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Improving Workers’ Musculoskeletal Health During Human-
Robot Collaboration Through Reinforcement Learning
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Objective: This study aims to improve workers’ postures and
thus reduce the risk of musculoskeletal disorders in human-robot
collaboration by developing a novel model-free reinforcement
learning method.

Background: Human-robot collaboration has been a flour-
ishing work configuration in recent years. Yet, it could lead to work-
related musculoskeletal disorders if the collaborative tasks result in
awkward postures for workers.

Methods: The proposed approach follows two steps: first,
a 3D human skeleton reconstruction method was adopted to
calculate workers’ continuous awkward posture (CAP) score;
second, an online gradient-based reinforcement learning algorithm
was designed to dynamically improve workers’ CAP score by ad-
justing the positions and orientations of the robot end effector.

Results: In an empirical experiment, the proposed approach
can significantly improve the CAP scores of the participants during
a human-robot collaboration task when compared with the sce-
narios where robot and participants worked together at a fixed
position or at the individual elbow height. The questionnaire
outcomes also showed that the working posture resulted from the
proposed approach was preferred by the participants.

Conclusion: The proposed model-free reinforcement learn-
ing method can learn the optimal worker postures without the need
for specific biomechanical models. The data-driven nature of this
method can make it adaptive to provide personalized optimal work
posture.

Application: The proposed method can be applied to improve
the occupational safety in robot-implemented factories. Specifically,
the personalized robot working positions and orientations can
proactively reduce exposure to awkward postures that increase the
risk of musculoskeletal disorders. The algorithm can also reactively
protect workers by reducing the workload in specific joints.
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INTRODUCTION

Musculoskeletal disorders (MSDs) are one of
the most common occupational injuries in the
industry (Kang et al., 2014; Stack et al., 2016).
The major causes of MSDs include repetitive
motions, awkward postures (Keyserling et al.,
1992), and excessive force exertion (Stack et al.,
2016). In 2017, approximately 273,000 day-
away-from-work cases due to MSDs were re-
ported in the U.S. (U.S. Bureau of Labor
Statistics, 2020). One way to relieve workers
from repetitive tasks and excessive force exer-
tion is to adopt industrial robots (Gualtieri et al.,
2021). For example, a variety of robots have
been designed to transport heavy parts for hu-
man workers (Realyvasquez-Vargas et al., 2019;
Vysocky & Novak, 2016), and consequently can
help reduce the risk of low-back MSDs. Nev-
ertheless, not all the tasks can be performed by
robots alone. Some still require the inputs from
human workers for quality control purposes,
especially in advanced manufacturing and as-
sembly (Bi et al., 2021; Pérez et al., 2020). This
human-assisted work configuration is referred to
as human-robot collaboration (HRC).

Yet, the risk of MSDs can still persist in HRC
tasks. When robots are pre-programmed to work
at a predetermined position, this position may
not accommodate all workers due to individual
differences such as body dimensions (Figure 1),
preferences, and other personal characteristics.
As a result, without customization, HRC can
cause workers to adopt awkward postures and
thus increase the risk of MSDs. (Anita et al.,
2014). Specifically, awkward postures are de-
fined as excessive joint bending and twisting
outside a comfortable range of motion (Jaffar
et al., 2011).

To reduce the risk of MSDs during HRC, the
position of robot end effector should be adaptive
and lead to a neutral posture for workers. To
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Figure 1. A set position may not be suitable for workers with different body features. A
taller worker (left) has to bend forward compared to a shorter worker (right) for the same

HRC task.

date, a number of optimization methods have
been proposed to improve workers’ postures
during HRC by adjusting the position of robots’
end effectors. Some studies have developed
optimization methods based on joint loadings
estimated through a biomechanical model or
measured from electromyography (EMG)
feedback (Kim et al., 2017; Peternel et al., 2017,
2018; van der Spaa et al., 2020). Yet, the esti-
mated joint loading can be affected by the
validity of the adopted biomechanical models. In
some other studies (Busch et al., 2017, 2018;
Roveda et al., 2020), optimizations are made to
ergonomic assessment indicators. For example,
Rapid Upper Limb Assessment (RULA) was
used in a recent study as an indicator of workers’
postural health during HRC (Liau & Ryu, 2020).
RULA is a widely used and validated ergonomic
tool in evaluating the overall MSD risks (Kee,
2020, 2021; McAtamney & Corlett, 1993;
Micheletti Cremasco et al., 2019). A greater
RULA score indicates a greater risk of de-
veloping MSD.

