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A B S T R A C T   

Advances in robotics have contributed to the prevalence of human-robot collaboration (HRC). However, working 
and interacting with collaborative robots in close proximity can be psychologically stressful. Therefore, under
standing the impacts of human-robot interaction (HRI) on mental stress is crucial for enhancing workplace well- 
being. To this end, this study investigated how the HRI factors – presence, complexity, and modality – affect the 
psychological stress of workers. We employed both the NASA-Task Load Index for subjective assessment and 
physiological metrics including galvanic skin responses, electromyography, and heart rate for objective evalu
ation. An experimental setup was implemented in which human operators worked together with a collaborative 
robot on Lego assembly tasks, using different interaction paradigms including pressing buttons, showing hand 
gestures, and giving verbal commands. The results revealed that the introduction of interactions during HRC 
helped reduce mental stress and that complex interactions resulted in higher mental stress than simple in
teractions. Meanwhile, using hand gestures led to significantly higher mental stress than pressing buttons and 
verbal commands. The findings provided practical insights for mitigating mental stress in the workplace and 
promoting wellness in the era of HRC.   

1. Introduction 

In recent years, human-robot collaboration (HRC) has been growing 
rapidly in the context of smart manufacturing and Industry 4.0. 
Collaborative robots (co-robots) are employed to assist human operators 
in achieving unprecedented flexibility, where human cognitive skills 
and dexterity are mutually reinforced with the physical capabilities of 
the co-robots. Typically, co-robots are used for repetitive and physically 
demanding tasks, while human operators are responsible for advanced 
decision-making and fine-tuning tasks (Cherubini et al., 2016). In HRC, 
human operators and co-robots perform tasks concurrently or jointly 
within a collaborative workspace. For example, in an HRC assembly 
task, the co-robot delivers and holds a part with pre-drill screw holes and 
the human operator turns screws into it. As the level of collaboration 
continues to increase, workspaces are shared more intensively, leading 
to a symbiotic HRC (Wang et al., 2019). 

Close collaboration with robots raises concerns related to workplace 
health and safety (Murashov et al., 2016). Physical safety issues such as 
collisions may occur as isolating workers from co-robots is not an option 
in HRC tasks. One way to ensure safe coexistence between humans and 

robots is through proactive retraction of the co-robot end effector 
depending on the location of workers. This can be accomplished using 
motion-tracking devices, such as inertial sensors (Meziane et al., 2014), 
depth sensors (Mohammed et al., 2017), or RGB cameras (Xie et al., 
2022). In addition to physical collision, co-robots can also lead to mental 
stress for human operators, which can negatively affect interaction and 
collaboration performance (Gervasi et al., 2022). Improper handling of 
mental stress can lead to adverse consequences, spanning from errors 
and accidents in the short term to the development of various long-term 
health issues (Umer, 2022). Therefore, it is equally important to study 
and understand human mental stress in HRC to optimize the process and 
achieve workplace wellness. 

Mental stress can be assessed through subjective and objective 
measures. Subjective ratings, such as self-report questionnaires, have 
been commonly used to estimate levels of mental stress in humans 
(Aigrain et al., 2018). Participants are asked to answer a variety of 
questions about their experiences in the experiment. The NASA-Task 
Load Index (NASA-TLX) has been utilized in numerous research 
studies to assess people’s mental stress levels. For instance, Zheng et al. 
(2012) employed the NASA-TLX to investigate the mental workload 
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experienced by surgeons during endoscopy training. In the context of 
smart factories, Zakeri et al. (2021) applied the NASA-TLX to examine 
various factors contributing to mental stress, such as task complexity, 
time constraints, and collaboration duration. However, it is important to 
acknowledge the limitations of self-reporting, as participants cannot 
report in real-time and may not express their true feelings (Bethel et al., 
2007). 

