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Introduction

Musculoskeletal disorders (MSDs) are among the most com-
mon occupational injuries, which affect muscles, nerves, ten-
dons, joints, and cartilage (Gallagher & Schall Jr, 2017). 
Epidemiology studies have shown that risk factors for MSDs 
include repetitive motions, awkward postures, and excessive 
force exertion over a prolonged work period (Kamat et al., 
2017). Therefore, improving workers’ posture is crucial in 
reducing the risk of MSDs.

To improve workers’ postures in different workplace set-
tings, a number of observational methods have been made 
based on ergonomic assessments, such as Rapid Upper Limb 
Assessment (RULA) (McAtamney & Corlett, 1993) and 
Rapid Entire Body Assessment (REBA) (Hignett & 
McAtamney, 2000). Yet, manually performing these obser-
vation methods can be extremely labor-intensive. Thus, there 
are also methods having been proposed to automatically 
obtain workers’ posture. For example, joint angles can be 
measured by wearable sensors, such as inertial measurement 
units (IMUs). Yet, these wearable sensors can interfere with 
the natural body motions of workers during operation 

(Ahmad et al., 2013). Alternatively, computer- vision algo-
rithms can be utilized to infer human postures from images 
or videos. In the study conducted by Martinez (2017), human 
motion was well reconstructed using a simple and light-
weight deep neural network. The fast-developing machine 
learning methods appear to be capable to form a more effi-
cient way of understanding and improving workers’ postures 
(Li, et al., 2020; Wang et al., 2021). However, computer 
vision-aided posture assessment heavily relies on the work-
place configuration and hardware. Obstacle in camera view 
as well as lens distortion can affect the accuracy of recon-
structed poses (Chakraborty et al., 2018).

Along with direct measurements, workers’ postures also 
can be simulated through biomechanical modeling and 
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Abstract
In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies, 
computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that 
can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of 
human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose 
a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder 
(cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access 
multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand 
position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks 
associated with the generated postures with a variety of positions of point of operation. The position of point of operation 
that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted 
to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation 
position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm.
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optimization. For instance, some researchers studied joint 
angle acquisition from an inverse kinematics perspective. In 
El Makrini et al. (2022), the simulated pose was obtained by 
solving the ordinary differential equations (ODE) of a link-
age model representing human body. An earlier example of 
analytical human modeling can be found at Tolani et al. 
(2000), where the authors solved a set of inverse kinematics 
equations suitable for different body dimensions. Yet, there 
could be an infinite number of feasible poses to fit a kinemat-
ics chain and thus an objective function needs to be adopted. 
Although biomechanical modeling and optimization can pro-
vide plausible predictions of joint angles as well as muscle 
force for certain occupational tasks, their applicability in a 
real-world scenario remains a matter of concern. This is 
because most of these optimization-based methods are only 
validated in a strictly controlled simulation environment 
(Borbély & Szolgay, 2017).

Human-robot collaboration (HRC) is a burgeoning work-
place configuration in recent years and brings great opportu-
nities for a wide range of industrial sectors, including 
manufacturing, healthcare (Olaronke et al., 2017), and agri-
culture (Vasconez et al., 2019). This work configuration 
takes advantage of the endurance of robots and the dexterity 
and ability of humans to react to unpredicted environments. 
Yet, the HRC can also present occupational safety and health 
challenges. For example, when a robot is designed to pass an 
object to a worker, the predetermined one-size-fit-all point of 
operation position (where workers pick up the object) may 
lead to awkward postures for workers with different anthro-
pometry dimensions, thereby increasing the risk of develop-
ing MSDs (Anita et al., 2014).

To improve workers’ postures in HRC environments, one 
can adopt a reinforcement learning approach (Xie et al., 
2022) to automatically change the point of operation position 
for each individual workers. Specifically, a computer vision 
technique was adopted to directly obtain workers’ postures 
and the associated MSD risk score. The location of robot end 
effector then moved gradually in a way to alter workers’ pos-
ture with a goal to minimize the associated MSD risk score. 
While this work can improve individual workers’ postures by 
providing personalized work configurations, the proposed 
method may fail in real-world scenarios because it requires a 
well-arranged working environment where cameras are 
placed without any occlusions.

