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ABSTRACT: Dynamic catalysis is a phenomenon in which the
catalytic properties of the system change with time. It has been
recently proposed as an alternative to the current widely utilized
static catalytic approach because of potential significant improve-
ments in catalytic efficiency. Dynamic restructuring of active sites
on surfaces has also been observed in some nanocatalysts.
However, the microscopic mechanisms of underlying processes
remain not well understood. We developed a new stochastic
framework that allows us to quantitatively describe dynamic
catalysis and compare its properties with the static approach. It is
found that fluctuations between different catalytic pathways might
lead to enhancements in chemical reaction rates but only for
specific ranges of kinetic parameters. Our theoretical method can
explain these observations from the microscopic point of view. We show that the temporal efficiency of dynamic catalysis depends
only on the rates of chemical reactions and transitions between different catalytic pathways while being independent of the number
of active sites. It is also argued that the effects of dynamic catalysis are purely nonequilibrium, and the associated energy dissipation is
the source of improvements in catalytic efficiency. In addition, the stochasticity of dynamic catalysis is investigated. The proposed
theoretical approach clarifies some important microscopic aspects of catalytic processes.

■ INTRODUCTION
Catalysis is a method of accelerating chemical reactions that is
widely utilized in various industrial processes for manufactur-
ing consumer goods, fuels, fertilizers, plastics, medicines,
polymers, and many other things. It is also critically important
for multiple applications in modern chemical research.1−4 For
many years, significant research efforts have been devoted to
the search for the materials with the most efficient and
selective properties that led to the emergence of several new
classes of catalysts such as metal−organic frameworks,5,6

zeolites,7 nanoparticles,8 and many others. Catalysis has also
been investigated by a wide spectrum of theoretical methods
ranging from advanced quantum mechanical calculations to
computer simulations and machine-learning techniques.9−14

However, many aspects of microscopic mechanisms of catalytic
processes still remain not well understood.
Essentially, all currently utilized catalytic methods can be

viewed as static catalysis since the properties of the active sites
in these systems typically do not change with time (or are
assumed to be constant). Significant efforts have been devoted
to developing catalytic systems in which the binding
characteristics of surface-associated substrate species and
transition states can be tuned to achieve the maximum
catalytic turnover frequency.15 However, there is a fundamen-
tal result, which is known as the Sabatier principle, that limits
further improvements of catalytic systems.16,17 It states that the
most optimal conditions for catalysis can be achieved when the

interactions between catalysts and the substrate molecules are
of intermediate strength. For too weak interactions, the
substrates do not want to associate with active sites, lowering
the overall rate of the process. For too strong interactions, the
product formation is significantly delayed, again lowering the
overall chemical rate. This leads to so-called volcano-type
relationships between catalytic rates and the strength of
substrate−catalyst molecular bonds, and the peak in such
curves corresponds to the upper limit of catalytic perform-
ance.17,18 This also means, however, that it is impossible to
improve the catalytic properties of the system beyond this
optimal set of conditions.
A new approach that might overcome the fundamental

limitations of the Sabatier principle has been proposed
recently.19,20 The main idea here is to deviate from the static
catalysis conditions and consider situations when catalytic
properties can fluctuate with time. This new approach can be
viewed as dynamic catalysis. Unlike static catalysts, the
performance of which is limited by the Sabatier principle, in
dynamic catalysts, if the system is trapped in one surface state
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due to a large barrier on the path to the product, the dynamic
transition to another state might help to escape the trap.21 It
has been suggested that such modifications of the catalytic
surfaces might lead to higher catalytic efficiency and faster
overall reaction rates.19,20 The catalytic surfaces can be altered
by applying external electric fields and mechanical forces or
subjecting them to light or electromagnetic waves to induce
charge fluctuations.22 It is also possible to alternate the
chemical medium of the system (pH, ionic strength, etc.) to
achieve dynamic catalysis conditions. Some initial experimental
observations are supporting the idea that catalytic efficiency
can be improved in dynamic catalysis.22 However, it is still
unclear under what conditions such improvements can be
made and what is the degree of catalytic enhancement. It is
also unknown why it might happen at the more microscopic
level.
Closely related to dynamic catalysis are stochastic pumping

phenomena where the relative stabilities of states within a cycle
are modified by employing a time-dependent external energy
source or nonequilibrium chemical reactions. This modulation
influences the rate constants for transitions between states in a
correlated manner, leading to a net flux through the cycle and
enabling work in the system. Resonant catalysts, based on
stochastic pumping, employ a time-dependent oscillatory
external perturbation that deterministically alters the energies
of reaction species.19−22 Within a specific range of oscillation
frequency, known as the resonating frequency, the catalyst’s
turnover time experiences significant enhancement, as
observed in the work by Dauenhauer and colleagues in
catalysis applications.19−22 More recently, stochastic pumping
principles have been applied to investigate catalytic molecular
machines, where periodic changes in the catalytic environment,
induced by time-varying temperature, are explored.23

In close resemblance to dynamic catalysis is the phenom-
enon of f luxionality of catalytic active sites that has been found
in several systems.24−26 In this case, the active sites can quickly
interconvert between multiple thermally accessible states, but
each of them might have different catalytic properties. Recent
progress in experimental techniques has unveiled the dynamic
nature of nanoparticle catalyst surfaces under reaction
conditions. Notably, Pd and Pt nanoparticle surfaces exhibit
oscillatory behavior during the CO oxidation reaction.27,28

