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Abstract Fibrous networks such as collagen are common in biological systems. Recent theoretical and
experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer
networks, however, are composites made of elements with different rigidity. For instance, the extracellular
matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of flexible polymers
such as hyaluronic acid (HA). The interplay between different biopolymer components in such composite
networks remains unclear. In this work, we use 2D coarse-grained models to study the nonlinear strain-
stiffening behavior of composites. We introduce a local volume constraint to model the incompressibility
of HA. We also perform rheology experiments on composites of collagen with HA. Theoretically and
experimentally, we demonstrate that the linear shear modulus of composite networks can be increased by
approximately an order of magnitude above the corresponding moduli of the pure components. Our model
shows that this synergistic effect can be understood in terms of the local incompressibility of HA, which
acts to suppress density fluctuations of the collagen matrix with which it is entangled.

1 Introduction

The mechanical stability of cells and tissues depends
on complex interconnected biopolymer networks such
as the cytoskeleton inside cells and the extracellular
matrix outside cells. These networks are made of diverse
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structural components that work together to support
physiological tasks such as cellular rearrangements, tis-
sue growth and signaling, thereby translating to a diver-
sity in functions and properties [1,2]. Although the
properties of the individual components of these com-
posite materials vary, they complement one another for
overall enhanced mechanical properties. In extracellu-
lar matrices, stiff collagen type I fibers are often found
in a softer matrix of flexible polysaccharides such as
hyaluronic acid (HA). As the most abundant protein in
the human body, collagen forms fibrillar networks that
can bear high tensile stresses [3,4], while hyaluronic
acid forms hydrogels that are known to resist compres-
sion, e.g., for lubrication of joints [1].

Although biopolymers are distinct in their chemical
structures, the macroscopic properties of their networks
can be largely independent of the microscopic details.
Recent studies have shown that the mechanics of these
networks can be understood in terms of the collective
behavior of simplified constituents. Specifically, coarse-
grained models based on elastic springs and bending
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beams have been shown to lead to quantitative and
predictive models of collagen network elasticity [3,5–
8]. An important architectural aspect of such models
is the average coordination number or connectivity 〈z〉
[9]. Collagen networks have connectivity between 3 and
4 [3,10,11], which places them well below the isostatic
threshold for mechanical stability of zc = 2d, where d is
the dimensionality, as originally identified by Maxwell
[12,13]. Thus, such networks are sub-isostatic and their
linear stability at small strain must depend on more
than spring-like energies alone [14,15]. In the case of
collagen type I networks, the linear elasticity can be
understood to be due to the bending resistance of the
constituent fibers, while this bending response can tran-
sition to a stretching response of fibers at large enough
strain [3,16–18]. Moreover, this transition has recently
been shown to be a second-order phase transition with
rich critical behavior [5].

In the linear elastic regime governed by bending
of fibers, the network strain must also be nonaffine,
characterized by significant local nonuniformity in the
strain field and a shear modulus far below that of a
purely stretching response [17–22]. This soft bending-
dominated regime can be understood to be due to the
nonaffine strain. Thus, suppression of nonaffinity should
generally result in network stiffening. Here, we study
the effect of local incompressibility on the mechan-
ics of fiber networks. In general, the strain field can
be decomposed into volume-preserving (shear-like) and
compressive or dilational components. Under applied
bulk strain, only nonaffine deformations can change the
local volume or density. The relative importance, how-
ever, of the nonaffine dilational component for the elas-
ticity of networks such as collagen is not known. Given
the important role of HA that is known to affect tissue-
level compressibility of extracellular matrices, it seems
likely that it may reduce nonaffine strain at the local
level and hence affect extracellular matrix mechanics.

