
1.  Introduction
Stress, pore pressure, and deformation are coupled in geologic systems and evolve as a function of the geologic 
loading history (e.g., Flemings,  2021; Gradmann & Beaumont,  2017; Hauser et  al.,  2014; Nikolinakou 
et al., 2018). These quantities impact fundamental geological processes, such as basin evolution, earthquake slip 
behavior, and volatile fluxes between the solid Earth and oceans. This is because sediment compaction, permea-
bility, elastic moduli, and shear strength all depend on the state and evolution of the full stress tensor, including 
deviatoric stresses and the pore fluid pressure (Flemings & Saffer, 2018; Gamage et al., 2011; Scholz, 2012; 
Suppe, 2014; Terzaghi et al., 1996).

In subduction zones, tectonic loading increases the lateral stress in accreted sediments (Figure  1) (D. Davis 
et al., 1983; Hubbert & Rubey, 1959). This increase, together with increasing vertical stress due to burial, drives 
overpressure generation in the accreted, hanging-wall sediments. The rate of overpressure dissipation depends 
on the sediment permeability, compressibility, and the flow path length (e.g., Craig, 2005; Gamage et al., 2011; 
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Plain Language Summary  Earth's subduction zones form where two tectonic plates converge 
and one plate descends, or subducts, beneath the other (overriding plate). Overriding sediments are plowed 
onto the continent the way dirt piles up in front of a bulldozer. Some of the largest, most destructive, and 
tsunami-generating earthquakes are produced along plate boundaries during subduction. The sediment behavior 
of both plates depends on changes in fluid pressure and stress, which are caused by tectonic forces (analogous 
to the bulldozer push). The strength of the plate boundary—which controls earthquake mechanics—also 
depends on fluid pressure, stress, and sediment rock properties. We use analytical and numerical models to 
simulate a subduction zone's evolution through space and time. The models use sediment-behavior laws that 
account for the interaction between fluids and sediments, as the plates deform. We show that stress changes 
associated with the piling up of sediments generate abnormally high fluid pressures in the shallow parts of the 
subduction. These high pressures weaken the plate boundary, and limit powerful earthquakes to deeper in the 
crust. The stress changes also result in more compacted sediments and focused dewatering at the seafloor in 
the  shallow areas of the subduction zone.

NIKOLINAKOU ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

The Evolution of Pore Pressure, Stress, and Physical Properties 
During Sediment Accretion at Subduction Zones
M. A. Nikolinakou1  , P. B. Flemings2,3  , B. Gao2,3  , and D. M. Saffer2,3

1Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA, 
2Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA, 
3Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA

Key Points:
•	 �Stress evolution from uniaxial 

to compressional state results in 
overpressure generation, fluid 
expulsion, and compaction

•	 �Both mean and shear stress changes 
contribute to pressure generation; 
shear-induced pressures are significant 
at and outboard of the trench

•	 �High overpressures result in a 
weakened décollement that onsets 
ahead of the trench and persists tens of 
km into the subduction zone

Correspondence to:
M. A. Nikolinakou,
mariakat@mail.utexas.edu

Citation:
Nikolinakou, M. A., Flemings, P. B., 
Gao, B., & Saffer, D. M. (2023). The 
evolution of pore pressure, stress, and 
physical properties during sediment 
accretion at subduction zones. Journal 
of Geophysical Research: Solid Earth, 
128, e2022JB025504. https://doi.
org/10.1029/2022JB025504

Received 2 SEP 2022
Accepted 8 JUN 2023

Author Contributions:
Conceptualization: M. A. Nikolinakou, 
P. B. Flemings, D. M. Saffer
Formal analysis: M. A. Nikolinakou, 
B. Gao
Funding acquisition: M. A. Nikolinakou, 
P. B. Flemings
Investigation: M. A. Nikolinakou, B. Gao
Methodology: M. A. Nikolinakou, P. B. 
Flemings, B. Gao, D. M. Saffer
Project Administration: P. B. Flemings
Resources: D. M. Saffer
Supervision: M. A. Nikolinakou, P. B. 
Flemings, D. M. Saffer
Validation: M. A. Nikolinakou, B. Gao
Visualization: M. A. Nikolinakou, P. B. 
Flemings, D. M. Saffer

10.1029/2022JB025504
RESEARCH ARTICLE

1 of 38

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-3194-3477
https://orcid.org/0000-0002-5377-3694
https://orcid.org/0000-0002-4526-3678
https://doi.org/10.1029/2022JB025504
https://doi.org/10.1029/2022JB025504
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JB025504&domain=pdf&date_stamp=2023-06-20


Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

2 of 38

Neuzil, 1995), all of which evolve as the sediment is consumed in the subduction zone and deforms. For the high 
compressibility and low permeability sediments found commonly in growing accretionary wedges, particularly 
at depths <10 km, the overpressure generation outpaces the rate of pressure dissipation by drainage (Flemings & 
Saffer, 2018; Saffer & Tobin, 2011; Suppe, 2007). Any dissipation of overpressure, in turn, leads to an increase 
in effective stress and decrease in porosity (Karig, 1993).

Fluid overpressures lead to a mechanically weak plate boundary by decreasing the normal effective stress 
(Byrne & Fisher, 1990; D. Davis et al., 1983; Hubbert & Rubey, 1959; Saffer & Tobin, 2011). Through its role 
in reducing effective stress, overpressure is widely considered to promote slow slip events (e.g., Im et al., 2020; 
Kodaira et  al.,  2004; Scholz,  1998) and other slow earthquake phenomena (non-volcanic tremor, low- and 
very low-frequency earthquakes) on the shallow reaches of the megathrust (e.g., Ito & Obara, 2006; Liu & 
Rice, 2007).

Stress changes resulting from the tectonic lateral compression in subduction zones (Figure  1) have been 
extensively studied through numerical geodynamic models that explore lithospheric deformation (e.g., Butler 
et al., 2013; Mannu et al., 2016; Morgan, 2015; Ruh et al., 2016; Spitz et al., 2020). These studies generally do 
not fully couple the response of pore pressure to stress changes associated with tectonic loading and deforma-
tion. The interrelation between stress, compaction, and pore pressure has been interpreted and modeled in the 
context of critical taper theory (e.g., Dahlen et al., 1984; D. Davis et al., 1983) using hydromechanical studies 
(e.g., Bekins & Dreiss, 1992; Saffer & Bekins, 2006), and with a limited number of transient geomechanical 
models (e.g., Borja & Dreiss, 1989; Obradors-Prats et al., 2017; Rowe et al., 2012; Sun et al., 2020). In several 
of these studies, porous flow and pore pressure are computed by defining fluid-source terms on the basis of a 
porosity field that is prescribed a priori (e.g., Bekins & Dreiss, 1992; Bekins et al., 1995; Ellis et al., 2015); 
other studies only consider simple constitutive models or loading paths (e.g., Skarbek & Saffer, 2009), or focus 
on specific areas (e.g., the toe of the wedge or the décollement; Rowe et al., 2012; Shi et al., 1989; Stauffer & 
Bekins, 2001).

Incorporating the full stress tensor is particularly important because accreting sediments undergo a transition 
from vertical uniaxial loading to lateral compression, a process that changes the horizontal stress independently 
from the vertical, rotates the principal stresses, and generates significant deviatoric stresses (Figure  1, e.g., 
Karig, 1986). The importance of considering the lateral tectonic stress in pressure estimates has long been recog-
nized (e.g., Kitajima & Saffer, 2012; Neuzil, 1995; Tsuji et al., 2008). More recently, the role of mean stress 
has been incorporated in numerical models (Ellis et al., 2019; Sun et al., 2020) and site-specific investigations 
(Flemings & Saffer, 2018; Zhang et al., 2021). However, only a few poromechanical studies have quantitatively 
considered the effects of deviatoric stress on compaction and pressure generation as subduction systems develop 
and evolve (Obradors-Prats et al., 2017; Rowe et al., 2012).

In this work, we employ the critical state soil mechanics framework (Roscoe et al., 1958; Wood, 1990) to couple 
stress, strain, porosity, and pore pressure in the non-uniaxial strain environment of accretionary wedges. We first 
use Modified Cam Clay (MCC) and analytically quantify the contribution of mean and shear stress to compac-
tion and pressure generation to develop insights into the processes that drive overpressure. We demonstrate 
that shear-induced pressures increase more rapidly than mean-stress-induced pressures near the trench, whereas 
pore-pressure change is proportional to mean stress change deeper inside the wedge. We then develop large-strain, 
evolutionary, transient numerical geomechanical models to study the coupling between tectonic loading, fluid 
flow, compaction, permeability, and strength in both hanging wall and the footwall. In these numerical models 
we employ SR3, a critical state formulation more complex than MCC. We find a rapid increase in overpressure 
across the trench, which is sufficiently large to outpace the increase in overburden stress. This results in higher 
overpressures in the hanging wall compared to the footwall. We show that both mean and shear stress contribute 
to pressure generation, and that the often-ignored shear-induced pressures are significant, especially in the trench 
area. Furthermore, we find that high overpressure reduces the normal stress at the décollement and results in a 
weakened megathrust that initiates a few km in advance of the trench and persists to several tens of km into the 
subduction zone.

Writing – original draft: M. A. 
Nikolinakou, P. B. Flemings, B. Gao, D. 
M. Saffer
Writing – review & editing: M. A. 
Nikolinakou, P. B. Flemings, D. M. Saffer

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

3 of 38

2.  Quantification of Compaction and Fluid Overpressure
2.1.  Mudrock Compaction

Porous, un-cemented mudrocks compress in response to variations in both mean effective stress, 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 (Equation 1; 
see Appendix A for nomenclature) and deviatoric stress, q (Equation 2) (Wood, 1990):

𝜎𝜎
′

𝑚𝑚 =

𝜎𝜎
′

1
+ 𝜎𝜎

′

2
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′
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3
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where 𝐴𝐴 𝐴𝐴
′

1
 , 𝐴𝐴 𝐴𝐴

′

2
 , and 𝐴𝐴 𝐴𝐴

′

3
 are maximum, intermediate, and minimum principal effective stresses, respectively; σ1, σ2, 

and σ3 are the corresponding total stresses; and 𝐴𝐴 𝐴𝐴
′

𝑣𝑣 , 𝐴𝐴 𝐴𝐴
′

ℎ
 , and 𝐴𝐴 𝐴𝐴

′

𝐻𝐻
 the vertical, minimum horizontal, and maximum 

horizontal (but not necessarily principal) effective stresses. Total stresses are related to effective stresses through 
the effective stress principle (e.g., Terzaghi, 1925); for example, in the case of mean effective stress,

𝜎𝜎𝑚𝑚 = 𝜎𝜎
′

𝑚𝑚 + 𝑢𝑢𝑢� (3)

where σm is the mean total stress and u the pore fluid pressure.

The dependence of compaction on both mean effective and deviatoric stress is described by a family of porous 
elastoplastic constitutive models that are based on critical state soil mechanics (Wood,  1990). A substantial 
body of field and experimental data have demonstrated that this framework captures the deformation behavior 
of marine sediments, including those in subduction zone settings (Flemings & Saffer, 2018; Hauser et al., 2014; 
Karig, 1990; Kitajima & Saffer, 2012; Song et al., 2011). Here, we employ a simple but widely used critical state 
model, the MCC formulation (Roscoe & Burland, 1968; Wood, 1990) to illustrate the contribution of both mean 
effective stress and deviatoric stress to compaction and pressure generation.

We consider a deviatoric stress (q) versus mean effective stress (𝐴𝐴 𝐴𝐴
′

𝑚𝑚 ) vs. porosity (n) space (Figure 2). We compare 
the porosity change caused by: (a) an increment in mean effective stress (𝐴𝐴 𝐴𝐴

′

𝑚𝑚 ) with no deviatoric stress (q) change 
(blue path 1–2; Figure 2) and (b) the same increment in mean effective stress accompanied by the maximum 
possible deviatoric stress increase that brings the sediment to shear failure (red path 1–3; Figure 2). Even though 
both loading paths have the same change in mean effective stress (𝐴𝐴 𝐴𝐴

′

𝑚𝑚1
 to 𝐴𝐴 𝐴𝐴

′

𝑚𝑚2
 ; Figure 2), the porosity (n) decreases 

more along the path to shear failure (red path; Figure 2) than along the isotropic axis (blue path). This additional 
porosity change (∆nq = n2 − n3) represents the shear-induced compaction. A simple explanation for this addi-
tional porosity loss in clay-rich sediments is that shear stress promotes more efficient packing and alignment of 
clay platelets (Karig, 1986).

Uniaxial strain is a common compaction path in sedimentary basins, in which the vertical stress is progressively 
increased due to sedimentation and burial: zero lateral strain is maintained due to symmetry in the horizontal 

Figure 1.  Schematic of an accretionary wedge with subduction paths of hanging wall (A0–A2) and footwall sediments (B0–
B2). In hanging wall, transition from vertical burial (uniaxial strain) to lateral compression rotates the principal stresses; in 
footwall, the stress state remains approximately uniaxial.

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

4 of 38

plane. Along this loading path (dashed green, Figure 2) the ratio of horizontal 
to vertical effective stress remains approximately constant, and is known as 
the uniaxial stress ratio, K0:

𝐾𝐾0 =

𝜎𝜎
′

ℎ

𝜎𝜎
′

𝑣𝑣

.� (4)

Combining Equations 1–4, the slope of the uniaxial compaction path in the 
q − 𝐴𝐴 𝐴𝐴

′

𝑚𝑚 space is constant, and a function of 𝐴𝐴 𝐴𝐴0 (dashed green line, Figure 2a):

𝜂𝜂𝐾𝐾
0
=

𝑞𝑞𝐾𝐾
0

𝜎𝜎
′

𝑚𝑚𝑚𝑚𝑚
0

=
3(1 −𝐾𝐾0)

(1 + 2𝐾𝐾0)

.� (5)

Non-uniaxial strain conditions that maintain a constant ratio of minimum 
to maximum principal effective stress, K, also follow a linear path in q − 𝐴𝐴 𝐴𝐴

′

𝑚𝑚 
space with slope given by (dashed orange line, Figure 2a):

𝜂𝜂𝐾𝐾 =
𝑞𝑞

𝜎𝜎
′

𝑚𝑚

=
3(1 −𝐾𝐾)

(1 + 2𝐾𝐾)
,� (6)

where 𝐴𝐴 𝐴𝐴 =
𝜎𝜎
′

3

𝜎𝜎
′

1

 ; under a triaxial stress state, 𝐴𝐴 𝐴𝐴 =
𝜎𝜎
′

ℎ

𝜎𝜎
′

𝑣𝑣

The critical state line is a special case that describes the maximum deviatoric 
stress, qf, that the sediment can withstand under a given mean effective stress. 
The slope of this line (M; black line in Figure 2) is a function of  the friction 
angle of the material, ϕ′. In conventional triaxial compression (𝐴𝐴 𝐴𝐴

′

1
> 𝜎𝜎

′

2
= 𝜎𝜎

′

3
 ), 

and for a cohesionless material,

𝜂𝜂cs =
𝑞𝑞𝑓𝑓

𝜎𝜎
′

𝑚𝑚

= 𝑀𝑀 =
6sin𝜙𝜙

′

3 − sin𝜙𝜙′
.� (7)

Combining Equations  6 and  7, we obtain the generalized stress ratio that 
does not assume a constant ratio of minimum to maximum principal effective 
stress:

𝜂𝜂 =
𝑞𝑞

𝜎𝜎
′

𝑚𝑚

=
𝑞𝑞

𝑞𝑞𝑓𝑓
𝑀𝑀𝑀� (8)

This shear-stress ratio, η, varies between 0 (isotropic stress state) and M 
(shear failure) and represents the deviatoric stress, q, relative to its value at 
critical state, qf.

In triaxial compression loading mode, and for cohesionless sediments, the 
critical state line in the MCC formulation is equivalent to the Mohr-Coulomb 
failure line (Roscoe & Burland,  1968). In plane-strain loading mode, the 
MCC critical state line is steeper than the Mohr-Coulomb shear failure line, 
ητ (Roscoe et al., 1958). ητ is a function of all principal stresses; in the average 
stress (𝐴𝐴

𝜎𝜎
′

1
+𝜎𝜎

′

3

2

 ) and maximum shear stress (𝐴𝐴
𝜎𝜎
′

1
−𝜎𝜎

′

3

2

 ) space, it simplifies to:

|𝜂𝜂𝜏𝜏 | = sin𝜙𝜙
′
.� (9)

In active and growing critical accretionary wedges, where we commonly 
assume plane-strain deformation and sediments to be at Coulomb failure 
under lateral compression (e.g., Karig, 1990; K. L. Wang & Hu, 2006), the 
stress state is described by ητ (Flemings & Saffer, 2018).

Figure 2.  Schematic of the relationship between mean effective stress (𝐴𝐴 𝐴𝐴
′

𝑚𝑚 ), 
deviatoric stress (q), and porosity (n) as described by the critical state theory 
(Wood, 1990). (a) Mean effective stress (𝐴𝐴 𝐴𝐴

′

𝑚𝑚 ; Equation 1) versus deviatoric 
stress (q; Equation 2). Along the isotropic line there is no deviatoric stress. 
The critical state line describes the maximum deviatoric stress the sediment 
can support at a given mean effective stress. Compaction along paths with 
constant 𝐴𝐴 𝐴𝐴∕𝜎𝜎

′

𝑚𝑚 ratio is represented by lines with constant slope (Equation 6, 
dashed orange line; Equation 5: uniaxial stress ratio, dashed green line). 
Iso-porosity lines (dotted curves) represent different combinations of mean 
and deviatoric stress that lead to a given porosity: with increasing deviatoric 
stress, lower mean effective stress is needed to compress to the same porosity. 
Along loading path 1–2 (blue), both vertical and horizontal stress components 
increase equally (deviatoric stress remains zero). Along loading path 1–3 (red), 
the horizontal stress increases more than the vertical, resulting in deviatoric 
stress, q3. (b) Mean effective stress (𝐴𝐴 𝐴𝐴

′

𝑚𝑚 ) versus porosity (n). For the same 
increment in mean effective stress, a trajectory along the isotropic line results 
in less porosity loss than along the critical state line. Even though the mean 
effective stress increase is the same in both loading paths (𝐴𝐴 𝐴𝐴

′

𝑚𝑚𝑚1
 to 𝐴𝐴 𝐴𝐴

′

𝑚𝑚𝑚2
= 𝜎𝜎

′

𝑚𝑚𝑚3
 ), 

the deviatoric stress in path 1–3 changes by q3, driving additional porosity 
decrease (∆nq = n2 − n3).
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2.2.  Mean-Stress- and Shear-Induced Compaction

We describe the evolution of strain with progressive loading. We decompose the volume strain into a component 
driven by mean effective stress, 𝐴𝐴 𝐴𝐴𝐴𝐴

′

𝑚𝑚 , and a component driven by deviatoric stress, dq:

𝑑𝑑𝑑𝑑𝑣𝑣

𝑑𝑑𝑑𝑑
= 𝜉𝜉𝑚𝑚

𝑑𝑑𝑑𝑑
′

𝑚𝑚

𝑑𝑑𝑑𝑑
+ 𝜉𝜉𝑞𝑞

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜉𝜉𝑚𝑚

𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜉𝜉𝑞𝑞

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
,� (10)

where ξm represents the mean stress loading efficiency, ξq is the shear stress loading efficiency, and t the time. 
The loading efficiencies in Equation 10 have the same units as compressibility and represent the increment in 
volumetric strain resulting from an increment in mean-effective and shear stress respectively. σm, 𝐴𝐴 𝐴𝐴

′

𝑚𝑚 , and u are 
related through the effective stress principle (Equation 3).