This dynamic response challenges the traditional notion of
static catalyst surfaces and is linked to factors such as surface
coverage and elevated temperatures of the nanoparticles. The
observed oscillatory behavior provides valuable insights into
the complex dynamics of catalytic processes at the nano-
scale.27−30 There are several catalytic systems where
fluxionality has been experimentally investigated. For example,
it has been confirmed for some chemical reactions on CeO2
and CeO2-supported Pt nanoparticles.28,31 It has been studied
also by various spectroscopic and electron microscopy
methods.32 Interestingly, some metal nanoclusters demon-
strated dynamic meta-stability at the atomic scale. These
catalytic clusters exhibited multiple low-energy isomeric states,
representing distinct structural configurations of identical sets
of atoms.14,33−36 So far, the dynamic restructuring of catalytic
active sites has been observed on several bulk catalytic surfaces,
in some nanoparticle systems, and also in the supported
nanocluster catalysts.14,33−36 However, the underlying micro-
scopic picture of catalytic processes in these systems also
remains not fully understood.
The observations of time-dependent changes in the catalytic

properties of active sites have raised several important
fundamental questions. Is dynamic catalysis always more
efficient than static catalysis? However, if yes, what is the
microscopic reason for this? If not, for what ranges of kinetic

Figure 1. Discrete-state stochastic model of dynamic catalysis. (a) Schematic representation of a single catalytic particle that can transition between
two surface states with catalytically different active sites. (b) Molecular mechanisms of chemical reactions catalyzed on the active sites of type A
(squares) and type B (triangles). (c) Effective chemical-kinetic description for processes taking place in dynamic catalysis.
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parameters can it be achieved and why? What is the driving
force behind the possible enhancements of catalytic perform-
ance in dynamic catalysis? In this work, we present a
theoretical investigation that attempts to answer these
questions quantitatively. Our goal is to obtain a more
microscopic picture of underlying processes by concentrating
on studying dynamic properties of these catalytic systems.
More specifically, we developed a minimal theoretical model to
investigate the catalytic properties of dynamic catalysis and to
compare them with static catalysis. The idea is to use the
simplest theoretical model that can clarify the physics of these
complex phenomena. Our analysis, which is based on discrete-
state stochastic calculations, suggests that the increase in
catalytic efficiency can be achieved but only for some specific
ranges of kinetic parameters. Our theory provides physical−
chemical arguments to explain these observations. In addition,
it is found that dynamic catalysis is always operating under
nonequilibrium conditions, and the associated energy dis-
sipation is the main source of the catalytic enhancements in
comparison with static catalysis. Furthermore, the stochasticity
of catalytic turnover times in dynamic catalysis exhibits a
complex behavior that can be explained by our theoretical
approach.

■ METHODS
To understand the molecular mechanisms of dynamic catalysis,
let us start with the model schematically shown in Figure 1a.
This model is motivated by several studies, where a single
nanocluster catalyst can have multiple isomeric structures with
different catalytic activities, and there are stochastic thermally
driven transitions between these states14,33−36 However, for a
clear comparative analysis, only two types of different catalytic
surfaces, labeled as A and B, are assumed in the system. We
consider a single catalytic particle with N identical active sites,
where the surface can be found in one of two macrostates: with
all active sites being of type A (squares) or with all active sites
being of type B (triangles). It is assumed for simplicity that the
chemical reaction of transformation of substrate S into product
P is catalyzed via two different Michaelis−Menten-like
mechanisms on the sites A and B (with the same final
product), respectively, as shown in Figure 1b. On A sites, the
substrate can associate to the active site with a rate u0, while
the reverse rate is equal to w. Then, the product can be created
with a rate u1 from the substrate−catalyst complex CS.
Similarly, on B sites, the substrate can associate with the active
site with a rate α0, while the reverse rate is equal to β, and the
product can be created with a rate α1 from the substrate−
catalyst complex CS*. The system fluctuates between two
surface macrostates with a rate γ. To assist the readers, all
parameters utilized in our analysis are assembled and explained
in Table 1.
At any moment, every active site can be found in one of the

four microstates: free A site, free B site, occupied by the CS
complex for A site, and occupied by the CS* complex for B
site. Then, one can introduce an effective chemical-kinetic
scheme to describe the processes in the system, as presented in
Figure 1c. In this scheme, the state n corresponds to the
situation when the system is in the macrostate A with n active
sites occupied by the complexes CS. The state n* describes the
situation when the system is in the macrostate B with n active
sites occupied by the complexes CS*. From any effective state
n or n*, the system can transition to the state (n − 1) or (n −
1)*, respectively, by forming a product P or by the dissociation

of the complex CS/CS* back into the substrate and the free
site. The corresponding transition rates are given by n(u1 + w)
and n(α1 + β), respectively; see Figure 1c. The factor n here is
because there are n such complexes from which these processes
might occur. The system can also transition to the states (n +
1) and (n + 1)*, respectively, and this happens only via the
association of the substrate to the free active sites. The
corresponding rates are (N − n)u0 and (N − n)α0; see Figure
1c. The factor (N − n) corresponds to the number of available
active sites not covered by the substrate/catalyst complexes.
Furthermore, the system can reversibly fluctuate between the
states n and n* with the rate γ (Figure 1c), reflecting the
dynamic nature of the system. It is important to note that
mapping catalytic processes in the system into effective kinetic

Table 1. All Parameters and Their Explanations Utilized in
Our Theoretical Method

symbol description

C catalytic site of type-A
C* catalytic site of type-B
S substrate molecule
CS substrate−catalyst complex on type-A site
CS* substrate−catalyst complex on type-B site
P product molecule
N total active sites on the catalyst
N effective state with n sites in CS state
n* effective state with n sites in CS* state
u0 rate of binding of S on C
u1 rate of forming a product from the CS complex
w rate of dissociation of CS into C and S
α0 rate of binding of S on C*
α1 rate of forming a product from the CS complex
β rate of dissociation of CS into C and S
γ rate of transition from type-A to type-B and type-B to type-A
Fn(t) probability density function of product formation at time t starting

from state n and n at t = 0
Fn*(t) probability density function of product formation at time t starting

from state n* at t = 0
F s( )n

*F s( )n
Laplace transform of Fn(t) and Fn*(t), respectively

Tn ,
*Tn

mean first passage time of product formation from state n and n*,
respectively

Tn
2 ,

*Tn
2

Mean-squared first passage time of product formation from
state n and n*, respectively

f n, f n* weight factors (probability of product formation from
state n and n*, respectively)

