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Abstract

In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies,
computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that
can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of
human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose
a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder
(cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access
multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand
position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks
associated with the generated postures with a variety of positions of point of operation. The position of point of operation
that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted
to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation
position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm.
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(Ahmad et al., 2013). Alternatively, computer- vision algo-
rithms can be utilized to infer human postures from images
or videos. In the study conducted by Martinez (2017), human
motion was well reconstructed using a simple and light-
weight deep neural network. The fast-developing machine
learning methods appear to be capable to form a more effi-
cient way of understanding and improving workers’ postures
(Li, et al., 2020; Wang et al., 2021). However, computer
vision-aided posture assessment heavily relies on the work-
place configuration and hardware. Obstacle in camera view
as well as lens distortion can affect the accuracy of recon-
structed poses (Chakraborty et al., 2018).

Along with direct measurements, workers’ postures also
can be simulated through biomechanical modeling and

Introduction

Musculoskeletal disorders (MSDs) are among the most com-
mon occupational injuries, which affect muscles, nerves, ten-
dons, joints, and cartilage (Gallagher & Schall Jr, 2017).
Epidemiology studies have shown that risk factors for MSDs
include repetitive motions, awkward postures, and excessive
force exertion over a prolonged work period (Kamat et al.,
2017). Therefore, improving workers’ posture is crucial in
reducing the risk of MSDs.

To improve workers’ postures in different workplace set-
tings, a number of observational methods have been made
based on ergonomic assessments, such as Rapid Upper Limb
Assessment (RULA) (McAtamney & Corlett, 1993) and
Rapid Entire Body Assessment (REBA) (Hignett &
McAtamney, 2000). Yet, manually performing these obser-
vation methods can be extremely labor-intensive. Thus, there
are also methods having been proposed to automatically
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obtain workers’ posture. For example, joint angles can be
measured by wearable sensors, such as inertial measurement
units (IMUs). Yet, these wearable sensors can interfere with
the natural body motions of workers during operation
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optimization. For instance, some researchers studied joint
angle acquisition from an inverse kinematics perspective. In
El Makrini et al. (2022), the simulated pose was obtained by
solving the ordinary differential equations (ODE) of a link-
age model representing human body. An earlier example of
analytical human modeling can be found at Tolani et al.
(2000), where the authors solved a set of inverse kinematics
equations suitable for different body dimensions. Yet, there
could be an infinite number of feasible poses to fit a kinemat-
ics chain and thus an objective function needs to be adopted.
Although biomechanical modeling and optimization can pro-
vide plausible predictions of joint angles as well as muscle
force for certain occupational tasks, their applicability in a
real-world scenario remains a matter of concern. This is
because most of these optimization-based methods are only
validated in a strictly controlled simulation environment
(Borbély & Szolgay, 2017).

Human-robot collaboration (HRC) is a burgeoning work-
place configuration in recent years and brings great opportu-
nities for a wide range of industrial sectors, including
manufacturing, healthcare (Olaronke et al., 2017), and agri-
culture (Vasconez et al., 2019). This work configuration
takes advantage of the endurance of robots and the dexterity
and ability of humans to react to unpredicted environments.
Yet, the HRC can also present occupational safety and health
challenges. For example, when a robot is designed to pass an
object to a worker, the predetermined one-size-fit-all point of
operation position (where workers pick up the object) may
lead to awkward postures for workers with different anthro-
pometry dimensions, thereby increasing the risk of develop-
ing MSDs (Anita et al., 2014).

To improve workers’ postures in HRC environments, one
can adopt a reinforcement learning approach (Xie et al.,
2022) to automatically change the point of operation position
for each individual workers. Specifically, a computer vision
technique was adopted to directly obtain workers’ postures
and the associated MSD risk score. The location of robot end
effector then moved gradually in a way to alter workers’ pos-
ture with a goal to minimize the associated MSD risk score.
While this work can improve individual workers’ postures by
providing personalized work configurations, the proposed
method may fail in real-world scenarios because it requires a
well-arranged working environment where cameras are
placed without any occlusions.

