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1 Introduction

One of the most important phenomena that accompanies slow-roll inflation based on scalar
field potentials is the regime of self-reproduction. If we want to begin inflation at Planck
scale to avoid fine-tuning of the initial conditions, this regime seems to be unavoidable. This,
in turn, leads to an unwarranted situation where most of the space is still in the regime of
accelerated expansion at all times, resulting in a picture of the multiverse, with a possible
loss of predictability of the theory.

If we consider a homogeneous scalar field ϕ with potential V (ϕ) in a flat expanding
universe with metric

ds2 = dt2 − a2 (t) δikdxidxk, (1.1)

then the equations for this field and the scale factor a (t) are

ϕ̈+ 3Hϕ̇+ V ′ = 0,

H2 = 1
3

(1
2 ϕ̇

2 + V

)
, (1.2)

where the dot denotes the time derivative with respect to physical time t and the prime is the
derivative of the potential V with respect to ϕ. The Hubble constant is defined as H ≡ ȧ/a,
we use Planck units here and in the following and we set 8πG = 1. The above equations
can be simplified if the potential V satisfies the slow-roll conditions

(
V ′

V

)2
� 1, V ′′

V
� 1. (1.3)

– 1 –



J
C
A
P
1
1
(
2
0
2
3
)
0
2
2

In this case we can neglect the second derivative in the first equation and the kinetic energy
in the second equation in (1.2), so that these equations become

3Hϕ̇+ V ′ ≈ 0,

H2 ≈ 1
3V. (1.4)

During the cosmological time tH ' H−1 the classical scalar field decreases its value by
the amount

δϕcl ' ϕ̇tH '
ϕ̇

H
∼ −V

′

V
. (1.5)

At the same time, the typical quantum fluctuations at Hubble scale have amplitude ±H and
if this amplitude is positive, the total change of the scalar field at scale H−1 can exceed δϕcl,
and instead of decreasing, the resulting scalar field can increase by a value

∆ϕ ' H − V ′

V
> 0. (1.6)

As a result, there is always an exponentially large number of regions where the acceleration
continues forever, the inflation becomes eternal, the volume filled by the inflating regions
reproduces exponentially fast. This volume is obviously dominant compared to the volume
of the regions where the inflation ends and a Friedmann universe emerges thereof, filled by
a normal matter [1, 2]. This is true for almost every measure used to compare the volume
of inflationary regions with that of the regions where inflation has ended (see for e.g. [3]).
Consequently, we are faced by either the problem of fine-tuning in its weak form, i.e., require
inflation to start below the Planck scale if we are to avoid self-reproduction, or the problem
of eternal inflationary universe, or even a landscape, thus damaging the predictive power of
inflation [4–8]. Clearly, we must start inflation at the Planck scale if we are to avoid any degree
of fine-tuning of initial conditions, because only in this case we do not obtain a small-value
for the probability of inflation from the available parameters all of which are of order one,
regardless of any measure characterizing the “probability of initial conditions” (whatever
that may mean). The natural question to ask, therefore, is how can we avoid in this case,
self-reproduction of the universe. As follows from (1.6), the condition for self-reproduction at
the Planck scale where H ∼ 1, can only be violated if the slow-roll condition V ′/V � 1 is at
least, weakly violated as well, i.e. V ′/V ∼ O(1) and is only later restored. This leads to a
rather restricted class of unique potentials for which we can start inflation near the Planck
scale and avoid self-reproducing eternal universe [9]. In this case, the number of universes
generated by inflation can be huge (or even infinite), but all of them will have the same
statistical properties, so that the predictability of the theory is fully restored, leaving aside
the “philosophical question” about the number of similar non-observable worlds.

In this paper we will show how the problem of self-reproduction for arbitrary potentials
in models where inflation starts at Planck scales can be solved by simply coupling the inflaton
potential to the mimetic field. Note that the introduction of the mimetic field in no way
implies that we are considering models with multiple scalar fields, but implies instead a
minimal modification of Einstein gravity. This in turn opens up a playground to build a new
class of mimetic inflation models, which still belong to the class of “simple inflation”.
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2 Coupled mimetic and inflaton fields

The mimetic field φ introduced in [10] satisfies the first order differential equation

gµνφ,µφ,ν = 1, (2.1)

and together with the longitudinal mode of gravity reproduces the dark matter component in
the universe. The solution of this equation in the synchronous coordinate system:

ds2 = dt2 − γikdxidxk, (2.2)

is very simple and given by φ = t and thus φ can be considered as the time coordinate
defining the partitioning of the four-dimensional manifold by three- dimensional space-like
hypersurfaces. In this coordinate system the invariant