Pn, Pn* steady-state probability of finding the system in state n and n*,
respectively

mean product formation time from the whole catalyst
2 Mean-squared product formation time from the whole catalyst

EF efficiency function, the ratio of product formation time of the
static and dynamic catalyst

X a dimensionless parameter giving the relation between type-A and
type-B catalytic activities

γc1, γc2, x critical values of γ and x
Pn steady-state probability distribution of state n
Jij net steady-state flux from state i to state j
rij transition rate for state i to state j transition
Aij affinity of transition from state i to j
ΔW energy dissipation (entropy production) rate
η energy efficiency parameter
R randomness parameter
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scheme in Figure 1c allows us to simultaneously account for
chemical reactions taking place at all active sites.
Although the analysis can be done for an arbitrary number of

active sites N and an arbitrary number of intermediate states
(see the case of the systems with more than one intermediate
state presented in the Supporting Information), to simplify
calculations and to understand better the microscopic picture
of dynamic catalysis, it is convenient to consider the simplest
nontrivial catalytic system where the surface has only two
active sites (N = 2) with one intermediate state in each
pathway. Theoretical analysis can be easily generalized for an
arbitrary number of active sites. To obtain the dynamic
properties of the N = 2 system, we utilize a method of first-
passage probabilities that has already been successfully utilized
for studying the dynamics of catalyzed reactions.12,13,37,38

At any instant of time, the catalyst can be found in the
effective state n (the system follows the pathway A) or in the
state n* (the system follows the pathway B). Now, one can
define a function Fn(t) as a probability density function of the
first product formation event to be observed at time t after
starting initially (t = 0) from the state n (when the catalyst is in
the macrostate A with n occupied active sites ready to make a
product molecule). Similarly, Fn*(t) is the probability density
function of observing the first product formation at time t
starting initially in the state n* (when the catalyst is in the
macrostate B with n occupied sites ready to make a product
molecule). Note that the first-passage events that we record
correspond to transitions from the state n (n*) to the state n −
1 (n* − 1) that take place with the rates nu1 (nα1); see Figure
1c. We also record separately transitions n → n − 1 (n* → n*
− 1) that occur with the rates nw (nβ) due to dissociations of
the intermediate substrate-active site complex. The time
evolution of these first-passage probability functions is
governed by the backward master equations

= + +

= + +

= + + + *

+ + +

= + + +

+ + +

= + +

[ + + ]

= + +

[ + + ]

*

*
* *

*
* *

*

*

*
*

*

F t
t

u F t F t u F t

F t
t

F t F t F t

F t
t

u F t wF t u F t F t

u u w F t

F t
t

F t F t F t F t

F t

F t
t

u F t wF t F t

u w F t

F t
t

F t F t F t

F t

d ( )
d

2 ( ) ( ) (2 ) ( );

d ( )
d

2 ( ) ( ) (2 ) ( );

( )
d

( ) ( ) ( ) ( )

( ) ( );

( )
d

( ) ( ) ( ) ( )

( ) ( );

d ( )
d

2 ( ) 2 ( ) ( )

2( ) ( );

d ( )
d

2 ( ) 2 ( ) ( )

2( ) ( ).

p

p

p

p

0
0 1 0 0 0

0
0 1 0 0 0

1
1 0 0 2 1

0 1 1

1
1 0 0 2 1

0 1 1

2
1 1 2

1 2

2
1 1 2

1 2 (1)

Here, Fp(t) = δ(t) is the initial condition, indicating that
starting from a product state leads to immediate product
formation. The above set of algebraic equations can be solved
u s i n g L a p l a c e t r a n s f o r m a t i o n s , w h e r e

{ } = =F t F s F t t( ) ( ) e ( ) dn n
st

n0
a n d

{ } = =* * *F t F s F t t( ) ( ) e ( ) dn n
st

n0
. The details of calcu-

lations are presented in the Supporting Information.
To obtain the dynamic properties of dynamic catalysis on

the surfaces alternating between two types of active sites, we
introduce Tn , *Tn , and Tn

2 , *Tn
2 as the mean first-passage

time and mean-squared time, respectively, of product
formation from the state n or n*. These quantities are directly
obtained from the first-passage probability functions

= =
= =

T
F s

s
T

F s
s

d ( )
d

,
d ( )

dn
n

s
n

n

s0

2
2

2
0 (2)

and

= * =*
*

=

*

=

T
F s

s
T

F s
s

d ( )
d

,
d ( )

dn
n

s
n

n

s0

2
2

2
0 (3)

Now, the mean reaction time to form the product from any
state of the system can be evaluated as a weighted sum of mean
first-passage times from all possible initial states

= + + +* * * *f T f T f T f T0 0 0 0 1 1 1 1 (4)

where the weighting factors f n or f n* can be estimated using the
following arguments.37 We are assuming that the system is
already in the stationary state, and then to start from the given
state n or n*, the product formation should drive the system to
this state. In other words, these probabilities must be
proportional to the fluxes leading to these states. For example,
since no new reaction can start from states 2 and 2* (all sites
are occupied), their contribution to the mean reaction time is
zero. However, the contributions from the states 0, 0*, 1, and
1* are possible because the reaction can start from the
available free sites.
In the steady state, the flux to start a reaction from the state

n (n*) equals the flux to end a reaction (via the product
formation) at the same state n (n*). Therefore, we can write (n
= 0, 1)

