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It was recently argued by Nguyen-Tanizaki-Ünsal that two-dimensional pure Yang-Mills
theory is equivalent to (decomposes into) a disjoint union of (invertible) quantum field the-
ories, known as universes. In this paper we compare this decomposition to the Gross-Taylor
expansion of two-dimensional pure SU(N) Yang-Mills theory in the large N limit as the
string field theory of a sigma model. Specifically, we study the Gross-Taylor expansion of
individual Nguyen-Tanizaki-Ünsal universes. These differ from the Gross-Taylor expansion
of the full Yang-Mills theory in two ways: a restriction to single instanton degrees, and
some additional contributions not present in the expansion of the full Yang-Mills theory.
We propose to interpret the restriction to single instanton degrees as implying a constraint,
namely that the Gross-Taylor string has a global (higher-form) symmetry with Noether cur-
rent related to the worldsheet instanton number. We compare two-dimensional pure Maxwell
theory as a prototype obeying such a constraint, and also discuss in that case an analogue
of the Witten effect arising under two-dimensional theta angle rotation. We also propose
a geometric interpretation of the additional terms, in the special case of Yang-Mills theo-
ries on two-spheres. In addition, also for the case of theories on two-spheres, we propose a
reinterpretation of the terms in the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal
universes, replacing sigma models on branched covers by counting disjoint unions of stacky
copies of the target Riemann surface, that makes the Nguyen-Tanizaki-Ünsal decomposition
into invertible field theories more nearly manifest. As the Gross-Taylor string is a sigma
model coupled to worldsheet gravity, we also briefly outline the tangentially-related topic of
decomposition in two-dimensional theories coupled to gravity.
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1 Introduction

The papers [1–6] proposed that pure two-dimensional Yang-Mills theory could be understood
as the string field theory of a string theory. This was demonstrated by first expanding the
SU(N) pure Yang-Mills partition function in the large N limit as a formal sum of correlation
functions in two-dimensional untwisted Sn Dijkgraaf-Witten theories, summed over all n, an
expansion we will refer to as the Gross-Taylor expansion. Those correlation functions were
then interpreted combinatorially in the form of a sum over maps [1–3], and then later,
using an interpretation of the Ω-points, in terms of branched covers [4–7], suggesting the
interpretation as a string field theory of some sigma model. Specific proposals have been
made for the corresponding sigma model, at least at the level of proofs of principle, see [4–6]
for a sigma model localizing on holomorphic maps, and [8,9] for a sigma model localizing on
harmonic maps.

In this paper we will reexamine these arguments in the context of decomposition [10]
of two-dimensional pure Yang-Mills theories. Decomposition is the observation that d-
dimensional quantum field theories with global (d − 1)-form symmetries are equivalent to
(“decompose into”) disjoint unions of other theories, known in this context as universes. It
was first described in [10] as part of an effort to resolve questions concerning the consistency
of string propagation on stacks. Decomposition has been checked in a wide variety of con-
texts (including not only orbifolds and gauge theories but also e.g. open string theory and
K theory [10]) via techniques including for example mirror symmetry [10,11], supersymmet-
ric localization [12], and numerical/lattice computations [13], in not only two dimensional
theories but also in three (see e.g. [14–16]) and four dimensions (see e.g. [17, 18]). Its appli-
cations have included phases of gauged linear sigma models (see e.g. [19–32]), predictions for
Gromov-Witten invariants (see e.g. [33–38]), IR limits of pure supersymmetric gauge theories
and elliptic genera [39], adjoint QCD2 [40], and anomalies in orbifolds [41]. (See also [42] for
a recent relation to quivers with multiple components.) See e.g. [43–46] for reviews.

In particular, decomposition has been applied to argue that two-dimensional pure Yang-
Mills theories are equivalent to disjoint unions of invertible field theories (meaning, trivial
field theories with only a vacuum state) [18, 47, 48], with universes in one-to-one correspon-
dence with irreducible representations of the gauge group. We will refer to those universes of
the decomposition of two-dimensional pure Yang-Mills as Nguyen-Tanizaki-Ünsal universes.

We begin the paper with a short review of decomposition in two-dimensional pure Yang-
Mills in section 2. The rest of this paper is organized into three main sections:

1. First, in section 3, we discuss the combinatorics of the Gross-Taylor expansion, deriving
expressions for the expansion of the individual Nguyen-Tanizaki-Ünsal universes.

Viewed as a sum of two-dimensional untwisted Dijkgraaf-Witten theory correlation
functions, the result is extremely natural: one restricts to a value of n defined by the
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representation of SU(N) defining the universe, corresponding to the symmetric group
Sn, and then in correlation functions, one inserts projectors onto a single Sn Dijkgraaf-
Witten universe, using the known fact that two-dimensional Dijkgraaf-Witten theory
also decomposes. In other words, a single Nguyen-Tanizaki-Ünsal universe receives
contributions only from a single Dijkgraaf-Witten theory universe in the Gross-Taylor
expansion – the two decompositions intertwine naturally.

Interpreted in terms of sigma models, the resulting expressions for the separate uni-
verses are more subtle. They appear naively to describe (1) restrictions of the Gross-
Taylor theory to maps (worldsheet instantons) of fixed degrees, plus (2) some additional
contributions. Both require further explanation, to which we turn in the next section.

2. In section 4, we suggest interpretations of the two points raised above. We propose that
the restrictions to maps of fixed degree be interpreted physically as a new constraint on
the Gross-Taylor sigma model, that it possess a higher-form symmetry with Noether
current coupling to the pullback of the Kähler form (which integrates to worldsheet
instanton number, the covering map degree). We discuss the prototypical example
of two-dimensional pure Maxwell theory, which has a one-form symmetry coupling to
U(1) bundle curvature.

In hindsight, existence of such a symmetry in the Gross-Taylor string is expected from
the yoga relating target-space and worldsheet symmetries, as we discuss, though the
coupling to worldsheet instanton degree is not predicted by yoga alone.

We also discuss the interpretation of the additional contributions mentioned above.
Such additional contributions are typical in a decomposition, and cancel out when one
sums over universes, as we review, so their existence is not a surprise, but they do
require interpretation. In the special case of Yang-Mills theories on S2, we propose a
geometric interpretation involving stacky worldsheets.

3. Finally, in section 5, in the special case of Yang-Mills theories on S2, we propose
an alternative geometric interpretation of the Gross-Taylor expansion of the Nguyen-
Tanizaki-Ünsal universes, not in terms of sigma models on branched covers of ΣT , but
instead in terms of some sort of counting problem, counting stacky copies of ΣT , in
line with the interpretation as invertible field theories.

In subsection 4.1.2, we also discuss an analogue of the Witten effect in two-dimensional
pure Maxwell theory, in which universes of the decomposition are interchanged under theta
angle rotation.

In appendix A we include some relevant group algebra identities, of use in the series
expansions in section 3. In appendix B, we collect some pertinent basics of stacks, to assist
in understanding stacky worldsheets.

Appendix C discusses examples of decomposition in two-dimensional theories coupled to
worldsheet gravity. (This is not necessarily our prediction for the Gross-Taylor string, but
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is certainly a possibility, as the Gross-Taylor sigma model is coupled to worldsheet gravity.)
Briefly, unlike a typical field-theoretic decomposition in which the universes are completely
decoupled, after coupling to gravity, the universes have gravitational interactions (but no
non-gravitational interactions).

Appendix D discusses possible alternative interpretations of the restriction on maps in
the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universes, as different quantum
field theories constructed to localize onto particular map degree sectors. These alternatives
are not completely satisfactory, for reasons discussed there, so we do not advocate them, but
we do include them for completeness.

2 Short review of decomposition in two-dimensional

pure Yang-Mills

Consider two-dimensional pure Yang-Mills with gauge group G and action

S =
1

g2YM

∫

Σ

TrF 2. (2.1)

On a Riemann surface Σ of genus g with b boundaries, along which are associated group
elements U1, · · · , Ub the partition function has the form1 [6, section 3.7], [49–57], [58, section
2],

Z(U1, · · · , Ub) =
∑

R

(dimR)2−2g−b exp
[

−g2YMAC2(R)
]

χR(U1) · · ·χR(Ub). (2.2)

where the sum is over irreducible representations R of the gauge group G. One can glue the
Riemann surfaces along boundaries using (see e.g. [6, equ’ns (3.17)-(3.19)])

∫

dU χR(U)χS(U
−1) = δRS, (2.3)

∫

dU χR(V U)χS(U
−1W ) = δRS

χR(VW )

dimR
, (2.4)

∫

dU χR(UV U−1W ) =
χR(V )χR(W )

dimR
. (2.5)

Recently, it was observed in [18] (for abelian cases) and [47,48] (for nonabelian cases) that
pure two-dimensional gauge theories are equivalent to disjoint unions of physical theories; in
other words, they “decompose,” in the sense of [10,46]. Specifically, the component physical

1For gauge groups with U(1) factors, we shall discuss how the θ angle appears in the exact expression in
section 4.1.2.
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theories (“universes”) are in one-to-one correspondence with irreducible representations R,
which is naturally reflected in the form of the partition function expressions above. For
example, the universe associated to irreducible representation R has partition function

(dimR)2−2g exp
[

−g2YMAC2(R)
]

(2.6)

on a closed Riemann surface Σ of genus g, so that summing over universes reproduces
the Yang-Mills partition function (2.2).. To be clear, decomposition in this context is the
statement that the basis of irreducible representations diagonalizes correlation functions;
every correlation function (e.g. (2.2)) can be written in terms of a sum of contributions from
the constitutent universes, indexed by irreducible representations. This implies, but is very
much stronger than, the statement that the partition function can be written as a certain
sum.

Decomposition is also visible at the level of Hilbert spaces. The Hilbert space of two-
dimensional pure Yang-Mills consists of the class functions on G, meaning functions which
are invariant under conjugation. Such functions can be expanded in a Fourier series in
characters χ of G, as [59, chapter II]

f(g) =
∑

R

cRχR(g), (2.7)

where the cR are constants determined by G, and the sum is over irreducible representa-
tions of G. Certainly decomposition into universes indexed by irreducible representations
is consistent with the structure of the Fourier series above More to the point, the universe
associated to irreducible representation R has a one-dimensional Hilbert space, generated2

by the character χR. A quantum field theory with a one-dimensional Hilbert space is known
as an invertible field theory, so we see that the universes of the decomposition are each
examples of invertible field theories (as defined by that property).

More generally, unitary two-dimensional topological field theories (with semisimple local
operator algebras) decompose into a disjoint union of invertible field theories [40,60–62]. The
partition functions of such theories are determined by an Euler number counterterm and an
area counterterm, so that on a worldsheet Σ the partition function is just the exponential of
the integral of those counterterms, and has the form

Z(Σ) = (φ1)
χ(Σ) exp (−φ2Area) , (2.8)

universally, for some constants φ1,2. We can see this structure in the partition function in pure
two-dimensional Yang-Mills, where the contribution from any fixed universe / irreducible
representation R is

(dimR)χ(Σ) exp (−C2(R)Area) . (2.9)

2For example, the QFT admits a set of orthogonal projectors, which in bra-ket notation have the form
|R〉〈R| for R an irreducible representation.
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In the language above, for any irreducible representation R, φ1 = dimR and φ2 = C2(R).

In passing, there exist generalizations of two-dimensional pure Yang-Mills which are also
area-preserving-diffeomorphism invariant and exactly soluble, see [55,63,64]. Their classical
actions are of the form [63, equ’n (5)]

∫

Σ

tr (iφF − Φ(φ)) , (2.10)

where φ is an auxiliary Lie-algebra-valued scalar, and Φ a function of the form [63, equ’n
(7)]

Φ(φ) =
∑

{ki}

a{ki}
∏

i

tr
(

φi
)ki . (2.11)

This reduces to pure Yang-Mills in the special case that Φ(φ) ∝ trφ2 (see e.g. [56, section
2.1]). Their partition functions are of the form [63, equ’n (10)]

Z =
∑

R

(dimR)χ(Σ) exp (−AΛ(R)) , (2.12)

for
Λ(R) =

∑

{ki}

a{ki}C{k1−1+k2−2+k3−3+··· }(R). (2.13)

At least naively, the arguments of [47,48] appear to apply, hence it is natural to conjecture [65]
that these theories decompose, into universes indexed by irreducible representations R.

3 Revisiting the Gross-Taylor argument

In this section, we review the Gross-Taylor asymptotic series expansion of the partition func-
tion of both pure two-dimensional SU(N) Yang-Mills theory, as well as partition functions
of Nguyen-Tanizaki-Ünsal universes therein, in the large N limit, on a genus p Riemann sur-
face ΣT . We also review the interpretation of the terms in that series expansion in terms of
two-dimensional Dijkgraaf-Witten theory, and in terms of a sigma model (the ‘Gross-Taylor
sigma model’) mapping a branched cover ΣW to ΣT .

Interpreted as an expansion in Dijkgraaf-Witten theories, the series expansion of the
Nguyen-Tanizaki-Ünsal universes is extremely natural, as we explain. However, we encounter
two puzzles when we interpret the expension of the Nguyen-Tanizaki-Ünsal universes in terms
of maps from a branched cover:

• the expansion of a fixed universe involves maps of a fixed degree, (so that summing
over universes recovers maps of all degrees,) and
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• there are additional3 contributions in the large N limit which cannot be ascribed to
maps from smooth branched covering surfaces ΣW .

We will propose resolutions of those puzzles in section 4.

Also, in order to help clarify the interpretation, we keep track of the leading area (A)
dependence in the large N limit. (The careful reader will recall that in the full Yang-Mills
partition function, summed over all universes, there is a phase transition as a function of
area [66–70].)

Similar expansions have also been studied for gauge groups SO(N) and Sp(N), see
e.g. [71–75]. We have not worked through them carefully, but we expect that their analyses
should be similar to what we present for SU(N) theories.

3.1 Series expansion of partition functions

In this section we will review the pertinent large N asymptotic series expansion of the
partition functions of both the full two-dimensional pure SU(N) Yang-Mills theory, as well
as those of the Nguyen-Tanizaki-Ünsal universes. Along the way, we will develop some
identities that will be used in both.

First, it will be useful to rescale certain normalizations and write the partition func-
tion (2.2) of two-dimensional pure SU(N) Yang-Mills in the form [1, 49, 53], [6, equ’n
(3.20)] [54, equ’n (2.51)]

Z =
∑

R

(dimR)2−2p exp

(

−g2YM

A

2N
C2(R)

)

, (3.1)

on a closed genus-p worldsheet ΣT of area A.

The references [1–7] rewrite the two-dimensional pure SU(N) Yang-Mills partition func-
tion in the large N limit in a form that looks like a string field theory, namely as a sum over
other worldsheets ΣW , suggesting the existence of a two-dimensional sigma model of maps
ΣW → ΣT , for which an expression was given in [4–6]. In this expansion, 1/N plays the role
of string dilaton.

As part of that, to get the correct4 1/N asymptotics, it was argued in [2–7] that one should
replace the sum over irreducible representations by a sum over ‘coupled’ representations. For

3Additional contributions to the series expansions of individual universes which cancel out when universes
are summed over, as these do, are common in decomposition, as we review in detail in section 4.2. The puzzle
here is the interpretation of the extra contributions, not their existence per se.

4See also [76] which discussed a reformulation of the non-chiral expansion in terms of purely holomorphic
maps plus some line defects.
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the moment, to try to make the analysis more clear, we will set aside the use of coupled
representations, and formally derive an expansion using just the naive sum. We will rederive
the expansion including coupled representations shortly.

Setting aside coupled representations for the moment, the first step is to use Schur-Weyl
duality to show that for SU(N) representations [6, equ’n (6.5)]

dimR(Y ) =
1

n!

∑

σ∈Sn

χr(Y )(σ)N
∑

i ki(σ), (3.2)

=
Nn

n!
χr(Y )(Ωn), (3.3)

where Y is the Young tableau associated with representation R of SU(N), n is the number
of boxes in Y , r(Y ) is the representation of the symmetric group Sn defined by the same
Young tableau Y , and [6, equ’n (6.5)]

Ωn =
∑

σ∈Sn

NKσ−nσ, (3.4)

for Kσ the total number of cycles in the cycle decomposition of σ,

Kσ =
∑

i

ki(σ). (3.5)

As an aside, later it may be helpful to note that5 [4, equ’n (5.2)]

Ω−1
n = 1 +

∞
∑

k=1

∑

v1,··· ,vk∈Sn

′
(

1

N

)

∑
j(n−Kvj

)

(v1 · · · vk) (−)k, (3.6)

where the primed sum means that the vi 6= 1.

More generally [6, equ’n (6.6)],

(dimR(Y ))m =

(

Nn dim r(Y )

|Sn|

)m χr(Y )(Ω
m
n )

dim r(Y )
. (3.7)

In a moment, we will also need the identity

∑

s,t∈G

χr(sts
−1t−1) =

|G|
dim r

∑

s∈G

χr(s)χr(s
−1), (3.8)

=

( |G|
dim r

)2

χr(1) =

( |G|
dim r

)2

dim r, (3.9)

which follows from the orthogonality relations (A.1), (A.2), (A.3).

5From [6, section 6.1.2], Ωn is invertible for N > n, which we will always assume.

10



With this in mind, we can now expand the R contribution to the pure SU(N) Yang-Mills
partition function (3.1), which we will write for any positive integer exponent m:

(dimR(Y ))m

=

(

Nn dim r(Y )

|Sn|

)m χr(Y )((Ωn)
m)

dim r(Y )
using (3.7), (3.10)

= Nnm

(

dim r(Y )

n!

)m+2p
[

p
∏

i=1

∑

si,ti∈Sn

(

χr(Y )(sitis
−1
i t−1

i )

dim r(Y )

)

]

χr(Y )((Ωn)
m)

dim r(Y )
,

using (3.9),

= Nnm

(

dim r(Y )

n!

)m+2p
[

∑

s1,t1···∈Sn

p
∏

i=1

χr(Y )(sitis
−1
i t−1

i )

dim r(Y )

]

χr(Y )((Ωn)
m)

dim r(Y )
,

= Nnm

(

dim r(Y )

n!

)m+2p
∑

s1,t1···∈Sn

χr

(

(Ωn)
m
∏p

i=1 sitis
−1
i t−1

i

)

dim r(Y )
(3.11)

using (A.5) and the fact that Ωn is central.

Next, we include the finite area corrections.

For SU(N) representations [6, equ’n (6.11)],

C2(R(Y )) = nN + 2
χr(Y )(T2)

dim r(Y )
− n2

N
, (3.12)

so we can write

(dimR(Y ))2−2p exp

(

−g2YM

A

2N
C2(R(Y ))

)

= Nn(2−2p)

(

dim r(Y )

n!

)2
∑

s1,t1···∈Sn

χr

(

(Ωn)
2−2p

∏p
i=1 sitis

−1
i t−1

i

)

dim r(Y )

· exp
(

−g2YM

A

2
n + g2YMA

1

N

χr(Y )(T2)

dim r(Y )
− g2YM

A

2

n2

N2

)

. (3.13)

Let us take a moment to interpret the expression above. The reader will note that,
to leading order in 1/N , the second two terms in the exponential can6 be dropped. The
area dependence is precisely what one would expect from sigma model contributions if one
replaces g2YM/2 with 1/α′

GT , which we will do henceforward, following e.g. [77, section 2].
(As a consistency test, note that α′

GT has units of area, so A/α′
GT is unitless, as needed for

these expressions to be consistent.)

6In other treatments, they are retained in a power series expansion. For our purposes, it will suffice to
only keep the leading order area dependence.
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So, with that interpretation, we can write the partition function of the universe associated
to R as

(dimR(Y ))2−2p exp

(

−g2YM

A

2N
C2(R(Y ))

)

= Nn(2−2p)

(

dim r(Y )

n!

)2
∑

si,ti···∈Sn

χr

(

(Ωn)
2−2p

∏p
i=1 sitis

−1
i t−1

i

)

dim r(Y )

· exp
(

− A

α′
GT

n

)

+ subleading. (3.14)

Using equation (A.15), we can write this as

(dimR(Y ))2−2p exp

(

−g2YM

A

2N
C2(R(Y ))

)

= Nn(2−2p)

(

dim r(Y )

n!

)

∑

si,ti···∈Sn

δ
(

(Ωn)
2−2p

∏p
i=1 sitis

−1
i t−1

i Pr

)

dim r(Y )

· exp
(

− A

α′
GT

n

)

+ subleading, (3.15)

where Pr is the projector defined in appendix A.2.

In this language, the zero-area limit is an α′
GT → ∞ limit. The result is reminiscent of

results on high energy symmetries [78–80] which argue that in that limit, sums over Riemann
surfaces are dominated by particular surfaces (points on the moduli space of curves).

More to the point, we see that the contributions to a single universe differ from contri-
butions to the Gross-Taylor expansion of the full two-dimensional Yang-Mills theory in two
ways:

1. First, n is fixed, meaning contributions are from maps of a fixed degree (equal to the
number of boxes in the Young tableau). Restricting a sigma model to maps of a single
degree is equivalent to restricting a gauge theory to instantons of a single degree, which
ordinarily would not be consistent. We will return to this in section 4, where we will
argue that this implies a new constraint on the Gross-Taylor sigma model.

2. Second, the δ function constraint on the group combinatorics now has an insertion
of Pr. We shall see later that this implies that there exist additional contributions,
not interpretable in terms of smooth branched covers. We will return to this also in
section 4.

The next key observation, detailed in [2, section 2], [6, section 6.3], is that to get the
correct 1/N asymptotics, one should replace the sum over irreducible representations R
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by a sum over ‘coupled representations’ ST . As explained in the references, this resolves
technical difficulties in the summation involving contributions from representations R such
that C2(R)/N is O(1) in the 1/N expansion, but whose contribution is expanded in the 1/N
expansion across infinitely many terms. To that end, we will next repeat the analysis above
using coupled representations. The results will have the same form as obtained above.

