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Abstract Control systems should enforce a desired property for both expected/modeled situations as well as
unexpected/unmodeled environmental situations. Existing methods focus on designing controllers to enforce
the desired property only when the environment behaves as expected. However, these methods lack discussion
on how the system behaves when the environment is perturbed. In this paper, we propose an approach for
analyzing discrete-state control systems with respect to their tolerance against environmental perturbations.
We formally define this notion of tolerance and describe a general technique to compute it, for any given
regular property. We also present a more efficient method to compute tolerance with respect to invariance
properties. Moreover, we show that there exists an inherent trade-off between permissiveness and tolerance
that we capture via Pareto optimality conditions. We also study the problem of synthesizing Pareto optimal
controllers that achieve a minimum level of tolerance and permissiveness. We demonstrate our framework on
examples involving surveillance protocols and robotic motion planning.

Keywords Tolerance; discrete transition systems; model uncertainty; labeled transition systems

1 Introduction

In control systems, a controller is designed to enforce a desired property over the environment that it controls.
Controller synthesis methods provide means to synthesize controllers that ensure a desired property expressed
in formal logic [5, 11,46,47,52]. These controllers are usually synthesized to maximize the behavior of the
closed-loop system while satisfying the property, i.e., the most permissive controllers. However, these methods
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rely heavily on assumptions about the behavior and properties of the environment—themselves specified as
part of a formal environment model.

In practice, building a perfectly faithful model of the environment is difficult, if not impossible, and the
actual environment may behave differently from the model; we call the differences between the actual and
modeled environments perturbations. A perturbation in the environment model may result in a violation of
one or more assumptions and possibly jeopardize the correctness of the controller. Thus, in addition to being
correct, an ideal controller must be capable of tolerating certain reasonable perturbations in the environment
model, in that it is capable of guaranteeing a desired property even under those perturbations.

In this paper, we investigate the problem of analyzing the tolerance of a controller against environmental
perturbations. We study this problem under controllers and environments that are modeled as discrete transition
systems. At a highlevel, consider controller f , environment E, and desired property P such that E|f |=P , i.e., the
controller is correct, in that it guarantees P under E. In our approach, perturbations are modeled as additional
transitions to the original environment model E, resulting in a new perturbed model, E′. Then, the controller
f is said to be tolerant against these perturbations if it is still capable of guaranteeing P even under this new
perturbed system, i.e., E′|f |=P . Based on this intuition, we define the notion of tolerance level of a controller,
denoted by ∆, as the set of all perturbations against which the controller is tolerant. The tolerance level is an
intrinsic property of a controller that can be computed algorithmically. We show how the problem of computing
tolerance can be reduced to model checking problems for discrete systems. For a general ω-regular property
P , this algorithm is brute-force in nature, as it enumerates the set of all possible tolerable perturbations.

This brute-force algorithm motivates us to investigate more efficient algorithms for computing the tolerance
level ∆. We do that by restricting our attention to the special case where P is an invariance property. Invariance
properties are an important class of properties that constitute many of the applications of formal verification tech-
niques in industry [4,42]. Intuitively, invariance ensures that the environment remains within a set of safe states.
In this case, we show that there exists a unique maximal set of perturbations for which the controller is tolerant.
This result allows us to reduce the problem of computing the tolerance level ∆ to a reachability analysis problem.

We also study an inherent trade-off between tolerance of controllers and their permissiveness. Intuitively, to
achieve more tolerance, the controller needs to restrict the behavior of the controlled system, reducing permissive-
ness. On the other hand, to increase permissiveness, the controller enlarges the behavior of the controlled system
leading to a reduction of tolerance. We formally characterize the trade-off between permissiveness and tolerance
for invariance properties using Pareto optimality conditions. We show that memoryless controllers are sufficient
to describe the Pareto front for invariance properties. Furthermore, we study and provide a solution to the
problem of synthesizing Pareto optimal controllers that achieve a minimum level of tolerance and permissiveness.

After presenting a motivating example (Section 2) and preliminary definitions (Section 3), we define a
new notion of tolerance of controllers to environmental perturbations and a general technique to automatically
compute it (Section 4). In Section 5, we investigate this notion of tolerance with respect to invariance properties
and devise a more efficient algorithm to compute it. We investigate the tradeoff between tolerance and
permissiveness and solve a new synthesis problem in Section 6. Section 7 demonstrates our approach to
examples involving surveillance protocols and robotic motion planning. Lastly, related work and conclusions
are discussed in Sections 8-9, respectively. An earlier version of this paper appeared in [36].

2 Motivating example

As a motivating example, we consider a surveillance scenario of two autonomous drones, ego and srv. These
drones monitor the surroundings of a building as depicted in Fig. 1a. Ego desires to obtain information about
the building without being captured by srv, where “captured” means that both drones are in the same location.
It also assumes that srv surveils the building by following the strategy depicted in Fig. 1b, i.e., srv surveils
the building by always moving in the clockwise direction.

Classical reactive synthesis techniques can synthesize a controller for ego that guarantees the satisfaction
of its property [1,8,24,45,46]. For example, we can synthesize two controllers that guarantee that srv does
not capture ego: controller 1 maintains ego most of the time in location 1 but it allows ego to visit location
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(a) Surveillance overview (b) srv strategy assumed by ego

Fig. 1: Motivating example of a surveillance scenario

2 when srv is in location 4, and controller 2 ensures that ego trails two steps behind srv. These controllers,
however, may no longer guarantee the property if the model of the system changes.

Suppose that srv does not conform with the strategy assumed by ego, e.g., srv decides to go counter-
clockwise to monitor the building. Then, we must validate these controllers against these perturbations with
an extra verification step. For example, if srv moves counter-clockwise, controller 1 still guarantees that ego

is not captured but controller 2 no longer does. Another option is to synthesize a new controller based on the
model of the system augmented with the possible “known” perturbations [56].