Using the MCC framework, the loading efficiencies can be expressed as (Appendix B, Equations B1–B10):

𝜉𝜉𝑚𝑚 =

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

,� (11)

𝜉𝜉𝑞𝑞 =

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

2𝜂𝜂

𝑀𝑀2 + 𝜂𝜂2

)(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

,� (12)

where κ is the elastic unloading modulus, λ is the elastoplastic loading modulus, and M the slope of the critical 
state line (all three of these are material properties), η is the shear-stress ratio (Equation 6), and e is the void ratio, 
which is related to porosity, n:

𝑒𝑒 =
𝑛𝑛

1 − 𝑛𝑛
,� (13)

Equation 10, together with Equations 11 and 12, describes the volume change for an increment of loading as a func-
tion of (a) both mean and deviatoric stress changes (dσm, dq); (b) material parameters (friction angle and compress-
ibility; e.g., λ, κ, M) and (c) the initial stress state, that is, the position of the sediment in porosity—mean effective 
stress (σm − u)—shear stress space (e.g., Figure 2) before the application of the loading increment (dσm, dq).

2.3.  Mean-Stress- and Shear-Induced Fluid Overpressure Evolution

Assuming conservation of fluid mass in a deforming porous medium, Darcy's law, and incompressible solid 
grains, the change in volumetric strain can be expressed as (Appendix B, Equations B11–B16):

𝐷𝐷𝐷𝐷𝑣𝑣

𝐷𝐷𝐷𝐷
=

(

𝛽𝛽𝑓𝑓

(

𝑒𝑒

1 + 𝑒𝑒

))

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
−

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

.� (14)

Where ρf is the density of fluids, μ is the viscosity of water, k the intrinsic permeability, and ue the overpressure. 
The overpressure is the difference between pore fluid pressure, u and hydrostatic pore pressure uh:

𝑢𝑢𝑒𝑒 = 𝑢𝑢 − 𝑢𝑢ℎ.� (15)

Substitution of Equation 10 into Equation 14 then yields:

(

𝛽𝛽𝑓𝑓

(

𝑒𝑒

1 + 𝑒𝑒

)

+ 𝜉𝜉𝑚𝑚

)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝑚𝑚

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+ 𝜉𝜉𝑞𝑞

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

.� (16)

With 𝑆𝑆 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝑚𝑚 (storage coeff icient) ∶� (17)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝑚𝑚

𝑆𝑆

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
⏟⏞⏟⏞⏟

𝐷𝐷𝐷𝐷𝑚𝑚∕𝐷𝐷𝐷𝐷

+

𝜉𝜉𝑞𝑞

𝑆𝑆

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
⏟⏟⏟

𝐷𝐷𝐷𝐷𝑞𝑞∕𝐷𝐷𝐷𝐷

+
1

𝑆𝑆𝑆𝑆𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

𝐷𝐷𝐷𝐷
diss

𝑒𝑒 ∕𝐷𝐷𝐷𝐷

� (18)
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The pore-pressure coefficients ξm/S and ξq/S are the loading efficiencies normalized by the storage coefficient 
and represent the increment in pore pressure resulting from an increment in mean and shear stress, respectively. 
They are analogous to Skempton's A and B pore-pressure coefficients (Skempton, 1954), for a generalized stress 
state and loading increment.

Equation 18 illustrates that three terms control overpressure generation: (a) the pressure induced by the change 
in mean stress (Du m); (b) the pressure induced by the change in deviatoric (shear) stress (Du q); and (c) the 
change in pressure due to flow in or out of the volume, which we term a dissipation pressure (𝐴𝐴 𝐴𝐴𝐴𝐴

diss
𝑒𝑒  ) because in 

almost all cases the sediment is compacting and thus fluid is expelled. Equation 18 is similar to that presented 
by Neuzil  (1995) to describe the generation and maintenance of anomalous fluid pressure due to a range of 
geological driving mechanisms. However, unlike Neuzil's (1995) formulation, Equation 18 explicitly includes the 
important effect of deviatoric stress (q) on pore pressure. This effect—which is well established experimentally 
for normally consolidated sediments (Roscoe & Burland, 1968; Wood, 1990)—is not considered in poro-elastic 
models (H. Wang, 2000), or in previous models of coupled flow and deformation in subduction zones (Ellis 
et al., 2015; Ge & Screaton, 2005).

The fundamental form of Equation 18 is independent of the choice of constitutive model, as long as the consti-
tutive formulation describes volumetric change as a function of both mean and deviatoric stress. Using MCC 
(Roscoe & Burland, 1968; Wood, 1990), we quantify the storage coefficient (similar to the loading coefficients; 
Equations 11 and 12):

𝑆𝑆 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝑚𝑚 = 𝛽𝛽𝑓𝑓

𝑒𝑒

1 + 𝑒𝑒
+

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

.� (19)

2.3.1.  Importance of Initial Stress State

The pore-pressure coefficients ξm/S and ξq/S (Equation 18) depend on the initial (pre-loading) stress state of the 
sediment: the mean effective stress, 𝐴𝐴 𝐴𝐴

′

𝑚𝑚 = 𝜎𝜎𝑚𝑚 − 𝑢𝑢 , the void ratio, e (or porosity), and the shear-stress ratio, η (Equa-
tions 11, 12, and 19). We quantify and compare these pore-pressure coefficients for initial stress states that have 
the same porosity (lie on the same iso-porosity curve, n = 0.24; inset in Figure 3a) but varying initial shear-stress 
ratio, η (e.g., isotropic [blue], uniaxial [orange], critical state [green], and values in-between; Figure 3a).

We find that ξm/S is relatively insensitive to the initial state in the 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 − 𝑞𝑞 space: it equals 1 if the stress state is 
isotropic before the application of the increment (η = 0; blue point on black line, Figure 3a), and decreases to 
0.8 if the sediment is already at critical state before the application of the increment (green point on black line, 
Figure  3a). As a result, increments in mean-stress-induced overpressure vary between 100% and 80% of the 
mean-stress change, respectively.

In contrast, ξq/S is strongly dependent on the initial stress state. Its value is minimal at or near an initial isostatic 
stress state (blue point on red line, Figure 3a), and increases rapidly as the initial stress state approaches critical 
state (red line, Figure 3a). For typical material properties in the MCC model, ξq/S can increase by a factor of 20 
between uniaxial and critical initial states (orange and green points on red line, Figure 3a). This quantification 
of ξq/S illustrates that shear-induced overpressure is very sensitive to the sediment shear-stress ratio and can be 
several times the deviatoric-stress change when the sediment is close to critical state.

The pore-pressure coefficients incrementally evolve along a loading path as a function of the evolving porosity, 
mean stress, and shear-stress ratio. The strong dependence of ξq/S on the initial state results in progressively 
higher shear-induced overpressures along loading paths that increase the shear-stress ratio (Figure 3b). Consider, 
for example, three undrained loading paths that have the same overall change in mean total stress, dσm but differ-
ent amounts of deviatoric stress change, dq (𝐴𝐴

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚

  = 1, 2 3; blue, red, and green paths, Figure 3b). Higher 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚

 

ratio values lead to progressively higher η values along the loading path, which accelerates the generation of 
shear-induced overpressures (Figure 3b). Shear-induced pressures may eventually become more significant than 
mean-stress-induced pressures (e.g., green vs. dashed black line, Figure 3b).

The exact value of the shear pore-pressure coefficient, ξq/S, depends on the choice of constitutive model and input 
parameters; however, the rapid increase in ξq/S with increasing shear-stress ratio is characteristic of critical-state 
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models and highlights the importance of shear-induced pore pressures in tectonic environments undergoing a 
dramatic change in stress state, such as those at the trench of subduction zones, near-salt, or in extensional 
regimes.

2.3.2.  Overpressure Generation Along Paths With Constant Shear-Stress Ratio

Along loading paths with constant shear-stress ratio, η = ηK (Figure 2; 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 − 𝑞𝑞 space), Equation 18 simplifies to 
(Appendix B):

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝐾𝐾

𝑆𝑆𝐾𝐾

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+

1

𝑆𝑆𝐾𝐾𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (20)

with a combined loading efficiency coefficient:

𝜉𝜉𝐾𝐾 =

(

𝜆𝜆

1 + 𝑒𝑒

)

(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

,� (21)

and storage coefficient:

𝑆𝑆𝐾𝐾 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝐾𝐾 .� (22)

In this case, the pore-pressure coefficient, ξK/SK, depends only on compressibility (λ), fluid compressibility (βf), 
mean effective stress (σm − u) and void ratio (e). Shear-induced overpressures are still generated (and encapsu-
lated in the term ξK/SK); however, they are proportional to mean-stress-induced overpressures, and are independ-
ent of the shear-stress ratio, η (Appendix B).

Therefore, along any loading path following a constant shear-stress ratio, the generated overpressures are propor-
tional to the change in mean total stress (Equation 20). This highlights that formulations based on the mean stress 
will perform well when the shear-stress ratio is not changing, regardless of the particular stress state. However, in 

Figure 3.  Importance of initial stress state for overpressure generation. (a) Pore-pressure coefficients ξm/S (black line) and ξq/S (red line) calculated as a function of 
the initial shear-stress ratio, η. Three stress states are highlighted: isotropic stress state (η = 0, blue), stress state at uniaxial strain (η = 0.23, orange), and stress state at 
critical state (η = M = 0.91, green). Initial porosity n = 0.24 (e = 0.31). Modified Cam Clay (MCC) parameters: κ = 0.01, λ = 0.1, M = 0.91, e0 = 0.65 for σiso = 1 MPa. 
βf = 5 × 10 −4 MPa −1. Yield and iso-porosity surfaces are assumed the same (κ << λ). (b) Mean-stress- (dashed black line) and shear-induced overpressures (solid lines) 
incrementally calculated for three undrained loading paths. All paths start at the same isotropic stress state σm0 − uh = 30 MPa and end at states with the same mean 
reduced total stress, σm − uh = 34 MPa, and increasing deviatoric stress (𝐴𝐴

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚

= 1 [blue], 2 [red] and 3 [green]). Total stress paths in solid arrows, effective stress paths 
along iso-porosity curve. n0 = 0.24; same MCC parameters as in (a).
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scenarios where the shear-stress ratio changes during loading, shear-induced pore pressures are potentially much 
larger and independent from changes in mean stress; in such cases, the full Equation 18 should be employed.

In the interior of active accretionary wedges, assumed to lie at a state of Coulomb failure, the shear stress ratio 
is constant (e.g., Dahlen et al., 1984) and pressure changes are proportional to the change in mean total stress. 
Furthermore, for typical compressibilities and effective stress levels, the variation of ξK/SK is small and its value 
is greater than 0.9 but less than 1.0 (Appendix B, Figure B1). Consequently, generated overpressures are approxi-
mately equal to changes in mean stress. This reflects a value for Skempton's B coefficient approaching 1.0, which 
is also proposed by Neuzil (1995).

Assuming that vertical stress remains one of the three principal stresses, and that the stress ratio remains constant 
(η = ηK), the ratio of horizontal to vertical effective stress is also constant and equal to K (Equation 6). Equa-
tions 1, 3, 6, and 20 can then be re-written as a function of the vertical stress, σv:

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝑣𝑣

𝑆𝑆𝑣𝑣

𝐷𝐷𝐷𝐷𝑣𝑣

𝑑𝑑𝑑𝑑
+

1

𝑆𝑆𝑣𝑣𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (23)

where 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1+𝑒𝑒
+ 𝜉𝜉𝑣𝑣 ; 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝜉𝜉𝐾𝐾

1+2𝐾𝐾

3
 for a triaxial stress state, and 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝜉𝜉𝐾𝐾

2+(1+Λ)𝐾𝐾−Λ

3

 for plane strain (Λ = f(ηK, 
M); Appendix B). In such cases, the induced overpressures are proportional to the overburden change and will 
parallel the topographic slope. Non-vertical loading (e.g., lateral tectonic loading in accretionary wedges) is 
incorporated through the stress ratio, K.

2.4.  Application in an Accretionary Wedge

To illustrate how the factors described above interact and drive pore fluid pressure, we first develop analytical 
estimates of overpressure as a sediment volume is consumed into an accretionary wedge. This approach requires 
simplifying assumptions, but provides insight into how the stress state, material parameters, and loading path 
affect overpressure development.

We consider a simplified geometry of the trench area of an accretionary wedge (Figure  4), with a sediment 
volume V entering the wedge (V1–V2–V3; Figure 4a). We divide the cross section into three regions (Figure 4a): 
(a) the area seaward of the trench, where stresses are uniaxial (Equations 4 and 5); (b) the trench area, where the 
horizontal stress increases and becomes the maximum principal stress; and (c) the area landward of the trench 
within the accretionary wedge, where sediments are at compressional frictional failure. We assume the following:

1.	 �Stress: The vertical stress remains a principal stress and equal to the overburden. The horizontal effective 
stress increases linearly from its value under uniaxial conditions to its value at compressional failure inside 
the wedge (Equation  9). The intermediate principal stress is determined from Equation  B28 (Roscoe & 
Burland, 1968).

2.	 �Overpressure: There is no initial overpressure (at the location of V1). Relative overpressure, described by 
overpressure ratio, λ*:

𝜆𝜆
∗
=

𝑢𝑢 − 𝑢𝑢ℎ

𝜎𝜎𝑣𝑣 − 𝑢𝑢ℎ
.� (24)

�equals 0.4 in the wedge. This value is chosen to facilitate comparison with our numerical results. λ* increases 
linearly with distance along the profile in the trench area; this assumption allows for the calculation of total 
overpressure, ue.

3.	 �Porosity: The initial porosity (n0) equals 0.26 at the décollement depth seaward of the trench.

We use Equation 18 to explore how the mean (𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑒𝑒  ; green) and shear (𝐴𝐴 𝐴𝐴
𝑞𝑞

𝑒𝑒 ; red) components of overpressure develop 
as the sediment volume traverses the trench area (Figure  4). We also obtain the dissipated pressure (black; 
Figure 4) 𝐴𝐴 𝐴𝐴

diss

𝑒𝑒 = 𝑢𝑢𝑒𝑒 − (𝑢𝑢
𝑚𝑚

𝑒𝑒 + 𝑢𝑢
𝑞𝑞

𝑒𝑒) . The increase in horizontal stress, due to tectonic loading, increases the mean 
stress and the deviatoric stress. The mean-stress-induced overpressures increase steadily across the trench area 
(green lines, Figure 4b). In contrast, the shear-induced overpressures initially decrease and become negative at 
the beginning of the transition zone. This is because deviatoric stresses decrease, as the horizontal stress increases 
relative to the vertical stress (red lines, Figure 4b). Once the horizontal effective stress becomes higher than the 
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vertical, the deviatoric stress progressively increases faster than the mean effective stress. The generation of 
shear-induced overpressures accelerates (red lines, Figure 4b) because at each loading increment the shear-stress 
ratio η (Equation 8) increases, leading to a nonlinear increase in the pore-pressure coefficient ξq/S (Figure 3a). 
Inside the wedge, the shear-induced overpressures increase linearly because they are a function of mean stress 
changes (sediments at Coulomb failure, Equation 20).

Sediment frictional strength affects the progressive development of overpressure (solid vs. dashed lines, Figure 4). 
In the transition zone, stronger sediments (parameterized by the friction angle, ϕ′) develop higher mean-stress-
induced pressures (solid green line, ϕ′ = 33°) than weaker sediments (dashed green line, ϕ′ = 14°). Stronger 
sediments also develop shear-induced pressures at a higher rate (solid red line) than weaker sediments (dashed 
red line). This is because weaker sediments support less deviatoric stress at frictional failure (end of transition 
zone). In weaker sediments, shear-induced pressures at the end of the transition zone are higher than mean-stress-
induced ones (dashed lines). Inside the wedge, both mean and shear overpressures increase as a function of the 
mean stress (Appendix B); the taper angle is set to be higher for the weaker sediments, and consequently both 
overpressure components (dashed lines) increase faster than in the stronger sediments (solid lines).

Figure 4.  Analytical estimates of overpressure components as a sediment volume is consumed into an accretionary wedge. 
(a) Schematic of sediment path from seaward of the accretionary wedge (V1; blue), where strain conditions are uniaxial, 
through the transition zone (V2, black), where the horizontal stress increases, and into the wedge (V3; orange), where 
sediments are assumed at frictional failure. (b) Calculated mean-stress- (green lines), shear-induced overpressures (red 
lines), and dissipated pressures (black lines). Solid lines represent strong sediments (ϕ′ = 33°) and dashed lines weak ones 
(ϕ′ = 14°). Critical taper slope a = 1.5 and 3.1° respectively; βf = 5 × 10 −4 MPa −1, κ = 0.01, λ = 0.1.
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3.  Numerical Geomechanical Model
We next use a transient, evolutionary numerical model to quantify the distribution and temporal evolution of 
stress, fluid pressure, and deformation in a growing accretionary wedge. This forward geomechanical model 
builds upon the concepts developed above but captures the progressive evolution of stress and strain tensors 
and provides the detailed spatial distribution and interrelation between stress state, pressure generation, and 
compaction.

