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Abstract

We study probability measures on partitions based on symmetric Grothendieck poly-

nomials. These deformations of Schur polynomials introduced in the K-theory of

Grassmannians share many common properties. Our Grothendieck measures are

analogs of the Schur measures on partitions introduced by Okounkov (Sel Math

7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability

weights of Schur and Grothendieck measures, we demonstrate that Grothendieck mea-

sures are not determinantal point processes. This question is related to the principal

minor assignment problem in algebraic geometry, and we employ a determinantal test

first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure

for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which

appear new for n ≥ 5. By placing the Grothendieck measures into a new framework

of tilted biorthogonal ensembles generalizing a rich class of determinantal processes

introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck

random partitions as a cross-section of a Schur process, a determinantal process in two

dimensions. This identification expresses the correlation functions of Grothendieck

measures through sums of Fredholm determinants, which are not immediately suit-

able for asymptotic analysis. A more direct approach allows us to obtain a limit shape

result for the Grothendieck random partitions. The limit shape curve is not particularly

explicit as it arises as a cross-section of the limit shape surface for the Schur process.

The gradient of this surface is expressed through the argument of a complex root of a

cubic equation.
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1 Introduction

1.1 Random partitions from symmetric functions

The study of random integer partitions involving probability weights expressed

through symmetric polynomials has been a long-standing topic in integrable probabil-

ity and related fields [13, 22]. Asymptotic analysis of various measures on partitions

produced law of large numbers and asymptotic fluctuation results in many stochastic

models describing complex real-world phenomena, including longest increasing sub-

sequences [9, 57, 83], interacting particle systems [46], random growth models [10],

random polymer models [30, 67, 75], random matrices [12], and geometry [69, 72].

One of the earliest studied ensembles of random partitions based on symmetric

functions is the Schur measure introduced in [70]. The Schur measure probability

weights have the form

Prob(λ) := 1

Z

det[xλi +N−i
j ]N

i, j=1
∏

1≤i< j≤N (xi − x j )
︸ ︷︷ ︸

sλ(x1,...,xN )

det[y
λi +N−i
j ]N

i, j=1
∏

1≤i< j≤N (yi − y j )
︸ ︷︷ ︸

sλ(y1,...,yN )

. (1.1)

Here λ = (λ1 ≥ · · · ≥ λN ≥ 0) are integer partitions which we think of as our

random objects, xi , y j ≥ 0 with xi y j < 1 are parameters of the measure. The quanti-

ties sλ(x1, . . . , xN ) and sλ(y1, . . . , yN ) in (1.1) are the well-known Schur symmetric

polynomials in the variables x1, . . . , xN and y1, . . . , yN , respectively, indexed by the

same partition λ. The probability normalizing constant Z =∏N
i, j=1(1 − xi y j )

−1 has

a product form thanks to the Cauchy summation identity for Schur polynomials.

The Schur measures are particularly tractable thanks to their determinantal struc-

ture, which allows expressing correlation functions

ρ(a1, . . . , am) := Prob

(

the random set

{λi + N − i} ⊂ Z≥0 contains each a1, . . . , am

)

(1.2)

of an arbitrary order m as m×m determinants det[K (ai , a j )]m
i, j=1 of a fixed correlation

kernel K (a, b), where a, b ∈ Z≥0. The kernel has a double contour integral form,

readily amenable to asymptotic analysis by steepest descent.
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Over the past two decades, Schur measures have been generalized to other families

of symmetric polynomials, including Macdonald polynomials [7] and their degenera-

tions such as Jack [12], Hall–Littlewood [15, 23], and q-Whittaker polynomials [22,

62]. More recently, these efforts have extended to symmetric rational functions (like

spin q-Whittaker and spin Hall–Littlewood functions) arising as partition functions

of integrable (in the sense of the Yang–Baxter equation) vertex models [3, 20, 24,

28]. The vertex model approach also naturally included distinguished nonsymmetric

polynomials powering the structure of multispecies stochastic systems [4, 29].

While these more general symmetric polynomials and rational functions share

many properties with the Schur polynomials, the technique of determinantal point pro-

cesses does not straightforwardly extend. This has led to several interesting alternative

approaches, including eigenoperators [7] and duality [8], which brought multiple con-

tour integral formulas for expectations of observables. Recently [44] presented a direct

mapping between q-Whittaker and cylindric Schur measures [17] preserving specific

observables. Since the latter measures are determinantal, this allows for employing

determinantal process methods for the asymptotic analysis of these observables.

1.2 Grothendieckmeasures on partitions

Our primary focus is on Grothendieck measures on partitions whose probability

weights are expressed through the Grothendieck symmetric polynomials:

Prob(λ) := 1

Z ′
det
[

x
λ j +N− j

i (1 − βxi )
j−1
]N

i, j=1
∏

1≤i< j≤n(xi − x j )
︸ ︷︷ ︸

Gλ(x1,...,xN )

det
[

y
λ j +N− j

i (1 − β y−1
i )N− j

]N

i, j=1
∏

1≤i< j≤n(yi − y j )
︸ ︷︷ ︸

Gλ(y1,...,yN )

.

(1.3)

Here xi , y j , and β are parameters such that xi , y j ≥ 0, xi y j < 1, and

β ≤ min1≤i≤N (x−1
i , yi ). The latter condition implies that the probability weights

are nonnegative. The Grothendieck symmetric polynomials Gλ(x1, . . . , xN ) and

Gλ(y1, . . . , yN ) are one-parameter deformations of the Schur polynomials appear-

ing in the K-theory of Grassmannians. The normalizing constant is Z ′ = ∏N
i=1(1 −

xiβ)N−1
∏N

i, j=1(1 − xi y j )
−1. When β = 0, the Grothendieck measure (1.3) reduces

to the Schur measure (1.1). We refer to [27, 31, 35, 58, 84], and [41] for details,

properties, and various multiparameter generalizations of Grothendieck polynomials.

All methods of the present paper apply in a setting when there are multiple β j ’s (see

the polynomials Gλ and Gλ in (3.3) in the text). However, in the Introduction and

asymptotic analysis, we restrict to the case of the homogeneous β j ’s.

In this paper, we obtain two main results for the Grothendieck measures:

• We show that despite the determinant representation of their probability weights,

Grothendieck measures do not possess a determinantal structure of correlations.

This observation may appear unexpected given the similarity of Grothendieck

probability weights compared to the Schur measures.
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• We establish a link between Grothendieck random partitions and Schur processes,

the latter being determinantal point processes on a two-dimensional lattice. We

perform this connection within an extended framework of tilted biorthogonal

ensembles, which we introduce. This connection provides an essential structure

for the Grothendieck measures. It enables us to derive formulas expressing their

correlations through sums of Fredholm determinants and prove limit shape results.

We formulate these results in the remainder of the Introduction.

Remark 1.1 It was observed in [20, Sections 8.3 and 8.4] that the q = 0 specialization

of spin Hall–Littlewood polynomials produces determinantal partition functions of

vertex models which resemble the Grothendieck polynomials Gλ in (1.3). Most of

the machinery for computing expectations of observables of the form qheight breaks

down for q = 0, so it is not immediately clear whether vertex models are applicable

in the analysis of Grothendieck measures. Moreover, limit shape results are not yet

established for random partitions with spin Hall–Littlewood weights or their q = 0

degenerations (see, however, [5] for limit shapes of Macdonald random partitions in

another regime, as q, t → 1).

1.3 Absence of determinantal structure

Theorem 1.2 For certain fixed N and values of parameters xi , y j , and β, the cor-

relations (1.2) of the Grothendieck measures do not possess a determinantal form.

That is, there does not exist a function K : Z
2
≥0 → C for which ρ(a1, . . . , am) =

det[K (ai , a j )]m
i, j=1 for all m and all pairwise distinct a1, . . . , am ∈ Z≥0.

We show the nonexistence of a correlation kernel K by constructing an explicit

polynomial in the correlation functions ρ(a1, . . . , am), which vanishes identically

if the correlation functions have a determinantal form (we call such polynomials

determinantal tests). We then show that for a specific choice of parameters, N =
2, xi = y j = 1/2, β = −1, the determinantal test does not vanish. While for

Theorem 1.2, we only need a specific choice of parameters, we expect the absence of

determinantal structure to hold for generic parameters in the Grothendieck measures.

The problem of finding a kernel representing all correlations ρ(a1, . . . , am) in a

determinantal form is the same as the well-known principal minor assignment problem

in algebraic geometry. This problem seeks an n × n matrix whose all principal (diag-

onal) minors are given, but such an underlying matrix does not exist for all choices of

(prospective) principal minors. Therefore, one has to find relations between principal

minors. These relations are polynomial, and each may be used as a determinantal test.

The variety of n × n principal minors becomes complicated already for n = 4 (it is

minimally generated by 65 polynomials of degree 12), but for Theorem 1.2, it suffices

to show that one generating polynomial does not vanish. In fact, the determinantal test

we employ in our proof was written down by Nanson in 1897 for 4 × 4 matrices [66].

In Sect. 4.2, we discuss the rich history of the principal minor assignment problem and

several instances of its rediscovery within the study of determinantal point processes.

In Sects. 4.3 and 4.4, we present a self-contained derivation of the Nanson’s determi-



Tilted biorthogonal ensembles, Grothendieck random partitions… Page 5 of 51    56 

nantal test and suggest a generalization of the Nanson’s test to matrices of arbitrary

size. This generalization appears new.

1.4 Tilted biorthogonal ensembles

To connect Grothendieck measures to Schur processes, which are determinantal pro-

cesses on the two-dimensional integer lattice, we consider a more general framework

of tilted biorthogonal ensembles, which is inspired by a talk of Kenyon [48]. The

ordinary biorthogonal ensembles introduced in [21] are measures on partitions with

probability weights of the form

Prob(λ) = 1

Z
det
[

�i (� j )
]N

i, j=1
det
[

�i (� j )
]N

i, j=1
, � j := λ j + N − j, (1.4)

where �i , � j are given functions, and Z is the normalizing constant. Biorthogonal

ensembles are determinantal processes on Z≥0 in the same sense as the Schur measures.

Moreover, when �i (k) = xk
i , � j (k) = yk

j , the weights (1.4) coincide with (1.1).

We “tilt” the biorthogonal ensemble (1.4) by inserting j-dependent difference oper-

ators into the determinants.1 When �i (k) = xk
i , � j (k) = yk

j , the action of these

operators results in the factors (1 − βxi )
j−1 and (1 − β y−1

i )N− j in (1.3). In general,

we apply the operator (D) j−1 to �i (� j ), where D f (k) = f (k) − β f (k + 1), and

(D†)N− j to �i (� j ), where D† f (k) = f (k) − β f (k − 1)1k≥1. Here and throughout

the paper, 1A stands for the indicator of an event or a condition A. We arrive at the

following measure on partitions:

Prob(λ) = 1

Z ′ det
[

(D) j−1�i (� j )
]N

i, j=1
det
[

(D†)N− j�i (� j )
]N

i, j=1
,

� j = λ j + N − j . (1.5)

For details, we refer to Sect. 2.1 in the text.

The action of D is the same as the multiplication by the matrix Tβ(k, l) := 1l=k −
β 1l=k−1, and D† is the multiplication by Tβ on the opposite side. Using this, we

identify (Theorem 2.3) the joint distribution of (�1 > · · · > �N ) under the tilted

biorthogonal ensemble with that of the points (x1
1 > · · · > x N

N ) in the two-dimensional

ensemble {xm
j : 1 ≤ m, j ≤ N } which has probability weights proportional to

det
[

�i (x1
j )
]N

i, j=1

(N−1
∏

m=1

det
[

Tβ(xm
i , xm+1

j )
]N

i, j=1

)

det
[

�i (x N
j )
]N

i, j=1
. (1.6)

The two-dimensional process has probability weights given by products of determi-

nants. Thus, it is determinantal thanks to the well-known Eynard–Mehta theorem [26,

34], see also [18, Theorem 4.2].

1 Recall that in the Introduction, we only deal with the homogeneous beta parameters β j ≡ β, see Sect. 2.1

for the general case.



   56 Page 6 of 51 S. Gavrilova, L. Petrov

The above identification allows us to write down certain Fredholm determinantal

formulas for marginal distributions and correlation functions of tilted biorthogonal

ensembles; see Sect. 2.5 and Proposition 2.7 in particular.

When �i (k) = xk
i and � j (k) = yk

j for all i, j , the two-dimensional determinantal

process (1.6) becomes the Schur process whose correlation kernel has a double contour

integral form [73]. The particular specializations of the Schur process parameters are

given in Sect. 3.3 in the text. Our Schur process has nonnegative probability weights

only for β < 0, and this is the case we restrict to in our asymptotic analysis (see

Sect. 1.5). The case β = 0 is covered by standard results on Schur measures. It is

plausible that our results on the Grothendieck limit shape still apply to values of

β > 0, even if probabilities in the two-dimensional process are negative, as long as

the Grothendieck probability weights (1.3) remain nonnegative. See Conjecture 5.10

for details.

Remark 1.3 (Application to the five-vertex model) In [48], Kenyon expressed certain

distributions arising in the five-vertex model (see also [32]) as tilted biorthogonal

ensembles. It would be very interesting to apply our results to the asymptotic analysis

of the five-vertex model, but there are three clear obstacles. First, the two-dimensional

process for the five-vertex model is not the Schur process but rather a multiparameter

analog of the more complicated model of lozenge tilings of the hexagon (see, e.g.,

[37, 77] for the determinantal structure of the original tilings of the hexagon). One

does not have as elegant expressions for the correlation kernel in the case of multi-

ple parameters. Second, the probability weights in the two-dimensional process are

complex-valued. This makes probabilistic identification of limit shapes problematic;

see also the discussion in Sect. 5.4.4. Third, for the five-vertex model, the multiple

parameters xi , y j are solutions to the Bethe equations. This makes a potential asymp-

totic analysis even more intricate (see, however, [78] and [14] for a related analysis of

TASEP on the ring).