In comparison, we pose the following question: For which model perturbations will a controller ensure the
given property? Our notion of tolerance level, ∆, answers this question. ∆ is useful for system designers in
a number of ways:
(1) Understanding controller tolerance: ∆ exactly captures the set of all perturbations under which the
system can (and cannot) guarantee a given property. For example, our notion of tolerance explicitly states that
controller 1 ensures ego’s property even when srv moves counter-clockwise. On the other hand, the tolerance of
controller 2 states that ego will collide with srv when srv moves counter-clockwise. The designer can analyze
these controllers before their deployment. If ∆ does not include certain perturbations of interest, e.g., srv
moving counter-clockwise, the designer may revise the controller to increase its tolerance to a desired level.
(2) Comparing tolerance and permissiveness of different controllers: Our notion of tolerance also
allows comparison between controllers (f1 and f2) with respect to their tolerance levels, e.g., ∆1⊂∆2?. For
example, this comparison allows us to affirm that controller 1 is more tolerant than controller 2. This tolerance
comparison can be enhanced with the notion of permissiveness. For instance, although controller 1 is more
tolerant than controller 2, this additional tolerance comes at the cost of permissiveness. Controller 1 only
allows ego to visit location 2 while controller 2 allows ego to visit locations 2-5. The designer can analyze this
trade-off between permissiveness and tolerance using our Pareto optimality conditions. In this manner, the
designer may decide which controller to deploy based on both the tolerance and permissiveness of controllers
by comparing different design choices.
(3) Synthesizing tolerant and permissive controllers: Since we develop mechanisms to compare different
controllers based on tolerance and permissiveness, our framework also allows the designer to automatically
synthesize controllers that achieve desired levels of tolerance and permissiveness by construction. For example,
a possible design flow using our synthesis result is as follows. The designer starts with the initial controller
design of controller 2. After analyzing the tolerance of controller 2, the designer realizes that this controller
is not tolerant when srv moves counter-clockwise. Next, the designer uses our synthesis tool to specify that
ego must be tolerant when srv moves counter-clockwise and it should visit at least one of the states in 2-5.
Our synthesis tool automatically computes controller 1 which satisfies by construction the above requirements.

3 Discrete-state systems

This section describes the underlying formalism used to model the environment, controlled systems, and the
properties enforced by them.
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3.1 Labeled transition systems

In this work, we use labeled transition systems to model the behavior of the environment.

Definition 1 A labeled transition system (LTS) T is a tuple ⟨Q,Act,R,I⟩, where Q is a finite set of states, Act is
a finite set of actions, R⊆Q×Act×Q is the transition relation of T , and I⊆Q is a nonempty set of initial states.

Let PostT (q,a) denote the set of immediate successor states from state q ∈ Q and action a ∈ Act, i.e.,
PostT (q,a) :={q′∈Q | (q,a,q′)∈R}. A run of T starts at an initial state in I and is followed by a finite or
infinite alternating sequence of actions and states complying with the transitions in R, e.g., x0a0x1a1...xn such
that xi+1∈PostT (xi,ai) for all i<n and x0∈I. The set of all runs in T is denoted by Runs(T). A path of
T is the sequence of states in a run of T , e.g., for x0a0x1∈Runs(T), then x0x1 is a path of T . The set of all,
finite or infinite, paths in T is denoted by Paths(T). We also denote the set of finite paths as Pathsfin(T).

Example 1 We model the motivating example in Section 2 using LTS. The states represent the discrete
locations of ego, {1,2,3,4,5} and srv, {2,3,4,5}. The possible actions of the system consist of ego selecting
its desired next location, i.e., Act={m1,...,m5} where mi means that ego moves to location i. The transition
relation is defined by a few update rules and assumptions. The two drones move synchronously to their next
location. Next, both drones can only move to locations that are connected by an edge in Fig. 1a. Lastly, we
assume that srv surveils the building using the strategy defined in Fig. 1b, e.g., srv moves to location 2 when
5 is its current location, and so forth. The system is initialized in state (1,5), i.e., ego in location 1 and srv

in location 5. Figure 2a partially depicts the LTS T defined by this example.

(a) Partial LTS of the surveillance example. States are (ego loc.,srv
loc.) and edge labels are the ego actions. Missing transitions are in blue.

(b) Representation of T |f

Fig. 2: LTSs of the surveillance scenario

Remark 1 Our definition of LTS assumes that all elements of the set of actions Act are “controllable” actions,
that can be acted upon by a controller (defined below). However, the nondeterministic transition relation of T
can be used to model uncontrollable actions of the environment. After an action a is selected by the controller
at state q, the environment decides which state the system will be in; this is similar to two-player games [24].
This can be modeled by adding several transitions from q, all labeled with the same action a.

Given a finite set A, the usual notations |A|, A∗, A+, and Aω denote the cardinality of A, the set of all
finite sequences, the set of all non-empty finite sequences, and the set of all infinite sequences of elements in
A, respectively. For convenience, we write x0...n for any finite sequence of states x0...xn.

3.2 Control strategy

Given an LTS T , a control strategy, or simply controller, for T is a function that maps a finite sequence of
states to a set of actions, i.e., f :Q+→2Act. A controlled run of T is a run of T , x0a0···∈Runs(T), such that
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ai∈f(x0...i) for any i≥0, i.e., the controller constrains which actions are executed by T . The set of all controlled
runs, denoted by Runs(T |f), defines the closed-loop system of f controlling T . For convenience, this closed-loop
system is denoted by T |f. The set of all, finite and infinite, controlled paths is denoted by Paths(T |f). We
also denote the set of finite controlled paths as Pathsfin(T |f). A controller has finite memory if its decisions
depend only on a finite number of states. It is memoryless if its decisions depend only on the current state,
f :Q→2Act. When f has finite memory, T |f can be represented by an LTS; see the Appendix for details.

Example 2 Back to our motivating example, we give an example of a simple memoryless controller that is
set to maintain ego in location 1. Formally, the controller is defined as f(1,i)=f(2,i)={m1} for i∈{2,...,5},
f(3,4)=f(5,4)={m2}, f(3,5)=f(4,5)={m3}, f(3,2)=f(4,2)=f(5,2)={m4}, f(4,3)=f(5,3)={m5},
otherwise f(q)=∅. Figure 2b shows the reachable states of the LTS representation of T |f when I={(1,5)}.

3.3 Property

In this work, we consider the class of linear-time (LT) properties over the set of states Q of a given LTS T [3].
In words, an LT property is a set of infinite or finite sequences of states that represents an “admissible/desired”
set of paths of T . We recall some definitions of LT properties [3].

Definition 2 A linear-time (LT) property over the set of states Q is a subset P⊆Qω∪Q∗.

Example 3 Using our surveillance example, we want ego to not be captured by srv. We can formally define an
LT property to capture this behavior. Based on the LTS model given in Example 1, we assume that srv captures
ego when they share the same location, e.g., state (2,2). Let Quns={(2,2),(3,3),(4,4),(5,5)} be the set of unsafe
states. The property Psrv=(Q\Quns)

ω∪(Q\Quns)
∗ defines the property that ego is not captured by srv.