The use of objective measures, such as physiological signals, is an 
important complement to subjective measures and provides insight into 
the subconscious and psychobiological phenomena involved (Rubagotti 
et al., 2022). Galvanic skin response (GSR), also known as electrodermal 
activity (EDA), measures skin conductivity and effectively reflects one’s 
emotional states. GSR readings significantly increase when the stress 
level increases (Shi et al., 2007). Many researchers have used GSR as an 
objective measure to assess mental stress. For example, Healey and 
Picard (2005) analyzed the GSR data collected during real-world driving 
tasks to determine the driver’s relative stress levels. Giakoumis et al. 
(2012) implemented an automatic stress detection algorithm by using 
GSR data as an important basis. In the realm of human-robot collabo
ration, Lu et al. (2022) leveraged GSR signals to assess workers’ mental 
stress in hand-over activities. 

Electromyography (EMG) is also considered as an effective objective 
measure to detect mental stress. EMG signals refer to the collective 
electrical activity of muscle motor units (Chowdhury et al., 2013), which 
is controlled by the nervous system and generated during muscle 
contraction. The EMG signal is categorized into surface EMG and 
intramuscular EMG, which are measured by non-invasive electrodes and 
invasive electrodes, respectively. Wijsman et al. (2013) investigated the 
validity of EMG as a predictor of mental stress and showed that the 
amplitude of the EMG signal increases in stressful situations. In a driving 
simulator experiment, Zheng et al. (2015) utilized masseter EMG to 
assess drivers’ mental stress. Another similar study conducted by Robles 
et al. (2022) examined the use of convolutional neural networks for 
stress detection via surface EMG of the trapezius muscle. 

In addition, heart rate (HR) is a well-established measure of stress 
and mental workload, which is expressed as the count of heart beats per 
minute (bpm) (Waard, 1996). In a study conducted by Fauquet-Alekhine 
et al. (2016), the authors attempted to construct a mathematical rela
tionship between the heart rate data and the intensity of short-term 
indicators of mental stress. Umer (2022) employed heart rate data for 
simultaneously monitoring workers’ physical and mental stress during 
construction tasks. Linssen et al. (2022) conducted a study using 
accelerometry and heart rate data to monitor soldiers’ stress in a virtual 
reality military scenario. 

Previous studies have investigated relevant robot factors, such as 
robot attributes and motion characteristics, to explore their correlation 
with human mental status. The experimental study conducted by Rahimi 
and Karwowski (1990) indicated that robot sizes and initial speeds were 
the significant main effects on the perception of safe robot speed. This 
finding was later verified by Duffy et al. (2006) in a virtual reality 
environment. Arai et al. (2010) concluded that operators experience 
high mental stress when robots move toward them at high speed and 
recommended that additional notice should be provided before a robot 
moves. Dragan et al. (2015) analyzed the benefits of robot motion 
planning and found that legible motions planned to clearly express the 
robot’s intent led to more fluid collaboration. Another study by Lu et al. 
(2022) examined human psychological stress during HRC handover 
tasks, noting that the end effector approaching within the worker’s field 
of view at a low speed and with a restricted trajectory can cause 
significantly less mental stress. 

In complex HRC scenarios, collaboration is facilitated by human- 
robot interactions (HRI). Several studies have investigated the HRI 
within HRC contexts, primarily focusing on their advantages in terms of 
performance and user experiences (Jokinen and Wilcock, 2013; Galin 
and Meshcheryakov, 2020; Ötting et al., 2022). However, there remain 
gaps in understanding how various HRI factors impact workers’ mental 

stress. While the introduction of HRI helps human operators retain 
control over the HRC process, the complexity of interactions could 
impact operators’ mental stress (Robelski and Wischniewski, 2018). 
Moreover, HRI can be applied through various sensory channels, 
including haptic, visual, and auditory channels (Bonarini, 2020), 
potentially resulting in varying levels of mental workload for workers. 
Therefore, it is essential to understand how (1) interaction presence, (2) 
interaction complexity, and (3) interaction modality and their in
teractions affect the mental stress of workers in HRC. 

In this study, we conducted an experimental study to investigate how 
different HRI paradigms affect the mental stress of human operators 
during HRC. A collaborative Lego assembly task was implemented and 
physiological signals, including GSR data, EMG data, and HR data, were 
applied to measure mental stress along with NASA-TLX self-report 
questionnaires. The aim is to evaluate how the presence of interactions 
during HRC affects human mental stress and the differences across 
interaction complexity and modalities, including pressing buttons 
(haptic channel), showing hand gestures (visual channel), and giving 
verbal commands (auditory channel). This exploration is essential in 
understanding the impacts of these HRI factors on mental stress, leading 
to more informed approaches in designing and implementing HRC sys
tems that prioritize both efficiency and worker well-being. 