1.5 Limit shape

Consider Grothendieck random partitions (1.3) with homogeneous parameters xi ≡
x > 0, y j ≡ y > 0, such that xy < 1 and β < 0. Let us draw Young diagrams of

our Grothendieck random partitions in the (u, v) coordinate system rotated by 45◦,

see Fig. 1, left. Each partition is encoded by a piecewise linear function v = WN (u)

with derivatives ±1 and integer maxima and minima. Since our partitions have at most

N parts, we almost surely have WN (u) ≥ |u| for all u, WN (u) = |u| if |u| is large

enough, and WN (u) ≤ u + 2N if u ≥ −N .

Theorem 1.4 Fix the parameters x, y, β as above. There exists a continuous, piecewise

differentiable, 1-Lipschitz function W(u) = W(u | x, y, β) with W(u) ≥ |u| and

W(u) = |u| if |u| is large enough, such that

lim
N→+∞

WN (uN )

N
= W(u), u ∈ R,

where the convergence is pointwise in probability. See Fig.1, right, for an illustration.
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Fig. 1 Left: The Young diagram for λ = (6, 6, 5, 3, 1, 1) in the coordinate system rotated by 45◦. The

diagonal line v = u + 2N represents the upper boundary of the shape of λ. Right: An example of a limit

shape W(u) of the Grothendieck random partition for x = 1/3, y = 1/5, and β = −25. We added a

horizontal line to highlight the staircase frozen facet where the limit shape W(u) is horizontal. An exact

sample of a random partition corresponding to the limit shape on the right is given in Fig. 9, right (see also

Sect. 5.5 for a discussion of how to sample Grothendieck random partitions)

The first limit shape result for random partitions (with Plancherel measure, which is

a particular case of Schur measures) was obtained by Logan–Shepp [57] and Vershik–

Kerov [83]. We do not have an analytic formula for our shapes W(u) in contrast to this

classical VKLS shape. Let us briefly describe how W(u) is related to the limit surface

of the Schur process. We used this connection to numerically plot all our examples;

see Sect. 5.4 for details and more discussion.

Let {xm
j : 1 ≤ m, j ≤ N } be distributed according to the Schur process as in

(1.6). Define the height function HN (a, t) := #{ j : x t
j ≥ a}, where (a, t) ∈ Z≥0 ×

{1, . . . , N }. Using the standard steepest descent analysis of the correlation kernel of the

Schur process (dating back to [73], see also [71, Section 3]), one can show that HN has

a limit shape H(ξ, τ ) = lim
N→∞

N−1 HN (�ξ N�, �τ N�), where (ξ, τ ) ∈ R≥0 × [0, 1].
The gradient of H is expressed through arguments of the complex root zc = zc(ξ, τ )

of a certain cubic equation depending on (ξ, τ ) and our parameters (x, y, β), see (5.7)

and (5.9) for the formulas.

The identification between Grothendieck random partitions and the slice (x1
1 >

· · · > x N
N ) of the Schur process (see Sect. 1.4) helps to express the Grothendieck limit

shape W(u) through H(ξ, τ ). Namely, let L(τ ) be an auxiliary function defined from

the implicit equation

H (L(τ ), τ ) = τ for all τ ∈ [0, 1]. (1.7)

In other words, the three-dimensional parametric curve (L(τ ), τ, τ ) is the cross-section

of the Schur process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η) coordinates

by the plane η = τ . From the Schur process limit shape result, we have L(τ ) =
1 − τ + lim

N→∞
N−1λ�Nτ� (the shift by 1 − τ comes from � j = λ j + N − j , see

(1.5)). Then the Grothendieck limit shape curve (u,W(u)) as in Fig. 1, right, has the

following parametrization through L(τ ):

u = L(τ ) − 1, W = L(τ ) − 1 + 2τ.
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The functions L(τ ) and W(u) satisfy differential equations involving the root

zc(ξ, τ ), see (5.17)–(5.18). However, the implicit equation (1.7) turns out to be more

convenient for plotting the shapes.

The flat, “frozen”, facets of the Schur limit shape surface (where the gradient is at a

vertex of its allowed triangle, see (5.5)) lead to the three possible flat facets of W(u),

where W′(u) is equal to −1, 0, or 1, respectively. The derivatives ±1 occur when

W(u) = |u| outside of the curved part of the limit shape. The facet W′(u) = 0 always

arises for sufficiently negative β (Lemma 5.6). In this facet, the random partition

develops the deterministic frozen staircase behavior, that is, λi = λi+1 + 1 for all i in

some interval of order N . See the horizontal part of the limit shape in Fig. 1, right.

Besides limit shapes, the study of random partitions often involves fluctuations in

various regimes (at the edge, in the bulk, and global Gaussian fluctuations). It would

be interesting to obtain fluctuation results for Grothendieck random partitions in these

regimes and compare them to the classical case of the Plancherel random partitions [9,

16, 45, 47]. The tilted nature of the cross-section leading to Grothendieck measures

seems to be affecting all Grothendieck fluctuations except the edge ones. Indeed, for

any fixed k, (λ1, . . . , λk) have the same joint distribution as (μ1
1, . . . , μ

k
k), where the

partitions μ1, . . . , μk for a Schur process. Moreover, we have |μ j
j − μ1

j | ≤ j for

all j (see Sect. 5.3.3 for details). Therefore, we expect that the joint distribution of

(λ j − cN )/(σ N 1/3), j = 1, . . . , k, should converge to the Airy2 point process, just

like for the Plancherel measure. We also expect that the bulk fluctuations are not given

by the same discrete sine process as in the Plancherel case. It would be interesting to

compute the correlations of the Gaussian limit, and compare them to the Plancherel

case.

1.6 Outline

In Sect. 2, we introduce the framework of tilted biorthogonal ensembles and show that

they are cross-sections of two-dimensional determinantal processes. The correlation

kernel of the latter is given by the Eynard–Mehta theorem. In Sect. 3, we specialize

tilted biorthogonal ensembles to Grothendieck measures on partitions and write down

the correlation kernel of the corresponding two-dimensional Schur process in a double

contour integral form (specializing the results of [73]). In Sect. 4, we prove Theorem

1.2 that Grothendieck measures are not determinantal point processes. Section 4.2

provides a brief historical account of the relation between the determinantal struc-

ture of probability measures and the principal minor assignment problem. Finally, in

Sect. 5, we establish limit shape results for Schur processes and Grothendieck random

partitions and illustrate these results by several plots and exact sampling simulations.

2 Tilted biorthogonal ensembles

In this section, we present the main framework for measures on particle configurations

in Z≥0 given by a certain product of determinants, and discuss their characteristics.
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2.1 Definition of the ensemble

Fix N , and let �k , �k , k = 1, . . . , N , be arbitrary complex-valued functions on Z≥0.

Fix additional complex parameters β1, β2, . . . , βN−1. Let us define the following

operators acting on finitely supported functions on Z≥0:

D
(r)
k f (k) := f (k) − βr f (k + 1), D

(r)†
k f (k) := f (k) − βr f (k − 1)1k≥1,

(2.1)

where r = 1, . . . , N − 1. These operators are conjugate to each other with respect to

the bilinear form
∑∞

k=0 f (k)g(k) on finitely supported functions on Z≥0. Denote

D
[a,b)
� := D

(a)
� D

(a+1)
� . . . D

(b−1)
� , (2.2)

and similarly for other types of segments and the conjugate operators D
[a,b)†
� . Clearly,

D
[1,1)
� is the identity operator.

Assign the following weights to N -point configurations on Z≥0:

W 
β(X) := det
[

D
[1, j)

� j
�i (� j )

]N

i, j=1
det
[

D
[ j,N )†
� j

�i (� j )
]N

i, j=1
, (2.3)

where X = (�1 > �2 > · · · > �N ≥ 0). If the number of points in X is not N , then set

W 
β(X) = 0. Assume that the series for the partition function for the weights (2.3),

Z 
β :=
∑

X=(�1>�2>···>�N ≥0)

W 
β(X)

converges and is nonzero.2

Definition 2.1 The normalized weights

M 
β(X) = W 
β(X)/Z 
β (2.4)

define a probability measure on N -particle configurations on Z≥0. We call this measure

the 
β-tilted N -point biorthogonal ensemble.

The term “probability measure” here refers to the fact that the sum of the normal-

ized weights is equal to 1. The weights are generally complex-valued but become

nonnegative real numbers in the specializations we discuss later.

When β j ≡ 0, the operators (2.1) become identity operators, and the tilted biorthog-

onal ensemble turns into the usual biorthogonal ensemble with probability weights

proportional to

det
[

�i (� j )
]N

i, j=1
det
[

�i (� j )
]N

i, j=1
. (2.5)

2 Throughout this section (which discusses abstract ensembles) we assume that all similar infinite series

converge.
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Biorthogonal ensembles were introduced and studied in [21], see also [18, Section 4]

for a summary of formulas.

2.2 Normalization

Let us compute the normalizing constant Z 
β :

Proposition 2.2 We have

Z 
β = det
[

Gi j ( 
β)
]N

i, j=1
, (2.6)

where

Gi j ( 
β) :=
∞
∑

k=0

� j (k) D
[1,N )
k �i (k). (2.7)

Proof Observe that for any 0 ≤ a ≤ b, we have the following summation by parts:

b
∑

k=a

f (k) D
(r)†
k g(k) −

b
∑

k=a

g(k) D
(r)
k f (k) = βr g(b) f (b + 1) − βr f (a)g(a − 1)1a≥1.

(2.8)

We have

Z 
β =
∑

�1>�2>···>�N ≥0

(

D
[1,1)
�1

. . . D
[1,N )
�N

det
[

�i (� j )
]N

i, j=1

)

(

D
[N ,N )†
�N

. . . D
[1,N )†
�1

det
[

�i (� j )
]N

i, j=1

)

=
∑

�1>�2>···>�N ≥0

det
[

�i (� j )
]N

i, j=1
D

[1,N )
�1

D
[1,N )
�2

. . . D
[1,N )
�N

det
[

�i (� j )
]N

i, j=1
,

where we moved each of the operators D
[ j,N )†
� j

to the other function and observed that

the presence of the determinants eliminates the boundary terms arising from (2.8).

Writing

D
[1,N )
�1

D
[1,N )
�2

. . . D
[1,N )
�N

det
[

�i (� j )
]N

i, j=1
= det

[

D
[1,N )
k �i (k)

∣
∣
∣
k=� j

]N

i, j=1
,

we can use the Cauchy–Binet summation to replace the sum of products of two deter-

minants over �1 > �2 > · · · > �N ≥ 0 by the determinant of single sums. ��
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2.3 Two-dimensional process

We will show in Sect. 4 that a 
β-tilted N -point biorthogonal ensemble on Z≥0 is not

necessarily a determinantal point process, even though its probability weights are

products of determinants.

On the other hand, each 
β-tilted biorthogonal ensemble can be embedded into a

two-dimensional determinantal point process on X := Z≥0 × {1, . . . , N }. A similar

construction for TASEP first appeared in [11] (and was later exploited to construct the

KPZ fixed point [63]). The embedding which we describe below in this subsection is

suggested in the talk by Kenyon [48].

This process lives on particle configurations X2d = {xm
j : 1 ≤ m, j ≤ N } satisfy-

ing

xm
N < xm

N−1 < · · · < xm
2 < xm

1 , 1 ≤ m ≤ N . (2.9)

Denote |xm | := xm
1 + · · · + xm

N . Let

Tβ(x, y) := 1y=x − β 1y=x−1, x, y ∈ Z≥0.

One readily sees that

det[Tβ(xm
i , xm+1

j )]N
i, j=1 = (−β)|x

m |−|xm+1|
N
∏

j=1

1
xm

j −xm+1
j =0 or 1

. (2.10)

Using the given notation, assign (possibly complex) weights to configurations X2d :

W
2d

β (X2d) := det

[

�i (x1
j )
]N

i, j=1

(N−1
∏

m=1

det
[

Tβm (xm
i , xm+1

j )
]N

i, j=1

)

det
[

�i (x N
j )
]N

i, j=1
.

(2.11)

In the proof of the next statement and throughout the rest of the section, we

use the notation “∗” for discrete convolution of functions on Z≥0, and assume that

all series thus arising converge absolutely. For example, we write ( f ∗ h)(x) =
∑∞

y=0 f (x, y)h(y) for functions f (x, y) and h(x). See also [18, Section 4] for further

examples of this notation.

Theorem 2.3 The normalizing constant of the two-dimensional distribution

Z
2d

β :=

∑

X2d

W
2d

β (X2d)

is equal to the one-dimensional normalizing constant Z 
β given by (2.6)–(2.7). More-

over, under the normalized two-dimensional probability distribution M
2d

β (X2d) :=
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W
2d

β (X2d)/Z 
β , the marginal distribution of x1

1 > x2
2 > · · · > x N

N coincides with that

of �1 > �2 > · · · �N under M 
β .

For complex-valued probabilities, the coincidence of marginal distributions means

that for any finitely supported function f in N variables, we have

∑

X2d={xm
j }

f (x1
1 , . . . , x N

N )M2d

β (X2d) =

∑

X=(�1>···>�N ≥0)

f (�1, . . . , �N )M 
β(X).

(2.12)

Proof of Theorem 2.3 By the Cauchy–Binet summation, we have

Z
2d

β = det

[

�i ∗ Tβ1 ∗ . . . ∗ TβN−1
∗ � j

]N

i, j=1
.

Next, for any function h(y) on Z≥0 we have (h ∗ Tβr )(y) = h(y) − βr h(y + 1) =
D

(r)
y h(y). By (2.7), this implies the first claim about the normalizing constant.

The second claim essentially follows from the LGV (Lindstrom–Gessel–Viennot)

lemma, which expresses the partition function of nonintersecting path collections in

a determinantal form [40, 54]. By the first claim, it suffices to prove (2.12) for unnor-

malized weights W
2d

β and W 
β . Next, the weights W

2d

β (X2d) (2.11) and W 
β(X) (2.3)

are multilinear in (�1, . . . , �N ;�1, . . . , �N ), so it suffices to prove the summation

identity in the case of delta functions

�i (x) = 1x=ki
, �i (x) = 1x=k′

i
, i = 1, . . . , N ,

where k1 > · · · > kN ≥ 0 and k′
1 > · · · > k′

N ≥ 0 are arbitrary but fixed. With

this choice of �i , �i , the distribution of X2d is the same as the distribution of the

nonintersecting path ensemble on the graph shown in Fig. 2, where the paths connect

k1, . . . , kN to k′
1, . . . , k′

N .