+ ++ * + *f n u P f n P( 1) , ( 1)n n n n1 1 1 ( 1) (5)

where Pn and Pn* are steady-state probabilities to find the
system in the state n or n*, respectively. These stationary
probabilities can be explicitly evaluated, as shown in the
Supporting Information. Since f n and f n* are probabilities that
must be normalized, it yields

=
+

+ +

=
+

+ +

+

= + + *

*
+ *

= + + *

f
n u P

n u P P

f
n P

n u P P

( 1)

( 1)( )
,

( 1)

( 1)( )

n
n

n n n

n
n

n n n

1 1

0
1

1 1 1 ( 1)

1 ( 1)

0
1

1 1 1 ( 1) (6)

Using eqs 4 and 6 and the results for the stationary
probabilities (see the Supporting Information), the mean
reaction times can be explicitly evaluated as

=
+ + + + + + + + + +

+ + + + + + + +
u u w u u w

u u w u u u u
( )( ) ( )

( ) ( ) ( )( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 0 1 1

(7)

Our analysis can be easily generalized for more general
situations with unequal stochastic fluctuation rates between
different catalytic pathways, as shown in the Supporting

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c02713
J. Phys. Chem. C 2024, 128, 9077−9089

9080

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c02713/suppl_file/jp4c02713_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c02713/suppl_file/jp4c02713_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c02713/suppl_file/jp4c02713_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c02713/suppl_file/jp4c02713_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c02713/suppl_file/jp4c02713_si_001.pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c02713?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Information. In the limit of very fast fluctuations (γ ≫ 1), the
expression simplifies into

= + + + + +
+ +

u u w
u u

( )
( )( )

0 1 0 1

0 0 1 1 (8)

This limiting case can be easily explained using our
theoretical approach (see also Figure 1c). In this case, the
local equilibrium between states A and B is achieved, and the
overall process can be viewed as a catalytic process on only one
“average” type of active sites with the effective complex
formation rates (u0 + α0)/2, the effective complex dissociation
rates (w + β)/2, and the effective product formation rates (u1 +
α1)/2. The choice of equal γ for both transitions implies that
the likelihood of encountering A and B macrostates will be
equal over an extended observation period of the catalyst. On
the other hand, different fluctuation rates suggest that the
catalytic surface prefers a specific macrostate, where the
catalyst tends to stay for longer duration, on average. As shown
in the Supporting Information (Figure S7), the qualitative
analysis of our catalytic properties of dynamic catalysis remains
consistent for different transition rates between A and B
macrostates.
The higher moments of the reaction times can also be

calculated following the same procedure. For example, the
mean-squared reaction times are given by

= + * + + ** *f T f T f T f T2
0 0

2
0 0

2
1 1

2
1 1

2
(9)

The mean-squared first-passage times can be obtained from
the first-passage probabilities, as specified in eqs 2 and 3.

■ RESULTS AND DISCUSSION
To obtain properties of dynamic catalysis, let us define a
parameter x that connects the transition rates in different
catalytic states of the system

= =u x
u
x0 0 1

1
(10)

The physical meaning of this parameter is the following. It
gives the ratio of how fast the first transition rate of substrate
binding to the active site when the surface has only B sites in
comparison with the same transition when the surface has only
A sites. Simultaneously, it gives the ratio of how fast the second
transition rate of product formation is when the surface has
only A sites in comparison with the product formation rate
when the surface has only B sites. Introducing a single
parameter x reduces the parameter space and makes the
analysis easier. It is important to note that eq 10 describes the
simplest situation, and more complex relations between the
transition rates in different pathways are possible. However, as
we show explicitly in the Supporting Information, results do
not change much for more general cases. Thus, to better clarify
the physics of dynamic catalysis, we concentrate on this
simplest case that can be viewed as the situation when the
transition states in both pathways are close to each other along
the reaction coordinate of product formation (see the
Supporting Information).
Furthermore, relating the rates by the single parameter

satisfies the Sabatier principle where the rate of adsorption and
desorption cannot be varied independently for a catalyst. If the
energy of the CS complex is low, then the rate of forming the
CS will be faster. Additionally, the rate of forming the product
from CS will be slower because of the larger barrier for this

transition. Therefore, two catalytic pathways with low and high
adsorption rates will have high and low desorption rates,
respectively. In addition, one can think of kBT ln(x) as an
energy scale that specifies the corresponding differences in
energy barriers. When x = 1, there are no differences between
the two catalytic pathways to make products (via sites A or via
sites B). This case effectively corresponds to the limit of static
catalysis. For x > 1, the substrate association is faster for the
catalytic pathway via the states B, and the product formation is
faster for the catalytic pathway via the states A. The opposite
situation is observed for x < 1.
One should also notice that eq 10 is consistent with the

Sabatier principle. It postulates that accelerating the substrate-
binding reaction step simultaneously leads to slowing the
product formation step and vice versa. It also implicitly
assumes that the sum of activation barriers for two different
catalytic pathways is the same

+ = +* * *E E E EC CS CS P C CS CS P (11)

because from eq 10, we have

=
= +

* *

*

E E k T x

E E k T x

ln( ),

ln( )
C CS C CS B

CS P CS P B (12)

One can consider more general kinetic rates that are not
bound by the condition given in eq 11, but this should not
change the mechanisms of dynamic catalysis. For this reason,
we choose to utilize a single parameter x that reduces the
parameter space in our system, allowing us to obtain a clearer
microscopic picture of underlying processes.