2. Methods 

2.1. Participants 

A total of 24 healthy participants (10 females and 14 males) between 
22 and 48 years old (M = 26.3 years, SD = 5.2 years) with no acute or 
chronic musculoskeletal disorders were recruited for this experimental 
study. All participants had no previous experience in HRC but were 
familiar with Lego assembly tasks. The experimental protocol was 
approved by the institutional review board at North Carolina State 
University (approval # 25,195). 

2.2. Experiment setup 

In this experiment, a Sawyer robot arm (Rethink Robotics) was used 
to complete the collaborative Lego assembly task, as shown in Fig. 1. The 
robot control was realized through the Robot Operating System (ROS 
noetic) framework in the Linux Ubuntu 20.04 environment. 

The assembly task can be briefly described as follows: First, the co- 
robot picks up a large Lego block from Zone 1 and delivers it to the 
participant sitting in Zone 2. Then, the participant takes the large Lego 
block from the co-robot and secures small irregular-shaped Lego pieces 
on the large Lego block. The participant then needs to enter a serial 
number shown on the Lego block using an iPad. This procedure is 
repeated five times in each collaboration session to enhance statistical 
power. 

To investigate the effects of HRI paradigms on human mental stress, 
different HRC scenarios were performed during the assembly tasks, as 
outlined in Fig. 2. Human operators collaborated with the co-robot 
either without interaction or with interaction in different modality. 
Depending on the scenario, the robot would execute repetitive actions 
independently or respond with specific actions to the commands issued 
by the human operators. 

In detail, three relevant factors were involved in the HRC scenarios, 
namely (i) interaction presence, (ii) interaction complexity, and (iii) 
interaction modality. In terms of interaction presence, there were two 
levels: no interaction and with interaction. For no interaction, the co- 
robot repetitively delivered blocks at a specific time interval (16 s) 
and automatically opened the gripper in 2 s once it reached the opera
tor’s position. For with interaction, two levels of interaction complexity 
were considered: simple interaction and complex interaction. Specif
ically, in simple interaction, the human operator communicates with the 
robot only once when the operator needs the co-robot to open the 
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gripper. In complex interactions, the human operator needs to 
communicate with the robot to initialize the delivery of the large Lego 
block in addition to requesting the robot to open the gripper. The robot 
would deliver the block immediately upon receiving the command, 
while open its gripper in 2 s after receiving the commands. 

For both simple and complex interaction, three interaction modal
ities were adopted, including pressing buttons, showing hand gestures, 
and giving verbal commands. These three interaction modalities were 
achieved with off-the-shelf hardware, i.e., a numeric mini keyboard, a 
webcam, and a wireless microphone, as shown in Fig. 3. For pressing 
buttons, the numeric programmable keyboard was placed on the table 
and adjusted to the most comfortable position according to each par
ticipant’s preference. It was connected to the same workstation that 
controls the co-robot, with key “1” programmed to deliver the next Lego 
block and key “4” programmed to open the gripper. In terms of gestures, 
an RGB webcam (Logitech BRIO) was also placed on the table to capture 
the hand movements and gestures. Twenty-one landmarks of the hand 
were first extracted using Google MediaPipe Hands and then fed into a 
self-trained gesture recognition model. The “OK” gesture was used to 

deliver the next Lego block, and the “Open” gesture was used to open the 
gripper, as is illustrated in Fig. 4. Furthermore, a wireless microphone 
(RODE) was clipped to the collar of the participant’s clothes and con
nected to the workstation via a remote receiver for recording verbal 
commands. Google Speech API was adopted for speech recognition. The 
operator must utter a statement containing “open”, such as “please open 
the gripper” to open the gripper, and a statement containing “next”, such 
as “please deliver the next”, to pass the next Lego block. All the algo
rithms for realizing different HRI paradigms were implemented in Py
thon (ver. 3.8). 