In this study, we propose a novel data-driven generative 
model to simulate workers’ postures in an HRC task and use 
these simulated postures to find the optimal point of opera-
tion position. Generative modeling aims to train algorithms 
to synthesize new data by learning latent representations of 
the input data and then sampling from the latent space 
(Goodfellow et al., 2020; Kingma & Welling, 2013; Mirza & 
Osindero, 2014). In particular, a conditional variational auto-
encoder (cVAE) model is trained in this study using an open-
access human posture dataset (Li, et al., 2020). The trained 
model can output simulated yet plausible worker postures 

with diverse combinations of body sizes and task constraints 
(e.g., simulate a posture of a 1.75m tall worker with hand 
position at a specific height). Next, an awkward posture 
score is calculated to evaluate the MSD risks associated with 
all generated postures. The posture associated with a mini-
mum score is then chosen for setting the point of operation 
position for an HRC task. The effectiveness of this data-
driven method was verified an experiment by comparing the 
yielded point of operation positions with the participants’ 
self-selected ones.

Method

The pipeline of minimizing workers’ MSD risk scores 
includes the following components: cVAE algorithm, pos-
ture scoring, and algorithm validation, as presented in Figure 1. 
We implemented the cVAE algorithm using the method out-
lined in Li et al. (2021). For readers’ convenience, we present 
a brief overview of this method here, with detailed informa-
tion available in the reference paper.

CVAE Algorithm

Dataset Preparation for Training. The training dataset used in 
this study contains full-body anatomical landmark positions 
of 11 participants during a variety of lifting motions, as illus-
trated in Figure 2a. In these lifting tasks, participants were 
asked to lift a box from the ground to different levels of a 
shelf, with the lowest level around the floor height and the 
highest level of 1.63 m. The 3-D coordinate of 35 markers 
placed on their body (Figure 2a) was measured by an optical 
motion tracking system (MotionAnalysis).

Model. Our posture optimization pipeline leveraged a cVAE 
model, an extension of the standard auto-encoder and varia-
tional auto-encoder that provides generative capabilities to 
the latent space. During training, the loss function for cVAE 
comprised a “reconstruction term,” which minimized the 
input- output differences, and a “regularization term,” which 
approximated the latent distribution to a standard normal dis-
tribution. The total loss function is expressed as:

loss x x KL N Nx x= − + ( ) ( ) 


2
0 1µ , ,σ (1)

Where x represents the input data, x̂ represents the gener-
ated data, µx and σx are the mean and standard deviation of 
the encoded distribution, and KL[N (µx, σx), N (0, 1)] is the 
Kulback-Leibler divergence between the encoded distribu-
tion and a standard Gaussian. Through minimizing the loss 
(1) during the training process, the model can effectively 
generate plausible human postures.

To impose constraints over the simulated postures (e.g., 
the simulated posture needs to have a specific hand height), 
the reconstruction term of a cVAE was modified to incorpo-
rate the pre-defined conditions c, expressed as x̂= P (x|z, c). 
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The cVAE algorithm consisted of one encoder network and 
one decoder network, with the encoding process expected to 
be the reverse process of the decoding process. During infer-
ence, sample z was randomly taken from the trained encoded 
distribution N (µx, σx), and both c and z were fed into the 
decoder. After training, the decoder converged to a condi-
tioned latent space, allowing for control over the output 

simulated postures. Figure 3 illustrates the structure of our 
cVAE algorithm. In this study, we formulated the posture 
generation problem as predicting the human posture given 
the location of both hands, both feet, and the body height (7 
constraints in total). The left-hand location was described by 
two parameters, Hlh and Wlh. Hlh is the vertical distance 
between the hand (mid of radial styloid and ulnar styloid) 
and body center (mid of anterior superior iliac spine and pos-
terior superior iliac spine), while Wlh is the horizontal dis-
tance between the hand and body center. The left-foot 
location Wlf was interpreted by the horizontal distance 
between the feet (mid of medial malleolus and lateral malle-
olus) and body center. The right hand and right foot were 
similarly defined. Therefore, the condition c belonged to a 
7-dimensional space R7 : (Height, Hlh, Wlh, Hrh, Wrh, Wrf, Wlf

). The input x and output postures x̂ belonged to 105-dimen-
sional space R105 (35 landmarks × 3 dimensions).