Traditionally, assessment and calculation of
RULA postural scores require safety practi-
tioners to manually code body postures. This
process can be time-consuming and requires
ergonomic expertise. In previous studies, re-
searchers sought to improve this process by
using wearable inertial measurement units
(IMUs) to track workers’ body postures and
estimate the ergonomic score to optimize the
position of a robot’s end effector and improve
workers’ postures (Busch et al., 2017, 2018).
Nevertheless, wearable sensors may not be
suitable in certain field applications because they
may interfere worker’s natural body motion
during work. An alternative way to track body
motion and automatically assess RULA score is
to use camera and computer vision (Li & Xu,
2019; Manghisi et al., 2017; Massiris Fernandez
et al., 2020; Yazdani et al., 2021). Compared
with IMUs, computer vision requires a camera
set nearby a working area with good field of
vision and an adequate computational power for
pose reconstruction. On the other hand,
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computer vision does not require multiple IMU
sensors attached on workers’ body and thus does
not interfere with workers’ natural body motion.
Considering the scenario of HRC, different
workers may work with the same collaborative
robot at different time in a day. Therefore, we
chose computer vision to reconstruct each
worker’s pose and assess the corresponding
postural score modified from RULA. Otherwise,
the HRC task could be interrupted by mounting
IMU sensors on workers’ body.

Once workers’ ergonomics assessment scores
are computed, different optimization algorithms
can be applied to adjust positions of robots’ end
effector with an objective of minimizing
workers’ ergonomic assessment risk. Previous
studies have proposed optimization methods
where the ergonomic assessment was performed
using simulated human pose during HRC tasks
(Busch et al., 2017, 2018; Yazdani et al., 2021).
However, simulation of human postures can be
an ill-posed problem (Qu & Nussbaum, 2008)
because 1) human body has a substantial amount
of redundant degree of freedoms and 2) the
range of motion limits may vary from person to
person (Park et al., 2010).

In the current study, we will develop a novel
model-free reinforcement learning (RL) method
called Gradient-based Online Learning Algo-
rithm in HRC (GOLA-HRC) to address these
issues. This method is suitable in HRC tasks
because the robot end effector can be programed
to reach different positions from task to task, and
from cycle to cycle. In contrast, a traditional
workstation in automation only provides a fixed
work position for workers. Even this position
can be adjusted through ergonomics in-
tervention, such adjustment is not as flexible as
the movement of a robot end effector in an HRC
task. This algorithm follows a trial-and-error
method (Kober et al., 2013; Sutton & Barto,
2018) and optimizes workers’ awkward posture
scores obtained from computer vision without
the need for a whole-body biomechanical model.
The data-driven nature of the proposed method
allows the robot to “learn” the optimal effector
position and provide personalized config-
urations for individual worker. Prior to this
study, RL methods have been applied in robot
action planning in different scenarios (Degris

et al., 2012; Haarnoja et al., 2018, 2018b; Hu
et al,, 2019) and these applications exhibit
promising potential in optimization tasks. The
rest of this paper is organized as follows: the
method section describes the adopted computer
vision method, the automated postural assess-
ment technique, the proposed GOLA-HRC al-
gorithm, and the experiment design for
algorithm validation. The result section shows
the validation outcomes. The discussion section
discusses the key findings of this research,
current limitations, and future works.