Such coupled representations are described in detail in [2, section 2], [6, section 6.3].
Briefly, following [2, section 2], if we let L denote the length of the first row of the Young
diagram for T , then the Young diagram for ST is defined as follows:

1. start with an N × L rectangle,

2. subtract the Young diagram from T from the bottom of the rectangle,

3. add the Young diagram for S to the top right of the rectangle.

More formally, if ci, c̃i denote the height of the ith column of S, T , respectively, then the
height of the ith column of the coupled representation is [2, equ’n (2.6)]

{

N − c̃L+1−i i ≤ L,
ci−L i > L.

(3.16)

Some pertinent properties of coupled representations include [2, equ’n (2.7)]

C2(RS) = C2(R) + C2(S) + 2
nRnS

N
, (3.17)

where nR, nS are the numbers of boxes in the Young diagrams for R, S, respectively, and [2,
equ’n (2.8)]

dimRS = (dimR)(dimS)
(

1 + O(1/N2)
)

. (3.18)

Furthermore, as should be clear from the construction above, in the large N limit a single
coupled representation RS uniquely determines both R and S separately. As a result, so long
as we are working at large N , we can replace the original sum over irreducible representations
with a sum over R and S separately.

One can then extract an expression for dimRS in the same fashion as we did previously
for dimR. As details of e.g. projectors will be important for our later analysis, we repeat
the key steps here.

From [6, equ’n (6.17)], we can write

dimRS =
Nn++n−

n+!n−!
χr⊗s∗

(

Ωn+n−

)

. (3.19)
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where n+ is the number of boxes in the Young diagram for R, and n− is the number of boxes
in the Young diagram for S, and r, s are representations of Sn+

, Sn−
determined by R, S.

More generally [81],

(dimRS)m =

(

Nn++n−(dim r)(dim s)

n+!n−!

)m χr⊗s∗
(

Ωm
n+,n−

)

(dim r)(dim s)
, (3.20)

and then, using (3.9),

(dimRS)m = N (n++n−)m

(

dim r

n+!

)m+2p(
dim s

n−!

)m+2p

·





p
∏

i=1

∑

s+i ,t+i ∈Sn+

(

χr([s
+
i , t

+
i ])

dim r

)









p
∏

i=1

∑

s−i ,t−i ∈Sn−

(

χs([s
−
i , t

−
i ])

dim s

)





·
χr⊗s∗

(

Ωm
n+,n−

)

(dim r)(dim s)
, (3.21)

Then, since Ωn+,n−
is central in Sn+

⊗ Sn−
[81], using (A.5),

(dimRS)m = N (n++n−)m

(

dim r

n+!

)m+2p(
dim s

n−!

)m+2p
1

(dim r)(dim s)

·
∑

s±i ,t±i ∈Sn±

χr⊗s∗

(

(Ωn+,n−
)m

p
∏

i=1

[s+i , t
+
i ]⊗ [s−i , t

−
i ]

)

. (3.22)

From its definition in [4, equ’n (10.20)],

Ωn+,n−
= Ωn+

⊗ Ωn−
+ subleading in 1/N, (3.23)

so, to leading order in 1/N , we have

(dimRS)m = N (n++n−)m

(

dim r

n+!

)m+2p(
dim s

n−!

)m+2p
1

(dim r)(dim s)

·
∑

s±
i
,t±
i
∈Sn±

χr

(

(Ωn+
)m

p
∏

i=1

[s+i , t
+
i ]

)

χs∗

(

(Ωn−
)m

p
∏

i=1

[s−i , t
−
i ]

)

+ subleading. (3.24)

We are now ready to describe the series expansion of both the partition function of a
single Nguyen-Tanizaki-Ünsal universe on a Riemann surface ΣT of genus p, as well as the
pure Yang-Mills partition function.
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We begin with the series expansion of a Nguyen-Tanizaki-Ünsal universe. We define

Z+
R (A, p,N) = Nn+(2−2p)

(

dim r

n+!

)2
∑

s+
i
,t+
i
∈Sn+

χr

(

(Ωn+
)2−2p

∏p
i=1[s

+
i , t

+
i ]
)

dim r

· exp
(

− A

α′
GT

n+

)

, (3.25)

Z−
S (A, p,N) = Nn−(2−2p)

(

dim s

n−!

)2
∑

s−i ,t−i ∈Sn−

χs∗
(

(Ωn−
)2−2p

∏p
i=1[s

−
i , t

−
i ]
)

dim s

· exp
(

− A

α′
GT

n−

)

, (3.26)

where n+, n− are the number of boxes in the Young diagrams for R, S, respectively, then
we see that the partition function of a Nguyen-Tanizaki-Ünsal universe associated to the
coupled representation RS is

(dimRS)2−2p exp

(

−g2YM

A

2N
C2(RS)

)

= Z+
R (A, p,N)Z−

S (A, p,N) + subleading. (3.27)

(We are, again, using the fact that in the large N limit, a coupled representation RS uniquely
determines both R and S separately. We are also, again, only keeping the leading area
dependence in the large N limit, absorbing the rest into subleading terms.)

The full nonchiral partition function of the zero-area limit of pure Yang-Mills is then
giving by summing over coupled representations:

ZYM(ΣT ) =
∑

RS

(dimRS)2−2p exp

(

−g2YM

A

2N
C2(RS)

)

, (3.28)

=

(

∑

R

Z+
R (A, p,N)

)(

∑

S

Z−
S (A, p,N)

)

+ subleading. (3.29)

(The reader may compare e.g. [4, equ’n (10.18)]). We have implicitly used the fact that in
the large N limit, a coupled representation RS uniquely determines R and S separately.

In passing, expressions for the subleading finite N contributions are given in [58, equ’n
(2.4)], [82, section 3], [76, 77, 83, 84]. We will not study the subleading corrections in this
paper.

As before, we simplify expression (3.25) for the chiral component of the partition function
expansion associated to an irreducible representation R. First, using identity (A.15), we can

15



replace the character with a delta function with a projector:

Z+
R (A, p,N) = Nn+(2−2p)

(

dim r

n+!

)

∑

si,ti···∈Sn+

δ
(

(Ωn+
)2−2p

(
∏p

i=1[s
+
i , t

+
i ]
)

Pr

)

dim r

· exp
(

− A

α′
GT

n+

)

, (3.30)

Z−
S (A, p,N) = Nn−(2−2p)

(

dim s

n−!

)

∑

s−i ,t−i ∈Sn−

δ
(

(Ωn−
)2−2p

∏p
i=1[s

−
i , t

−
i ]Ps∗

)

dim s

· exp
(

− A

α′
GT

n−

)

, (3.31)

where n+ is the number of boxes in the Young diagram for R, n− is the number of boxes in
the Young diagram for S, and Pr, Ps∗ are the projectors (A.8).

It will also be useful later to expand out the powers of Ωn. Following [4, section 5.1] and
using (3.4), we find

Z+
R (A, p,N) = Nn(2−2p)

∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!
(3.32)

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

exp

(

− A

α′
GT

n

)

,

where the primed sum means that the vi 6= 1, and

(1 + x)m =

∞
∑

L=0

d(m,L) xL. (3.33)

(As a consistency check, the reader may compare [4, equ’n (5.3)], which also sums over
irreducible representations.) A similar expression, also involving an explicit projector, arises
in [82, section 3]. We omit Z−

S (A, p,N) for simplicity, as the expression is very similar.

So far, we have given an explicit expression (3.32) for Z+
R (A, p,N), the chiral compo-

nent of the partition function for a Nguyen-Tanizaki-Ünsal universe associated to a coupled
representation RS. It will also be useful to write down the chiral component of the full two-
dimensional Yang-Mills partition function, which is given by summing over contributions
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from the various irreducible representations:

Z+(A, p,N) =
∑

R

Z+
R (A, p,N), (3.34)

=
∞
∑

n=0

Nn(2−2p)
∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!

·
∑

r

δ

(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

(3.35)

· exp
(

− A

α′
GT

n

)

,

=

∞
∑

n=0

Nn(2−2p)
∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

))

(3.36)

· exp
(

− A

α′
GT

n

)

.

Specifically, summing over the irreducible representations R generates a sum over degrees
n, as well as a sum over the Sn representations r, removing the projector Pr from the delta
function. (Both of these differences will be important in the subsequent Nguyen-Tanizaki-
Ünsal analysis.) The result is, in effect, a weighted sum over two-dimensional Dijkgraaf-
Witten theories for the symmetric group Sn for all values of n.

3.2 The Dijkgraaf-Witten interpretation

One interpretation of the terms above is in terms of the correlation functions in a series of
two-dimensional Dijkgraaf-Witten theories7 [85]. Briefly, this theory describes an orbifold
of a point. On a genus p Riemann surface, the partition function of (untwisted8) Dijkgraaf-
Witten theory with orbifold group G is

ZDW,p ∝
∑

si,ti∈G

δ

(

p
∏

i=1

[si, ti]

)

, (3.37)

7Two-dimensional Dijkgraaf-Witten theories have been described in many places, see for a few examples
[40, appendix C.1], [86, appendix C], [87–92].

8The ‘twist’ of Dijkgraaf-Witten theory is a choice of discrete torsion in the orbifold. Only untwisted
Dijkgraaf-Witten theories (without discrete torsion) will be relevant for this paper.
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which the reader will already recognize is a component of the expressions for the Gross-
Taylor series expansion. The operators of Dijkgraaf-Witten theory are twist fields, which
can be expressed as commuting linear combinations9 of group elements (technically, elements
of the center of the group algebra). A correlation function of twist fields can therefore be
expressed formally as a linear combination of a correlation function of products of group
elements v1, · · · , vL ∈ G, which on a Riemann surface of genus p is given by

〈v1 · · · vL〉DW,p ∝
∑

si,ti∈G

δ

(

v1 · · · vL
(

p
∏

i=1

[si, ti]

))

. (3.38)

The chiral partition function Z+(A, p,N) given in equation (3.36) is clearly a linear com-
bination of such correlation functions, for G = Sn (the symmetric group), summed over
n.

Now, any two-dimensional gauge theory in which a subgroup of the gauge group acts
trivially, has a global 1-form symmetry and hence decomposes, into universes indexed by the
irreducible representations of the trivially-acting subgroup. Indeed, this is at the heart of
the Nguyen-Tanizaki-Ünsal decomposition of two-dimensional Yang-Mills theory. For two-
dimensional orbifolds, decomposition has been discussed in for example [10, 41, 46, 93–97].
Two-dimensional Dijkgraaf-Witten theory, in which the entire orbifold group acts trivially,
is simply a special case10 of the orbifolds considered in the references just cited, and the
picture is particularly simple. In terms of the state space, for example, the projectors onto
states in each universe are the projectors Pr (associated to irreducible representations r)
described in appendix A.2. In fact, when the entire group acts trivially, it is a standard
mathematics result that there is a (noncanonical) one-to-one correspondence between the
possible twist fields and the projectors Pr, as both form bases of the center of the group
algebra C[G] for orbifold group G, see for example [98, section 6.3], [99–107]. (In fact, those
references describe a more general case, that of twisted group algebras, which in an orbifold
corresponds to adding discrete torsion. Here we only consider the untwisted case.)

A correlation function within a particular universe (corresponding to irreducible repre-
sentation r) is obtained by inserting a projection operator Pr, the same projector appearing
earlier:

〈v1 · · · vL〉DW,p,r ∝
∑

si,ti∈G

δ

(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

. (3.39)

Comparing equation (3.32), we see that the chiral component Z+
R (A, p,N) is precisely a

linear combination of Dijkgraaf-Witten correlation functions restricted to universe r, where
r is a representation of Sn associated to the same Young diagram as the representation R of
SU(N).

9In the group algebra C[G].
10We can also see this from another perspective. Unitary two-dimensional topological field theories also

decompose, into a collection of invertible field theories, see e.g. [40, 60–62], and Dijkgraaf-Witten theory is
also a special case in that sense. For our purposes, the orbifold perspective is more relevant.
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In brief, we see that the Gross-Taylor expansion of a Nguyen-Tanizaki-Ünsal universe
involves first restricting to n (equal to the number of boxes in the Young diagram for R),
then restricting to one universe in the decomposition of Dijkgraaf-Witten theory for Sn. In
other words, the Gross-Taylor expansion of a single Nguyen-Tanizaki-Ünsal universe involves
a single universe of the decomposition of two-dimensional untwisted Dijkgraaf-Witten theory.
The two decompositions are therefore closely and naturally linked.

In the next section, we shall see that the interpretation of the components in terms of
branched covers is more subtle.

3.3 The branched cover interpretation

We computed the series expansions of a Nguyen-Tanizaki-Ünsal universe associated to cou-
pled representation RS in equation (3.27), and reviewed the series expansion of the full
two-dimensional Yang-Mills partition function (3.29), obtained by summing over Nguyen-
Tanizaki-Ünsal universe partition functions. Results for a Nguyen-Tanizaki-Ünsal universe
were written in terms of the chiral partition function Z+

R (A, p,N), and results for the full two-
dimensional Yang-Mills partition function were written in terms of the full chiral partition
function

Z+(A, p,N) =
∑

R

Z+
R (A, p,N). (3.40)

In this subsection we will review how to interpreted those chiral components of partition
functions as a sum over branched covers ΣW → ΣT , following [1–6]. (This description is
standard, but has not appeared recently in the literature, and as we will be manipulating it
extensively, we think it useful to review in detail.) Later, in section 5, we will reinterpret
the terms above as a sum over disjoint unions Σ̂W of stacky copies of ΣT .

The construction of the branched n-cover ΣW is described systematically in e.g. [108,109],
[6, section 5], which we briefly review here. The idea is that the elements v1, · · · , vL ∈ Sn

define monodromies about L branch points in the base curve ΣT . The delta function is
nonzero only when those monodromies are consistent with the existence of a smooth branched
n-cover ΣW of a genus p Riemann surface (specifically, ΣT ).

More systematically, letB be the branch locus on ΣT (the locations of insertions v1, · · · , vL ∈
Sn), and define X = ΣT − B, then use the fact that there is a one-to-one correspondence
between conjugacy classes of subgroups of π1(X) and equivalence classes of topological cover-
ings of X (see for example [110, theorem V.6.6, theorem V.10.2]), which are glued according
to the data of the homomorphism to build the branched n-cover ΣW .

To make this more clear, let us consider an example. Specifically, consider ΣT = P
1 with

two insertions at positions denoted A, B, and let p ∈ P1, as illustrated in the figure below.
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A B

p

A B

p

Shown on the left is a schematic illustration of P1 with the two points A, B, and the
basepoint p for paths. On the right is the same illustration with two nonintersecting paths
from p marked.

Let the monodromies about the two points be denoted vA, vB. Suppose that n = 3, so
that vA, vB, vC ∈ S3, and take

vA = (12)(3) = vB. (3.41)

It is straightforward to check that the product

vAvB = 1, (3.42)

so the delta function is nonzero.

In terms of branched 3-covers, the sheets of the cover in neighborhoods of the two points
take the form

A

1

2

3

B

Locally near A and B, two of the sheets collide, but the third remains disjoint. The resulting
branched 3-cover ΣW is a disjoint union of one branched double cover of P1 (itself P1), formed
from the first two sheets, and another P1 (the third sheet), so

ΣW = P
1
∐

P
1, (3.43)

and χ(ΣW ) = 4.

Next, we will consider Euler characteristics, and review how in general, the Euler char-
acteristic of the branched cover ΣW always matches that of the disjoint union Σ̂W , and both
also match the power of N in the corresponding partition function term.

Consider the smooth branched cover ΣW . The powers of N in the expansion above are

n(2− 2p) +
∑

j

(Kvj − n), (3.44)
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and using the Riemann-Hurwitz formula:

χ(ΣW ) = nχ(ΣT ) −
L
∑

i=1

(n−Kvi) , (3.45)

where L is the number of branch points and Kvi is the number of cycles in vi ∈ Sn corre-
sponding to a branch point, we see that

n(2− 2p) +
∑

j

(Kvj − n) = χ(ΣW ), (3.46)

and so the terms in Z+(0, p, N) are weighted by

Nχ(ΣW ), (3.47)

as expected.

Rewriting in this language, we have that

Z+(A, p,N) =

∞
∑

n=0

∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
Nχ(ΣW ) d(2− 2p, L)

n!

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

))

exp

(

− A

α′
GT

n

)

, (3.48)

where ΣW is a smooth n-fold cover of the genus p base curve ΣT , branched over L points.

In that language, the factor
d(2− 2p, L)

n!
(3.49)

is interpreted in [4, 6] in terms of the orbifold Euler characteristic of the (Hurwitz) moduli
space of maps ΣW → ΣT . We refer the reader to thsoe references for further details, which
are beyond the scope of this short overview.

Finally, the factor

exp

(

− A

α′
GT

n

)

(3.50)

is the weighting one expects in a sigma model describing maps of degree n. Its presence
merely serves to confirm the interpretation.

To summarize, we have reviewed how the partition function of two-dimensional pure
SU(N) Yang-Mills on a Riemann surface ΣT can be rewritten in the form of a sum (3.48)
over smooth branched covers ΣW → ΣT , which as noted in [1–3] is very suggestive of an
interpretation as the string field theory of a sigma model with two-dimensional target space
ΣT .
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Now, let us briefly compare to the corresponding chiral partition function of an Nguyen-
Tanizaki-Ünsal universe (3.32), explicitly

Z+
R (A, p,N) = Nn(2−2p)

∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!
(3.51)

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

exp

(

− A

α′
GT

n

)

.

This is very similar to the expression above for the chiral contribution to the full Yang-
Mills partition function, with two differences:

• The full chiral partition function Z+(A, p,N) contains a sum over values of n, whereas
Z+

R (A, p,N) restricts to a single value of n (equal to the number of boxes in a Young
diagram for the representation R).

• In Z+
R (A, p,N), the delta function contains a factor of a projector Pr (associated to a

representation r of Sn, associated to the same Young diagram as R), which was not
present in the full chiral partition function Z+(A, p,N).

These two differences have the following effects.

• The restriction to a single n means that Z+
R (A, p,N) only receives contributions from

maps of a single degree. This is closely analogous in a gauge theory to restricting to
instantons of a single degree.

• Because of the projector Pr, there can be nonzero contributions from monodromy
insertions vi that are not allowed for a smooth branched cover ΣW . For example, the
exponent of N can be odd, which is not possible for the Euler characteristic of a smooth
oriented Riemann surface.

We will see these effects in concrete examples in subsection 3.4, and propose resolutions
for the corresponding physics puzzles in section 4.

Before moving on, we note a few consequences of the Riemann-Hurwitz theorem that will
be relevant later:

• If χ(ΣW ) > χ(ΣT ), then no holomorphic maps exist. For example, there are no holo-
morphic maps P1 → T 2, or more generally, from a lower-genus curve to a higher-genus
curve. To have maps, ΣW must have at least the same genus as ΣT .
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• For fixed ΣW ,ΣT obeying the constraint above, maps can exist of (nearly) any degree.
For example, in degree n, for branchings in which only two sheets collide,

– maps P1 → P1 exist and are branched over 2(n− 1) branch points,

– maps T 2 → P1 exist and are branched over 2n branch points,

– maps ΣW → P1 exist and are branched over 2n− χ(ΣW ) branch points,

– unbranched maps T 2 → T 2 exist for any n,

– maps ΣW → T 2 exist and are branched over −χ(ΣW ) points, for χ(ΣW ) < 0.

That said, the orbifold Euler characteristic of the Hurwitz moduli space will vanish in
some cases11, so not all such maps will be represented explicitly in the Gross-Taylor
expansion.

3.4 Examples

In this section we will walk through a number of examples, to make our proposal more clear.

In each case, we will begin by reviewing the ordinary Gross-Taylor expansion, for terms
of fixed degree n in the chiral partition functions Z+(A, p,N) of theories in the large N limit,
of the form

Nn(2−2p)
∑

si,ti∈Sn

1

n!
δ

(

(Ωn)
2−2p

p
∏

i=1

sitis
−1
i t−1

i

)

exp

(

− A

α′
GT

n

)

, (3.52)

where

Ωn =
∑

σ∈Sn

NKσ−nσ = 1 +
∑

σ 6=1

(

1

N

)n−Kσ

σ, (3.53)

(due to the fact that the identity in Sn decomposes as K1 = n cycles).

Then, after discussing the interpretation of those terms as branched covers, we will de-
scribe the terms in the expansion of the partition function of the corresponding Nguyen-
Tanizaki-Ünsal universe. The terms have a similar form (at fixed degree) but also with
projectors Pr inserted, namely

Z+
R (A, p,N) = Nn(2−2p)

∑

si,ti∈Sn

1

n!
δ

(

(Ωn)
2−2p

(

p
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

exp

(

− A

α′
GT

n

)

. (3.54)

11For example, for p = 0, d(2, L) = 0 for L > 2, hence the only branched covers of P1 that contribute have
no more than two branch points.
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For simplicity, and to clean up notation, in the rest of the analysis we will usually restrict
to the zero-area limit. (One should be slightly careful, as the exact expression for the Yang-
Mills partition function on surfaces of low genus diverges in the zero-area limit and must be
regularized. We will simply examine the interpretation of individual terms, omitting areas
merely for convenience, so the convergence of the sum in that limit is not a concern.)

3.4.1 p = 0, n = 2

First, consider the case that the Yang-Mills theory lives on ΣT = P1 (so that p = 0), and
restrict to maps of degree n = 2. Since S2 = Z2, we can write

Ωn=2 = 1 +

(

1

N

)

v, (3.55)

for v ∈ S2 the nontrivial element.

We begin by considering the pertinent part of the ordinary Gross-Taylor expansion in
this case. Expanding (3.52) in the zero-area limit, we find

N2n

n!
δ
(

(Ωn)
2
)

=
N2n

n!