Temporal Efficiency of the Catalyst: Static vs
Dynamic. The most popular property to evaluate the catalytic
system is its turnover frequency (or mean reaction time). In
our theoretical framework, we can explicitly calculate these
rates for both static (⟨τ⟩s) and dynamic catalysis systems
(⟨τ⟩d). One can then define a dimensionless temporal
efficiency parameter EF, which is the ratio of these reaction
times

=EF s

d (13)

It is important to notice here that although our calculations
are done for the case of only N = 2 active sites, the result for
the efficiency parameter is valid for arbitrary N. This is because
each active site is independent of the other, and the overall
reaction times are expected to be proportional to 1/N, which
means that the ratio of these times is independent of N. These
arguments emphasize the importance of eq 13 since the
efficiency depends only on the individual rates from chemical
reactions and fluctuation rates but not on the number of active
sites.
When EF > 1, dynamic catalysis is faster, while for EF < 1,

static catalysis is a more efficient approach. We can explicitly
evaluate the efficiency parameter using eqs 7 and 10, leading to

= { + + [ + + + + +

+ + ]} { + + +

+ [ + + + + + ]
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2
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0 1 0 1
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where for simplicity, we also assumed that the backward
reaction rates in both catalytic pathways are the same, i.e., β =
w. Considering a more general situation of different backward
rates (β ≠ w) in the catalytic pathways will not change the
qualitative picture of dynamic catalysis as we explicitly show in
the Supporting Information (see Figures S3 and S4). From eq
14, one can determine the range of parameters at which the
dynamic catalysts are more efficient, i.e., when EF > 1. It can
be shown that this range of parameters is specified by the
inequality

[ + + +
+ + ]

<

x u u w u x u u u w x

u u w

( 1) ( )( ) (( )

( ))

0

0 1 0 1 0 1

0 1

(15)

To understand better for what conditions dynamic catalysis
is more efficient than static catalysis, it is convenient to
consider two different situations depending on what step in the
chemical reaction is slower.
Case 1 (u0 > u1): this is the situation when the second step

in the catalytic pathway along the site A is slower than the first
step. It is schematically shown in Figure 2a,b. If x > 1, the

second transition rate along the catalytic pathway B is even
slower, and it is clear that transitions between these two
pathways will not make dynamic catalysis more efficient than
static catalysis. This is because the system will always face large
kinetic barriers from the intermediate states (see Figure 2b),
and jumping between pathways will not help. This argument is
fully consistent with the analysis of expression eq 15, and it is
also illustrated for specific calculations in Figure 3a. Thus, for x
> 1, we always have EF < 1 independently of varying other
kinetic parameters, and static catalysis is always a better option
to accelerate the chemical reactions.
Then, the conditions for dynamic catalysis to be more

efficient (EF > 1) might occur only for x < 1. This situation is

illustrated in Figure 2a. Since the second transition is always
slow in the catalytic pathway A, jumping to the catalytic
pathway B with a low second barrier will make the overall
process more efficient. The system is not trapped in the
intermediate state and can create product molecules faster.
This is also confirmed by the results presented in Figure 3a.
However, dynamic catalysis is not always efficient even for x <
1, and this depends on the speed of fluctuations between
catalytic pathways γ. For very large γ, the system can always
escape traps in front of the slow transitions with large barriers
(second step in pathway A and first step in pathway B): see
blue and green curves in Figure 3a. However, there is a critical
value of the fluctuation rate

= + +
+

u u u w
u u w
( )

c1
1 0 1

0 1 (16)

such that for γ < γc1, there is only a range of parameters, xc < x
< 1, at which the dynamic catalysts are more efficient (see the
red curve in Figure 3a), with

= + + +
+ + +

x
u u u w u u w
u u u w u u w

( ) ( )
( ) ( )c

1 0 1 0 1

0 0 1 1 0 (17)

This observation can be explained using the following
arguments. Decreasing the parameter x from x = 1 increases
the first barrier (rate α0) and decreases the second barrier (rate
α1) in pathway B. For the given fluctuation rate γ, the increase
in the first barrier is becoming so large that the system is not
able to escape this trap fast enough, and the static catalysts are
faster in this case (Figure 3a).
Our theoretical analysis also allows us to understand the role

of fluctuations between different catalytic pathways, which is
illustrated in Figure 3b. As expected, for the given set of
parameters, increasing the rate γ always moves the system in
the direction of making dynamic catalysts more efficient. While
it eventually happens for x < 1 (red and green curves in Figure
3b), it will never happen for x > 1 (blue curve in Figure 3b), as
we already explained above.
Case 2 (u0 < u1): this is the situation when the first step in

the catalytic pathway A is slower than the second step, as
schematically shown in Figures 2c,d. Then, for x < 1, the first
step in the catalytic pathway B will be even slower than for
pathway A. So, we will have a system with two large barriers for
the substrate associations, and jumping between the pathways
will not help (Figure 2c). Clearly, for x < 1, static catalysis is
always more efficient, as also illustrated by the results
presented in Figure 3c. At the same time, the dynamic
catalysts might be more efficient for x > 1, which is shown in
Figure 2d, but not for all ranges of parameters. Again, there is a
critical value of the fluctuation rate γc2 that separates two
different regimes

= + +
+

u u u w
u u w
( )

c2
0 0 1

1 0 (18)

For fast transitions between catalytic pathways A and B (γ >
γc2), the system is always able to escape traps before large
barriers, and dynamic catalysis is the most efficient method
(EF > 1); see blue and green curves in Figure 3c. However, for
smaller fluctuation rates (γ < γc2), the escape from the traps
works only for 1 < x < xc where the critical parameter xc is
given in eq 17. This is shown in Figure 3c (red curve). For
large values of x beyond this critical value, the escape from the
traps before large barriers is not possible. Again, for the fixed