κ ≡ �φ = gµνφ;µν (2.3)

has a simple physical interpretation and is equal to the trace of the extrinsic curvature of
the hypersurfaces with constant φ:

κ = 1
2
∂

∂t
ln (det γik) . (2.4)

Thus, using term κ ≡ �φ in the Lagrangian we modify gravity without adding an additional
scalar degree of freedom. In previous works, we have already used this invariant to resolve
singularities in the universe and black holes [11–14]. In this work, we will use it to build
simple inflationary scenarios without eternal inflation.

Consider the theory with action

S =
∫
d4x
√
−g

[
−1

2R+ λ(gµν∂µφ∂νφ− 1) + 1
2g

µν∂µϕ∂νϕ− C (κ)V (ϕ)
]
, (2.5)

where we set 8πG = 1 and ϕ is the inflaton field with potential V (ϕ) coupled to a function
C (κ) which depends only on the d’Alembertian of the mimetic field. The variation of this
action with respect to the Lagrange multiplier λ leads to the constraint condition (2.1)
for the mimetic field. The modified Einstein equations obtained by variation with respect
to the metric are

Gµν = Rµν −
1
2gµνR = Tµν , (2.6)

where

Tµν = 2λ∂µφ∂νφ+ gµν
((
C − κC ′

)
V − gρσ∂ρ

(
C ′V

)
∂σφ

)
+
(
∂µ
(
C ′V

)
∂νφ+ ∂ν

(
C ′V

)
∂µφ

)
+ ∂µϕ∂νϕ−

1
2gµν (gρσ∂ρϕ∂σϕ) (2.7)

and the prime always denotes the derivative with respect to the argument of the corresponding
function which depends only on one variable, either κ or ϕ, i.e., C ′ ≡ dC/dκ and V ′ ≡ dV/dϕ.
Next, the φ equation of motion is

∂µ
[√
−ggµν

(
2λ∂νφ+ ∂ν

(
C ′V

))]
= 0, (2.8)

and finally the inflaton equation obtained by variation with respect to ϕ is
1√
−g

∂µ
(√
−ggµν∂νϕ

)
+ CV ′ = 0, (2.9)

where the first terms is �ϕ.
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3 Background solutions

Consider a homogeneous flat universe with metric

ds2 = dt2 − a2 (t) δikdxidxk. (3.1)

In this case, ϕ = ϕ (t) and the solution of the equation (2.1) is φ = t. The 0 − 0 Einstein
equation becomes

1
3κ

2 = 2λ+
(
C − κC ′

)
V +

(
C ′V

)
˙+ 1

2 ϕ̇
2, (3.2)

where the dot denotes the derivative with respect to time t and, as it follows from (2.4),

κ = 3 ȧ
a
, (3.3)

i.e., κ is the tripled Hubble constant H = 3ȧ/a. Equation (2.8) can be solved explicitly
and gives

2λ = B

a3 −
(
C ′V

)
,̇ (3.4)

where B is the integration constant quantifying “mimetic dust” and which we set to zero.
Then equation (3.2) simplifies to

1
3κ

2 =
(
C − κC ′

)
V + 1

2 ϕ̇
2, (3.5)

and equation (2.9) becomes

ϕ̈+ κϕ̇+ CV ′ = 0. (3.6)

These two equations are enough to determine the behavior of a (t) and ϕ (t). Taking the
derivative of equation (3.5) and using (3.6) we find the rate of change of the Hubble constant

κ̇ = −3
2
(
ϕ̇2 +

(
C ′V

) )̇
, (3.7)

or, equivalently,

κ̇ = −3
2
ϕ̇ (ϕ̇+ C ′V ′)

1 + 3
2C
′′V

. (3.8)

In the rest of this section, we consider several interesting examples and derive the asymptotical
solutions for the homogeneous background.

