

Three new species in Russula subsection Xerampelinae supported by genealogical and phenotypic coherence

Chance R. Noffsinger (6)*, Katarína Adamčíková (6)*, Ursula Eberhardt (6)*, Miroslav Caboň (6)*, Anna Bazzicalupo (6)*, Bart Buyckf, Herbert Kaufmanns, Øyvind Weholth, Brian P. Looney (6)*, P. Brandon Matheny (6)*, Mary L. Berbee (6)*, Daniel Tausani, and Slavomír Adamčík (6)**

*Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee 37996; *Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences, Akademická 2, Zvolen, Nitra 94901, Slovakia; *Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Stuttgart 70191, Germany; *Laboratory of Molecular Ecology and Mycology, Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dübravská cesta 9, Bratislava 84523, Slovakia; *Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK; *Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, Centre national de la recherche scientifique (CNPS), Sorbonne Université, École partique des hautes études (EPHE), Université des Antilles, CP 39, 57 rue Cuvier, Paris 75005, France; *Sofiebergsvägen 6, Orebro S-70229, Sweden; *Høyåslia 9, Torp N-1657, Norway; *Department of Biology, Duke University, 130 Science Drive, Durham, North Carolina 27708; *Department of Botany, University of British Columbia, 6270 University Boulevard no. 3158, Vancouver, BC V6T 1Z4, Canada; *Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, Bratislava 81102, Slovakia

ABSTRACT

Xerampelinae is a subsection composed of species of ectomycorrhizal fungi belonging to the hyperdiverse and cosmopolitan genus Russula (Russulales). Species of Xerampelinae are recognized by their fishy or shrimp odor, browning context, and a green reaction to iron sulfate. However, species delimitation has traditionally relied on morphology and analysis of limited molecular data. Prior taxonomic work in Xerampelinae has led to the description of as many as 59 taxa in Europe and 19 in North America. Here we provide the first multilocus phylogeny of European and North American members based on two nrDNA loci and two protein-coding genes. The resulting phylogeny supports the recognition of 17 species-rank Xerampelinae clades; however, higher species richness (~23) is suggested by a more inclusive nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) analysis. Phylogenetic and morphological analyses support three new species with restricted geographic distributions: R. lapponica, R. neopascua, and R. olympiana. We confirm that the European species R. subrubens is present in North America and the North American species R. serissima (previously known as R. favrei) is present in Europe. Most other Xerampelinae appear restricted to either North America or Eurasia, which indicates a high degree of regional endemism; this includes R. xerampelina, a name widely applied to North American taxa, but a species restricted to Eurasia.

ARTICLE HISTORY

Received 28 September 2023 Accepted 13 December 2023

KEYWORDS

Ectomycorrhizal; fungi; morphology; phylogeny; rpb2; taxonomy; tef1; 285; 3 new taxa

INTRODUCTION

The genus Russula Pers. (Russulales, Russulaceae) is among the most species-rich fungal genera, with an estimated global diversity above 2000 species (Adamčík et al. 2019). Species of Russula are specialized ectomycorrhizal (ECM) symbionts typically associated with trees (Looney et al. 2022b) but can also associate with shrubs, sedges, and herbs (Noffsinger and Cripps 2021). The genus is almost cosmopolitan and distributed from the tropics to arctic regions, with peak diversity in temperate and boreal areas (Looney et al. 2016; Taylor and Alexander 1989). Russula is one of the most diverse and abundant genera in ectotrophic ecosystems, especially in tropical areas of the Americas,

Africa, and Southeast Asia (Corrales et al. 2022). Despite significant efforts to build a global and complete Russula phylogeny (Buyck et al. 2018; Looney et al. 2016), a majority of subsections within Russula are under-sampled in multilocus phylogenies (Adamčík et al. 2019). Building of phylogenies at lower ranks with data across distant geographic areas is relatively rare in Russula but has been done for subsections Roseinae Singer ex Sarnari (Looney et al. 2022a; Manz et al. 2021) and Amoeninae Singer ex Buyck (Wisitrassameewong et al. 2020, 2022). Russula studies often rely on sequences of nuclear rDNA from the internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) or D1-D2 domains of 28S (28S) in support of