(

1 +

(

1

N

)2

v2

)

, (3.56)

=
N4

2!
+

N2

2!
δ(v2). (3.57)

Following [1–6], we interpret the first term as describing maps P1
∐

P
1 → P

1. As a check,
note that χ(P1

∐

P1) = 4. The first term is essentially describing a free S2 = Z2 Dijkgraaf-
Witten theory on ΣT = P1, and as such, from decomposition, it descomposes into a disjoint
union of two pieces, hence ΣW is a disjoint union.

We interpret the second term as describing maps from a branched double cover of P1,
branched over two points (the locations of each v). Such a double cover is precisely P1, and
note that the exponent ofN is correct for this case, as χ(P1) = 2. The factor of 1/2 represents
the orbifold Euler characteristic of the Hurwitz moduli space of maps ΣW → ΣT [4].

In passing, note that the interpretation we have assigned to the two Dijkgraaf-Witten
partition functions above is ambiguous, simply because v2 = 1. We could have equivalently
written

N2n

n!
δ
(

(Ωn)
2
)

=
N4

2!
δ(v2) +

N2

2!
δ(1), (3.58)

and then tried to interpret the first term in terms of a branched double cover of P1, and
the second term in terms of a disjoint union of two copies of P1, but this would not be
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consistent with the exponentials of the N ’s. Our point, however, is that merely giving the
Dijkgraaf-Witten partition functions by themselves is ambiguous in this context.

Next, consider a Nguyen-Tanizaki-Ünsal universe. Expanding (3.54) in the zero-area
limit, we find

Z+
R (0, p, N) =

N2n

n!
δ
(

(Ωn)
2Pr

)

, (3.59)

=
N2n

n!
δ

(

(1)Pr + 2

(

1

N

)

vPr +

(

1

N

)2

v2Pr

)

, (3.60)

=
N4

2!
δ(Pr) + 2

N3

2!
δ(vPr) +

N2

2!
δ(v2Pr), (3.61)

where in this case, Pr = (1/2)(1±v). The first and last terms look essentially the same as in
the ordinary Gross-Taylor case, but we also have a new term, not present previously, namely
the term linear in v. This term can survive here, whereas previously it did not, because of
the Pr.

Expanding out Pr, we have

Z+
R (0, p, N) =

N4

4
± N3

2
+

N2

4
. (3.62)

Adding two such contributions together, for each choice of projector Pr, recovers the original
Gross-Taylor result (3.57).

The first term can be interpreted as before, in terms of maps P1
∐

P1 → P1, which is
consistent with the fact that χ(P1

∐

P2) = 2χ(P1) = 4.

The second term, the new term, is more interesting. The Euler characteristic of any
smooth closed Riemann surface is even, and here we need something of Euler characteristic
3. It is constructed from a Dijkgraaf-Witten correlation function with a single v, plus a
projector.

Later in section 4 we will discuss these two issues – the construction of a theory that
restricts to single instanton sectors, and the interpretation of the extra terms. Briefly, to
address the first issue, we will propose a new constraint on the Gross-Taylor sigma model,
that it possesses a symmetry making such a localization meaningful, and for the second issue,
we will propose that the extra terms arise from stacky worldsheets ΣW .
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3.4.2 p = 0, n = 3

Next, we again consider the case of Yang-Mills theory on ΣT = P1, and restrict to maps of
degree n = 3. Here, |S3| = 3! = 6, so we write

Ωn=3 = 1 +
∑

v 6=1

(

1

N

)n−Kv

v. (3.63)

For reference, the six elements of S3 can be characterized as

(1)(2)(3), (12)(3), (13)(2), (23)(1), (123), (132). (3.64)

These six elements form three conjugacy classes, essentially labelled by the orders of the
cycles.

As before, we begin by considering the ordinary Gross-Taylor expansion in this case (at
fixed degree n = 3). Expanding (3.52) in the zero-area limit, we find

N2n

n!
δ
(

(Ωn)
2
)

=
N2n

n!
δ

(

1 +
∑

ij

(

1

N

)2n−Kv1
−Kv2

vivj

)

. (3.65)

As before, each term can be interpreted as a 3-fold cover of ΣT = P1.

The first term can be interpreted as a disjoint union of three copies of P1. As a consistency
check, note that

χ(P1
∐

P
1
∐

P
1) = 6, (3.66)

which matches the power of N in that term.

Next, consider the second term. There are two cases that contribute to the sum:

• If both v1 and v2 have order 2, then Kv1 = Kv2 = 2, so the term is of the form

N6

3!

(

1

N

)6−2−2

δ(v1v2) =
N4

3!
δ(v1v2), (3.67)

and ΣW = P1
∐

P1, with one copy of P1 a double cover of ΣW , branched over two
points, and the second P

1 a degree-one cover. Note that

χ(P1
∐

P
1) = 4, (3.68)

which matches the exponent of N .
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• The other case is that v1 and v2 have order 3.

In this case, from the Riemann-Hurwitz formula (3.45, we see that ΣW has genus 0,
consistent with the fact that this term is proportional to N2. Hence, this term describes
degree-three maps ΣW → P1 for ΣW = P1.

No other cases can arise in this sum, given the delta function.

Next, we turn to the Nguyen-Tanizaki-Ünsal decomposition, meaning we incorporate the
projector, and interpret the expression above as the entire partition function, instead of just
one term in a larger function. Here, from (3.54), we have in the zero-area limit that

Z+
R (0, p, N) =

N2n

n!
δ
(

(Ωn)
2Pr

)

, (3.69)

=
N2n

n!
δ

(

Pr + 2
∑

v

(

1

N

)n−Kv

vPr +
∑

ij

(

1

N

)2n−Kv1
−Kv2

vivj

)

,

for n = 3 here. The first and third terms can be interpreted as before, modulo the addition of
Pr. Pr itself depends upon the representation r of Sn, itself determined by the representation
R of (S)U(N), but our discussion below will apply to all cases.

It remains to discuss the middle term, which does not appear in the original Gross-Taylor
expansion. Depending upon the order of v, there are two cases appearing in the sum.

• First, consider the case that Kv = 2, for example if v = (12)(3). Here, the term takes
the form

2

3!
N5δ

(

∑

v

vPr

)

. (3.70)

• Next, consider the case that Kv = 1, for example if v = (123). Here, the term above
takes the form

2

3!
N4δ

(

∑

v

vPr

)

. (3.71)

Both terms can be nonzero (because of the projector Pr). The first would describe a world-
sheet with odd Euler characteristic, not possible for a smooth oriented closed Riemann
surface.
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3.4.3 p = 1

Next, we turn to the case that ΣT = T 2. and consider degree n covering maps. In (3.52), in
the zero-area limit, this corresponds to the terms

N0

n!

∑

s,t∈Sn

δ
(

(Ωn)
0sts−1t−1

)

. (3.72)

In [1–6], these describe n-fold covers of T 2, with no branch points, for which, from the
Riemann-Hurwitz formula (3.45), the covering spaces are ΣW = T 2, consistent with the
power of N .

To be clear, these covering spaces ΣW are not necessarily connected. Whether the cover
is one T 2 or several depends upon s, t. For example, if s and t each factorize suitably, the
resulting n-fold cover can be, for example, a disjoint union of a k-fold cover and a (n−k)-fold
cover. Thus, this description encompasses both connected and disconnected covers.

Next, we turn to the Nguyen-Tanizaki-Ünsal decomposition, meaning we incorporate the
projector. Here, from (3.54), in the zero-area limit, we have

Z+
R (0, p, N) = 1

N0

n!

∑

s,t∈Sn

δ
(

(Ωn)
0sts−1t−1Pr

)

. (3.73)

First, consider the case n = 2. Since S2 is abelian, there are no extra terms arising from
Pr, as the commutator [s, t] = 1 for all s, t ∈ S2. The terms can be interpreted as follows:

• s = t = 1: Here, we get a disjoint union of two copies of T 2.

• all other s, t: Here, we get a single T 2, which is an unbranched double cover of T 2.

For this case (n = 2, p = 1), and only this case, the Nguyen-Tanizaki-Ünsal universe appears
to be a restriction to maps of a single degree, without additional orbifold contributions. For
higher n, Sn is nonabelian, and so there will be projector contributions multiplying the
commutator.

Now, let us turn to the Nguyen-Tanizaki-Ünsal decomposition, and add projectors. In
this case, from (3.54), the partition function is

Z+
R (0, p, N) =

N0

n!

∑

s,t∈Sn

δ
(

(Ωn)
0sts−1t−1Pr

)

(3.74)

for r an irreducible representation of Sn. This can admit additional contributions. For
example, consider the case n = 3. Since S3 is nonabelian, there are additional terms involving
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the projector Pr, corresponding to cases in which the commutator is different from the
identity, and instead has either order 2 or 3.

In section 4.3.3 we will interpret the terms of the expansion above, as a combination
of a new symmetry in the Gross-Taylor sigma model (to realize the restriction to specific
degrees) and by adding stacky worldsheets (to encompass the additional cases not present
previously).

3.4.4 p = 2, n = 2

Next, we turn to the case of double covers of a genus-two Riemann surface ΣT . As before,
we begin with the Gross-Taylor expansion at fixed degree n = 2, for which the relevant term
in the full partition function in the zero-area limit is

N−2n

n!

∑

si,ti∈Sn

δ

(

(Ωn)
−2

2
∏

i=1

sitis
−1
i t−1

i

)

(3.75)

Now,

Ω2 = 1 +

(

1

N

)

v (3.76)

for v the nontrivial element of S2 = Z2, and Ω−1
2 is the inverse element in the group algebra,

which one can quickly verify is

Ω−1
2 =

1

1− (1/N2)

(

1− v

N

)

. (3.77)

Thus, expanding, the relevant terms are

N−4

2!

∑

si,ti∈Sn

δ

(

(Ωn)
−2

2
∏

i=1

sitis
−1
i t−1

i

)

=
N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

(

1− v

N

)2
2
∏

i=1

sitis
−1
i t−1

i

)

, (3.78)

=
N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

(

1 − 2

N
v +

1

N2
v2
) 2
∏

i=1

sitis
−1
i t−1

i

)

, (3.79)

Let us interpret the three terms above systematically:
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• First, consider the term

N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2
∏

i=1

sitis
−1
i t−1

i

)

=

∞
∑

k=0

N−4

2!

(

∞
∑

k=0

N−2k

)2
∑

si,ti∈Sn

δ

(

2
∏

i=1

sitis
−1
i t−1

i

)

(3.80)

To leading order in N , this term goes like N4, and describes an unbranched double
(n = 2) cover of the genus-two Riemann surface ΣT . From the Riemann-Hurwitz
formula (3.45), that double cover ΣT must be a genus 3 surface, which is consistent
with the power of N .

• Next, consider the term

−N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2

N
v

2
∏

i=1

sitis
−1
i t−1

i

)

. (3.81)

This term describes a branched double cover of ΣT . However, it does not make a
nonzero contribution:

– Physically, it is straightforward to check that the δ above vanishes. Since S2 is
abelian,

2
∏

i=1

sitis
−1
i t−1

i = 1, (3.82)

and as v 6= 1, the argument of the delta function is not the identity.

– Mathematically, from the Riemann-Hurwitz formula (3.45),

χ(ΣW ) = 2χ(ΣT )− 1 = −5, (3.83)

which is odd, not consistent with the Euler characteristic of a smooth curve.

When we add a projector, this term will reappear in the Nguyen-Tanizaki-Ünsal de-
composition.

• Finally, consider the term

N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

1

N2
v2

2
∏

i=1

sitis
−1
i t−1

i

)

. (3.84)

This term describes a branched double cover of ΣT , branched over two points. From
the Riemann-Hurwitz formula (3.45), we see that ΣW is a genus-four Riemann surface,
which is consistent with the factor N−6.
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Now, we turn to the Nguyen-Tanizaki-Ünsal universes. We can add projectors and revisit
these arguments to interpret (3.54) for n = 2 in the zero-area limit, namely

Z+
R (0, p, N) =

N−4

2!

∑

si,ti∈S2

δ

(

(Ω2)
−2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

, (3.85)

=

∞
∑

k=0

N−4

2!

(

1

1− (1/N2)

)2
∑

si,ti∈Sn

δ

((

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

(3.86)

− N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2

N
v

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

+
N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

1

N2
v2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

.

We have already described how to interpret the first and third terms as a disjoint union of
stacky versions of ΣT ; it merely remains to discuss the middle term.

Much as in the p = 0 case, one effect of adding a projector is to add a term not present
previously, namely the middle term (3.81) that we discarded above:

−N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2

N
v

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

. (3.87)

Previously, this term vanished, because the delta function could not be nonzero. Here, on
the other hand, thanks to the insertion of Pr, this term can be nonzero.

We will discuss our proposed interpretation of these terms in section 4.3.4. Briefly, we will
propose that the Gross-Taylor sigma model has a new symmetry that allows for a localization
on maps of a fixed degree, and also introduce additional (stacky) worldsheets to describe the
extra terms that appear in the presence of the projector Pr.

4 Interpretation of the terms

In this section we discuss the interpretation of the Gross-Taylor series expansion of the
partition functions of the distinct Nguyen-Tanizaki-Ünsal universes. We now identify the
universes with12 coupled representation RS, and as outlined earlier, factorize the partition

12In relating the Gross-Taylor combinatorics to individual Nguyen-Tanizaki-Ünsal universes, we are im-
plicitly assuming that a coupled representation RS uniquely determines R and S separately, which is believed
to hold in the large N limit, but not at finite N .
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function in the form

(

dimRS
)2−2p

exp

(

−g2YM

A

2N
C2(RS)

)

= Z+
R (A, p,N)Z−

S (A, p,N) + subleading. (4.1)

For simplicity, we focus on the chiral partition functions Z+
R (A, p,N) for fixed representation

R, given in equation (3.32), which we repeat below:

Z+
R (0, p, N) = Nn(2−2p)

∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

exp

(

− A

α′
GT

n

)

. (4.2)

This expression differs from the chiral partition function Z+(0, p, N) of the Gross-Taylor
string in two important ways:

• First, there is no sum over degrees n, the expression above for Z+
R (A, p,N) references

one fixed degree (equal to the number of boxes in the Young tableau for R). Physically
in the Gross-Taylor string, this corresponds to a restriction to maps of fixed degree,
which is analogous in a gauge theory to restricting to sectors of fixed instanton number.
Restrictions on instantons to those of instanton degree satisfying a divisibility criterion
is common in decomposition, but a restriction to a single instanton degree is novel (and
at least sometimes problematic).

• Second, for maps of any one degree n, the delta function includes a projector Pr, not
present in the original chiral Gross-Taylor partition function Z+(A, p,N), determined
as in (A.8) by an irreducible representation r of Sn, itself determined by R. We will see
that the projector Pr in the expression above is going to result in new terms not present
in the original analysis, which can not be interpreted in terms of ordinary covering maps
ΣW → ΣT . (Existence of extra contributions in individual universes which cancel out
when the universes are summed over is a typical feature of decomposition, as we review
in section 4.2.)

Such projectors have previously appeared in analyses of finite N contributions e.g. [77,
83], where they are interpreted as (nonperturbative) open string contributions, but here
they arise in contributions in the large N limit, where nonperturbative contributions
(in the string coupling, as opposed to α′) would not be expected.

In this section we will propose resolutions for both of these issues.

1. In subsection 4.1, we observe that a restriction to individual instanton sectors is consis-
tent if the theory admits a symmetry whose Noether current couples to the instanton
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degrees, as either a 2-form or its Hodge dual. In other words, we propose that the
Gross-Taylor sigma model must admit either a global 1-form symmetry or a (−1)-
form symmetry coupling to the instanton degree. We discuss a prototypical example
(two-dimensional pure Maxwell theory), and also walk through a number of possible
alternatives.

2. In subsection 4.2, we propose an interpretion of the extra contributions as arising from
worldsheets that have orbifold points (meaning, technically, certain kinds of smooth
stacks), in the special case that ΣT = P1.

In subsection 4.3 we illustrate these ideas in examples.

4.1 Restrictions on worldsheet instanton (map) degrees

Our computations earlier in this paper have suggested that, if we have correctly tracked
through the series expansion, then the Nguyen-Tanizaki-Ünsal universes are described by
Gross-Taylor sigma models in which maps are restricted to a single degree (i.e. fixed world-
sheet instanton number).

From a field theory perspective, this seems particularly troubling. Ordinarily we sum
over all instantons. Labelling field configurations by instanton number is typically just an
artifact of a semiclassical expansion, and does not have an intrinsic meaning in quantum
field theory.

Concretely, there is a standard old argument of Weinberg (see e.g. [111, section 23.6])
linking cluster decomposition to instanton sums in semiclassical expansions. The idea is
as follows. Imagine trying to restrict to instantons of a single degree, then add a field
configuration consisting of a closely-spaced instanton-antiinstanton pair. Now, move the
centers of that pair far apart. If cluster decomposition holds, then asymptotically one has
theories with different numbers of instantons. Any restriction on instantons can only arise
via a violation of cluster decomposition.

Now, there is a loophole in this argument: if the restriction arises via a disjoint union
of theories, each separately summing over all instantons, with theta angles arranged so that
some instantons cancel out in the sum, one can arrange for a restriction on instanton numbers,
at the cost of violating cluster decomposition in a very mild controllable fashion (as any
disjoint union violates cluster decomposition). This is often exploited in decomposition [10].
For example, theories with restrictions to instanton degree divisible by an integer have been
discussed in e.g. [11,112–114], but the resulting theories are believed to be consistent only by
virtue of decomposition, in the sense that they are the result of superimposing similar theories
with slightly different theta angles, as outlined above. The different theories (universes) each
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separately sum over all instanton degrees; only in the sum does one see an apparent restriction
on instanton degrees (in the semiclassical expansion).

To restrict to a single instanton degree, as we appear to see here, and not just to instanton
degrees satisfying a divisibility criterion, would be considerably stronger than the examples
above discuss. Formally, the partition function of a single instanton sector is given by
integrating over values of the theta angle, analogously to the ensemble13 averaging discussed
in e.g. [115–119], essentially Fourier-transforming along the theta angle to pick out the
contribution from a single degree. To interpret this directly as a a decomposition would
require an uncountable infinity of universes, parametrized by a nondynamical theta angle,
which we find unlikely.

We emphasize that a restriction to a single instanton sector will not always be possible,
even with a summation over countably infinitely many universes, in an arbitrary quantum
field theory. For example, consider ordinary orbifolds. As they are finite gauge theories,
the instanton sectors are precisely the twisted sectors, which are enumerated by equivalence
classes of bundles. On T 2, for example, modular invariance tightly constrains possible the-
ories, and the only individual instanton sector consistent with modular invariance is the
untwisted sector. Restrictions to subsets of twisted sectors do frequently arise in decom-
position, but such restrictions are always to modular-invariant subsets, never to a single
nontrivial twisted sector.

In this section, we will describe several different potential proposals for possible resolu-
tions of this puzzle, but ultimately we will observe that there is (at least) one set of circum-
stances where this would be consistent: when the theory has a symmetry whose Noether
current couples to either the pullback of the Kähler form or its dual (at least perturbatively
in the string coupling constant), as the integral of that pullback is the worldsheet instanton
number. This would require the Gross-Taylor sigma model to admit either a global 1-form
symmetry or a (−1)-form symmetry. In the former case, the Gross-Taylor sigma model
would decompose, as we will discuss later.

4.1.1 Proposal

Before making our proposal, we shall first walk through several possibilities.

Later in section 5 we will argue that the branched covers ΣW can be replaced, for at least
some purposes, with disjoint unions, so one might suspect that perhaps one can deform ΣW

to a corresponding disjoint union. Since the Gross-Taylor theory is a topological (string)
theory, it should be invariant under smooth deformations, suggesting that perhaps the Gross-

13It should be noted that an ensemble is not the same as a decomposition, which becomes visible in QFTs
on spacetimes with multiple connected components. (In the former case, there is only one summand/integral
over the ensemble, whereas in the second, there are as many as connected components.)
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Taylor string on a branched cover is equivalent to the Gross-Taylor string on a disjoint union,
potentially shedding light on the present question. Unfortunately, we will see in section 5.2
that although such deformations exist, the disjoint unions are not in the closure of the
Hurwitz moduli space, one must instead pass a finite distance through a larger moduli
space, which invalidates this potential argument.

Another option one might consider is that potentially the extra contributions of sec-
tion 4.2 might, conceivably, cancel out some of the contributions from the regular curves,
rendering the sum of contributions trivial. Unfortunately, the contributions from section 4.2
are weighted with different factors of N , so such a cancellation can not take place.

In appendix D we will outline another proposal, which is to interpret the single-instanton
sectors as different QFTs, obtained from localizing the original QFT onto the desired instan-
ton sectors by adding (analogues of) BF terms. This is straightforward to describe in the
bosonic case, but as we describe in appendix D, we run into a subtlety with the supersym-
metrization which appears to obstruct its application in cohomological field theories.

Having walked through several possibilities, we now turn to our proposal.

Briefly, we are proposing that the Gross-Taylor sigma model has a suitable symmetry
which enables one to meaningfully select worldsheet instanton sectors. In other contexts,
for ordinary (invertible zero-form) symmetries, one would require that there be a conserved
charge, so as to make the corresponding quantity meaningful in the full quantum field theory,
not just in some semiclassical expansion.

Here, we propose14 that the Gross-Taylor sigma model admit a symmetry whose Noether
current is either the pullback of the Kähler form or its Hodge dual (since the integral of that
pullback is the worldsheet instanton number), as these seem the most conservative options.
Given that the Kähler form is a two-form, this suggests that the theory either has

• a global 1-form symmetry, or

• a global (−1)-form symmetry,

(related to the worldsheet instanton degree). If the (two-dimensional) theory has a 1-form
symmetry, then it decomposes. That said, the Gross-Taylor string theory is also expected to
couple to worldsheet gravity, so any such decomposition would not yield completely disjoint
universes, but rather the universes would still communicate via gravitational interactions.
We discuss gravitational couplings and decomposition in appendix C.