2.3. Experiment procedure 

The operational procedure of the experiment can be summarized into 
three phases: pre-experiment, in-experiment, and post-experiment, as is 
shown in the flowchart in Fig. 5. Before the experiment, every 

Fig. 1. The collaborative assembly task adopted in the experiment.  

Fig. 2. HRC scenarios in the experiment.  

Fig. 3. Devices used to interact with the co-robot (from left to right): extended 
keyboard, webcam, and wireless microphone. 

Fig. 4. Hand gestures: “OK” sign (left) and “Open” sign (right).  
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participant would sign a consent form. The researcher then introduced 
the experiment and explained how to use the devices to interact with the 
co-robot. Afterward, sensors were attached to the participants’ bodies, 
and each participant received a training session. During this training, 
participants engaged in the assembly of Lego blocks to gain proficiency 
with the associated tasks. 

Each experiment consisted of eight sessions, including two no- 
interaction sessions (one at the beginning and one at the end of the 
experiment) and six interaction combinations (2 interaction complexity 
× 3 interaction modality). The implementation of two sessions to assess 
the no-interaction mental stress level attempted to eliminate potential 
time order effects and aimed to enhance the statistical power for the no- 
interaction condition. Also, the sequence of the interaction combina
tions was randomized using a split-plot randomization approach, where 
interaction complexity served as the whole-plot factor and interaction 
modality as the subplot factor. Between each session, there was a 4-min 
period for participants to take a break and answer the self-report 
questionnaire. 

2.4. Data acquisition and analysis 

Galvanic Skin Response (GSR). In studies involving emotional 
arousal, skin conductance is a commonly used physiological measure 
that refers to the varying electrical properties of the skin in response to 
sweat secretion by sweat glands. In particular, eccrine sweat glands are 
mostly involved in emotional responses (Dawson et al., 2007). It is 
recommended that GSR should be recorded in areas with a high density 
of eccrine sweat glands, such as the palms and soles (Saga, 2002). Also, 
the findings of van Dooren et al. (2012) indicated that the feet, fingers, 
and shoulders were the most responsive recording locations. Therefore, 
we chose foot as the recording location since both hands were occupied 
in the collaborative assembly tasks. A non-invasive Shimmer 3 GSR +
device was used in this experiment, and two electrodes were placed on 
the medial side of the foot sole, as shown in Fig. 6. 

Skin conductance is composed of skin conductance level (SCL) and 
skin conductance response (SCR). SCL is the tonic level which refers to 
the absolute conductance level in the absence of a measurable stimulus. 
SCR is the phasic increases superimposed on SCL, reflecting the response 
to internal or external stimuli (Dawson et al., 2007). Therefore, the 
phasic component of the GSR data was extracted and used to evaluate 
the participant’s mental stress level. 

GSR data processing was performed by using Ledalab, a MATLAB- 

based software. The original signals measured in volts at a rate of 256 
Hz were first down-sampled to 64 Hz and then decomposed into tonic 
and phasic components using continuous decomposition analysis (Ben
edek and Kaernbach, 2010). The mean values of SCR for each session 
were used as an indicator of mental stress levels. As SCR is susceptible to 
individual differences, the obtained data were normalized within each 
individual, i.e., divided by the maximum mean value of all sessions (Arai 
et al., 2010). Therefore, the normalized mean values were used for 
statistical analysis. 

Electromyography (EMG). The validity of detecting mental stress 
through EMG data from the Trapezius muscles has been confirmed in 
previous studies (Lundberg et al., 1994; Robles et al., 2022). For the data 
acquisition, a wireless surface EMG sensor (Delsys Trigno) was 
employed and placed on the upper right trapezius muscle at the neck 
and shoulder junction (Perotto, 2005), as depicted in Fig. 7. The EMG 
signal was originally recorded in volts at a rate of 2000 Hz. 

The preprocessing in MATLAB involved several steps, including 
band-pass filtering within the frequency range of 20–400 Hz, rectifica
tion, and the extraction of the EMG envelope through the calculation of 
the root mean square value using a sliding window of 200ms (Farfán 
et al., 2010). Subsequently, the mean values of post-processed EMG data 
for each session were used as an indicator of mental stress levels. 