In this study, we propose a novel data-driven generative
model to simulate workers’ postures in an HRC task and use
these simulated postures to find the optimal point of opera-
tion position. Generative modeling aims to train algorithms
to synthesize new data by learning latent representations of
the input data and then sampling from the latent space
(Goodfellow et al., 2020; Kingma & Welling, 2013; Mirza &
Osindero, 2014). In particular, a conditional variational auto-
encoder (¢VAE) model is trained in this study using an open-
access human posture dataset (Li, et al., 2020). The trained
model can output simulated yet plausible worker postures

with diverse combinations of body sizes and task constraints
(e.g., simulate a posture of a 1.75m tall worker with hand
position at a specific height). Next, an awkward posture
score is calculated to evaluate the MSD risks associated with
all generated postures. The posture associated with a mini-
mum score is then chosen for setting the point of operation
position for an HRC task. The effectiveness of this data-
driven method was verified an experiment by comparing the
yielded point of operation positions with the participants’
self-selected ones.

Method

The pipeline of minimizing workers” MSD risk scores
includes the following components: cVAE algorithm, pos-
ture scoring, and algorithm validation, as presented in Figure 1.
We implemented the cVAE algorithm using the method out-
lined in Li et al. (2021). For readers’ convenience, we present
a brief overview of this method here, with detailed informa-
tion available in the reference paper.

CVAE Algorithm

Dataset Preparation for Training. The training dataset used in
this study contains full-body anatomical landmark positions
of 11 participants during a variety of lifting motions, as illus-
trated in Figure 2a. In these lifting tasks, participants were
asked to lift a box from the ground to different levels of a
shelf, with the lowest level around the floor height and the
highest level of 1.63 m. The 3-D coordinate of 35 markers
placed on their body (Figure 2a) was measured by an optical
motion tracking system (MotionAnalysis).

Model. Our posture optimization pipeline leveraged a cVAE
model, an extension of the standard auto-encoder and varia-
tional auto-encoder that provides generative capabilities to
the latent space. During training, the loss function for cVAE
comprised a “reconstruction term,” which minimized the
input- output differences, and a “regularization term,” which
approximated the latent distribution to a standard normal dis-
tribution. The total loss function is expressed as:

loss:"x—;c"z+KL[N(ux,Gx)N(O,1)} (1

Where x represents the input data, X represents the gener-
ated data, p_ and o, are the mean and standard deviation of
the encoded distribution, and KL[N (n, c,), N (0, 1)] is the
Kulback-Leibler divergence between the encoded distribu-
tion and a standard Gaussian. Through minimizing the loss
(1) during the training process, the model can effectively
generate plausible human postures.

To impose constraints over the simulated postures (e.g.,
the simulated posture needs to have a specific hand height),
the reconstruction term of a cVAE was modified to incorpo-
rate the pre-defined conditions ¢, expressed as X = P (x|z, ¢).
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Figure 1. Pipeline of minimizing workers’ MSD risk scores via a conditional variational auto-encoder (cVAE). The pipeline consists
of three components: (1) cVAE algorithm for training a posture generation network, (2) Posture Scoring module for online posture
evaluation and selection, and (3) Algorithm Validation for verifying the selected optimal position against the self-selected point of

operation position.

c¢VAE Algorithm

Figure 2. Dataset illustration. (a) Marker placement details. (b)
A simplified skeletal model with 17 key points.

The cVAE algorithm consisted of one encoder network and
one decoder network, with the encoding process expected to
be the reverse process of the decoding process. During infer-
ence, sample z was randomly taken from the trained encoded
distribution N (p, o), and both ¢ and z were fed into the
decoder. After training, the decoder converged to a condi-
tioned latent space, allowing for control over the output

simulated postures. Figure 3 illustrates the structure of our
cVAE algorithm. In this study, we formulated the posture
generation problem as predicting the human posture given
the location of both hands, both feet, and the body height (7
constraints in total). The left-hand location was described by
two parameters, H, and W,. H, is the vertical distance
between the hand (mid of radial styloid and ulnar styloid)
and body center (mid of anterior superior iliac spine and pos-
terior superior iliac spine), while W, is the horizontal dis-
tance between the hand and body center. The left-foot
location W, was interpreted by the horizontal distance
between the feet (mid of medial malleolus and lateral malle-
olus) and body center. The right hand and right foot were
similarly defined. Therefore, the condition ¢ belonged to a

7-dimensional space R’ : (Height, H,,, Wy, H,,, W,,, W, W,

i
). The input x and output postures % belonged to 105-dimen-

sional space R'%® (35 landmarks X 3 dimensions).