METHOD

Automated Continuous Awkward Posture
Score Estimation

Worker Posture Reconstruction. The initial
step is to equip the robot with the ability to
determine the risk level of a worker’s posture. To
accomplish this, workers’ postures are first es-
timated with a computer vision model and the
images collected from a single RGB camera.
Specifically, the open-source computer vision
model named VideoPose3D model (Pavllo et al.,
2019) is used to predict 3D key joint positions of
a worker based on frames captured by the
camera (Figure 2). One advantage of the 3D
computer vision model is that it allows for the
analysis of off-plane movements, such as
shoulder abduction. The mean absolute error of
the estimated joint positions is reported to be
46.8 mm (Pavllo et al., 2019). Subsequently, the
estimated joint positions are utilized to compute
the relevant awkward posture score.

Continuous Awkward Posture Score. Tradi-
tional RULA assessment evaluates overall
scores of workers’ postures by grouping the
body part posture scores. The body part posture
scores are step functions which are less sensitive
when body joint angles are in the same category.
For instance, trunk forward bending angles at
25° and 60° are treated as having the same body
part score. Such a feature limits algorithms to
find the optimization direction since there would
be no gradient on RULA score. Thus, we pro-
pose to fit body part RULA postural scores into
a continuous linear function (Figure 3), which is
referred as continuous award posture (CAP)
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Original image

Reconstructed skeleton

Figure 2. The workflow of worker pose reconstruction. An RGB camera first captures an
image of the workspace. The computer vision model then reconstructs the worker’s pose.
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Figure 3. Comparison of body part RULA postural score and the proposed CAP scores
of the neck, upper arm, trunk, and lower arm.

score hereinafter. This approach provides sev-
eral benefits. The gradient of a linear function is
constant, which helps stabilize the learning
process, and the continuous nature of the CAP
score allows for more precise optimization of

workers’ postures. In addition, it is important to
note that we add a penalizing score of four to
CAP whenever the workers’ knee angle is over
20° to penalize deep squatting postures. This
penalizing score can also be implemented as
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a linear function. The joint scores are then
summed with equal weighting factors to form
the overall CAP score, which is used in the
downstream reinforcement learning algorithm.

Gradient-Based Online Learning
Algorithm in HRC

Collaboration Tasks. An HRC task was de-
signed as a testbed for the development of the
GOLA-HRC method. In this task, participants
were asked to perform a fine wire insertion task
where they were instructed to insert wires into
a specific position on a breadboard gripped by
a collaborative robot (Sawyer, Rethink Robot-
ics). This task simulated a common human-
assisted assembly task.

Robot Degree of Freedom to Adjust. During
the collaboration, workers’ postures can be
affected by the position and orientation of the
robot’s end effector. The adopted robot’s end
effector has six degrees of freedom (DoF),
including three translational DoF (x, y, z,
shown in Figure 4) and three rotational DoF
(a, B, v, Figure 4). Therefore, one can adjust the
value of these six DoFs to affect workers’ CAP
scores. To reduce the state space (number of
variables) and improve learning speed, some
variables that are less likely to affect workers’
posture (as workers can move in these direc-
tions freely) are excluded in this study. Spe-
cifically, participants were encouraged to freely
move during the experiment. Therefore, hori-
zontal translational motions of the end effector (x
and z) are less likely to affect workers’ postures
and could be excluded for the purpose of di-
mension reduction. Similarly, the rotational mo-
tion along the B-axis could be compensated by the
horizontal movement of workers. In addition, the
rotational motions along the y-axis do not affect
workers’ postures due to the nature of the adopted
fine wire insertion task, Therefore, there are two
remained degree of freedom that can be adjusted
for alternating workers’ posture: the translational
motion along the y-axis, which determines the
height of the end effector, and the rotational
motion along the a-axis, which determines
the pitch angle of the end effector. The rest of
the DoFs remain the same throughout the
experiments.