Figure 2. Schematic energy profiles for chemical reactions on the
dynamic catalyst: (a) for u0 > u1 and x < 1 (case 1); (b) for u0 > u1
and x > 1 (case 1); (c) for u0 < u1 and x > 1 (case 2); and (d) for u0 <
u1 and x > 1 (case 2). Dynamic catalysis is efficient only in the cases
(a,d).
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set of kinetic rates, increasing the fluctuation rate γ always
increases the efficiency of the system, but only for some range
of parameters. It is still not enough to make dynamic catalysis
always faster than static catalysis for these parameters (Figure
3d). In addition, we estimated the efficiency of dynamic
catalysis for more general situations where the transition rates
between different catalytic pathways are not equal, and similar
trends are observed for these situations; see the Supporting
Information (Figure S7) for more details.
Energy Dissipation in Dynamic Catalysis. Our the-

oretical analysis suggests that dynamic catalysts function better
than static catalysts when the system can escape from the states
that are facing large kinetic barriers. It is more convenient to
think about it using the effective kinetic scheme for the
processes, as shown in Figure 4a. Starting from the state 0 and
considering for convenience the case 1 (u0 > u1 and x < 1), one
can see that the system will quickly move to state 1 and state 2,
but the product formation is very slow from these states.
However, moving from the upper states to the lower states in
Figure 4a allows the system to quickly create the product
molecules because α1 = u1/x. This suggests that paths 0 → 1
→ 1* → 0* and 0 → 1 → 2 → 2* → 1* → 0* are dominating
when the system effectively catalyzes the chemical reactions.
These processes generate circular fluxes in the effective kinetic
scheme that one might associate with energy dissipation
(entropy production).39

The notion of entropy production originates from stochastic
thermodynamics and has been applied to small-scale systems
like colloid particles, polymers, and molecular machines.40−42

In these systems, external driving forces lead to a non-
equilibrium steady state (NESS). Given our focus on a single-
nanoparticle catalyst, the principles of stochastic thermody-
namics can be conveniently extended to our system. At the
microscopic level, the impact of fluctuations becomes
significant, and the concept of entropy production provides a
quantitative tool for distinguishing between systems with
different degrees of deviations from equilibrium. The average
rate of entropy production can be correlated with the energy or
information exchange rate between the system and the heat
bath.41 Understanding the rate of energy dissipation is
particularly relevant as it reflects the cost associated with
sustaining specific dynamics within the system. Our theoretical
approach can provide a quantitative assessment of how much
energy can be dissipated and how it determines the efficiency
of dynamic catalysis.
Generally, to evaluate energy dissipation in the non-

equilibrium stationary state, one needs to know the fluxes
and the affinities in the system.39,43 More specifically, steady-
state flux between two states i and j is given by

=J r P r Pij ij i ji j (19)

Figure 3. Temporal efficiency of dynamics catalysis. (a) Efficiency parameter EF as a function of x for different fluctuation rates γ for case 1. (b)
Efficiency parameter EF as a function of the fluctuation rate γ for different x for case 1. The following parameters have been utilized in calculations:
u0 = 10 s−1 and u1 = w = 1 s−1. (c) Efficiency parameter EF as a function of x for different fluctuation rates γ for case 2. (d) Efficiency parameter EF
as a function of the fluctuation rate γ for different x for case 2. The following parameters have been utilized in calculations: u1 = 10 s−1 and u0 = w =
1 s−1.
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where rij and rji are rates for transitions i → j and j → i,
respectively. Pi and Pj are stationary probabilities to find the
system in state i or j. The affinity for the transitions i ↔ j can
be defined as (in units of kBT)

=
i
k
jjjjjj

y
{
zzzzzzA

r P

r P
lnij

ij i

ji j (20)

One can think about this quantity as an effective free energy
difference between the states j and i. Then, the energy
dissipation (or entropy production) in the nonequilibrium
system can be estimated as43,44

=W J A1
2 i j

i j i j
,

, ,
(21)

The entropy production (energy dissipation) calculations
are done by considering chemical reactions at all active sites,
and this is accomplished by mapping the system into an
effective kinetic model, which is a coarse-grained representa-
tion of the catalyst. In this theoretical framework, all the
transitions are reversible, thereby enabling us to calculate
affinities and to avoid singularities in the evaluation of energies.
The transitions n → (n − 1), n* → (n* − 1) do not
differentiate between the product formation and the substrate
dissociation processes. As a result, the entropy production
observed in our analysis includes contributions from both
complex dissociation and product formation. However, we are
only interested in the differences in energy dissipation between
dynamic and static catalysis. Since both catalytic methods are
treated at the same theoretical level, the results should help us

Figure 4. (a) Effective kinetic scheme for a system with alternation between two types of catalytic sites. (b) Energy dissipation parameter ΔW as a
function of γ and (c) energy dissipation parameter ΔW as a function of x. The following kinetic rates used in calculations: u0 = 10 s−1 and u1 = w =
1 s−1. (d) Energy dissipation ΔW as a function of γ and (e) energy dissipation parameter ΔW as a function of x. The following kinetic rates used in
calculations: u1 = 10 s−1 and u0 = w = 1 s−1.
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to understand better the microscopic picture of dynamic
catalysis.
Our stochastic model of dynamic catalysis (Figure 4a) allows

us to explicitly evaluate all transition rates and all stationary
probabilities. This provides a direct way of estimating the
energy dissipation in dynamic catalysis. The detailed
calculations are presented in the Supporting Information,
yielding
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where we again assumed that β = w. One can see that for x = 1
(static catalysis), there is no energy dissipation (ΔW = 0), but
all cases of dynamic catalysis (x ≠ 1) are associated with
energy dissipation; see also Figures 4c,e. Thus, dynamic
catalysts always operate at nonequilibrium conditions. One can
also conclude that to become more efficient, dynamic catalysis
requires energy dissipation from fluctuations between macro-
states, in contrast to static catalysis. At x = 1, both catalytic
pathways A and B undergo the same chemical reactions. Under
these conditions, the catalyst follows a detailed balance,
resulting in zero energy dissipation from the point of view of
an effective kinetic model. In this model, all clockwise and
counterclockwise fluxes balance out each other. Since both