Posture Scoring

This study employed a method similar to RULA (McAtamney
& Corlett, 1993) for assessing posture safety and health.
RULA is an ergonomic assessment tool used to evaluate the
risk of MSDs based on a systematic observation of posture
and associated body discomfort, with a scoring system that
guides user to identify high-risk postures. As depicted in
Figure 4, we utilized continuous linear functions to interpo-
late the original RULA score for posture scoring. The origi-
nal discrete RULA has limited sensitivity when different
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Figure 3. Structure of the proposed cVAE model.

joint angles fall within the same range, which poses a chal-
lenge when determining an optimal robot position, as differ-
ent human postures may yield the same RULA score.
Additionally, the original RULA score employs a step func-
tion that can lead to sudden score jumps over similar pos-
tures, which may not accurately reflect the actual MSD risk
changes among similar postures.

To map a posture to a score, the simplified skeleton model
was used. The simulated 35-key-point skeleton was simplified
to a skeleton with only 17 key points (Figure 2b). Such a sim-
plified skeleton are widely adopted for pose representation in
previous studies (El Makrini et al., 2022; Martinez et al., 2017;
Pavllo et al., 2019). Additionally, penalties are applied for
squatting and unbalanced posture. Specifically, when the angle
of the worker’s upper leg or knee exceeds 15 degrees (indicat-
ing squatting) or when the discrepancy between the left and
right knee angles is greater than 15 degrees (indicating unbal-
ance), a penalty score of 4 is assigned. The score for each joint
is then aggregated to derive an overall posture score, with
lower scores indicating lower risk of MSDs. Consequently, the
posture among all simulated postures with the lowest score is
identified as the posture for setting the optimal point of opera-
tion position of an HRC task.

Algorithm Validation

An HRC task were performed to verify the proposed algo-
rithm for setting the point of operation position. In this task,
participants were asked to stand in front of a robot and per-
form a fine assembly task together with a robot partner.
Specifically, they needed to insert a fine wire into a board
held by the robot. The initial position of the end-effector was
randomly assigned at a low position and subsequently
adjusted by the participants themselves (limited to the verti-
cal axis) based on their perceived comfort. Once the opera-
tion position was determined, the participants performed the
wire insertion task three times under each location as well as
the initial end effector location. The adjusted end-effector
position was recorded as it was considered as the reference
optimal position from a psychophysical perspective (Snook
& Ciriello, 1991). To find the optimal point of operation
position that yields the posture with lowest score through the
proposed cVAE method, we simulated human workers’ pos-
ture at different hand height from low to high and obtained
corresponding postural scores for each hand height. We then
found the hand height with the minimal postural score and
used this height as the optimal point of operation position.



Qing et al. 429
25
- Interpolated Score R g — Interpolated Score
— =RULA |
35 |
20}
30 -
o o
8 Q251
D45l (%]
20
15}
10}
10|
-20 20 40 60 B0 100 120 140 160 -40 -20 0 20 40 60 80 100 120 140
(a) Angle (°) (b) Angle (°)
40} sl = Interpolated Score
Interpolated Score VI = «RULA
- =RULA
35f
35}
30}
o o
5! §°r ¢
20} -P
I 25 i
15F | I"
10} - ! |
-10 0 10 20 30 40 0 20 40 60 80 100
(C) Angle () (d) Ange )
Figure 4. Interpolated posture scoring functions. (a) Lower arm. (b)
Upper arm. (c) Neck. (d) Trunk.
To validate this optimal point of operation position gener- Results

ated from the cVAE method, eight participants (4 males and
4 females; age 26.0 = 3.5 years; height 1.72 = 0.12 m;
weight 75.13 = 16.72 kg) were recruited. They were asked
to adjust the end-effector to their most comfortable position
to perform the task as if they needed to perform this task for
8 hours a day. The initial robot end effector (i.e., robot grip-
per) position in the vertical direction was set at a very low
position (1.055 m above the ground). This was to avoid par-
ticipants simply accepting the initial position as an accept-
able position. A webcam (Model: MF920P, Spedal) was
placed three meters away from the robot to capture the
images of the participants during experiments. An open-
sourced VideoPose3D model (Pavllo et al., 2019) was
applied to reconstruct participants’ body posture.