We list two possibilities above, but these two possibilities are closely linked. Recall that in
d spacetime dimensions, if a theory has a global (d−1)-form symmetry, it decomposes. If one

14We would like to thank R. Plesser for suggesting this direction.
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gauges that symmetry, the resulting theory is one of the universes of the decomposition [120],
which has a (−1)-form quantum symmetry, corresponding to spacetime-filling defects. If
one then gauges that quantum symmetry, one recovers the original theory (as expected for
a quantum symmetry). Since the quantum symmetry is a (−1)-form symmetry, gauging it
corresponds to summing over spacetimes, and so one explicitly recovers the original theory as
sum over universes. It is natural to speculate that in the present circumstances, the Gross-
Taylor string associated to the whole two-dimensional Yang-Mills theory may have a global
1-form symmetry and so decomposes (as d− 1 = 1 here), in which case the string associated
to one Nguyen-Tanizaki-”Unsal universe of the Yang-Mills decomposition is obtained by
gauging that 1-form symmetry, and so has a global (−1)-form symmetry.

This proposal may sound exotic, but in the next section we will describe another two-
dimensional theory where precisely this takes place.

Furthermore, in hindsight, existence of such a global symmetry in the Gross-Taylor sigma
model should be expected from standard yoga. The restriction to a Nguyen-Tanizaki-ünsal
universe in the decomposition of two-dimensional pure Yang-Mills should be equivalent to
gauging the corresponding one-form symmetry [120], and as is well-known, target-space
gauge symmetries correspond to worldsheet global symmetries. (For example, in a conven-
tional string theory, the Noether current for an ordinary worldsheet symmetry forms part
of the vertex operator for a target-space gauge field.) Thus, at least in general terms, in
hindsight, it should not be surprising that the Gross-Taylor expansion for a single Nguyen-
Tanizaki-Ünsal universe should possess a global symmetry. (That said, it is not clear how
yoga alone would predict coupling of that symmetry to worldsheet instanton degree, which
is our prediction here.)

Now, we are aware of two separate proposals for a worldsheet theory of the Gross-Taylor
string, namely the Cordes-Moore-Ramgoolam proposal [4–6], describing a sigma model lo-
calizing on holomorphic maps, and the Horava proposal [8, 9], describing a sigma model
localizing on harmonic maps, which are both proofs-of-principle of the possible existence
of a Gross-Taylor sigma model. We are not aware of a linearly-realized symmetry of the
form proposed above in either15 of these proposals. One possibility is that the symmetry is
present, but nonobvious (perhaps realized noninvertibly, much as in e.g. [47,48,62]). Another
possibility is that there exists a third possible worldsheet theory for the Gross-Taylor sigma
model. We leave this issue for future work.

We should add that although we believe the property above is a necessary condition,
it might not be sufficient. Here we have in mind the example of electric charge, which
is conserved and defines a superselection rule (see e.g. [121]), in which in the superselec-
tion sectors, the total charge is fixed. Similarly, here, the Gross-Taylor expansion of the

15In the Horava proposal, it is tempting to consider an analogue of a BU(1) symmetry acting as dφ 7→
dφ+Λ, which naively is a symmetry of the kinetic terms for constant metric, but we do not understand how
this would be consistent with nontrivial metrics or curvature terms.
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Nguyen-Tanizaki-Ünsal universes produces maps of one16 fixed degree. In any event, to
be consistent, more than a superselection rule is needed here – the Nguyen-Tanizaki-Ünsal
universes are separately well-defined physical theories, and so too should the restrictions of
the Gross-Taylor sigma model to maps of total fixed degree be consistent. For example, if
the Gross-Taylor sigma model has a 1-form symmetry (one of the options we list), then it
also has a decomposition, which is certainly stronger than just superselection, and would
yield separately well-defined theories (modulo its gravitational coupling, see appendix C).
We leave this question for future work.

In passing, we observe that two-dimensional cohomological field theories (such as existing
proposals for the Gross-Taylor string) typically have semisimple operator algebras, and so
decompose – but that is a decomposition only of the topological subsector, not necessarily
of the entire theory, and more to the point, it need not have any connection to worldsheet
instanton degrees. As a result, it is unfortunately not relevant for our purposes here.

4.1.2 Prototype: two-dimensional pure Maxwell theory

In this section we will study two-dimensional pure Maxwell theory, as a theory whose sym-
metries are a prototype for those we propose for the Gross-Taylor string. Specifically, it has
a (one-form) symmetry with Noether current related to the U(1) bundle degree, also known
as the U(1) monopole17 number (meaning, the first Chern class of the bundle). Because it
has a one-form symmetry, it decomposes, and we shall see explicitly that the universes of
the decomposition are indexed by an integer which is ‘Poisson dual’ to the U(1) monopole
number, reflecting the symmetries of the theory. At the end of this section, we will also
discuss an analogue of the Witten effect in dyons in four dimensions, here interchanging
universes under rotations of the theta angle.

The pure Maxwell theory in any dimension has a global BU(1) symmetry, given explicitly
by shifts A 7→ A + Λ, with Noether current Je = ∗F , associated to [122, section 4.1]
an operator Uα(p) = exp(iα ∗ F (p)). There is also a magnetic symmetry with current
Jm = F , associated with an operator Uβ(Σ) = exp(iβ

∫

Σ
F ) corresponding to a (−1)-form

symmetry [122, foonote 10, section 4.1]. (Noether currents of this form, or their Hodge duals,

16In examples in which ΣW has multiple connected components, that fixed number arises as the sum of
the degrees of the maps from the components of ΣW to ΣT .

17We shall use the terms monopole number and vortex number interchangeably in two-dimensional abelian
theories to describe the first Chern class of a U(1) bundle. We are avoiding referring to ‘instanton numbers’
in two-dimensional gauge theories in this section, as in two dimensions this is sometimes used to refer to the
value of

∫

Σ

TrF ∧ ∗F. (4.3)

Unlike four dimensions, in two dimensions this is not a topological invariant, and indeed has a nonzero area
dependence, but in the literature the term instanton number is often associated with such a term, even in
two-dimensional theories, see e.g. [127].
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are essentially our prediction for the Gross-Taylor sigma model.)

As has been argued elsewhere (see e.g. [10, 46]), a d-dimensional theory with a global
(d−1)-form symmetry should decompose. Here, since two-dimensional pure Maxwell theory
has a BU(1) symmetry, one should expect that it decomposes into countably many universes,
indexed by irreducible representations of U(1) (i.e. integers). Indeed, in [18], it was argued
that two-dimensional pure Maxwell theory is equivalent to a disjoint union of invertible
theories, in much the same way that [47, 48] later argued that two-dimensional pure Yang-
Mills theories decompose.

Given the fact that the Noether current for the global 1-form symmetry is related to
F , it is natural to expect some sort of correlation between the universes (labelled by U(1)
representations) and and the U(1) monopole numbers (meaning, values of

∫

F ), and indeed,
it was argued in e.g. [123–125] that they are Poisson dual to one another. As this will be
important for our analysis, and is slightly subtle, we will review the relationship carefully.

Following section 2 and [58, section 2], [57] write the partition function for two-dimensional
pure Maxwell theory on a Riemann surface Σ in the form

Z(Σ) =
∑

R

(dimR)χ(Σ) exp
[

−g2YMAC2(R)
]

, (4.4)

=
∑

q∈Z

exp
[

−g2YMAq2
]

, (4.5)

using the fact that for G = U(1) [126, chapter 7, table 7.1]

C2(R) = q2. (4.6)

In the expression above, since all irreducible representations R of U(1) are one-dimensional,
we have replaced representations R with charges q. The universes of the decomposition are
then indexed by q, and the qth universe has partition function

exp
[

−g2YMAq2
]

. (4.7)

Now, let us carefully study the relationship between the U(1) charge q and U(1) monopole
numbers

∫

F . First, note that the area dependence of the exponent is linear in the area A,
but the kinetic term for a gauge field of monopole number q should18 be inversely proportional
to the area, so the U(1) charge q cannot be precisely the same as the monopole number.

Let us take a moment to check this carefully, as it is important for our analysis, For U(1)
monopole number n, we claim that the Maxwell kinetic term

1

g2YM

∫

Σ

F µνFµν ∝ n2

g2YMArea
, (4.8)

18We would like to thank R. Szabo for making this observation, and for pointing out the role of the Poisson
resummation that will appear momentarily.
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a completely different area dependence from that of the partition function for the qth uni-
verse (4.7). Explicitly, in the special case of Σ = S2, following [127, section 3], a classical
gauge field configuration with U(1) monopole number n is given by

Aθ = 0, Aφ = n
1− cos θ

2
, (4.9)

hence

Fθφ =
n

2
sin θ, F θφ =

1

2r4 sin θ
, (4.10)

using
ds2 = r2

(

dθ2 + sin2 θ dφ2
)

, (4.11)

so that
√

det g = r2 sin θ, (4.12)

and
∫

S2

√

det g F θφFθφ =
πn2

r2
∝ n2

Area
. (4.13)

Thus, we see that the area dependence of the partition function for the qth universe (4.7)
is not consistent with what one would expect if the universes were indexed by the U(1)
monopole number. Instead, we shall argue that they are indexed by a Poisson-dual number.

To understand the role of U(1) monopoles and the two-dimensional θ angle, we will outline
the derivation of the exact expression for the partition function, following the analysis of [56],
but including a θ angle term. We will see explicitly that the irreducible representation and
the U(1) monopole number are related by a Poisson19 resummation. Schematically, working
on Σ = S2 for simplicity, for the two-dimensional pure Maxwell theory with action

S =
1

g2YM

∫

Σ

F µνFµν +

∫

Σ

iθF, (4.14)

the partition function can be expressed as a sum over contributions from U(1) monopoles
(nontrivial U(1) bundles) of charge n, in the form

Z(Σg) =
∞
∑

n=−∞

(

πg2YMA
)−1/2

exp

(

− n2

g2YMA
+ iθn

)

, (4.15)

(with overall factors (πg2YMA)
−1/2

chosen in hindsight to make the result clean). We can

19See also e.g. [55,127–129] for related discussions of Poisson resummation in the context of two-dimensional
pure Yang-Mills theories, and also e.g. [130, 131] for more detailed computations.
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Poisson resum this expression as follows:

Z(Σg) =

∫ ∞

−∞

dλ
∞
∑

n=−∞

δ(λ− n)
(

πg2YMA
)−1/2

exp

(

− λ2

g2YMA
+ iθλ

)

, (4.16)

=

∫ ∞

−∞

dλ

∞
∑

m=−∞

exp(2πimλ)
(

πg2YMA
)−1/2

exp

(

− λ2

g2YMA
+ iθλ

)

, (4.17)

=

∫ ∞

−∞

dλ′

∞
∑

m=−∞

(

πg2YMA
)−1/2

exp

[

− (λ′)2

g2YMA
− g2YMA

4
(θ + 2πm)2

]

, (4.18)

=
∞
∑

m=−∞

exp

[

−g2YMA

4
(θ + 2πm)2

]

, (4.19)

where

λ′ = λ − i
g2YMA

2
(θ + 2πm)2 . (4.20)

For simplicity we specialized to Σ = S2; for other Riemann surfaces, in principle one would
need to take into account e.g. moduli of flat connections in the analysis. However, the form
of the result for the exact partition function, as reviewed in section 2, is universal.

Including the theta angle, we see that the partition function of the q = m-th universe is

exp

[

−g2YMA

4
(θ + 2πm)2

]

. (4.21)

When θ = 0, we see that this recovers the exact expression (4.5), identifying the U(1) charge
q with m, and absorbing factors of 2 and π into g2YM . For nonzero θ, we can treat the θ2

term as a contribution to an overall multiplicative factor, leaving us just with two terms: one
quadratic in m (corresponding to the Casimir C2(R)) and one linear in m (corresponding to
the Casimir C1(R)). This form of the exact expression, taking into account θ dependence,
has also been discussed in [58, section 2], [57], albeit with a different normalization on the θ
term.

In particular, comparing the area-dependence of the m2 term to the exact result for the
partition function (4.19), we emphasize that the irreducible U(1) representation, the charge
q, corresponds to m, the Poisson-dual to the U(1) monopole number, which was the n in
equation (4.15), recovering the result in [123–125]. That said, although the universes of
the decomposition are not indexed by U(1) monopole number, since the universes are all
invertible field theories with one-dimensional Fock spaces, the difference between fixed U(1)
monopole number and fixed U(1) charge is just a Fourier transform, so it might still be
meaningful to speak of universes associated to fixed U(1) monopole number.

The θ dependence of the partition function (4.21) suggests further interesting physics,
which we will return to shortly. For the moment, we confirm the result above by giving
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an alternative computation. We can quickly outline a confirmation of this result20 for the
partition function as a function of m = q, by semiclassically gauging the BU(1) symmetry,
which in principle [120] should select particular universes. Start with the pure Maxwell
action

S =
1

g2YM

∫

Σ

F µνFµν +

∫

Σ

iθF, (4.22)

and gauge BU(1). This means we add a dynamical two-form tensor field potential B, the
gauge field for the gauged BU(1), whose gauge transformations couple to the gauge field A
as follows:

A 7→ A− Λ, (4.23)

B 7→ B + dΛ, (4.24)

for Λ any one-form. The action of the pure Maxwell theory with the gauged BU(1) then
takes the form21

S ′ =
1

g2YM

∫

Σ

(F +B) ∧ ∗(F +B) +

∫

Σ

iθ(F +B). (4.25)

Now, in principle, to select one particular universe, we add a theta angle term for the
BU(1) symmetry, parametrized by irreducible representations of U(1), namely Z. This is
similar in principle to the procedure described in [120, section 8], where a BZk symmetry
was gauged. Explicitly, here, we add a term proportional to qB, for q ∈ Z corresponding to
an irreducible representation of U(1):

S ′′ =
1

g2YM

∫

Σ

(F +B) ∧ ∗(F +B) +

∫

Σ

(iθ(F +B) + 2πiqB) . (4.26)

We absorb F into B via the affine gauge transformation A 7→ A− Λ, to write

S ′′ =
1

g2YM

∫

Σ

B ∧ ∗B +

∫

Σ

i (θ + 2πq)B. (4.27)

Integrating out B (and glossing over operator determinants, see e.g. [132, section 2.2] for a
more complete analysis), we get

S ′′ =
1

4
g2YMA (θ + 2πq)2 (4.28)

20We would like to thank C. Closset for a discussion of this computation.
21A close analogue of this procedure was used in four-dimensional pure Maxwell theory in [132, section

2.2], [133, section 2.4], to implement S-duality. There, it was noted that just gauging BU(1) left a trivial
theory, and so a dual gauge field was added, which coupled via a topological term, a four-dimensional
analogue of the

∫

B term we introduce above. Here, by contrast, our goal is to generate a trivial theory –
one of the universes of decomposition, itself an invertible field theory in this case – so no additional fields
are needed.
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matching the exponent of the partition function of the theory (4.21) in any one fixed universe,
determined by q (up to factors of 2, π), which can be identified with the m in (4.21).

In passing, we observe that the form of the exact result for the partition function (4.21)
for pure Maxwell theory with a theta angle, suggests the existence of a two-dimensional
decomposition analogue of the four-dimensional Witten effect in dyons [134]. Recall that,
under a rotation θ 7→ θ + 2π of the four-dimensional theta angle, dyon charges also rotate.
(The complete physical theory is invariant, as this just interchanges existing dyon charges.)
Here, judging from the exact partition function (4.21), a rotation θ 7→ θ + 2π of the two-
dimensional theta angle is equivalent to shifting q 7→ q + 1, meaning that under a rotation
of the theta angle, the universe shifts.

We can also see the same result from the perspective of the Hilbert spaces. Recall that,
at least for vanishing theta angle, the Hilbert space of two-dimensional pure Yang-Mills is
given by the class functions on the Lie group G, which has a basis of characters χR associated
to irreducible representations. Because of the theta angle, a particle moving along a closed
noncontractible loop will pick up a phase, or more formally,

f(gz) = λ(z)f(g). (4.29)

(This is discussed in e.g. [12, section 2.4], [135] for discrete theta angles; the present case is
similar. In essence, in two dimensions, the θ angle acts as an electric field [136], hence it
modifies wavefunctions by phases.) Here, for a fixed irreducible representation R correspond-
ing to U(1) charge q, and identifying g ∈ U(1) with a phase α = exp(iβ) ∈ C

∗, |α|2 = 1, we
can write

f(g) = exp(i(θ/2π)β) exp(iβq) = αq+θ/(2π). (4.30)

Explicitly, rotating θ 7→ θ+2π is equivalent to incrementing q, thereby shifting the universe,
just as we saw in partition functions. (See also [137] for related remarks.)

So far we have discussed two-dimensional pure Maxwell theory as a possible prototype
for expected symmetries and properties of the Gross-Taylor string. It should be noted in
addition that, at least morally, two-dimensional pure Yang-Mills theory is also similar, in
the sense that it has a global 1-form symmetry (realized noninvertibly [47, 48]), and the
gauge instantons of the theory are roughly Poisson dual to the representations (and hence
universes) [127–129].

4.2 The extra terms: stacky worldsheets

In the Gross-Taylor expansion of Nguyen-Tanizaki-Ünsal universes in section 3, we came
across two puzzles:

• terms that appear to correspond to contributions to sigma models from maps of fixed
degree,
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• terms that appear to arise from additional worldsheets, often with powers of N that
could not be realized from smooth orientable Riemann surfaces.

In the previous subsection, we proposed a solution for the first puzzle. In this subsection,
we will discuss the second puzzle, and in the special case that ΣT = S2, propose a possible
interpretation of the extra terms.

Before going on, we should observe that such extra terms are common in decomposition.
As a simple prototypical example, let us consider the example of a two-dimensional SU(2)
gauge theory with center-invariant matter. This is equivalent to (decomposes into) a pair of
SO(3) theories with different discrete theta angles, schematically,

SU(2) = SO(3)+
∐

SO(3)−. (4.31)

(See e.g. [46, section 2] and references therein.) Each of the SO(3) theories has nonper-
turbative sectors (SO(3) bundles) not possessed by the SU(2) theory. However, because
of their different weightings, those SO(3)-specific bundles cancel out. Essentially the same
thing is happening here: we have extra worldsheets arising in the Gross-Taylor expansion
of a single Nguyen-Tanizaki-Ünsal universe (analogous to the non-SU(2) SO(3) bundles),
whose contributions cancel out when one sums over all universes.

A context that is more relevant for us is decomposition of sigma models. We describe
some analogous cases here:

• First, consider two-dimensional orbifolds with trivially-acting subgroups. A prototypi-
cal example is [X/D4], where D4 denotes the eight-element dihedral group with center
Z2. If that center acts trivially, then [10, section 5.2]

[X/D4] = [X/Z2 × Z2]
∐

[X/Z2 × Z2]d.t., (4.32)

where each of the Z2 × Z2 orbifolds has twisted sectors not present in the D4 orb-
ifold (analogous to the extra contributions present here). Those additional sectors are
weighted differently by discrete torsion, and cancel out when the universes are summed
together, just as the extra contributions do here.

• A related example is WZW models arising on boundaries of three-dimensional Chern-
Simons theories. If one gauges a trivially-acting one-form symmetry in the bulk three-
dimensional theory, the boundary sees an orbifold of a WZWmodel by a trivially-acting
ordinary group symmetry, see [15]. Those WZW models are precisely sigma models
(whose targets are Lie groups, with background H flux), and so the story here is closely
analogous.

• Sigma models whose targets are gerbes, which can be realized by two-dimensional
gauged linear sigma models with gauge groups in which a subgroup acts trivially [11,
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112,113]. Physically, these are equivalent to gauge theories with a restriction on gauge
instantons. These also decompose into disjoint unions of ordinary sigma models on
underlying spaces (realized via ordinary gauged linear sigma models). The constituent
universes are described by gauge theories with no restriction on gauge instantons –
so again, there are extra contributions not present in the original theory – which are
weighted differently by B fields / theta angles.

As the Gross-Taylor string is believed to be a sigma model, these examples are more directly
relevant, albeit they all only refer to cases involving finitely many universes.

Thus, existence of extra terms in the Gross-Taylor expansion of individual Nguyen-
Tanizaki-Ünsal universes is not surprising. However, their interpretation in the language
of string field theories of sigma models needs to be addressed, and we turn to this next.

Technically, the extra terms are the result of including a projection operator, and such
a projection operator has been previously discussed, in the context of finite N corrections,
in e.g. [83], [77, section 3]. Reference [83] describes the projection operator as giving rise to
a “projection point,” an analogue of the Ω-points (interpreted in terms of branched covers
in [4]), and [77, section 3] breaks the resulting contributions up into a “perturbative” sector
(with even powers of N) and a “residual” sector (which contains terms with odd powers of
N), which they suggest should be attributed to open string worldsheets. (See also e.g. [123,
section 3.2], which also interprets odd powers of N in U(N) theories in terms of open
strings.) As their focus is on finite N corrections, which should incorporate nonperturbative
corrections, it is natural for them to assume open strings are involved in their analysis.

Here, we are seeing projection operators arising in the large N limit, not just in finite N
corrections, which distinguishes this case from the analyses in e.g. [77, 83]. At least naively,
we would not expect nonperturbative22 corrections to a large N limit, and hence, although
it is still a potential interpretation, we would not expect open string contributions in our
case.

We should quickly add that another places where odd powers of N arises is in the Gross-
Taylor expansion of SO(N) and Sp(N) gauge theories, see e.g. [71–75], where it is said to
reflect nonorientable Riemann surfaces.