3.1 Case A

To demonstrate the idea, we first consider the nonrealistic case, where, on one hand, we
can avoid self-reproduction and eternal inflation, but on the other hand, as we show in
the next section, the ratio of tensor to scalar perturbations for the observable scales is
too large. Let’s take

C (κ) = κ

κ0
, (3.9)
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where κ0 is a free parameter. In this case the equations (3.5) and (3.6) simplify to

κ2 = 3
2 ϕ̇

2,

ϕ̈+ κ
(
ϕ̇+ V ′/κ0

)
= 0. (3.10)

Considering that the field ϕ should decrease during the expansion, i.e., ϕ̇ < 0 for κ > 0,
equation (3.9) gives

κ = −
√

3
2 ϕ̇. (3.11)

Substituting this κ into (3.10) and taking into account that ϕ̈ = ϕ̇ (dϕ̇/dϕ) this equation
reduces to the first order differential equation

dϕ̇

dϕ
=
√

3
2

(
ϕ̇+ V ′ (ϕ)

κ0

)
(3.12)

for ϕ̇ as a function of ϕ, whose explicit solution is

ϕ̇ = b

κ0
ebϕ

ϕ∫
V ′ (ϕ̃) e−bϕ̃dϕ̃, (3.13)

where, to avoid cluttering of numerical factors, we have set b =
√

3/2. The lower limit in the
integral corresponds to the choice of the integration constant multiplied by ebϕ, and since ϕ
decreases with time, this solution decays. If we neglect this integration constant and integrate
by parts in (3.13), we can rewrite the attractor solution of (3.12) as

ϕ̇ = − 1
κ0

(
V ′ + V ′′

b
+ V ′′′

b2
+ . . .

)
. (3.14)

In the case of power-law potentials V ∝ ϕn, the series on the right hand side has only a
finite number of terms and the equation can further be integrated to obtain ϕ (t). Let us
consider the following potential

V (ϕ) = 1
2m

2ϕ2, (3.15)

and set κ0 = m to simplify the formulas. The equation (3.14) is then

ϕ̇ = −m
b

(1 + bϕ) (3.16)

and can be easily integrated to obtain

ϕ (t) =
(
ϕi + 1

b

)
e−mt − 1

b
, (3.17)

where ϕi = ϕ (t = 0). If we start at the Planck scale, at t = 0, where ϕ̇2 ' 1, then
ϕi ' m−1 � 1 form� 1. From equations (3.5) and (3.8) it follows that in this particular case

κ̇

κ2 = − 1
1 + bϕ

. (3.18)
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Recalling that κ = 3H and

H2 = ε/3, Ḣ = −1
2 (ε+ p) , (3.19)

where ε and p are the energy density and pressure (see, e.g., [15]), the expression (3.18)
can be rewritten as

ε+ p

ε
= 2

1 + bϕ
. (3.20)

Thus for ϕ� 1 we have (ε+ p) /ε� 1, i.e., p ≈ −ε and the universe undergoes exponential
expansion. When the field ϕ drops below one, inflation ends and at |ϕ| � 1 the universe
is dominated by matter with the ultra-hard equation of state p ≈ +ε. Integrating (3.11)
we find that

a = ai exp
( 1√

6
(ϕi − ϕ)

)
, (3.21)

and therefore the scale factor grows by a huge factor

af
ai
' exp

( 1√
6m

)
� 1, (3.22)

for m � 1 during inflation.
Let us now turn to the self-reproduction condition in this model. During the typical

Hubble time tH ' H−1, the classical background field decreases by

δϕcl ' ϕ̇tH '
ϕ̇

H
∼ −1, (3.23)

i.e., always by the order of the Planck value (cf. (1.5)). Therefore, taking into account the
super-imposed positive quantum fluctuation of amplitude of order H, the total change in
the value of the scalar field at the Hubble scale is equal

∆ϕ ' H − 1 < 0, (3.24)

i.e., negative and the field always decreases at sub-Planckian scales. Thus, the condition for
self-reproduction is never satisfied, and we avoid an eternally inflating universe.

To conclude this subsection, let us derive the conditions that a general potential V (ϕ)
must satisfy to produce an inflationary stage of the type considered above. In order to find an
analog of the slow-roll conditions in our case, we assume that the second derivative of the scalar
field in equation (3.10) can be neglected. The approximate solution of this equation is then

ϕ̇ ≈ −V
′

κ0
. (3.25)

Using this solution and taking into account (3.11), we find that this approximation is justified,
i.e., |ϕ̈| � |κϕ̇| only if

V ′′

V ′
� 1. (3.26)

– 6 –
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The relative rate of the change of the Hubble scale is equal to

|κ̇|
κ2 '

|ϕ̈|
|κϕ̇|

' V ′′

V ′
� 1, (3.27)

i.e., we have an exponential expansion if the inequality (3.26) is satisfied. For any power-law
potential, this inequality holds at ϕ > 1 and the self-reproduction condition is satisfied only
when the curvature becomes larger than the Planck curvature.