Here, we develop a computational model to study
the role of local incompressibility on network mechan-
ics and we find that incompressibility alone can lead to
approximately 10-fold stiffening of fibrous networks in
the linear elastic regime. We also demonstrate exper-
imentally a similar increase in the linear shear mod-
ulus of collagen networks upon the addition of HA.
Although, our model and our interpretation of experi-
ments focuses on mechanics alone, we note that HA can
also lead to electrostatic effects such as swelling [23].
It is important to highlight, however, that our experi-
ments utilize a high ionic strength buffer for which the
Debye screening length is much smaller than the struc-
tural length scales of our networks. Thus, we do not
expect significant electrostatic effects due to HA. Inter-
estingly, in contrast with prior computational mod-
els that have shown similar stiffening effects of addi-
tional elastic interactions such as bending resistance
or additional Hookean springs, we show that the effect
of local incompressibility is limited. Specifically, even
in the limit of strong elastic suppression of local com-
pression, the linear shear modulus remains below that
for a purely stretching response of the network. This is

consistent with the presence of both volume-preserving
and dilational components of the nonaffine response of
bending dominated fiber networks such as collagen in
the linear regime. Our computational model also con-
stitutes a computationally efficient model for creating
elastic networks with desired bulk and shear moduli.
This is in contrast to the common practice of modeling
networks with Hookean interactions, which necessarily
lead to comparable bulk and shear moduli for regular or
disordered structures, whereas most real materials have
disparate bulk and shear moduli. Furthermore, each of
the components bring competing energies to the table
including fiber stretching, bending, matrix stretching
and the resistance to compressive stresses leading to a
unique and non-trivial mechanical behavior. Hence, we
develop a coarse-grained composite model that explains
the surprising mechanical properties of composite sys-
tems under shear, often composed of soft and rigid ele-
ments.

2 Two-fluid model with incompressible
matrix

Collagen networks are embedded as a stiff macromolec-
ular fiber matrix in an interpenetrating fluid with
very different mechanical properties. In the case of a
surrounding Newtonian liquid medium, the network
response can differ substantially on different length-
or timescales. On short timescales or on large length
scales, the fluid viscosity prevents significant relative
motion of network and fluid, rendering the composite
system effectively incompressible along with the liquid.
The Poisson ratio ν = 1/2 in this case. By contrast,
at longer times, a decoupling from the fluid can lead to
compression and a significantly smaller Poisson ratio for
the network. In fact, for such a two-fluid system, there
is no well-defined Poisson ratio [24–28]. The poroelastic
timescale τ for this decoupling is expected to depend
on the fluid viscosity η and the network shear modulus
G and pore size ξ, according to τ ∼ ηr2/(Gξ2), where r
is the characteristic length-scale over which fluid trans-
port occurs [29,30].

Hyaluronic acid can itself form a relatively flexible
polymer hydrogel with a pore size approximately two
orders less than that of collagen [31]. Pure HA net-
works are well-approximated as linear (visco)elastic up
to strains larger than for the linear regime of colla-
gen networks [32–35]. For collagen networks embedded
in HA matrices, in addition to a continuum viscous-
like coupling, one must account for a much stronger
topological entanglement of collagen and HA. For high
molecular weight HA, this topological entanglement can
be expected to dramatically suppress relative motion of
the network and embedding fluid. We approximate the
HA gel as an elastic matrix with shear modulus Gm and
much larger Lamé coefficient λm on relevant timescales
and length-scales larger than the collagen pore size ξ,
which is much larger than that of HA. We thus modify
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Fig. 1 A snapshot of the arrangement of the compos-
ite network on a triangular lattice. The dotted red lines
depict an undiluted network representing the hyaluronic
acid matrix. The solid black lines illustrate a diluted tri-
angular network (〈z〉 = 3.3) analogous to the structure of
collagen and connected to the matrix at every node. A local
volume constraint of area rigidity, β is applied over sets of
six triangles or a full hexagonal lattice, as shown by the
gray areas in the diagram. In this system, the nodes are
connected to each other with harmonic springs of moduli
μm = 10−5 and μf = 1.0 which correspond to the moduli of
the matrix and fiber, respectively. Additionally, the fibers
have a low bending modulus of κ = 10−4

the prior non-inertial two-fluid model [28] equations of
motion as

0 = Gm∇2�um + (Gm + λm)�∇ · (�∇ · �um)
−Γ( �um − �uf ) (1)

and

0 = Gf∇2 �uf + (Gf + λf )�∇ · (�∇ · �uf )
+Γ( �um − �uf ), (2)

where um refers to the matrix displacement field, and
the second equation refers to the corresponding fiber
terms. Here, Γ represents the coupling between the col-
lagen fiber network and the HA matrix. In principle,
this coupling is both viscoelastic and topological in
nature, but we assume it to be strong and dominated by
topological constraints. Physically, this constraint sup-
presses the flow of the HA matrix from one unit cell
of the fiber network to another. This may potentially
dramatically reduce the nonaffine deformation of the
collagen in response to shear, as we explore below.