Then the marginal distribution of �1, . . . , �N can be expressed through the prod-

uct of two determinants: One for the nonintersecting paths connecting k1, . . . , kN

to �1, . . . , �N , and the other one for the nonintersecting paths from �1, . . . , �N to

k′
1, . . . , k′

N . These determinants are immediately identified with the two determinants

in (2.3), and so we are done. ��

2.4 Determinantal kernel

The two-dimensional ensemble X2d defined in Sect. 2.3 is a determinantal point

process. This means that for any p ≥ 1 and pairwise distinct points (yi , ti ) ∈
Z≥0 × {1, . . . , N }, i = 1, . . . , p, we have

∑

X2d : X2d cointains each
(yi ,ti ), i=1,...,p

M
2d

β (X2d) = det

[

K 2d

β (yi , ti ; y j , t j )

]p

i, j=1
. (2.13)
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Fig. 2 The directed graph with

vertices Z≥0 × {1, . . . , N } and

edges which can be vertical

(with weight 1) or diagonal

(with weight −βm ,

m = 1, . . . , N ). We consider an

ensemble of N nonintersecting

paths connecting k1, . . . , kN to

k′
1, . . . , k′

N
. The particles xm

j

encode the intersections of the

paths with the m-th horizontal

line, m = 1, . . . , N

Here K 2d

β (x, t; y, s) is a function called the correlation kernel. Both the determinantal

structure and an expression for the correlation kernel follow from the well-known

Eynard–Mehta theorem [26, 34], see also [18, Theorem 4.2].

Proposition 2.4 The correlation kernel (2.13) for the point process X2d has the form

K 2d

β (x, t; y, s) = −1t>s

(

Tβs ∗ . . . ∗ Tβt−1

)

(y, x)

+
N
∑

i, j=1

G−1
j i ( 
β) · D[1,t)

x �i (x) · D[s,N )†
y � j (y). (2.14)

Proof By [18, Theorem 4.2], the correlation kernel has the form

K 2d

β (x, t; y, s) = −1t>s

(

Tβs ∗ Tβs+1 ∗ . . . ∗ Tβt−1

)

(y, x)

+
N
∑

i, j=1

G−1
j i ( 
β) ·

(

�i ∗ Tβ1 ∗ . . . ∗ Tβt−1

)

(x) ·
(

Tβs ∗ . . . ∗ TβN−1
∗ � j

)

(y).

As in the proof of Theorem 2.3, we can rewrite the convolutions with the Tβ ’s as

applications of the difference operators (2.1):

(

�i ∗ Tβ1 ∗ . . . ∗ Tβt−1

)

(x) = D[1,t)
x �i (x);

(

Tβs ∗ . . . ∗ TβN−1
∗ � j

)

(y) = D[s,N )†
y � j (y).

This completes the proof. ��

Note that the variables t, s ∈ {1, . . . , N } in the correlation kernel (2.14) correspond

to the vertical coordinates in Fig. 2 which increases from top to bottom. We use this

convention throughout the rest of the paper.
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Remark 2.5 From the fact that x
j
j = � j , j = 1, . . . , N , as joint distributions (where the

x
j

j ’s come from M
2d

β and the � j ’s come from M 
β ), one may think that the probabilities

M 
β are expressed through the correlation kernel K 2d

β as

M 
β(�1, . . . , �N ) = det
[

K 2d

β (�i , i; � j , j)

]N

i, j=1
, �1 > · · · > �N . (2.15)

However, identity (2.15) is generally false when �i+1 = �i + 1 for some i . Indeed,

this is because the correlation event in the right-hand side of (2.15) includes more

configurations of nonintersecting paths (as in Fig. 2) than just the ones with x
j
j = � j

for all j = 1, . . . , N . One can check that if � j − � j+1 ≥ 2 for all j = 1, . . . , N , then

identity (2.15) holds.

2.5 Marginals and correlations of the tilted biorthogonal ensemble

Fix k ≥ 1 and I = {i1 < · · · < ik} ⊂ {1, . . . , N }. Let aI = (ai1 > · · · > aik
≥ 0)

be a fixed integer vector, and also let XI = (�i1 > · · · > �ik
≥ 0) be a random

vector, which is a marginal of the 
β-tilted biorthogonal ensemble M 
β(X) defined by

(2.3)–(2.4). Using Theorem 2.3 and Proposition 2.4, we can express the probability

M 
β(XI = aI) through the correlation kernel K 2d

β in a polynomial way.

We use the following statement adapted to our space X = Z≥0 × {1, . . . , N }:
Lemma 2.6 ([79, Theorem 2]) Fix a finite number of disjoint subsets of X and denote

them by B1, . . . , Bp. Let B = B1 ∪ · · · ∪ Bp. For a determinantal point process on X

with kernel K , let #Bi
be the random number of points of the process which belong to

Bi . Then we have the following identity of generating functions in z1, . . . , z p:

E
(

z
#B1

1 . . . z
#Bp
p

)

= det
(

1 − χ
B

p
∑

i=1

(1 − zi ) · K · χ
Bi

)

, (2.16)

where 1 is the identity operator, in the right-hand side there is a Fredholm determinant,

and χ
B
, χ

Bi
are the indicator functions of these subsets.

In our applications, the sets Bi will be finite, and thus the Fredholm determinants in

(2.16) are simply finite-dimensional determinants of the corresponding block matrices.

In general, the right-hand side of (2.16) is an infinite series, see, for example, [79,

Remark 3].

To illustrate the general formula of Proposition 2.7, let us first look at the case

k = 1. For fixed a and i , the event �i = a is equivalent to #Bi (a) = N − i , #Ci (a) = 1,

where

Bi (a) := {0, 1, . . . , a − 1} × {i} , Ci (a) := {a} × {i} ,

Fi (a) := Bi (a) ∪ Ci (a).

(2.17)
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Indeed, for �i = x i
i = a, we need to have exactly N − i points of the configuration

X2d to the left of a, and exactly one point at a. Thus, we can write by Lemma 2.6:

M 
β(�i = a) = [zN−iw] det
(

1 − (1 − z)χ
Fi (a)

K 2d

β χ

Bi (a)
− (1 − w)χ

Fi (a)
K 2d


β χ
Ci (a)

)

,

(2.18)

where [zN−iw] is the operator of taking the coefficient of a polynomial by zN−iw.

The matrix in the right-hand side (2.18) has dimensions (a + 1) × (a + 1) and looks

as

£

¤
¤
¤
¤
¥

1 + (z − 1)K (0; 0) (z − 1)K (0; 1) . . . (w − 1)K (0; a)

(z − 1)K (1; 0) 1 + (z − 1)K (1; 1) . . . (w − 1)K (1; a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(z − 1)K (a − 1; 0) (z − 1)K (a − 1; 1) . . . (w − 1)K (a − 1; a)

(z − 1)K (a; 0) (z − 1)K (a; 1) . . . 1 + (w − 1)K (a; a)

¦

§
§
§
§
¨

,

where we abbreviated K (x; y) = K 2d

β (x, i; y, i).

Finally, to get the correlation function, we simply have to sum (2.18) over all

i = 1, . . . , N :

M 
β(X contains a) =
N
∑

i=1

[zN−iw] det
(

1 − (1 − z)χ
Fi (a)

K 2d

β χ

Bi (a)

+(1 − w)χ
Fi (a)

K 2d

β χ

Ci (a)

)

. (2.19)

Notice that this is a polynomial in the entries K 2d

β (x, t; y, s) of the correlation kernel

(2.14).

The next statement for general k follows from an argument for several points which

is analogous to the above computations:

Proposition 2.7 For arbitrary k ≥ 1 and I = {i1 < · · · < ik}, the marginal distribu-

tion of XI under M 
β has the form

M 
β(XI = aI) = [zN−i1

1 . . . z
N−ik

k w1 . . . wk] det

(

1 − χ
FI(aI)

k
∑

p=1

(1 − z p)K 2d

β χ

Bi p
(ai p

)

+χ
FI(aI)

k
∑

p=1

(1 − wp)K 2d

β χ

Ci p
(ai p

)

)

. (2.20)

Here the square matrix has dimensions
∑k

p=1(ai p + 1), the union of all the sets is

denoted by FI(aI) :=⋃k
p=1

(

Bi p (ai p ) ∪ Ci p (ai p )
)

, and the determinant is a polyno-

mial in the entries of the correlation kernel K 2d

β .
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The correlation functions of M 
β are finite sums of determinants of the form (2.20).

Namely, for any k and any pairwise distinct a1, . . . , ak ∈ Z≥0, we have

M 
β(X contains a1, . . . , ak) =
∑

I={1≤i1<···<ik≤N }
M 
β (XI = {a1, . . . , ak}) .

3 Grothendieck random partitions

Here, we specialize the setup of 
β-tilted biorthogonal ensembles developed in Sect. 2

to Grothendieck random partitions. A crucial feature in this special case is that the

corresponding two-dimensional ensemble X2d becomes the well-known Schur process

introduced in [73].

3.1 Specialization of tilted biorthogonal ensemble

Fix N ≥ 1 and parameters x1, . . . , xN , y1, . . . , yN such that |xi y j | < 1 for all i, j ,

and specialize

�i (k) = xk
i , � j (k) = yk

j , k ∈ Z≥0. (3.1)

Then the operators (2.1) act as

D
(r)
k �i (k) = xk

i (1 − βr xi ), D
(r)†
k � j (k) = yk

j (1 − βr y−1
j 1k≥1). (3.2)

For a configuration X = (�1 > · · · > �N ≥ 0), denote λ j := � j + j − N , j =
1, . . . , N , so � j = λ j + N − j . Clearly, we have λ = (λ1 ≥ · · · ≥ λN ≥ 0), and

λ is an integer partition with at most N parts. The 
β-tilted biorthogonal weight (2.3)

specializes to

W 
β;Gr(λ) = det
[

x
λ j +N− j

i (1 − β1xi ) . . . (1 − β j−1xi )
]N

i, j=1

× det
[

y
λ j +N− j

i (1 − β j y−1
i ) . . . (1 − βN−1 y−1

i )
]N

i, j=1
.

Observe that in the second determinant, the operators D
[ j,N )†
� j

are applied in

�1, . . . , �N−1, which are strictly positive. Therefore, the special case k = 0 in D
(r)†
k

in (3.2) does not occur.

The normalizing constant in Proposition 2.2 becomes

Z 
β;Gr = det
[ (1 − β1xi ) . . . (1 − βN−1xi )

1 − xi y j

]N

i, j=1

=
∏N

i=1

∏N−1
r=1 (1 − xiβr )

∏N
i, j=1(1 − xi y j )

∏

1≤i< j≤N

(xi − x j )(yi − y j ),
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where the matrix elements are geometric sums, see (2.7), and the well-known Cauchy

determinant is evaluated in a product form.

Let us denote

Gλ(x1, . . . , xN ) :=
det
[

x
λ j +N− j

i (1 − β1xi ) . . . (1 − β j−1xi )
]N

i, j=1
∏

1≤i< j≤N (xi − x j )
;

Gλ(y1, . . . , yN ) :=
det
[

y
λ j +N− j

i (1 − β j y−1
i ) . . . (1 − βN−1 y−1

i )
]N

i, j=1
∏

1≤i< j≤N (yi − y j )
. (3.3)

Since λ j + N − j ≥ N − j and in the matrix elements in Gλ there are N − j factors

of the form (1−βr y−1
i ), we see that both Gλ and Gλ are symmetric polynomials in N

variables. We thus see that the 
β-tilted biorthogonal ensemble with the specialization

(3.1) has the form

M 
β;Gr(λ) =
∏N

i, j=1(1 − xi y j )
∏N

i=1

∏N−1
r=1 (1 − xiβr )

Gλ(x1, . . . , xN )Gλ(y1, . . . , yN ). (3.4)

We call (3.4) the (multiparameter) Grothendieck measure on partitions. This distribu-

tion is analogous to the Schur measure introduced in [70] which is a particular case

of M 
β;Gr for βr ≡ 0.

Note that the probability weights (3.4) may be complex-valued. In Sect. 3.2 we

discuss conditions on the parameters xi , y j , βr which make the weights nonnegative

real.

3.2 Grothendieck polynomials and positivity

Here, we comment on the relations between the polynomials Gλ, Gλ and Grothendieck

polynomials appearing in the literature. We also discuss the nonnegativity of the mea-

sure M 
β;Gr (3.4) on partitions.

Grothendieck polynomials are well-known in algebraic combinatorics and geome-

try, going back to at least [58], see also [27]. Their one-parameter β-deformations

appeared in [35]. The recent paper [41] introduced and studied the most general

(to date) deformations called refined canonical stable Grothendieck polynomials

Gλ(x1, . . . , xN ; 
α, 
β). These objects generalize most known Grothendieck-like poly-

nomials in the literature, in particular, the ones in [27, 35], as well as more recent

extensions in, e.g., [31, 84]. The refined canonical stable Grothendieck polynomials

Gλ(x1, . . . , xN ; 
α, 
β) depend on two sequences of parameters 
α = (α1, α2, . . .) and

β = (β1, β2, . . .), and are defined as

Gλ(x1, . . . , xN ; 
α, 
β) :=
det

[

x
λ j +N− j

i

(1 − β1xi ) . . . (1 − β j−1xi )

(1 − α1xi ) . . . (1 − αλ j
xi )

]N

i, j=1
∏

1≤i< j≤N (xi − x j )
. (3.5)
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Note that for nonzero α j ’s, Gλ(x1, . . . , xN ; 
α, 
β) are not polynomials but rather are

generating series in the x j ’s. When α j = 0 for all j (which drops the word “canonical”

from the terminology), expressions (3.5) become polynomials and reduce to our Gλ’s

from (3.3). The polynomials Gλ in (3.3) are expressed through the Gλ’s as follows.

Denote βrev
r := βN−r , r = 1, . . . , N − 1, and λrev := (0 ≥ −λN ≥ −λN−1 ≥ · · · ≥

−λ1). Then, one readily sees that

Gλ(x1, . . . , xN | 
β) = Gλrev (x−1
1 , . . . , x−1

N | 
βrev), (3.6)

where we explicitly indicated the dependence on the parameters βr . Moreover,

since Gλ satisfies the index shift property Gλ+(1,...,1)(x1, . . . , xN ) = x1 . . . xN ·
Gλ(x1, . . . , xN ), one can shift the negative coordinates λrev to obtain a nonnegative

partition.