3.2 Case B

It follows from the CMB observations that the potential V in the region responsible for
observable scales tends to the flat potential and the ratio of the tensor to scalar perturbations
must be small. As we will see in the next section, this ratio is always of order one in the
models considered above and are therefore not realistic and must be modified. There are
many potentials that satisfy the required conditions and are consistent with observations
and do not exhibit self-reproduction. For illustration, in this subsection we will consider one
of the simplest potentials of this kind. Namely, we take the potential

V (ϕ) = 1
2

m2ϕ2

(1 + ϕ2)
(
1 +mϕ4

)
, (3.28)

and the function corresponding to the mimetic interactions

C (κ) = 1 + κ

m
, (3.29)

and assume that m � 1. For small ϕ < 1 this potential describes a massive scalar field,
while for ϕ > 1 it can be well approximated as

V ' 1
2m

2
(

1− 1
ϕ2 +mϕ4

)
. (3.30)

In this approximation, equations (3.5)–(3.6) become

κ2 = 3
2m

2
(

1− 1
ϕ2 +mϕ4

)
+ 3

2 ϕ̇
2, (3.31)

ϕ̈+ κϕ̇+
(

1 + κ

m

)(
m2

ϕ3 + 2m3ϕ3
)

= 0. (3.32)

First, we determine the region where the potential term in (3.31) is dominant compared
to the kinetic term. We assume that the slow-roll approximation is valid (this has to be
checked afterwards) and that the second derivative of the scalar field in equation (3.32)
can be neglected, hence

ϕ̇ ' −
(1
κ

+ 1
m

)(
m2

ϕ3 + 2m3ϕ3
)
' −

(
m

ϕ3 + 2m2ϕ3
)
, (3.33)

because κ > m at ϕ > 1 as can be seen from (3.31). Comparing ϕ̇2 with V we find that for

1 < ϕ < m−
1
2 , (3.34)

– 7 –
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indeed ϕ̇2 < V holds and inflation is dominantly driven by the potential. One can easily
check that in the whole range (3.34) the condition for self-reproduction is not fulfilled, i.e.
the decrease of the classical background field during the typical Hubble time, δϕcl ' ϕ̇tH , is
always larger than the amplitude of the quantum fluctuations in the Hubble scale, so that
the scalar field decreasing in total. The energy density at ϕ ' m−1/2 is about ε ' m. At
ϕ > m−1/2 the kinetic term in (3.31) becomes dominant, and the slow-roll condition for
the scalar field is still satisfied, so that,

ϕ̇ ' −2m2ϕ3, (3.35)

while
κ2 ' 3

2 ϕ̇
2, (3.36)

and we obtain the inflationary stage of the type described in subsection A. Up to the Planck
scale, which is reached at ϕ ' m−2/3, self-reproduction does not occur. Therefore. at the
Planck scale, we can begin inflation, which simultaneously solves the problem of fine-tuning
and avoids an eternally self-reproducing universe. As we will show in the next section, the
considered model satisfies all constraints imposed by observations and does not lead to
problems related to an eternal universe. One must keep in mind that this is the simplest
example of such models and one can easily construct many of them, all in agreement with
current CMB observations.

4 Perturbations

Since for first-order in perturbations the spatial components of δT ik vanish for i 6= k, the per-
turbed metric can be written in conformal Newtonian gauge as follows (see, for example, [15])

ds2 = (1 + 2Φ) dt2 − a2 (t)
[
(1− 2Φ) δikdxidxk − h

(t)
ik dx

idxk
]
, (4.1)

where Φ is the gravitational potential for the scalar perturbations and the transverse, traceless
part of the metric h(t)

ik describes gravitational waves. The equation for gravitational waves
remain the same as in general relativity, so we do not need consider them further here and
refer the reader to, for example, reference [15]. However, the consideration of the scalar
perturbations in our mimetic inflation is substantially modified. For the linear order in
perturbations, the constraint equation (2.1) gives

˙δφ = Φ, (4.2)

where δφ is the perturbation of the mimetic field. First, we note that

δT 0
i =

(
2λ+

(
C ′V

) )̇
δφ,i + δ

(
C ′V

)
,i + ϕ̇δϕ,i. (4.3)

The first term vanishes here in the absence of mimetic dust (see (3.4)). Noting that