Briefly, one other interpretation of these terms is in terms of singular branched covers,
obtained as limits of smooth branched covers in which the branch points collide. We will
describe this in examples, and one might speculate that perhaps this is a reflection of some
subtle differences in contact terms arising in the Gross-Taylor sigma model for the individual
Nguyen-Tanizaki-Ünsal universes. We do not exclude this possibility. In any event, in this
section we will float a different proposal, which will have another application later in section 5.

22Nonperturbative in the string dilaton, of course, as opposed to α′

GT
.

44



In this subsection, we suggest another potential interpretation of those extra terms arising
in the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universes (and potentially also
the “projection points” of [83]), different from either open strings or nonorientable world-
sheets, in the special case ΣT = S2. We propose that they may arise from sigma models
with stacky worldsheets, and will merely provide a ‘proof of principle’ for such a description,
but, we emphasize, we are only making a proposal, a suggestion, not a definitive statement.

Our proposal is that the extra contributions may rise from worldsheets Σ̂W that are
disjoint unions of n stacky copies Si of ΣT :

Σ̂W =
n
∐

i=1

Si (4.33)

(the same n of Sn, meaning that previously the worldsheet was an n-fold cover of ΣT ). We
will explicitly describe a construction of stacks Si with matching combinatorial description,
covering degree, and Euler characteristic of Σ̂W correctly matches the power of N . (We
will discuss orbifold Euler characteristics of Hurwitz moduli spaces shortly.) However, there
will be multiple disjoint unions of this form which satisfy those constraints, as we shall see.
Nevertheless, worldsheets of this form represent our current best guess at an interpretation
of these extra terms, at least in the case ΣT = S2.

Stacks may sound exotic, but in many ways they are simple generalizations of spaces.
They admit metrics, spinors, gauge fields, and so forth, and can be dealt with using the
usual tools of differential geometry. See for example [138–143], [144, lecture 3] for some
introductory material. In any case, we will only require stacks23 that take the form of
Riemann surfaces with local orbifold points, which will simplify the discussion. We collect
some relevant facts about stacks in appendix B.

For these reasons, it is natural to conjecture that it may be possible to define sigma
models with stacky worldsheets, not just stacky target spaces (as has been discussed in
e.g. [11,112,113]). We shall assume that this is the case in the remainder of this subsection,
and turn to the construction of the stacky worldsheets from the Gross-Taylor combinatorics.

Now, let us turn to the construction of our new worldsheets Σ̂W , which are disjoint unions
of stacky copies Si of the Riemann surface ΣT ,

Σ̂W =

n
∐

i=1

Si, (4.34)

The stacks Si are constructed from the Gross-Taylor combinatorics as follows. Write each
va ∈ Sn as a product of cycles, of the form (1 · · ·n1)(n2 · · ·n3) · · · . If the integer i is an
element of a cycle of va of length k, put a Zk orbifold point on ΣT , corresponding to vi.

23Technically, we are working with smooth Deligne-Mumford stacks, and the subset of those which are of
the form of local orbifolds on Riemann surfaces. We will not use, for example, gerbes on curves.
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As a simple example, suppose n = 6 and v = (12)(345)(6) ∈ S6. Then, of the six copies
of ΣT appearing in the disjoint union, two would have Z2 orbifold points, three would have
Z3 orbifold points, and one would have no orbifold point at all.

The reader should note that even this prescription is not unique; we could interchange
which sheets Si receive which specific orbifold points. Such interchanges will preserve the
Euler characteristic, as will be clear momentarily. In section 5, we will apply similar ideas
to replace branched cover interpretations, and we will give a more systematic construction
of such disjoint unions from branched covers, which will eliminate such ambiguity.

Now, let us compute the Euler characteristic of the disjoint union (4.34) above. The idea
is to start with the Euler characteristic of a disjoint union of n copies of ΣT , then subtract
the Euler characteristic of nL disks, and add back the contribution from disks containing
single orbifold points. In doing so, since a disk with a single Zk orbifold point has Euler
characteristic 1/k and appears k times, a collection of k such disks will contribute 1. In the
prescription above, the Euler characteristic contributed by all of the disks determined by a
single v is therefore equal to the number of cycles.

Assembling these pieces, we then see that

χ

(

n
∐

i=1

Si

)

= nχ(ΣT ) − nL +
L
∑

j=1

Kvj , (4.35)

= n(2− 2p) +

L
∑

j=1

(

Kvj − n
)

, (4.36)

which matches the exponent of N in Z+
R (A, p,N). The ambiguity mentioned above, namely

redefining the Si by moving orbifold points between different sheets, clearly preserves χ(
∐

i Si).

It is important to note that this ansatz will only generate the correct power of N in
the case of ΣT = S2, so that p = 0. For p > 0, p the genus of ΣT , there are additional
group-theoretic factors of the form

p
∏

i=1

[si, ti] . (4.37)

Ordinarily these have to close up to the vi insertions, but, in the presence of a projector
Pr, they no longer need close, and also do not come with any ameliorating factors of N . In
examples, we will see that they do not appear to have a natural stacky interpretation, at
least not following the ansatz above. For this reason, we only apply our ansatz to the case
p = 0.

So far we have verified that the exponent of N matches the Euler characteristic of Σ̂W .
Ideally, to thoroughly check this proposal, one would also compute the Euler characteristics
of the corresponding Hurwitz moduli spaces, essentially to verify the detailed prediction [4,
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equ’n (1.1)]

Z+(0, N, p) = exp

[

∞
∑

h=0

N2−2hχ
(

H(h, p)
)

]

, (4.38)

where H(h, p) denotes the Hurwtiz moduli space of maps from a connected worldsheet of
genus h to one of genus p. Here, we are enlarging the number of possible worldsheets through
the addition of stacky points, and it is not entirely clear how the different numbers of stacky
points should be weighted, to extend the expression above. For example, formally, possible
extensions of (4.38) include the form

Z+(0, N, p) = exp

[

∞
∑

h=0

N2−2h

(

∞
∏

k=2

(

∞
∑

nk=0

fk(nk)N
(−1+1/k)nk

))

χ
(

H(h, p, n2, n3, · · · )
)

]

,

where H(h, p, n2, n3, · · · ) denotes the Hurwitz moduli space with nk Zk orbifold points for
each k, and for unknown functions fk(nk), defining relative multiplicities of Zk orbifold
points, (For example, fk(n) = 1, fk(n) = 1/n!, and fk(n) = 1/(k!n!) all naively seem
equally plausible.) To understand this proposal at the level of orbifold Euler characteristics
of Hurwitz moduli spaces, we would need a proposal for those functions. Furthermore, as
previously discussed, there are multiple possible interpretations as stacky worldsheets for
the extra terms. We will discuss possibilities in examples, but, for the reasons above and
because we are only attempting to provide a proof of principle, not a definitive answer, we
leave a detailed analysis of Hurwitz moduli spaces for future work.

For terms in which a smooth branched cover ΣW exists, as in the Gross-Taylor inter-
pretation, there exists a(t least one) disjoint union

∐

i Si of the form above, to which ΣW

can be deformed (albeit not without leaving the Hurwitz moduli space). The details of this
construction are described in section 5.1.

Another aspect of those projectors is that they weight the contributions by phases. In
the same spirit as the rest of this section, we propose that those phases be interpreted as
resulting from B fields on ΣW , as we will elaborate in examples.

Later in section 5, we will utilize such disjoint unions to give a different geometric picture
of the Gross-Taylor expansion of a single Nguyen-Tanizaki-Ünsal universe. Each component
of the disjoint union, each stacky copy of ΣT , maps to ΣT with degree one, and we identify
each such contribution with an invertible field theory. The projector Pr then contributes
weights which can be interpreted in terms of flat B fields on the various components of
the disjoint union replacing ΣW . We will propose to interpret those (stacky) copies of ΣT ,
replacing ΣW , as a reflection of a decoposition of the Gross-Taylor string to invertible field
theories.

In passing, we find it interesting that stacky worldsheets appear in this construction.
Certainly stacks have previously been described as target spaces of strings, see in particular
[11, 112, 113], but there, the worldsheets were ordinary Riemann surfaces, whereas here,
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the worldsheets are stacks. On the other hand, since maps from stacks factor through the
underlying spaces, which is an important part of the proposed dictionary, it is not entirely
clear to us how much weight should be ascribed to the difference between a stacky copy S
of ΣT and ΣT itself. We will leave this for future work.

We will re-use this same proposal to a different end in section 5, where we give an
alternative geometric interpretation of the terms in the Gross-Taylor expansion, which better
reflects the fact that the Nguyen-Tanizaki-Ünsal universes are invertible field theories.

4.3 Examples

In this section we will walk through the same examples as in section 3.4, this time demon-
strating how to describe the extra contributions (arising from presence of projectors Pr) in
terms of stacky worldsheets. As in section 3.4, in examples we will restrict to the zero-area
limit, to simplify computations.

4.3.1 p = 0, n = 2

In this section we consider the special case p = 0 (so that ΣT = P
1), and a representation

R described by a Young tableau with n = 2 boxes. From section 3.4.1, the Gross-Taylor
expansion of the Nguyen-Tanizaki-Ünsal universe has the form

Z+
R (0, p, N) =

N2n

n!
δ
(

(Ωn)
2Pr

)

, (4.39)

=
N2n

n!
δ

(

(1)Pr + 2

(

1

N

)

vPr +

(

1

N

)2

v2Pr

)

, (4.40)

=
N4

2!
δ(Pr) + 2

N3

2!
δ(vPr) +

N2

2!
δ(v2Pr), (4.41)

=
N4

4
± N3

2
+

N2

4
. (4.42)

As discussed in section 3.4.1, the first and third terms above can be interpreted as con-
tributions to the original Gross-Taylor sigma model, from maps of fixed degree n = 2. We
interpret these as reflecting the presence of a suitable symmetry in the Gross-Taylor sigma
model.

The middle term is novel to the expansion of a Nguyen-Tanizaki-Ünsal universe. The
exponent of N is odd, and so this term cannot correspond to a map from a smooth curve
ΣW to ΣT = P1. It is constructed from a Dijkgraaf-Witten correlation function with a single
v, plus a projector.
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Now, how should this term be interpreted?

Suppose we try to interpret this term by expanding out the projector Pr, picking out the
v term in Pr. Then, this term is

±2
N3

2!
δ(vv). (4.43)

Following the usual prescription, this would naively appear to be a branched double cover
of P1, branched over two points, which is another P1. However, that has the wrong Euler
characteristic to match the power of N .

If we ignore the projector, this term appears to describe a double cover of P1, branched
over a single point, which does not exist as a smooth manifold.

Instead, we propose to interpret this term as describing a stack. Following the discussion
in section 4.2, given the single factor of v, we propose to interpret this in terms of a curve
with a Z2 orbifold point, and in fact, as n = 2 copies of ΣT , each with a Z2 orbifold point,
again restricted to maps of total degree n = 2 as above.

To check this proposal, we check Euler characteristics. Consider a stacky P1 with a
single Z2 orbifold point, explicitly the weighted projective stack P1

[1,2]. Euler characteristics
are additive, and this is the union of a disk and a single Z2 orbifold, so we can write

χ(stacky P
1) = χ(disk) + χ(BZ2) = 1 + 1/2 = 3/2, (4.44)

using the fact that χ(BZ2) = 1/2. (See for example appendix B.1 for more details on Euler
characteristic computations in stacky curves.)

Now, this is just a single cover of ΣT = P1, but we can create a double cover by taking
two copies. Note that the Euler characteristic of two copies is given by

χ(P1
[1,2]

∐

P
1
[1,2]) = (2)(3/2) = 3, (4.45)

which precisely matches the power of N appearing in the middle term. Furthermore,
each stack separately has a projector to P1, so there certainly exists at least one map
P1
[1,2]

∐

P1
[1,2] → P1.

The two choices of sign on the middle term of (4.42) arise from the two possible projectors
Pr, for r an irreducible representation of S2 = Z2. One might interpret these as choices of B
fields on each of the two copies of P1. For example, perhaps in one universe, the two copies
have the same B field (trivial), and in the other universe, one copy has trivial B field whereas
the other has

∫

B = −1. An alternate possible interpretation is that one picks the same B
field on both elements of the disjoint union: +1 for one r, −1 for the other. (To be clear,
ordinarily in a sigma model, the B field is defined on the target ΣT , not the worldsheet,
whereas here we are fixing a closed 2-form on the worldsheet.)
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In principle, there is another stack that is a double cover of P1, with related combinatorics
and matching Euler characteristics. Specifically, consider the disjoint union of one ordinary
P1 and one P1 with two Z2 orbifolds points. The ordinary P1 has Euler characteristic two,
and a P1 with two orbifold points has Euler characteristic one, so the Euler characteristic
of the disjoint union is three, also matching the power of N . (The existence of this second
disjoint union can be interpreted as an ambiguity in the disjoint union construction, in which
we have moved one of the Z2 orbifold points to another sheet in the cover.)

Now, let us briefly comment on orbifold Euler characteristics of Hurwitz moduli spaces.
From appendix B.2, a map from a stacky curve to ΣT is equivalent to an ordinary map from
the underlying curve to ΣT , so it is natural to suspect that the orbifold Euler characteristic
of a Hurwitz moduli space of maps from a curve with stacky points is the same as that of
maps from a curve with the stacky points omitted. (This might possibly ignore sublteties in
the compactification, however.) In the present case, we use the fact that the orbifold Euler
characteristic of the Hurwitz moduli space of unbranched maps P1 → P1 of degree one is
one. We discussed two potential interpretations of the stacky curves above:

• S1

∐

S1, where S1 denotes a P
1 with a single Z2 orbifold point. Assuming that one

sums over all possible orbifold point insertions with the same weighting, it is natural
to speculate that the pertinent factor would be 1/2! (from expanding an exponential,
to get a disjoint union, in the form of (4.38). Here, however, the extra terms have
magnitude 1.

• P1
∐

S2, where S2 denotes a P1 with two Z2 orbifold points inserted. Here, there
would not be a symmetry factor as appeared in the previous example, so it is natural
to speculate that the pertinent factor would be 1, which does match the magnitude of
the extra terms.

We emphasize that this is not a definitive conclusion.

In passing, there is another interpretation of this term, which we will not utilize here.
Specifically, there exist a singular branched double cover of P1. This can be obtained as a
limit of a branched double cover of P1 which is branched over two points, by taking a limit
that the two points approach one another. Since the resulting curve can be constructed from
two caps and a point, its Euler characteristic is 3, matching the exponent of N .

4.3.2 p = 0, n = 3

Next, we consider the case that ΣT = P
1 (so that p = 0), and the case that the representation

R is described by a Young tableau with n = 3 boxes. From section 3.4.2, the Gross-Taylor
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expansion of the Nguyen-Tanizaki-Ünsal universe is

Z+
R (0, p, N) =

N2n

n!
δ
(

(Ωn)
2Pr

)

, (4.46)

=
N2n

n!
δ

(

Pr + 2
∑

v

(

1

N

)n−Kv

vPr +
∑

ij

(

1

N

)2n−Kv1
−Kv2

vivjPr

)

,

The first and third terms can be interpreted as in section 3.4.2. In particular, in neither
case does the Pr make any difference, as only the identity element of the projector contributes
to the sum. Both of these terms describe smooth covers ΣW describing degree-three maps
to the target ΣT = P1.

The interpretation of the middle terms is more interesting, as here the projector plays an
important role. Depending upon the order of v, there are two cases appearing in the sum.

• First, consider the case that Kv = 2, for example if v = (12)(3). Here, the term takes
the form

2

3!
N5δ

(

∑

v

vPr

)

. (4.47)

Following the prescription of section 4.2, this describes a disjoint union of a single P
1

(mapped to itself by v) and two copies of P1
[1,2], hence ΣW = P1

∐

P1
[1,2]

∐

P1
[1,2], and

since χ(P1
[1,2]) = 3/2, as discussed previously, we see χ(ΣW ) = 2 + 3/2 + 3/2 = 5, also

matching the exponent of N .

The disjoint union description is not unique; we can get another such description by
moving orbifold points between sheets of the cover. For example, another possible
interpretation is as the disjoint union P

1
∐

P
1
∐

S, where S is P1 with two Z2 orbifold
points. This has Euler characteristic 2+2+1 = 5, again matching the exponent of N .

(Alternatively, we could interpret this as a singular curve, a 3-cover branched over a
single point, but we will not utilize that description in this paper.)

• Next, consider the case that Kv = 1, for example if v = (123). Here, the term above
takes the form

2

3!
N4δ

(

∑

v

vPr

)

. (4.48)

Following the prescription of section 4.2, we interpret this as a disjoint union ΣW =
P
1
[1,3]

∐

P
1
[1,3]

∐

P
1
[1,3], a disjoint union of three stacky copies of ΣT = P

1, each with a

single Z3 orbifold point. A disk with one Z3 orbifold has Euler characteristic 1/3, so
χ(P1

[1,3]) = 4/3, hence ΣW has Euler characteristic 4, matching the exponent of N .

As before, the prescription of section 4.2 is not unique, and we can get other valid
disjoint unions by moving orbifold points between sheets. Here, such possibilities are
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– a disjoint union P1
∐

P1
∐

S ′ where S ′ is a P1 with three Z3 orbifold points. The
latter summand has Euler characteristic zero, so the Euler characteristic of the
disjoint union is 2 + 2 + 0 = 4, matching the exponent of N ,

– a disjoint union with three summands: one ordinary P1, one P1 with one Z3

orbifold point, and one P1 with two Z3 orbifold points. The latter summand
has Euler characteristic 2/3, so the Euler characteristic of the disjoint union is
2 + 4/3 + 2/3 = 4, matching the exponent of N .

(Alternatively, we could also interpret this in terms of a singular ΣW , a 3-cover branched
over a single point, where all three sheets meet. This curve can also be constructed
from three caps and a point, so its Euler characteristic is 4, which matches the exponent
of N . As before, we will not utilize that interpretation here.)

Next, we outline a preliminary check of orbifold Euler characteristics of Hurwitz moduli
spaces, to compare amongst these possibilities. As in the previous section, we use the fact
that maps from curves with orbifold points factor uniquely through maps without orbifold
points, and ignore potential compactification subtleties.

• First, consider the case of extra terms with v such that Kv = 2. Since there are three
such v ∈ S3, the magnitude of the numerical factor appearing in the extra terms is

2

3!
(3) = 1. (4.49)

We described two possibilities:

– P1
∐

S1

∐

S1, where S1 denotes a P1 with a single Z2 orbifold point. Proceeding
as in the previous example, naively we expect a 1/2! (as a symmetry factor, from
expanding out an exponential).

– P1
∐

P1
∐

S2, where S2 denotes a P1 with two Z2 orbifold points. Proceeding as
in the previous example, naively we expect another 1/2!, again as a symmetry
factor, this time relating the two copies of P1.

Neither separately has the right numerical factor, though we do observe that the sum
of these two possibilities does add up correctly.

• Next, consider the case of extra terms with v such that Kv = 1. Since there are two
such v ∈ S3, the magnitude of the numerical factor appearing in the extra terms is

2

3!
(2) =

2

3
. (4.50)

We described three possibilities:
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– S̃1

∐

S̃1

∐

S̃1, where S̃1 denotes a P1 with one Z3 point. Here, from the same rea-
soning as before, we naively expect a 1/3!, as a symmetry factor (from expanding
an exponential).

– P1
∐

P1
∐

S̃3, where S̃3 denotes a P1 with three Z3 points. Here, we expect a
1/2!.

– P1
∐

S̃1

∐

S̃2, where S̃2 denotes a P1 with two Z3 orbifold points. Here, from the
same reasoning, we naively expect 1, as there is no symmetry between the terms
(unless the presence of two orbifold points contributes a symmetry factor).

As before, none of these terms separately duplicates the whole expected factor, though
it is possible a sum might, at least if the terms receive additional analogues of symmetry
factors due to the presence of multiple orbifold points.

As there are multiple possibilities, we leave a detailed examination of orbifold Euler charac-
teristics of Hurwitz moduli spaces for other work.

4.3.3 p = 1

From section 3.4.3, the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universe is

Z+
R (0, p, N) = 1

N0

n!

∑

s,t∈Sn

δ
(

(Ωn)
0sts−1t−1Pr

)

, (4.51)

for r an irreducible representation of Sn.

If the commutator
[s, t] = sts−1t−1 (4.52)

equals the identity, then the projector Pr is irrelevant, and one recovers the same terms as
in a Gross-Taylor expansion restricted to degree n, namely, unbranched n-fold covers of T 2.

If the commutator is different from the identity, then unfortunately our ansatz does not
apply in general. For example, suppose that n = 3, so that s, t ∈ S3. Now, S3 is a nonabelian
group with three elements of order 2 and two elements of order 3. The commutator takes
values in the commutator subgroup, consisting of even permutations, denoted A3, which has
order 3 (and also contains order-3 elements of S3, as it happens). If we try to interpret the
result as a disjoint union S1

∐

S2

∐

S3 where the S3 are copies of T 2 with orbifold points,
we run into the issue that χ(Si) 6= 0 (unless Si = T2), and so if there are any stacky points
present at all, the resulting disjoint union has nonzero Euler characteristic, which does not
match the power of N .