Based on an LT property, we can verify if an LTS satisfies this property. Intuitively, the LTS satisfies a property
if its paths are all contained in the desired property. Formally, we have:

Definition 3 An LTS T satisfies property P , denoted by T |=P , if and only if Paths(T)⊆P .

Similarly, a controlled system T |f satisfies property P if Paths(T |f)⊆P . The problem of finding a controller
f such that T |f |=P has been widely investigated [20,46,47].

Example 4 Using our surveillance example, one can verify that the controlled system T |f in Fig. 2b satisfies
property Psrv, i.e., T |f |=Psrv.

4 Tolerance against perturbations

4.1 Perturbations

Model-based control theory methods are grounded on a model of the environment under control. This model
is always an approximation of the true system. For this reason, we must take into account possible mismatches
between the model of the environment and the true environment when designing a controller. In the case of
LTS, we model these possible mismatches, called perturbations, as additional transitions.

Adding transitions to the original environment introduces new behaviors to the environment that can
potentially generate unsafe behavior in the controlled system. For this reason, we only consider adding new
transitions to the environment. For example, transition

(
(1,2),m1,(1,5)

)
represents a perturbation to the

strategy of srv, as depicted in Fig. 1b: srv goes back to position 5 instead of going to position 3. This type
of perturbation can potentially catch ego off-guard and lead to its capture since ego expects srv to move to
position 3. A second type of perturbation is transition

(
(1,2),m1,(2,3)

)
where ego gets pushed to location

2, e.g., by a wind gust, even though it has selected to stay in location 1.
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Formally, a perturbation is a set of transitions d⊆(Q×Act×Q). For simplicity, we define perturbations
without removing the transition relation R to not overload our definitions with the removal of R. All of our
results hold when perturbations are defined as d⊆(Q×Act×Q)\R. Given a perturbation set, we can define
the perturbed system by augmenting the transition relation of the LTS with the perturbation set.

Definition 4 Let an LTS T = ⟨Q,Act,R,I⟩ and a perturbation d⊆Q×Act×Q be given. We define the
perturbed system Td as Td :=⟨Q,Act,R∪d,I⟩.

A controller f that guarantees property P for system T , T |f |=P , might violate this property for the
perturbed system Td. Thus, one needs to check if f continues to satisfy P for Td, i.e., if Td|f |=P or not.

Definition 5 Controller f is a tolerant controller with respect to an LTS T , a perturbation d, and a property
P if Td|f |=P . Perturbation d is a tolerable perturbation with respect to T , f , and P if f is a tolerant controller
with respect to T , d, and P .

Remark 2 Our definition of perturbed systems only allows adding transitions to the original environment. We
do not consider perturbations that remove transitions from the original environment. However, the results in
this section can be generalized to consider removing transitions with minor modifications to our definitions. One
of the reasons to only allow adding transitions is related to safety-critical systems. When dealing with safety
properties as we will in Section 5, it is sufficient to only consider adding new transitions to the environment.
If a controlled system is safe, then deleting transitions from the environment preserves safety.

4.2 Comparing perturbations

Given perturbations d1 and d2 such that d1⊆d2, d2 perturbs LTS T more than d1 since Runs(Td1
)⊆Runs(Td2

).
Our definition of tolerable perturbations takes into account not only the perturbed system, but a controller
f and its controlled behavior, e.g., Td1

|f. By including the controller to close the loop, two incomparable
perturbations can generate a comparable set of runs, i.e., it might be that Runs(Td1

|f)⊆Runs(Td2
|f) even

when d1⊈d2 and d2⊈d1. In this scenario, d2 perturbs the controlled system more than d1 since d2 has more
influence on the controlled behavior. Moreover, whenever d1⊆d2, it follows that Runs(Td1

|f)⊆Runs(Td2
|f)

for any controller f. Based on this discussion, we propose a novel definition that captures formally the notion
of a perturbation being more “powerful” than another one.

Definition 6 Let an LTS T , a controller f, and perturbations d1 and d2 be given. We say d1 is at least as
powerful as d2 with respect to f, denoted by d2⪯f d1, if

(i) Runs(Td2
|f)⊂Runs(Td1

|f); or
(ii) Runs(Td2

|f)=Runs(Td1
|f) ∧ d2⊆d1.

Whenever the controller f is clear from the context, we write ⪯ instead of ⪯f .

Intuitively, perturbation d1 is at least as powerful as perturbation d2 with respect to controller f, if the
controlled perturbed system Td1

|f can generate strictly more runs than Td2
|f, or the two controlled systems

generate exactly the same set of runs and d2 ⊆ d1. The ordering ⪯ forms a partial order over the set of
perturbations of T . To provide more intuition on ⪯, we give the following example.

Example 5 Consider the LTS T shown in Fig. 3a and the property defined by all sequence of states that do not
reach state 3, e.g., the sequence 143 violates this property. We define the memoryless controller f as f(q)={b}
if q≠3, and f(3)=∅. It follows that f satisfies the stated property, i.e., T |f |=P .

Consider the tolerable perturbations d1 = {(1,b,2)}, d2 = {(1,b,4)}, d3 = {(2,b,3)}, and d4 = {(4,b,3)}.
Perturbations d1 and d2 are at least as powerful as d3 and d4, i.e., d3⪯d1, d4⪯d1, d3⪯d2, and d4⪯d2. On
the other hand, d1 and d2 are incomparable with respect to ⪯ as their perturbed controlled systems generate
incomparable runs. Perturbations d3 and d4 are also incomparable even though Runs(Td3

|f)=Runs(Td4
|f).

In this case, condition (ii) in Def. 6 is violated as d3⊈d4 and d4⊈d3.
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(c) LTS Td3

Fig. 3: Tolerable perturbations

4.3 Tolerance

Intuitively, we search for all possible tolerable perturbations dwith respect to LTS T , controller f , and property P .

Definition 7 Let an LTS T , a property P , and a controller f such that T |f |=P be given. The tolerance of
f with respect to P and T , denoted by ∆(T,f,P), is a set of perturbations ∆(T,f,P)⊆2Q×Act×Q. ∆(T,f,P)
is defined to be the set of perturbations satisfying the following conditions:

1. ∀d∈∆(T,f,P). Td|f |=P [d is tolerable];
2. ∀d⊆Q×Act×Q. Td|f |=P⇒∃d′∈∆(T,f,P). d⪯d′ [d is represented];
3. ∀d,d′∈∆(T,f,P). d≠d′⇒d⪯̸d′ [unique representation].