3.1.  Model Overview

We model a 5 km thick sedimentary section on the incoming oceanic plate (Figure 5a). A proto-décollement is 
located 3 km beneath the seafloor, such that the lowermost 2 km of sediments are subducted at the trench, and 
the uppermost 3 km are offscraped and incorporated into the growing accretionary prism. The model domain 
is 255 km wide. We impose a condition of zero vertical displacement along the base, and of zero horizontal 
displacement at the right-hand boundary (Figure 5a). To simulate the formation of an upper plate accretionary 
wedge, we move the left (landward) edge of the sediment above the décollement at a constant rate of 5 mm/
year for a total distance of 85 km. This convergence rate is slower compared to most active margins (Clift & 
Vannucchi, 2004); however, for the study of pore pressure generation and dissipation, it scales with the assumed 
sediment thickness, which is relatively large (Clift & Vannucchi, 2004). We also conduct sensitivity analyses to 
further explore the role of convergence rates.

The décollement is defined as a discrete surface with a friction coefficient μb = 0.2, a value typical for clay-rich 
sediments and faults (Ikari & Saffer, 2011). For simplicity, the décollement and the base of the model are set 
to be horizontal. The friction coefficient of the contact between the left rigid wall and the upper sediment layer 
(Figure 5a) is constant and equal to the sediment internal strength (set at μs = 0.44).

The sea surface is 12 km above the base of the model and the initial pore pressure in the sediments is hydrostatic. 
The effective stress is zero at the top of the model (seafloor). No fluid flow is permitted across the base and side 
boundaries. The sea floor is a free-flow boundary. There is no flow parallel to the frictional contact that simulates 
the décollement; flow across the décollement contact is unrestricted, with an equivalent transverse permeability 
∼10 orders of magnitude higher than that of the surrounding sediments. As a result, transient flow between the 
hanging wall and footwall depends on sediment properties and overpressure gradient and it is unaffected by the 

Figure 5.  Model set-up and boundary conditions. (a) Initial geometry. (b) Final geometry at the end of the simulation. The 
vertical wall is displaced 85 km to the right. Results are plotted in the framed, 60 km-wide area near the trench. The trench is 
defined as the point where the surface slope angle begins to increase.

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

11 of 38

frictional interface. This simulates the effect of a permeable fault zone, as has been interpreted for the décolle-
ment at many subduction zones (e.g., Saffer, 2015).

3.2.  Material Properties

We treat the sediments as a homogenous, isotropic, and porous elastoplastic material described by the SR3 
critical-state constitutive model (Crook, Willson, et al., 2006). SR3 captures key elements of soil and marine sedi-
ment rheology and is similar in concept to the MCC model (Crook, Owen, et al., 2006). Model input parameters 
are summarized in Table C1 (Appendix C) and detailed in Crook, Willson, et al. (2006).

We specify density using a porosity—effective stress relationship (Figure  C1). We describe the stress-strain 
behavior using a formulation that relates effective mean stress (𝐴𝐴 𝐴𝐴

′

𝑚𝑚 ), deviatoric stress (q), and porosity (n) 
(Figures C1 and C2). We define the yield surface evolution (hardening) using an empirical relationship between 
the compressive and tensile intercepts 𝐴𝐴 𝐴𝐴

𝑐𝑐

𝑚𝑚 and 𝐴𝐴 𝐴𝐴
𝑡𝑡

𝑚𝑚 of the yield surface with the isotropic axis (Figure C2) and the 
volumetric plastic strain, 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑣𝑣 (Figure C3). We input the sediment friction angle that represents frictional strength in 
triaxial compression (𝐴𝐴 𝐴𝐴

′

𝑠𝑠 = 23.5
◦ ; friction coefficient μs = 0.44) (Bourlange et al., 2003; Ikari et al., 2009; Kopf & 

Brown, 2003). The frictional strength for other modes of loading (e.g., triaxial extension) is scaled as a function 
of the Lode angle (Crook, Willson, et al., 2006).

Transient fluid flow depends on both permeability (Figure 6b) and compressibility (Figure 6a), via the coefficient 
of consolidation (Terzaghi et al., 1996). Under uniaxial strain conditions:

𝑐𝑐𝑣𝑣 =
𝑘𝑘

𝜇𝜇𝜇𝜇𝑣𝑣

, (Figure 6c),� (25)

where mv is the coefficient of volume compressibility, k the intrinsic permeability, and μ the viscosity of water.

Sediment compressibility and permeability are assumed to be isotropic and vary with porosity. In the SR3 frame-
work, porosity is a function of mean effective stress and shear stress (Figures 2 and C1) and evolves with stress 
changes resulting from burial and tectonic loading. Hence, the framework describes volume and permeabil-
ity changes along any given stress path. We illustrate the variation of compressibility and permeability with 
porosity and vertical effective stress under uniaxial strain conditions (Figures 6a and 6b). We consider three 
permeability-effective stress (or porosity) relationships under uniaxial strain conditions (Figure 6b), spanning the 
range of values reported for mudrocks entering subduction zones (Figure C4). We use the “medium permeability” 
relationship for the base case model and the “high” and “low” relations for sensitivity analyses.

Overall, our material calibration approach emphasizes correctly modeling the transient consolidation behavior 
of sediments, quantified by the coefficient of consolidation, cv (Figure  6). The compressibility we prescribe 
(Figure 6a) is somewhat lower than that of shallowly buried porous mudrocks characteristic of the shallow parts 
of subduction zones (Flemings & Saffer, 2018; Kitajima & Saffer, 2012). However, the cv values that result from 
our input compressibility and permeability values (Figure 6c) are consistent with those reported for on mudrocks 

Figure 6.  Variation of (a) compressibility, mv, (b) permeability, k, and (c) the resulting coefficient of consolidation, cv, as a 
function of vertical effective stress, 𝐴𝐴 𝐴𝐴

′

𝑣𝑣 (left axis) and porosity, n (right axis) under uniaxial strain conditions.
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characteristic of marine environments, including Nankai (10 −6–10 −8  m 2/s; Flemings et  al.,  2008; Schneider 
et al., 2009; Skarbek & Saffer, 2009).

3.3.  Numerical Technique

We use the finite element program Elfen (Rockfield,  2017). Elfen has been rigorously benchmarked in a 
thrust-wedge study (Buiter et  al.,  2016) and through simulations of sandbox experiments (Crook, Willson, 
et al., 2006; Nollet et al., 2012). The code allows for transient hydromechanical analyses with Lagrangian and 
Eulerian reference frames used for the mechanical and fluid phases, respectively (Appendix C), and it supports 
critical state constitutive models (Perić & Crook, 2004; Thornton et al., 2011). Elfen has been used to simulate 
coupled geomechanical and hydrological behavior in complex, evolving geological settings, including fold and 
thrust belts, salt systems, extensional and compressional tectonic regimes, and carbonate platforms (Albertz & 
Sanz, 2012; Angus et al., 2015; Gao et al., 2018; Heidari et al., 2019; Nikolinakou et al., 2018; Nollet et al., 2012; 
Nolting et al., 2018; Thigpen et al., 2019; Thornton & Crook, 2014).

The program uses automated adaptive-remeshing to address excessive distortion of elements caused by large 
deformations. Adaptive remeshing refines the mesh in areas of high strain gradients and replaces the mesh 
in areas of high element distortion (Perić & Crook, 2004; Thornton et al., 2011). The finite-element mesh is 
composed of unstructured quadrilaterals with an initial element size of 200 m and a re-meshed size down to 50 m. 
The average size element size varies between 100 and 200 m.

4.  Results
In simulations, the accretionary prism forms a self-similar geometry with a constant slope: the geometry, stress, 
and pore pressure inside this self-similar wedge do not change with time relative to the position of the advancing 
trench, similar to conceptual models for accretionary wedges (Bekins & Dreiss, 1992; Dahlen et al., 1984). We 
report horizontal distances relative to the trench (Figure 5b).

4.1.  Strain Evolution

We trace the strain history of sediments above and below the décollement (Figure 7). The sediment elements are 
initially located outboard of the trench and are deposited under vertical uniaxial strain (burial). Hence, the maxi-
mum strain (blue, Figure 7a) is vertical. Strain in the hanging wall evolves from this uniaxial state to compres-
sional failure inside the wedge along a zone that we term the transition zone (Figure 7). This zone extends from 
10 km seaward to about 10 km landward of the trench in our base case (Figure 7). As sediments enter the transi-
tion zone, lateral tectonic loading rotates the strain ellipse, such that the maximum strain becomes sub-horizontal 
at the landward edge of the transition zone. During this rotation, shortening and elongation occur concurrently 
in the maximum and minimum strain direction, respectively. Inside the wedge, shortening continues in the 
sub-horizontal direction and elongation in the sub-vertical one. Overall, the minimum principal strain (ε3) rotates 
away from its initial horizontal direction to a sub-vertical one. In the footwall, there is little rotation of the strain 
ellipse because of the limited transmission of shear across the décollement (Figure 7a). The maximum strain 
remains practically vertical and shortens as the thickness of the wedge increases. There is a significant contrast 
in sediment strains above and below the décollement (Figure 7b). This strain field is similar to observations of 
principal strain orientations in drill core samples from the shallow portions of well-studied accretionary wedges, 
including fabric orientation (Byrne & Fisher, 1990; Hamahashi et al., 2013; Morgan et al., 1994; Owens, 1993), 
electrical resistivity anisotropy (Henry et al., 2003), anisotropy of magnetic susceptibility (Housen et al., 1996), 
and P-wave velocity anisotropy (Brückmann et al., 1997).

4.2.  Stress State, Overpressure, and Porosity

The stress state in the hanging wall changes from uniaxial loading seaward of the trench to lateral compressional 
failure inside the wedge (c.f. Figure 1). In the transition zone, increase in the lateral loading leads to an increase 
in the mean total stress (Figure 8a) and the deviatoric stress, q (Equation 2). The ratio q/qf (illustrates proximity of 
a sediment element to shear failure; Figure 8b) increases from 0.25 seaward, where sediments are under uniaxial 
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burial stress conditions (blue color, Figure 8b) to 1 inside the wedge (red color, Figure 8b), where sediments are 
at Coulomb failure.

Overpressure begins to develop outboard of the trench within the transition zone (Figure 8c). In this region, there is 
no increase in overburden stress, because the topography is horizontal. Thus, overpressure outboard of the trench 
is driven exclusively by lateral loading associated with the advancing wedge. Overpressure increases rapidly 
across the transition zone (steep overpressure contours, Figure 8c). Landward, within the wedge (x > 10 km), the 
overpressure continues to increase in response to tectonic loading and increasing overburden. In this zone, the 
sediments are at frictional failure (Figure 8b), which is a stress state with constant shear-stress ratio, η = ητ, and 
overpressure changes are proportional to vertical effective stress changes (Equation 23). As a result, overpressure 
contours are parallel to the surface slope (Figure 8c). The overpressure ratio, λ* (Equation 24), increases from 0 
(hydrostatic pore pressure) to 0.5 in the wedge (Figure 8d). The nearly constant value within the wedge results 
from the critical state of sediments landward of the transition zone together with limited drainage. In contrast, the 
rapid increase of λ* across the trench highlights the role of early tectonic loading—and concomitant changes in 
stress path—in pressure generation.

There is a discontinuity in stress across the décollement (Figures 8a and 8b). The hanging-wall sediment stress 
state is on or near the critical state line (A1–A2; circles, Figure  8f); in contrast, the footwall stress state has 
much lower deviatoric stresses (A3–A4; triangles, Figure 8f). This very different stress state above and below the 
décollement is independent of drainage, as it is also observed in fully drained models (gray circles and triangles, 
Figure 8f). Immediately below the décollement, the deviatoric stress is greater than in the uniaxial case (A3; 
open white triangle, Figure 8f) and the shear-stress ratio is higher than uniaxial (Figure 8b); this is because some 
shear stress is transmitted to the footwall owing to the frictional strength of the décollement. With depth, shear 
stresses decrease toward the uniaxial value (A3–A4; Figure 8f). Landward, along the subduction path, the foot-
wall  shear-stress ratio increases (cyan to green contours, Figure 8b).

Figure 7.  (a) Strain ellipse evolution of sediment elements as they enter into the accretionary wedge. Maximum principal 
strain (ε1) in blue and minimum (ε3) in red. (b) Detail of (a) showing strain ellipses of sediment elements immediately above 
and below the décollement at the seaward and landward ends of the transition zone, and inside the wedge.
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Starting seaward of the trench and for about a 30 km distance landward, the hanging wall pressures are greater 
than the footwall pressures (Figure 8c). In this area, tectonic loading is the main driver for overpressure and only 
a small percentage of the tectonic load is transmitted across the décollement (Figure 8c). Beyond 30 km landward 
from the trench, the pressure in the footwall exceeds that in the hanging wall. As sediments subduct, they undergo 
a successively increasing sediment loading by the increased height of the wedge. This overburden load eventually 
generates higher overpressure in the footwall than is present in the overlying wedge (Figure 8c).

There is a significant porosity offset across the décollement that begins at the trench and extends for tens of km 
landward (Figures 8e and 8g). Lateral tectonic loading compacts sediments above the décollement relative to 
those below, despite the higher overpressure (Figure 8e). Along Profile A (Figure 8e), higher mean and deviatoric 
stresses above than below the décollement (white circle vs. triangle, Figure 8f) lead to an offset of three porosity 
units (white circle vs. triangle, Figure 8g).

Figure 8.  Color contours of: (a) mean total stress, (b) shear-stress ratio (q/qf), (c) overpressure, (d) overpressure ratio, (e) porosity. (f) Vertical stress profile along A 
(A1–A4, shown in (e)) of mean effective stress and deviatoric stress for hanging-wall (red circles) and footwall (green triangles). A2 and A3 represent the stress state 
immediately above and below the décollement, respectively. The gray circles and triangles represent the stress state resulting from drained loading in the hanging-wall 
and footwall respectively (Gao et al., 2018). (g) Porosity along profile A (red: hanging-wall, green: footwall) and porosity from drained model (gray lines).
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4.3.  Evolution of Stress State and Compaction

We track sediment elements in the hanging wall and footwall (a–c and d–f 
respectively; Figure 9) to illustrate the evolution of stress and porosity during 
progressive subduction. The elements are located just above and below the 
décollement. Initially, both elements are under vertical uniaxial strain condi-
tions (a and d, Figures 9b and 9c).

As the sediment volume above the décollement passes through the transi-
tion zone (a–b, Figure 9), deviatoric stress increases rapidly (closely spaced 
contours in Figure 9a) because of the increase in lateral loading. Initially, the 
increase in mean effective stress is small (initial part of a–b is almost vertical, 
Figure 9b) because of the rapid increase in overpressure (Figure 8c). Even-
tually, lateral tectonic loading, increase in overburden, and partial drainage 
result in a progressive increase in mean effective stress (Figure  9b). This 
increase in mean effective stress together with the rapid increase in deviatoric 
stress leads to a porosity decrease of 0.04 units (a–b, Figure 9c). Within the 
wedge (b–c, Figure 9b), both mean effective and deviatoric stress continue 
to increase at a constant ratio ητ (wedge sediment at Coulomb failure, Equa-
tion  9). Porosity continues to decrease but at lower rate (b–c, Figure  9c), 
because volume changes are proportional to changes in mean stress under 
constant stress ratio (Equation 20 and Appendix B).

In the footwall, shear stress transmitted across the décollement increases the 
deviatoric stress (Figure 9b). Below the trench (transition zone), downward 
flow from the more overpressured hanging wall sediments increases the foot-
wall overpressure (Figure 8c) and decreases the mean effective stress (d–e, 
Figure 9b). This results in a slight porosity increase due to elastic unloading 
(initial part of d–e, Figure 9c). Eventually, porosity decreases because of the 
increase in deviatoric stress (second part of d–e, Figure 9c). As the sediment 
volume is further subducted beneath the wedge, both the effective stress and 
the shear stress increase (e–f, Figure 9b). This increase further compacts the 
footwall sediments (e–f, Figure 9c).

The sediment volume above the décollement is compacted 0.052 porosity 
units as it enters the wedge (a–c, Figure  9c). 0.028 units of this porosity 
loss correspond to compaction that would occur under uniaxial strain (a–cK, 
Figure 9c). The remaining 0.024 units represent the additional compaction 
that results from the increase in shear-stress ratio from its uniaxial value to 
frictional failure (cK–c, Figure 9c). This shear-related porosity loss accounts 
for 46% of the total porosity change and illustrates that shear-induced 
compaction becomes significant when the shear-stress ratio increases during 
the loading path (similar to shear-induced overpressures; Figure 3b).

4.4.  Overpressure Mechanisms

We now explore the sources of overpressure as the sediment volume at the 
décollement level is incorporated into the wedge (Figure 10). Specifically, we 

quantify each of the terms in Equation 18 (𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑒𝑒  , 𝐴𝐴 𝐴𝐴
𝑞𝑞

𝑒𝑒 , 𝐴𝐴 𝐴𝐴
diss
𝑒𝑒  ). Initially, as the volume passes through the transition zone 

(a–b, Figure 10b), shear-induced overpressures (𝐴𝐴 𝐴𝐴
𝑞𝑞

𝑒𝑒 ) increase faster than mean-stress-induced pressures (𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑒𝑒  ) (red 
vs. dashed green lines, Figure 10c). The shear-induced overpressure generation rate is double the mean-stress-
induced one (Figure 10d). This is because the shear-stress ratio, η increases rapidly in the transition zone (e.g., 
Figures 8b and 9b). Inside the wedge, mean-stress- and shear-induced overpressures increase at comparable rates 
(b–c; Figures 10c and 10d). In this zone, the shear-stress ratio, η, remains constant.

Ongoing pressure dissipation (black line; Figure  10c) significantly lowers the net overpressure (blue line, 
Figure 10c). Dissipation is highest across the transition in stress regimes near the trench, where focused rapid 

Figure 9.  Stress and compaction paths for hanging-wall and footwall 
sediments just above and below the décollement (pink and cyan squares 
respectively). (a) Path of sediment volumes with contours of shear stress to 
shear strength ratio (q/qf). (b) Mean effective stress—deviatoric stress space 
showing stress paths of hanging wall (a–c, pink) and footwall (d–f, cyan) 
sediments. (c) Corresponding sediment compaction paths.
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dewatering is generated (Figure 10a). However, the dissipation does not keep 
pace with the loading, and thus there is a progressive increase in overpressure 
as the volume passes into the subduction zone (blue line, Figure 10c).

4.5.  Impact of Mudrock Permeability and Convergence Rate

We vary the mudrock permeability to study its impact on pressure and stress 
in the wedge (Figures  11 and  12). We consider upper and lower bounds 
(Figure 6b; Table 1) that envelop the range of values reported for mudrocks 
entering subduction zones (Appendix  C, Figure  C4). We also consider 
end-members of drained and undrained conditions (Table 1).