The sum to one property of the Grothendieck measure M 
β;Gr (3.4) is equivalent to

the following Cauchy-type summation identity for the polynomials (3.3):

∑

λ=(λ1≥···≥λN ≥0)

Gλ(x1, . . . , xN )Gλ(y1, . . . , yN ) =
∏N

i=1

∏N−1
r=1 (1 − xiβr )

∏N
i, j=1(1 − xi y j )

,

|xi y j | < 1. (3.7)

It is instructive to compare this identity to Cauchy identities for Grothendieck symmet-

ric functions, for example, see [84, (36)] or [41, Corollary 3.6]. The latter identities

involve sums of products in the form Gλgλ, where gλ are the dual Grothendieck

symmetric functions. The products in the right-hand side of these summation identi-

ties have the form
∏∞

i, j=1(1 − xi y j )
−1, and a possible analogue in our case would

be
∏∞

i, j=1
1−xi β j

1−xi y j
. However, in this paper, we will not explore a symmetric function

extension of the identity (3.7).

Let us now discuss the nonnegativity of the probability weights M 
β;Gr (3.4). Using

the tableau formula for Gλ (for example, [41, Corollary 4.5]) and the relation (3.6)

between Gλ and Gλ, we see that the probability weights M 
β;Gr(λ) are nonnegative

for all λ when the parameters satisfy

xi ≥ 0, y j ≥ 0, βr ≤ 0; |xi y j | < 1; 1 ≤ i, j ≤ N , 1 ≤ r ≤ N − 1.(3.8)

Indeed, under (3.8) we have nonnegativity (and even Schur-nonnegativity, cf. [41,

Theorem 4.3]) of Gλ and Gλ, as well as the convergence of the series (3.7).

Furthermore, we can extend the nonnegativity range of the Grothendieck measures

to certain positive values of βr :

Proposition 3.1 Let xi , y j ≥ 0 and βr ≤ x−1
i , βr ≤ y j for all i, j, r . Then the

Grothendieck polynomials Gλ(x1, . . . , xN ) and Gλ(y1, . . . , yN ) defined by (3.3) are

nonnegative.
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Proof We consider only the case Gλ, as Gλ is completely analogous. For a nonnegative

function f on Z≥0 we have under our conditions:

D
(r)
k f (k) = f (k) − βr f (k + 1) ≥ f (k) − x−1

r f (k + 1).

Therefore, replacing βr by x−1
r in the application of D

(r)
k can only decrease the result.

The Grothendieck polynomial Gλ(x1, . . . , xN ) is obtained by applying the opera-

tors D
(r)
k to the Schur polynomial sλ(x1, . . . , xN ):

Gλ(x1, . . . , xN ) =
det
[

D
[1, j)

� j
x

� j

i

]N

i, j=1
∏

1≤i< j≤N (xi − x j )
= D

[1,1)
�1

. . . D
[1,N )
�N

sλ(x1, . . . , xN ).

It follows that Gλ(x1, . . . , xN ) ≥ Gλ(x1, . . . , xN )
∣
∣
βr =x−1

r for all r
. On the other hand,

when βr = x−1
r for all r , the matrix in the numerator in Gλ (3.3) becomes triangular,

and we have

det
[

x
� j

i (1 − xi/x1) . . . (1 − xi/x j−1)
]N

i, j=1
= x

�1

1 . . . x
�N

N

∏

1≤i< j≤N

(

1 − x j

xi

)

.

Cancelling the product over i, j with the denominator in Gλ, we see that after the

substitution, the resulting expression Gλ(x1, . . . , xN )
∣
∣
βr =x−1

r for all r
is clearly non-

negative. This completes the proof. ��

Proposition 3.1 implies that the Grothendieck probability weights M 
β;Gr(λ) are

nonnegative for all λ when the parameters satisfy the extended conditions

xi ≥ 0, y j ≥ 0, βr ≤ x−1
i , βr ≤ y j ; |xi y j | < 1; 1 ≤ i, j ≤ N ,

1 ≤ r ≤ N − 1. (3.9)

3.3 Two-dimensional Schur process and its correlation kernel

By Theorem 2.3, the Grothendieck measure is embedded into the two-dimensional

ensemble X2d (2.9). Our specialization (3.1) implies that X2d is distributed as the

Schur process. Schur processes are a vast family of determinantal point processes on

the two-dimensional lattice introduced and studied in [73].

Assume that the parameters satisfy (3.8), and define μm
i := xm

i + i − N , i, m =
1, . . . , N , where the particles xm

i come from the two-dimensional ensemble X2d .

Clearly, each μm = (μm
1 ≥ · · · ≥ μm

N ≥ 0) is a partition with at most N parts.

From (2.10)–(2.11) we conclude that the probability weight of the tuple of partitions

(μ1, . . . , μN ) is

M
2d

β;Gr

(μ1, . . . , μN ) ∝ sμ1(x1, . . . , xN )

×s(μ1)′/(μ2)′(−β1) . . . s(μN−1)′/(μN )′(−βN−1)sμN (y1, . . . , yN ). (3.10)
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Here (μm)′/(μm+1)′ denote skew transposed partitions, and we used a basic property

of skew Schur functions evaluated at a single variable (for example, see [60, Chapter

I.5]):

det
[

Tβm (xm
i , xm+1

j )
]N

i, j=1
= s(μm )′/(μm+1)′(−βm).

From Theorem 2.3 we immediately get:

Proposition 3.2 The Grothendieck measure M 
β;Gr(λ) (3.4) is embedded into the

Schur process (3.10) in the sense that the joint distributions of the integer N-tuples

{λi }i=1,...,N and {μi
i }i=1,...,N coincide.

Remark 3.3 While the Schur process (3.10) is not a nonnegative measure for βr > 0,

the Grothendieck measures (3.4) are still nonnegative probability measures under the

more relaxed conditions (3.9). Consequently, we will primarily focus on the case when

the parameters satisfy the more restrictive conditions (3.8). However, in Sect. 5.4 we

will also consider the question of limit shapes for Grothendieck measures with positive

βr ’s (which do not correspond to nonnegative Schur processes).

As shown in [73], the correlation kernel of the Schur process (3.10) has a double

contour integral form. The alternative proof of this result given in [26, Theorem 2.2]

proceeds from the general kernel K 2d

β (2.14) and involves an explicit inverse matrix

G−1( 
β) which is available thanks to the Cauchy determinant. Let us record this double

contour integral kernel:

Proposition 3.4 The correlation kernel for the Schur process X2d = {xm
i : 1 ≤ m, i ≤

N } containing the Grothendieck measure M 
β;Gr (3.4) has the form

K 2d

β;Gr

(a, t; b, s) = 1

(2π i)2

‹

dz dw

z − w

wb−N

za−N+1

Ft (z)

Fs(w)
, (3.11)

where a, b ∈ Z≥0, t, s ∈ {1, . . . , N },

Ft (z) :=
N
∏

i=1

1 − z−1 yi

1 − zxi

N−1
∏

r=t

1

1 − βr z−1
, (3.12)

and the integration contours in (3.11) are positively oriented simple closed curves

around 0 satisfying the following conditions:

(1) |z| > |w| for t ≤ s and |z| < |w| for t > s;

(2) On the contours it must be that |βr | < |z| < x−1
i and |w| > yi for all i and r.

The integration contours in Proposition 3.4 exist only under certain conditions on the

parameters xi , y j , and βr , for example, it must be that |βr | < x−1
i for all i, r . When

these conditions on the parameters are violated, we should deform the integration

contours to take the same residues. In other words, we can analytically continue the
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Fig. 3 Graphical representation of the Schur process (3.10). Arrows indicate the diagram inclusion relations

kernel by declaring that the double contour integral in (3.11) is always equal to the

sum of the same residues: first take the sum of the residues in w at 0, all yi ’s, and at z

if t > s; then take the sum of the residues of the resulting expression in z at 0 and all

βr ’s.

Proof of Proposition 3.4 It is well-known that determinantal correlation kernels for the

Schur measures and processes have double contour integral form, see [70, 73]. Namely,

the generating function for the Schur process kernel has the form

∑

a,b∈Z

K Schur process(a, t; b, s) zaw−b−1 = 1

z − w

�(t, z)

�(s, w)
, (3.13)

where �(t, z) are is a function which is read off from the specializations in the Schur

process, and the generating series in (3.13) is expanded differently depending on

whether t ≤ s or t > s. This difference in expansion is that we assume either |z| > |w|
or |z| < |w|, which can be ultimately traced back to the normal ordering of the

fermionic operators ψ(z), ψ∗(w) in the notation of [73, Section 2.3.4]. Formula (3.13)

is the same as [73, Theorem 1], up to switching from half-integers to integers in the

indices a, b.

Let us remark that it is not immediate how to adapt the generating function (3.13)

to a particular specialization of the Schur process (that is, how to select the integration

contours to pick out the correct coefficients). In general, one could use the contour

integrals from [46] (see also [13, Remark 2 after Theorem 5.3]) or [26, Theorem 2.2],

but here for convenience let us briefly record a “user’s manual” for such an adaptation.

There are three principles:

• First, start with the Schur measures (t = s). By [70, Theorem 2], the contours

must satisfy |z| > |w| for t = s.

• Second, on the integration contours for all t, s, all denominators in the integrand

should expand as geometric series in a natural way as 1
1−ξ

=∑∞
n=0 ξn .

• The first two principles allow to select the integration contours for t = s, and it

only remains to determine their ordering (|z| > |w| or |z| < |w|) for t �= s. This is

done by inspecting how the specializations of the Schur measures at t = s change

with t .
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Let us implement these principles for our Schur process (3.10). Its graphical repre-

sentation is given in Fig. 3. Each μt distributed as the Schur measure with probability

weights

∝ sμt (x1, . . . , xN )sμt (−β̂t , . . . ,−β̂N−1; y1, . . . , yN ). (3.14)

Here the notation −β̂i means that these are “dual” parameters, that is, they correspond

to transpositions of the Young diagrams. Moreover, we unified a number of these

“dual” parameters with the usual parameters yi in the second Schur function (see, e.g.,

[13, Section 2] for details). The weights (3.14) follows from the weights (3.10) and

the skew Cauchy identity for Schur functions.

Now, from (3.14) and [70, Theorem 2], we see that the functions in the integrand

for t = s are given by

Ft (z) = H(x1,...,xN )(z)

H−β̂t ,...,−β̂N−1;y1,...,yN
(z−1)

=
N
∏

i=1

1 − z−1 yi

1 − zxi

N−1
∏

r=t

1

1 − βr z−1
, (3.15)

where Hρ(z) = ∑

n≥0 zn s(n)(ρ) is the single-variable Cauchy kernel for a special-

ization ρ of Schur functions. The second equality in (3.15) follows from the Cauchy

identity, and is precisely the expression (3.12) for Ft (z). Thus, using the first two

principles above, we get all the conditions on the contours in our Proposition 3.4 for

t = s. In particular, the second condition |βr | < |z| < x−1
i , |w| > yi follows from

requiring the expansion of

Ft (z)

Fs(w)
=

N
∏

i=1

1 − z−1 yi

1 − zxi

N
∏

i=1

1 − wxi

1 − w−1 yi

∏N−1
r=s (1 − βrw

−1)
∏N−1

r=t (1 − βr z−1)

as geometric series. Observe that to get the integral (3.11), we also needed to shift the

indices (a, b) by N − 1
2

compared to formulas in [70, 73]. Indeed, in these references

the point configuration associated to a partition μ is
{

μi − i + 1
2

}

i∈Z≥1
, while we

work with {μi + N − i}N
i=1.

Extending our formula (3.11) to t �= s in a natural way leaves only the question of

the ordering of the integration contours (|z| > |w| or |z| < |w|) for t �= s. This can be

resolved by comparing (3.15) with [73, (20)]. We see that H−β̂t ,...,−β̂N−1;y1,...,yN
(z−1)

should be matched to the product
∏

m<t φ+[m](z−1). In the latter product, increasing

t will increase the number of factors, which is opposite to how the number of factors

depends on t in (3.15). Thus, we must choose |z| > |w| for t ≤ s, which is opposite

to [73, Theorem 1]. This completes the proof. ��

4 Absence of determinantal structure

The Grothendieck measure M 
β;Gr (3.4) has probability weights expressed as products

of two determinants. This structure is very similar to that of biorthogonal ensembles
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(2.5), which are well-known determinantal point processes. However, this section

shows that the Grothendieck measures are not determinantal point processes. This

question is deeply linked to the principal minor assignment problem from linear alge-

bra and algebraic geometry. We describe this problem in Sect. 4.1, and discuss its

long history in Sect. 4.2. Then in Sect. 4.3, we present a self-contained derivation of

a determinantal test for minors of a 4 × 4 matrix originally obtained by Nanson in

1897 [66], and in Sect. 4.4 we extend this test to matrices of arbitrary size. Finally, in

Sect. 4.5, we apply the original Nanson’s test to show that the Grothendieck measures

are not determinantal.

4.1 Principal minor assignment problem

Let A be an n × n complex matrix. To it, we associate 2n principal minors AI =
det[Aia ,ib

]|I |a,b=1, where I runs over all subsets of {1, . . . , n}, and |I | is the number

of elements in I . This includes the empty minor A∅ = 1. The map C
n2 → C

2n

,

A → (AI )I⊆{1,...,n}, is called the affine principal minor map. The (affine) principal

minor assignment problem [42, 56] aims to characterize the image under this map in

C
2n

. Denote this image by An ⊂ C
2n

. This complex algebraic variety is closed and

has dimension n2 − n + 1 [56, 81].

For n ≤ 3, the dimension of An is equal to 2n −1, (full available dimension because

A∅ = 1), but starting with n = 4, An becomes very complicated. Indeed, by [56,

Theorem 2], the prime ideal of the (13-dimensional) variety A4 is minimally generated

by 65 polynomials of degree 12 in the AI ’s.