Examples of this form are the reason we restrict our ansatz for the extra contributions
to the special case p = 0 (ΣT = S2).
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Now, let us turn to the terms that can be interpreted merely as the restriction to maps
of a single degree. Here, these are maps T 2 → T 2. Now, sigma models T 2 → T 2 have, of
course, been extensively studied in the literature, as simple computable examples of CFTs.
Using existing results, one can show that the partition function of an A-twisted sigma model
on T 2 with target T 2 remains modular invariant even after restriction to maps of a single
degree. Specifically, recall from [145, section 1] that the partition function on T 2 of the A
model with target T 2 is

Tr (−)FFLFRq
L0qL0 =

t+ t

4πτ2

∑

m,n,r,s

exp

[

− t

4τ2ρ2
|(m+ rρ)− τ(n + sρ)|2 (4.53)

− t

4τ2ρ2
|(m+ rρ)− τ(n + sρ)|2

]

where ρ is the complex modulus of the target T 2, and the (not necessarily invertible) matrix

R =

[

r m
s n

]

(4.54)

encodes windings, with the degree of the map T 2 → T 2 given by | detR |, as explained
in [145, section 1]. Now, it is straightforward to check that a modular transformation of

F top
1 =

∫

d2τ

τ2
Tr (−)FFLFRq

L0qL0 (4.55)

by

τ 7→ aτ + b

cτ + d
, ρ 7→ eρ+ f

gρ+ h
(4.56)

for

A =

[

a b
c d

]

∈ SL(2,Z), B =

[

e f
g h

]

∈ SL(2,Z), (4.57)

can be absorbed into a redefinition of R as

R 7→ A−1RB. (4.58)

However, since A and B both have unit determinant, | detR | is invariant, and so restricting
to maps of a single degree does not break modular invariance.
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4.3.4 p = 2, n = 2

From section 3.4.4, the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universe is

Z+
R (0, p, N) =

N−4

2!

∑

si,ti∈S2

δ

(

(Ω2)
−2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

, (4.59)

=
∞
∑

k=0

N−4

2!

(

1

1− (1/N2)

)2
∑

si,ti∈Sn

δ

((

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

(4.60)

− N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2

N
v

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

+
N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

1

N2
v2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

.

Terms in the first and third lines we interpret as in section 3.4.4, in terms of maps from
smooth branched covers ΣW of fixed degree n = 2. We propose that the restriction to fixed
degree be implemented as described previously.

In the special case that the product of the two commutators, we could interpret the middle
term as describing ΣW = C

∐

C, where each stack C is ΣT with a single Z2 singularity. The
curve C has χ(C) = −2− 1+ 1/2 = −5/2, so the disjoint union has χ(ΣW = C

∐

C) = −5,
matching the leading power of N . (Alternatively, we could interpret ΣW as a singular curve,
a double cover of the genus-two curve ΣT branched over a single point. Since χ(ΣT ) =
2− 2p = −2, removing a disk yields χ = −3, and two copies with one disk added then have
χ = (2)(−3) + 1 = −5, matching the exponent of N .) In any event, for reasons previously
described, we only suggest this stacky interpretation in the case p = 0, so the present example
is not applicable.

5 Alternative geometric interpretation of the decom-

position

In this section we give an alternative geometric interpretation of the terms in the Gross-
Taylor expansion of a Nguyen-Tanizaki-Ünsal universe, in the special case that ΣT = S2,
motivated by the fact that the Nguyen-Tanizaki-Ünsal universes are trivial quantum field
theories, with a one-dimensional state space. Specifically, instead of interpreting the terms
in terms of sigma model maps from branched covers of ΣT , we instead interpret them in
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terms of a counting problem, counting disjoint unions
∐

i

Si (5.1)

of stacky copies Si of ΣT . The idea is that the Gross-Taylor expansion of a single universe
is really just reproducing a single numerical factor, which can be reproduced by a suitable
counting problem, hamely counting (stacky) copies of ΣT .

In the case ΣT = S2, we will provide a systematic procedure for reinterpreting Dijkgraaf-
Witten partition functions in terms of disjoint unions of stacks instead of branched covers,
and will check that the result is consistent with powers of N , in the sense that the Euler
characteristic of the stack one obtains matches the Euler characteristic of the branched cover.

We will not attempt to interpret the numerical factors in terms of automorphisms of
covering maps (or orbifold Euler characteristics of Hurwitz moduli spaces), as in this section
we are not associating a nontrivial sigma model. Instead, we interpret the numerical factors
merely as defining counterterms, and as such provide no further consistency tests.

That said, in principle, one could also imagine interpreting these terms in terms of a
Gross-Taylor string, restricted to degree one maps. As discussed in appendix B.2, maps
from a stacky curve to a space factor through an underlying smooth curve. In the present
case, maps Si → ΣT factor through the projection to the underlying ordinary curve ΣT :

Si
π−→ ΣT −→ ΣT , (5.2)

hence degree one maps Si → ΣT can be identified with degree one maps ΣT → ΣT .

This is another perspective on identifying each stacky curve Si with a copy of an invertible
field theory on ΣT . Put another way, roughly speaking, we are constructing the Nguyen-
Tanizaki-Ünsal universes on a two-dimensional space ΣT by summing over copies of degree
one maps ΣT → ΣT .

In any event, our perspective in this section is merely to provide a geometric counter-
point to the idea that the Nguyen-Tanizaki-Ünsal universes are invertible field theories, by
rethinking the combinatorics as describing counting copies of ΣT , rather than in terms of a
path integral for a sigma model.

We emphasize that the existence of a decomposition of the Gross-Taylor string is not
in question – it is automatic for any unitary two-dimensional topological field theory (with
semisimple local operator algebra). What is more interesting is that there exists a structure
in the combinatorics used to justify the existence of the Gross-Taylor string, which appears
to reflect the presence invertible field theories.

We also note that the stacks we consider in this paper are all smooth Deligne-Mumford
stacks, which are specifically of the form of Riemann surfaces with isolated local orbifold
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points. More general Deligne-Mumford stacks describing e.g. gerbe structures will not appear
in this paper.

5.1 Disjoint unions instead of branched covers

As previously discussed, the chiral partition function of the Gross-Taylor expansion of a
single Nguyen-Tanizaki-Ünsal universe has the form (3.32), namely

Z+
R (A, p,N) = Nn(2−2p)

∑

si,ti∈Sn

∞
∑

L=0

∑

v1,··· ,vL∈Sn

′
N

∑
j(Kvj

−n) d(2− 2p, L)

n!
(5.3)

· δ
(

v1 · · · vL
(

p
∏

i=1

[si, ti]

)

Pr

)

exp

(

− A

α′
GT

n

)

,

where n is the number of boxes in the Young tableau for R.

Previously we have discussed how this can be interpreted in terms of

1. a sum over branched n-fold covers ΣW → ΣT ,

2. plus some extra contributions, arising from the presence of the projector Pr.

In the special case ΣT = S2, we have described how the extra contributions can be interpreted
as disjoint unions of stacky copies of ΣT . Here, for the case ΣT = S2, we extend that
alternative interpretation to include terms previously interpreted as branched covers. In
other words, in this section we will describe how all of the terms can be interpreted as a
disjoint union of n stacky copies of ΣT , with Euler characteristic matching each power of N .

To be clear, in this proposal in this section, we are not interpreting the terms physically
as a sigma model from that disjoint union; instead, we are setting up a counting problem,
which seems more nearly appropriate to the fact that the Nguyen-Tanizaki-Ünsal universes
are trivial (invertible) field theories.

Since we are discarding the sigma model interpretation in this section, we will not attempt
to compare orders of automorphism groups, as in this alternative interpretation, we are
merely giving a geometric counterpoint to the description of invertible field theories.

For the remainder of this section, we will focus on understanding the terms previously
interpreted as branched covers in this language.

Previously, the elements v1, · · · , vL ∈ Sn defined monodromies about L branch points in
the base curve ΣT . In the present interpretation, the orders of the cycles in each monodromy
vi define orders of orbifold points on copies of the Riemann surface ΣT .
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We can describe the construction systematically as follows. Let B be the branch locus on
ΣT , and p some point (to base loops). We can associate either branched n-covers or disjoint
unions Σ̂W of n stacky copies Si of ΣT to homomorphisms f : π1(ΣT − B, p) → Sn. We
have already discussed branched covers; we construct the disjoint union of n stacky copies
of ΣT as follows. Pick a set of nonintersecting paths emanating from the fixed point p, each
winding around a point in the branch locus B. For each point b in the branch locus B, let
vb be the image of the corresponding path under the homomorphism f . We construct a set
of stacky curves Si, where each Si is a copy of ΣT with orbifold structures at each b ∈ B. If
d(i, b) is the length of a cycle containing i in the cycle decomposition of vb, then the orbifold
structure on Si at b ∈ B is Zd(i,b).

Later in this section we also describe a construction of Σ̂W directly from ΣW .

To make this more clear, let us update our previous example. Specifically, consider
ΣT = P1 with two insertions at positions denoted A, B, and let p ∈ P1, as illustrated in the
figure below.

A B

p

A B

p

Shown on the left is a schematic illustration of P1 with the two points A, B, and the
basepoint p for paths. On the right is the same illustration with two nonintersecting paths
from p marked.

Let the monodromies about the two points be denoted vA, vB. Suppose that n = 3, so
that vA, vB, vC ∈ S3, and take

vA = (12)(3) = vB. (5.4)

It is straightforward to check that the product

vAvB = 1, (5.5)

so the delta function is nonzero.

We have already seen in section 3.3 how this translates into branching data for branched
3-covers. Briefly, locally near the points A and B, two of the sheets collide, but the third
remains disjoint. This results in a branched cover of the form

ΣW = P
1
∐

P
1, (5.6)

as already discussed, and χ(ΣW ) = 4.
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In terms of disjoint unions of stacky curves, the three stacky copies S1,2,3 of P
1 have local

orbifolds as illustrated in the diagram below:

S1:
Z2 Z2

S2 :
Z2 Z2

S3:
1 1

Using the methods in appendix B.1, it is straightforward to check

χ(S1) = 1 = χ(S2), χ(S3) = 2, (5.7)

hence
χ
(

S1

∐

S2

∐

S3

)

= 4, (5.8)

matching the Euler characteristic of ΣW = P1 × P1.

Next, we shall give a systematic description of how to replace n-fold covers of ΣT with
disjoint unions of n copies of ΣT with orbifold points, of matching Euler characteristic.

We will replace any σ ∈ Sn by a product of cyclic orbifolds defined by the permutation
structure, in the obvious way. We list examples in the table below:

n σ ∈ Sn Orbifold
2 1 = (1)(2) 1
2 (12) Z2

3 (12)(3) Z2

3 (123) Z3

4 (12)(34) Z2 × Z2

4 (123)(4) Z3

4 (1234) Z4

The construction is as follows. Given a smooth branched n-cover π : ΣW → ΣT , let
B ⊂ ΣT denote the branch locus. Let p ∈ ΣT , p 6∈ B, and choose a set of nonintersecting
paths emanating from p, each winding around a point in the branch locus B. For each
b ∈ B, let vb ∈ Sn denote the monodromy about b. Now, we construct a series of stacky
curves Si, where each Si is associated to an element of π−1(p), and is a copy of ΣT , with
orbifold structures at each b ∈ B ⊂ ΣT . If d(i, b) is the length of a cycle containing i in the
cycle decomposition of vb, then the orbifold structure on Si at b ∈ B is Zd(i,b).

We then define Σ̂W =
∐

i Si. Note that Σ̂W itself depends upon a choice of paths;

different paths will change the Si and hence Σ̂W . (As a result, since there is a braid group
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action on the paths, there is a braid group action on the possible choices of Σ̂W . We will
see an example later in which the braid group can change the disjoint union Σ̂W , for a fixed
branched cover ΣW .)

We claim that
χ(ΣW ) = χ(Σ̂W ). (5.9)

We can see this as follows. First, from results on orbifold Euler characteristics of stacky
curves in appendix B.1, note that

χ(Si) = χ(ΣT ) +
∑

b∈B

[

1

d(i, b)
− 1

]

. (5.10)

Then,

χ(Σ̂W ) = χ

(

∐

i

Si

)

=
n
∑

i=1

χ(Si), (5.11)

= nχ(ΣT ) +

n
∑

i=1

∑

b∈B

[

1

d(i, b)
− 1

]

, (5.12)

= nχ(ΣT ) − n|B| +
n
∑

i=1

∑

b∈B

1

d(i, b)
. (5.13)

However,

n
∑

i=1

∑

b∈B

1

d(i, b)
=

∑

b∈B

(number of cycles in vb) , (5.14)

=
∑

b∈B

(number of ramification points over b) , (5.15)

= degree of ramification divisor, (5.16)

and so from the Riemann-Hurwitz formula,

χ(ΣW ) = nχ(ΣT ) −
∑

P∈ΣW

(eP − 1) , (5.17)

where ΣW is a branched n-fold cover of ΣT and eP is the ramification index at P , we have
that the Euler characteristic of the disjoint union Σ̂W matches that of the smooth branched
cover ΣW :

χ(Σ̂W ) = χ(ΣW ). (5.18)

In passing, the construction above applies to ΣT of any genus. We restrict to genus zero
to accomodate interpretations of the additional terms of section 4.2, which we only know
how to interpret in terms of disjoint unions of stacks in the special case of genus zero.

Below we list some examples.
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• If ΣW is an unbranched n-sheeted cover of ΣT , we replace ΣW with a disjoint union of
n copies of ΣT . From the Riemann-Hurwitz formula (5.17),

χ(ΣW ) = χ

(

∐

n

ΣT

)

. (5.19)

• Suppose ΣW is a branched double cover of ΣT , branched over k points. We replace ΣW

by a disjoint union of two copies of a stack S, where S is ΣT with k Z2 orbifold points.

Let us check that these have the same Euler characteristic. First, from Riemann-
Hurwitz (5.17),

χ(ΣW ) = 2χ(ΣT )− k. (5.20)

To compute χ(S), remove k disks from ΣT and replace each with a disk containing a
Z2 orbifold. This modifies the Euler characteristic as

χ(S) = χ(ΣT ) − k(1) + k(1/2), (5.21)

using the fact that the Euler characteristic of an ordinary disk is 1, and that of a disk
containing a Zm orbifold is 1/m. It follows immediately that

χ(ΣW ) = χ(S
∐

S) = 2χ(S). (5.22)

• Let ΣW be a 3-fold cover of ΣT , branched along two points, with branching at each
point described by elements of the conjugacy class (12)(3). Then, ΣW is a disjoint
union of one copy of ΣT and one branched double-cover of ΣT , branched over two
points, hence

χ(ΣW ) = χ(ΣT ) + 2χ(ΣT )− 2. (5.23)

The corresponding stack is a disjoint union ΣT

∐

S
∐

S, where S is ΣT with a pair of
Z2 orbifold points. As a result, from the analysis above, χ(S) = χ(ΣT )− 1, hence

χ(ΣT

∐

S
∐

S) = 3χ(ΣT )− 2, (5.24)

matching χ(ΣW ).

• Suppose there are two branch points. If the monodromy about one is v ∈ Sn, then
the monodromy about the other is v−1. Assume v has m cycles, in which the ith cycle
has ki elements. (The same will be true of v−1.) Define Si to be a P1 with two Zki

orbifolds. Then,

Σ̂W =
m
∐

j=1





∐

kj

Sj



 . (5.25)

Now, let us compare Euler characteristics. For a single curve,

χ(Si) = χ(P1)− 2 + 2/ki, (5.26)
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hence

χ
(

Σ̂W

)

=
m
∑

j=1

kjχ(Sj), (5.27)

=

m
∑

j=1

kj
(

χ(P1)− 2 + 2/kj
)

, (5.28)

= nχ(P1)− 2n+ 2m, (5.29)

using the fact that
m
∑

j=1

kj = n. (5.30)

By comparison,

χ(ΣW ) = nχ(P1)−
2
∑

i=1

(n−m), (5.31)

which matches.

• Let ΣW be a 3-fold cover of ΣT , branched along three points, with branching at each
point described by elements of the conjugacy class (123). Then,

χ(ΣW ) = 3χ(ΣT )− (3)(2). (5.32)

The corresponding stack is a disjoint union S
∐

S
∐

S, where each S is a copy of ΣT

with three Z3 orbifold points. It is straightforward to compute

χ(S) = χ(ΣT )− 3 + (3)(1/3) = χ(ΣT )− 2, (5.33)

hence
χ(S

∐

S
∐

S) = 3χ(ΣT )− 6, (5.34)

matching ΣW .

• Let ΣW be a 3-fold cover of ΣT , branched along three points, with branching at the
three points described by (12)(3), (13)(2), and (23)(1). (In other words, at each branch
point, two of the three sheets intersect, but a different pair at each one.) In this case,

χ(ΣW ) = 3χ(ΣT )− 3(3− 2) = 3χ(ΣT )− 3. (5.35)

We can replace ΣW by a disjoint union of three copies of the stack S, where S is ΣT

with two Z2 orbifold points. It is straightforward to compute

χ(S) = χ(ΣT )− 2 + 2(1/2) = χ(ΣT )− 1 (5.36)

(by omitting two disks and replacing them with disks with Z2 orbifolds), hence

χ(S
∐

S
∐

S) = 3χ(ΣT )− 3, (5.37)

matching χ(ΣW ).
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• Finally, we consider an example which will illustrate the path-dependence of the pre-
scription, and demonstrate that in general one will get different disjoint unions from
different choices of path.

Begin with an n = 4 cover of ΣT = P1, branched over five points. As before, fix a base
point and pick a set of paths around the five branch points b1−5 with monodromies

v1 = (12)(34), (5.38)

v2 = (13)(24), (5.39)

v3 = (14)(23), (5.40)

v4 = (13), (5.41)

v5 = (13). (5.42)

It is straightforward to check that the product of the vi is 1, so this is well-defined on
P1, and from the Riemann-Hurwitz formula, the genus of the branched cover is 1. As a
disjoint union of stacks, our prescription gives a disjoint union of four Si, each a stacky
version of P1, given as follows:

– S1 has five Z2 orbifold points, one at each of the original branch points.

– S2 has three Z2 orbifold points, at the branch points, b1−3.

– S3 has five Z2 orbifold points, one at each of the original branch points.

– S4 has three Z2 orbifold points, at the branch points, b1−3.

Now, consider a braid group action that maps the monodromies above to

v′1 = v1 = (12)(34), (5.43)

v′2 = v2 = (13)(24), (5.44)

v′3 = v−1
4 v3v

−1
4 = (12)(34), (5.45)

v′4 = v−1
4 v−1

3 v4v3v4 = (24), (5.46)

v′5 = v5 = (13). (5.47)

The branched cover is the same, but the disjoint union of stacks differs. Here, we have
a disjoint union of four stacky copies S ′

i of P
1, each with four Z2 orbifold points:

– S ′
1 has Z2 orbifold points at b1−3, b5.

– S ′
2 has Z2 orbifold points at b1−4.

– S ′
3 has Z2 orbifold points at b1−3, b5.

– S ′
4 has Z2 orbifold points at b1−4.

Thus, we see here explicitly that the path dependence means one can obtain different
disjoint unions of stacks from the same branched cover.
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5.2 Deforming branched covers to disjoint unions

Intuitively, one might expect these disjoint unions Σ̂W constructed from branched covers to
be limits of deformations of the branched covers ΣW . However, matters are more complex.
Let us walk through this carefully.

If we fix the complex structure of the base ΣT and the location of the branch points, then
there are only finitely many covers for fixed n. Varying the complex structure on ΣT and
the location of the branch points gives the Hurwitz moduli space. If that Hurwitz moduli
space is connected, then the disjoint union Σ̂W cannot be a limit of points on that moduli
space, because of Zariski’s main theorem, which says that if a proper family of varieties
(here, curves) has a connected general fiber, then every fiber must be connected. So the
disjoint unions Σ̂W automatically describe points in a different component of the Hurwitz
moduli space.

Similarly, there are no metric deformations (Ricci-flat or otherwise) relating the branched
cover ΣW to the disjoint union Σ̂W . A simple example involves unbranched covers of T 2,
which are also themselves T 2. A metric deformation would deform one T 2 (the cover) to a
disjoint union of multiple T 2’s; however, as a Calabi-Yau, the space of Ricci-flat metrics on
T 2 is well-known, and no such deformation through Ricci-flat metrics exists.

One could consider more general metric deformations, not necessarily through Ricci-flat
metrics, but the same problem arises. All metric deformations induce conformal deforma-
tions, or put another way, each conformal class contains a metric of constant scalar curvature,
and so Zariski’s connectedness argument above applies again.

That said, there are (at least) two options for larger moduli spaces which can link the
covers to disjoint unions. (Neither of these is a metric deformation, however.)

One option is to view the covers and disjoint unions as points in a larger moduli space,
distinct from the Hurwitz moduli space. To that end, we can view the Hurwitz moduli space
as parametrizing tuples (C,B, ρ, p) where C is a curve, B the branch locus, p ∈ C −B, and
ρ : π1(C −B, p) → Sn is a homomorphism, and then to get a larger moduli space, embed Sn

into some continuous group such as GL(n,C). Let λ denote the composition of ρ with the
embedding of Sn into a larger group. If one fixes the conjugacy classes of the images of the
loops around the points of B (but as conjugacy classes in GL(n,C) instead of Sn), then this
space is connected and all of the Hurwitz moduli spaces with local monodromies in these
conjugacy classes will embed as closed subvarieties (but will be disjoint inside it).

A second option exists, which changes the genus of the cover at intermediate points
between the Hurwitz moduli space and the disjoint union. For example, given an n-sheeted
etale cover of an elliptic curve E, there is a moduli space M of ramified n-sheeted covers of
deformations of E such that general points of M represent smooth genus n ramified covers
of a deformation of E. You can also arrange for M to contain two disjoint special closed
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subvarieties Nc and Nd parametrizing singular ramified n-sheeted covers of deformations of
E (of arithmetic genus n). Furthermore, starting from the universal family of curves over
Nc, the family of normalizations of the fibers is a family of smooth and unramified connected
covers of deformations of E, i.e. of smooth curves of genus one. Similarly, passing to the
normalizations of the fibers of the universal family over Nd gives a family of n disconnected
copies of deformations of E. In any event, this is not a metric deformation.

5.3 Examples

5.3.1 p = 0, n = 2

First, consider the case that the Yang-Mills theory lives on ΣT = P1 (so that p = 0),
and restrict to maps of degree n = 2, as previously discussed in sections 3.4.1, 4.3.1. The
Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universe is

Z+
R (0, p, N) =

N4

4
± N3

2
+

N2

4
. (5.48)

Adding two such contributions together, for each choice of projector Pr, recovers the original
Gross-Taylor result (3.57).