3 Model

To investigate the properties of composite networks
comprising stiff collagen fibers embedded in soft hyaluronic

acid, we utilized a 2D triangular lattice as our model,
following many prior studies [15,36–39]. Initially, we
generated a periodic triangular lattice of size W = 90
consisting of N = W 2 Hookean springs to model the
HA network. All the springs were directly cross-linked
at the nodal points. A section of the constructed net-
work is shown in Fig. 1. Importantly, since this struc-
ture has a coordination number or connectivity of z =
6, which exceeds the isostatic threshold of zc = 4 in
2D [12,13], the response is expected to be nearly linear
with both Gm and λm proportional to μm. As has been
noted, one cannot account for the expected large com-
pression modulus (i.e., λm � Gm) with such a model.
We can model a large compression modulus by imposing
a local area constraint similar to what has been done,
e.g., in prior vertex models for epithelial tissues [40–43].
Importantly, we add such a constraint not at the level
of individual triangles but for hexagons, as shown in
Fig. 1, as we explain as follows.

The resulting matrix Hamiltonian is given by

Hmatrix =
μm

2

∑

ij

(lij − lij,0)2

lij,0

+
β

2

∑

h

(Ah − Ah,0)2

A2
h,0

(3)

where lij,0 = 1 represents the length of the ij
bond/spring in the relaxed state, lij is the current bond
length in the deformed state, Ah,0 is the initial relaxed
area of the hexagon over which the area constraint is
being applied and Ah is the current area of the hexagon.
Here, β represents the Hookean-like strength of the
applied local volume constraint, which can be expected
to determine the bulk modulus B of the resulting net-
work. We confirm this below. As shown in Eq. (3),
the local volume incompressibility of the matrix was
modeled as a quadratic energy cost due to the change
in area, which can also be understood as a penalty
imposed when the network moves away from the equi-
librium area (here, in 2D) at a local level. To imple-
ment this local constraint, we divided the matrix net-
work into hexagonal unit cells and applied the penalty
in energy for each of these units. Imposing an additional
constraint onto hexagonal structures instead of each of
the triangles that compose them avoids volumetric lock-
ing and over-constraining the system. When a struc-
ture is subjected to volumetric locking, it develops very
high stresses and is devoid of all floppy modes [44]. In
other words, it would exhaust the system from all of
the degrees of freedom, curtailing node movement. This
would also be contradictory to our ultimate objective
of constructing a composite model that exhibits dis-
tinguishable shear and bulk moduli. In addition, using
a hexagonal structure on a triangular architecture pro-
vides the added advantage of preserving rotational sym-
metry, which is not the case with other regular polygons
of comparable vertex count.

The fibers were then added to the matrix using
springs of a higher stretch modulus, and a bending
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rigidity, κ. To avoid the effect of spanning fibers, each
of the fibers were initially cut at a random bond. The
fibers were then randomly diluted by cutting random
bonds until the fiber network had an average sub-
isostatic connectivity of 〈z〉 = 3.3, which is below the
Maxwell isostatic threshold of zc ∼ 2d = 4 (d dimen-
sions) in 2D. Any dangling ends (nodes with only one
connection) that have no effect on the mechanics of
these networks were removed.