δ
(
C ′V

)
= C ′′V δκ+ C ′V ′δϕ

= −3C ′′V
(

Φ̇ +HΦ + 1
3a2 ∆δφ

)
+ C ′V ′δϕ, (4.4)

– 8 –
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where H = κ/3 is the Hubble constant and we used the relation (4.2) to express the derivatives
of the mimetic field perturbations in terms of the gravitational potential, we obtain from
the 0 − i Einstein equations

Φ̇ +HΦ = 1
2
(
1 + 3

2C
′′V
) [(ϕ̇+ C ′V ′

)
δϕ− C ′′V

a2 ∆δφ
]

= −Ḣ
ϕ̇
δϕ− C ′′V

(2 + 3C ′′V ) a2 ∆δφ, (4.5)

where we also used equation (3.8). The linearized equation (2.9) for the inflaton pertur-
bations is

δ̈ϕ+ 3H ˙δϕ− 1
a2 ∆δϕ− 4ϕ̇Φ̇− 2 (ϕ̈+ 3Hϕ̇) Φ + δ

(
CV ′

)
= 0. (4.6)

Similar to (4.4), we find

δ
(
CV ′

)
= −3C ′V ′

(
Φ̇ +HΦ + 1

3a2 ∆δφ
)

+ CV ′′δϕ. (4.7)

Taking the time derivative of (3.6) we can express CV ′′ as follows

CV ′′ = − 1
ϕ̇

( ...
ϕ + 3Hϕ̈+ 3Ḣϕ̇+ 3C ′V ′Ḣ

)
(4.8)

Substituting this into (4.6), after replacing Φ̇ +HΦ in the obtained equation with (4.5) we
can rewrite the equation (4.6) as follows

δ̈ϕ+ 3H ˙δϕ− 1
a2 ∆

(
δϕ+ 2C ′V ′ − 4ϕ̇C ′′V

2 + 3C ′′V δφ

)
−
( ...
ϕ

ϕ̇
+ 3H ϕ̈

ϕ̇
− Ḣ

)
δϕ− 2 (ϕ̈+Hϕ̇) Φ = 0. (4.9)

As can be seen, 0 − 0 and i − i Einstein equations do not provide any additional useful
information. Substituting the expression for δϕ in terms of Φ and δφ from (4.5) into i− i
Einstein equation, we find that it is identically satisfied. Using the 0−0 Einstein equation, we
can determine δλ, which we are not interested in. If we take the time derivative of this equation
and use the linearized version of the φ-equation (2.8), we come back to (4.9). Thus, the three
equations (4.2), (4.5) and (4.9) are sufficient to completely determine the unknown functions
δϕ,Φ and δφ. Let us consider the plane wave with co-moving wave-number k =

∣∣∣−→k ∣∣∣, i.e.,
δϕ,Φ, δφ ∝ exp

(
i
−→
k .−→x

)
. (4.10)

In this case, the behavior of the perturbations depends drastically on whether the physical
wavelength λph ' a/k is much smaller or much larger compared to the Hubble scale H−1.
For the short-wavelength perturbations with k � Ha, we simplify (4.9) to the equation

¨δϕk + 3H ˙δϕk + k2

a2 δϕk ' 0, (4.11)

– 9 –
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which has a simple solution

δϕk '
Ak
a

exp
(
±ik

∫
dt

a

)
, (4.12)

where Ak is the constant of integration. We now need to verify that the skipped terms for
k � Ha are really negligible. Since Φ and δφ also oscillate, we can estimate their derivatives
at the leading order as follows:

Φ̇ ∼ k

a
Φ, ˙δφ ∼ k

a
δφ. (4.13)

Using these estimates in equations (4.2) and (4.5) we find that

2C ′V ′ − 4ϕ̇C ′′V
2 + 3C ′′V δφ ∼ Ḣ

(k/a)2 δϕ, (4.14)

and therefore the terms containing perturbations of the mimetic field δφ and, and Laplacian
∆ in (4.9) could be neglected compared to δϕ for k/a � H. The other skipped terms in
equation (4.9) are also suppressed by at least a factor Ha/k � 1 compared to the terms
retained in (4.11) by at least a factor Ha/k � 1. After the inhomogeneity crosses the
Hubble scale at the time tk determined from the equation k ∼ Hkak, the spatial derivatives
terms in (4.9) decay as 1/a2 and the Laplacian in (4.5) and (4.9) can be neglected, so the
resulting equations become