Posture Scoring

This study employed a method similar to RULA (McAtamney 
& Corlett, 1993) for assessing posture safety and health. 
RULA is an ergonomic assessment tool used to evaluate the 
risk of MSDs based on a systematic observation of posture 
and associated body discomfort, with a scoring system that 
guides user to identify high-risk postures. As depicted in 
Figure 4, we utilized continuous linear functions to interpo-
late the original RULA score for posture scoring. The origi-
nal discrete RULA has limited sensitivity when different 

Figure 1. Pipeline of minimizing workers’ MSD risk scores via a conditional variational auto-encoder (cVAE). The pipeline consists 
of three components: (1) cVAE algorithm for training a posture generation network, (2) Posture Scoring module for online posture 
evaluation and selection, and (3) Algorithm Validation for verifying the selected optimal position against the self-selected point of 
operation position.

Figure 2. Dataset illustration. (a) Marker placement details. (b) 
A simplified skeletal model with 17 key points.
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joint angles fall within the same range, which poses a chal-
lenge when determining an optimal robot position, as differ-
ent human postures may yield the same RULA score. 
Additionally, the original RULA score employs a step func-
tion that can lead to sudden score jumps over similar pos-
tures, which may not accurately reflect the actual MSD risk 
changes among similar postures.

To map a posture to a score, the simplified skeleton model 
was used. The simulated 35-key-point skeleton was simplified 
to a skeleton with only 17 key points (Figure 2b). Such a sim-
plified skeleton are widely adopted for pose representation in 
previous studies (El Makrini et al., 2022; Martinez et al., 2017; 
Pavllo et al., 2019). Additionally, penalties are applied for 
squatting and unbalanced posture. Specifically, when the angle 
of the worker’s upper leg or knee exceeds 15 degrees (indicat-
ing squatting) or when the discrepancy between the left and 
right knee angles is greater than 15 degrees (indicating unbal-
ance), a penalty score of 4 is assigned. The score for each joint 
is then aggregated to derive an overall posture score, with 
lower scores indicating lower risk of MSDs. Consequently, the 
posture among all simulated postures with the lowest score is 
identified as the posture for setting the optimal point of opera-
tion position of an HRC task.

Algorithm Validation

An HRC task were performed to verify the proposed algo-
rithm for setting the point of operation position. In this task, 
participants were asked to stand in front of a robot and per-
form a fine assembly task together with a robot partner. 
Specifically, they needed to insert a fine wire into a board 
held by the robot. The initial position of the end-effector was 
randomly assigned at a low position and subsequently 
adjusted by the participants themselves (limited to the verti-
cal axis) based on their perceived comfort. Once the opera-
tion position was determined, the participants performed the 
wire insertion task three times under each location as well as 
the initial end effector location. The adjusted end-effector 
position was recorded as it was considered as the reference 
optimal position from a psychophysical perspective (Snook 
& Ciriello, 1991). To find the optimal point of operation 
position that yields the posture with lowest score through the 
proposed cVAE method, we simulated human workers’ pos-
ture at different hand height from low to high and obtained 
corresponding postural scores for each hand height. We then 
found the hand height with the minimal postural score and 
used this height as the optimal point of operation position.

Figure 3. Structure of the proposed cVAE model.
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Figure 4. Interpolated posture scoring functions. (a) Lower arm. (b)
Upper arm. (c) Neck. (d) Trunk.

To validate this optimal point of operation position gener-
ated from the cVAE method, eight participants (4 males and 
4 females; age 26.0 ± 3.5 years; height 1.72 ± 0.12 m; 
weight 75.13 ± 16.72 kg) were recruited. They were asked 
to adjust the end-effector to their most comfortable position 
to perform the task as if they needed to perform this task for 
8 hours a day. The initial robot end effector (i.e., robot grip-
per) position in the vertical direction was set at a very low 
position (1.055 m above the ground). This was to avoid par-
ticipants simply accepting the initial position as an accept-
able position. A webcam (Model: MF920P, Spedal) was 
placed three meters away from the robot to capture the 
images of the participants during experiments. An open-
sourced VideoPose3D model (Pavllo et al., 2019) was 
applied to reconstruct participants’ body posture.