Let us translate the principal minor assignment problem into the language of point

processes. Let M be a point process on Z≥0, that is, a probability measure on point

configurations in Z≥0. This measure may have complex weights, but has to be nor-

malized to have total probability mass 1, and has to be bounded in absolute value by

a nonnegative probability measure on point configurations in Z≥0. The base space for

the point process may be arbitrary and is not necessarily finite, and here we take Z≥0

for an easier future application. For each finite subset I ⊂ Z≥0 consider the correlation

function

ρI = M (the random point configuration contains all points from I ) .

It is natural to ask whether the point process M is determinantal, that is, whether there

exists a kernel K (x, y), x, y ∈ Z≥0, such that for any finite I ⊂ Z≥0 we have ρI =
det[K (a, b)]a,b∈I . A clear necessary condition for the process to be determinantal is

as follows:

Proposition 4.1 If the process M is determinantal, then for any n ≥ 1 and any n-point

subset J ⊂ Z≥0, the vector (ρI : I ⊆ J) ∈ C
2n

belongs to the image An under the

principal minor map.

Thus, if for some n and some n-point J ⊂ Z≥0 the vector (ρI : I ⊆ J) ∈ C
2n

does

not belong to An , then the process M is not determinantal. Due to the complicated

nature of An for n ≥ 4, checking that a vector belongs to An is hard. However, to
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show that some vector (ρI ) does not belong to An , it suffices to find a polynomial in

the ideal of An that does not vanish on (ρI ). This leads us to the following definition:

Definition 4.2 Fix n ≥ 4. A determinantal test of order n is any element in the ideal of

An , that is, a polynomial in the indeterminates (AI : I ⊂ {1, . . . , n}) which vanishes

if the AI ’s are principal minors of some matrix A.

Thus, to show that the process M is not determinantal, it suffices to show that

there exists J ⊂ Z≥0 and a determinantal test which does not vanish on the vector

(ρI : I ⊂ J). Let us describe an example of such a test of order 4 which we call the

Nanson’s test as it first appeared in 1897 in [66]. First, we need another definition:

Definition 4.3 Let A = (ai j ) be a complex n × n matrix, and fix I ⊆ {1, . . . , n} with

|I | = k ≥ 2. For a k-cycle π ∈ Sn with support I (there are (k − 1)! such cycles),

define tπ (A) :=∏i : i �=π(i) ai,π(i). Let the cycle-sum [56] be

TI :=
∑

all k−cycles π with support I

tπ (A). (4.1)

The cycle-sums are the same as cluster functions in the terminology of [82], and

they can be expressed through the principal minors AI as follows:

TI =
∑

I=I1�···�Im

(−1)k+m(m − 1)! AI1 · · · AIm , (4.2)

where the sum is taken over all set partitions of I into exactly m nonempty parts. For

example,

T{1,2,3} = a12a23a31 + a13a21a32

= 2A{1} A{2} A{3} −
(

A{1} A{2,3} + A{2} A{1,3} + A{3} A{1,2}
)

+ A{1,2,3}.

Definition 4.4 The Nanson’s determinantal test is a polynomial N4 of order 4 in the

indeterminates TI which has the form

N4 = 1

2
det

£

¤
¤
¥

T123T14 T124T13 T134T12 2T12T13T14T234 + T123T124T134

T124T23 T123T24 T234T12 2T12T23T24T134 + T123T124T234

T134T23 T234T13 T123T34 2T13T23T34T124 + T123T134T234

T234T14 T134T24 T124T34 2T14T24T34T123 + T124T134T234

¦

§
§
¨

,

(4.3)

where we abbreviated Ti j = T{i, j}, and so on. By (4.2), N4 is also a polynomial in the

indeterminates AI .

One readily verifies (for example, using computer algebra) that N4 is indeed a

determinantal test:
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Proposition 4.5 If for all I ⊆ {1, 2, 3, 4} we replace the indeterminates TI ’s in (4.3)

by the cycle-sums (4.1) coming from a 4 × 4 matrix A, then the polynomial N4 (4.3)

vanishes identically.

We apply Nanson’s test N4 to show that the Grothendieck measures are not deter-

minantal in Sect. 4.5.

4.2 On the history of the principal minor assignment problem

Let us briefly discuss the rich history and variants of the principal minor assignment

problem. Within this history, we can observe at least two instances where similar

questions were independently formulated and addressed in the context of algebra (on

the original principal minor assignment) and probability (concerning determinantal

processes). We hope that these two research avenues will become increasingly aware

of one another.

The problem itself dates to the late 19th century work of MacMahon [59], with initial

results due to Muir [64, 65] and Nanson [66]. In particular, Nanson has partially solved

the 4 × 4 principal minor assignment problem, and obtained the determinantal test

N4 (4.3). He also obtained four other tests algebraically independent from N4 (which

enter the list of 65 polynomials in Lin–Sturmfels [56]). The question of relations on

principal minors is investigated by Stouffer [81], and in particular he showed that the

dimension of An is n2 − n + 1.

Another question related to the principal minor assignment problem, when it has a

solution, concerns the relationship between two n ×n complex matrices A, B with the

same principal minors. Under various natural conditions, it has been shown that the

matrix A should be diagonally conjugate either to B, or to Btranspose. Here “diagonally

conjugate” means A = DB D−1, where D is a nondegenerate diagonal matrix. This

question was first addressed in the context of the principal minors assignment problem

by Loewy [55]. More recently, Stevens [80] and Mantelos [61] investigated essentially

the same question within the context of determinantal processes, seemingly unaware

of Loewy’s work.

Griffin–Tsatsomeros [39] proposed algorithms for finding the solution of the prin-

cipal minor assignment problem (that is, the matrix A), which are computationally

fast for particular subclasses of matrices. While this does not yield explicit polynomial

determinantal tests, an algorithm can be used to (numerically) demonstrate that a point

process is not determinantal. In our application to Grothendieck measures in Sect. 4.5

we do not use an algorithm like in [39], but rather perform a symbolic computation

based on the Nanson’s test N4.

A particularly well-understood case of the principal minor assignment problem

assumes that the initial complex n × n matrix A is Hermitian symmetric. Holtz–

Sturmfels [43] and Oeding [68] use the additional hyperdeterminantal structure of the

variety formed by principal minors to solve the assignment problem set-theoretically.

More recently, Al Ahmadieh and Vinzant [1, 2] considered the principal minor assign-

ment problem over other rings and explored connections to stable polynomials. These

latter works represent the current state of the art of the principal minor assignment
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problem from an algebraic perspective. In particular, [2, Theorem 8.1] is a strong and

unexpected negative result.

Finally, let us mention that there are several natural generalizations of the princi-

pal minor assignment problem, as considered by Borodin–Rains [26, Section 4] and

independently by Lin–Sturmfels [56] (unaware at the time of the work by Borodin–

Rains). These variants allow more general conditional and/or Pfaffian structure of

the correlation functions ρI . A conditional determinantal process, by definition, has

correlation functions ρI = det [K (a, b)]a,b∈I∪S , where S = {n + 1, . . . , n + m},
and I ⊆ {1, . . . , n}. In other words, it is a usual determinantal process on

{1, . . . , n, n + 1, . . . , n + m} conditioned to have particles at each of the points

n + 1, . . . , n + m. In the terminology of [56], the conditional determinantal struc-

ture is the same as the projective principal minor assignment problem, a more natural

setting for algebraic geometry. The projective variety analog of An for n = 4 is more

complicated, with 718 generating polynomials. The Pfaffian and conditional Pfaffian

structures (considered in [26]; they are motivated, in particular, by real and quater-

nionic random matrix ensembles) are defined similarly to the determinantal ones, but

with determinants replaced by Pfaffians. The n = 4 conditional Pfaffian (projective)

variety analog of An is even more complicated than the determinantal one, and exper-

imentation suggests [26] that a corresponding test could have degree 1146.

It would be interesting to develop determinantal and Pfaffian tests for conditional

processes (as well as for further generalizations involving, for example, α-determinants

and permanents), but we leave these directions for future work.

4.3 A self-contained derivation of Nanson’s determinantal test

Here we present a self-contained derivation of Nanson’s determinantal test polyno-

mial N4 (4.3). This argument differs slightly from Nanson’s original work [66] and

was obtained independently by the second author (unaware of the principal minor

assignment problem) over a decade ago [76]. Here we see another instance of the dis-

connect between the principal minor assignment problem and determinantal processes

(complementing the two cases discussed in Sect. 4.2). In Sect. 4.4, we discuss how our

derivation of N4 can be adapted to obtain Nanson-like higher-order determinantal

tests.

We aim to explain where the polynomial N4 (4.3) comes from. Checking that it

is indeed a determinantal test is a direct verification (Proposition 4.5), and we do not

focus on this here.

Assume that we are given the cluster functions TI (4.2), where I runs over subsets

of {1, 2, 3, 4} with ≥ 2 elements. The TI ’s are polynomials in the minors AI , but

working with the TI ’s is much more convenient. Let us use the TI ’s to try finding the

matrix elements ai j of the original matrix A.

Throughout the rest of this section, we will abbreviate expressions like T{1,2} as

T12. Note that all the TI ’s are symmetric in the indices. Assume that a1i �= 0 for

all i = 2, 3, 4, and conjugate the matrix by the diagonal matrix with the entries
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di = 1i=1 +a1i 1i �=1. Then we have for the conjugated matrix (denoted by Ã = (ãi j )):

ã1i = d1

di

a1i = 1, i = 2, 3, 4. (4.4)

With this notation, we have T1i = ãi1 and

Ti j = ãi j ã j i , T1i j = ãi j T1 j + ã j i T1i . (4.5)

The second identity in (4.5) is by the definition of the cluster function (4.1), simplified

thanks to (4.4). Equations (4.5) allow to find ãi j T1 j and ã j i T1i as two distinct roots of

a quadratic equation. We thus have

ãi j T1 j = T1i j + Ri j

2
, ã j i T1i = T1i j − Ri j

2
, (4.6)

where we denoted Ri j := ±
√

T 2
1i j − 4T1i T1 j Ti j . Observe that Ri j contains an

unknown sign that we cannot determine a priori (it may also depend on i and j),

but up to sign Ri j is symmetric in i, j .

Let us substitute (4.6) into the following identity (which is again an instance of

(4.1)):

T234 = ã23ã34ã42 + ã24ã43ã32.

As a result, we obtain the following identity involving three square roots R23, R34, R24

with unknown signs:

8T12T13T14T234 = (T123 + R23) (T124 + R24) (T134 + R34)

+ (T123 − R23) (T124 − R24) (T134 − R34) . (4.7)

Note that (4.7) does not contain the matrix elements ã. Thus, it is an algebraic (but not

yet polynomial) identity on the cluster functions TI . Simplifying (4.7), we see that

4T12T13T14T234 − T123T124T143 − T123 R24 R34 − T124 R23 R34 − T134 R23 R24 = 0.

(4.8)

The left-hand side contains three summands with irrationalities R24 R34, R23 R34, and

R23 R24 with uncertain signs. By choosing all possible eight combinations of the signs

for R23, R34, R24, we see that there are only four possible combinations of signs in

(4.8). Thus, by multiplying together all these four expressions with different signs, we

can get rid of irrationality and obtain a polynomial in the TI ’s:

(

4T12T13T14T234 − T123T124T143 − T123 R24 R34 − T124 R23 R34 − T134 R23 R24

)

×
(

4T12T13T14T234 − T123T124T143 + T123 R24 R34 + T124 R23 R34 − T134 R23 R24

)

×
(

4T12T13T14T234 − T123T124T143 − T123 R24 R34 + T124 R23 R34 + T134 R23 R24

)
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×
(

4T12T13T14T234 − T123T124T143 + T123 R24 R34 − T124 R23 R34

+T134 R23 R24

)

= 0. (4.9)

Clearly, expanding the left-hand side of (4.9) squares all the quantities Ri j . Thus, the

resulting identity is polynomial in the TI ’s, and, moreover, all unknown signs present

in the R’s disappear.

One can check (for example, using computer algebra) that the resulting polynomial

(4.9) in the TI ’s has 19 summands, and it is symmetric in the indices 1, 2, 3, 4. One

can also verify that this polynomial divided by the common factor 256T 2
12T 2

13T 2
14 is

exactly the same as the Nanson’s test N4 (4.3). This concludes our derivation of the

Nanson’s determinantal test of order four.

4.4 Procedure for higher-order Nanson tests

Adapting the derivation of the test N4 given in Sect. 4.3, one can produce concrete

determinantal tests Nn for minors of general n × n matrices, where n ≥ 4. Let us

explain the necessary steps for general n without going into full detail. We have from

(4.1):

T2,3,...,n =
∑

(n−1)−cycles σ on {2,...,n}
ãσ(2)σ (3) . . . ãσ(n−1)σ (n)ãσ(n)σ (2). (4.10)

For every i < j , let us substitute the solutions (4.6), so (4.10) becomes

2n−1T12 . . . T1nT2,...,n =
∑

σ

�n
∏

i=2

(

T1σ(i)σ (i+1) + (−1)1σ(i)>σ(i+1) Rσ(i)σ (i+1)

)

.

(4.11)

Here the sum is also over (n − 1)-cycles σ on {2, . . . , n}, and “�” means that the

product is cyclic in the sense that n + 1 is identified with 2. We see that (4.11) is an

algebraic identity on the TI ’s which does not contain the matrix elements ãi j .

Opening up the parentheses in (4.11), one readily sees that all terms with an odd

number of the factors Ri j cancel out, while the terms with an even number of the

factors Ri j appear twice. Therefore, we can continue (4.11) as

2n−2T12 . . . T1nT2,...,n −
∑

non-oriented (n−1)−cycles
τ on {2,...,n}

�n
∏

i=2

T1τ(i)τ (i+1) = RHS. (4.12)

Here RHS is a sum over non-oriented (n − 1) cycles τ on {2, . . . , n}, where the

summands are (n − 1)-fold cyclic products of the quantities T1i j and Ri j with a

nonzero even number of the R’s, and each such monomial has coefficient ±1. More

precisely, the sign is determined by the number of descents τ(i) > τ(i + 1) in τ for

which the monomial contains Rτ(i)τ (i+1) (and not T1τ(i)τ (i+1)).



Tilted biorthogonal ensembles, Grothendieck random partitions… Page 29 of 51    56 

Next, in RHS there are
(

n−1
2

)

possible elements Ri j , and each of them contains an

unknown sign in front of the square root. Let us take the product over those of the

2(n−1
2 ) possible sign combinations which lead to the different RHS’s. Expanding this

product removes all irrationalities and unknown signs, and produces a polynomial

(denoted by Nn) in the cluster functions TI , where I runs over subsets of {1, . . . , n}
with ≥ 2 elements. We call Nn the Nanson-like determinantal test of order n.