Conditions 2 and 3 in Def. 7 enforce that only maximal tolerable perturbations with respect to ⪯ are in
∆. Formally, the set ∆ defines an antichain, with respect to ⪯, of maximal tolerable perturbations. Intuitively,
the set ∆ defines an upper bound on the possible perturbations from T that controller f tolerates. Note that
∆ is always nonempty since we assume that T |f |=P , i.e., R is always tolerable. In order for the definition of
∆ to be valid, we must show that there is a unique set of perturbations that satisfies the conditions of Def. 7.
This is ensured by the following result:

Lemma 1 Given an LTS T , a controller f, and a property P , there is a unique ∆(T,f,P) that satisfies the
conditions in Def. 7.

Proof By contradiction. Assume that there exist ∆1,∆2⊆2Q×Act×Q such that they satisfy conditions 1, 2,
and 3 in Def. 7 and ∆1≠∆2. Without loss of generality, we assume that ∃d1∈∆1\∆2. Since d1∈∆1, we have
that Td1

|f |=P as ∆1 satisfies 1. As ∆2 satisfies 2 and d1 /∈∆2, we have that ∃d2∈∆2 such that Td2
|f |=P and

Runs(Td1
|f)⊂Runs(Td2

|f) or d1⊆d2 (d1⪯d2). Since d1∈∆1\∆2, it follows that Runs(Td1
|f)⊂Runs(Td2

|f)
or d1 ⊂ d2. Back to ∆1, condition 3 implies that d2 /∈∆1 since d1 ∈∆1 and Runs(Td1

|f)⊆Runs(Td2
|f).

Furthermore, it does not exist d∈∆1 such that Runs(Td2
|f)⊂Runs(Td|f) or d2⊆d, because d1∈∆1 and

Runs(Td1
|f)⊆Runs(Td2

|f)⊆Runs(Td|f), and ∆1 satisfies condition 3. Consequently, the perturbation d2 is a
witness of the ∆1 violating condition 2, which contradicts our assumption that ∆1 satisfies conditions 1, 2, and 3.

Example 6 Consider the same setup as in Example 5. The four perturbations in Example 5 are tolerable.
Therefore, they must be represented in ∆ as stated in condition (2) in the definition of ∆. At this moment,
we simply provide ∆ for this example and in Section 5 we provide the formal results on efficiently obtaining
this ∆. The set ∆ in this example is given by ∆= {Q×Act×Q \ {(1,b,3),(2,b,3),(4,b,3)}}. Intuitively,
∆ is defined by a single perturbation set that contains all possible transitions except the ones from states
1,2,4 to state 3 with action b. Adding any of these missing transitions make the perturbation set in ∆ to be
intolerable. The perturbed system defined by this perturbation is depicted in Fig. 4a where we highlight the
new transitions in blue1. Any other tolerable perturbation is represented in ∆. For example, perturbations
d1,d2⊆d=Q×Act×Q\{(1,b,3),(2,b,3),(4,b,3)} which implies that d1,d2⪯f d. And although d3 and d4 are
not subsets of d, it also follows that d3⪯d and d4⪯d since Runs(Td3

|f)=Runs(Td4
|f)⊂Runs(Td|f).

1 For simplicity, we do not show the transitions starting in state 3.
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Fig. 4: LTS in Examples 6 and 7

4.4 Computing tolerance for general properties

The tolerance of controller f is defined by the set of maximal tolerable perturbations with respect to property
P . The first problem we investigate is to compute the set ∆ given T , f, and P .

Problem 1 Given an LTS T , a property P , and a controller f, compute ∆(T,f,P).

Assuming that P is either a regular language or an ω-regular language, and that f has finite memory,
Problem 1 is decidable; and Alg. 1 provides a brute force solution to this problem. Intuitively, Alg. 1 is broken
into (i) finding the set of all tolerable perturbations (lines 2-4) and (ii) identifying the maximal ones within this
set (lines 5-6). The verification tasks in lines 3 and 5 can be solved using standard model checking techniques [3].

Algorithm 1 COMPUTE-TOLERANCE

Input: T , f, and P
Output: ∆
1: ∆ :=∅
2: for all perturbations d⊆Q×Act×Q do
3: if Td|f |=P then
4: ∆ :=∆∪{d}
5: while ∃d1,d2∈∆ s.t. d1⪯f d2 do
6: ∆ :=∆\{d1}

return ∆

Although Alg. 1 computes the tolerance of f, this brute force method will not scale for large LTS. For
this reason, we investigate more efficient ways to compute the set ∆(T,f,P). In the next section, we provide
a more efficient algorithm for the case where P is an invariance property.

5 Tolerance with respect to invariance properties

Invariance properties are an important class of properties in industrial practice [4,42]. An invariance property P

for an LTS T can be represented by a subset of safe states Qinv⊆Q [3]. Formally, a property P is an invariance
property if there exists a set of safe states Qinv such that P=Q∗

inv∪Q
ω
inv. For instance, Qinv={1,2,4} in

Example 5. An LTS satisfies an invariance property if and only if the LTS only reaches states in Qinv [3]. For
convenience, we assume that the safe set of states always contains the set of initial states.
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5.1 Supremum tolerable perturbation

Usually when dealing with invariance properties, one can show the existence of a single supremum element that
satisfies the desired investigated property. In our scenario, we want to show that the tolerance of f with respect
to an invariance property is represented by a unique tolerable perturbation, i.e., |∆(T,f,P)|=1. Although
∆ in Example 6 has a single element, the following counterexample illustrates that in general |∆(T,f,P)|≥1.

Example 7 Consider the setup of Example 5 with the LTS defined in Fig. 3a and Qinv={1,2,4}, but under
control of the following controller: f(1214)= {a} and f(x0...n)= {b} for any x0...n ∈Q+ other than 1214.
Perturbations d1 = {(1,b,2)} and d2 = {(1,b,4)} remain tolerable with respect to this new controller. And
although these perturbations are tolerable, their union is not tolerable since path 1214 becomes feasible in
Td1∪d2

as seen in Fig. 4b. The size of ∆(T,f,P) must be at least two since we cannot combine d1 and d2 as
a single tolerable perturbation that generates the behavior of Td1

|f and Td2
|f.

5.1.1 Invariant controllers

The counterexample in Example 7 sheds light on the problem of the controller f selecting “bad” control
decisions for paths outside of Pathsfin(T |f). This problem can be easily fixed for invariance properties by
introducing the notion of invariant control actions and invariant controllers.