Φ̇ +HΦ ' −Ḣ
ϕ̇
δϕ

δ̈ϕ+ 3H ˙δϕ−
( ...
ϕ

ϕ̇
+ 3H ϕ̈

ϕ̇
− Ḣ

)
δϕ− 2 (ϕ̈+Hϕ̇) Φ ' 0, (4.15)

for k � Ha. The exact solutions of these equations, as can be easily proved by direct
substitution, are

δϕ = A
ϕ̇

a

∫
adt, Φ = A

d

dt

(1
a

∫
adt

)
, (4.16)

where A is an integration constant, and as follows from (4.2), the perturbation of the
mimetic field is

δφ = A
1
a

∫
adt. (4.17)

Note that the above solutions for any arbitrary C(κ) and V (ϕ) are valid not only during
inflation but also after the end of inflation.

5 Spectrum of inhomogeneities

Now we can calculate the spectrum of inhomogeneities arising from initial quantum fluctuations
during mimetic inflation. First, note that the quantum minimal fluctuations are well defined
only on scales smaller than the Hubble scale, on which space-time can be well approximated
by the flat Minkowski metric. Moreover, the initial spectrum of perturbations on these
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scales need not be fine-tuned at the outset. Indeed, it may initially contain particles,
but these particles and existing inhomogeneities must not destroy the quasi-exponential
expansion from the very beginning. Later, these inhomogeneities, present at sub-Hubble
scales, are stretched by expansion to very large unobservable scales and become completely
irrelevant. Therefore, there is no fine-tuning problem at all even if the inflating region is
largely inhomogeneous, under the only condition that this initial inhomogeneity does not
prevent inflationary expansion from the beginning.

The other two problems, namely the Trans-Planckian problem and the choice of the
Bunch-Davies vacuum, are widely discussed in the literature.1 After a relatively short
time of inflation, the inhomogeneities on scales λph < H−1 are the quantum fluctuations.
Thus, contrary to many statements in the literature, one does not need to postulate a
Bunch-Davies or even a Minkowski vacuum at these scales at the beginning of inflation. As
emphasized above, the only requirement needed is that the exponential expansion should
not be terminated at the very beginning, since as time goes on the exponential expansion
makes these initial inhomogeneities less and less relevant to the evolution of the universe at
observable scales. The Trans-Planckian problem is formulated very similarly for Hawking
radiation and inflationary perturbations. As can be seen, it is an artificial problem due to the
calculational peculiarities of the standard derivations of these effects. In fact, after cleaning
up the initial inhomogeneities on sub-Hubble scales, only the inevitable quantum fluctuations
on scales λph < H−1 remain as a result of the expansion. In the static coordinate system,
which can always be introduced within the Hubble scale, this is simply well-known Minkowski
vacuum. It is convenient to describe this vacuum in an expanding coordinate system, such as
done in equation (4.12). The only purpose of this description has a technical reason, because
it allows us to relate the sub-Hubble scales with the scales exceeding the Hubble scale, where
the static coordinate system does not exist. For the scalar field, the spectrum of fluctuations,
i.e., the dependence of the typical amplitude on the physical scale λph ' a/k for λph < H−1

remains invariant and does not change during the “evolution” described by equation (4.11).
In particular, for the massive scalar field δϕ ≡

√
δϕ2

kk
3 ' 1/λph and it is equal to δϕ ' H

on the Hubble scale. Following the standard calculations in expanding coordinate system,
one gets the impression that the perturbations from a certain physical scale are removed by
expansion and replaced by the perturbations whose physical wavelength was originally smaller
than the Planck scale. This preserves the invariant vacuum spectrum (see, e.g. [15]). It is
so called Trans-Planckian problem. However, this is just a simple technical trick to simplify
the calculations. Instead of thinking this way, one could simply say that instead of the
perturbations “stolen by expansion” from physical scales λph < H−1, the uncertainty relation
simply generates the new perturbation with the required amplitude, so that in the static
coordinate system the vacuum spectrum remains invariant at sub-Hubble scales. In this case
we do not even need to talk about the fact that the perturbations had the Trans-Planckian
scales and were later stretched by expansion into the corresponding physical scales. The
situation here is very similar to that when we describe the Minkowski vacuum in expanding
Milne coordinates. Therefore, the Trans-Panckian problem is rather a technical artifact of

1We do not give here references because there is huge literature with erroneous statements on this topic
and the reader should better identify the relevant publications with an appropriate search engine.
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derivation than a real physical problem. From the cosmic inflation point of view, the most
important fact is that there are always unavoidable quantum fluctuations with amplitude
δϕ ' H on the scales λph ' H−1, which are used as initial conditions for the perturbation
with co-moving wave-number k and at the time tk satisfying k ' a (tk)H (tk), when the
physical wavelength of this perturbation is of the order of the Hubble scale. After that, the
perturbation can only be described by expanding coordinates, since the static coordinate
system no longer exists on scales exceeding the Hubble scale. For t > tk, the scale factor
grows exponentially, the Hubble constant does not change significantly, and the perturbation
satisfies the condition k < Ha, and is therefore described by the solution (4.16).

