i, j=1
From Theorem 2.3 we immediately get:

Proposition 3.2 The Grothendieck measure Mﬁ o) (3.4) is embedded into the
Schur process (3.10) in the sense that the joint distributions of the integer N-tuples
{Aiti=1...n and {p}}im1... N coincide.

Remark 3.3 While the Schur process (3.10) is not a nonnegative measure for g, > 0,
the Grothendieck measures (3.4) are still nonnegative probability measures under the
more relaxed conditions (3.9). Consequently, we will primarily focus on the case when
the parameters satisfy the more restrictive conditions (3.8). However, in Sect. 5.4 we
will also consider the question of limit shapes for Grothendieck measures with positive
B;’s (which do not correspond to nonnegative Schur processes).

As shown in [73], the correlation kernel of the Schur process (3.10) has a double
contour integral form. The alternative proof of this result given in [26, Theorem 2.2]
proceeds from the general kernel Kéd (2.14) and involves an explicit inverse matrix

G ( ,5 ) which is available thanks to the Cauchy determinant. Let us record this double
contour integral kernel:

Proposition 3.4 The correlation kernel for the Schur process X2 = {x 1 <m,i <
N} containing the Grothendieck measure M3 G:Gr (3.4) has the form

b—N
K2 (a,1:b,5) = (27;)2 # jz_dz W ;;t((;)), (3.11)
where a,b € Z=o, t,s € {l,..., N},
N —zly; N 1
Fi(2) :=E g ]:[t e (3.12)

and the integration contours in (3.11) are positively oriented simple closed curves
around O satisfying the following conditions:

(D) |z| > |w|fort < s and |z| < |w|fort > s;
(2) On the contours it must be that |B,| < |z| < xi_1 and |w| > y; foralli and r.

The integration contours in Proposition 3.4 exist only under certain conditions on the
parameters x;, y;, and B, for example, it must be that |8, < x;” ! for all i,7. When
these conditions on the parameters are violated, we should deform the integration
contours to take the same residues. In other words, we can analytically continue the
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#1
\Bl

(Ih...

1%} g

Fig.3 Graphical representation of the Schur process (3.10). Arrows indicate the diagram inclusion relations

kernel by declaring that the double contour integral in (3.11) is always equal to the
sum of the same residues: first take the sum of the residues in w at 0, all y;’s, and at z
if # > s; then take the sum of the residues of the resulting expression in z at O and all

Br’s.

Proof of Proposition 3.4 1t is well-known that determinantal correlation kernels for the
Schur measures and processes have double contour integral form, see [70, 73]. Namely,
the generating function for the Schur process kernel has the form

I @@, 2)
z2—w d(s, w)’

Z KSchurprocess(a’ t: b, S)Zawibil — (3.13)

a,beZ

where ® (¢, z) are is a function which is read off from the specializations in the Schur
process, and the generating series in (3.13) is expanded differently depending on
whetherr < s ort > s. This difference in expansion is that we assume either |z| > |w|
or |z| < |w|, which can be ultimately traced back to the normal ordering of the
fermionic operators ¥ (z), ¥*(w) in the notation of [73, Section 2.3.4]. Formula (3.13)
is the same as [73, Theorem 1], up to switching from half-integers to integers in the
indices a, b.

Let us remark that it is not immediate how to adapt the generating function (3.13)
to a particular specialization of the Schur process (that is, how to select the integration
contours to pick out the correct coefficients). In general, one could use the contour
integrals from [46] (see also [13, Remark 2 after Theorem 5.3]) or [26, Theorem 2.2],
but here for convenience let us briefly record a “user’s manual” for such an adaptation.
There are three principles:

e First, start with the Schur measures (¢ = s). By [70, Theorem 2], the contours
must satisfy |z] > |w| fort = s.