macrostates are identical at x = 1 and no energy dissipation
occurs, the dynamic behavior is absent. At the same time, it is
important to emphasize that in real systems, there will be some
additional energy dissipation even in the static catalysis case,
and this means that our analysis estimates the relative energy
dissipation in the dynamic catalysis in comparison with the
static catalysis. Our result ΔW > 0 simply means that more
energy dissipation is needed for dynamic catalysts, and this
catalytic mode is further from equilibrium than static catalysis.
Now, it is important to clarify how energy dissipation

correlates with the efficiency of dynamic catalysis. Let us start
with the range of parameters that correspond to case 1 (u0 >
u1), as illustrated in Figures 4b,c. Increasing the fluctuation rate
γ always leads to higher energy dissipation, but the effect is
stronger for x < 1 when dynamic catalysis might be more
efficient. Similarly, for case 2 (u0 < u1), faster alternation is
associated with an increase in energy dissipation in the system.
Again, when dynamic catalysis might be more efficient (x > 1),
stronger energy dissipation is expected.
The results presented in Figure 4 show that to achieve a

better performance for dynamic catalysis, the system has to
spend some energy. Our theoretical approach can quantify this
effect. For this purpose, we introduce an energy efficiency
parameter

= W
EF (23)

Figure 5. (a) Energy efficiency parameter η as a function of x and (b) as a function of the fluctuation speed γ with kinetic rates u0 = 10 s−1 and u1 =
w = 1 s−1, corresponding to case 1. (c) Energy efficiency parameter η as a function of x and (d) as a function of the fluctuation speed γ with kinetic
rates u1 = 10 s−1 and u0 = w = 1 s−1, corresponding to case 2.
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where ΔEF = EF − 1. The physical meaning of this parameter
is how much energy dissipation is needed to make dynamic
catalysis more efficient than static catalysis. We expect that the
most efficient catalytic system is achieved for the smallest
values of this parameter since it would correspond to the
smallest amount of energy needed to make catalysis more
efficient.
Calculations are performed only for situations when the

dynamic catalysts are more efficient (EF > 1), and the results
are presented in Figure 5. One can see that lowering x (case 1)
requires more energy dissipation (Figure 5a) to make dynamic
catalysis more efficient. However, increasing the speed of
fluctuation does not improve much the energy efficiency of
dynamic catalysts; see Figure 5b. Increasing γ lowers the
energy efficiency parameter but only for relatively small
fluctuation rates and when x ≪ 1. No improvement is
observed for the values of x close to unity. Similar results are
observed for case 2. Making dynamic catalysts more efficient
by increasing x requires more energy dissipation (Figure 5c),
but increasing the fluctuation speed again has a very limited
effect (Figure 5d).
There is an important conclusion from the results presented

in Figure 5. They suggest that a possible route to improve the
efficiency of dynamic catalysis by accelerating the fluctuations
between different catalytic pathways might be reasonable, but
it is generally not the best strategy for a large range of
parameters from the energetic point of view. It seems that
increasing the energy dissipation (ΔW) becomes proportional

to improvements in the catalytic efficiency (ΔEF) for large
fluctuation rates γ.

Stochasticity of Dynamic Catalysis. Our focus on small
systems emphasizes the significance of stochastic fluctuations
in observable quantities. Numerous instances underscore the
importance of stochastic effects, including biological systems
like living cells,45,46 physical phenomena such as phase
transitions,47 chemical kinetics, and nanocatalysts.9 Our
theoretical approach also allows us to estimate the degree of
stochasticity in dynamic catalysis. For this purpose, we
introduce a dimensionless parameter randomness (R), which
is defined as13,38,48

=R
2 2

2 (24)

The physical meaning of this parameter is the following. If
the catalyzed chemical reaction of making a product from the
substrate would be a single-step Poisson process, then it can be
shown that R = 1.48 However, deviations from unity reflect
different sources of stochasticity in the system. The case R < 1
corresponds to the situation when there are several rate-
limiting steps on the pathway between the initial and final
states of the system. At the same time, R > 1 suggests the
existence of multiple parallel pathways that might drive the
system in opposite directions.
The results of our calculations of the randomness parameter

R are presented in Figure 6. One can see that increasing the
fluctuation rate γ generally decreases the randomness; see

Figure 6. (a) Randomness as a function of the fluctuation speed γ and (b) randomness as a function of the parameter x. The following kinetic rates
are used in calculations in plots (a,b): u0 = 8 s−1, u1 = 3 s−1, and w = 2 s−1, which corresponds to case 1. (c) Randomness as a function of the
fluctuation speed γ and (d) randomness as a function of parameter x. The following kinetic rates are used in calculations for plots (c,d): u0 = 5 s−1,
u1 = 8 s−1, and w = 2 s−1, which corresponds to case 2.
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Figures 6a,c. This can be understood in the following way. For
not very fast fluctuations and for very large deviations from x =
1, the system might explore both catalytic pathways and R > 1
is observed. Increasing the rate γ changes the system from two-
pathway dynamics to effectively single-pathway dynamics due
to reaching the local equilibrium for alternation between
macrostates A and B, as we argued before. In this case, R
becomes smaller than 1. However, for x close to 1, the
differences between the pathways are already not large, and we
have R < 1 with not much effect on the randomness by varying
the fluctuation rate γ.
The dependence of randomness on the parameter x is more

complex, and it exhibits a nonmonotonic behavior with the
minimal value of R at some xmin; see Figures 6b,d. Interestingly,
xmin is not equal to one as one would naively expect; it is
smaller than one for case 1 (Figure 6b) and larger than 1 for
case 2 (Figure 6d). Again, this result might be explained by
noticing that for x close to 1, both catalytic pathways are very
similar, yielding small values of R, while for very large and small
x, the differences between two pathways become large,
increasing the randomness. In addition, faster alternation
between different catalytic pathways makes this effect weaker.
One could also see (Figures 6b,d) that the position of xmin

depends on the fluctuation rate. Increasing γ always shifts xmin
away from 1. We can present the following arguments to
explain these observations. When γ is small, transitions
between macrostates A and B are less frequent, and the
product molecules are typically formed only in one specific
macrostate. Then, minimal randomness is expected when both
rates in the same pathway are rate-limiting and comparable,
i.e., for α0 ≃ α1. Using 10 this leads to the following estimate of
xmin

x
u
umin

1

0 (25)