We evaluate overpressure profiles where the hanging wall thickness is 
4  km (vertical profiles “A” marked in Figure  11). The hanging-wall over-
pressure ratio (λ*) increases as permeability decreases (Figures  11a–11d). 
Under undrained conditions, the overpressure ratio in the wedge is very high 
(λ* = 0.9, Figure 11d). λ* equals 0.7 in the low permeability case (Figure 11c) 
and less than 0.25 in the high permeability case (Figure 11a). At the décol-
lement, overpressure ranges from 26 to 12 MPa (low to high permeability, 
Figure 11e), and λ* from 0.54 to 0.23 respectively (Figure 11f).

The surface slope of the wedge varies with sediment permeability. This is 
because permeability impacts pore pressure and thus wedge and décollement 
strength (e.g., D. Davis et  al.,  1983; Saffer & Bekins,  2006): the average 
wedge slope is 4.9, 4.0, 3.8, and 4.1°, for the undrained, low, medium, and 
high permeability case, respectively (Table 1). Higher overpressures result-
ing from low sediment permeability weaken the wedge more so than the 
décollement, leading to the counterintuitive result that the wedge is steeper 
in the undrained and low permeability cases than in the medium case. The 
surface slope increases again with further increase in permeability, because 
more effective drainage leads to a strengthened wedge relative to the base 
(e.g., D. Davis et al., 1983).

Permeability also affects the magnitude of deviatoric stresses in the accretion-
ary wedge because sediments in the wedge are at Coulomb failure (circles, 
Figure 12e) and the shear-stress ratio (Equations 8 and 9) is constant. The 
greater wedge overpressure in models with lower permeability (Figure 11) 
leads to lower mean effective stress, and therefore the wedge sediments can 
support a smaller maximum deviatoric stress (e.g., Figure  2). As a result, 
deviatoric stresses in the undrained model are the lowest (gray circles) and 
increase as permeability is increased (blue to red to green circles, Figure 12e). 
The lower deviatoric stress in the wedge for poorly drained (low permeabil-
ity) models results in a weaker décollement and less shear being transmitted 
to the footwall. Hence, footwall stresses in the undrained model are similar 

to a uniaxial state (gray triangles, Figure 12e), and the footwall deviatoric stresses are higher for models with 
higher permeability (blue to red to green triangles). The lower mean effective and deviatoric stresses associated 
with lower permeability result in less porosity loss in both hanging-wall and footwall sediments (Figure 12f). The 
porosity offset at the décollement also decreases with decreasing permeability.

We explore the influence of convergence rate on pressure and stress with three models having convergence 
rates of 1 mm/year (slow), 5 mm/year (medium), and 10 mm/year (high) (Table 1, Models 5, 2, and 6). The 
medium-convergence-rate case is the rate used in models discussed so far. Increasing the tectonic loading rate 
leads to higher pore pressures, as overpressure is generated significantly faster than dissipated. As a result, an 
increase in convergence rate has similar effects on overpressure, mean effective stress, strength, and porosity as 
a decrease in permeability (Appendix E).

Figure 10.  Overpressure components for a sediment volume just above the 
décollement. (a) Simulated fluid flux across the seafloor. (b) Path of sediment 
volume with contours of shear stress to shear strength ratio (q/qf); Stress path 
in Figure 9b. (c) Components of overpressure (Equation 18 and Appendix D): 
mean-stress-induced pressure (𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑒𝑒  , green line) plus shear-induced pressure (𝐴𝐴 𝐴𝐴
𝑞𝑞

𝑒𝑒 , 
red line) minus dissipated pressure (𝐴𝐴 𝐴𝐴

diss
𝑒𝑒  , black line) result in net overpressure 

(ue, blue line). (d) Average shear-induced (du q/dt; Equation 18; red line) and 
mean-stress induced (du m/dt; Equation 18; green line) overpressure generation 
rates within the transition zone (dashed lines) and in the critical wedge (solid 
lines).
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5.  Discussion
Figure 13 summarizes the key processes we envision as a sediment packet approaches and is incorporated into 
a subduction zone. Mean and shear stress in the hanging wall increase rapidly in a transition zone spanning 
from ∼10 km seaward of the trench to ∼10 km landward. This drives the rapid development of overpressure 
(Figure 13b), which outpaces the increase in overburden from burial. The high pore pressures reduce the vertical 
effective stress in the hanging wall and result in a broad zone of significantly reduced shear strength along the 
plate interface (Figure 13c) that initiates outboard of the trench and persists for tens of km into the subduction 
zone. The rapid loading across the transition zone and outermost wedge combined with partial drainage leads to 
focused dewatering (Figure 13a), which enables compaction of the hanging wall sediments. The distinct stress 
states above and below the décollement yield a porosity offset at the décollement, despite the fact that pore 
pressures in the hanging wall exceed those in the footwall. Landward, within the wedge, the sediments are at 
Coulomb failure and overpressures parallel the topographic slope. Footwall sediments are rapidly subducting 
beneath the hanging wall. These sediments ultimately have higher pressure than the overlying hanging wall sedi-
ments (Figure 13b). We explore these insights below.

5.1.  Overpressure Generation and Its Spatial Distribution

Lateral tectonic loading increases mean and deviatoric stresses as sediment is incorporated into the accretionary 
wedge (Figures 8a, 8b, and 8f). This evolving stress state drives overpressures (Figures 10c and 13b) that may 
increase more rapidly than the overburden.

Figure 11.  Impact of permeability on overpressure (Table 1, Models 1–4). (a–d) Overpressure ratio λ* (Equation 24) for 
high-, medium-, low-permeability, and undrained case. (e and f) Comparison of overpressure and overpressure ratio for 
high (green), medium (red), low permeability (blue), and undrained models (dashed-gray), along vertical profiles A at 4 km 
hanging-wall thickness marked in (a–d). The undrained model calculates pressure as a function of volumetric strain only and 
does not simulate transient flow, leading to the observed décollement discontinuity.
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The lateral loading extends several km seaward of the trench driving overpressures outboard of the trench 
(Figures 8, 10c, and 13b). The increase in pore pressure decreases the mean effective stress and hence the strength 
of the sediments even prior to subduction (Figure 9b). In our models, sediments seaward of the trench are not at 
failure. However, the increase in lateral loading together with the decrease in sediment strength could provide a 
mechanistic explanation for the presence of protothrust zones, which are often attributed to elevated pore pres-
sures (e.g., Barnes et al., 2018; C. Y. Wang et al., 1994) and potentially for décollement initiation or propagation.

In the transition zone, both mean and shear stress generate overpressure and the shear-induced overpressure is 
twice that generated by mean stress (Figures 10c, 10d, and 13b). The rapid increase in deviatoric stress relative to 
mean effective stress (shear stress ratio, η; Equation 8) in this zone results in the significant shear-induced pres-
sures, an effect not predicted in models that consider only mean-stress-induced pressure generation.

The wedge itself is at Coulomb failure (Figure 8b); in this zone the overpressure increase is proportional to the 
vertical stress change (overburden stress, Equation  23). Consequently, the overpressure contours parallel the 
topographic surface (Figure 8c) and pore pressure can be estimated from overburden as long as the significant, 
non-vertical stress components are incorporated (Equation 23, Section 2.3.2).

In the footwall, the stress state remains approximately uniaxial (Figure 8f)–especially for low sediment perme-
ability and high convergence rates (Figures 12 and E2). This is because high overpressures limit the effective 
stresses above the décollement, minimizing the shear stresses transmitted across the décollement (e.g., Figure 8b). 
A near-uniaxial stress state at the footwall is consistent with observations of footwall strain (Henry et al., 2003; 
Housen et al., 1996) and stress states (e.g., Byrne & Fisher, 1990; Drews & Duschl, 2022) interpreted to reflect 

Figure 12.  Impact of permeability on compaction and stress. (a–d) Porosity distribution for high-, medium-, 
low-permeability, and undrained case. (e) Mean effective stress and deviatoric stress along vertical profiles A marked in 
(a–d). Circles represent stress states in the hanging wall and triangles in footwall. (f) Porosity-depth curves for high (green), 
medium (red), low permeability (blue), and undrained model (dashed gray line). Drained profile from Gao et al. (2018) is 
shown for comparison (dashed-black line). Increase in sediment thickness in the undrained wedge leads to porosity increase.
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a uniaxial (vertical compression) path well into the subduction zone. It suggests that to first order, approaches 
that consider only burial below the décollement are appropriate (e.g., Skarbek & Saffer, 2009). Because of this 
near-uniaxial stress state, both mean and shear-induced overpressures are much lower in the footwall compared 
to hanging-wall (Figure 8c).

In our model, higher overpressures in the hanging wall relative to the footwall persist for several km across the 
transition zone and into the wedge. Farther into the interior of the wedge, pore pressure beneath the décollement 
exceeds that of the hanging wall. This is because footwall sediments are transported more rapidly than overlying 
wedge sediments (relative to a fixed position at the wedge front), which are subjected to thickening and lateral 
compression (Bekins & Dreiss, 1992; Bray & Karig, 1985). As a result, footwall sediments are subjected to more 
rapid vertical loading than hanging wall sediments at any particular location. This increased vertical loading, in 
combination with a greater drainage distance for fluid escape from the footwall, eventually overtakes the effect of 
mean-stress- and shear-induced overpressures (Figure 13b). The distance into the wedge where the hanging and 
footwall pressures become equal at the décollement is located at ∼25–30 km from the trench in the base model 
(Figure 8c) and depends on the lateral deformation rate and material properties (Figures 11 and E1).

There are also footwall overpressures ahead of the trench, where the seafloor is flat (Figure 8c); these footwall 
overpressures increase faster than the overburden load below the trench area (Figure  8d), leading to a local 
decrease in mean effective stress (Figure 9b). A source of these overpressures is downward fluid flow that occurs 
across the décollement because hanging-wall overpressures are greater than footwall overpressures.

5.2.  Pore Pressure, Effective Stress, and Shear Strength Along the Décollement

The vertical effective stress at the décollement decreases by approximately 30% (2 MPa) over a broad region that 
extends from a few km in advance of the trench, across the transition zone, and persists well into the subduction 
zone (Figures 13b and 14b left axis). This decrease in effective stress is caused by the rapid overpressure increase 
in the transition zone. Shear strength (τ) along the décollement is proportional to the vertical effective stress. 
Thus, the decrease in effective stress at the trench corresponds to a broad and weakened region where shear 
strength along the plate interface is far lower than that expected for drained conditions. The width and magni-
tude of this weak zone increase with decreased permeability (Figure 14c) and with increased convergence rate 
(Appendix E).

Model No. #0 #1 #2 #3 #4 #5 #6

Permeability Drained High Medium Low Undrained Medium

Convergence rate (mm/year) n/a 5 10 1

λ* at décollement 0 0.22 0.43 0.53 0.83 0.47 0.29

Porosity offset at décollement (%) 6 4 3 1 −3 2 4

Surface slope 5 4.1 3.8 4 4.9 3.7 4.1

𝐴𝐴 𝐴𝐴
′

1
 dip hanging wall 7.4 7.4 8 6.3 17.1 8.5 7.8

𝐴𝐴 𝐴𝐴
′

𝑥𝑥∕𝜎𝜎
′

𝑦𝑦 hanging wall 2.4 2.4 2.5 2.7 2.3 2.5 2.4

𝐴𝐴 𝐴𝐴
′

1
∕𝜎𝜎

′

3
 hanging wall 2.5 2.5 2.6 2.8 2.9 2.6 2.5

𝐴𝐴 𝐴𝐴∕𝜎𝜎
′

𝑚𝑚 hanging wall 0.85 0.84 0.86 0.91 0.96 0.86 0.83

𝐴𝐴 𝐴𝐴
′

1
 dip footwall 62 58 55 58 66.2 54.5 55.2

𝐴𝐴 𝐴𝐴
′

𝑥𝑥∕𝜎𝜎
′

𝑦𝑦 footwall 0.76 0.83 0.9 0.91 0.87 0.89 0.87

𝐴𝐴 𝐴𝐴
′

1
∕𝜎𝜎

′

3
 footwall 1.6 1.6 1.4 1.4 1.3 1.6 1.5

𝐴𝐴 𝐴𝐴∕𝜎𝜎
′

𝑚𝑚 footwall 0.48 0.46 0.35 0.33 0.31 0.36 0.42

Note. λ*, stress ratios and stress orientations are estimated using the average value along sediment profile A (Figures 11, 12, E1, 
and E2) for both hanging wall and footwall. Drained model results from Gao et al. (2018).

Table 1 
List of Sensitivity-Analyses Models With Summary of Key Results
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The reduced effective normal stress in the transition zone, together with 
increasing sediment stiffness due to progressive compaction, may drive stable 
and/or slow slip in this region (e.g., Kodaira et al., 2004; Liu & Rice, 2007; 
Moore & Saffer,  2001; Scholz,  1998). Slip instability is commonly 
described by the force balance for a simplified 1-D spring-slider model (e.g., 
Scholz, 2012): stable slip can occur if:

𝐾𝐾 𝐾 𝐾𝐾𝑐𝑐.� (26)

𝐴𝐴 𝐴𝐴 is the stiffness of the loading system, which is described by the sediment 
elastic moduli (determined in our model by the evolving porosity). 𝐴𝐴 𝐴𝐴𝑐𝑐 is the 
rheological stiffness of the fault, described by:

𝐾𝐾𝑐𝑐 = 𝜎𝜎
′

𝑛𝑛

𝑏𝑏 − 𝑎𝑎

𝐷𝐷𝑐𝑐

,� (27)

where (b  −  a) describes the velocity dependence of friction, Dc the slip 
distance over which slip weakening occurs, and 𝐴𝐴 𝐴𝐴

′

𝑛𝑛 is the effective normal 
stress.

Our results indicate that in the outer several tens of km of the subduction zone, 
effective stresses remain low (Figure 14). In addition, compaction (Figure 8) 
increases the sediment elastic moduli (and hence K) in the hanging wall. 
These two effects—low 𝐴𝐴 𝐴𝐴

′

𝑛𝑛 and increasing K—promote stable slip in the tran-
sition zone, and potentially for several tens of km landward. This is consist-
ent with the increasingly common observation of slow earthquakes on the 
shallow parts of the plate interface (e.g., slow slip events [Araki et al., 2017; 
Sugioka et al., 2012; Wallace et al., 2017], low-frequency earthquakes [Ito 
& Obara,  2006], and low-frequency tremors [Obana & Kodaira,  2009]). 
Although it suppresses nucleation of unstable slip locally, the extension of 
the weak interface for tens of km into the subduction zone may at the same 
time facilitate large coseismic ruptures initiating at greater depth that propa-
gate to the trench (Kodaira et al., 2012; Kozdon & Dunham, 2013; Wallace 
et al., 2017; C. Y. Wang et al., 1994).

5.3.  Consolidation and Dewatering

The hanging wall sediments are more compacted than the footwall sediments 
in the transition zone even though the hanging wall has greater overpressure 
(Figures 8e and 8g). The increase in mean and deviatoric stress combines 
with fluid expulsion to drive this porosity decrease. This provides a hydro-
mechanical explanation for the abrupt porosity decrease observed across the 
décollement (e.g., Bangs et al., 1990; Costa Pisani et al., 2005; Flemings & 
Saffer, 2018; Park et al., 2010; Saffer & Tobin, 2011; E. Screaton et al., 2002). 
Tectonic loading also leads to porosity loss seaward of the trench (Figure 8e), 
which is consistent with observations of gradually increasing P-wave velocity 
and electrical resistivity across the protothrust zone offshore S. Hikurangi 
(Chesley, 2022).

Fluid expulsion is focused around the trench (Figure 10a). This is consistent 
with: (a) the prevalence of fluid expulsion features across and near the trench 

at several subduction zones, including seeps (e.g., Suess et al., 1998) or elevated surface heat-flow (E. E. Davis 
et al., 1990; Yamano et al., 1992); and (b) with porosity and seismic velocity data suggesting that compaction 
is most pronounced in this zone (Karig, 1990; C. Y. Wang et al., 1994; Yuan et al., 1994). It is also consistent 
with early (non-coupled) models of dewatering rates in accretionary prisms (Bekins & Dreiss, 1992) which have 
shown that the amount of fluid expelled increases when tectonic porosity loss is (empirically) included.

Figure 13.  Schematic highlighting key insights on pore pressure and 
décollement strength. (a) Subduction path: red and blue arrows (maximum and 
minimum in-plane principal stress respectively) illustrate stress rotation from 
vertical burial to lateral compression along subduction path. (b) Individual 
contribution of overpressure components to net overpressure (blue line) along 
the décollement: mean-stress-induced pressures (green) plus shear-induced 
pressures (red) minus dissipated pressures (black) provide the net pressure 
(blue). Mean stress consistently drives overpressure in the accreting sediments 
(green); the role of shear stress is pronounced in the transition zone (red); 
dissipation prevails throughout the wedge and increases in the transition zone 
(black line in (b) and blue arrows in (a)). Footwall pressure (dashed blue line) 
becomes higher than hanging-wall pressure (solid blue line) landward. (c) 
Effective-stress decrease along the décollement in the trench area results in a 
weak plate interface (purple in (a)).
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5.4.  Broader Insights

Our evolutionary geomechanical model simulates large scale deformation of 
an accretionary wedge with a soil model that considers the effect of both 
mean and deviatoric stress. Very few studies have incorporated critical-state 
models to couple deformation and porous-fluid flow in accretionary wedges 
(Obradors-Prats et al., 2017; Rowe et al., 2012). Our work contributes the 
modeling of large-scale deformation and, more importantly, the quantifica-
tion of mean-stress- and shear-induced overpressures in a continuing effort 
to understand stress, pore pressure, and deformation in the shallow parts of 
subduction zones.

We show that the pore pressure response is proportional to changes in mean 
stress in tectonic environments characterized by a constant shear-stress ratio 
(e.g., Coulomb failure or uniaxial). This illuminates why models that describe 
deformation and fluid flow in subduction zones as a function of only mean 
stress are successful within accretionary wedges (e.g., Henry & Wang, 1991; 
Neuzil, 1995; Stauffer & Bekins, 2001).

We also show that shear-induced overpressures are not proportional to 
changes in mean stress in systems where the shear-stress ratio changes. An 
example such system is the transition zone in an accretionary wedge. In these 
environments, shear-induced pressures can be several times higher than the 
mean-stress-induced pressures. Hence, it is important to capture the full 
pore-pressure response including the deviatoric term in Equation 18.