e Second, on the integration contours for all 7, s, all denominators in the integrand
should expand as geometric series in a natural way as ﬁ =Y 2 &

e The first two principles allow to select the integration contours for + = s, and it
only remains to determine their ordering (|z| > |w| or |z| < |w]) fort # 5. This is
done by inspecting how the specializations of the Schur measures at # = s change
with 7.
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Let us implement these principles for our Schur process (3.10). Its graphical repre-
sentation is given in Fig. 3. Each u! distributed as the Schur measure with probability
weights

O Syt (X1 v o s XN)S (=B ooy —BN—15 V1s o5 YN (3.14)

Here the notation —f; means that these are “dual” parameters, that is, they correspond
to transpositions of the Young diagrams. Moreover, we unified a number of these
“dual” parameters with the usual parameters y; in the second Schur function (see, e.g.,
[13, Section 2] for details). The weights (3.14) follows from the weights (3.10) and
the skew Cauchy identity for Schur functions.

Now, from (3.14) and [70, Theorem 2], we see that the functions in the integrand
for ¢t = s are given by

N 1. N-1
H,,..., (2) 1=z "y 1
Ft(z) = H - ()il = N 1_[ 1 .l 1_[ 1 -1 (3'15)
—Bryees=BN=1;¥15-IN @) i=1 —h o4 b Brz

where H,(z) = )_,-02" Sm) (p) is the single-variable Cauchy kernel for a special-
ization p of Schur functions. The second equality in (3.15) follows from the Cauchy
identity, and is precisely the expression (3.12) for F;(z). Thus, using the first two
principles above, we get all the conditions on the contours in our Proposition 3.4 for
t = s. In particular, the second condition |B,| < |z| < xl._l, |w| > y; follows from
requiring the expansion of

F@) _ ﬁ 1-z"'y ﬁ L—wy [L5A=prwh)
L—zx ot l=—wly NN - 6,270

as geometric series. Observe that to get the integral (3.11), we also needed to shift the
indices (a, b) by N — % compared to formulas in [70, 73]. Indeed, in these references

the point configuration associated to a partition pu is {ui —i+ %} , while we

work with {u; + N — i} .
Extending our formula (3.11) to ¢ # s in a natural way leaves only the question of
the ordering of the integration contours (|z| > |w| or |z| < |w]|) for ¢ # s. This can be

. . ) . -1
resolved by comparing (3.15) with [73, (20)]. We see that H—ﬂf,‘..,—ﬁN,l VYN (™)

should be matched to the product [],,_, ¢ [m](z~"). In the latter product, increasing
t will increase the number of factors, which is opposite to how the number of factors
depends on ¢ in (3.15). Thus, we must choose |z| > |w| for ¢ < s, which is opposite
to [73, Theorem 1]. This completes the proof. O

i€Z>1

4 Absence of determinantal structure

The Grothendieck measure M G:Gr (3.4) has probability weights expressed as products
of two determinants. This structure is very similar to that of biorthogonal ensembles
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(2.5), which are well-known determinantal point processes. However, this section
shows that the Grothendieck measures are not determinantal point processes. This
question is deeply linked to the principal minor assignment problem from linear alge-
bra and algebraic geometry. We describe this problem in Sect.4.1, and discuss its
long history in Sect.4.2. Then in Sect.4.3, we present a self-contained derivation of
a determinantal test for minors of a 4 x 4 matrix originally obtained by Nanson in
1897 [66], and in Sect. 4.4 we extend this test to matrices of arbitrary size. Finally, in
Sect. 4.5, we apply the original Nanson’s test to show that the Grothendieck measures
are not determinantal.

4.1 Principal minor assignment problem

Let A be an n x n complex matrix. To it, we associate 2" principal minors A; =
det[Aia,ih]L”b:p where I runs over all subsets of {1, ...,n}, and || is the number

of elements in /. This includes the empty minor Az = 1. The map (SN c?,
A — (Ap)ic{1,...n), is called the affine principal minor map. The (affine) principal
minor assignment problem [42, 56] aims to characterize the image under this map in
C?". Denote this image by A, C C?". This complex algebraic variety is closed and
has dimension n% — n + 1 [56, 81].