Fig. 5. Flow chart of the experimental procedure.  

Fig. 6. Locations of GSR electrodes.  
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Similarly, the mean data was normalized against the maximum value 
across all sessions for statistical analysis. 

Heart rate (HR). In comparison to heart rate variability, HR mea
surements are less susceptible to motion artifacts (Królak et al., 2020). 
This characteristic makes heart rate measurements more suitable for 
application in dynamic assembly tasks. HR data was collected in bpm at 
1 Hz using a Polar H10 heart rate monitor chest strap, which participants 
wore securely around their chest. 

The preprocessing of HR data was also performed using MATLAB. 
Specifically, samples where heartbeats were recorded as 0 were 
excluded, which could happen if the chest strap failed to make reliable 
contact with the skin during the assembly tasks. Likewise, the mean 
values of HR data for each session were used as an indicator of mental 
stress levels, and the normalized mean data was used for statistical 
analysis. 

NASA-Task Load Index (NASA-TLX). Participants were asked to fill 
out the NASA-TLX questionnaires after completing each HRC session. 
NASA-TLX performs a multi-dimensional assessment of the overall 
mental workload based on six subscales, including mental demand, 
physical demand, temporal demand, performance, effort, and frustra
tion. For each dimension, the response scale is essentially a bipolar 
description (e.g., Low/High), with a line of 21 marks. Values were 
rounded up if a participant marked between two tick marks. The average 
of the six subscales was used for statistical analysis (Zakeri et al., 2021). 

Statistical Analysis. The analyses were conducted in JMP Pro and 
included Analysis of variance (ANOVA) tests and Tukey HSD post hoc 
tests. Besides the factors we intended to study, participants were 
considered blocking factors, and time order was considered a covariate. 
The statistical significance level was set at 0.05. 

3. Results 

3.1. Interaction presence 

Subjective measures (NASA-TLX) and objective measures (GSR, 
EMG, and HR data) were employed to analyze the impact of the inter
action presence factor. Statistical analysis involved conducting one-way 
repeated measures ANOVA to analyze the effects of HRI presence, uti
lizing the mean values from various sessions for each measure. The 

results are presented in Table 1, and all assessments showed a significant 
effect of the introduction of HRI on human mental stress. In detail, for 
the subjective assessment using NASA-TLX, F (1, 143) = 43.3695, p <
0.0001; for GSR, F (1, 167) = 39.0856, p < 0.0001; for EMG, F (1, 167) 
= 16.1766, p < 0.0001; for HR, F (1, 167) = 83.0726, p < 0.0001. 

The results demonstrated that interactions between human operators 
and the co-robot played a significant role in alleviating mental stress 
during collaborative assembly tasks, as illustrated in Fig. 8. Notably, the 
introduction of HRI significantly contributed to lowering mental stress 
levels among participants. Specifically, for the subjective measure, the 
NASA-TLX index decreased from 8.80 to 5.58. Similarly, for objective 
measures, GSR levels decreased from 0.89 to 0.58, EMG levels decreased 
from 0.14 to 0.12, and HR levels decreased from 0.99 to 0.94, 
correspondingly. 

3.2. Interaction complexity 

Furthermore, two-way repeated measures ANOVA was performed to 
analyze the effects of interaction complexity and interaction modality. 
The ANOVA results in terms of interaction complexity were detailed in 
Table 2. The subjective assessment using NASA-TLX revealed that the 
effects on mental stress were statistically significant, with F (1,137) =
32.3288, p < 0.0001. This finding was further supported by the objec
tive GSR assessment, with F (1,137) = 6.8893, p = 0.0099. However, the 
other two objective assessments involving EMG and HR did not present 
significant differences, showing F (1,137) = 0.1017, p = 0.7440 for EMG 
and F (1,137) = 0.0663, p = 0.7972 for HR. 

The outcomes from NASA-TLX and GSR indicated that as interactions 
became more complex, they negatively impacted and elevated mental 
stress levels. As is shown in Fig. 9, complex interactions resulted in a 
mental stress increase in the NASA-TLX index from 4.82 to 6.36, and an 
increase in GSR levels from 0.52 to 0.63, compared to simple in
teractions. In contrast, the mental stress levels assessed from EMG and 
HR appeared to be consistent across both simple and complex 
interactions. 