The matrix comprises a stretching energy and an
energy resulting from local volume preservation. The
fiber energy includes stretching energy of the springs
and a bending energy calculated as the resistance to
bending between two nearest-neighbor bonds on the
same fiber. The Hamiltonian for the fiber networks can
be written as [9,41],

Hfiber =
μf

2

∑

ij

(lij − lij,0)2

lij,0

+
κf

2

∑

ijk

(θijk − θijk,0)2

lijk,0

(4)

where the parameter, μm is the stretching modulus of
the matrix, lij,0 is the bond length prior to any deforma-
tion of any bond between two nodes, lij is the current
bond length, μf is the stretching modulus of the fiber,
κf is the bending rigidity of the fiber, θijk,0 is the initial
angle between the bonds ij and jk, θijk is the current
bond angle between bonds, lijk,0 = lij,0+ljk,0

2 is an aver-
age of the rest length of the two adjacent bonds under
consideration, Ah,0 is the initial area of the hexagon
over which the area constraint is being applied and Ah

is the current area of the honeycomb. β determines the
strength of the applied local volume constraint or the
strength of resistance to compression and is sometimes
also referred to as volume elasticity in confluent mod-
els [45]. Thus, the total energy of the composite system
is the sum of the two aforementioned individual com-
ponents, Htotal = Hmatrix + Hfiber. In order to obtain
sufficient statistics, about 50 different realizations were
analyzed, and the ensemble average of the parameters
was computed across these samples.

To simulate the rheology of the composite, we apply
quasi-static shear strain, and then find a mechanically
stable equilibrium configuration of the system. The sys-
tem is periodic in both directions and we use Lees-
Edwards boundary conditions to apply shear strain [46].
For each strain step, δγ, we first affinely deform the
node positions and then obtain the minimum energy
configuration of the system using FIRE [47]. The algo-
rithm is designed to stop when the maximum force on
the nodes reaches a value less than a tolerance value
(we choose to be 10−10), which serves as the stopping
criteria. The nonaffine node positions are determined
as a result of this structural relaxation after which the
required macroscopic quantities such as the stress ten-

sor are calculated as [48],

σab =
1

2V

∑

〈ij〉
fa

ij(u
b
i − ub

j) (5)

where a and b represent any two coordinates, i and j
are the nodes connected by a bond, fa

ij is the a compo-
nent of the force exerted on node j by node i, and ub

i is
the b component of displacement vector of node i. The
stress calculated in equation 5 quantifies the resistance
to stretching, bending and compressibility in different
directions as a result of the applied external deforma-
tion and the enforced energy constraints. To capture
the nonlinearity in the mechanics and to compare with
the rheology of experimental systems, we compute the
differential shear modulus, K, defined as,

K =
dσ‖
dγ

(6)

where, σ‖ and γ are the shear stress and the applied
strain, respectively. To explore the physical implications
of β and to quantify its effect on the bulk modulus of the
matrix and composite, we measure the normal stresses
at an applied bulk strain, ε. Similar to shear strain, at
every step, we apply a small isotropic bulk strain to the
composite network and subsequently relax the system.
We compute the bulk modulus as a derivative of the
normal stress, σ⊥ i.e., B = 1

2 (1 + ε)dσ⊥
dε [49].

The parameter values are chosen to replicate collagen-
HA in physical settings. In a previous study of physi-
cal systems, the ratio κ/μf for fibers was found to be
directly proportional to the fiber volume fraction, φ
[50]. So, to compare with experiments, values of κ/μf

less than 10−3 are suitable, and for most purposes in
this study, we set μf = 1.0 and κ = 10−4. The matrix
is a soft elastic network with a low stretch modulus of
μm = 10−5 relative to the fiber stretch modulus. To
evaluate the effect of local incompressibility, β is varied
to analyze the system up to the physical limits discussed
later in this text.