During inflation, Ḣ � H2, and therefore the integral in (4.16) can be well approximated as

1
a

∫
adt = 1

a

∫
da

H
= 1
H

(
1 + Ḣ

H2 + . . .

)
+ D

a
' 1
H
, (5.1)

where we also neglected the decaying mode with the integration constant D. Considering the
perturbation with the co-moving wave-number k and taking into account that the typical
amplitude of quantum fluctuations is

√
δϕ2

kk
3 ' Hk=Ha at time tk, it follows from the first

equation in (4.16) that the integration constant is equal to

A '
(
H2

|ϕ̇|

)
k=Ha

, (5.2)

where the subscript means that the corresponding quantity in the parenthesis must be
evaluated at the time when the perturbation is stretched by inflationary expansion to the
physical scale λph ' H−1. In the further estimates, we will omit all coefficients of order
one (see, e.g., [15] for rigorous definitions), since they affect only the total amplitude of
the spectrum, which is a free parameter of the theory determined by observations. From
this and from (4.16) it follows that

Φ '
(
H2

|ϕ̇|

)
k=Ha

d

dt

(1
a

∫
adt

)
. (5.3)

After the end of the inflation, the last time dependent term in this equation becomes a
constant of order one, and therefore, for the perturbations that left the Hubble scale during
inflation, the spectrum of gravitational potential δΦ ≡

√
Φ2
kk

3 is given by

δΦ '
(
H2

|ϕ̇|

)
k=Ha

. (5.4)

The consideration of gravitational waves in mimetic inflation is exactly the same as in ordinary
inflation, and therefore we simply quote the final result for them (see, e.g., [15])

δh ' Hk=Ha. (5.5)

Now we will apply the obtained results to calculate the spectrum of perturbations in the
two particular models considered in the previous section.
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5.1 Case A

For the case where C = κ/κ0 it follows from (3.10) and (3.25) that during inflation

|ϕ̇| ' H ' V ′

κ0
, (5.6)

and therefore

δΦ ' Hk=Ha '
(
V ′

κ0

)
k=Ha

. (5.7)

In this model, the amplitudes of the scalar perturbations and gravitational waves (see eq. (5.5))
are the same up to a numerical factor of order one at all scales. In those scales that were
of order H−1 at the beginning of inflation, i.e., at Planck scales the amplitude of both
scalar perturbations and gravitational waves is of order one and it decreases to the value
V ′ (ϕ ' 1) /κ0 for scales that crossed the Hubble scale at the end of inflation. Note that the
amplitude of scalar perturbations is never larger than unity and is consistent with the absence
of self-reproduction. As can be seen from observations, the amplitude of the gravitational
waves at the observable scales is much smaller than the amplitude of the scalar perturbations
and therefore this model is definitely ruled out.

5.2 Case B

Now we turn to a more realistic model where V and C are given in (3.8) and (3.9), respectively.
First, we consider

1 < ϕ < m−1/2, (5.8)

where the potential term dominates compared to the kinetic term in equation (3.31). In this
region, the consideration of perturbations is similar to the standard potential-dominated
inflation, except for the expression (3.34) for ϕ̇, which is different from the standard expression
for κ� m. Substituting H2 and ϕ̇ from (3.30) and (3.33) respectively, into (5.4), we get

δΦ ' m
(
ϕ3 1 +mϕ4

1 + 2mϕ6

)
k=Ha

. (5.9)

To express ϕk=Ha for a given co-moving wave-number k, we first introduce the number of
e-folds N before the end of inflation

a ' afe−N , (5.10)

where af is the scale factor at the end of inflation. Then the perturbation with a given k
starts to exceed the Hubble scale, i.e. the condition k = Ha is satisfied, at