The first term can be interpreted as before, in terms of maps P1
∐

P1 → P1, which is
consistent with the fact that χ(P1

∐

P2) = 2χ(P1) = 4.

The middle term we interpret as previously in section 4.3.1, as a disjoint union of two
copies of a stacky P1, each copy with a single Z2 orbifold point.

Finally, we turn to the third term in (5.48). Previously, we interpreted this term as
describing maps from a branched double cover ΣW of P1, branched over two points (the
locations of each v). (In fact, ΣW is itself another P1.) Here, we interpret the last term as
describing a stacky ΣW , given by a disjoint union of two stacky P1, each with two Z2 orbifold
points.

As a consistency check, let us compute Euler characteristics. A stacky P1 with two
Z2 orbifold points can be described as a cylinder with two Z2 orbifolds. Since the Euler
characteristic is additive, we can write it as

χ(cylinder) + 2χ(BZ2) = 0 + 2(1/2) = 1. (5.49)

So, any one stacky P1 with two Z2 orbifold points has Euler characteristic 1, half of the
Euler characteristic of a P1. A disjoint union of two such stacky P1’s has the same Euler
characteristic as a single ordinary P1, and so, this has the same Euler characteristic as the
branched double cover utilized in [1–6]. (See appendix B.1 for more information on Euler
characteristics of the stacky curves appearing in this paper.)
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To summarize, we have interpreted the terms in the Gross-Taylor expansion of the
Nguyen-Tanizaki-Ünsal universe (3.54) as disjoint unions

∏

i Si of stacky copies Si of ΣT ,
such that each component Si of the disjoint union maps (at degree one) to ΣT , with the
property that the Euler characteristic of the disjoint union

∏

i Si matches the power of N .
Each of the maps Si → ΣT factors through the base ΣT ,

Si
π−→ ΣT −→ ΣT , (5.50)

and we identify them combinatorially with copies of invertible field theories on ΣT .

5.3.2 p = 0, n = 3

Next, we again consider the case of Yang-Mills theory on ΣT = P1, and restrict to maps of
degree n = 3, as discussed previously in sections 3.4.2, 4.3.2. Here, |S3| = 3! = 6, so we write

Ωn=3 = 1 +
∑

v 6=1

(

1

N

)n−Kv

v. (5.51)

For reference, the six elements of S3 can be characterized as

(1)(2)(3), (12)(3), (13)(2), (23)(1), (123), (132). (5.52)

These six elements form three conjugacy classes, essentially labelled by the orders of the
cycles.

From (3.54), we have

Z+
R (0, p, N) =

N2n

n!
δ
(

(Ωn)
2Pr

)

, (5.53)

=
N2n

n!
δ

(

Pr + 2
∑

v

(

1

N

)n−Kv

vPr +
∑

ij

(

1

N

)2n−Kv1
−Kv2

vivj

)

,

for n = 3 here.

Previously, we interpreted the first term as a disjoint union of three copies of P1, which
also holds in the present setting.

Next, we discuss the middle term. We interpret this in the same fashion described earlier
in section 4.3.2, in terms of stacky copies of ΣT = P1. Specifically,

• for Kv = 2, we interpret ΣW = P1
∐

P1
[1,2]

∐

P1
[1,2], in other words three copies of P1,

two each with one Z2 orbifold point.
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• for Kv = 1, we interpret ΣW as a disjoint union of three copies of P1
[1,3], meaning three

copies of P1 each with a single Z3 orbifold point.

This is consistent with the displayed combinatorics and also has the same Euler characteristic
as the exponent of N .

Now, we turn to the last term. There are two cases that contribute to the sum:

• If both v1 and v2 have order 2, then Kv1 = Kv2 = 2, so the term is of the form

N6

3!

(

1

N

)6−2−2

δ(v1v2) =
N4

3!
δ(v1v2), (5.54)

Previously we interpreted ΣW = P1
∐

P1, with one copy of P1 a double cover of ΣW ,
branched over two points, and the second P1 a degree-one cover. Here, we interpret
ΣW = P

1
∐

S
∐

S, where each S is a P
1 with two Z2 orbifold points, as will be relevant

later. It is straightforward to see that χ(S) = (2)(1/2) = 1, so χ(ΣW ) = 2+ 1+1 = 4,
matching that of the interpretation above.

• The other case is that v1 and v2 have order 3.

Previously, we interpreted ΣW = P1, a three-fold cover of P1 branched over three
points. Here, we interpret ΣW = S ′

∐

S ′
∐

S ′, where each S ′ is a stacky P1 with two
Z3 orbifold points. It is straightforward to see that χ(S ′) = (2)(1/3) = 2/3, hence
χ(ΣW ) = (3)(2/3) = 2, matching that of the interpretation above.

5.3.3 p = 1

Our proposal is only intended for the case p = 0, because, we do not always have a stacky
interpretation of all of the extra terms of section 4.2.

Nevertheless, it may help the reader to understand the construction to examine some
examples of ordinary terms (interpretable as branched covers) at higher genus, so in this and
the next section, we discuss some examples.

Consider the case that ΣT = T 2. and consider degree n covering maps, as previously
discussed in sections 3.4.3, 4.3.3. Here, from (3.54), we have

Z+
R (0, p, N) = 1

N0

n!

∑

s,t∈Sn

δ
(

(Ωn)
0sts−1t−1Pr

)

. (5.55)

First, consider the case n = 2. Since S2 is abelian, there are no extra terms arising from
Pr, as the commutator [s, t] = 1 for all s, t ∈ S2. There are four terms, corresponding to two
cases:
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• s = t = 1: Previously, we interpreted this as a disjoint union of two copies of T 2.

• s 6= 1 or t 6= 1: Previously, we interpreted this as a single T 2, which is an unbranched
double cover of T 2.

Each of these cases is interpreted here as a disjoint union of 2 copies of ΣT = T 2, without
any orbifold points. The reader should note that this ΣW has the same Euler characteristic
as the ΣW of the Gross-Taylor expansion, so powers of N match.

5.3.4 p = 2, n = 2

Again, our construction is only intended to apply to the case p = 0, but it may help the
reader to see how terms interpretable as branched covers can be reinterpreted as disjoint
unions of stacks, at higher genus. (We do not have an interpretation of the extra terms
arising from the presence of a projector Pr, but our description does apply to the ordinary
terms arising in the branched cover description.)

Consider the case of double covers of a genus-two Riemann surface ΣT , as previously
discussed in sections 3.4.4, 4.3.4. Here, from equation (3.54), the Gross-Taylor expansion of
the Nguyen-Tanizaki-Ünsal universe is

Z+
R (0, p, N) =

N−4

2!

∑

si,ti∈S2

δ

(

(Ω2)
−2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

, (5.56)

=
∞
∑

k=0

N−4

2!

(

1

1− (1/N2)

)2
∑

si,ti∈Sn

δ

((

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

(5.57)

− N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

2

N
v

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

+
N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

1

N2
v2

(

2
∏

i=1

sitis
−1
i t−1

i

)

Pr

)

.

The first term above was intepreted previously as giving ΣW as a unbranched double
cover of the genus-two Riemann surface ΣT , which means ΣW has genus 3. Here, we can
interpret this term in terms of ΣW = S

∐

S, where S is an ordinary Riemann surface of
genus 2, and hence χ(S) = 2− (2)(2) = −2. As a result, χ(ΣW ) = −4, matching that of the
genus 3 surface in the interpretation above.

We interpret the middle term as in section 4.3.4, as describing ΣW = C
∐

C, where each
stack C is ΣT with a single Z2 singularity.
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Finally, consider the term

N−4

2!

∑

si,ti∈Sn

(

1

1− (1/N2)

)2

δ

(

1

N2
v2

2
∏

i=1

sitis
−1
i t−1

i

)

. (5.58)

Previously, we took this term to describe ΣW as a branched double cover of ΣT , branched
over two points, which from Riemann-Hurwitz implies that ΣW is a genus-four Riemann
surface. Here, we take ΣW = S ′

∐

S ′, where S ′ is a stacky genus-two surface with two Z2

orbifold points. It is straightforward to check that χ(S ′) = −2− 2 + (2)(1/2) = −3 (cutting
out two ordinary disks and replacing each with a Z2 orbifold), so χ(ΣW ) = −6, the same as
the Euler characteristic in the first interpretation, as a genus-four Riemann surface.

6 Conclusions

In this paper we have discussed the Gross-Taylor expansion of universes of the decomposition
of two-dimensional pure Yang-Mills.

One open problem is to find a (large N) interpretation of the extra terms arising from the
presence of the projector Pr, at genus p > 0. We have suggested one possible interpretation,
in terms of stacky worldsheets, that at least has some desired properties, but until we can
understand all cases, we consider that proposal to be merely tentative.

We also find it intriguing that in our proposal, stacky worldsheets arise. Now, in string
theory we are very used to working with orbifolds of target spaces, and in computations in
target space orbifolds, one sometimes considers orbifold structures on worldsheets, but we are
not aware of previous work in which the worldsheet theories were defined on two-dimensional
worldsheet stacks (though see [146] for an analogous special case in three-dimensional Chern-
Simons theories). We leave this as a consideration for the future.

We have focused on two-dimensional pure Yang-Mills with gauge group SU(N) for large
N ; however, the Gross-Taylor expansion has also been computed for SO(N), Sp(N) groups,
see e.g. [71–75]. We expect similar results will hold there, but leave the details for future
work.

We have also focused on the large N limit. It would be interesting to understand finite
N corrections to the Gross-Taylor expansion of the Nguyen-Tanizaki-Ünsal universes. Finite
N corrections to the original Gross-Taylor expansion are discussed in e.g. [82, section 3],
[58, 77, 83, 84]. We leave that for future work.

In passing, we should also mention that two-dimensional pure Yang-Mills partition func-
tions have been related to black holes and higher-dimensional topological strings in e.g. [57,
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58,82,147–149]. It is tempting to ask whether decomposition of two-dimensional pure Yang-
Mills [47, 48] may be applied to those results, perhaps for example to the fragmentation
processes described in [150]. We leave this for future work.

7 Acknowledgements

We would like to thank S. Ramgoolam for initial collaboration on the material in section 3,
and A. Cherman, C. Closset, O. Ganor, J. Heckman, S. Hellerman, P. Horava, T. Jacobson,
S. Katz, I. Melnikov, A. Perez-Lona, R. Plesser, E. Poppitz, S. Ramgoolam, R. Szabo,
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A Some identities

To make this paper self-contained, we include here a handful of pertinent character identities.

A.1 Orthogonality relations

For Γ a finite group, [98, section 2], [103, chapter V, section 31.1], [102, section 7.3], [104,
chapter 2.1],

1

|Γ|
∑

g∈Γ

χr(ag)χs(g
−1b) =

δr,s
dim r

χr(ab), (A.1)

1

|Γ|
∑

g∈Γ

χr(agbg
−1) =

1

dim r
χr(a)χr(b), (A.2)

∑

r

χr(g)χr(h
−1) =

{

0 g, h not conjugate,
|G|
|[g]|

g, h conjugate,
(A.3)

where the sum is over all (honest, non-projective) irreducible representations of Γ. (Ana-
logues exist for projective representations, but such will not be used in this paper, and so
are omitted for brevity.)
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For example, if b is in the center of the group algebra, then

χr(a)χr(b) =
dim r

|Γ|
∑

g∈Γ

χr(agbg
−1), (A.4)

=
dim r

|Γ|
∑

g∈Γ

χr(ab) = (dim r)χr(ab). (A.5)

Similarly, the results above imply [86, equ’n (B.10)]

∑

r

(dim r)

|Γ| χr(g) = δ(g). (A.6)

A.2 Delta functions and projectors

In this section, we shall demonstrate that

δ(gPr) =
dim r

|Γ| χr(g), (A.7)

where Pr is the projector [86, equ’n (2.17)]

Pr =
dim r

|Γ|
∑

g∈Γ

χr(g
−1)τg. (A.8)

To that end, first note that

χs(hPr) =
dim r

|Γ|
∑

g

χr(g
−1)χs(hg), (A.9)

=
dim r

|Γ|
|Γ|

dim r
δr,s χr(h), (A.10)

= δr,s χr(h), (A.11)

where we used the identity [86, equ’n (B.6)]

1

|Γ|
∑

g∈Γ

χr(ag)χs(g
−1b) =

δr,s
dim r

χr(ab) (A.12)

for untwisted finite group representations.
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Next, using the identity (A.6), we expand

δ(gPr) =
∑

s

dim s

|Γ| χs(gPr), (A.13)

=
∑

s

dim s

|Γ| δr,sχr(g), (A.14)

=
dim r

|Γ| χr(g). (A.15)

As a consistency check, note that summing both sides of the identity above over irre-
ducible representations r yields δ(g), on the left because of completeness of the projectors,
and on the right from (A.6).

B Some basics of stacks

In this appendix we collect a few facts about stacks that will be important in the main
discussion. Introductions to topological and smooth stacks include [138–143], [144, lecture
3]. Other details are given in sections 4.2 and 5. For example, as discussed there, for many
purposes, smooth stacks can be treated as if they were smooth manifolds, in that they
have metrics, spinors, and all the other structures needed to define quantum field theories.
(See also [11, 112, 113], where stacks were discussed as targets of sigma models, instead of
worldsheets.)

B.1 Euler characteristics of stacky curves

In this paper we will compute and utilize orbifold Euler characteristics of stacky curves,
which we will briefly outline in this appendix.

First, our stacky curves will all be Deligne-Mumford stacks, with generic stabilizer 1
(hence, not gerbes), and isolated points of nontrivial stabilizer, which in this paper will
always be local24 Zn orbifolds.

Next, we will use additivity and the fact that the orbifold Euler characteristic of a disk
with a single Zn orbifold in its interior is 1/n.

Since the Euler characteristic is additive, the Euler characteristic of any curve with a
finite number of orbifold points can be computed by adding the Euler characteristic of the
curve with disks about the orbifold points excised, to the Euler characteristics of the disks.

24In passing, as varieties, C/Zn = C; however, as stacks, [C/Zn] 6= C.
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For example, consider a genus g curve Σ with k Zn orbifold points. Now, the Euler
characteristic of a smooth genus g curve is 2− 2g, and if we excise k disks,

χ (genus g curve minus k disks) = 2− 2g − k. (B.1)

We can then add back the Euler characteristics of each of the disks with orbifold points,
which in this case means adding (k)(1/n), to get the Euler characteristic of the stacky curve
Σ:

χ(Σ) = 2− 2g − k + k(1/n). (B.2)

For example, an S2 with four Z2 orbifold points has χ = 0, same as an ordinary torus T 2.

B.2 Maps from stacky curves

In the text, we sometimes discuss maps from stacky curves to ordinary curves. There is a
one-to-one correspondence between maps S → X , for S a stacky curve, and M → X , where
M is the moduli space of S, and X is a space. This correspondence revolves around the
canonical projection map π : S → X , as follows:

• First, consider a map f : S → X . Since X is a space, f must send any nontrivial
stabilizers on S to the trivial stabilizers on X , hence f factors through π:

f = g ◦ π (B.3)

for g : M → X some map.

• Conversely, given a map g : M → X , we can compose with π to get f = g ◦π : S → X .

C Gravitational coupling and decomposition

We have argued that the Gross-Taylor string sigma model should admit either a (−1)-form
or 1-form global symmetry, the latter of which would imply a decomposition. Since the
Gross-Taylor string is also coupled to worldsheet gravity, in this appendix we outline basics
of decomposition in the presence25 of gravitational couplings.

Briefly, given a decomposing two-dimensional theory, gravitational couplings will result
in the universes communicating gravitationally, but we do not expect any non-gravitational
interactions between the universes. We will study this in examples.

25Decomposition is a property of theories in d spacetime dimensions with a global (d− 1)-form symmetry;
however, as is now well-known, it is believed that quantum gravity in dimensions greater than two cannot
have ungauged global symmetries. We restrict to two dimensions here.
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Consider first abelian BF theory in two dimensions at level k (not yet coupled to world-
sheet gravity). As a unitary two-dimensional topological field theory with a semisimple
local operator algebra, it decomposes [40, 60–62], in this case to a disjoint union of k dis-
tinct invertible field theories. The projection operators are linear combinations of the local
operators

Om = : exp(imB) :, (C.1)

which have clock-shift commutation relations with the Wilson lines.

Now, consider coupling26 BF theory to worldsheet gravity. The BF theory itself does
not involve the worldsheet metric at all, hence the ‘coupling’ is trivial: at least naively, this
is just a disjoint union of an ordinary BF theory and a pure worldsheet gravity theory. The
BF theory itself still decomposes, but there is only one worldsheet gravity sector. One might
describe this as a limiting case of a mostly-disjoint union, with universes that interact with
one another only gravitationally, and which become a true disjoint union in the limit that
the gravitational sector is unbound.

In the same spirit, two-dimensional Dijkgraaf-Witten theory also decomposes, as was
discussed earlier in section 3.2. One could similarly ‘couple’ Dijkgraaf-Witten theory to
worldsheet gravity, though again, one would expect that the coupling is trivial, yielding a
disjoint union of a Dijkgraaf-Witten theory (which decomposes) and one copy of worldsheet
gravity.

Now, to further confuse matters, the Gross-Taylor sigma model is described in current
proposals [4–6, 8, 9] as a cohomological field theory, a topologically-twisted supersymmetric
theory with a topological subsector. In such a theory, although the topological subsector
may formally decompose [40, 60–62], the entire QFT does not necessarily decompose.

As a prototype for such details, consider the A model with target P1, coupled to topolog-
ical gravity. This theory has been considered in e.g. [155, 156]. The puncture operators and
gravitational descendants obey recursion relations (see e.g. [157, equ’ns (5.4)-(5.5)]). For
example, in the A model with target P1 coupled to gravity, the puncture operator P and the
operator Q generating ordinary A model correlation functions obey [155, equ’n (2.26)], [156]

〈σn(Φ)XY 〉 = n〈σn−1(Φ)P 〉〈QXY 〉 + n〈σn−1(Φ)Q〉〈PXY 〉 (C.2)

for Φ either P or Q, and where σn denotes gravitational descendants. For example,

〈σ1(P )PP 〉 = 〈PP 〉〈QPP 〉 + 〈PQ〉〈PPP 〉, (C.3)

〈σ1(P )PQ〉 = 〈PP 〉〈QPQ〉 + 〈PQ〉〈PPQ〉. (C.4)

If we restrict to the topological subsector of the A model with target P1, so as to get a

26It will not be relevant here, but nonabelian BF theory, for gauge group PSL(2,R), is itself a model of
two-dimensional gravity, see e.g. [151, section 6.2.8], [152–154].
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decomposition27, then the projecction operators are of the form

Π± =
1

2
√
q
(Q±√

q) , (C.5)

where Q2 = q. From the expressions above,

〈σnΠ±Π±〉 = 2n〈σn−1(Φ)P 〉〈QΠ±Π±〉 + 2n〈σn−1(Φ)Q〉〈PΠ±Π±〉, (C.6)

= 〈σn(Φ)Π±〉, (C.7)

trivially. Formally, this behavior of the topological subsector is consistent with earlier obser-
vations about BF theory coupled to worldsheet gravity: on on the face of it, if a decompo-
sition arises in the theory without gravity, then after coupling to gravity, one has a partial
decomposition in which the different universes can (only) interact gravitationally.

D Potential alternative interpretations

As possible alternative interpretations of the localization onto sectors of distinct instanton
number in section 4.1, we outline here two proposals for constructions of distinct quantum
field theories which localize onto specific instanton sectors.

D.1 Single instanton restriction as a limit

In the spirit of [17], consider28 a sigma model with a restriction to instantons of degree
divisible by k ∈ Z. This restriction can be accomplished in a local action as follows. Begin
with a standard nonlinear sigma model action S0, and add two new fields (a circle-valued
scalar ϕ̃ and a U(1) gauge field A), and terms

∫

Σ

ϕ̃ (φ∗ω − kF ) (D.1)

where ω is the Kähler form on the target space, φ is the map into the target space, and
F = dA is the curvature of a worldsheet U(1) gauge field.

Integrating out φ̃ gives the constraint

φ∗ω = kF (D.2)

27But only of the topological subsector, not the entire theory.
28We would like to thank Y. Tanizaki and M. Ünsal for a discussion of such instanton restrictions in their

model.
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so that φ∗ω is constrained to be k times an integer. (This accomplishes the restriction on
instanton degrees.)

Integrating out A gives the constraint

kdϕ̃ = 0, (D.3)

forcing ϕ̃ to be a constant taking values (on connected components of Σ) in kth roots of
unity. If we proceed down this road, the path integral is written as a sum over (constant)
values of ϕ̃. Assuming for simplicity and without loss of generality that Σ is connected, the
path integral can be written in the form

Z =
∑

ϕ̃

∫

[Dφ] exp(−S0) exp

(

−
∫

Σ

φ∗(ϕ̃ω)

)

, (D.4)

=

k−1
∑

n=0

∫

[Dφ] exp(−S0) exp

(

−n

k

∫

Σ

φ∗ω

)

, (D.5)

which matches the path integral for a sum of universes (indexed by ϕ̃, n) with variable B
fields (given on universe n by (n/k)ω). As is typical in examples of this form, the sum over
universes enforces the restriction on instanton degree: instantons of the wrong degree cancel
out of the sum, leaving only instantons of degree divisible by k.

So far, we have generated a restriction to instantons satisfying a divisibility criterion,
which (as expected from decomposition) can be described via a sum over universes. We
want something stronger – a restriction to instantons of a single possible degree. On the face
of it, there are two natural ways one might try to get such a restriction on instantons. One
way is to take k → 0; however, this limit is ill-behaved [65].