Forn < 3, the dimension of A, is equal to 2" — 1, (full available dimension because
Ag = 1), but starting with n = 4, A, becomes very complicated. Indeed, by [56,
Theorem 2], the prime ideal of the (13-dimensional) variety A4 is minimally generated
by 65 polynomials of degree 12 in the A;’s.

Let us translate the principal minor assignment problem into the language of point
processes. Let M be a point process on Zxo, that is, a probability measure on point
configurations in Zxo. This measure may have complex weights, but has to be nor-
malized to have total probability mass 1, and has to be bounded in absolute value by
a nonnegative probability measure on point configurations in Zxg. The base space for
the point process may be arbitrary and is not necessarily finite, and here we take Zx
for an easier future application. For each finite subset / C Zx( consider the correlation
function

p1 = M (the random point configuration contains all points from 7).

It is natural to ask whether the point process M is determinantal, that is, whether there
exists a kernel K (x, y), x, y € Z>p, such that for any finite / C Z>¢ we have p; =
det[K (a, b)]a.per- A clear necessary condition for the process to be determinantal is
as follows:

Proposition 4.1 If the process M is determinantal, then for any n > 1 and any n-point
subset J C Zxo, the vector (pr: I C J) € c? belongs to the image A,, under the
principal minor map.

Thus, if for some n and some n-point J C Zx( the vector (p7: I € J) € C?" does
not belong to A, then the process M is not determinantal. Due to the complicated
nature of A, for n > 4, checking that a vector belongs to A4, is hard. Howeyver, to
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show that some vector (p;) does not belong to A,, it suffices to find a polynomial in
the ideal of A4, that does not vanish on (p;). This leads us to the following definition:

Definition 4.2 Fixn > 4. A determinantal test of order n is any element in the ideal of
A, that is, a polynomial in the indeterminates (A;: I C {1, ..., n}) which vanishes
if the A;’s are principal minors of some matrix A.

Thus, to show that the process M is not determinantal, it suffices to show that
there exists J C Zx¢ and a determinantal test which does not vanish on the vector
(pr: I C J). Let us describe an example of such a test of order 4 which we call the
Nanson’s test as it first appeared in 1897 in [66]. First, we need another definition:

Definition 4.3 Let A = (g;;) be a complex n x n matrix, and fix I C {1, ..., n} with
|I| = k > 2. For a k-cycle r € S, with support [ (there are (k — 1)! such cycles),
define 1, (A4) :==[1;. i (i) Qi (i) Let the cycle-sum [56] be

Ty = > tr(A). 4.1)

all k—cycles = with support 1

The cycle-sums are the same as cluster functions in the terminology of [82], and
they can be expressed through the principal minors A; as follows:

Tr= Y (=D""m—11AL-- A, (4.2)

I=I 00l

where the sum is taken over all set partitions of / into exactly m nonempty parts. For
example,

T{1,2,3} = ajpaz3asz + ajzaias
=2AmAR AR — (AmAps + A An s + AjAn ) + Apes).

Definition 4.4 The Nanson’s determinantal test is a polynomial 94 of order 4 in the
indeterminates 77 which has the form

T123Twa  TioaTizs  TizaTiz 2T12Ti3ThaTo34 + Th23Ti24T134
1 d Ti24Tos  T23Toa  TozaTiz 2T12T23T24T134 + T123T124T234
2 Ti34T2s  To3aTiz  TiosTsa 2T13T23T34T124 + T123T134T234
T234Tia  TizaToa  TioaTzs  2T14T24T34T123 + T124T134 234

“4.3)

where we abbreviated T;; = T;, j}, and so on. By (4.2), 914 is also a polynomial in the
indeterminates Aj.