Nk ' ln
(
Haf
k

)
(5.11)

e-folds before inflation ends. For the scales corresponding to the range covered by the CMB
observations 50 < Nk < 60, the exact values of which depends, e.g., on the details of the
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reheating immediately after the end of inflation.2 To obtain the relation between Nk and
ϕk=Ha, we note that

H = −dN
dϕ

ϕ̇, (5.12)

from where it follows that

N = −
∫
H

ϕ̇
dϕ '

∫
ϕ3 (1 +mϕ4)1/2

1 + 2mϕ6 dϕ. (5.13)

In the interval 1 < ϕ < m−1/6 we find that Nk ' ϕ4
k=Ha and from (5.9) it follows that

δΦ ' mϕ3
k=Ha ' mN

3/4
k , (5.14)

and the spectral index is

ns − 1 ≡ d ln δ2
Φ

d ln k = −d ln δ2
Φ

dNk
= − 3

2Nk
. (5.15)

For Nk = 50 we have ns = 0.97 in agreement with the observations. To obtain the correct
amplitude in the observable scales, we must take m ' 10−6 and the range of scales where the
formula (5.15) is valid corresponds to 1 < Nk < 104, well beyond the cosmological horizon
today. The tensor-to-scalar ratio

r ≡ δ2
h

δ2
Φ
∝ 1
N3/2 , (5.16)

is less suppressed in our case than in R2 and Higgs inflationary scenarios [16, 17], where
r ∝ 1/N2, and still in agreement with the present observational upper bound on r. The
model we consider can be easily modified by the choice of the potential V , so that it will fully
agree with [16, 17] at observable scales. On scales corresponding to m−1/6 < ϕk=Ha < m−1/4,
the perturbation amplitude decreases as δΦ ' ϕ−3

k=Ha as the scale increases, changing its value
from m1/2 to m3/4. At even larger scales corresponding to m−1/4 < ϕk=Ha < m−1/2, the
amplitude starts to grow again as δΦ ' mϕk=Ha and becomes δΦ ' δh ' m1/2 at ϕ ' m−1/2.
For ϕ > m−1/2, the kinetic term dominates compared to the potential term, and for these
values of ϕ, inflation proceeds as described in subsection A of section 3. For scales that have
left the Hubble scale at this stage, i.e., at the beginning of inflation, δΦ ' δh ' m2ϕ3

k=Ha the
amplitude of both gravitational waves and scalar perturbations is the same. It becomes of
order one only at Planck densities at ϕ ' m−2/3. The amplitudes of the spectrum for the
scalar perturbations and for the gravitational waves as a function of scale corresponding to
ϕk=Ha, are shown in figure 1. Note that below the Planck scale they are never larger than
one, which is consistent with the condition of no self-reproduction.

2The exact value of N depends on the unknown physics beyond the Standard Model of particle physics,
which will most likely never be clarified, since we are dealing with energy scales that can never be reached
with accelerators. For this reason, further improvement of the already achieved accuracy in the detemination,
e.g., of the spectral index of perturbations will not give much useful information for the selection of the right
“fundamental physics” scenario for inflation.
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Figure 1. Amplitudes of the spectrum for scalar perturbations and gravitational waves.

6 Conclusions

We have shown how self-reproduction and eternal inflation could be easily avoided if we
couple the inflaton potential to the mimetic field. We would like to emphasize again that
this does not mean at all that we have added an additional scalar field, but that we have
modified Einstein gravity at high curvatures. In fact, the only additional degree of freedom
for the mimetic field is a “dust” that becomes negligible soon after inflation begins, but can
be generated later to account for the dark matter component in our universe. Note that
self-reproduction can be avoided if we start inflation at Planck curvature (to avoid any kind
of fine-tuning), if the function C (κ) introduced in (2.5) is a linear function of κ at large
curvature. Only in this case the main contribution to the energy density of the inflaton
field comes entirely from the kinetic energy and as a result the amplitudes of the generated
gravitational waves and scalar perturbations become comparable on the corresponding scales.

At smaller curvatures, this function is rather arbitrary and this opens the possibility
of constructing a whole class of inflationary scenarios. Moreover, the Lagrangian (2.5) can
be further generalized by adding an extra potential Ṽ (ϕ), which is different from V (ϕ),
and even by coupling the scalar field directly to the first derivative of the mimetic field,
such as, for example gµνE (κ) ∂µF (ϕ) ∂νφ. This greatly expands the scope for constructing
simple inflationary scenarios. We will leave the detailed analysis of such models to further
investigation.
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