RL Algorithm. The proposed GOLA-HRC
algorithm searches for a set of values of the
abovementioned DoF that minimizes the CAP
score of a worker. The flowchart and algorithm
are shown in Figure 5. With the computer vision,
each time a worker finishes a fine wire insertion
task at given end effector position and orien-
tation, a robot posture-CAP score pair is gen-
erated (Figure 5). The gradient indicating the
optimization direction (Bottou, 2012; Duchi
et al., 2011) can be then calculated by the ro-
bot posture-CAP pair. Following the gradient,
the GOLA-HRC iterates until the termination
conditions are met.

The gradients of CAP corresponding to the
position changes along y-axis and orientation
changes with respect to x-axis at each time step,
V, and V,, are defined in equation (1) and (2).
These gradients indicate how the CAP can be
improved or deteriorated by a translational
motion or a rotational motion. Using the gra-
dient, the end effector position and orientation at
step t+ 1 (P41 and Oy4) are determined by the
previous end effector position and orientation at
time t (P; and O;) as well as the respective search
step lengths (64 and da) as described in Equa-
tion (3) ~ (6). In equation (3) ~ (4), [, and /, are
the learning rates set for adjusting the position
and the orientation. We impose constraints s,
and s, on the step lengths to guarantee a stable
search process. A discount factor (d,) is in-
troduced to control the learning rate dynamically
as a common practice in reinforcement learning
(Sutton & Barto, 2018). A greater discounting
factor improves the optimization accuracy but
also increases the number of iterations. Learning
rates [, and /[, evolve after each iteration ac-
cording to Equation (7) ~ (8). A termination
condition is a predefined criterion that, when
met, signals the end of the iteration process
(Sutton & Barto, 2018). In this study, the ter-
mination condition is defined in equation (9),
where € is an error parameter that represents
a tradeoff between convergence speed (i.e., how
fast algorithm reaches optimal) and solution
precision.

Note that the GOLA-HRC algorithm in-
cludes a set of initialization parameters
(0ho, dao, Lpo, l,0, Po, Op) and hyper-parameters
(8p, S0, dys, €) that constrain the behavior of the



Rebuce MSD IN HumaN-RoBoT COLLABORATION

1759

Camera

End
Effector

Figure 4. The collaborative task: A camera is placed three m away from the collab-
orative robot. The origin of the robot coordinate system is set on the robot base. The
directions of translational axes x, y, and z and rotational axes a, 5, and y are shown.
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Figure 5. Gradient-based online learning algorithm in HRC (GOLA-HRC). Left: flow chart of GOLA-

HRC. Right: the algorithm pseudocode.

searching process, which is the nature of
machine-learning algorithms (Yang &
Shami, 2020). Initialization parameters are
default values of the variables when the
system initializes and are set before the
training begins. The hyper-parameters define
the behavior of the algorithm, such as how

data is loaded (Snoek et al., 2012). In this study,
hyper-parameters are manually initialized based
on our previous experiences in computer vision
and reinforcement learning. A grid search protocol
was then adopted for tuning the hyper-parameters
to improve the performance and convergence
speed. Specifically, the termination threshold €
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should be carefully determined. If the value of €
is excessively small, the learning process may
not terminate, as there may be intra-individual
posture variations even when the end effector
remains in the same position. Such posture
difference can introduce a certain level of noise
to the gradients. On the other hand, when € is
greater, the algorithm converges faster but
yields a less accurate solution. The initializa-
tion parameters are based on anthropometric
data. Specifically, initial end effector position in
the y-axis direction and orientation with respect
to x-axis direction were set to 1.055 m and 0°.
With this setting, the breadboard is placed at the
50% ile elbow height of the entire population
(male and female combined) (Freivalds &
Niebel, 2008). The reason we choose the el-
bow height is that it is considered as a preferred
height for assembly tasks in terms of reducing
MSD risks (Freivalds & Niebel, 2008). The
initial search step lengths were set as dhy =
0.15m and day = 20°, and the initial learning
rates were set as /,o = 1.1 and /,0 = 1.1. These
values were determined in a preliminary test for
an adequate convergence speed. The values of
the tuned hyper-parameters and initialization
parameters are described in Table 1