Our quantification of mean-stress- and shear-induced overpressures could 
help improve pore-pressure estimates from field data. Such workflows are 
based on experimental measurements on recovered cores (e.g., French & 
Morgan, 2020; Karig, 1993; E. Screaton et al., 2002; Zhang et al., 2021), seis-
mic velocity measurements (e.g., Calahorrano et al., 2008; Park et al., 2010; 
Tobin & Saffer, 2009; Tsuji et al., 2008), or acoustic log data (e.g., Kitajima 
et al., 2017) and often introduce simplified assumptions (e.g., uniaxial strain).

5.5.  Model Limitations and Enhancements

Our model does not incorporate strain softening and the decrease in fric-
tional strength typically associated with progressive displacement along 
shear zones (i.e., from the development of shear fabric). Nor do we model 
the formation or propagation of discrete faults. Yet, accretionary wedges are 
pervasively faulted, and we expect that strain localization on individual faults 

will locally alter the distribution of both stress and permeability and may impact the surface topography and the 
process of accretion. Such faults would also potentially change patterns of porous fluid flow and sediment over-
pressure by facilitating drainage, although in fine-grained mudrocks the low matrix permeability would still serve 
as the primary control on drainage state (Saffer, 2015). We model the décollement as a discrete contact surface, 
and do not simulate fluid flow along the décollement. The presence of a permeable décollement would allow for 
significant pressure dissipation as has been proposed by others (Party, 1987; E. Screaton et al., 2000). We also 
assume a high vertical permeability across the décollement and do not consider local or temporal variations of 
this permeability. Such changes in the décollement flow properties will alter the overpressure distribution in both 
hanging wall and footwall in the near-field of the fault.

Future model enhancements could consider spatial heterogeneity of material properties (e.g., different litholo-
gies, layering), cementation, thermal processes (e.g., thermally enhanced compaction), or dehydration reactions.

Figure 14.  Pressure, effective stress, and strength at the décollement. (a) 
Hydrostatic pressure (gray dashed line), pore pressure (blue line), and 
overburden stress (black line), referenced to the seafloor. The overpressure 
ratio λ* (Equation 24; green line & right axis) is also shown. (b) Distribution 
of vertical effective stress (𝐴𝐴 𝐴𝐴

′

𝑣𝑣 ) and shear strength (𝐴𝐴 𝐴𝐴 = 𝜇𝜇𝑏𝑏(𝜎𝜎𝑣𝑣 − 𝑢𝑢) = 𝜇𝜇𝑏𝑏𝜎𝜎
′

𝑣𝑣 ). 
(c) Impact of mudrock permeability on the vertical effective stress and shear 
strength along décollement. The dashed horizontal lines in panels (b and c) 
mark the effective stress and shear strength value at the uniaxial, seaward 
far-field. Circles in (c) mark the location landward where shear strength 
returns to its uniaxial value.
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6.  Summary
It is commonly understood that seaward of the accretionary wedge, sediments are deposited under uniaxial strain 
whereas inside the wedge sediments are at Coulomb failure. We simulate both analytically and with a large-strain 
numerical model the evolution in stress, pore pressure, and porosity as the stress state transitions from uniaxial 
to Coulomb failure.

Lateral tectonic loading increases the mean and deviatoric stress ahead of and across the trench area. Both stress 
changes contribute to a rapid increase in overpressure in this transition zone. In turn, high overpressures result 
in a weakened décollement that onsets ahead of the trench and persists tens of km into the subduction zone. Our 
results provide mechanisms for explaining stable sliding at the trench and the presence of protothrust zones.

Our approach incorporates the effect of both deviatoric and mean-stress changes on compaction and overpressure 
generation. We show that shear-induced compaction should be explicitly included in tectonic environments that 
undergo a dramatic change in stress state, such as at the trench of subduction zones or near salt bodies in sedimen-
tary basins. The shear-induced compaction changes the sediment properties and drives significant overpressures. 
In contrast, we find that in areas where the ratio between deviatoric and mean-effective stress is not changing, 
such as within accretionary wedges, established approaches that depend on the mean stress perform adequately.

Appendix A:  Nomenclature

Symbol Description Dimensions

𝐴𝐴 𝐴𝐴𝑣𝑣  Coefficient of consolidation M 0L 2T −1

𝐴𝐴 𝐴𝐴   Void ratio -

𝐴𝐴 𝐴𝐴  Gravity acceleration M 0LT −2

𝐴𝐴 𝐴𝐴  Intrinsic permeability L 2

𝐴𝐴 𝐴𝐴  Continuum mechanics differential operator M 0L −1T 0

𝐴𝐴 𝐴𝐴𝑣𝑣  Mudrock compressibility M −1LT 2

n Porosity -

q Deviatoric stress ML −1T −2

𝐴𝐴 𝐴𝐴𝑓𝑓  Shear strength ML −1T −2

𝐴𝐴 𝐴𝐴f l  Volume flux of fluid relative to solid matrix M 0LT −1

S Storage coefficient M −1LT 2

𝐴𝐴 𝐴𝐴   Time T 1

𝐴𝐴 𝐴𝐴  Pore pressure ML −1T −2

𝐴𝐴 𝐴𝐴𝑒𝑒  Overpressure ML −1T −2

𝐴𝐴 𝐴𝐴ℎ  Hydrostatic pressure ML −1T −2

𝐴𝐴 𝐴𝐴
𝑚𝑚  Mean-stress-induced pressure ML −1T −2

𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑒𝑒   Mean-stress-induced overpressure ML −1T −2

𝐴𝐴 𝐴𝐴
𝑞𝑞  Shear-induced pressure ML −1T −2

𝐴𝐴 𝐴𝐴
𝑞𝑞

𝑒𝑒  Shear-induced overpressure ML −1T −2

𝐴𝐴 𝐴𝐴
diss
𝑒𝑒   Dissipated overpressure ML −1T −2

𝐴𝐴 𝐴𝐴   Fluid volume flux per unit area M 0LT −1

𝐴𝐴 𝐴𝐴  Critical taper angle

𝐴𝐴 𝐴𝐴𝑠𝑠′  Solid-grain compressibility relating to stress M −1LT 2

𝐴𝐴 𝐴𝐴𝑠𝑠  Solid-grain compressibility relating to pressure M −1LT 2

𝐴𝐴 𝐴𝐴𝑓𝑓  Fluid compressibility M −1LT 2

𝐴𝐴 ∆𝜀𝜀  Incremental total-strain tensor -
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Appendix B:  Mean and Shear Components of Overpressure, and Formulation of 
Pore-Pressure Coefficients Using Modified Cam Clay.
In the MCC model, a volumetric strain increment, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑣𝑣 , consists of an elastic (𝐴𝐴 𝐴𝐴𝐴𝐴

𝑒𝑒

𝑣𝑣 ) and a plastic component (𝐴𝐴 𝐴𝐴𝐴𝐴
𝑝𝑝

𝑣𝑣 ):

𝑑𝑑𝑑𝑑𝑣𝑣 = 𝑑𝑑𝑑𝑑
𝑒𝑒

𝑣𝑣 + 𝑑𝑑𝑑𝑑
𝑝𝑝

𝑣𝑣� (B1)

The volumetric components are calculated as a function of the current state (stress and void ratio) and the loading 
increment. The elastic volumetric strain increment is:

𝑑𝑑𝑑𝑑
𝑒𝑒

𝑣𝑣 =
𝜅𝜅

1 + 𝑒𝑒

𝑑𝑑𝑑𝑑
′

𝑚𝑚

𝜎𝜎
′

𝑚𝑚

,� (B2)

where κ is the elastic unloading modulus, 𝐴𝐴 𝐴𝐴𝐴𝐴
′

𝑚𝑚 is the mean effective stress increment, and e the void ratio; the 
elastoplastic volumetric strain increment is:

Symbol Description Dimensions

𝐴𝐴 ∆𝜀𝜀𝑒𝑒  Incremental elastic-strain tensor -

𝐴𝐴 ∆𝜀𝜀𝑝𝑝  Incremental plastic-strain tensor -

𝐴𝐴 𝐴𝐴𝑣𝑣  Volumetric strain -

𝐴𝐴 𝐴𝐴   Shear stress ratio -

𝐴𝐴 𝐴𝐴
∗  Overpressure ratio ML −1T −2

𝐴𝐴 𝐴𝐴  Fluid viscosity ML −1T −1

𝐴𝐴 𝐴𝐴𝑏𝑏  Basal friction coefficient -

𝐴𝐴 𝐴𝐴𝑠𝑠  Sediment internal friction coefficient -

𝐴𝐴 𝐴𝐴𝑚𝑚  Mean stress loading efficiency M −1LT 2

𝐴𝐴 𝐴𝐴𝑞𝑞  Shear stress loading efficiency M −1LT 2

𝐴𝐴 𝐴𝐴𝑏𝑏  Saturated bulk density ML −3T 0

𝐴𝐴 𝐴𝐴𝑓𝑓  Fluid density ML −3T 0

𝐴𝐴 𝐴𝐴𝑠𝑠  Grain density ML −3T 0

𝐴𝐴 𝝈𝝈  Total stress tensor ML −1T −2

𝐴𝐴 𝐴𝐴1  Maximum principal stress ML −1T −2

𝐴𝐴 𝐴𝐴2  Intermediate principal stress ML −1T −2

𝐴𝐴 𝐴𝐴3  Minimum principal stress ML −1T −2

σ′ Effective stress tensor ML −1T −2

𝐴𝐴 𝐴𝐴
′

1
  Maximum principal effective stress ML −1T −2

𝐴𝐴 𝐴𝐴
′

2
  Intermediate principal effective stress ML −1T −2

𝐴𝐴 𝐴𝐴
′

3
  Minimum principal effective stress ML −1T −2

𝐴𝐴 𝐴𝐴ℎ  Horizontal total stress ML −1T −2

𝐴𝐴 𝐴𝐴
′

ℎ
  Horizontal effective stress ML −1T −2

𝐴𝐴 𝐴𝐴𝑚𝑚  Mean total stress ML −1T −2

𝐴𝐴 𝐴𝐴
′

𝑚𝑚  Mean effective stress ML −1T −2

𝐴𝐴 𝐴𝐴𝑣𝑣  Vertical total stress ML −1T −2

𝐴𝐴 𝐴𝐴
′

𝑣𝑣  Vertical effective stress ML −1T −2

𝐴𝐴 𝐴𝐴
𝑐𝑐

𝑚𝑚  Compressive intercept (SR3) ML −1T −2

𝐴𝐴 𝐴𝐴
𝑡𝑡

𝑚𝑚  Tensile intercept (SR3) ML −1T −2

𝐴𝐴 𝐴𝐴   Shear strength ML −1T −2

𝐴𝐴 𝐴𝐴
′

𝑠𝑠  Sediment internal friction angle -
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𝑑𝑑𝑑𝑑
𝑝𝑝

𝑣𝑣 =
𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

((

2𝜎𝜎
′

𝑚𝑚

𝜎𝜎
′

𝑒𝑒

− 1

)

𝑑𝑑𝑑𝑑
′

𝑚𝑚

𝜎𝜎
′

𝑚𝑚

)

+

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

2𝑞𝑞

𝑀𝑀2𝜎𝜎
′

𝑚𝑚𝜎𝜎
′

𝑒𝑒

)

𝑑𝑑𝑑𝑑𝑑� (B3)

where λ is the elastoplastic loading modulus, dq the deviatoric stress increment, M the slope of the critical state 
line, which is a function of the sediment internal friction angle:

𝑀𝑀 =
6sinΦ

′

𝑠𝑠

3 − sinΦ
′

𝑠𝑠

,� (B4)

and 𝐴𝐴 𝐴𝐴
′

𝑒𝑒 the equivalent effective stress, obtained from the description of iso-porosity curves:

𝜎𝜎
′

𝑚𝑚

𝜎𝜎
′

𝑒𝑒

=

(

𝑀𝑀
2

𝑀𝑀2 + 𝜂𝜂2

)1−𝜅𝜅∕𝜆𝜆

� (B5)

where 𝜂𝜂 =
𝑞𝑞

𝜎𝜎
′

𝑚𝑚

is the shear − stress ratio.� (B6)

Assuming that κ ≪ λ, the total volumetric strain rate is:

𝑑𝑑𝑑𝑑𝑣𝑣

𝑑𝑑𝑑𝑑
=

(

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

)(

1

𝜎𝜎
′

𝑚𝑚

)

𝑑𝑑𝑑𝑑
′

𝑚𝑚

𝑑𝑑𝑑𝑑
+

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

2𝜂𝜂

𝜎𝜎
′

𝑚𝑚(𝑀𝑀
2

+ 𝜂𝜂2)

)

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.� (B7)

and, using the effective stress principle (𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝜎𝜎
′

𝑚𝑚 + 𝑢𝑢 ):

𝑑𝑑𝑑𝑑𝑣𝑣

𝑑𝑑𝑑𝑑
=

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

⋅

𝑑𝑑𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑
�

−

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

⋅

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

+

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

2𝜂𝜂

(𝜎𝜎𝑚𝑚 − 𝑢𝑢)(𝑀𝑀
2
+ 𝜂𝜂2)

)

⋅

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.� (B8)

Equation B8 provides the loading efficiencies: mean-stress loading efficiency, ξm (Equation 11):

𝜉𝜉𝑚𝑚 =

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

,� (B9)

and shear-stress loading efficiency, 𝐴𝐴 𝐴𝐴𝑞𝑞 (Equation 12):

𝜉𝜉𝑞𝑞 =

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

2𝜂𝜂

𝑀𝑀2 + 𝜂𝜂2

)(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

� (B10)

The conservation of fluid mass in a deforming porous medium is (Palciauskas & Domenico, 1989):

1

𝑉𝑉

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+

(

1 − 𝑛𝑛

𝜌𝜌𝑠𝑠

)

𝐷𝐷𝐷𝐷𝑠𝑠

𝐷𝐷𝐷𝐷
+

(

𝑛𝑛

𝜌𝜌𝑓𝑓

)

𝐷𝐷𝐷𝐷𝑓𝑓

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅ (𝜌𝜌𝑓𝑓 𝑞𝑞f l) = 0,� (B11)

where the coordinate system is fixed on the sediment grains. n is porosity 𝐴𝐴

(

𝑛𝑛 =
𝑒𝑒

1+𝑒𝑒

)

 , t the time, ρs the density of 
grains, ρf the density of fluids, qfl the volume flux of the fluid relative to the solid matrix, and V is the volume of 
an infinitesimal element of porous material with constant sediment mass.

The fluid mass flux, can be expressed using Darcy's law:

∇ ⋅ (𝜌𝜌𝑓𝑓 𝑞𝑞f l) = −∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (B12)

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

25 of 38

where μ is the viscosity of water, k the intrinsic permeability, and ue the overpressure. The overpressure is the 
difference between pore fluid pressure, u and hydrostatic pore pressure uh:

𝑢𝑢𝑒𝑒 = 𝑢𝑢 − 𝑢𝑢ℎ.� (B13)

Changes in fluid density are related to changes in fluid pressure (Palciauskas & Domenico, 1989):

1

𝜌𝜌𝑓𝑓
𝑑𝑑𝑑𝑑𝑓𝑓 = 𝛽𝛽𝑓𝑓𝑑𝑑𝑑𝑑𝑑� (B14)

where βf is the isothermal fluid compressibility. Changes in solid density depend in a complex way on the mean 
stress and fluid pressure. Small changes in solid density can be linearly approximated as:

1 − 𝑛𝑛

𝜌𝜌𝑠𝑠
𝑑𝑑𝑑𝑑𝑠𝑠 = 𝛽𝛽𝑠𝑠𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑛𝑛𝑛𝑛𝑠𝑠′𝑑𝑑𝑑� (B15)

where βs, 𝐴𝐴 𝐴𝐴𝑠𝑠′ are solid-grain compressibilities (Palciauskas & Domenico, 1989).

Assuming that solid grains are incompressible, Equation B11, combined with Equations B12, B14, and B15, 
becomes:

𝐷𝐷𝐷𝐷𝑣𝑣

𝐷𝐷𝐷𝐷
=

(

𝛽𝛽𝑓𝑓

(

𝑒𝑒

1 + 𝑒𝑒

))

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
−

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

.� (B16)

Substitution of Equation 10 into Equation B16 then yields:

(

𝛽𝛽𝑓𝑓

(

𝑒𝑒

1 + 𝑒𝑒

)

+ 𝜉𝜉𝑚𝑚

)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝑚𝑚

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+ 𝜉𝜉𝑞𝑞

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

.� (B17)

With 𝑆𝑆 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝑚𝑚 (storage coeff icient) ∶� (B18)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝑚𝑚

𝑆𝑆

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
⏟⏞⏟⏞⏟

𝐷𝐷𝐷𝐷𝑚𝑚∕𝐷𝐷𝐷𝐷

+

𝜉𝜉𝑞𝑞

𝑆𝑆

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
⏟⏟⏟

𝐷𝐷𝐷𝐷𝑞𝑞∕𝐷𝐷𝐷𝐷

+
1

𝑆𝑆𝑆𝑆𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

𝐷𝐷𝐷𝐷
diss

𝑒𝑒 ∕𝐷𝐷𝐷𝐷

� (B19)

Finally, using MCC, the storage coefficient, S (Equation 19) is expressed as:

𝑆𝑆 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝑚𝑚 = 𝛽𝛽𝑓𝑓

𝑒𝑒

1 + 𝑒𝑒
+

[

(

𝜆𝜆 − 𝜅𝜅

1 + 𝑒𝑒

)

(

𝑀𝑀
2
− 𝜂𝜂

2

𝑀𝑀2 + 𝜂𝜂2

)

+
𝜅𝜅

1 + 𝑒𝑒

](

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

� (B20)

B1.  Constant Stress Ratio

When the shear-stress ratio, η = ηK, remains constant (loading along a path with slope η in the 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 − 𝑞𝑞 space 
[Figure 2]), overpressure change can be expressed as a function of mean stress change.