4 Results

Figure 2 illustrates the ability of the second term in
Eq. (3) to independently control the shear modulus and
bulk modulus of both the matrix and composite net-
works. Previous studies have achieved such a decoupling
by tuning the network’s microscopic structure [51,52].
Here, the area constraint provides a simple yet robust
decoupling of the elastic moduli for a perfect lattice rep-
resenting the matrix and using only Hookean terms. By
increasing the area rigidity β, the shear modulus of the
matrix is unchanged, while the bulk modulus increases
linearly with β. This is consistent with an affine defor-
mation as expected for the full lattice with connectivity
above the isostatic threshold. It is noteworthy that the
shear modulus of the composite, combining Hmatrix and
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Fig. 2 Comparison of shear and bulk moduli of the matrix
and composite with varying strength of incompressibility.
The shear modulus of the matrix remains unchanged with
different values of β, while the bulk moduli varies propor-
tionally to β. Therefore, the two moduli of the network are
decoupled and can be changed independently of each other
and the bulk modulus can be tuned only for a nominal
change in the linear shear modulus. (Inset) Area distribution
(normalized, P) of the hexagonal regions in the composite on
which a local volume constraint has been imposed. When a
high level of local incompressibility (shown in red) is applied,
the resulting distribution is significantly narrower compared
to the distribution without any local incompressibility con-
straint (shown in blue). The red circle and the triangle rep-
resent the values of bulk modulus and shear modulus of the
matrix at β = 0

Hfiber, is affected by the area rigidity β, suggesting that
the resulting deformation is not simply affine.

To confirm the presence of a local volume constraint,
we plot the area distribution of hexagons in the inset to
Fig. 2. This distribution is shown for two extreme cases
of vanishing and large area rigidity β, corresponding to
compressible and incompressible limits. As expected for
a local area constraint, the area distributions of hexag-
onal units are tightly distributed around their initial
values for large β. It is noteworthy that local areas are
well-preserved even when the system is subjected to
substantial shear strains.

The addition of external or internal energy via bend-
ing, prestress, or temperature fluctuations can stabi-
lize subisostatic fiber networks that would otherwise be
floppy [5,53–55]. Likewise, the inclusion of area con-
straints produces a similar stabilizing effect, leading
to a non-zero shear modulus within the linear regime.
However, as shown in Fig. 3, which shows stiffness as
a function of strain, the effect of the area rigidity β on
the resulting shear modulus of the composite is limited,
specifically with moduli that remain below the affine
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Fig. 3 Effect of local incompressibility on the rheology of
the composite network. The differential modulus K versus
applied shear strain γ for different values of area rigidity,
β on the matrix alone (open symbols) and the compos-
ite (closed symbols). (Inset) Linear shear modulus, G0 as
a function of β. Parameter values: μf = 1.0, μm = 10−5,
κ = 10−4

limit (K of order unity here). This suggests that under
shear, the composite network is able to deform non-
affinely to reduce stretching, even in the presence of
the volume constraint. For vanishing β, the fact that
the composite shear modulus greatly exceeds the shear
modulus for the matrix alone indicates that the elas-
ticity is dominated by the fiber (i.e., Hfiber above).
Moreover, the fact that the linear shear modulus for
the composite lies well below the stretching-dominated
stiffness at high strain indicates that the linear elas-
ticity is bend-dominated, consistent with prior simula-
tions of such fiber networks [5,9,18] that have shown
this to be due to significant nonaffine deformations of
the network. Interestingly, upon inclusion of the area
rigidity β > 0, the linear modulus increases, eventu-
ally saturating for large β at a value still well below
that expected for a purely affine deformation. Thus,
although the area constraint appears to suppress some
of the nonaffine bending modes, substantial nonaffine
deformation is still possible for locally volume preserv-
ing networks.

The nonaffine movements of rigid fibers within the
soft matrix give rise to a collective synergistic effect,
wherein the linear shear modulus of the composite
exceeds the sum of the moduli of the individual fiber
and matrix networks (inset of Fig. 3). This effect
has been reported in prior experiments on composite
biopolymers as well as several synthetic double net-
works [6–8,56,57]. Several coarse-grained models have
considered the solvent as free-draining within a fibrous
network [29,58], which can also lead to an effective
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lines show pure collagen (black) and composites. The dotted
lines show pure HA samples. The differential modulus con-
verges at high strain in each of the composite samples and
increases with increasing HA concentration at low strain.
The linear modulus of the composite is much higher than
the sum of the linear moduli of individual components for a
low concentration of HA (2 mg/mL). At higher concentra-
tions of HA, the linear modulus of HA dominates, resulting
in comparable linear moduli of the composite and pure HA
system
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Fig. 5 Energy contributions to the total energy due to
incompressibility, Etotal (inset) and stretching of the fibers,
Eµ with varying β. For β � 10−2, the stretching of fibers is
in tandem with values of nonaffinity