V, = (CAP? — CAP,) | 6h 1)
V,, = (CAP! — CAP,) / éa )
\Y
oh =min(l, - |V,|,s,) -’V—’P‘ 3)
b
\Y
da = min(l, - |V, |,s,) -ﬁ 4)
to
Pt+1:Pt+(5h (5)
Oi1 = O, + da (6)
L, =d, -1, (7)
Zo = da ' lo (8)

|CAP? — CAP,| < €eand |CAP; — CAP,| <€
©)

TABLE 1: The Values of Initialization Parameters
and Hyper-Parameters

Parameters In Equation # Values
oho 1 0.15m
dagp 2 20°

Py 5 1.055 m
Oo 6 0°

Ioo 7 1.1

loo 8 1.1

Sp 3 0.2m
So 4 30°

d, 7,8 0.9

€ 9 0.3

Experiment Setup

Apparatus and Participants. As shown in
Figure 4, a gripper was 3D printed and attached
to the end effector (EGP-C 40, Schunk) of the
collaborative robot to hold a breadboard
(5.5 cm x 17 cm). The robot was connected to
a workstation with a GPU (NVIDIA RTX
2080T1) that supported the computer vision al-
gorithms. All the computer vision algorithms,
CAP score calculations, and the RL algorithm
were programmed in Python (Ver. 3.6) on Linux
platform (Ver. 16.04). Communication between
the workstation and the robot was realized
through Intera SDK (Ver. 5.3) based on Robot
Operating Systems (ROS Kinetic). A webcam
(Model: MF920P, Spedal) was placed three m
away from the robot to capture the images of the
participants and then send the images to the
workstation. Twenty participants were recruited
(10 males and 10 females, with an average age of
27.3 £ 2.7 years old, height of 172 = 11 cm,
weight of 73 + 15 kg) in this study. This research
is in compliance with the tenets of the Decla-
ration of Helsinki was approved by the In-
stitutional Review Board at North Carolina State
University (#24250). Informed consent was
obtained from each participant.

Experiment Process. To evaluate the effec-
tiveness of the GOLA-HRC method, we per-
formed a validation study. During the
experiment, each participant was first asked to
repetitively perform the fine wire insertion task
until the estimated CAP scores converged with
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€. After each repetition, the position and ori-
entation of the robot’s end effector was adjusted
by applying the GOLA-HRC algorithm. The
final position and orientation of the end effector
with the converged CAP score was referred to as
“Learnt” position hereafter. In addition, partic-
ipants’ CAP scores were also investigated when
the end effector was placed at the 50% ile elbow
height (referred to as “Fixed”) as well as the
computer-vision captured individual elbow
height (i.e., the output of the Videopose3D right
elbow position, referred to as “Elbow Height”).
The orientations of the “Fixed” and “Elbow
Height” are set to be 0°, which is the same
orientation as shown in Figure 6 iteration 1.
Furthermore, the participants were also asked to
adjust the end effector to a position that they
were most comfortable with, referred to as
“Worker-selected” positions hereafter. This po-
sition was considered the subjectively optimal
positions that resulted in minimal workload risk
from a psychophysical perspective (Snook &
Ciriello, 1991). During the experiment, the end
effector was placed in each of the above-
mentioned four positions (Learnt, Fixed, Elbow
Height and Worker-selected) with a random
order. At each position, participants performed
the fine wire insertion task three times and the
CAP scores were calculated.