The deviatoric stress can be expressed as a function of the mean effective stress:

𝑞𝑞 = 𝜂𝜂𝐾𝐾𝜎𝜎
′

𝑚𝑚 = 𝜂𝜂𝐾𝐾 (𝜎𝜎𝑚𝑚 − 𝑢𝑢).� (B21)

Equation 16 can be re-written as:

𝑆𝑆
𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝑚𝑚

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+ 𝜉𝜉𝑞𝑞

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⟹�

𝑆𝑆
𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝑚𝑚

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+ 𝜂𝜂𝐾𝐾𝜉𝜉𝑞𝑞

𝐷𝐷(𝜎𝜎𝑚𝑚 − 𝑢𝑢)

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⟹�

(𝑆𝑆 + 𝜂𝜂𝐾𝐾𝜉𝜉𝑞𝑞)
𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= (𝜉𝜉𝑚𝑚 + 𝜂𝜂𝐾𝐾𝜉𝜉𝑞𝑞)

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

� (B22)
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Using η = ηK in Equations B9–B20 and substituting in Equation B22:
(

𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+

(

𝜆𝜆

1 + 𝑒𝑒

)

(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

))

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

(

𝜆𝜆

1 + 𝑒𝑒

)

(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (B23)

or

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝐾𝐾

𝑆𝑆𝐾𝐾

𝐷𝐷𝐷𝐷𝑚𝑚

𝐷𝐷𝐷𝐷
+

1

𝑆𝑆𝐾𝐾𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (B24)

where ξK is the load efficiency coefficient for compression with a constant stress ratio:

𝜉𝜉𝐾𝐾 =

(

𝜆𝜆

1 + 𝑒𝑒

)

(

1

𝜎𝜎𝑚𝑚 − 𝑢𝑢

)

,� (B25)

and SK the storage coefficient for compression with a constant stress ratio:

𝑆𝑆𝐾𝐾 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝐾𝐾� (B26)

Equation B24 can be expressed as a function of vertical stress changes under certain stress conditions:

1.	 �Under triaxial conditions, 𝐴𝐴 𝐴𝐴 =
𝜎𝜎
′

ℎ

𝜎𝜎
′

𝑣𝑣

 , and 𝐴𝐴 𝐴𝐴𝐴𝐴
′

𝑚𝑚 =
1+2𝐾𝐾

3

𝑑𝑑𝑑𝑑
′

𝑣𝑣 . Equation B24 then becomes:

𝑆𝑆𝐾𝐾

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝐾𝐾

𝐷𝐷𝐷𝐷
′

𝑚𝑚

𝐷𝐷𝐷𝐷
+ 𝜉𝜉𝐾𝐾

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⟹�

(

𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒

)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝐾𝐾

1 + 2𝐾𝐾

3

𝐷𝐷𝐷𝐷
′

𝑣𝑣

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⟹�

(

𝛽𝛽𝑓𝑓
𝑒𝑒

1 + 𝑒𝑒
+ 𝜉𝜉𝑣𝑣

)

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
= 𝜉𝜉𝑣𝑣

𝐷𝐷𝐷𝐷𝑣𝑣

𝐷𝐷𝐷𝐷
+

1

𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

⟹�

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝑣𝑣

𝑆𝑆𝑣𝑣

𝐷𝐷𝐷𝐷𝑣𝑣

𝑑𝑑𝑑𝑑
+

1

𝑆𝑆𝑣𝑣𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (B27)

with 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1+𝑒𝑒
+ 𝜉𝜉𝑣𝑣 , and 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝜉𝜉𝐾𝐾

1+2𝐾𝐾

3

�2.	� For plane-strain conditions, we assume that the vertical stress remains principal, and estimate the intermediate 
principal stress from (Roscoe & Burland, 1968):

𝜎𝜎
′

2
= 𝜎𝜎

′

3
+

(

𝜎𝜎
′

1
− 𝜎𝜎

′

3

)9𝜂𝜂
2
+ (2𝜂𝜂 − 3)𝑀𝑀

2
+ 18𝜂𝜂

4𝜂𝜂(𝑀𝑀2 + 9)
� (B28)

�With 𝐴𝐴 Λ =
9𝜂𝜂

2
+(2𝜂𝜂−3)𝑀𝑀

2
+18𝜂𝜂

4𝜂𝜂(𝑀𝑀2+9)
 and 𝐴𝐴 𝐴𝐴

′

3
= 𝜎𝜎

′

𝑣𝑣 , 𝐴𝐴 𝐴𝐴𝐴𝐴
′

𝑚𝑚 =
2+(1+Λ)𝐾𝐾−Λ

3

𝑑𝑑𝑑𝑑
′

𝑣𝑣 , and

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
=

𝜉𝜉𝑣𝑣

𝑆𝑆𝑣𝑣

𝐷𝐷𝐷𝐷𝑣𝑣

𝑑𝑑𝑑𝑑
+

1

𝑆𝑆𝑣𝑣𝜌𝜌𝑓𝑓
∇ ⋅

(

𝜌𝜌𝑓𝑓𝑘𝑘

𝜇𝜇
∇ ⋅ 𝑢𝑢𝑒𝑒

)

,� (B29)

�with 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝛽𝛽𝑓𝑓
𝑒𝑒

1+𝑒𝑒
+ 𝜉𝜉𝑣𝑣 , and 𝐴𝐴 𝐴𝐴𝑣𝑣 = 𝜉𝜉𝐾𝐾

2+(1+Λ)𝐾𝐾−Λ

3

 .

B2.  Variation of Pore-Pressure Coefficient ξK/SK in Accretionary Wedges

We show that for typical sediments in accretionary wedges, the pore-pressure coefficient ξK/SK is practically 
independent of the initial stress state and generated overpressures are practically equal to the total mean stress 
change (Equation B24).
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In general, overpressure generation depends on the initial stress state (σ′m, e; Equations B24 and B26). For a 
given void ratio (stress states lying on the same iso-porosity; e.g., Figure 2), the mean effective stress decreases as 
the shear-stress ratio increases toward critical state. This decrease in the mean effective stress increases both the 
loading efficiency and the storage coefficients (Equations B25 and B26). Hence, initial (pre-loading) stress states 
with higher shear-stress ratios (e.g., close to critical state) are expected to generate more overpressure.

To explore the contribution of the initial stress state to generated overpressure for typical sediments in accre-
tionary wedges, we consider 8 different compaction states corresponding to burial depths varying from 1 to 
6 km (Table B1). We assume a friction angle of ϕ′ = 25°, βf = 5 × 10 −4 MPa −1, κ = 0.01, λ = 0.1. We range the 
stress ratio, ηK from 0 (isotropic compaction) to 0.98 (critical state) along the iso-porosity line corresponding 
to each state (constant void ratio, e; Figure B1a), and calculate the mean effective stress (Equation B5). Using 
Equations B25 and B26, we calculate the pore-pressure coefficient ξK/SK (Figure B1b). The coefficient increases 
with increasing shear-stress ratio and, for a given porosity, it has its maximum value at critical state. Variation in 
the ξK/SK values for a given porosity increases as porosity decreases (deeper sediments). However, all values are 
above 90%, illustrating that generated overpressures are practically equal to the total mean stress change (Equa-
tion B24), and that the dependence on the initial stress state (σ′m, e) is minimal.

Isotropic compression stress σ′ = σ′e (MPa) Void ratio, e Porosity, n Uniaxial burial depth (km)

10 0.41 0.29 0.86

20 0.34 0.25 1.64

30 0.30 0.23 2.38

40 0.27 0.21 3.11

50 0.25 0.20 3.82

60 0.23 0.19 4.51

70 0.21 0.18 5.20

80 0.2 0.17 5.88

Table B1 
Initial Compaction States Defining Eight Iso-Porosity Lines
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Appendix C:  Finite Element Solver and Input Parameters
C1.  Finite Element Solver

We build our transient evolutionary geomechanical models in Elfen (Rockfield,  2017). Elfen is based on a 
finite-strain, quasistatic, finite-element formulation (Perić & Crook, 2004; Thornton et al., 2011).

The transient analyses couple deformation with stress and pore pressure by satisfying equilibrium of stresses:

𝑳𝑳
𝑻𝑻

𝝈𝝈 + 𝜌𝜌𝑏𝑏𝒈𝒈 = 𝟎𝟎� (C1)

𝝈𝝈 = 𝝈𝝈
′
+ 𝑢𝑢 𝑰𝑰� (C2)

flow of porous fluid flow:

div

(

𝑘𝑘

𝜇𝜇
(∇𝑢𝑢 − 𝜌𝜌𝑓𝑓𝒈𝒈)

)

= (𝛽𝛽𝑓𝑓𝑛𝑛 + 𝛽𝛽𝑠𝑠(1 − 𝑛𝑛))
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

1

1 − 𝑛𝑛

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (C3)

Figure B1.  Contribution of initial stress state to generated overpressure for a typical wedge. (a) Iso-porosity lines 
corresponding to eight initial compaction states (Table B1); (b) Variation of pore pressure coefficient, 𝐴𝐴

𝜉𝜉𝐾𝐾

𝑆𝑆𝐾𝐾

 , with increasing 
shear-stress ratio along iso-porosity lines shown in (a).
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and constitutive laws of sediments, as described by the SR3 model (Crook, Owen, et al., 2006). A single phase 
of pore water is considered in the model. The code solves the mechanical equations (C1,  C2, and constitu-
tive equations) separately using a large-deformation, quasi-static, Lagrangian, explicit algorithm (Crook, Owen, 
et al., 2006), and the pore-fluid-flow equation (C3) using an implicit algorithm over an increment of time. Fluid 
flow in the seepage field is relative to the deformation of the mesh in the mechanical field. Pore pressure calcu-
lated in the seepage field is then transferred to the mechanical field using the volumetric strain at user-specified 
time intervals, which ensure that the difference between seepage and mechanical pore pressure remains minimal. 
At the end of each coupling interval, the simulation outputs pore pressure and the effective stress tensor. The total 
stress tensor can then be calculated using Equation C2.

C2.  SR3 Input Material Properties

Symbol Parameter name Value

A Material constant −0.28

B Material constant −0.28

c Material constant −2

Eref Reference Young's modulus 40 MPa

𝐴𝐴 𝐴𝐴
𝑡𝑡0

𝑚𝑚  Initial tensile intercept (Figure C2) −0.085 MPa

𝐴𝐴 𝐴𝐴
𝑐𝑐0

𝑚𝑚   Init. compressive intercept (Figure C2) 1 MPa

nsr3 Material constant 1.3

ne Material constant 0.3

β Friction parameter 60°

ν Poisson's ratio 0.25

ρs Grain density 2.7 g/cm 3

ρw Water density 1 g/cm 3

Table C1 
SR3 Material Model Input Parameters (Crook, Owen, et al., 2006; Rockfield, 2017)
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Figure C1.  (Equivalent to Figure 2 for the SR3 formulation): (a) Iso-porosity lines and uniaxial compaction path in 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 − 𝑞𝑞 
space. (b) Compaction curves under uniaxial burial (black) and critical state (red) conditions, in 𝐴𝐴 𝐴𝐴

′

𝑚𝑚 − 𝑛𝑛 space.

Figure C2.  SR3 stress-strain-strength behavior in 𝐴𝐴 𝐴𝐴
′

𝑚𝑚 − 𝑞𝑞 − 𝑛𝑛 space (Rockfield, 2017).
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Figure C3.  Hardening input for SR3 defined as a relationship between volumetric strain (𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑣𝑣 ), compression intercept, 𝐴𝐴 𝐴𝐴
𝑐𝑐

𝑚𝑚 
(solid red line), and tensile intercept, 𝐴𝐴 𝐴𝐴

𝑡𝑡

𝑚𝑚 (dashed blue line). 𝐴𝐴 𝐴𝐴
𝑐𝑐

𝑚𝑚 and 𝐴𝐴 𝐴𝐴
𝑡𝑡

𝑚𝑚 are the two intercepts of the yield surface with the 
isotropic axis and control how the SR3 yield surface grows with applied deformation (specifically volumetric plastic strain). 
Negative volumetric strains and a small tensile strength are included for numerical stability (Rockfield, 2017).

Figure C4.  Published permeability-porosity field and experimental data and models for Nankai (green shades), Costa 
Rica (red), Barbados (purple), and Peru (blue) (Bekins et al., 1995; Gamage et al., 2011; Gamage & Screaton, 2006; Reece 
et al., 2013; Saffer & Bekins, 1998; Saffer et al., 2000; Saffer & McKiernan, 2005; E. J. Screaton & Saffer, 2003; Skarbek & 
Saffer, 2009; Spinelli et al., 2004).
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Appendix D:  Decomposition of Overpressure Components
We parse the individual components of Equation 18 for a loading increment t0–t1 (Figure D1). The effective 
stress path (orange line, Figure D1a) and overpressures ue0, ue1 at the beginning and end of the increment (blue, 
Figure D1a) are shown.

The reduced total stress can be obtained by (green line, Figure D1):

𝜎𝜎𝑚𝑚 − 𝑢𝑢ℎ = 𝜎𝜎
′

𝑚𝑚 + 𝑢𝑢𝑒𝑒� (D1)

where uh is the hydrostatic pressure. The overpressure change for the increment is (blue in Figure D1a):

Δ𝑢𝑢𝑒𝑒 = 𝑢𝑢𝑒𝑒1 − 𝑢𝑢𝑒𝑒0� (D2)

If no dissipation of pore pressure were allowed (undrained conditions, Figure D1b), this overpressure change 
could be decomposed into a mean-stress-induced (𝐴𝐴 Δ𝑢𝑢

𝑚𝑚

𝑒𝑒  , green in Figure D1b) and a shear-induced pressure change 
(𝐴𝐴 Δ𝑢𝑢

𝑞𝑞

𝑒𝑒 , red in Figure D1b). With Skempton's a = 1, the mean-stress-induced component is:

Δ𝑢𝑢
𝑚𝑚

𝑒𝑒 = Δ𝜎𝜎𝑚𝑚 = 𝜎𝜎𝑚𝑚1 − 𝜎𝜎𝑚𝑚0� (D3)

For the hypothetical undrained scenario, the shear-induced overpressure component (𝐴𝐴 Δ𝑢𝑢
𝑞𝑞

𝑒𝑒 ) is equal to the change 
in mean effective stress along a loading path that achieves the same change in shear stress as the actual path but 
does not change the volume (porosity). This path is described mathematically in the constitutive model as an 

Figure D1.  Schematic illustration of overpressure components for an increment in effective stress from t0 to t1. (a) Effective 
stress path (orange) as well as overpressure at the beginning and end of the increment (ue0, ue1, blue colors). The net 
overpressure change, Δue, is calculated as the difference between ue0 and ue1 (Equation D2). Total stresses are calculated using 
Equation D1 (green). (b) Assuming no dissipation (undrained conditions), the mean-stress-induced overpressure (𝐴𝐴 Δ𝑢𝑢

𝑚𝑚

𝑒𝑒  ) is 
calculated from the total stress path (green), using Equation D3. The shear-induced overpressure (𝐴𝐴 Δ𝑢𝑢

𝑞𝑞

𝑒𝑒 ) is calculated from the 
undrained loading path that achieves the same change in shear stress as the actual path with no volume change (iso-porosity, 
dashed red line).
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iso-porosity curve (dashed red curve, Figure D1b). The form of this iso-porosity curve depends on the constitu-
tive assumptions for sediment behavior. In the Critical State framework, its key attribute is that with increasing 
shear, a considerably decreased mean effective stress is correlated to the same porosity. Thus, under undrained 
conditions, increasing shear leads to an increase in overpressure (red in Figure D1b):

Δ𝑢𝑢
𝑞𝑞

𝑒𝑒 = 𝜎𝜎
′

𝑚𝑚0
− 𝜎𝜎

′

𝑚𝑚1𝑢𝑢� (D4)

In practice, a significant amount of overpressure dissipates. With all other components known, pressure dissipa-
tion is calculated as:

Δ𝑢𝑢
diss

𝑒𝑒 = Δ𝑢𝑢
𝑚𝑚

𝑒𝑒 + Δ𝑢𝑢
𝑞𝑞

𝑒𝑒 − Δ𝑢𝑢𝑒𝑒� (D5)

In our model results (e.g., Figure  10c) the pressure components of Equation  18 are calculated using Equa-
tions D2–D5 and the SR3 constitutive model. However, the fundamental form of Equation 18 is independent 
of the exact choice of soil model, provided that the constitutive formulation describes volumetric change as a 
function of both mean and shear stress.

Appendix E:  Effect of Convergence Rate
We explore the influence of convergence rate on pressure and stress with three models having convergence rates 
of 1 mm/year (slow), 5 mm/year (medium), and 10 mm/year (high) (Table 1, Models 5, 2, and 6).

We compare overpressures along the vertical profiles, “A,” where the thickness of sediment above the décollement 
is 4 km (Figures E1a–E1c). Both overpressure and overpressure ratio, λ*, increase with increase in convergence 
rate (Figures E1d and E1e). At the décollement, the overpressure increases from 15 to 22 MPa (Figure E1d), and 
λ* from 0.29 to 0.43 (Figure E1e). A higher convergence rate increases the loading rate, such that the generated 
pressure significantly outpaces pressure dissipation.

Figure E1.  Impact of convergence rate on overpressure (Table 1, Models 5, 2, and 6). (a–c) Overpressure ratio (λ*) from 
slow-, medium-, and fast-convergence case. The medium-convergence case is the same as the base model (Model 2, Table 1). 
(d) Comparison of overpressure along vertical profile A in (a–c), located where the hanging-wall thickness is 4 km. (e) 
Overpressure ratio (λ*) along A profiles in (a–c). Green, red, and blue represent slow, medium, and fast convergence rates, 
respectively.
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Increase in the convergence rate leads to decrease in both mean-effective and deviatoric stress in the hanging-wall 
(Figure  E2d). As a result, porosity loss in the hanging-wall is less than in the slow convergence rate case 
(Figures E2a–E2c and E2e). Specifically, porosity offsets resulting from high and low convergence rates are 2 
and 4 porosity units, respectively (Table 1, Model 5 vs. Model 6).

Figure E2.  Impact of convergence rate on stresses and compaction. (a–c) Porosity distribution for slow-, medium-, and 
fast-convergence rate models. (d) Mean effective stress and deviatoric stress along vertical profiles Aslow, Amed, and Afast 
in (a–c). Circles represent stress states in the hanging wall and triangles in footwall. (e) Porosity-depth curves along same 
profiles in (a–c). Green, red and blue colors represent slow, medium, and fast convergence rates, respectively. The gray line in 
(e) shows the drained porosity-depth curve.

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

35 of 38

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Elfen-project input, analysis, and output files for all models discussed in this manuscript are available on The 
University of Texas at Austin Dataverse Collection (https://doi.org/10.18738/T8/PZRHHO). Additionally, input 
data for the analyses are provided in Tables 1 and C1, and Figures 6, 7, C1, C3, and C4. The Finite Element program 
Elfen used in this study is a software package commercially available from Rockfield Global (Rockfield, 2017).