3.3. Interaction modality 

Likewise, regarding interaction modality, the results from the two- 
way repeated measures ANOVA are presented in Table 3. The assess
ments utilizing NASA-TLX, GSR, and EMG indicated significant effects of 
interaction modality on mental stress, whereas HR assessment showed 
non-significant effects (for NASA-TLX, F (2,137) = 5.9333, p = 0.00344; 
for GSR, F (2,137) = 5.0339, p = 0.0080; for EMG, F (2,137) = 3.5576, p 
= 0.0317; for HR, F (2,137) = 0.0344, p = 0.9662). 

Post-hoc Tukey HSD tests were performed on measures that yielded 
significant results, which are detailed in Table 4. Objective and sub
jective assessments presented some disparities, as depicted in Fig. 10. 
For the subjective NASA-TLX evaluation, the tests confirmed that using 
hand gestures led to the highest mental stress levels among the three 
interaction modalities. It resulted in significantly higher mental stress 
than both button presses at p = 0.0042 and verbal commands at p =
0.0262. While verbal commands produced slightly more stress than 
button pressing, the difference was not significant. The GSR physiolog
ical data supported these findings, with hand gestures causing signifi
cantly more mental stress than pressing buttons at p = 0.0061. However, 
no significant difference was observed between hand gestures and ver
bal commands, nor between button pressing and verbal commands. On 
the other hand, the EMG data showed that hand gestures induced 
significantly higher stress than verbal commands at p = 0.0437, but 
there were no notable differences when comparing gestures to button 
pressing or verbal commands to button pressing. For HR assessments, all 
interaction methods resulted in non-significant stress effects. Collec
tively, the outcomes consistently showed non-significant effects be
tween button pressing and verbal commands. 

Fig. 7. The EMG sensor at upper right trapezius muscle.  

Table 1 
ANOVA results for interaction presence.   

NASA-TLX GSR EMG HR 

F ratio 43.3695 39.0856 16.1766 83.0726 
p-value <.0001* <.0001* <.0001* <.0001*  
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3.4. Interaction effects 

The interaction effects of complexity and modality were also tested, 
while no significant effects were found, as shown in Table 5 (for NASA- 
TLX, F (2,137) = 1.9001, p = 0.1537; for GSR, F (2,137) = 1.0548, p =
0.3516; for EMG, F (2,137) = 0.0269, p = 0.9734; for HR, F (2,137) =
0.0689, p = 0.9335). 

4. Discussion 

Stress is commonly defined as a state of imbalance between envi
ronmental demands and an individual’s capabilities, leading to a shift 
from a calm state to an excited state in order to preserve the organism’s 
integrity (Alsuraykh et al., 2019). Some researchers distinguish between 
“eustress”, a positive form of stress such as joy or excitement, and 
“distress”, a negative form. In this study, mental stress is referred to as 
distress, emphasizing its negative nature on workers’ health. 

The subjective assessments using NASA-TLX indicated that partici
pants experienced significantly higher mental stress when working with 
co-robots without interaction. This finding was also confirmed by all 
objective assessments including GSR, EMG, and HR. In the absence of 
interaction, human operators must adapt to the pace of the co-robot and 
take over the Lego blocks in time to prevent them from falling, which 

Fig. 8. Effects of the presence of interactions 
(**: statistically significant with p < 0.01). 

Table 2 
ANOVA results for interaction complexity.   

NASA-TLX GSR EMG HR 

F ratio 32.3288 6.8893 0.1071 0.0663 
p-value <.0001* .0099* .7440 .7972  
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imposes more mental demands on operators. In contrast, in the presence 
of interaction, the human operator can communicate with the co-robot 
when they need the co-robot to deliver the next Lego block or open its 
gripper. Thereby, human operators can adjust the pace of the HRC 
process according to their needs, which helps reduce mental stress 
during the collaboration. The current finding was aligned with the study 
conducted by Gervasi et al. (2022), in which it was found that the 
introduction of HRI in collaborative tasks reduced perceived mental 
stress, as the control of task execution time with robots is a significant 
influential factor for mental stress during HRC. 