For example, for n = 5 identity (4.12) has the form (recall that the quantities T1i j

and Ri j are symmetric in i, j):

8T12T13T14T15T2345 − T24T43T35T52 − T23T34T45T52 − T23T35T54T42

= R24 R25 R34 R35 − R23 R25 R34 R45 + R23 R24 R35 R45

+ R34 R45T123T125 + R24 R35T125T134 + R23 R45T125T134

+ R24 R45T123T135 + R25 R34T124T135 + R23 R35T124T145

+ R23 R34T125T145 − R23 R25T134T145 − R23 R24T135T145

− R35 R45T123T124 − R34 R35T124T125 − R25 R45T123T134

− R25 R35T124T134 − R23 R45T124T135 − R24 R34T125T135

− R24 R25T134T135 − R25 R34T123T145 − R24 R35T123T145.

In the right-hand side, there are 2(4
2) = 64 possible signs in the Ri j ’s, but they lead to

“only” 32 distinct identities. Multiplying all these 32 expressions similarly to (4.9) and

recalling the definition of the R’s leads to a polynomial in the TI ’s with no irrationality.

This produces the determinantal test N5.

4.5 Application to Grothendieckmeasures and proof of Theorem 1.2

In this subsection we employ the Nanson determinantal test N4 to prove Theorem 1.2

from Introduction. That is, we will show that the Grothendieck measure on partitions

M 
β;Gr(λ) (3.4) is not determinantal as a point process on Z≥0 with points � j =
λN + N − j , j = 1, . . . , N .

We focus on the case N = 2 and look at correlations ρGr
I of the random point

configuration {�1, �2} = {λ1 + 1, λ2} for all subsets I ⊆ {0, 1, 2, 3}. Moreover, we

will set β1 = β, x1 = x2 = x , and y1 = y2 = y. Clearly, ρGr
I = 0 if |I | = 3 or 4.

Moreover, we have ρGr
∅

= 1, and for two-point subsets we have (where i > j):

ρGr
{i, j} = M 
β;Gr

(

(i − 1, j)
)

= (1 − xy)4

(1 − xβ)2
x i+ j−1 yi+ j−2 (βx(i − j − 1) − i + j) (( j − i)(y − β) − β) ,

(4.13)

where we used (3.3)–(3.4), and took the limits as x2 → x1 = x and y2 → y1 = y.

To compute one-point correlations, we employ Proposition 2.7 and the correlation

kernel K 2d

β;Gr

of the ambient Schur process (Proposition 3.4). We have by Proposition
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2.7 (specifically, by its particular case (2.19))

ρGr
{i} = [z1w] det

(

1 − (1 − z)χ[0,i]K 2d

β;Gr

(·, 1; ·, 1)χ[0,i)

+(1 − w)χ[0,i]K 2d

β;Gr

(·, 1; ·, 1)χ{i}
)

+[z0w] det
(

1 − (1 − z)χ[0,i]K 2d

β;Gr

(·, 2; ·, 2)χ[0,i)

+(1 − w)χ[0,i]K 2d

β;Gr

(·, 2; ·, 2)χ{i}
)

. (4.14)

This yields formulas for ρGr
{i} , i = 0, 1, 2, 3, namely,

ρGr
{0} = 1 − x2 y2;

ρGr
{1} = x2 y2(1 − x2 y2) + (1 − xy)4

(1 − βx)2
;

ρGr
{2} = x4 y4(1 − x2 y2) + x(1 − xy)4

(

β(βx − 2) + xy2 + y(4 − 2βx)
)

(1 − βx)2
;

ρGr
{3} = x6 y6(1 − x2 y2)

+ x2 y(1 − xy)4
(

x2 y3 + y
(

β2x2 − 8βx + 9
)

+ 2β(2βx − 3) − 2xy2(βx − 2)
)

(1 − βx)2
.

(4.15)

Remark 4.6 These one-point correlation functions ρGr
{i} can be also computed without

using the finite-dimensional Fredholm-like determinants (4.14). Namely,

ρGr
{i} =

i−1
∑

j=0

M 
β;Gr

(

(i − 1, j)
)

+
∞
∑

j=i

M 
β;Gr

(

( j, i)
)

,

and the infinite sum is explicit because the summands have the form (4.13). However,

this simplification of correlation functions works only for small N and small order of

correlation functions. We will use the full two-dimensional determinantal kernel to

obtain asymptotics of Grothendieck random partitions in Sect. 3.

Plugging the correlation functions (4.13), (4.15) into the Nanson test (4.3) (with

the help of the representation of cluster functions via minors (4.2)), we find

N4 = β4x34 y30(1 − xy)42(1 + xy)2 P14(xy) + O
(

β5
)

, β → 0, (4.16)

where P14(xy) is a certain degree 14 polynomial in the single variable xy. We see that

N4 vanishes at β = 0, as it should be because then the Grothendieck measure reduces

to the Schur measure which is determinantal. On the other hand, for β �= 0 the test
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does not vanish in general. For example, at x = y = 1/2, we have

N4 = (β − 4)(β − 1)β4

(β − 2)32
Q3(β)Q5(β)Q7(β)Q9(β),

(β − 2)32

(β − 4)(β − 1)β4
N4

∣
∣
∣
x=y=1/2, β=−1

≈ 0.00005021 > 0,

where Q3, Q5, Q7, Q9 are certain polynomials in β of degrees 3, 5, 7, 9, respectively.

Since the Nanson determinantal test does not vanish for these values of x, y, β, this

implies Theorem 1.2 from Introduction.

5 Limit shape of Grothendieck random partitions

In this section we employ the standard steepest descent asymptotic analysis of the

correlation kernel of the Schur process (for example, explained in [71, Section 3]) to

derive the limit shape result for Grothendieck random partitions.

5.1 Limit shape of the Schur process

In this subsection we assume that all the parameters xi , y j , βr are homogeneous and

satisfy (3.8), that is, for all i, j, r we have

xi = x, y j = y, βr = β; x > 0, y > 0, xy < 1, β < 0. (5.1)

We require the parameters be nonzero, otherwise the measure degenerates and may

not produce asymptotic limit shapes.

Under conditions (5.1), the Schur process M
2d

β;Gr

(3.10) is a well-defined probability

measure on integer arrays X2d = {xm
i : 1 ≤ m, i ≤ N }. With each such array, we

associate a height function on Z≥0 × {1, . . . , N } as follows:

HN (a, t) := #
{

j : x t
j ≥ a

}

, a ∈ Z≥0, t = 1, . . . , N . (5.2)

In words, HN (a, t) is the number of particles of the configuration X2d at level t which

are to the right of a. In particular, we have

HN (x t
t , t) = t, t = 1, . . . , N . (5.3)

The following limit shape result for the Schur process can be obtained in a standard

manner via the steepest descent analysis of the correlation kernel K 2d

β;Gr

(3.11)–(3.12).

We refer to [10, 33, 53, 73, 74] for similar steepest descent arguments.
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Fig. 4 An example of the frozen boundary curve in the (ξ, τ ) coordinates, and an example of several up-

diagonal paths as in Fig. 2 serving as the level lines for the pre-limit height function HN (5.2). There are

no up-diagonal paths in the frozen zones Ia-b, so ∇H = (0, 0). In zone II, the paths go diagonally, so

∇H = (−1, −1). Finally, in zone III, the paths go vertically, so ∇H = (−1, 0). These frozen zone gradients

correspond to the vertices of the triangle (5.5). In this example, we have x = 1/3, y = 1/5, β = −6. For

other values of parameters, zones Ib and II may be present. Zone III is always present, see Lemma 5.4

Theorem 5.1 (Limit shape for Schur processes) There exists a function H(ξ, τ ) in ξ ∈
R≥0, τ ∈ [0, 1], depending on the parameters x, y, β (5.1) such that in probability,

lim
N→+∞

HN (�ξ N�, �τ N�)
N

= H(ξ, τ ). (5.4)

The function H(ξ, τ ) is continuous, piecewise differentiable, weakly decreases in both

ξ and τ , and its gradient ∇H = (∂ξH, ∂τH) belongs to the triangle

− 1 ≤ ∂ξH ≤ 0, −1 ≤ ∂τH ≤ 0, ∂τH ≥ ∂ξH. (5.5)

See Fig.4 for an illustration.

Throughout the rest of this subsection we will give an idea of proof of Theorem 5.1

together with the necessary formulas for the gradient ∇H. The integrand in the kernel

K 2d

β;Gr

(3.11) can be rewritten as

e
N
(

S
(

z; a
N

,
t
N

)

−S
(

w; b
N

,
s
N

))

z − w
,

where

S(z; ξ, τ ) := −(ξ − 1) log z + log(1 − z−1 y) − log(1 − zx) − (1 − τ) log(1 − βz−1).

(5.6)

The critical point equation ∂
∂z

S(z; ξ, τ ) = 0 is equivalent to a cubic polynomial

equation on z:

ξ xz3 − (ξ + βx(ξ + τ − 1) + (ξ + 1)xy − 1)z2

+(β(ξ + τ + ξ xy + τ xy − 2) + ξ y)z − β y(ξ + τ − 1) = 0. (5.7)
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The region in the (ξ, τ ) plane where (5.7) has two complex conjugate nonreal roots is

called the liquid region L. Inside it, the gradient ∇H(ξ, τ ) belongs to the interior of

the triangle (5.5). In Fig. 4, L is the region inside the frozen boundary curve which we

denote by ∂L. For (ξ, τ ) ∈ L, denote by zc = zc(ξ, τ ) the unique root of (5.7) in the

upper half complex plane. This is a critical point of the function S (5.6).

We forgot a standard steepest descent analysis of the kernel K 2d

β;Gr

which would

constitute a detailed proof of Theorem 5.1. Instead, we briefly explain how to derive

explicit formulas for the gradient ∇H. We need only the a priori assumption (which

would follow from the steepest descent) that this gradient depends on the critical

point zc in a harmonic way when zc belongs to the upper half-plane. When the point

(ξ, τ ) approaches the boundary of the liquid region, the critical points zc and z̄c merge

and become a real double critical point which is a double root of the cubic equation

(5.7). Therefore, the frozen boundary curve ∂L can be obtained in parametric form by

solving the equations

∂

∂z
S(z; ξ, τ ) = ∂2

∂z2
S(z; ξ, τ ) = 0, (5.8)

in (ξ, τ ), and taking zc = z̄c ∈ R as a parameter. Equivalently, ∂L is the discriminant

curve of the cubic equation (5.7). See (5.20) for this parametrization of the frozen

boundary curve (we do not an explicit parametrization just yet).

We are only interested in the “physical” part of the frozen boundary which lives in

the half-infinite rectangle (ξ, τ ) ∈ [0,∞)×[0, 1], and so not all values of zc = z̄c ∈ R

correspond to points of the frozen boundary ∂L. Modulo this remark, we get the

following trichotomy of the frozen zones:

Proposition 5.2 (Frozen zone trichotomy) Depending on the location of the double

critical point, we have:

• If ∂L is adjacent to zones Ia or Ib, then zc = z̄c > 0.

• If ∂L is adjacent to zone II, then β < zc = z̄c < 0.

• If ∂L is adjacent to zone III, then z = z̄c < β.

Parts of ∂L bounding zones Ia-b are asymptotically formed by up-diagonal paths.

In particular, the slope of these parts of ∂L in the (ξ, τ ) coordinates cannot exceed 1.

One can check that in Fig. 4, the rightmost part of the frozen boundary ∂L is not linear

and has slope slightly less than 1. On the other hand, the boundaries of zones II and III

are not formed by our up-diagonal paths. Instead, one should use suitably chosen “dual

paths” defined through the complement of the particle configuration X2d = {xm
j }.

Using Proposition 5.2, one can show that inside the liquid region, we have the

following expressions for the gradient of the limit shape in terms of the critical point

zc(ξ, τ ):

∂ξ H(ξ, τ ) = −Arg zc(ξ, τ )

π
, ∂τ H(ξ, τ ) = Arg

(

zc(ξ, τ ) − β
)

− Arg zc(ξ, τ )

π
.

(5.9)
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Fig. 5 Triangle in the complex

plane with vertices 0, β, and zc .

When zc approaches the real

line at (0, +∞), (β, 0), and

(−∞, β), we have, respectively,

∇H = (0, 0), ∇H = (−1,−1),

and ∇H = (−1, 0)

That is, 1 + ∂ξ H and −∂τ H are the normalized angles of the triangle in the complex

plane with vertices 0, β, and zc, adjacent to 0 and zc, respectively (recall that both

partial derivatives are negative). See Fig. 5 for an illustration.

Remark 5.3 From the cubic equation ∂
∂z

S(z; ξ, τ ) = 0, one can readily check that the

complex critical point zc(ξ, τ ) satisfies the following version of the complex Burgers

equation:

∂zc(ξ, τ )

∂ξ
=
(

1 − zc(ξ, τ )

β

)
∂zc(ξ, τ )

∂τ
. (5.10)

We refer to [52] for general details on how the complex Burgers equation arises for

limit shapes of planar dimer models.

5.2 From Schur to Grothendieck limit shapes

From the limit shape result for the Schur process (Theorem 5.1), we readily get the

limit shape of Grothendieck random partitions. Indeed, recall from Proposition 3.2 that

the shifted random variables �i = λi + N − i , i = 1, . . . , N , under the Grothendieck

measureM 
β;Gr (3.4) are equal in distribution to the particle coordinates x i
i = μi

i +N−i

corresponding to the random partitions under the Schur process M
2d

β;Gr

(3.10). The

Schur process possesses a limit shape, so when i grows proportionally to N , the

random variables x i
i also scale proportionally to N . More precisely, Theorem 5.1 and

the observation (5.3) imply that for all τ ∈ [0, 1] we have

x i
i

N
→ L(τ ), i = �τ N�, N → +∞, (5.11)

where the convergence is in probability. Here L(τ ) is a weakly decreasing function

satisfying the equation

H (L(τ ), τ ) = τ for all τ ∈ [0, 1], (5.12)

where H(ξ, τ ) is the limit shape of the Schur process. In other words, the shape L(τ ) is

the cross-section of the Schur process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η)

coordinates by the plane η = τ .