References
Albertz, M., & Sanz, P. F. (2012). Critical state finite element models of contractional fault-related folding: Part 2. Mechanical analysis. Tectono-

physics, 576–577, 150–170. https://doi.org/10.1016/j.tecto.2012.06.016
Angus, D. A., Dutko, M., Kristiansen, T. G., Fisher, Q. J., Kendall, J. M., Baird, A. F., et al. (2015). Integrated hydro-mechanical and seismic 

modelling of the Valhall reservoir: A case study of predicting subsidence, AVOA and microseismicity. Geomechanics for Energy and the 
Environment, 2, 32–44. https://doi.org/10.1016/j.gete.2015.05.002

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., et al. (2017). Recurring and triggered slow-slip events near the 
trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120

Bangs, N. L. B., Westbrook, G. K., Ladd, J. W., & Buhl, P. (1990). Seismic velocities from the Barbados Ridge Complex: Indicators of high pore 
fluid pressures in an accretionary complex. Journal of Geophysical Research, 95(B6), 8767–8782. https://doi.org/10.1029/jb095ib06p08767

Barnes, P. M., Ghisetti, F. C., Ellis, S., & Morgan, J. K. (2018). The role of protothrusts in frontal accretion and accommodation of plate conver-
gence, Hikurangi subduction margin, New Zealand. Geosphere, 14(2), 440–468. https://doi.org/10.1130/ges01552.1

Bekins, B. A., & Dreiss, S. (1992). A simplified analysis of parameters controlling dewatering in accretionary prisms. Earth and Planetary 
Science Letters, 109(3–4), 275–287. https://doi.org/10.1016/0012-821x(92)90092-a

Bekins, B. A., Dreiss, S., & McCaffrey, A. M. (1995). Episodic and constant flow models for the origin of low-chloride waters in a modern 
accretionary complex. Water Resources Research, 31(12), 3205–3215. https://doi.org/10.1029/95WR02569

Borja, R. I., & Dreiss, S. J. (1989). Numerical modeling of accretionary wedge mechanics: Application to the Barbados subduction problem. 
Journal of Geophysical Research, 94(B7), 9323–9339. https://doi.org/10.1029/JB094iB07p09323

Bourlange, S., Henry, P., Moore, J. C., Mikada, H., & Klaus, A. (2003). Fracture porosity in the decollement zone of Nankai accretionary 
wedge using logging while drilling resistivity data. Earth and Planetary Science Letters, 209(1–2), 103–112. https://doi.org/10.1016/
S0012-821X(03)00082-7

Bray, C. J., & Karig, D. E. (1985). Porosity of sediments in accretionary prisms and some implications for dewatering processes. Journal of 
Geophysical Research, 90(B1), 768–778. https://doi.org/10.1029/jb090ib01p00768

Brückmann, W., Moran, K., & Housen, B. (1997). Directional properties of p-wave velocities and acoustic anisotropies in different structural 
domains of the Northern Barbados Ridge accretionary complex. In Paper presented at the Proceedings of the ocean drilling program: Scien-
tific results.

Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W., et al. (2016). Benchmarking numerical models of brittle thrust 
wedges. Journal of Structural Geology, 92, 140–177. https://doi.org/10.1016/j.jsg.2016.03.003

Butler, J. P., Beaumont, C., & Jamieson, R. A. (2013). The Alps 1: A working geodynamic model for burial and exhumation of (ultra)high-pressure 
rocks in Alpine-type orogens. Earth and Planetary Science Letters, 377–378, 114–131. https://doi.org/10.1016/j.epsl.2013.06.039

Byrne, T., & Fisher, D. (1990). Evidence for a weak and overpressured decollement beneath sediment-dominated accretionary prisms. Journal of 
Geophysical Research, 95(B6), 9081–9097. https://doi.org/10.1029/jb095ib06p09081

Calahorrano, B. A., Sallares, V., Collot, J., Sage, F., & Ranero, C. (2008). Nonlinear variations of the physical properties along the southern 
Ecuador subduction channel: Results from depth-migrated seismic data. Earth and Planetary Science Letters, 267(3–4), 453–467. https://doi.
org/10.1016/j.epsl.2007.11.061

Chesley, C. J. (2022). Marine electromagnetic studies of the Pacific Plate and Hikurangi Margin, New Zealand. Columbia University.
Clift, P., & Vannucchi, P. (2004). Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of 

the continental crust. Reviews of Geophysics, 42(2), RG2001. https://doi.org/10.1029/2003rg000127
Costa Pisani, P., Reshef, M., & Moore, G. (2005). Targeted 3-D prestack depth imaging at Legs 190-196 ODP drill sites (Nankai Trough, Japan). 

Geophysical Research Letters, 32(20), n/a. https://doi.org/10.1029/2005GL024191
Craig, R. F. (2005). Soil mechanics (7th ed.). Spon Press.
Crook, A. J. L., Owen, D. R. J., Willson, S. M., & Yu, J. G. (2006). Benchmarks for the evolution of shear localisation with large relative slid-

ing in frictional materials. Computer Methods in Applied Mechanics and Engineering, 195(37–40), 4991–5010. https://doi.org/10.1016/j.
cma.2005.11.016

Crook, A. J. L., Willson, S. M., Yu, J. G., & Owen, D. R. J. (2006). Predictive modelling of structure evolution in sandbox experiments. Journal 
of Structural Geology, 28(5), 729–744. https://doi.org/10.1016/j.jsg.2006.02.002

Dahlen, F. A., Suppe, J., & Davis, D. (1984). Mechanics of fold-and-thrust belts and accretionary wedges; cohesive Coulomb theory. Journal of 
Geophysical Research, 89(B12), 10087–10101. https://doi.org/10.1029/jb089ib12p10087

Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 
88(B2), 1153–1172. https://doi.org/10.1029/JB088iB02p01153

Davis, E. E., Hyndman, R. D., & Villinger, H. (1990). Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints 
from new heat row and multichannel seismic reflection data. Journal of Geophysical Research, 95(B6), 8869. https://doi.org/10.1029/
JB095iB06p08869

Drews, M. C., & Duschl, F. (2022). Overpressure, vertical stress, compaction and horizontal loading along the North Alpine Thrust Front, SE 
Germany. Marine and Petroleum Geology, 143, 105806. https://doi.org/10.1016/j.marpetgeo.2022.105806

Acknowledgments
We thank Drs. Hiroko Kitajima and 
Michael Drews for their detailed and 
insightful reviews. This work was 
funded by NSF award EAR-2041496 
(Nikolinakou) and the UT GeoFluids 
Consortium, which is currently supported 
by the following companies: BP, 
Chevron, Conoco-Phillips, ENI, Hess, 
Oxy, Petrobras, Shell, and Woodside. 
Gao was supported by USSSP during 
her IODP CLSI at sea program. Saffer 
was supported by a Jackson School of 
Geosciences Fellowship at The University 
of Texas at Austin during earlier stages of 
the research.

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.18738/T8/PZRHHO
https://doi.org/10.1016/j.tecto.2012.06.016
https://doi.org/10.1016/j.gete.2015.05.002
https://doi.org/10.1126/science.aan3120
https://doi.org/10.1029/jb095ib06p08767
https://doi.org/10.1130/ges01552.1
https://doi.org/10.1016/0012-821x(92)90092-a
https://doi.org/10.1029/95WR02569
https://doi.org/10.1029/JB094iB07p09323
https://doi.org/10.1016/S0012-821X(03)00082-7
https://doi.org/10.1016/S0012-821X(03)00082-7
https://doi.org/10.1029/jb090ib01p00768
https://doi.org/10.1016/j.jsg.2016.03.003
https://doi.org/10.1016/j.epsl.2013.06.039
https://doi.org/10.1029/jb095ib06p09081
https://doi.org/10.1016/j.epsl.2007.11.061
https://doi.org/10.1016/j.epsl.2007.11.061
https://doi.org/10.1029/2003rg000127
https://doi.org/10.1029/2005GL024191
https://doi.org/10.1016/j.cma.2005.11.016
https://doi.org/10.1016/j.cma.2005.11.016
https://doi.org/10.1016/j.jsg.2006.02.002
https://doi.org/10.1029/jb089ib12p10087
https://doi.org/10.1029/JB088iB02p01153
https://doi.org/10.1029/JB095iB06p08869
https://doi.org/10.1029/JB095iB06p08869
https://doi.org/10.1016/j.marpetgeo.2022.105806


Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

36 of 38

Ellis, S., Fagereng, Å., Barker, D., Henrys, S., Saffer, D., Wallace, L., et al. (2015). Fluid budgets along the northern Hikurangi subduction 
margin, New Zealand: The effect of a subducting seamount on fluid pressure. Geophysical Journal International, 202(1), 277–297. https://
doi.org/10.1093/gji/ggv127

Ellis, S., Ghisetti, F., Barnes, P. M., Boulton, C., Fagereng, Å., & Buiter, S. (2019). The contemporary force balance in a wide accretionary wedge: 
Numerical models of the southcentral Hikurangi margin of New Zealand. Geophysical Journal International, 219(2), 776–795. https://doi.
org/10.1093/gji/ggz317

Flemings, P. B. (2021). A concise guide to geopressure: Origin, prediction, and applications. Cambridge Press.
Flemings, P. B., Long, H., Dugan, B., Germaine, J. T., John, C. M., Behrmann, J. H., et al. (2008). Pore pressure penetrometers document high 

overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of 
Mexico. Earth and Planetary Science Letters, 269(3–4), 309–325. https://doi.org/10.1016/j.epsl.2007.12.005

Flemings, P.  B., & Saffer, D. M. (2018). Pressure and stress prediction in the Nankai accretionary prism: A critical state soil mechanics 
porosity-based approach. Journal of Geophysical Research: Solid Earth, 123(2), 1089–1115. https://doi.org/10.1002/2017jb015025

French, M. E., & Morgan, J. K. (2020). Pore fluid pressures and strength contrasts maintain frontal fault activity, Northern Hikurangi Margin, 
New Zealand. Geophysical Research Letters, 47(21), e2020GL089209. https://doi.org/10.1029/2020gl089209

Gamage, K., & Screaton, E. (2006). Characterization of excess pore pressures at the toe of the Nankai accretionary complex, Ocean Drilling 
Program sites 1173, 1174, and 808: Results of one-dimensional modeling. Journal of Geophysical Research, 111(B4), B04103. https://doi.
org/10.1029/2004jb003572

Gamage, K., Screaton, E., Bekins, B., & Aiello, I. (2011). Permeability–porosity relationships of subduction zone sediments. Marine Geology, 
279(1–4), 19–36. https://doi.org/10.1016/j.margeo.2010.10.010

Gao, B., Flemings, P. B., Nikolinakou, M. A., Saffer, D. M., & Heidari, M. (2018). Mechanics of fold-and-thrust belts based on geomechanical 
modeling. Journal of Geophysical Research: Solid Earth, 123(5), 4454–4474. https://doi.org/10.1029/2018JB015434

Ge, S., & Screaton, E. (2005). Modeling seismically induced deformation and fluid flow in the Nankai subduction zone. Geophysical Research 
Letters, 32(17), L17301. https://doi.org/10.1029/2005gl023473

Gradmann, S., & Beaumont, C. (2017). Numerical modelling study of mechanisms of mid-basin salt canopy evolution and their potential appli-
cations to the Northwestern Gulf of Mexico. Basin Research, 29(4), 490–520. https://doi.org/10.1111/bre.12186

Hamahashi, M., Saito, S., Kimura, G., Yamaguchi, A., Fukuchi, R., Kameda, J., et al. (2013). Contrasts in physical properties between the hanging 
wall and footwall of an exhumed seismogenic megasplay fault in a subduction zone-An example from the Nobeoka Thrust Drilling Project. 
Geochemistry, Geophysics, Geosystems, 14(12), 5354–5370. https://doi.org/10.1002/2013gc004818

Hauser, M. R., Couzens-Schultz, B. A., & Chan, A. W. (2014). Estimating the influence of stress state on compaction behavior. Geophysics, 79(6), 
D389–D398. https://doi.org/10.1190/geo2014-0089.1

Heidari, M., Nikolinakou, M. A., Hudec, M. R., & Flemings, P. B. (2019). Influence of a reservoir bed on diapirism and drilling hazards near a 
salt diapir: A geomechanical approach. Petroleum Geoscience, 25(3), 282–297. https://doi.org/10.1144/petgeo2018-113

Henry, P., Jouniaux, L., Screaton, E. J., Hunze, S., & Saffer, D. M. (2003). Anisotropy of electrical conductivity record of initial strain at the toe 
of the Nankai accretionary wedge. Journal of Geophysical Research, 108(B9), n/a. https://doi.org/10.1029/2002JB002287

Henry, P., & Wang, C.-Y. (1991). Modeling of fluid flow and pore pressure at the toe of Oregon and Barbados Accretionary Wedges. Journal of 
Geophysical Research, 96(B12), 20109–20130. https://doi.org/10.1029/91jb01908

Housen, B. A., Tobin, H. J., Labaume, P., Leitch, E. C., & Maltman, A. J. (1996). Strain decoupling across the decollement of the Barbados 
accretionary prism. Geology, 24(2), 127–130. https://doi.org/10.1130/0091-7613(1996)024<0127:sdatdo>2.3.co;2

Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting Part I. Mechanics of fluid-filled porous solids 
and its application to overthrust faulting. Geological Society of America Bulletin, 70(2), 115–166. https://doi.org/10.1130/0016-7606(1959)7
0[115:rofpim]2.0.co;2

Ikari, M. J., & Saffer, D. M. (2011). Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary 
complex. Geochemistry, Geophysics, Geosystems, 12(4), n/a. https://doi.org/10.1029/2010GC003442

Ikari, M. J., Saffer, D. M., & Marone, C. (2009). Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone. 
Geophysical Research Letters, 36(20), L20313. https://doi.org/10.1029/2009gl040009

Im, K., Saffer, D., Marone, C., & Avouac, J.-P. (2020). Slip-rate-dependent friction as a universal mechanism for slow slip events. Nature Geosci-
ence, 13(10), 705–710. https://doi.org/10.1038/s41561-020-0627-9

Ito, Y., & Obara, K. (2006). Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophysical Research 
Letters, 33(2), L02311. https://doi.org/10.1029/2005gl025270

Karig, D. E. (1986). Physical properties and mechanical state of accreted sediments in the Nankai Trough, Southwest Japan Arc. Geological 
Society of America Memoirs, 166, 117–134.

Karig, D. E. (1990). Experimental and observational constraints on the mechanical behaviour in the toes of accretionary prisms. In R. J. Knipe 
& E. H. Rutter (Eds.), Deformation mechanisms, rheology, and tectonics, Geological Society Special Publication (Vol. 54, pp. 383–398). 
Geological Society of London.

Karig, D. E. (1993). Reconsolidation tests and sonic velocity measurements of clay-rich sediments from the Nankai Trough. In I. A. Hill, A. Taira, 
& J. V. Firth (Eds.), Proceedings of the ocean drilling program, scientific results, Leg 131 (Vol. 131, pp. 247–260). Ocean Drilling Program.

Kitajima, H., Saffer, D., Sone, H., Tobin, H., & Hirose, T. (2017). In situ stress and pore pressure in the deep interior of the Nankai accretionary 
prism, integrated ocean drilling program site C0002. Geophysical Research Letters, 44(19), 9644–9652. https://doi.org/10.1002/2017gl075127

Kitajima, H., & Saffer, D. M. (2012). Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the 
Nankai Trough subduction megathrust. Geophysical Research Letters, 39(23), L23301. https://doi.org/10.1029/2012gl053793

Kodaira, S., Iidaka, T., Kato, A., Park, J. O., Iwasaki, T., & Kaneda, Y. (2004). High pore fluid pressure may cause silent slip in the Nankai 
Trough. Science, 304(5675), 1295–1298. https://doi.org/10.1126/science.1096535

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., et al. (2012). Coseismic fault rupture at the trench axis during the 2011 
Tohoku-oki earthquake. Nature Geoscience, 5(9), 646–650. https://doi.org/10.1038/ngeo1547

Kopf, A., & Brown, K. M. (2003). Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barba-
dos subduction thrusts. Marine Geology, 202(3–4), 193–210. https://doi.org/10.1016/s0025-3227(03)00286-x

Kozdon, J. E., & Dunham, E. M. (2013). Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bulletin 
of the Seismological Society of America, 103(2B), 1275–1289. https://doi.org/10.1785/0120120136

Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical 
Research, 112(B9), B09404. https://doi.org/10.1029/2007JB004930

Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2016). Impact of sedimentation on evolution of accretionary wedges: Insights 
from high-resolution thermomechanical modeling. Tectonics, 35(12), 2828–2846. https://doi.org/10.1002/2016tc004239

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1093/gji/ggv127
https://doi.org/10.1093/gji/ggv127
https://doi.org/10.1093/gji/ggz317
https://doi.org/10.1093/gji/ggz317
https://doi.org/10.1016/j.epsl.2007.12.005
https://doi.org/10.1002/2017jb015025
https://doi.org/10.1029/2020gl089209
https://doi.org/10.1029/2004jb003572
https://doi.org/10.1029/2004jb003572
https://doi.org/10.1016/j.margeo.2010.10.010
https://doi.org/10.1029/2018JB015434
https://doi.org/10.1029/2005gl023473
https://doi.org/10.1111/bre.12186
https://doi.org/10.1002/2013gc004818
https://doi.org/10.1190/geo2014-0089.1
https://doi.org/10.1144/petgeo2018-113
https://doi.org/10.1029/2002JB002287
https://doi.org/10.1029/91jb01908
https://doi.org/10.1130/0091-7613(1996)024%3C0127:sdatdo%3E2.3.co;2
https://doi.org/10.1130/0016-7606(1959)70%5B115:rofpim%5D2.0.co;2
https://doi.org/10.1130/0016-7606(1959)70%5B115:rofpim%5D2.0.co;2
https://doi.org/10.1029/2010GC003442
https://doi.org/10.1029/2009gl040009
https://doi.org/10.1038/s41561-020-0627-9
https://doi.org/10.1029/2005gl025270
https://doi.org/10.1002/2017gl075127
https://doi.org/10.1029/2012gl053793
https://doi.org/10.1126/science.1096535
https://doi.org/10.1038/ngeo1547
https://doi.org/10.1016/s0025-3227(03)00286-x
https://doi.org/10.1785/0120120136
https://doi.org/10.1029/2007JB004930
https://doi.org/10.1002/2016tc004239


Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

37 of 38

Moore, J. C., & Saffer, D. (2001). Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An 
effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2), 183–186. https://doi.
org/10.1130/0091-7613(2001)029<0183:ulotsz>2.0.co;2