Definition 8 Let an LTS T and an invariance property P with set of safe states Qinv be given. The set of
invariant control actions is defined as Ainv(q) :={a∈Act |PostT (q,a)⊆Qinv} if q∈Qinv and Ainv(q) :=∅
if q /∈Qinv. Moreover, we say that f is an invariant controller with respect to T and P if f(x0...n)⊆Ainv(xn)
for any sequence x0...n∈Q+.

Informally, invariant control actions characterize the “good” actions with respect to LTS T and invariance
property P . Therefore, all invariant controllers satisfy invariance property P as stated in Lemma 2.

Lemma 2 Any invariant controller f with respect to T and an invariance property P satisfies P , i.e., T |f |=P .

Proof It directly follows from the definition of invariant controllers (Def. 8).

Tolerance of invariant controllers

Under the assumption of invariant controllers, the tolerance of a given controller f is completely defined by
a unique tolerable perturbation, i.e., |∆(T,f,T)|=1 for any invariant controller f. We formalize this statement
in the following theorem.

Theorem 1 Let an LTS T , an invariance property P with set of safe states Qinv, and an invariant controller
f be given. It follows that ∆(T,f,P)={⌈f⌉}, where ⌈f⌉ is defined as:

⌈f⌉:=(Q×Act×Q)\{(q,a,q′)∈Qinv×F(q)×(Q\Qinv)}

where F(q):={a∈Act |∃x0...n∈Pathsfin(TΩ|f). a∈f(x0...n)∧q=xn} and where Ω :=Qinv×Act×Qinv.

Proof We first show by contradiction that |∆(T,f,P)|=1. For simplicity, we write ∆ instead of ∆(T,f,P). Since
∅ is always a tolerable perturbation, it follows that |∆|≥1. Assume that |∆|>1 and let d1,d2∈∆. In the defini-
tion of ∆, condition (3) states that d1⪯̸d2 and d2⪯̸d1. We define dinvi :={(q,a,q′)∈di |q,q′∈Qinv∧a∈Ainv(q)}
for i∈{1,2}. By construction, the controlled system Tdinv

i
|f generates the same runs as Tdi |f for i∈{1,2}

otherwise di is not tolerable. As d1,d2∈∆, it must be that dinv1 and dinv2 are incomparable, otherwise d1⪯d2 or
d2⪯d1. Because dinv1 and dinv2 only define transitions within Qinv and f is invariant, we have that dinv1 ∪dinv2

is a tolerable perturbation, i.e., Tdinv
1 ∪dinv

2
|f |=P . The perturbation dinv1 ∪dinv2 must be represented in ∆

as stated by condition (2) in Def. 7. Since dinv1 and dinv2 are incomparable, the representation of dinv1 ∪dinv2
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must be different than d1 and d2. Thus, there exist d3∈∆ different than d1 and d2 such that dinv1 ∪dinv2 ⪯d3.
Since the condition Runs(Tdinv

1
|f)=Runs(Td1

|f)⊂Runs(Tdinv
1 ∪dinv

2
|f), it follows that d1⪯d3, which violates

condition (3) in the definition of ∆. That is, we have two perturbation sets in ∆ that are comparable via ⪯f .
We reached a contradiction.

Next, we show by contradiction that ⌈f⌉∈∆. Assume that perturbation d≠⌈f⌉ satisfies Td|f |=P and
d∈∆. By construction of ⌈f⌉, the runs generated by T⌈f⌉|f are the same as the ones generated by TΩ|f.
Therefore, the perturbation ⌈f⌉ is tolerable. We have shown previously that |∆|=1, which ensures that ⌈f⌉⪯d

since d∈∆. Therefore, it must be that Runs(T⌈f⌉|f)⊂Runs(Td|f) or Runs(T⌈f⌉|f)=Runs(Td|f) and ⌈f⌉⊂d.
If Runs(T⌈f⌉|f)⊂Runs(Td|f), then d is not a tolerable perturbation since Runs(T⌈f⌉|f)=Runs(TΩ|f). If
Runs(T⌈f⌉|f)=Runs(Td|f) and ⌈f⌉⊂d, then there exists a transition in d that is not in ⌈f⌉ and this transition
is not active in any run. However, by the definition of ⌈f⌉, any transition in d that is not in ⌈f⌉ implies
that Runs(T⌈f⌉|f)⊂Runs(Td|f) and d not being a tolerable perturbation. It follows that d is not a tolerable
perturbation, which contradicts our assumption that d∈∆.

Theorem 1 states that the tolerance of f has a single perturbation, i.e., there exists a supremal element
within the set of tolerable perturbations with respect to ⪯f . This perturbation is defined by removing transitions
that are not tolerable from the set of all possible transitions. For this reason, the removed transitions are from
states in Qinv to states outside of Qinv.

Discussing ⌈f⌉ in more detail, the function F(q) restricts attention to paths in TΩ|f. Recall that relation
⪯f prioritizes the behavior generated by a perturbed controlled system, i.e., Td|f. The tolerable perturbation
Ω is selected since it can make every state in the the safe set reachable, i.e., more behavior can be generated.
Next, we investigate which actions the controller uses in the safe states reached in TΩ|f. Intuitively, if the
controller uses action a in a reachable safe state q, then the transitions in {q}×{a}×Q\Qinv are not tolerable
and thus they must be removed from ⌈f⌉.

Example 8 We return to Example 6 to discuss Theorem 1. The LTS T is depicted in Fig. 3a, the invariance
property P is defined by the set Qinv={1,2,4}, and invariant controller f is defined as f(q)={b} if q∈Qinv

and f(3)=∅. It follows that F(q) is equal to f(q) for any q∈Q. Intuitively, the function F defines which actions
the controller uses in each safe state, e.g., action b is used in state 1. Since the controller uses action b in state
1, the system is not tolerant if it is perturbed by transition (1,b,3). Similarly, action b is also used in states 2
and 4 which results in ⌈f⌉=Q×Act×Q\{(1,b,3),(2,b,3),(4,b,3)}. Figure 4a depicts the perturbed system T⌈f⌉.

5.2 Computing tolerance for invariance properties

Problem 1 investigates the computation of the set ∆ for a general property P . We specialize Problem 1 to
invariance properties as to use the results of Theorem 1.

Problem 2 Given an LTS T , an invariance property P , and an invariant controller f, compute ∆(T,f,P).