After inserting the fine wire at each tested end
effector position, the participants were asked to
complete a questionnaire. A questionnaire from
a previous study on human-robot collaboration
(Busch et al., 2017) was adopted in this study
with some revisions. The participant was asked
to rate whether the end effector position was
appropriate from three aspects. Specifically, nine
questions in “Partnership,” “Performance,” and
“Safety” were asked. The three “Partnership”
questions evaluating workers’ feelings of a robot
as a co-worker were: “I reckon the robot is
a good co-worker,” “I think the robot is not
adapted to the handover task,” and “I prefer to
finish the task alone.” The “Performance”
questions examining the extent to which the
robot’s behavior matched the worker’s expect-
ations were: “I think the robot is trying to help
me’, ‘I feel the robot’s behavior is similar to my

expectations,” and “I think the robot has helped
me keeping a good posture.” The questions on
“Safety” asking the workers to assess whether
they felt the collaboration tasks were safe were:
“I believe I would feel exhausted repeating this
task for hours,” “I feel comfortable picking up
the object from the co-robot,” and “I would
suffer from chronic pain working with the robot
every day.” The Likert scale was used to
quantify the response, with “0” representing
“extremely disagree” and “7” representing
“extremely agree.”

Statistical Analysis

Nonparametric statistical tests were per-
formed in this study considering the collected
data does not follow a normal distribution (p <
0.05 in Shapiro-Wilk and Anderson Darling
tests). Specifically, Kruskal-Wallis one-way
analysis of variance was performed to in-
vestigate whether different end effector posi-
tions had significant effects on CAP and the
subjective questionnaire scores. Steel-Dwass
test was then performed for pairwise
comparisons.

RESULTS
CAP Score vs Iterations

Figure 6 shows how the GOLA-HRC im-
proved the working posture of a participant step
by step until the end effector moves to the Learnt
position. In this figure, the initial position was
too low for the participant and resulted in
a forward trunk bending posture. By calculating
the gradient of the CAP score, the algorithm
adjusted the position and orientation of the end
effector until the CAP score converged. In av-
erage, the proposed algorithm converges after
12.4 iterations.

CAP Scores

The Kruskal-Wallis tests showed that the end
effector positions had a significant impact on
participants’ CAP scores (p < 0.0001). As
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Figure 6. Postures over 13 iterations until the CAP score met the termination criterion.

depicted in Figure 7, the results of the Steel-
Dwass tests indicated that there was no signif-
icant difference between the Worker-selected
and Learnt positions. However, significant dif-
ferences were observed in all other paired
comparisons. To better understand the exposure
magnitude of each individual joint, we further
analyzed the CAP scores for specific body parts
(Figure 7(b)). The results showed that the end
effector positions had a similar effect on neck
and trunk bending angles, but no significant
differences were observed in lower and upper
arm angles.

Subjective Rating

The results of the subjective questionnaire
are presented in Figure 8, with statistical
significance marked. According to the Steel-
Dwass tests, there is no significant difference
between the Learnt and Worker-selected
positions. Similarly, there is no significant
difference between the Elbow Height and
Fixed positions. These findings suggest that
participants did not perceive a significant
difference between the Learnt position and
the Worker-selected position. Additionally,
the results align with the findings from the
CAP measurement, indicating that the Learnt
position is significantly more preferred than
both the Fixed and Elbow Height positions.
The subjective questionnaire shows that the
Fixed and Elbow Height positions have

a similar effect on workers’ perceptions,
which differs from the CAP results.

DISCUSSIONS
Effectiveness of GOLA-HRC

As shown in the Results, the overall CAP
scores of the Learnt positions are significantly
smaller than those of the Fixed positions and
Elbow Height positions. This result indicates
that the GOLA-HRC can effectively improve the
posture of a worker and thus reduce the MSD
risks. Also, it was found that the CAP scores of
Elbow Height positions are significantly lower
than the CAP scores of the Fixed positions,
which indicates individualizing the robot end
effector position helps improve the worker’s
posture.

When the performances of Learnt positions
were further compared with the Worker-selected
positions, it was found that there is no significant
difference on CAP. A closer look on each com-
ponent of CAP score further revealed that the
effects of different end effector positions are more
significant for the “Neck” score and “Upper Arm”
score (Figure 6b). Particular, Worker-selected and
Learnt positions  significantly reduced neck
flexion/extension angles and shoulder-elevation
angles.