Morgan, J. K. (2015). Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete 
element simulations. Journal of Geophysical Research: Solid Earth, 120(5), 3870–3896. https://doi.org/10.1002/2014jb011455

Morgan, J. K., Karig, D. E., & Maniatty, A. (1994). The estimation of diffuse strains in the toe of the western Nankai accretionary prism: A 
kinematic solution. Journal of Geophysical Research, 99(B4), 7019–7032. https://doi.org/10.1029/93jb03367

Neuzil, C. E. (1995). Abnormal pressures as hydrodynamic phenomena. American Journal of Science, 295(6), 742–786. https://doi.org/10.2475/
ajs.295.6.742

Nikolinakou, M. A., Flemings, P. B., Heidari, M., & Hudec, M. R. (2018). Stress and pore pressure in mudrocks bounding salt systems. Rock 
Mechanics and Rock Engineering, 51(12), 3883–3894. https://doi.org/10.1007/s00603-018-1540-z

Nollet, S., Kleine Vennekate, G. J., Giese, S., Vrolijk, P., Urai, J. L., & Ziegler, M. (2012). Localization patterns in sandbox-scale numerical 
experiments above a normal fault in basement. Journal of Structural Geology, 39, 199–209. https://doi.org/10.1016/j.jsg.2012.02.011

Nolting, A., Zahm, C. K., Kerans, C., & Nikolinakou, M. A. (2018). Effect of carbonate platform morphology on syndepositional deformation: 
Insights from numerical modeling. Journal of Structural Geology, 115, 91–102. https://doi.org/10.1016/j.jsg.2018.07.003

Obana, K., & Kodaira, S. (2009). Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth and Planetary 
Science Letters, 287(1–2), 168–174. https://doi.org/10.1016/j.epsl.2009.08.005

Obradors-Prats, J., Rouainia, M., Aplin, A. C., & Crook, A. J. L. (2017). Hydromechanical modeling of stress, pore pressure, and porosity evolu-
tion in fold-and-thrust belt systems. Journal of Geophysical Research: Solid Earth, 122(11), 9383–9403. https://doi.org/10.1002/2017jb014074

Owens, W. H. (1993). Magnetic fabric studies of samples from Hole 808C, Nankai Trough. In Paper presented at the Proc. ODP Sci. Res.
Palciauskas, V. V., & Domenico, P. A. (1989). Fluid pressures in deforming porous rocks. Water Resources Research, 25(2), 203–213. https://

doi.org/10.1029/wr025i002p00203
Park, J.-O., Fujie, G., Wijerathne, L., Hori, T., Kodaira, S., Fukao, Y., et al. (2010). A low-velocity zone with weak reflectivity along the Nankai 

subduction zone. Geology, 38(3), 283–286. https://doi.org/10.1130/g30205.1
Party, O. D. P. L. S. (1987). Expulsion of fluids from depth along a subduction-zone decollement horizon. Nature, 326(6115), 785–788. https://

doi.org/10.1038/326785a0
Perić, D., & Crook, A. J. L. (2004). Computational strategies for predictive geology with reference to salt tectonics. Computer Methods in Applied 

Mechanics and Engineering, 193(48–51), 5195–5222. https://doi.org/10.1016/j.cma.2004.01.037
Reece, J. S., Flemings, P. B., & Germaine, J. T. (2013). Data report: Permeability, compressibility, and microstructure of resedimented mudstone 

from IODP Expedition 322, site C0011. In S. Saito, M. B. Underwood, Y. Kubo, & the Expedition 322 Scientists (Eds.), Expedition 322, site 
C0011, IODP Proceedings. IODP.

Rockfield. (2017). ELFEN forward modeling user manual. Rockfield Software Limited.
Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of “wet” clay. In J. Heyman & F. A. Leckie (Eds.), Engineering 

plasticity (pp. 535–609). Cambridge University Press.
Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/

geot.1958.8.1.22
Rowe, K. T., Screaton, E. J., & Ge, S. (2012). Coupled fluid flow and deformation modeling of the frontal thrust region of the Kumano Basin 

transect, Japan: Implications for fluid pressures and decollement downstepping. Geochemistry, Geophysics, Geosystems, 13(3), 1–18. Q0ad23. 
https://doi.org/10.1029/2011gc003861

Ruh, J. B., Sallarès, V., Ranero, C. R., & Gerya, T. (2016). Crustal deformation dynamics and stress evolution during seamount subduc-
tion: High-resolution 3-D numerical modeling. Journal of Geophysical Research: Solid Earth, 121(9), 6880–6902. https://doi.
org/10.1002/2016jb013250

Saffer, D. M. (2015). The permeability of active subduction plate boundary faults. Geofluids, 15(1–2), 193–215. https://doi.org/10.1111/gfl.12103
Saffer, D. M., & Bekins, B. A. (1998). Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates and fluid 

budget. Journal of Geophysical Research, 103(B12), 30351–30370. https://doi.org/10.1029/98jb01983
Saffer, D. M., & Bekins, B. A. (2006). An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle 

and wedge mechanics. Journal of Geophysical Research, 111(B04101), B04101. https://doi.org/10.1029/2005JB003990
Saffer, D. M., & McKiernan, A. W. (2005). Permeability of underthrust sediments at the Costa Rican subduction zone: Scale dependence and 

implications for dewatering. Geophysical Research Letters, 32(2), L02302. https://doi.org/10.1029/2004gl021388
Saffer, D. M., Silver, E. A., Fisher, A. T., Tobin, H., & Moran, K. (2000). Inferred pore pressures at the Costa Rica subduction zone: Implications 

for dewatering processes. Earth and Planetary Science Letters, 177(3–4), 193–207. https://doi.org/10.1016/s0012-821x(00)00048-0
Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review of 

Earth and Planetary Sciences, 39(1), 157–186. https://doi.org/10.1146/annurev-earth-040610-133408
Schneider, J., Flemings, P.  B., Dugan, B., Long, H., & Germaine, J. T. (2009). Overpressure and consolidation near the seafloor of 

Brazos-Trinity Basin IV, northwest deepwater Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 114(B5), B05102. https://doi.
org/10.1029/2008jb005922

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097
Scholz, C. H. (2012). The mechanics of earthquakes and faulting. Cambridge University Press.
Screaton, E., Carson, B., Davis, E., & Becker, K. (2000). Permeability of a decollement zone: Results from a two-well experiment in the Barbados 

accretionary complex. Journal of Geophysical Research, 105(B9), 21403–21410. https://doi.org/10.1029/2000JB900220
Screaton, E., Saffer, D., Henry, P., & Hunze, S. (2002). Porosity loss within the underthrust sediments of the Nankai accretionary complex: Impli-

cations for overpressures. Geology, 30(1), 19–22. https://doi.org/10.1130/0091-7613(2002)030<0019:Plwtus>2.0.Co;2
Screaton, E. J., & Saffer, D. M. (2003). Numerical modeling of dewatering of underthrust sediments, Costa Rica Subduction Zone. Eos, Transac-

tions American Geophysical Union, 84(46). Paper presented at the Eos Trans. AGU Fall Meet. Suppl., Abstract T52C-0275.
Shi, Y., Wang, C.-Y., Hwang, W.-T., & von Huene, R. (1989). Hydrogeological modeling of porous flow in the Oregon accretionary prism. Geol-

ogy, 17(4), 321–323. https://doi.org/10.1130/0091-7613(1989)017<0321:hmopfi>2.3.co;2
Skarbek, R. M., & Saffer, D. M. (2009). Pore pressure development beneath the décollement at the Nankai subduction zone: Implications for plate 

boundary fault strength and sediment dewatering. Journal of Geophysical Research, 114(B7), B07401. https://doi.org/10.1029/2008JB006205
Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4(4), 143–147. https://doi.org/10.1680/geot.1954.4.4.143
Song, I., Saffer, D. M., & Flemings, P. B. (2011). Mechanical characterization of slope sediments: Constraints on in situ stress and pore pressure 

near the tip of the megasplay fault in the Nankai accretionary complex. Geochemistry, Geophysics, Geosystems, 12(8), Q0AD17. https://doi.
org/10.1029/2011gc003556

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1130/0091-7613(2001)029%3C0183:ulotsz%3E2.0.co;2
https://doi.org/10.1130/0091-7613(2001)029%3C0183:ulotsz%3E2.0.co;2
https://doi.org/10.1002/2014jb011455
https://doi.org/10.1029/93jb03367
https://doi.org/10.2475/ajs.295.6.742
https://doi.org/10.2475/ajs.295.6.742
https://doi.org/10.1007/s00603-018-1540-z
https://doi.org/10.1016/j.jsg.2012.02.011
https://doi.org/10.1016/j.jsg.2018.07.003
https://doi.org/10.1016/j.epsl.2009.08.005
https://doi.org/10.1002/2017jb014074
https://doi.org/10.1029/wr025i002p00203
https://doi.org/10.1029/wr025i002p00203
https://doi.org/10.1130/g30205.1
https://doi.org/10.1038/326785a0
https://doi.org/10.1038/326785a0
https://doi.org/10.1016/j.cma.2004.01.037
https://doi.org/10.1680/geot.1958.8.1.22
https://doi.org/10.1680/geot.1958.8.1.22
https://doi.org/10.1029/2011gc003861
https://doi.org/10.1002/2016jb013250
https://doi.org/10.1002/2016jb013250
https://doi.org/10.1111/gfl.12103
https://doi.org/10.1029/98jb01983
https://doi.org/10.1029/2005JB003990
https://doi.org/10.1029/2004gl021388
https://doi.org/10.1016/s0012-821x(00)00048-0
https://doi.org/10.1146/annurev-earth-040610-133408
https://doi.org/10.1029/2008jb005922
https://doi.org/10.1029/2008jb005922
https://doi.org/10.1038/34097
https://doi.org/10.1029/2000JB900220
https://doi.org/10.1130/0091-7613(2002)030%3C0019:Plwtus%3E2.0.Co;2
https://doi.org/10.1130/0091-7613(1989)017%3C0321:hmopfi%3E2.3.co;2
https://doi.org/10.1029/2008JB006205
https://doi.org/10.1680/geot.1954.4.4.143
https://doi.org/10.1029/2011gc003556
https://doi.org/10.1029/2011gc003556


Journal of Geophysical Research: Solid Earth

NIKOLINAKOU ET AL.

10.1029/2022JB025504

38 of 38

Spinelli, G., Saffer, D. M., & Underwood, M. B. (2004). Effects of along-strike variability in temperature and diagenetic fluid sources on fluid 
flow patterns in the Nicoya Margin Subduction Zone, Costa Rica. Eos, Transactions American Geophysical Union, 85(28). Paper presented at 
the Eos Trans. AGU, West. Pac. Geophys. Meet. Suppl., Abstract T22A-04.

Spitz, R., Bauville, A., Epard, J.-L., Kaus, B. J. P., Popov, A. A., & Schmalholz, S. M. (2020). Control of 3-D tectonic inheritance on fold-and-thrust 
belts: Insights from 3-D numerical models and application to the Helvetic nappe system. Solid Earth, 11(3), 999–1026. https://doi.org/10.5194/
se-11-999-2020

Stauffer, P., & Bekins, B. A. (2001). Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex. Journal 
of Geophysical Research, 106(B4), 6369–6383. https://doi.org/10.1029/2000jb900368

Suess, E., Bohrmann, G., von Huene, R., Linke, P., Wallmann, K., Lammers, S., et al. (1998). Fluid venting in the eastern Aleutian Subduction 
Zone. Journal of Geophysical Research, 103(B2), 2597–2614. https://doi.org/10.1029/97jb02131

Sugioka, H., Okamoto, T., Nakamura, T., Ishihara, Y., Ito, A., Obana, K., et al. (2012). Tsunamigenic potential of the shallow subduction plate 
boundary inferred from slow seismic slip. Nature Geoscience, 5(6), 414–418. https://doi.org/10.1038/ngeo1466

Sun, T., Ellis, S., & Saffer, D. (2020). Coupled evolution of deformation, pore fluid pressure, and fluid flow in shallow subduction forearcs. 
Journal of Geophysical Research: Solid Earth, 125(3), e2019JB019101. https://doi.org/10.1029/2019jb019101

Suppe, J. (2007). Absolute fault and crustal strength from wedge tapers. Geology, 35(12), 1127. https://doi.org/10.1130/g24053a.1
Suppe, J. (2014). Fluid overpressures and strength of the sedimentary upper crust. Journal of Structural Geology, 69, 481–492. https://doi.

org/10.1016/j.jsg.2014.07.009
Terzaghi, K. (1925). Erdbaumechanik auf Bodenphysikalischer Grundlage. F. Deuticke.
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (3rd ed.). Wiley.
Thigpen, J. R., Roberts, D., Snow, J. K., Walker, C. D., & Bere, A. (2019). Integrating kinematic restoration and forward finite element simula-

tions to constrain the evolution of salt diapirism and overburden deformation in evaporite basins. Journal of Structural Geology, 118, 68–86. 
https://doi.org/10.1016/j.jsg.2018.10.003

Thornton, D. A., & Crook, A. J. L. (2014). Predictive modeling of the evolution of fault structure: 3-D modeling and coupled geomechanical/flow 
simulation. Rock Mechanics and Rock Engineering, 47(5), 1533–1549. https://doi.org/10.1007/s00603-014-0589-6

Thornton, D. A., Roberts, D. T., Crook, A. J. L., & Yu, J. G. (2011). Regional scale salt tectonics modelling: Bench-scale validation and extension 
to field-scale predictions. In Paper presented at the beyond balanced sections: Geological Society of America Conference, Minneapolis, MN.

Tobin, H. J., & Saffer, D. M. (2009). Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduc-
tion zone. Geology, 37(8), 679–682. https://doi.org/10.1130/G25752a.1

Tsuji, T., Tokuyama, H., Costa Pisani, P., & Moore, G. (2008). Effective stress and pore pressure in the Nankai accretionary prism off the Muroto 
Peninsula, southwestern Japan. Journal of Geophysical Research, 113(B11), B11401. https://doi.org/10.1029/2007jb005002

Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., et al. (2017). Large-scale dynamic triggering of shallow slow slip 
enhanced by overlying sedimentary wedge. Nature Geoscience, 10(10), 765–770. https://doi.org/10.1038/ngeo3021

Wang, C. Y., Hwang, W. T., & Cochrane, G. R. (1994). Tectonic dewatering and mechanics of protothrust zones: Example from the Cascadia 
accretionary margin. Journal of Geophysical Research, 99(B10), 20043–20050. https://doi.org/10.1029/94jb01545

Wang, H. (2000). Theory of linear poroelasticity: With applications to geomechanics and hydrogeology. Princeton University Press.
Wang, K. L., & Hu, Y. (2006). Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of 

Geophysical Research: Solid Earth, 111(B6), B06410. https://doi.org/10.1029/2005jb004094
Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge University Press.
Yamano, M., Foucher, J. P., Kinoshita, M., Fisher, A., & Hyndman, R. D. (1992). Heat flow and fluid flow regime in the western Nankai accre-

tionary prism. Earth and Planetary Science Letters, 109(3–4), 451–462. https://doi.org/10.1016/0012-821x(92)90105-5
Yuan, T., Spence, G., & Hyndman, R. (1994). Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia 

margin. Journal of Geophysical Research, 99(B3), 4413–4427. https://doi.org/10.1029/93jb03203
Zhang, J., Hüpers, A., Kreiter, S., & Kopf, A. J. (2021). Pore pressure regime and fluid flow processes in the shallow Nankai trough subduc-

tion zone based on experimental and modeling results from IODP site C0023. Journal of Geophysical Research: Solid Earth, 126(2), 
e2020JB020248. https://doi.org/10.1029/2020jb020248

 21699356, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025504, W
iley O

nline Library on [10/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.5194/se-11-999-2020
https://doi.org/10.5194/se-11-999-2020
https://doi.org/10.1029/2000jb900368
https://doi.org/10.1029/97jb02131
https://doi.org/10.1038/ngeo1466
https://doi.org/10.1029/2019jb019101
https://doi.org/10.1130/g24053a.1
https://doi.org/10.1016/j.jsg.2014.07.009
https://doi.org/10.1016/j.jsg.2014.07.009
https://doi.org/10.1016/j.jsg.2018.10.003
https://doi.org/10.1007/s00603-014-0589-6
https://doi.org/10.1130/G25752a.1
https://doi.org/10.1029/2007jb005002
https://doi.org/10.1038/ngeo3021
https://doi.org/10.1029/94jb01545
https://doi.org/10.1029/2005jb004094
https://doi.org/10.1016/0012-821x(92)90105-5
https://doi.org/10.1029/93jb03203
https://doi.org/10.1029/2020jb020248

	The Evolution of Pore Pressure, Stress, and Physical Properties During Sediment Accretion at Subduction Zones
	Abstract
	Plain Language Summary
	1. Introduction
	2. Quantification of Compaction and Fluid Overpressure
	2.1. Mudrock Compaction
	2.2. 
          Mean-Stress- and Shear-Induced Compaction
	2.3. 
          Mean-Stress- and Shear-Induced Fluid Overpressure Evolution
	2.3.1. Importance of Initial Stress State
	2.3.2. Overpressure Generation Along Paths With Constant Shear-Stress Ratio

	2.4. Application in an Accretionary Wedge

	3. Numerical Geomechanical Model
	3.1. Model Overview
	3.2. Material Properties
	3.3. Numerical Technique

	4. Results
	4.1. Strain Evolution
	4.2. Stress State, Overpressure, and Porosity
	4.3. Evolution of Stress State and Compaction
	4.4. Overpressure Mechanisms
	4.5. Impact of Mudrock Permeability and Convergence Rate

	5. Discussion
	5.1. Overpressure Generation and Its Spatial Distribution
	5.2. Pore Pressure, Effective Stress, and Shear Strength Along the Décollement
	5.3. Consolidation and Dewatering
	5.4. Broader Insights
	5.5. Model Limitations and Enhancements

	6. Summary
	Appendix A: Nomenclature
	Appendix B: Mean and Shear Components of Overpressure, and Formulation of Pore-Pressure Coefficients Using Modified Cam Clay.
	B1. Constant Stress Ratio
	B2. Variation of Pore-Pressure Coefficient ξK/SK in Accretionary Wedges
	Appendix C: Finite Element Solver and Input Parameters
	C1. Finite Element Solver
	C2. SR3 Input Material Properties
	Appendix D: Decomposition of Overpressure Components
	Appendix E: Effect of Convergence Rate
	Conflict of Interest
	Data Availability Statement
	References