According to Theorem 1, for invariance property P and invariant controller f , ∆(T,f,P)={⌈f⌉}. Therefore,
it suffices to compute ⌈f⌉. For simplicity, we describe the computation of ⌈f⌉ for memoryless controllers, but
our algorithm can be extended to controllers with memory using the LTS definition of T |f in the Appendix.
Intuitively, Alg. 2 performs a reachability analysis of the perturbed system TΩ|f as to compute the function
F(q). Algorithm 2 is linear in the number of states and transitions of the LTS TΩ [3].

Remark 3 The verification of regular safety properties can usually be transformed into a problem of verification
of an invariance property. This invariance property is obtained by first composing the environment with
the safety property [3]. In this composed system, an invariance property is simply defined by a set of safe
states. Unfortunately, computing robustness for safety properties does not directly reduce to computing
robustness for invariance properties. The states in the composed system are tuples (Envstate,Pstate). Thus,
the transformation procedure introduces memory to the environment to differentiate when the safety property
is violated or not. This memory is not part of the environment and prevents the direct use of Alg. 2. We leave
investigating the computation of robustness for regular safety properties to future work.
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Algorithm 2 COMPUTE-INVARIANCE-TOLERANCE

Input: T , f, and Qinv

Output: ⌈f⌉
1: ⌈f⌉ :=Q×Act×Q; U :=R :={q0}
2: while U ≠∅ do
3: pick some q∈U; U :=U\{q}
4: for all a∈f(q) do
5: ⌈f⌉ :=⌈f⌉\{{q}×{a}×(Q\Qinv)}
6: for all q′∈PostTΩ

(q,a) do
7: if q′ /∈R then
8: R :=R∪{q′}; U :=U∪{q′}

return ⌈f⌉

5.3 The least and most tolerant invariant controllers

There is an inherent trade-off between tolerance and the restriction controller f imposes on LTS T . Controllers
that are more permissive [11], i.e., that allow more behaviors on T , are necessarily less tolerant and vice-versa.
The two extremes of this trade-off are the least and the most tolerant invariant controllers. These are controllers
f1 and f2 that satisfy ⌈f1⌉⊆⌈f⌉⊆⌈f2⌉ for any other invariant controller f.

Definition 9 We define controllers finv and f∅ with respect to LTS T and invariance property P as:
finv(q):=Ainv(q) and f∅(q):=∅ for any q∈Q.

The controller finv selects the invariant control actions of each state as its decision whereas f∅ disables
every action. We can show that finv is the least tolerant controller whereas f∅ is the most tolerant among
all invariant controllers.

Theorem 2 Let an LTS T and an invariance property P be given. For any invariant controller f with respect
to T and P , it follows that ⌈finv⌉⊆⌈f⌉⊆⌈f∅⌉.

Proof It follows from F inv(q)⊆F(q)⊆F∅ for any invariant controller f where F inv, F∅, and F are defined
as in Theorem 1 for controllers f∅, finv, and f, respectively.

Intuitively, controller f∅ blocks the system from executing any action regardless of the perturbation. For this
reason, f∅ provides the largest tolerance set at the trade-off of blocking any run to be generated. On the other
hand, controller finv allows the maximum possible set of runs of T that do not violate property P . Consequently,
finv is more susceptible to perturbations and provides the smallest tolerance set at the trade-off of allowing
more behavior to be generated. We provide a more thorough study on this trade-off in the next section.

6 Synthesis of tolerant and permissive controllers

6.1 Permissiveness

Permissiveness measures the “restrictiveness” of the controller with the given LTS, i.e., the behavior of the
controlled system T |f [11]. Although we could define permissiveness based on Runs(T |f), this definition would
omit possible perturbations in the system, see Remark 4. Since every invariant controller tolerates perturbation
set Ω=Qinv×Act×Qinv, we define permissiveness based on Runs(TΩ|f). Thus, permissiveness is defined
based on the perturbed environment similar to the definition in [55].

Definition 10 Given invariant controllers f1 and f2 for LTS T and invariance property Qinv, we say that
f1 is more permissive than f2, denoted by f2⊆f1, if Runs(TΩ|f2)⊆Runs(TΩ|f1). We write f1≡f2 when
we have Runs(TΩ|f2)=Runs(TΩ|f1).
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Remark 4 Defining permissiveness over Runs(TΩ|f) also allows a finer comparison of controllers. There might
be many controllers that generate the same runs in T |f , but they, in general, will generate different runs in TΩ|f .

Example 9 We return to the Example 8, where we defined controller f: f(q)={b} if q∈Qinv and f(3)=∅.
We define another invariant controller: f ′(1)=f(2)={b} and f ′(3)=f ′(4)=∅. Since f ′(q)⊆f(q), it follows
that f is more permissive than f ′. Note that Runs(T |f ′)=Runs(T |f), but Runs(TΩ|f ′)⊂Runs(TΩ|f).

6.2 Pareto optimality

We want to identify controllers that cannot be more permissive without losing tolerance and vice-versa, i.e.,
identify the Pareto front of this trade-off. First, we formally characterize Pareto optimality with respect to
permissiveness and tolerance.

Definition 11 Let an LTS T and an invariance property Qinv be given. An invariant controller f1 and
perturbation set d1 such that Td1

|f1 |=Qinv is Pareto optimal if there does not exist invariant controller f2
and perturbation d2 such that:

Td2
|f2 |=Qinv ∧ f1⊆f2 ∧ d1⊆d2 ∧ (f1≢f2 ∨ d1≠d2)

Intuitively, the pair (f1,d1) is not Pareto optimal if we can improve permissiveness without compromising
tolerance or vice-versa. Figure 5a helps us understand Pareto optimality, where the points in blue are Pareto
optimal. Note that we identify controllers finv and f∅ in Fig 5a due to Theorem 2. Based on this result, we
establish the first Pareto optimal pairs.

Proposition 1 The pairs (finv,⌈finv⌉) and (f∅,⌈f∅⌉) are Pareto optimal.

Proof By Theorem 2, f∅ and finv are the most and the least tolerant controllers. We can then show that
we cannot modify their permissiveness without compromising tolerance and vice-versa.

A

⌈f∅⌉

⌈f inv⌉
d

ff∅ f inv

Tolerance

Permissiveness

(a) Points in blue are considered the Pareto points.
Point A is not Pareto optimal since there exists a
point directly above of A that is more tolerant and
has the same permissiveness as A. For simplicity, the
permissiveness and tolerance axes are simplified as
linear even though they are partially ordered sets.

B

C
A

⌈f∅⌉

⌈f inv⌉
d

Tolerance

PermissivenessNRuns(TΣ|f∅) Runs(TΣ|f inv)

(b) Point A defines the minimum tolerance d and
permissiveness N. The solution space of the synthesis
problem is depicted in the shaded region. Blue points
are considered Pareto points. Points B and C are the
most tolerant and most permissive points, respectively.