volume constraint on short timescales due to the vis-
cous coupling of solvent and network, together with
the incompressibility of the solvent. The timescale for
this is determined by the solvent viscosity and net-
work pore size, as discussed above. In the case of HA,
however, since it forms an entangled meshwork with a
much smaller pore size than collagen, it is expected to
remain incompressible on longer timescales. Moreover,
since the HA and collagen networks are topologically
entangled, the resulting volume constraint for the col-
lagen can persist for long times. The resulting effect
of HA on composites with collagen therefore involves
an interplay between the nonaffine bending modes of
the collagen network with the local volume constrain-
ing effect of the HA.

To compare our simulations with experiment, we con-
ducted stress ramp measurements on interpenetrating
networks of collagen and HA (for details see appendix).
Consistent with our simulations, we observed a sub-
stantial increase in the linear elastic modulus when col-
lagen and HA were combined, surpassing the individ-
ual components’ moduli (see Fig. 4). This enhancement
was particularly prominent at lower concentrations of
HA, whereas the linear mechanics of HA predominated
the composite network stiffness at higher concentra-
tions. Estimating the value of β in experimental setups
presents challenges, as it is difficult to isolate the shear
modulus of the HA matrix from the incompressibility
effect. Our simulations, however, facilitated the disen-
tanglement of this effect, shedding light on the contribu-
tions of each component. Additionally, at high strains,
the differential moduli converge, aligning with the high
strain behavior observed in the simulations (see Fig. 3).
Notably, the composite systems exhibited significantly
higher strain tolerance to fracture compared to the pure
collagen network. Furthermore, the onset strain for non-
linearity was much larger in the collagen-HA compos-
ites compared to pure collagen networks. We speculate
that collagen polymerization within the HA matrix may
lead to reduced collagen connectivity or variations in
the thickness of collagen fiber bundles. Nevertheless, it
is evident that the linear region clearly demonstrates a
synergistic effect consistent with reduced compressibil-
ity. These results are consistent with prior experimental
studies in literature, indicating that the incorporation
of HA at relevant concentrations leads to a more linear
network [59,60]. For instance, as illustrated in Fig. 4,
an extended linear elastic regime is observed with HA
concentrations up to strains of approximately 20%, con-
trasting with the evident nonlinearity of pure collagen
even at strains of 3–5%. While it is also possible that
HA can affect collagen fiber structure we note that for
concentrations of HA below 5 mg/ml, as in most of our
studies here, significant structural alterations are not
expected [59,61].

In order to understand the effect of β on the rheol-
ogy of composite networks, it is crucial to analyze the
interplay of various energies involved. Figure 5 shows
the behavior of the ratio of fiber stretching energy, Eμ,
to the total energy, Etotal, versus strain when varying
area rigidity, β. When β is small (β < κ), the com-
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Fig. 6 Nonaffinity and differential nonaffinity (inset) of
the composite with varying area rigidity β. The enhance-
ment in the nonaffine fluctuations with β in the linear region
explains the rise in linear shear modulus (see Fig. 3)

posite primarily relaxes through its soft bending modes
within the linear regime. Consequently, the stretching
modes of the fibers remain relatively inactive, as evi-
denced in Fig. 5. However, as β increases, the cost asso-
ciated with the nonaffine bending modes rises since they
entail some change in the local density (and, thus, the
areas of the hexagonal units in Fig. 1). As β increases,
avoidance of local volume (area) change necessitates
increasing stretching of the fibers, as is reflected in the
increasing ratio of Eμ/Etotal. However, for large values
of β, the linear modulus appears to saturate to a max-
imum value (inset of Fig. 3). This is consistent with
a fully incompressible network, for which any further
increase in area rigidity becomes irrelevant. Interest-
ingly, as noted above, the maximal linear modulus still
lies below that of a purely affinely deforming network,
suggesting the presence of remaining nonaffine defor-
mations that reduce the shear modulus below that for
uniform (affine) strain while still preserving the local
density of the network.