Such a result suggests that GOLA-HRC
algorithm is able to converge at the posi-
tions that match the positions selected by
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workers. Meanwhile, there is no significant
difference between Learnt and Worker-se-
lected positions in any subjective ratings,
which indicates that the Learnt position in-
troduces the same level of physical workload
as the baseline Worker-selected position. As
the Worker-selected position is subjectively
selected by the participants, this position can
be considered as the optimal position from
the psychophysical perspective (Snook &
Ciriello, 1991). In psychophysics, it is as-
sumed that people have the ability to be “self-
protecting” from musculoskeletal injury by
adopting relatively safe working postures and
safe lifting weight (Acevedo & Ekkekakis,
2006). While this assumption has been chal-
lenged on the basis that workers, particularly
new employees lacking sufficient training,
may have difficulty in accurately gauging the
actual risks involved, psychophysics ap-
proaches have been utilized in ergonomics
interventions (Fernandez & Marley, 2014;
Jiang et al., 1986).

Adaptability of GOLA-HRC

During the experiment, a postural difference
among participants was visually observed by the
experimenters. For example, some people

233 3)

p < .05.

tended to move their eyes and kept their necks
straight during the tasks (Figure 9 left), while
others tended to make neck flexions and gazed
toward the breadboards without moving their
eyes much (Figure 9 right). Yet, it should be
noted our proposed GOLA-HRC algorithm
would converge at a higher position for the
participants who tend to bend their neck to
a greater extent. This is because the algorithm is
more sensitive to the neck angles than the height
of the breadboard. Another finding is that the
optimized end effector orientation always points
to the face of the participants since otherwise
participants would have to greatly squat or bend
their neck to look at the breadboard.

Safety Awareness of Workers in HRC

As collaborative robots have been newly
adopted in recent years, limited research has
been done in workers’ safety awareness of long-
term human-robot interaction. In particular, it
is unclear whether the subjectively optimal
position (i.e., “worker-selected” position) is
equivalent to the CAP-based optimal position.
As described in the previous section, some
participants have a significant neck flexion when
they look at the breadboard, and therefore the
GOLA-HRC algorithm moves the end effector
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I would suffer from chronic pain
working with the robot every day.

Figure 8. Summary of the questionnaire. The questionnaire includes three aspects ‘Partnership,”
“Behavior,” and “Safety,” and each of them is evaluated by three questions. The questions were ran-
domized, and the participants did not know the aspects when they were answering the questions. The
Likert scale was used to quantify the response, with “0” representing “extremely disagree” and “7”
representing “extremely agree.” The results of Steel-Dwass tests are annotated: “ns”—no significance;

ek 9,7p < .05.

to higher positions to prevent high scores of the
neck. According to the experiment, the majority
of the participants (17 out of 20) did adjust the
end effector to a position where they have a more
neutral neck angle when they were asked to
adjust the end effector positions. Yet, three
participants selected a position with a greater
neck flexion angle (Figure 10). For the partic-
ipants in Figure 10, the Worker-selected position
is below the worker’s shoulder, which prevents
the flexion of the upper arm but results in
a greater neck flexion angle. The reason for
choosing a posture with a greater neck flexion
could be that some participants have personal
preferences on a smaller shoulder flexion. While
such a posture may not result in any discomfort
over a short term, it may eventually lead to
MSDs over a long period of time. Therefore, if
workers are able to select the working location in

an HRC task, ergonomics education is still
necessary to ensure that they do not choose
a posture that poses risk of MSDs on a specific
joint.