Figure 5a shows a series of simulated human postures at dif-
ferent hand height where the fine assembly HRC task is per-
formed. All these simulated postures were generated by the
proposed ¢cVAE model. Each posture was then mapped to a
posture score (y-axis of Figure 5a). In this example, the pos-
ture with the minimal score occurs when the hand is 1.38 m
above the ground.

We also validated our approach by comparing the point of
operation position yielded from the cVAE model and that
yielded from participant’s self-selection for each participant.
The middle and right subfigures in Figure 5b show a recon-
structed human pose through VideoPose3d when a partici-
pant is doing the assembly task at the self-selected position.
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Figure 5. (a) Simulated postures with different hand height. The
solid skeleton represents the posture with the minimal posture
score.

(b) Comparison between the simulated-based posture and the posture
observed during the experiment. Left: the simulated posture with the
minimal posture score; Middle and Right: subjectively selected posture
during the experiment.
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Figure 6. Comparison between the cVAE model-based optimal
point of operation positions and self-selected optimal positions
among all participants. Numbers by each green triangle markers
show participants’ height. The red solid line depicts the linear
regression, while the orange line is the diagonal.

The simulated body postures with minimal score are similar
to the self-selected postures observed during the experiment.
As shown in Figure 6, the correlation coefficient (Pearson’s
r) is 0.97 between the point of operation position yielded
from the two methods, and the RMSE is 0.045 m.

Discussion

In this study, we present a cVAE-based method for predicting
a point of operation position during an HRC task for workers
with different body height. This predicted position is associ-
ated with a less risk of MSDs. This method can improve
workers” musculoskeletal health by providing personalized
work configurations while avoiding direct measurement of
human pose at work.

While our study presents a promising approach to opti-
mizing job configurations for HRC tasks, it is important to
address some limitations. First, the human posture data used
to train the cVAE model were collected from lifting tasks,
where most participants chose symmetric lifting motions to
lift a regular rectangle box. We chose this dataset for its
ready accessibility. With the addition of constraints, it serves
as a viable resource for simulating postures in the current
application. Yet, the generalizability of the current cVAE
model remains unclear. It is questionable whether the current
cVAE model can simulate any asymmetric postures or
motions. Future study should consider training a more robust
c¢VAE model with a wide range of body motion data. Second,
we admit that the reconstructed body pose through
VideoPose3D, which is used to calculate the reference point
of operation position, may carry errors. A previous study
showed that the joint location error due to computer-vision
algorithm is around 7.7% (Wang et al., 2021). For a more
precise validation, a laboratory- grade motion tracking sys-
tem would be needed. Third, it is possible that the subjec-
tively selected position of point of operation during a fine
assembly task does not necessarily lead to a posture associ-
ated with the minimal muscle activities or joint forces. Other
subjective concerns, such as the distance from eyes to the
point of operation, may also play an important role in deci-
sion-making. Further research is needed to develop an objec-
tive method for determining the reference body posture that
can minimize the risk of MSDs.

Conclusion

By using a data-driven approach and highlighting the impor-
tance of preventing MSDs, this study paves the way for
future research in HRC task design. The proposed cVAE
model was trained using an open-access posture dataset with
7 labels constraining the output and can simulate human pos-
tures. The MSD risk of the simulated postures can be evalu-
ated by a posture scoring protocol that is similar to RULA.
For an HRC assembly task, the optimal point of operation
position is selected based on the MSD risk assessment among
all simulated postures. This optimal position was verified
against the self- selected point of operation position. The
comparison shows the effectiveness of the proposed method
in reducing MSD risks during an HRC task.
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