One readily verifies (for example, using computer algebra) that 94 is indeed a
determinantal test:
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Proposition 4.5 Ifforall 1 C {1, 2, 3, 4} we replace the indeterminates T;’s in (4.3)
by the cycle-sums (4.1) coming from a 4 x 4 matrix A, then the polynomial N4 (4.3)
vanishes identically.

We apply Nanson’s test 14 to show that the Grothendieck measures are not deter-
minantal in Sect. 4.5.

4.2 On the history of the principal minor assignment problem

Let us briefly discuss the rich history and variants of the principal minor assignment
problem. Within this history, we can observe at least two instances where similar
questions were independently formulated and addressed in the context of algebra (on
the original principal minor assignment) and probability (concerning determinantal
processes). We hope that these two research avenues will become increasingly aware
of one another.

The problem itself dates to the late 19th century work of MacMahon [59], with initial
results due to Muir [64, 65] and Nanson [66]. In particular, Nanson has partially solved
the 4 x 4 principal minor assignment problem, and obtained the determinantal test
4 (4.3). He also obtained four other tests algebraically independent from 9t4 (which
enter the list of 65 polynomials in Lin—Sturmfels [56]). The question of relations on
principal minors is investigated by Stouffer [81], and in particular he showed that the
dimension of A, isn? —n + 1.

Another question related to the principal minor assignment problem, when it has a
solution, concerns the relationship between two n x n complex matrices A, B with the
same principal minors. Under various natural conditions, it has been shown that the
matrix A should be diagonally conjugate either to B, or to B'f18P°5¢ Here “diagonally
conjugate” means A = DBD™!, where D is a nondegenerate diagonal matrix. This
question was first addressed in the context of the principal minors assignment problem
by Loewy [55]. More recently, Stevens [80] and Mantelos [61] investigated essentially
the same question within the context of determinantal processes, seemingly unaware
of Loewy’s work.

Griffin—Tsatsomeros [39] proposed algorithms for finding the solution of the prin-
cipal minor assignment problem (that is, the matrix A), which are computationally
fast for particular subclasses of matrices. While this does not yield explicit polynomial
determinantal tests, an algorithm can be used to (numerically) demonstrate that a point
process is not determinantal. In our application to Grothendieck measures in Sect. 4.5
we do not use an algorithm like in [39], but rather perform a symbolic computation
based on the Nanson’s test 914.

A particularly well-understood case of the principal minor assignment problem
assumes that the initial complex n x n matrix A is Hermitian symmetric. Holtz—
Sturmfels [43] and Oeding [68] use the additional hyperdeterminantal structure of the
variety formed by principal minors to solve the assignment problem set-theoretically.
More recently, Al Ahmadieh and Vinzant [1, 2] considered the principal minor assign-
ment problem over other rings and explored connections to stable polynomials. These
latter works represent the current state of the art of the principal minor assignment
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problem from an algebraic perspective. In particular, [2, Theorem 8.1] is a strong and
unexpected negative result.

Finally, let us mention that there are several natural generalizations of the princi-
pal minor assignment problem, as considered by Borodin—Rains [26, Section 4] and
independently by Lin—Sturmfels [56] (unaware at the time of the work by Borodin—
Rains). These variants allow more general conditional and/or Pfaffian structure of
the correlation functions p;. A conditional determinantal process, by definition, has
correlation functions p; = det[K(a, b)]; pejus, Wwhere S = {n+1,...,n+m},
and I C {l,...,n}. In other words, it is a usual determinantal process on
{1,...,n,n+1,...,n+m} conditioned to have particles at each of the points
n+1,...,n + m. In the terminology of [56], the conditional determinantal struc-
ture is the same as the projective principal minor assignment problem, a more natural
setting for algebraic geometry. The projective variety analog of A, for n = 4 is more
complicated, with 718 generating polynomials. The Pfaffian and conditional Pfaffian
structures (considered in [26]; they are motivated, in particular, by real and quater-
nionic random matrix ensembles) are defined similarly to the determinantal ones, but
with determinants replaced by Pfaffians. The n = 4 conditional Pfaffian (projective)
variety analog of A,, is even more complicated than the determinantal one, and exper-
imentation suggests [26] that a corresponding test could have degree 1146.