Furthermore, the consistency between the results of subjective as
sessments and objective measurements showcased the positive correla
tion between the employed subjective and objective measures. It was 
noted that participants tended to have increased physiological re
sponses, as measured objectively by GSR, EMG, and HR, when they re
ported higher levels of mental stress through subjective measures like 
NASA-TLX. This finding aligns with the circumplex model of affect, 
which interprets emotions as a combination of two neurophysiological 

Fig. 9. ANOVA results of interaction complexity (*: statistically significant with p < 0.05; **: statistically significant with p < 0.01).  

Table 3 
ANOVA results for interaction modality.   

NASA-TLX GSR EMG HR 

F ratio 5.9333 5.0339 3.5576 0.0344 
p-value .0034* .0080* .0317* 0.9662  

Table 4 
Post-hoc Tukey HSD tests for interaction modality.  

Group p-values 

NASA-TLX GSR EMG 

Button - Gesture .0042* .0061* .0437* 
Gesture - Voice .0262* .4713 .9614 
Voice - Button .8074 .1239 .0816  
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dimensions: valence and arousal (Colibazzi et al., 2010; Russell, 1988). 
Valence refers to the subjectively experienced emotions, ranging from 
highly negative to extremely positive, while arousal reflects the state of 
responsiveness to sensory stimuli. In this context, mental stress is 
characterized by elevated arousal and negative valence. Moreover, 
studies have shown that there is a positive correlation between 
emotional arousal and physiological responses (Lang and Davis, 2006; 
Gjoreski et al., 2022). These findings are consistent with the trends 
observed in our study that higher perceived mental stress is associated 
with an elevation in physiological responses. 

In terms of interaction complexity, subjective assessment and 
objective GSR assessment came to the same conclusion. While the 

introduction of interactions in HRC can help reduce mental stress to 
some extent, complex interactions can lead to higher levels of mental 
stress compared to simple interactions. Nomura et al. (2008) also found 
similar results that the anxiety increased after repeated interaction with 
a robot. It is noted that interactions with collaborative robots can 
introduce their own sources of stress for human operators. In addition, 
empirical findings highlight a significant positive correlation between 
mental stress and mental workload (Hou et al., 2015), which is described 
as the relationship between primary task performance and the resources 
required for the task (Wilson and Sharples, 2015). Consequently, as 
individuals experience a higher mental workload as interaction 
complexity increases, they are more likely to encounter elevated levels 
of mental stress. In HRC context, it becomes important to thoughtfully 
design the level and scope of interactions to ensure the resultant addi
tional mental workload does exceed workers’ mental capacity. 

The results also revealed statistically significant differences among 
different interaction modalities. Specifically, the utilization of hand 
gestures resulted in significantly higher levels of mental stress than both 
button pressing and verbal commands, as indicated by subjective NASA- 

Fig. 10. ANOVA results of interaction modality: button, gesture, and voice (*: statistically significant with p < 0.05).  

Table 5 
ANOVA results for interaction effects of complexity and modality.   

NASA-TLX GSR EMG HR 

F ratio 1.9001 1.0548 0.0269 0.0689 
p-value .1537 .3516 .9734 .9335  
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TLX assessments. Meanwhile, objective GSR and EMG assessments also 
highlighted that showing hand gestures induced significantly higher 
mental stress during collaborative assembly tasks. These observations 
were in line with the findings of a study conducted by Xuan et al. (2019), 
it was noted that using gestures to control a TV in a home environment 
setting caused more mental stress than using a remote button control 
panel. It is reasonable to expect that pressing buttons would result in 
lower mental stress compared to using hand gestures. Pressing buttons is 
a more reliable method, while showing hand gestures relies on artificial 
intelligence (AI) which has recognition accuracy issues, leading to 
confusions. 