Fig. 5: Pictorial explanation of Pareto optimality and Problem 3



On tolerance of discrete systems with respect to transition perturbations 13

6.3 Synthesis of Pareto controllers

The focus of this section is on synthesizing controllers that generate Pareto optimal pairs, i.e., Pareto optimal
controllers. Specifically, we want to synthesize Pareto optimal controllers that achieve a desired minimum
level of permissiveness and tolerance. Figure 5b helps us explain the investigated problem. Note that, the
permissiveness axis is defined based on Runs(TΩ). The desired minimum permissiveness and tolerance are given
by a set of runs N and a perturbation set d. Intuitively, we search for a controller f∗ that has permissiveness
at least N, has tolerance at least d, and (f∗,⌈f∗⌉) is Pareto optimal, i.e., (f∗,⌈f∗⌉) is a blue point within the
shaded region in Fig. 5b. Formally, the problem is stated as follows.

Problem 3 Given an LTS T , an invariance property Qinv, an set of runs N⊆Runs(TΩ), and perturbation
d, synthesize controller f∗, if it exists, such that (i) (f∗,⌈f∗⌉) is Pareto optimal; and (ii) d ⊆ ⌈f∗⌉ and
N⊆Runs(TΩ|f∗).

Problem 3 might not have, in general, a solution for any given sets d and N. For example, if a run in N

visits a state outside of Qinv, i.e., it violates the invariance property, then Problem 3 does not have a solution.
In the case where a solution exists, Problem 3 might not, in general, have a unique solution. Therefore, we focus
on two solutions for this problem, points B and C in Fig. 5b. Point B describes the most tolerant controller
within the solution space. To obtain this solution, we add a third condition to ensure we obtain the most
tolerant controller. Formally, we have the following problem:

Problem 4 Given an LTS T , an invariance property Qinv, a set of runs N ⊆ Runs(TΩ), and a pertur-
bation d, synthesize controller f∗, if it exists, such that (i) (f∗,⌈f∗⌉) is Pareto optimal; (ii) d⊆ ⌈f∗⌉ and
N⊆Runs(TΩ|f∗); and (Tol) ∀f ′ that satisfies (i) and (ii), ⌈f ′⌉⊆⌈f∗⌉.

On the other hand, point C defines the most permissive controller within the solution space. Again, we add a
third condition to ensure we obtain the most permissiveness controller. Formally, we have the following problem:

Problem 5 Given an LTS T , an invariance property Qinv, a set of runs N ⊆ Runs(TΩ), and a pertur-
bation d, synthesize controller f∗, if it exists, such that (i) (f∗,⌈f∗⌉) is Pareto optimal; (ii) d⊆ ⌈f∗⌉ and
N⊆Runs(TΩ|f∗); and (Perm) ∀f ′ that satisfies (i) and (ii), f ′⊆f∗.

Remark 5 In Problem 3, we assume that the set of runs N is given. It is also possible to assume that instead
of N, we are given an invariant controller f that achieves this set of runs, i.e., the set N can be defined as
N :=Runs(TΩ|f).

6.4 Memoryless controllers

We already established that the pairs (finv,⌈finv⌉) and (f∅,⌈f∅⌉) are Pareto optimal. Now, we focus on
identifying other Pareto optimal controllers. We start by showing that every memoryless invariant controller
and their tolerance form a Pareto optimal pair.

Lemma 3 Let an LTS T , an invariance property Qinv, and an invariant controller f be given. If f is
memoryless, then the pair (f,⌈f⌉) is Pareto optimal.

Proof We prove the theorem by contradiction. Assume that f is invariant and memoryless and that (f,⌈f⌉)
is not Pareto optimal. It means that ∃(f1,d1) such that Td1

|f1 |=Qinv∧f⊆f1∧⌈f⌉⊆d1∧(f ≢f1∨⌈f⌉≠d1).
Since f⊆f1, it follows from Def. 7 that ⌈f1⌉⊆⌈f⌉. As we assume that ⌈f⌉⊆d1, it must be that ⌈f1⌉⊆d1.

Since ⌈f1⌉ is the largest tolerable perturbation with respect to f1, the equality d1=⌈f1⌉=⌈f⌉ holds.
As d1= ⌈f1⌉= ⌈f⌉, we have that F(q)=F1(q) for any q∈Q, where F and F1 are defined as in Def. 7

for f and f1, respectively. The equality of functions F and F1 and the fact that f is memoryless imply that
Runs(TΩ|f1)⊆Runs(TΩ|f), i.e., f1⊆f . As we assumed that f⊆f1, we have the equality f≡f1, which results
in a contradiction of the third clause in the definition of Pareto optimality.
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According to Lemma 3, (f,⌈f⌉) is Pareto optimal when f is memoryless and invariant. Controllers with
memory and their level of tolerance, in general, do not form a Pareto optimal pair. Ideally, we would like to
show the converse of Lemma 3, i.e., memoryless controllers are the only Pareto optimal points. However, the
generality of our controller definition prevents us making such a claim. For example, controller f defined as
f(q)=∅ for q∈I and f(x0...n)=Ainv(xn) for x0...n∈Q+\I and its tolerance ⌈f⌉ form a Pareto optimal pair
equivalent to (f∅,⌈f∅⌉), i.e., ⌈f⌉=⌈f∅⌉ and f≡f∅; and f has, in general, memory. Thus, controllers f and
f∅ with their tolerance generate the same Pareto optimal pair.

We show that there always exists a memoryless controller with its tolerance that generates the same Pareto
optimal pair as a controller with memory. In other words, given a Pareto optimal pair (f,⌈f⌉), we can always
define a memoryless controller fm such that f ≡fm and ⌈f⌉=⌈fm⌉. If controller f is already memoryless,
then fm and f are identical. On the other hand, if f has memory, then fm flattens the memory used in f.

Lemma 4 Consider an LTS T , an invariance property Qinv, and an invariant controller f. We define the
memoryless controller fm as follows

fm(q):=
⋃

x0...n∈Ω
q=xn

f(x0...n)

If (f,⌈f⌉) is Pareto optimal, then (fm,⌈fm⌉) is also Pareto optimal with f≡fm and ⌈fm⌉=⌈f⌉.