It would be interesting to develop determinantal and Pfaffian tests for conditional
processes (as well as for further generalizations involving, for example, «-determinants
and permanents), but we leave these directions for future work.

4.3 A self-contained derivation of Nanson’s determinantal test

Here we present a self-contained derivation of Nanson’s determinantal test polyno-
mial 94 (4.3). This argument differs slightly from Nanson’s original work [66] and
was obtained independently by the second author (unaware of the principal minor
assignment problem) over a decade ago [76]. Here we see another instance of the dis-
connect between the principal minor assignment problem and determinantal processes
(complementing the two cases discussed in Sect.4.2). In Sect. 4.4, we discuss how our
derivation of 914 can be adapted to obtain Nanson-like higher-order determinantal
tests.

We aim to explain where the polynomial 914 (4.3) comes from. Checking that it
is indeed a determinantal test is a direct verification (Proposition 4.5), and we do not
focus on this here.

Assume that we are given the cluster functions 77 (4.2), where I runs over subsets
of {1,2,3,4} with > 2 elements. The 7;’s are polynomials in the minors Ay, but
working with the 77’s is much more convenient. Let us use the 77’s to try finding the
matrix elements a;; of the original matrix A.

Throughout the rest of this section, we will abbreviate expressions like T{j 2} as
T1>. Note that all the 7;’s are symmetric in the indices. Assume that aj; # 0 for
all i = 2,3,4, and conjugate the matrix by the diagonal matrix with the entries
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d; = 1;—1+ay;1; 1. Then we have for the conjugated matrix (denoted by A= (@;j)):
ali = _ali — 17 l = 2, 3,4 (44)

With this notation, we have T; = a;1 and
Ti; = aijaj,  Tij=a;;T;+a;T;. 4.5)

The second identity in (4.5) is by the definition of the cluster function (4.1), simplified
thanks to (4.4). Equations (4.5) allow to find a;; T ; and a; Ty; as two distinct roots of
a quadratic equation. We thus have

Thij + R;; - . TN — Ry
2 b

where we denoted R;; = &£ /lel. ; —4Ty;T1;T;;. Observe that R;; contains an

unknown sign that we cannot determine a priori (it may also depend on i and j),
but up to sign R;; is symmetric in i, j.
Let us substitute (4.6) into the following identity (which is again an instance of

4.1)):

Zl,‘j le = 4.6)

Tr34 = G23G34G42 + 424043032

As aresult, we obtain the following identity involving three square roots R»3, R34, Ro4
with unknown signs:

8T12T13T14T234 = (T123 + R23) (T124 + Ro4) (T134 + R34)
+ (Th23 — R23) (T124 — Rog) (T134 — R34) . 4.7

Note that (4.7) does not contain the matrix elements a. Thus, it is an algebraic (but not
yet polynomial) identity on the cluster functions 7;. Simplifying (4.7), we see that

4T12T3T14T234 — T123T124T143 — T123R24 R34 — T124R23 R34 — T134R23 R4 = 0.
(4.8)

The left-hand side contains three summands with irrationalities Ry4 R34, Ro3 R34, and
R>3 R4 with uncertain signs. By choosing all possible eight combinations of the signs
for Ry3, R34, Roa, we see that there are only four possible combinations of signs in
(4.8). Thus, by multiplying together all these four expressions with different signs, we
can get rid of irrationality and obtain a polynomial in the 77’s:

(4T12T13T14To34 — T123T124 T4 — T123R24 R34 — T124 R23 R3s — Ti34R23 Ro4)
X (4T12T13T14Toss — T123T124T143 + T123 R24 R34 + T124 R23 Rag — T134R23 R24)
X (4T12T13T1aToss — T123T124T143 — T123R24 R34 + T124 R23 R34 + T134R23 R24)
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X (4T12T13T14To3s — T123T124T143 + T123R24 R34 — T124 Ro3 R34
+T134R23R24) = 0. (4.9)

Clearly, expanding the left-hand side of (4.9) squares all the quantities R;;. Thus, the
resulting identity is polynomial in the T;’s, and, moreover, all unknown signs present
in the R’s disappear.