Instead, one could try to interpret29 the limit k → ∞ as defining a restriction to a single
instanton sector. Formally, this would correspond to a sum over infinitely many universes.

Fourier analysis suggests a related interpretation. Write a partition function as

Z(θ) =
∑

n∈Z

Z(n) exp(inθ). (D.6)

Then,

Z(n) =

∫ 2π

0

Z(θ) exp(−iθn)
dθ

2π
. (D.7)

Formally, this would naively suggest an interpretation as a sum over uncountably many
universes, indexed by θ angles, though as that would also appear to imply an uncountably
infinite number of dimension-zero operators, which we cannot reconcile with other results at
this time, we will not pursue such an interpretation here..

29This conclusion was previously reached by Y. Tanizaki and M. Ünsal [65].

76



In passing, we observe that similar integrals have arisen in ensemble averaging, see
e.g. [115–119]. It should be noted that an ensemble is not the same as a decomposition,
which becomes visible in QFTs on spacetimes with multiple connected components. (In the
former case, there is only one summand/integral over the ensemble, whereas in the second,
there are as many as connected components.)

D.2 Direct single instanton restriction

In this subsection we outline a proposal for a direct restriction to single instantons. It is
well-defined in bosonic theories, but does not quite apply to cohomological field theories, as
we shall discuss.

In brief, this alternative proposal is to understand the restriction to single instanton
degrees via a construction of countably infinitely many new quantum field theories, separately
consistent, which localize onto sectors of the original theory. The idea is to promote the theta
angle to an axion, albeit with a kinetic term.

As a prototype, consider two-dimensional pure Maxwell theory. This theory has classical
action

S =

∫

Σ

F ∧ ∗F. (D.8)

Since it is a U(1) gauge theory, it admits nontrivial U(1) bundles, which are classified by
their first Chern classes, which on a connected two-dimensional surface Σ are elements of
H2(Σ,Z) ∼= Z.

Now, corresponding to the values n of the first Chern class, we consider a countable
family of theories with local30 actions

Sn =

∫

Σ

(F ∧ ∗F + B (F − n vol)) , (D.10)

where n vol denotes a harmonic representative of [n] ∈ H2(Σ,Z), and B is a circle-valued
field. (The theory is well-defined under B 7→ B + 2π because exp(2πin) = 1.)

30A nonlocal alternative would be to add a term of the form
∫

Σ

B

[(∫

Σ

F

)

− n

]

, (D.9)

for B a Lagrange multiplier. This would clearly select out contributions from U(1) instanton number n.
However, as a nonlocal theory, it is unclear to us to what extent it can be renormalized in general, and hence
it is unclear to what extent it would exist as a quantum theory. Instead, we shall work with a local action, in
which we use a Lagrange multiplier to force F itself (not its integral) to match a harmonic representative of
the desired cohomology class. As every cohomology class has a unique harmonic representative, this should
accomplish the same goal, while retaining locality.
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In passing, this is similar in spirit to the Duistermaat-Heckman localization as described
in [55], where one has a moment map µ ∝ F [55, equ’n (1.9)], so that µ = 0 is a critical
locus of the Yang-Mills action.

As B is a dynamical field acting as a Lagrange multiplier, each theory Sn effectively
localizes onto gauge field configurations of first Chern class n. Furthermore, since the BF
terms are relevant deformations, we expect that they dominate in the IR. (Put another way,
B is an axion without kinetic terms, a dynamical theta angle, hence its zero mode integral
recovers an average of the form discussed in [116].)

For n = 0, the theory is effectively then, in the IR, ordinary level 1 BF theory. For
n 6= 0, pick a representative gauge field Ã such that F̃ = nvol, and write the action as

Sn =

∫

Σ

(

F ∧ ∗F + B
(

F − F̃
))

, (D.11)

By defining a new gauge field to be the difference A− Ã, we see that the B(F − F̃ ) theory
effectively reduces to another BF theory at level 1, in the sense that it has the same operators
and OPEs (though in principle the partition function would be slightly different).

The theories defined by the Sn form a countably infinite set of theories which localize onto
single instanton sectors of the original (pure Maxwell) theory. It is natural to speculate that
these pieces are Poisson-dual to the universes of the decomposition, following the analysis in
section 4.1.2.

This construction is analogous to a Fourier series. To that end, recall that the central
identity there is Poisson resummation, which can be expressed as

∑

n

exp(inx) = 2π
∑

n

δ(x− 2πn). (D.12)

Here, an analogous expression in path integrals would be

∑

n

exp

(

i

∫

Bnvol

)

=
∑

n

δ [B − 2πn] , (D.13)

Applying this analogue naively, one finds that

∑

n

∫

[DB] exp

(

i

∫

B (F − nvol)

)

=

∫

[DB] exp

(

i

∫

BF

)

δ[B], (D.14)

= 1. (D.15)

In general, we would not expect such a naive computation to necessarily survive quantum
corrections, but it does suggest that in special cases, it may be possible to recover the original
theory through some sort of sum over the pieces Sn. In the next section, we will discuss how
this may happen in this particular example, two-dimensional pure Maxwell theory.

78



To be relevant for us, we would need a supersymmetrized version of this procedure. We
shall next outline how that could be accomplished, and the puzzles that result.

Recall for example from [158, section 2] that in two-dimensional (2,2) supersymmetric
gauge theories, the theta angle can be encoded in a twisted superpotential. That references
defines Σ to be a twisted chiral superfield given as superderivatives of the vector superfield,
with components [158, equ’n (2.16)]

Σ = σ − i
√
2θ+λ+ − i

√
2θ

−
λ− +

√
2θ+θ

−
(D − iF01) + · · · , (D.16)

from which one computes [158, equ’n (2.26)]
∫

dθ+dθ
−
Σ|

θ−=θ
+
=0

=
√
2 (D − iF01) , (D.17)

∫

dθ−dθ
+
Σ|

θ+=θ
−
=0

=
√
2 (D + iF01) , (D.18)

hence if one defines

t = ir +
θ

2π
, (D.19)

where r is the FI parameter and θ the theta angle, then [158, equ’n (2.27)]

it

2
√
2

∫

dθ+dθ
−
Σ|

θ−=θ
+
=0

− it

2
√
2

∫

dθ−dθ
+
Σ|

θ+=θ
−
=0

= −rD +
θ

2π
F01. (D.20)

With this in mind, we can define a supersymmetric axion in two dimensions by promoting
t to a twisted chiral superfield T , with components

T = t− i
√
2θ+γ+ − i

√
2θ

−
γ− +

√
2θ+θ

−
F + · · · , (D.21)

and then consider a twisted superpotential

i

2
√
2

∫

dθ+dθ
−
(TΣ)|

θ−=θ
+
=0

− i

2
√
2

∫

dθ−dθ
+
(TΣ)|

θ+=θ
−
=0

(D.22)

= −rD +
θ

2π
F01 +

i

2

[

σF − σF −
√
2γ+λ− +

√
2γ−λ+ +

√
2γ+λ− −

√
2γ−λ+

]

(in the conventions of [158]).

In passing, this is closely analogous to axion couplings in four dimensions, which are
given by superpotential terms AWαW

α, for A the superfield containing the axion, see for
example [159, equ’n (7)].

It remains to supersymmetrize the coupling of the axion to a nontrivial cohomology class.
We will encounter a fatal flaw when we try to do so. For completeness, we outline the analysis
in the remainder of this appendix.
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Let ω0 denote a harmonic representative of the desired cohomology class. Since ω0 is
a differential form on the worldsheet, by itself it is a constant in superspace. A twisted
superpotential term Tω0 will yield a bosonic term Fω0, instead of the desired tω0.

To get the desired bosonic tω0 term, we can instead think of ω0 as the auxiliary field
component of a superfield whose other components vanish. In the present case, in terms of
twisted chiral superfields, that means we imagine a superfield

Ω0 = −i2
√
2θ+θ

−
(ω0)01. (D.23)

Given this superfield, we can add the twisted superpotential term TΩ0, which generates the
desired bosonic term tω0.

For example, [120, section 8.1] gives a twisted chiral multiplet for a dynamical two-form

field, which arises in the θ+θ
−
component of the multiplet. If we reduce to vevs, so that

the two-form field is nondynamical and there are no other components, this twisted chiral
multiplet reduces to the Ω0 above.

Unfortunately, this method has the disadvantage that it breaks supersymmetry, as for
example we have given a vev to the F term. More explicitly, the twisted superpotential term
TΩ0 gives the desired bosonic term tω0 but with no other fermionic partners, which will not
be closed under supersymmetry.

However, for purposes of understanding a cohomological field theory, our requirements are
weaker. All we really need is for the BRST symmetry to be preserved, which in the untwisted
theory is only half of the (2,2) supersymmetry transformations. Furthermore, from [160,
equ’n (3.49)], the scalar component of Σ is BRST-closed under the A-twist discussed in that
reference. Given the same twist here, we see that a Lagrangian term

t(ω0)01, (D.24)

though it would be closed under only half of supersymmetry, would be BRST-closed under a
(suitably chosen) A-twist, and so could be consistently added to a cohomological field theory.

We emphasize that the key feature of a cohomological field theory is the existence of
a nilpotent scalar charge – the BRST operator. Existence of a BRST symmetry is what
enables a topological field theory to be studied semiclassically. (The same symmetry is at
the heart of gauge-fixing in Yang-Mills theories, and is the reason for the shared name.) We
ordinarily obtain cohomological field theories by topologically twisting a supersymmetric
theory – but the key outcome of that process is a BRST symmetry, which follows from only
half of the supersymmetry. Thus, breaking half of the supersymmetry but retaining the
BRST symmetry is sufficient for our purposes.

The reader should note that although the twisted superpotential term TΩ0 will be BRST
closed, its hermitian conjugate would not. (For example, in the A-twisted GLSM of [160], σ
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is BRST-closed but σ is not.) Hence, one can only add a TΩ0 term, and not its hermitian
conjugate.

To summarize, our proposal to implement the Lagrange multiplier restriction in an A-
twisted GLSM is to add the terms

i

2
√
2

∫

dθ+dθ
−
(T (Σ− Ω0)) |θ−=θ

+
=0

− i

2
√
2

∫

dθ−dθ
+
(TΣ)|

θ+=θ
−
=0

(D.25)

= −rD +
θ

2π
F01 +

i

2

[

σF − σF −
√
2γ+λ− +

√
2γ−λ+ +

√
2γ+λ− −

√
2γ−λ+

]

− t(ω0)01, (D.26)

= r (−D − i(ω0)01) +
θ

2π
(F01 − (ω0)01)

+
i

2

[

σF − σF −
√
2γ+λ− +

√
2γ−λ+ +

√
2γ+λ− −

√
2γ−λ+

]

. (D.27)

The resulting theory will still be BRST closed under an A-twist of the form of [160]. The
reader should note that the dynamical circle-valued field θ acts as the desired Lagrange mul-
tiplier above, forcing F01 = ω0. The remaining terms are the result of supersymmetrization.

As a consistency test, in a GLSM without (untwisted) superpotential, in the notation
of [158], the A-twist of [160] twists the supersymmetry parameters ǫ+, ǫ− to scalars, hence
using the supersymmetry transformations [158, equ’n (2.12)], we have BRST transformations
including

δσ = 0 = δt, (D.28)

and we see that λ−, γ−, λ+, and γ+ are twisted to scalars. The fermion bilinears in (D.25)
are all either scalars or 2-forms, so we see explicitly that promoting the theta angle to an
axion is compatible with the topological twist.

Unfortunately, at this point we now encounter a basic problem we have not been able to
solve, arising from the

r (−D − iω0) (D.29)

terms. Since the superfield T is dynamical, the field r is a Lagrange multiplier, forcing

D = −i(ω0)01. (D.30)

However, D is real (by construction), and i(ω0)01 is pure imaginary, so this has no solutions.
For this reason, we do not utilize this supersymmetrized constraint framework to try to
understand the restriction on map degrees arising in the Gross-Taylor expansion of Nguyen-
Tanizaki-Ünsal universes.

In passing, promoting the FI parameter to a dynamical field often arises in constructions
of H flux in GLSMs, see for example [161–172]. For example, GLSMs with (2,2) supersym-
metry, a single U(1), and a gauged FI parameter with a nonzero kinetic term are discussed
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in [172, section 3.1.1]. The result of gauging the FI parameter in the Pn model, is described
in [172] as a P

n fibered over a cylinder parametrized by the FI parameter, giving altogether
what is described there as a trumpet geometry, with nonzero H flux (roughly, the wedge
product of the Fubini-Study form on the projective space and a one-form along the cylinder).
(Since the geometry is realized by a mix of ordinary chiral and twisted chiral multiplets, the
geometry is necessarily an example of a generalized geometry in the sense of [173,174].) This
theory is also described as having a nontrivial IR limit. It also has a kinetic term for the
axion. The case of no kinetic term is described in [172, equ’n (3.23)] as the limit bα → ∞,
which the authors describe as the “no squashing” limit.

In the case of the Gross-Taylor sigma model, similar ideas would apply, as well as the
same fatal flaw. For completeness, we outline the details here.

At heart, the Cordes-Moore-Ramgoolam picture of the Gross-Taylor sigma model is a
(supersymmetric, topologically-twisted) sigma model, so the F of two-dimensional Maxwell
theory is replaced by φ∗ω, for φ : ΣW → ΣT the map between worldsheets, and ω the Kähler
form on the target ΣT . The analogue of the procedure above would be accomplished by
adding a periodic scalar ϕ (without kinetic term, i.e. a Lagrange multiplier) and local31

bosonic terms in the Lagrangian
ϕ (φ∗ω − ω0) , (D.32)

where ω0 is a fixed harmonic two-form on the worldsheet ΣW , and ω is the Kähler form on
the target. The two-form ω0 is a fixed harmonic two-form on the worldsheet ΣW , which
should also capture the area of the worldsheet. A natural candidate is the worldsheet Kähler
form, as on any Kähler manifold, the Kähler form is harmonic. (This ultimately follows from
the fact that [L,∆d] = 0 for L the Lefschetz operator [175, section 0.7], [176].)

As the Gross-Taylor theory is a topologically-twisted supersymmetric theory, one would
need a supersymmetric version of the terms above. We do not expect this to result in
a well-defined theory, for the same reasons as above, but for completeness we outline a
few details. Following [173, equ’n (23)], [177, section 4.2], and in close analogy with our
analysis of topologically twisted gauge theories in the previous subsection, we can write the
supersymmetric extension of the terms above as a twisted chiral superpotential

∫

dθ+dθ
−
Φ̃
(

ωiD−Φ
iD+Φ

 − Ω0

)

+

∫

dθ−dθ
+
Φ̃
(

ωiD+Φ
iD−Φ


)

(D.33)

31As discussed earlier, one could imagine adding a nonlocal term to the Lagrangian, of the form

ϕ

∫

(φ∗ω − ω0) . (D.31)

The nonlocal certain would certainly force the cohomology classes to match, not just the representatives,
but would be nonlocal, hence renormalizability of the resulting theory is unclear. On the other hand, since
ω0 is harmonic and every cohomology class has a unique harmonic representative, the local proposal above
should accomplish the same goal.
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where Φ̃ is a twisted chiral multiplet whose scalar component includes θ, the Lagrange

multiplier theta angle, the scalar component of Φµ is φµ, and Ω0 ∝ θ+θ
−
ω0 was defined in

the previous section.. In passing, note that

ωiD+Φ
iD−Φ

 (D.34)

will be a twisted chiral multiplet precisely when ω is a closed (1,1) form. Just as in GLSMs,
the Φ̃Ω0 term in the twisted superpotential breaks supersymmetry, but is compatible with an
A-twist, in the sense that the twisted theory still possesses the BRST symmetry. However,
the same fatal flaw will arise here as arose in the previous supersymmetric example, so we
do not advocate this approach as a means of understanding the Gross-Taylor expansion of
Nguyen-Tanizaki-Ünsal universes.
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[19] A. Căldăraru, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, “Non-birational
twisted derived equivalences in abelian GLSMs,” Commun. Math. Phys. 294 (2010)
605-645, arXiv:0709.3855 [hep-th].

[20] N. M. Addington, E. P. Segal and E. Sharpe, “D-brane probes, branched double covers,
and noncommutative resolutions,” Adv. Theor. Math. Phys. 18 (2014) 1369-1436,
arXiv:1211.2446 [hep-th].

[21] E. Sharpe, “Predictions for Gromov-Witten invariants of noncommutative resolutions,”
J. Geom. Phys. 74 (2013) 256-265, arXiv:1212.5322 [hep-th].

[22] K. Hori, “Duality in two-dimensional (2,2) supersymmetric non-abelian gauge theo-
ries,” JHEP 10 (2013) 121, arXiv:1104.2853 [hep-th].

84



[23] Z. Chen, J. Guo and M. Romo, “A GLSM view on homological projective duality,”
Commun. Math. Phys. 394 (2022) 355-407, arXiv:2012.14109 [hep-th].

[24] J. Guo and M. Romo, “Hybrid models for homological projective duals and noncom-
mutative resolutions,” arXiv:2111.00025 [hep-th].

[25] J. Halverson, V. Kumar and D. R. Morrison, “New methods for characterizing
phases of 2d supersymmetric gauge theories,” JHEP 09 (2013) 143, arXiv:1305.3278
[hep-th].

[26] K. Hori and J. Knapp, “Linear sigma models with strongly coupled phases - one
parameter models,” JHEP 11 (2013) 070, arXiv:1308.6265 [hep-th].

[27] K. Hori and J. Knapp, “A pair of Calabi-Yau manifolds from a two parameter non-
Abelian gauged linear sigma model,” arXiv:1612.06214 [hep-th].

[28] K. Wong, “Two-dimensional gauge dynamics and the topology of singular determinan-
tal varieties,” JHEP 03 (2017) 132, arXiv:1702.00730 [hep-th].

[29] M. Kapustka and M. Rampazzo, “Torelli problem for Calabi–Yau threefolds
with GLSM description,” Commun. Num. Theor. Phys. 13 (2019) no.4, 725-761,
arXiv:1711.10231 [math.AG].

[30] S. Katz, A. Klemm, T. Schimannek and E. Sharpe, “Topological strings on non-
commutative resolutions,” arXiv:2212.08655 [hep-th].

[31] S. Katz and T. Schimannek, “New non-commutative resolutions of determinantal
Calabi-Yau threefolds from hybrid GLSM,” arXiv:2307.00047 [hep-th].

[32] T. J. Lee, B. H. Lian and M. Romo, “Non-commutative resolutions as mirrors of
singular Calabi–Yau varieties,” arXiv:2307.02038 [hep-th].

[33] E. Andreini, Y. Jiang, H.-H. Tseng, “On Gromov-Witten theory of root gerbes,”
arXiv:0812.4477 [math.AG].

[34] E. Andreini, Y. Jiang, H.-H. Tseng, “Gromov-Witten theory of product stacks,”
Comm. Anal. Geom. 24 (2016) 223-277, arXiv:0905.2258 [math.AG].

[35] E. Andreini, Y. Jiang, H.-H. Tseng, “Gromov-Witten theory of root gerbes I: struc-
ture of genus 0 moduli spaces,” J. Diff. Geom. 99 (2015) 1-45, arXiv:0907.2087

[math.AG].

[36] H.-H. Tseng, “On degree zero elliptic orbifold Gromov-Witten invariants,” Int. Math.
Res. Notices 2011 (2011) 2444-2468, arXiv:0912.3580 [math.AG].

[37] A. Gholampour, H.-H. Tseng, “On Donaldson-Thomas invariants of threefold stacks
and gerbes,” Proc. Amer. Math. Soc. 141 (2013) 191-203, arXiv:1001.0435

[math.AG].

85



[38] X. Tang, H.-H. Tseng, “Duality theorems of étale gerbes on orbifolds,” Adv. Math.
250 (2014) 496-569, arXiv:1004.1376 [math.AG].

[39] R. Eager and E. Sharpe, “Elliptic genera of pure gauge theories in two dimensions with
semisimple non-simply-connected gauge groups,” Commun. Math. Phys. 387 (2021)
267-297, arXiv:2009.03907 [hep-th].

[40] Z. Komargodski, K. Ohmori, K. Roumpedakis and S. Seifnashri, “Symmetries and
strings of adjoint QCD2,” JHEP 03 (2021) 103, arXiv:2008.07567 [hep-th].

[41] D. G. Robbins, E. Sharpe and T. Vandermeulen, “Anomaly resolution via decomposi-
tion,” Int. J. Mod. Phys. A 36 (2021) 2150220, arXiv:2107.13552 [hep-th].

[42] S. Meynet and R. Moscrop, “McKay quivers and decomposition,” Lett. Math. Phys.
113 (2023) 63, arXiv:2208.07884 [hep-th].

[43] E. Sharpe, “Landau-Ginzburg models, gerbes, and Kuznetsov’s homological projective
duality,” Proc. Symp. Pure Math. 81 (2010) 237-249.

[44] E. Sharpe, “GLSM’s, gerbes, and Kuznetsov’s homological projective duality,” J. Phys.
Conf. Ser. 462 (2013) 012047, arXiv:1004.5388 [hep-th].

[45] E. Sharpe, “Categorical equivalence and the renormalization group,” Fortsch. Phys.
67 (2019) 1910019, arXiv:1903.02880 [hep-th].

[46] E. Sharpe, “An introduction to decomposition,” contribution to
proceedings of the workshop 2D-Supersymmetric Theories and Re-

lated Topics (Matrix Institute, Australia, January 2022), available at
https://www.matrix-inst.org.au/2021-matrix-annals/, arXiv:2204.09117

[hep-th].

[47] M. Nguyen, Y. Tanizaki and M. Ünsal, “Semi-Abelian gauge theories, non-
invertible symmetries, and string tensions beyond N -ality,” JHEP 03 (2021) 238,
arXiv:2101.02227 [hep-th].
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