The situation is different for very fast fluctuation rates (γ ≫
1). In this case, the process can be viewed as following a single
pathway with the effective rate of substrate binding (u0 + α0)/2
and the effective rate of product formation (u1 + α1)/2. The
minimum in randomness is expected when both of these rates
are rate-limiting, yielding with the help of eq 10

x
u
umin

1

0 (26)

One should also notice that eqs 25 and 26 also explain why
for case 1 we have xmin < 1 and for case 2 xmin > 1.

■ SUMMARY AND CONCLUSIONS
We developed a novel theoretical framework to understand the
molecular mechanisms of dynamic catalysis that has been
recently proposed as a new method of enhancing catalytic
performance that avoids the limitations of static catalysis. Our
method is based on the stochastic description that allows us to
obtain a comprehensive quantitative description of these
phenomena. In the presented theoretical method, chemical
reactions at all active sites are simultaneously analyzed by
mapping exactly dynamic processes into an effective kinetic
model, providing a clearer microscopic picture of dynamic
catalysis. In contrast to previous studies where external
perturbations alter transition rates deterministically by
changing the energy of the individual species (pumped/
resonant catalysis), our study introduces stochastic fluctuations

for the surfaces of the catalysts. Such surface transitions, driven
by thermal energy, have been previously reported in some
metal catalytic nanoclusters, causing the cage structure of the
cluster to isomerize at higher temperatures and leading to
various free-energy local minima states. Due to the thermal
accessibility of these states, considering stochastic transitions
between them seems to be a more realistic and more general
approach. Figure S6 in the Supporting Information shows the
comparative study of our model and pumped catalysts with
deterministic oscillatory transitions, and one can see that the
presented stochastic approach also accounts for all observa-
tions for deterministic transitions.
Our results show that the temporal efficiency of dynamic

catalysis is determined only by the rates of chemical reactions
and transitions between different pathways, but it is
independent of the number of active sites. By explicitly
analyzing a minimal theoretical model, it is found that
alternating between different catalytic pathways might improve
the catalytic performance; however, this happens only for some
ranges of parameters. More specifically, large kinetic barriers
must occur not for the same transitions in catalytic pathways,
and the fluctuation rates must be fast enough to release the
system from being trapped before large kinetic barriers in their
pathways. Using an effective chemical-kinetic description, it is
also shown that dynamic catalysis is a nonequilibrium
phenomenon, and energy dissipation is required to make it
more efficient than static catalysis. In addition, we analyzed the
stochastic effects of dynamic catalysts that exhibit complex
behavior depending on different parameters of the system.
Furthermore, the temporal and energetic efficiency of dynamic
catalysts is explicitly evaluated.
One of the main conclusions of this investigation is that, in

contrast to previous studies, it is shown that dynamic catalysis
does not always lead to improvements in the catalytic
performance. In our theoretical analysis, we were able to
quantitatively evaluate the conditions when it might happen,
allowing us to present physical−chemical explanations of these
observations. This result not only provided better microscopic
picture of dynamic catalysis but also suggested practical ways
to develop more efficient catalytic systems.
Although our theoretical approach provides a quantitative

molecular picture of dynamic catalysis phenomena, it is
important to discuss its limitations. Only two active sites (N
= 2) on each catalytic surface have been assumed in our model,
while in reality, the number of active sites might be very large
(N ≫ 1). It is clear how to generalize our method for the
arbitrary number of active sites, but the calculations might
become too complex to obtain explicit analytical results, and
computer simulations seem to be a reasonable approach in this
case. Note, however, that our calculations of temporal
efficiency are already valid for an arbitrary number of active
sites.
In this study, we explored dynamic catalysis phenomena

where the active sites might transition between two catalytic
pathways, following simple Michaelis−Menten or Langmuir−
Hinshelwood like mechanisms with a single reversible
intermediate step followed by irreversible product formation.
How dynamic catalysis will perform for more complex catalytic
mechanisms remains not well understood, as dealing with them
poses analytical challenges. To prove that our simple model
provides a generally valid physical−chemical description of
these complex phenomena, one might consider catalytic
reactions with multiple intermediate steps, as discussed in
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the Supporting Information. Our Monte Carlo computational
simulations for these more complex chemical mechanisms
suggest that the qualitative results are consistent with one-step
processes, justifying our theoretical analysis. Furthermore, the
stochastic transitions are considered only between two catalytic
pathways. This is inspired by the studies of thermal
isomerization in metal nanoclusters, which might lead to
distinct active sites. Nonetheless, it cannot be ruled out that
the active sites might undergo partial transitions, creating
several distinct heterogeneous catalytic pathways (with mixed
active sites), and the system might fluctuate between them.
This might lead to some new interesting phenomena that need
to be further investigated. Our theoretical approach seems to
be a good starting point for these future studies.
In addition, transitions between different catalytic macro-

states might not be perfect as assumed in our work, and there
might be multiple heterogeneous states with different fractions
of different types of active sites. This can significantly
complicate the analysis of dynamic catalysis. We also assumed
a specific relation between kinetic rates for different pathways
that generally might not hold. However, despite these issues,
our theoretical approach still provides a transparent physical
picture of dynamic catalysis that explains many important
microscopic aspects of these phenomena and gives exper-
imentally testable predictions. At the same time, more
advanced experimental and theoretical studies of dynamic
catalysts are clearly needed.
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