To gain insights into the interplay of area rigidity
with nonaffine deformation, we quantify the nonaffinity
fluctuations, given by [15]

Γ =
〈||δuNA||2〉

l20γ
2

, (7)

as a function of strain. Here, δuNA = u−uaffine repre-
sents the difference between the current node displace-
ments and the corresponding affine displacements at
the applied strain γ and l0 is the average initial bond
length, which is 1 in our model. The brackets denote
averaging over all nodes of the network. Figure 6 shows

this nonaffinity versus strain for varying the area rigid-
ity β. For small values of β � 10−2, little change in Γ
is seen. This is consistent with the prior observation of
weak stretching and soft bending modes that account
for the nonaffine deformation [48,62]. The presence of
the soft background matrix does not significantly alter
this behavior. With increasing β � 10−2, the increase
in Γ is consistent with the increase in stretching noted
earlier in Fig. 5.

It has previously been observed that the nonaffinity
can be identified with critical fluctuations of a second-
order-like transition as a function of strain. To analyze
this, we consider the differential measure of nonaffine
displacements, as introduced in Ref. [5]

δΓ =
〈||δuNA||2〉

l20δγ
2

, (8)

where the nonaffine motions of nodes are measured
under an infinitesimal strain step δγ. As shown in the
inset of Fig. 6, the criticality of composite networks is
apparent in the sharp peak in δΓ for small values of
β � 10−2 near the critical strain γc � 0.25. Here, the
weak area constraint does not significantly affect the
criticality. For values of β � 10−2, however, the criti-
cality is strongly suppressed, with a broadening peak in
δΓ, spreading to lower values of strain. This is also con-
sistent with the appearance of increasing stretching of
fibers in this regime, since the strong critical signatures
have been shown to be associated with a sharp tran-
sition from bending- to stretching-dominated regimes
[5,63]. Again, this behavior saturates for large values of
β, consistent with a fully incompressible limit that is
insensitive to the value of the area rigidity.

5 Conclusion

Here, we have shown theoretically how a local volume
constraint can lead to a synergistic enhancement of the
linear shear modulus in composites of fibers and flexible
polymers, with a composite modulus of approximately
ten times that of the sum of the individual moduli for
the two components alone. Our model is supported by
experiments on collagen-hyaluronan (HA) composites
and can also explain other recent experiments on simi-
lar composites [6–8,56,57]. While we find good qualita-
tive agreement between theory and experiment for the
linear modulus, more work will be needed to compare
the full nonlinear elasticity. So far, we see a clear sup-
pression of the main feature associated with mechan-
ical criticality, namely the rapid increase in K with
strain for the pure collagen sample in Fig. 4, consistent
with a strong local volume constraint (large β) in our
model. However, the apparent softening of the compos-
ite response relative to the pure collagen sample above
10% strain is not expected within our model. In future
work, it will be interesting to vary the HA concentra-
tion more systematically at and below 2 mg/mL. It may
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also be interesting to reduce the HA molecular weight
to weaken the effect of topological entanglement with
collagen, thereby reducing the volume constraint for the
collagen network.

Theoretically, the addition of the volume constraint
with corresponding rigidity β is distinct from prior work
showing that additional interactions, such as springs or
bending rigidity of fibers, can lead to a purely affine
response [6,19–21,62]. Here, the additional rigidity to
volume change can stiffen the composite gel, but not
to the extent of a purely affine response. As we have
shown, this corresponds to remaining non-affine fluc-
tuations that are possible even in the presence of a
strong volume constraint: i.e., even volume-preserving
non-affine deformations can soften the response of a
gel. This is also an area worthy of future study. It
may be interesting and fruitful to decompose the non-
affine displacement field into divergence-free or volume-
preserving and curl-free or potential contributions.