One can check (for example, using computer algebra) that the resulting polynomial
(4.9) in the 77’s has 19 summands, and it is symmetric in the indices 1, 2, 3, 4. One
can also verify that this polynomial divided by the common factor 256T122 T123 le4 is
exactly the same as the Nanson’s test 14 (4.3). This concludes our derivation of the
Nanson’s determinantal test of order four.

4.4 Procedure for higher-order Nanson tests

Adapting the derivation of the test 914 given in Sect.4.3, one can produce concrete
determinantal tests 91, for minors of general n x n matrices, where n > 4. Let us
explain the necessary steps for general n without going into full detail. We have from
(4.1):

13,0 = Z Ao ()0 3) - - - G (n-1)o (o))  (4.10)

(n—1)—cycles o on {2,...,n}

For every i < j, let us substitute the solutions (4.6), so (4.10) becomes

On
2Ty TuTaa = ] (Tla(i)a(i+l) + (_l)lg(i)>a(i+l)Ro'(i)o'(i+])> .
o =2
.11
Here the sum is also over (n — 1)-cycles o on {2, ...,n}, and “O” means that the

product is cyclic in the sense that n 4 1 is identified with 2. We see that (4.11) is an
algebraic identity on the 7;’s which does not contain the matrix elements d;;.

Opening up the parentheses in (4.11), one readily sees that all terms with an odd
number of the factors R;; cancel out, while the terms with an even number of the
factors R;; appear twice. Therefore, we can continue (4.11) as

On
2" 2Ty ... TinTs, . — > [[7irea1) =RHS. (4.12)
non-oriented (n—1)—cycles i=2
Tt on{2,..,n}
Here RHS is a sum over non-oriented (n — 1) cycles 7 on {2, ..., n}, where the

summands are (n — 1)-fold cyclic products of the quantities 77;; and R;; with a
nonzero even number of the R’s, and each such monomial has coefficient &=1. More
precisely, the sign is determined by the number of descents 7(i) > (i + 1) in t for
which the monomial contains R ()¢ (i+1) (and not Tz (i+1))-
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Next, in RHS there are (”;1) possible elements R;;, and each of them contains an

unknown sign in front of the square root. Let us take the product over those of the

2('3h possible sign combinations which lead to the different RHS’s. Expanding this
product removes all irrationalities and unknown signs, and produces a polynomial
(denoted by D1,,) in the cluster functions 77, where I runs over subsets of {1, ..., n}
with > 2 elements. We call 0, the Nanson-like determinantal test of order n.

For example, for n = 5 identity (4.12) has the form (recall that the quantities 71;;
and R;; are symmetric in i, j):

8T12T3T14T15T2345 — ToaTaz T35 Tsy — To3T34TusTsy — T3 T35T54Tuan
= Ro4Ro5R34R35 — Rp3R25 R34 Ras + Ro3 Rog R3s5Rys
+ R34R45T123T125 + RoaR35T125T134 + Ro3RasT125T134
+ Ro4R45T123T135 + RosR34T124T135 + Ro3R35T124 145
+ R23R34T125T145s — Ro3RosT134T145 — Ro3RoaTi35T 145
— R35R45T123T124 — R34R35T124T125 — RosRas5T123T134
— Ro5R35T124T134 — Ro3Ra5T124T135 — RoaR34T125T135
— RoaRy5T134T135s — RosR34T123T145 — RoaR35T123T145.