Personalization of CAP

One advantage of the proposed model-free
RL method is that the optimization criteria can
be conveniently personalized for workers by
assigning different weighting factors to each
joint, which can be helpful for individualized
safety considerations. For instance, workers who
already experience neck discomfort should en-
sure their neck is in an as much neutral posture
as possible. In that case, one can apply a greater
weighting factor to the “Neck” CAP score be-
fore applying the RL algorithm. In a preliminary
test, the robot’s end effector moved to a higher
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(@) Left
During Training

(b) Right
During Training

Figure 9. The postures of workers gazing behavior. The white lines are reconstructed skeletons and
gray dashed lines indicate the sight of the workers’ eyes. The eyesight lines are closer to be vertical to

the head skeleton lines in (b) and (d).

position when the weighting factor of ‘Neck’ is
doubled and thus resulting in a smaller neck
flexion angle but a greater arm elevation angle
(Figure 11). Similarly, we can easily modify the
weighting factors of other joints to personalize
the GOLA-HRC algorithm for specific needs. In
this way, we can proactively prevent workers
from injuring a specific joint or reactively help
workers avoid awkward posture of a joint with
chornic pain. Another advantage of GOLA-HRC
is its flexibility in applications. There are various
ergonomic accessment tools, such as REBA

(Hignett & McAtamney, 2000) and NERPA
(Sanchez-Lite et al., 2013) that show a variety of
performance in different job configurations
(Yazdanirad et al., 2018). The reward function of
GOLA-HRC can be easily modified to fit other
ergonomic assessment tools. Moreover, the
overall CAP score in the current study is a linear
summation of the CAP scores of each body part
of a worker. If more evenly distributed scores
among each joint are preferred, one can choose
square or cubic summation which would penalize
greater sub-scores.
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Figure 10. Aworker’s postures in Learnt and Worker-selected positions. The Worker-selected position
poses greater risk on the neck, while the Learnt position balanced the “Neck” and “Upper Arm” CAP

SCOres.
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Figure 11. Left: The optimized posture in original CAP. Right: The optimized posture with doubled

weight on neck angle.

Limitations

There are a number of limitations that need to be
addressed. First, the optimization process in the
current study only considered two degrees of
freedom of the robot end effector. In a real-world
setting, a human-robot collaboration task can be
more complicated and thus more robot end effector
degree of freedom may need to be optimized. With
a greater number of the degree of freedom to op-
timize, the state space, however, will exponentially
grow. One possible solution is using sequential
learning, which divide one complex problem with
multiple parameters into several problems with
fewer parameters, but the validity of sequential
learning needs further investigation. Second, since
the computer vision algorithm was used for pose
reconstruction in this study, a camera needs to be
placed where its field of view is not blocked.
Otherwise, the error in pose reconstruction will be

greater. To address this problem, one could consider
using a multi-camera computer vision system. In
addition, it was found that the output of the
computer vision model could be less precise on
worker’s neck angle when the hair blocks the view
of their neck. A headband may be needed for
workers with longer hair. Third, the error in the
reconstructed joint position can affect the value of
the calculated CAP. To what extent this error affects
the CAP score needs to be further investigated. On
the other hand, we found the magnitude and the
direction of the joint position error are not sub-
stantially affected by human postures. Thus, the
gradient calculated in GOLA-HRC is less affected
by this error as the gradient is calculated by the
difference of CAP between each iteration. Fourth,
worker’s loose clothes may occlude certain visual
features for a precise human pose reconstruction.
As suggested by a previous study (Liang & Lin,
2019), a multimodal database including the images
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of workers wearing a variety clothes as well as the
ground-truth joint positions are further needed for
training a more robust computer-vision algorithm.
Fifth, the participants recruited in this study are not
required to have professional work experience in
HRC. Therefore, the postures adopted by these
participants may differ from those of actual
workers. Whether HRC-related working experi-
ences affect the performance of the proposed
method should be further examined.

CONCLUSION

In this study, we proposed a method to opti-
mize workers’ posture during HRC. A computer
vision method was first adopted to recognize
human posture and determine a CAP score. A
model-free gradient descent optimization algo-
rithm was then developed to lower the CAP score
of a worker. The experimental result shows that
GOLA-HRC effectively lowers workers’ CAP
during HRC tasks and thus reducing exposure to
postural risk factors of MSDs.
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of the participants.
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adaptive to provide personalized optimal work
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