Finally, the model represented by Eq. (3) can provide
a computationally efficient way to model systems with
independent control of bulk and shear moduli, using
purely Hookean contributions in the Hamiltonian. Ordi-
narily, any structure formed with simple springs will
lead to a Poisson ratio ν = 1/4 in 3D, corresponding to
a fixed ratio of bulk to shear moduli of B/G = 5/3 in 3D
[64,65]. (In 2D, B/G = 2 for spring networks.) In fact,
for any system with purely central-force interactions,
ν = 1/4 in 3D. Such systems are known as Cauchy
solids. Thus, with purely central-force interactions, it
is not possible to model incompressible materials, for
which B � G and ν = 1/2 in 3D or ν = 1 in 2D. As
we have shown, Eq. (3) can effectively model materials
with an arbitrarily large ratio of B/G.

Although specific values of B, G and ν are not
necessarily well-defined for composite materials, even
isotropic ones, HA hydrogels should be treated as
incompressible on the timescale of experiments such
as those presented here. This incompressibility of the
gel arises from the incompressibility of the aqueous sol-
vent, together with the viscous coupling of solvent and
polymer, which becomes very strong on experimentally-
relevant timescales due to the small pore size of HA.
For composites of HA plus collagen, as we have dis-
cussed above, the incompressibility of the collagen net-
work depends also on the topological entanglement of
HA with collagen. In principle, this makes the colla-
gen meshwork incompressible even for very large pores
formed by the collagen fibers. The model proposed here
can be the basis for efficient future simulations of extra-
cellular matrix composites in this limit.
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Appendix A: Materials and methods

Experimental rheology tests were performed on Type I
bovine (atelo)collagen (Advanced BioMatrix, FibriCol( R©)
solution, stock concentration 10 mg/ml in 0.1N hydrochlo-
ric acid, Lot 8393) and Tyramine modified hyaluronic acid
(Tyr-HA; provided by Matteo D’Este, AO Research Insti-
tute Davos, MW 250 kDa, degree of substitution 11%,
lyophilized). Tyr-HA was hydrated in PBS (Sigma-Aldrich)
with a final concentration of 0.2 U/ml horseradish perox-
idase (HRP; Sigma-Aldrich, stored at -20◦C and thawed
before use). The final Tyr-HA solution concentration was
2 mg/ml, 4 mg/ml or 8 mg/ml. The Tyr-HA solution was
left overnight, rotating in a tabletop revolver to dissolve the
Tyr-HA in PBS to fully hydrate at 4◦C. On the ice, collagen
was added to the Tyr-HA solution to a final concentration
of 1.5 mg/ml. The composition of the final buffer solution
was PBS (140 mmol/l NaCl, 10 mmol/l phosphate buffer, 3
mmol/l KCl), 0.2 U/ml HRP and was set to pH 7.3 by the
dropwise addition of 0.1 M NaOH. Finally, hydrogen perox-
ide (Sigma-Aldrich) was added to initiate the cross-linking
of the Tyr-HA at a final concentration of 1.5 mmol/l. The
solution was mixed by pipetting the solution up and down 10
times then transferring to the bottom plate of the rheome-
ter. This mixing had to be performed quickly so that the
sample did not gel in the pipette tip. For the rheology we
used an Anton Paar Physica MCR 501 rheometer (Anton
Paar, Graz, Austria) with a stainless steel cone-plate geom-
etry (30 mm diameter, 1 degree angle). The sample was sur-
rounded by mineral oil to prevent solvent evaporation. The
temperature was set to 37◦C using a thermostatic hood and
a Peltier element (H-PTD200, Anton Paar, Graz, Austria).
After loading the sample, the sample-air interface was sealed
with heavy mineral oil (Sigma-Aldrich, lot # MKCK4437)
and the sample was allowed to polymerize for 1 h for pure
Tyr-HA samples and 2 h for samples containing collagen. A
shear stress ramp from 0.01 Pa to 20 kPa with 10 points
per decade, logarithmically spaced, was applied to measure
the nonlinear rheology of each sample. The measured shear
stress and shear strain were converted to differential elastic
moduli by taking a numerical gradient of shear stress with
respect to shear strain using numpy.
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