Results

Figure 5a shows a series of simulated human postures at dif-
ferent hand height where the fine assembly HRC task is per-
formed. All these simulated postures were generated by the 
proposed cVAE model. Each posture was then mapped to a 
posture score (y-axis of Figure 5a). In this example, the pos-
ture with the minimal score occurs when the hand is 1.38 m 
above the ground.

We also validated our approach by comparing the point of 
operation position yielded from the cVAE model and that 
yielded from participant’s self-selection for each participant. 
The middle and right subfigures in Figure 5b show a recon-
structed human pose through VideoPose3d when a partici-
pant is doing the assembly task at the self-selected position. 
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The simulated body postures with minimal score are similar 
to the self-selected postures observed during the experiment. 
As shown in Figure 6, the correlation coefficient (Pearson’s 
r) is 0.97 between the point of operation position yielded 
from the two methods, and the RMSE is 0.045 m.

Discussion

In this study, we present a cVAE-based method for predicting 
a point of operation position during an HRC task for workers 
with different body height. This predicted position is associ-
ated with a less risk of MSDs. This method can improve 
workers’ musculoskeletal health by providing personalized 
work configurations while avoiding direct measurement of 
human pose at work.

While our study presents a promising approach to opti-
mizing job configurations for HRC tasks, it is important to 
address some limitations. First, the human posture data used 
to train the cVAE model were collected from lifting tasks, 
where most participants chose symmetric lifting motions to 
lift a regular rectangle box. We chose this dataset for its 
ready accessibility. With the addition of constraints, it serves 
as a viable resource for simulating postures in the current 
application. Yet, the generalizability of the current cVAE 
model remains unclear. It is questionable whether the current 
cVAE model can simulate any asymmetric postures or 
motions. Future study should consider training a more robust 
cVAE model with a wide range of body motion data. Second, 
we admit that the reconstructed body pose through 
VideoPose3D, which is used to calculate the reference point 
of operation position, may carry errors. A previous study 
showed that the joint location error due to computer-vision 
algorithm is around 7.7% (Wang et al., 2021). For a more 
precise validation, a laboratory- grade motion tracking sys-
tem would be needed. Third, it is possible that the subjec-
tively selected position of point of operation during a fine 
assembly task does not necessarily lead to a posture associ-
ated with the minimal muscle activities or joint forces. Other 
subjective concerns, such as the distance from eyes to the 
point of operation, may also play an important role in deci-
sion-making. Further research is needed to develop an objec-
tive method for determining the reference body posture that 
can minimize the risk of MSDs.

Conclusion

By using a data-driven approach and highlighting the impor-
tance of preventing MSDs, this study paves the way for 
future research in HRC task design. The proposed cVAE 
model was trained using an open-access posture dataset with 
7 labels constraining the output and can simulate human pos-
tures. The MSD risk of the simulated postures can be evalu-
ated by a posture scoring protocol that is similar to RULA. 
For an HRC assembly task, the optimal point of operation 
position is selected based on the MSD risk assessment among 
all simulated postures. This optimal position was verified 
against the self- selected point of operation position. The 
comparison shows the effectiveness of the proposed method 
in reducing MSD risks during an HRC task.

Figure 5. (a) Simulated postures with different hand height. The 
solid skeleton represents the posture with the minimal posture 
score.
(b) Comparison between the simulated-based posture and the posture 
observed during the experiment. Left: the simulated posture with the 
minimal posture score; Middle and Right: subjectively selected posture 
during the experiment.

Figure 6. Comparison between the cVAE model-based optimal 
point of operation positions and self-selected optimal positions 
among all participants. Numbers by each green triangle markers 
show participants’ height. The red solid line depicts the linear 
regression, while the orange line is the diagonal.
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