Lemma 5.4 The function L(τ ), τ ∈ [0, 1], is continuous and is uniquely determined by

equation (5.12) and by continuity at the endpoints τ = 0, 1. In particular, L(1) = 0.
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Proof Observe that H(ξ, τ ) strictly decreases in ξ as long as H �= 0, 1. Indeed, H is

strictly monotone in the liquid region thanks to the first of the identities in (5.9). In

the frozen zones, we have ∂ξ H = 0 only in zones Ia-b, and there we have H = 0 in

Ia or H = 1 in Ib. Indeed, ∂ξH = 0 implies zc(ξ, τ ) ∈ R, see (5.9). Since we only

consider the “physical” part (ξ, τ ) ∈ [0,∞) × [0, 1], it follows that (ξ, τ ) must lie

on the frozen boundary. This implies that the function L(τ ) is determined by (5.12)

uniquely for τ �= 0, 1, and is continuous.

For τ = 0, is it natural to set L(0) = max{ξ : H(ξ, 0) = 0} by continuity. For

τ = 1, it suffices to show that (L(τ ), τ ) for τ close to 1 must belong to the frozen

zone III and not Ib. For τ = 1, the critical point equation (5.7) has a root z = β

independently of ξ . The discriminant of the remaining quadratic equation is negative

for

2

1 + √
xy

< 1 + ξ <
2

1 − √
xy

.

In particular, the discriminant is positive for ξ close to zero, so the point (ξ, τ ) = (0, 1)

lies in a frozen zone. By looking at the value of zc = z̄c at a point of the adjacent frozen

boundary, one can verify that the neighborhood of (ξ, τ ) = (0, 1) is always in zone

III. Thus, H(ξ, 1) is strictly monotone in ξ in this neighborhood. Setting L(1) = 0,

we get the continuity of L(τ ) at τ = 0, as desired. ��

We arrive at the following limit shape result for Grothendieck random partitions:

Theorem 5.5 Let λ = (λ1, . . . , λN ) be the Grothendieck random partition distributed

as M 
β;Gr (3.4) with parameters x, y, β as in (5.1) (in particular, β < 0). For any fixed

τ ∈ [0, 1] we have the convergence in probability:

λ�τ N�
N

→ L(τ ) + τ − 1, N → +∞, (5.13)

where the function L(τ ) is defined before Lemma 5.4.

In particular, the shift by τ −1 in (5.13) comes from λi = �i + i − N , i = 1, . . . , N .

When we need to indicate the dependence of L(τ ) on the parameters, we will write

L(τ | x, y, β).

To help visualize the Grothendieck limit shape determined by the function L(τ ),

we employ the coordinate system rotated by 45◦ (for illustration, see Fig. 1, left, in the

Introduction). In this way, Young diagrams and their limit shapes become functions

W(u), u ∈ R, satisfying

|W(u) − W(v)| ≤ |u − v|, W(u) = |u| for all large enough |u|. (5.14)

Define the norm of a continuous Young diagram by

‖W‖ := 1

2

ˆ +∞

−∞
(W(u) − |u|) du. (5.15)
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Before the limit, the functions WN (u) corresponding to Young diagrams λ with at most

N rows are piecewise linear with derivatives ±1 and integer maxima and minima. Note

that ‖WN ‖ = |λ| is the number of boxes in the Young diagram.

The space of all functions satisfying (5.14) is called the space of continuous Young

diagrams by Kerov, see [49, Chapter 4].3 Young diagrams in the coordinate system

rotated by 45◦ were first considered in connection with the Vershik–Kerov–Logan–

Shepp (VKLS) limit shape of Plancherel random partitions, see [57, 83].

Let the pre-limit continuous Young diagramsWN (u) correspond to the Grothendieck

random partitions with parameters (x, y, β). The convergence (5.13) in Theorem 5.5

implies the pointwise convergence in probability as N → +∞ of the rescaled func-

tions 1
N

WN (uN ) to a limit shape. This limit shape is a continuous Young diagram

u �→ W(u) which has parametric form

u = L(τ ) − 1, W = L(τ ) − 1 + 2τ, τ ∈ [0, 1]. (5.16)

This parametric form follows from the change of coordinates from (τ,L(τ ) + τ − 1)

to (u,W(u)) under the 45◦ rotation. When we need to indicate the dependence of

W(u) on the parameters of the Grothendieck measure, we will write W(u | x, y, β).

Thus, we have established Theorem 1.4 from the Introduction.

In Sect. 5.4 we present graphs of the limit shapes (5.16) for several choices of

parameters (x, y, β) of the Grothendieck measure.

5.3 Properties of Grothendieck limit shapes

Here let us make several general observations in connection with the limit shape result

for Grothendieck random partitions (Theorem 5.5).

5.3.1 Differential equations

Differentiating (5.12) in τ , we see that L(τ ) satisfies the differential equation L′(τ ) =
1−∂τ H(L(τ ),τ )
∂ξ H(L(τ ),τ )

. In terms of the critical point, with the help of (5.9), this equation has

the form

L
′(τ ) = −π − Arg

(

zc(L(τ ), τ ) − β
)

+ Arg zc(L(τ ), τ )

Arg zc(L(τ ), τ )
. (5.17)

Here zc = zc(ξ, τ ) is the root of the cubic equation (5.7) in the upper half plane if

(ξ, τ ) belongs to the liquid region. When (ξ, τ ) is in a frozen zone, zc should be taken

real such that the arguments in (5.9) give the gradient ∇H in this frozen zone. We refer

to the trichotomy in Proposition 5.2, see also Fig. 4 for an illustration.

3 Our continuous Young diagrams are centered at zero, while Kerov considered a slightly more general

framework. This difference is not essential for us here.
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Fig. 6 Frozen boundary curve in

the full space R
2 with x = 1/3,

y = 1/5, β = −25. As β decays

to −∞, the cusp point goes to

infinity along the main diagonal

in the first quadrant in the

coordinates (ξ, 1 − τ)

The limit shape continuous Young diagram W(u) (5.16) in the 45◦ rotated coordi-

nate system satisfies a more symmetric differential equation

W
′(u) =

π − Arg
(

zc

(

u + 1,
W(u)−u

2

)

− β
)

− Arg zc

(

u + 1,
W(u)−u

2

)

π − Arg
(

zc

(

u + 1,
W(u)−u

2

)

− β
)

+ Arg zc

(

u + 1,
W(u)−u

2

) . (5.18)

We remark that the root zc(ξ, τ ) of the cubic equation (5.7) depends on (ξ, τ )

in a nonlinear and somewhat implicit manner. Therefore, it may be challenging to

extract useful information about the Grothendieck limit shape from the differential

equations (5.17)–(5.18). Even for producing the plots in Sect. 5.4 we relied not on

these differential equations, but rather on the original implicit equation (5.12).

5.3.2 Staircase frozen facet

Observe that when (ξ, τ ) is in the frozen zone II, we have ∇H = (−1,−1), which

corresponds to taking zc from (β, 0). Thus, in this frozen zone we have from (5.17)

and (5.18):

L
′(τ ) = −1

2
, W

′(u) = 0. (5.19)

Notice that for (5.19) to hold, the point (L(τ ), τ ) of the Grothendieck limit shape

must belong to the frozen zone II. In fact, this is possible for certain choices of the

parameters (x, y, β), namely, when β is sufficiently large in the absolute value:

Lemma 5.6 Let the parameters (x, y, β) satisfy (5.1). For any fixed x, y, there exists

β0 < 0 such that for all all β < β0, the frozen zone II extends through the whole

horizontal strip ξ > 0, 0 < τ < 1 in the (ξ, τ ) coordinates. See Fig.6 for an

illustration.
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Proof An explicit parametrization of the frozen boundary curve by z ∈ R is obtained

by solving the double critical point equations (5.8). This parametrization has the form

ξ = (1 − xy)
(

y
(

β + xz2 − 2z
)

+ z2(1 − βx)
)

(1 − xz)2(y − z)2
,

τ = 1 + (z − β)2
(1 − xy)

(

y − xz2
)

(−β)(1 − xz)2(y − z)2
. (5.20)

One can check the following facts about the frozen boundary curve ∂L in the whole

space (ξ, τ ) ∈ R
2:

• ∂L is tangent to the horizontal coordinate line at a unique point (ξ, 1) with ξ > 0.

This point corresponds to z = β which is a double zero of τ − 1. Substituting

z = β into ξ produces a positive quantity.

• ∂L is tangent to the vertical coordinate line at a unique point (0, τ ) with τ < 1.

This point corresponds to z → ∞. Taking this limit in τ shows that the tangent

point has τ < 1.

• The slope of the curve ∂L in the coordinates (ξ, 1 − τ) (as in Fig. 4) is

−∂τ/∂z

∂ξ/∂z
= 1 − z

β
,

which changes sign only at z = β and z = ∞.

• For z = y and z = 1/x , the curve ∂L goes to infinity in two different asymptotic

directions. For z → y we have ξ, 1 − τ → −∞, and for z → 1/x we have

ξ, 1 − τ → +∞. Each of these asymptotic directions has degree 2, that is, there

are exactly two components of ∂L escaping to infinity in each of the first and the

third quadrants in the coordinates (ξ, 1 − τ).

Now let us look at the “cusp” point of ∂L, that is, where the third derivative of

S(z; ξ, τ ) vanishes along with the first two. In Fig. 4, the cusp is at the tip of the

frozen zone II. Let us show that the cusp point is always unique and exists in the

full space (ξ, τ ) ∈ R
2. Take ∂3

∂z3 S(z; ξ, τ ), and substitute into it ξ, τ as in (5.20). We

obtain a rational function in z and the parameters (x, y, β) whose numerator is a cubic

polynomial

P(z) = z3x(1 + xy − xβ) − 3z2xy + 3zxyβ + y(y − β − xyβ).

The discriminant of P(z) is −27 x2 y2(1− xβ)2(1− xy)2(y −β)2, which is manifestly

negative. Therefore, there is a unique real root z of P(z), and it corresponds to the cusp

point.

Let us look at the behavior of the cusp point for large negative β. We have

P(z) = P0(z)β + O(1), β → −∞, where P0(z) := −x2z3 + 3xyz − y(1 + xy).
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The polynomial P0(z) has a unique real root, denote it by z0. Clearly, the root of P(z)

becomes close to z0 as β → −∞. Next, for z = z0, we have

ξ = 1 − τ + O(1) = (1 − xy)
(

y − xz2
0

)

(1 − xz0)2(y − z0)2
β + O(1), β → −∞.

Since P0(−
√

y/x) > 0 and the coefficient by z3 in P0 is negative, we see that y−xz2
0 >

0. This inequality implies that the cusp point of ∂L goes to infinity along the main

diagonal in the first quadrant in the coordinates (ξ, 1 − τ).

We conclude that for large β, four components of the frozen boundary escape as

ξ, 1 − τ → +∞, and two components escape as ξ, 1 − τ → −∞. Together with

the tangence properties observed at the beginning of the proof, this implies that each

horizontal line at height τ , τ ∈ [0, 1], intersects the frozen boundary precisely four

times. The frozen zone II is between the middle two intersections. This completes the

proof. ��

By Lemma 5.6, if |β| is sufficiently large and β < 0, the limit shape of the

Grothendieck random partition always has a part where the derivative satisfies (5.19).

In particular, the density of the particles �i is 1
2

. We call the part of the Grothendieck

limit shape where (5.19) holds the staircase frozen facet.

Let us discuss how the partition λ looks in the staircase facet. For the two-

dimensional Schur process, in zone II the up-diagonal paths are densely packed and

move diagonally. In terms of the particle configuration X2d = {xm
i : 1 ≤ m, i ≤ N },

this means that

xm+1
i = xm

i − 1, xm
i+1 = xm

i − 1.

Thus, for the coordinates λi and �i = λi + N −i of the Grothendieck random partition,

where �i = x i
i in distribution (Proposition 3.2), we have in the staircase facet:

�i+1 = �i − 2, λi+1 = λi − 1.

Thus, in this facet, the Young diagram λ locally looks like a staircase with no fluctua-

tions. This justifies the name “staircase frozen facet”. In the 45◦ rotated coordinates,

the limit shape W(u | x, y, β) of λ is horizontal in this facet. We refer to Sect. 5.4 for

illustrations of staircase facets.

5.3.3 Reduction to Schur measures and Plancherel limit shapes

Observe that for all β ≤ 0, under the Schur process M
2d

β;Gr

(3.10), the marginal

distribution of the partition μN is simply the Schur measure with probability weights

(1 − xy)N 2

sμN (x, . . . , x
︸ ︷︷ ︸

N

)sμN (y, . . . , y
︸ ︷︷ ︸

N

). (5.21)
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When β = 0, the weights (−β) of the diagonal edges in the directed graph in Fig. 2

vanish. Thus, for β = 0, all up-diagonal paths must go vertically, and almost surely

μm = μN for all m = 1, . . . , N . This implies that for fixed x, y and as β ↗ 0, the

limit shape W(u | x, y, β) of the Grothendieck random partition λi = μi
i converges to

that of the Schur measure (5.21). Denote the latter limit shape by Sτ=1(u). It depends

on the parameters x, y only through their product, and is independent of β.

On the other hand, the marginal distribution of the partition μ1 is the following

Schur measure:

(1 − xy)N 2

(1 − xβ)−N (N−1)sμ1(x, . . . , x
︸ ︷︷ ︸

N

)sμ1(y, . . . , y
︸ ︷︷ ︸

N

;−β̂, . . . ,−β̂
︸ ︷︷ ︸

N−1

), (5.22)

where (−β̂, . . . ,−β̂) is the dual specialization (e.g., see [13, Section 2] for the def-

inition). Denote the limit shape of μ1 by Sτ=0(u). It depends on all our parameters

x, y, β.

Using, for example, the Robinson–Schensted–Knuth correspondence [36, 51], one

can show that the expected numbers of boxes in the partitions μN and μ1 are, respec-

tively,

E|μN | = N 2xy

1 − xy
, E|μ1| = N 2xy

1 − xy
− N (N − 1)β y.