Nonetheless, using verbal commands, another AI-based interaction 
method, also induced lower mental stress compared to using hand ges
tures. This outcome can be explained by the dual-coding theory (Paivio, 
1971) and the multiple memory system concept (Constantinou, 2019), 
both of which relate to mental workload. These theories suggest that 
humans process verbal and visual/spatial information through distinct 
channels of the brain. Overloading one channel can lead to decreased 
performance and increased mental workload. In the context of assembly 
tasks, which are inherently spatial, incorporating the processing of hand 
gestures (another spatial task) places additional demand on the brain’s 
spatial processing channel. This dual demand on the same cognitive 
pathway leads to a more significant mental workload and consequently, 
higher mental stress. In contrast, verbal commands are processed 
through a different cognitive channel. This separation allows more 
efficient parallel processing and reduces the overall mental workload, 
thus lowering mental stress. As a result, during assembly tasks, the use of 
hand gestures leads to higher mental stress compared to using verbal 
commands. 

Regarding the effectiveness of different physiological measures, GSR 
emerges as a more sensitive indicator for detecting mental stress, 
showing most consistent results compared to subjective stress assess
ments using the NASA-TLX. Conversely, heart rate appears to be less 
sensitive in capturing subtle variations in mental stress levels. In addi
tion, there are certain limitations associated with the use of EMG in this 
study. Ideally, the placement of EMG sensors should avoid muscles 
involved in the tasks being performed. In this work, the EMG sensor was 
positioned on the upper trapezius muscle, which is minimally involved 
during sedentary assembly tasks or when delivering commands such as 
verbal instructions, gestures, and button pressing. However, upon 
reviewing the results, it was noted that participants tended to lower their 
heads while pressing buttons, which inadvertently increased the EMG 
signal magnitude. This occurred because the mini keyboard was placed 
on the table, prompting participants to lower their heads. In contrast, 
participants maintained a forward-facing head posture when showing 
hand gestures or giving verbal commands. This limitation is also re
flected in the Results section, where EMG measurements for button 
pressing yielded higher values than for verbal commands, even though 
NASA-TLX and GSR data indicated that button pressing resulted in lower 
perceived stress. Therefore, it is crucial to carefully consider the place
ment of EMG sensors to accurately measure mental stress. 

Yet, it is essential to acknowledge the disparity between subjective 
and objective assessments. Objective GSR assessments demonstrated 
significant differences exclusively between hand gestures and button 
pressing, while EMG assessments solely indicated significant distinc
tions between hand gestures and verbal commands. Additionally, no 
significant effects on mental stress were found through objective HR 
assessments. One potential explanation for this difference is that stress 
can actually occur even when physiological changes are not present 
because the body’s physiological responses are more slowly recognized 
by the brain than its function to release emotional responses (Dalgleish, 
2004). Therefore, it is possible that subjective assessments may yield 
significant effects, whereas measures reliant on physiological signals 
may not yield statistically significant results under certain circum
stances. Consequently, it is recommended that a combination of multiple 
physiological measures should be employed in the detection of mental 

stress to enhance the reliability and accuracy of results. 
Overall, the combination of both subjective assessment and various 

physiological objective assessments in this work has provided con
vincible insights into the effects of HRI on mental stress. These findings 
have practical implications for the design of HRC systems. Firstly, it is 
suggested to incorporate interactions as an integral part of the collab
oration process, allowing human operators to exert control over the pace 
of task execution. Secondly, simple and straightforward interactions are 
preferred, while complex or redundant interactions should be avoided. 
Thirdly, the selection of interaction modalities should be task specific. 
For instance, in assembly tasks, the inclusion of verbal commands as a 
substitute for traditional buttons is advisable, while the use of hand 
gestures should be avoided. By considering these recommendations, 
more effective and user-friendly HRC systems that prioritize mental 
well-being and overall performance can be designed. 

5. Conclusion 

Collaborative robots are increasingly being deployed in a variety of 
industrial settings, sharing a common workplace with human operators. 
Research focusing on aspects of human psychological effects is critical to 
achieving workplace wellness for HRC. This study investigated the 
impact of human-robot interactions on mental stress during collabora
tive Lego assembly tasks, considering different levels of interaction 
presence, interaction complexity, and interaction modality. Subjective 
measures using the NASA-TLX index and objective measures using the 
physiological data (GSR, EMG, and HR) were applied to assess the level 
of mental stress. The findings provided practical insights for optimizing 
the HRC process with a focus on reducing mental stress on human 
teammates. 
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