In the right-hand side, there are 2(3) = 64 possible signs in the R;;’s, but they lead to
“only” 32 distinct identities. Multiplying all these 32 expressions similarly to (4.9) and
recalling the definition of the R’s leads to a polynomial in the 7;’s with no irrationality.
This produces the determinantal test 1.

4.5 Application to Grothendieck measures and proof of Theorem 1.2

In this subsection we employ the Nanson determinantal test 14 to prove Theorem 1.2
from Introduction. That is, we will show that the Grothendieck measure on partitions
MB;Gr()‘) (3.4) is not determinantal as a point process on Z>o with points £; =
AN+FN—j,j=1,...,N.

We focus on the case N = 2 and look at correlations ,o,Gr of the random point
configuration {€1, €2} = {A1 4+ 1, Ap} for all subsets I C {0, 1, 2, 3}. Moreover, we
will set 81 = B, x1 = x2 = x, and y; = yp = y. Clearly, p?r =0if |I| =3 or4.
Moreover, we have pgr = 1, and for two-point subsets we have (where i > j):

'O{Ci;,rj} = Mﬁ;Gr((i -1 j))
_ (—xy?

= o YR B - - D =i DG =D =B - ).

(4.13)

where we used (3.3)—(3.4), and took the limits as x; — x; = x and y, — y; = y.
To compute one-point correlations, we employ Proposition 2.7 and the correlation
kernel K éfJGr of the ambient Schur process (Proposition 3.4). We have by Proposition
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2.7 (specifically, by its particular case (2.19))

=lz w]det(l —( —z)on]K/3 o 1 Dixponn
+(1 - w)X[O,i]Ki R 1)X{i}>
+HLwldet(1 = (1 = Dx100 K%, (25 20

+( = w00 K% (225 Dxin)- (4.14)
This yields formulas for p{(i";, i =0,1,2,3, namely,

pigy =1 -2y

(1 —xy)?

(1= px)?

L < —x)* (B(Bx —2) +xy* + y(4 — Zﬁx))
(1 — Bx)?

iy = 22y =22y +

pay = x*yH(1 — x%y?)

Py = x0y°1 = x%y?)
x2y(1—xp)* (123 +y (B2 — 8x +9) +2828x — 3) — 21y%(Bx — 2))

" (1= px)? '

(4.15)

Remark 4.6 These one-point correlation functions p{?f can be also computed without
using the finite-dimensional Fredholm-like determinants (4.14). Namely,

i—1 [
Pl =D M (G = 1.7) + Y Mg, (. D)),
j=0 J=i

and the infinite sum is explicit because the summands have the form (4.13). However,
this simplification of correlation functions works only for small N and small order of
correlation functions. We will use the full two-dimensional determinantal kernel to
obtain asymptotics of Grothendieck random partitions in Sect. 3.

Plugging the correlation functions (4.13), (4.15) into the Nanson test (4.3) (with
the help of the representation of cluster functions via minors (4.2)), we find

Ny = B0 — )R+ 0Pty + 0 (67), B0, @16)

where P14(xy) is a certain degree 14 polynomial in the single variable xy. We see that
4 vanishes at B = 0, as it should be because then the Grothendieck measure reduces
to the Schur measure which is determinantal. On the other hand, for 8 # 0 the test
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does not vanish in general. For example, at x = y = 1/2, we have

_(B-H(B-1p
(B—2)%2

(B —2)*

(B—4H(B— DB imy=12, p=—1

N4

03(B)Qs5(B)Q7(B) Qo ().

~ (0.00005021 > 0,

where 03, Os, Q7, Qg are certain polynomials in 8 of degrees 3, 5, 7, 9, respectively.
Since the Nanson determinantal test does not vanish for these values of x, y, 8, this
implies Theorem 1.2 from Introducti