Dividing by N 2 (which comes from rescaling both coordinate directions of the con-

tinuous Young diagram by N−1), we see that the norms (5.15) of the limit shapes

are

‖Sτ=1‖ = xy

1 − xy
, ‖Sτ=0‖ = xy

1 − xy
− β y.

When x, y are small, ‖Sτ=1‖ is of order xy, and the rescaled limit shape

1√
xy

Sτ=1

(

u
√

xy
)

converges to the celebrated Vershik–Kerov–Logan–Shepp (VKLS) curve

�(u) :=
{

2
π

(

u arcsin( u
2
) +

√
4 − u2

)

, |u| ≤ 2;
|u|, |u| > 2.

(5.23)

Note that ‖�‖ = 1.

By Proposition 3.2 and Theorem 5.5, the Grothendieck random partition λ should

have a limit shape which is between those of μ1 and μN . When −β y � xy �
1, the limit shapes of μ1 and μN should be close to each other and to the VKLS

shape (5.23). Together with numerical experimentation in Sect. 5.4, this prompts the

following conjecture:
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Conjecture 5.7 Let x, y ↘ 0 and β = β(x) ↗ 0 such that −β(x) � x. Then the

rescaled Grothendieck limit shape 1√
xy

W(u
√

xy | x, y, β(x)) converges to the VKLS

shape �(u).

Consider another regime when x, y ↘ 0 but β = β(y) → −∞ such that −β y is

fixed. This change in β does not affect μN , and the norm of Sτ=1 goes to zero. After

rescaling, Sτ=1 is close to VKLS shape. The limit shape of μ1 at τ = 0, on the other

hand, grows macroscopically, but one can show that Sτ=0 still contains a Plancherel-

like part at scale xy in the neighborhood of u = 1. In the two-dimensional Schur

process picture, for β → −∞ the up-diagonal paths strongly prefer to go diagonally.

Therefore, we expect that in this regime, the Grothendieck limit shape contains a

(shifted) Plancherel-like part. However, numerical experimentation Sect. 5.4 suggests

that this shape is not exactly the VKLS shape. Let us formulate a conjecture:

Conjecture 5.8 Let x, y ↘ 0 and β = β(y) = −K/y, where K > 0 is fixed. There

exists K0 > 0 such that for all K > K0, in the O(
√

xy)-neighborhood of u = 1, the

Grothendieck limit shape W(u | x, y, β(y)) is close to

u + 1

2
+

√
xy

2
�(K )

(
u − 1√

xy

)

, (5.24)

where �(K ) is a suitable K -dependent deformation of the VKLS shape �. We expect

that as K → −∞, the shapes �(K ) approach �.

We have formulated Conjectures 5.7 and 5.8 only for limit shapes, but similar

Plancherel-like behavior should arise for Grothendieck random partitions themselves.

5.4 Grothendieck limit shape plots

The limit shape surface H(ξ, τ ) of the two-dimensional Schur process has the normal

vector ∇H(ξ, τ ). This gradient is expressed through the solution zc(ξ, τ ) to the cubic

equation (5.7), see (5.9). However, H(ξ, τ ) itself is not explicit, making it necessary

to employ numerical integration to graph the surface. This is achieved by integrating

the gradient along the ξ direction, starting from +∞ and moving towards the point

(ξ, τ ).

Recall that the Grothendieck limit shape L(τ ) is the cross-section of the Schur

process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η) coordinates, at the plane η = τ .

This cross-section is not explicit either. Therefore, we need to solve numerically the

implicit equation (5.12) to get the desired function L(τ ). After obtaining L(τ ), we

use it to graph the shape W(u) in the coordinate system rotated by 45◦ using the

parametric representation (5.16).

We remark that the differential equations (5.17) and (5.18) for L(τ )or W(u), respec-

tively, are not very useful for graphing directly, as they cannot be solved explicitly.

While a numerical solution of these differential equations is possible, it would require

specific convergence estimates, which we avoid with our more direct approach.

We implement a cubic equation solver in Python to find the roots zc(ξ, τ ) along

a regular grid of (ξ, τ ), utilizing the code from [50]. Then (also with Python) we
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Fig. 7 Graphs with x = 1/3, y = 1/5, β = −6. See Sect. 5.4 for description

perform direct numerical integration of the ξ -gradient of the height function (5.9).

After that we solve the implicit equation (5.12). This procedure yields the values of

W(u) along a non-regular grid in u, which is sufficient for graphing the limit shape

of Grothendieck random partitions. Our Python code is available at [38].

Remark 5.9 Here we do not perform probabilistic simulations of Grothendieck random

partitions, but rather focus on numerically graphing the Grothendieck limit shapes

which exist due to Theorem 5.5.

Next we descibe the resulting plots of Grothendieck limit shapes. The images are

located at the end of the paper.

5.4.1 Basic example (x = 1/3, y = 1/5, ˇ = −6)

First, we take the same parameters as in Fig. 4. In Fig. 7, the left pane displays the

limit shape surface H for the Schur process (red), the plane η = τ (blue), and the

curve (L(τ ), τ, τ ) in the cross-section. The top right pane shows the projection of

the cross-section onto the bottom coordinate plane (ξ, 1 − τ), and also includes the

frozen boundary curve. The frozen boundary is the same as in Fig. 4. The bottom right

pane presents the limit shape of Grothendieck random partitions in the coordinates

(u,W(u)). The limit shape W(u) always lies below the line u + 2, as the number of

nonzero parts in the Grothendieck random partition is limited to at most N .

5.4.2 Large negative beta (x = 1/3, y = 1/5, ˇ = −25)

Second, we consider the case of large negative β. In the top left pane in Fig. 8, we have

zoomed in around the flat section of the surface H (red). The blue plane corresponds

to η = τ , and the black meshed plane extends the zone II frozen facet of H which has

∇H = (−1,−1). We see that the intersection of the blue plane with the red surface is
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Fig. 8 Graphs with x = 1/3, y = 1/5, β = −25. See Sect. 5.4 for description

Fig. 9 Exact samples of the Grothendieck random partitions with N = 50 and parameters x = 1/3,

y = 1/5, and β = −6 (left plot) or β = −25 (right plot). See Sect. 5.5 for a discussion of the sampling

mechanism. We observe that the samples follow the limit shapes from Figs. 7 and 8, as it should be. In

particular, notice the staircase frozen facet on the right plot

a straight line in this neighborhood. The bottom left pane displays the projection of the

cross-section, similar to Fig. 7. By Lemma 5.6, the black curve must traverse through

zone II. On the right pane, we added a horizontal line to highlight the staircase frozen

facet where the limit shape W(u) is horizontal.

5.4.3 Plancherel-like behavior for small negative beta

In Figs. 10 and 11 we numerically support Conjecture 5.7 that the rescaled

Grothendieck limit shape converges to the VKLS shape �(u) (5.23) as x, y → 0

such that β � x . In Fig. 10 the parameters x = y = 1/40 are fixed. As β gets

close to zero (we chose three orders, (xy)
1
2 , (xy)

3
4 , and xy), we see that the plots of
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Fig. 10 Graphs of W(u) with x = y = 1/40 and β = −1/40 (round), β = −1/250 (yellow squares), and

β = −1/1600 (green squares). We also added the scaled VKLS curve
√

xy �(u/
√

xy). See Sect. 5.4 for

more detail

Fig. 11 Graph of W(u) with x = y = 1/100 and β = −1/1000 and the scaled VKLS curve√
xy �(u/

√
xy). See Sect. 5.4 for more detail
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Fig. 12 Graphs with x = y = 1/40 and β = −120. On the right, we added the shifted and scaled VKLS

shape (given by (5.24) with �(K ) replaced by � (5.23)). The Grothendieck limit shape apparently is not

close to the shifted and scaled VKLS shape. See Sect. 5.4 for more detail

W(u) get closer to the VKLS shape. Moreover, Fig. 11 demonstrates that for smaller

x = y = 1/100, taking β = 1/1000 (order (xy)
3
4 ), makes the shape W(u) closer

than for x = y = 1/40. Indeed, we have for the uniform norms:

(xy)−
1
2 ·
∥
∥W(· | x, y, β) − √

xy �
(

·/√xy
)∥
∥

C

∣
∣
∣
∣
x=y=1/40, β=1/250

≈ 0.10;

(xy)−
1
2 ·
∥
∥W(· | x, y, β) − √

xy �
(

·/√xy
)∥
∥

C

∣
∣
∣
∣
x=y=1/100, β=1/1000

≈ 0.06;

(xy)−
1
2 ·
∥
∥W(· | x, y, β) − √

xy �
(

·/√xy
)∥
∥

C

∣
∣
∣
∣
x=y=1/900, β=1/27000

≈ 0.044,

which suggests that these expressions should decay to zero.

5.4.4 Plancherel-like behavior for large negative beta

In Fig. 12, we consider the regime of Conjecture 5.8, and take x = y = 1/40, β =
−120, so −β y = 3. The Grothendieck limit shape W(u) has a staircase frozen facet,

and to the right of it we observe a curved part of size O(
√

xy). Zooming in, we see

that this part of W(u) does not seem to be close to the shifted and scaled VKLS shape,

see Fig. 12, right.

5.4.5 Positive beta (x = 1/3, y = 1/5, ˇ = 1/12)

By Proposition 3.1, the Grothendieck measure M 
β;Gr(λ) on partitions is also non-

negative for 0 ≤ β < min(x−1, y). Setting β > 0 makes the corresponding

two-dimensional Schur process (3.10) a signed probability measure. However, in this
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Fig. 13 Graphs with x = 1/3, y = 1/5, and β = 1/12. The two graphs on the right do not correspond to

a nonnegative probability measure on two-dimensional point configurations. However, we conjecture that

the Grothendieck measures still converge to the limit shape W(u) on the right. See Sect. 5.4 and Conjecture

5.10 in particular for details

case we can still define the surface H(ξ, τ ) using the root zc(ξ, τ ) of the cubic equation

(5.7). Then we can define the curve L(τ ) as the solution of the implicit equation (5.12),

and finally obtain a shape W(u) via (5.16). This leads to the following conjecture:

Conjecture 5.10 The curve W(u) = W(u | x, y, β) is well-defined by the procedure

described above for all β < min(x−1, y). Moreover, this curve W(u) is the limit

shape of the random partitions distributed according to the Grothendieck measure

with homogeneous parameters (5.1) in the 45◦ rotated coordinate system.

In Fig. 13, we numerically support Conjecture 5.10 by considering parameters x =
1/3, y = 1/5, β = 1/12. We plot the surface H(ξ, τ ) in Fig. 13, top left. In the bottom

left pane we plot the curve L(τ ) together with the “frozen boundary”. An interesting

feature is that here L(τ ) is tangent to this “frozen boundary”. Finally, in Fig. 13,

right, we plot the conjectural limit shape W(u | 1
3
, 1

5
, 1

12
). From additional numerical

examples we also noticed that as β ↗ min(x−1, y), we have ‖W(· | x, y, β)‖ → 0.

5.5 Exact sampling Grothendieck random partitions by Schur dynamics

It is known that Schur processes can be exactly sampled using push-block type dynam-

ics or Robinson–Schensted–Knuth (RSK) correspondences. We refer to [10, 13, 19],

[62, Section 4], or [6] for various expositions of general sampling mechanisms for

Schur processes. An application to our Schur process M
2d

β;Gr

(3.10) is implemented

in Python [38, file RSK_code.py] and follows the RSK dynamics on interlacing

arrays as in [62]. We only work with homogeneous parameters, but a straightforward

modification would cover the fully inhomogeneous case. The results of the simulation

are given in Fig. 9.
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Let us briefly describe our sampling mechanism in terms of semistandard Young

tableaux (which are in a well-known bijection with interlacing arrays). Start from an

empty Young tableau T (0) = ∅.

In the first stage, insert into this tableau an N×N matrix A of independent geometric

random variables with distribution Prob(ξ = k) = (1 − xy) · (xy)k , k = 0, 1, 2, . . .

using the classical RSK correspondence [51]. This procedure is performed in N steps,

and in each t-th step we form the word 1At1 . . . N At N , where Ai j ∈ Z≥0 are the

elements of the matrix A, and powers of letters mean repetition. This word is then

inserted into the Young tableau T (t − 1) using the usual RSK insertion. After these

N steps, the shape of our Young tableau T (N ) is distributed according to the Schur

measure (5.21) with specializations (x, x, . . . , x) and (y, y, . . . , y).

In the second stage, take an (N − 1) × N matrix of independent Bernoulli ran-

dom variables with distribution Prob(η = 1) = −βx/(1 − βx), and insert it into the

tableau T (N ) using the dual RSK correspondence. This procedure is performed in

N −1 steps, and in each s-th step we form the word 1Bs1 . . . N Bs N (where Bi j ∈ {0, 1}
are the elements of B), and insert it into the Young tableau T (N + s − 1) using the

dual RSK insertion. An implementation of the dual RSK insertion for semistandard

Young tableaux (equivalently, interlacing arrays of integers) that we used is the algo-

rithm Q
q=0
row [−β̂] from [62, Section 4.3]. After these N − 1 steps, the shape of our

Young tableau T (2N − 1) is distributed according to the Schur measure (5.22) with

specializations (x, x, . . . , x) and (y, y, . . . , y;−β̂, . . . ,−β̂).

To obtain the Grothendieck random partition, one has to track different parts of the

shape of the evolving Young tableau T (N + s − 1). Namely, set

λN−s+1 = T (N + s − 1)N−s+1, s = 1, 2, . . . , N , (5.25)

where T (N + s − 1) j means the j-th part of the shape of the Young tableau.

Proposition 5.11 The distribution of the random Young diagram λ = (λ1, . . . , λN )

defined by (5.25) coincides with the Grothendieck measure (1.3) with homogeneous

parameters xi = x, y j = y, βr = β.

Proof The joint distribution of the shapes of the semistandard Young tableaux T (N +
s − 1), s = 1, . . . , N , is given by the Schur process M

2d

β;Gr

(3.10) (with homogeneous

parameters), where the shape of T (N + s − 1) is μN−s+1. Indeed, this statement

follows from the general Schur dynamics result [19, Theorem 10] (where instead of

the push-block dynamics one can use the Robinson–Schensted–Knuth one, cf. [25,

62]). With this identification, the desired claim follows from Proposition 3.2. ��
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