Proof We prove the theorem by a direct proof. By the definition of fm, the functions F and Fm defined as
in Def. 7 based on f and fm, respectively, are equal, i.e., F(q)=Fm(q) for any q∈Q. Therefore, we have that
⌈f⌉=⌈fm⌉. Again by the definition of fm, it follows that Runs(TΩ|f)⊆Runs(TΩ|fm). As (f,⌈f⌉) is assumed
to be Pareto optimal, then Runs(TΩ|fm)⊆Runs(TΩ|f). Therefore, we have that f≡fm.

While not being the converse of Lemma 3, Lemma 4 is an important sufficient result. Combining these
two lemmas tells us that memoryless controllers are sufficient for Pareto optimality when considering Pareto
pairs of the type (f,⌈f⌉).

Theorem 3 Let an LTS T and an invariance property Qinv be given. It is sufficient to search among invariant
memoryless controllers for Pareto optimal pairs of the type (f,⌈f⌉).

Remark 6 Since invariance properties are defined by partitioning the LTS state set, memory does not provide
any additional information to controllers to satisfy an invariance property. Similarly, memory does not provide
any leverage to violate an invariance property. For this reason, we can show that memoryless controllers are
sufficient to describe the Pareto optimal pair of the type (f,⌈f⌉).

6.5 Existence of controllers

As we mentioned earlier, Problem 3 might not have a solution. In this section, we provide necessary and
sufficient conditions for the existence of solutions. Thanks to Theorem 3, we can focus on memoryless controllers.

The existence of a solution to Problem 3 mainly depends on sets N and d. The first condition for the
existence of a solution states that the runs in N do not violate the invariance property Qinv. The second
condition checks that it is feasible to generate N and have tolerance d by constructing a controller f that
minimally ensures the runs in N and checking if f is invariant and d⊆⌈f⌉. We start by defining this controller
that minimally encompasses N.

Definition 12 Assume the premises of Problem 3. We define memoryless controller fN for each state q∈Q

as follows:

fN(q):={a∈Act |[(∃x0a0...xn∈N∧i<n).(a=ai∧q=xi)}∪{a∈Act |[(∃x0a0···∈N∧i≥0)].(a=ai∧q=xi)}
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Intuitively, the controller fN ensures N⊆Runs(TΩ|fN) by construction. Moreover, it ensures this condition
by only including actions used in N, i.e., the above construction is a minimal construction in the sense that
fN disconsidered actions not used in N. Based on fN , we can state the necessary and sufficient conditions
for the existence of a solution to Problem 3.

Theorem 4 Problem 3 has a solution if and only if (a) the runs in N remain in Qinv, (b) fN is an invariant
controller, and (c) d⊆⌈fN⌉.

Proof (Only if) Assume that f∗ is a solution to Problem 3. We show that (a), (b), and (c) hold. As f∗

is a solution to Problem 3, it follows that N ⊆Runs(TΩ|f∗) and N remains in Qinv. Next, we show that
Runs(TΩ|fN)⊆Runs(TΩ|f∗) by contradiction. Let us assume that Runs(TΩ|fN) ⊈Runs(TΩ|f∗), which
provides us a run ρ ∈Runs(TΩ|fN)\Runs(TΩ|f∗). By construction of fN , ρ is either a run or a prefix
of a run in N. In either case, it follows that N ⊈ Runs(TΩ|f∗), which contradicts our assumption that
f∗ is a solution to Problem 3. Based on the definitions of invariant controller and tolerance together with
Runs(TΩ|fN)⊆Runs(TΩ|f∗), we can conclude that fN is an invariant controller and d⊆⌈fN⌉.

[If] We show that fN is a solution to Problem 3 when (a), (b), and (c) hold. Condition (b) provides
that fN is invariant. By construction of fN and condition (a), we have that fN is memoryless as well as
N⊆Runs(TΩ|fN). Lastly, condition (c) provides that d⊆⌈fN⌉.

Example 10 The LTS T is depicted in Fig. 3a and Qinv={1,2,4}. We want to synthesize a controller that reaches
all three states without any perturbation, i.e., N={1a4b2b1}. Moreover, we want a controller that is tolerant
against the following perturbation set d={(2,a,3)}. The only run inN stays withinQinv which satisfies condition
(a) in Theorem 4. Following Theorem 4, we construct fN : fN(1)={a}, fN(2)=fN(4)={b}, and fN(3)=∅. It
follows that ⌈fN⌉=(Q×Act×Q)\{(1,a,3),(2,b,3),(4,b,3)} and d⊆⌈fN⌉. Therefore, Problem 3 has a solution.

If we considered perturbation set d′= {(2,a,3),(2,b,3)}, then Problem 3 has no solution. In this latter
scenario, the sets N and d′ disagree in state 2 with respect to action b, i.e., d′ disallows the use of action b

in state 2 while N allows this action.

Beyond the existence conditions, Theorem 4 also provides a solution to Problem 3 when a solution exists.
Controller fN is a solution to Problem 3 when the conditions in Theorem 4 are satisfied. We develop this
result in the next section since fN is a special solution to Problem 3.

6.6 Tolerant and permissive controllers

Our first solution to Problem 3 is a controller that is the most tolerant within the solution space (point B in
Fig. 5b), i.e., a solution to Problem 4. We show that controller fN defined in Def. 12 is a solution to Problem 4.

Theorem 5 Assume that Problem 3 has a solution. Controller fN is a solution to Problem 4.

Proof The proof of Theorem 4 already shows that fN is a solution to Problem 3. Therefore, we just need to
show that (Tol) holds. In the proof of Theorem 4, we have shown that Runs(TΩ|fN)⊆Runs(TΩ|f ′) for any f ′

that is a solution to Problem 3. Therefore, it follows that ⌈f ′⌉⊆⌈fN⌉ for any f ′ that is a solution to Problem 3.

Example 11 Let us return to the premises in Example 10. We want to synthesize the most tolerant controller
that satisfies N={1a4b2b1} and d={(2,a,3)}. Theorem 5 guarantees that controller fN is the most tolerant
controller that satisfies Problem 3, where fN(1)={a}, fN(2)=fN(4)={b}, and fN(3)=∅. This controller
has tolerance ⌈fN⌉=(Q×Act×Q)\{(1,a,3),(2,b,3),(4,b,3)}.

The second solution to Problem 3 is the most permissive controller within the solution space (point C

in Fig. 5b), i.e., a solution to Problem 5. Based on Theorem 3, we can restrict our attention to memoryless
controllers to obtain a solution to Problem 5. Our solution strategy is to augment T with the minimum
tolerance required in Problem 5, i.e., analyze the system Td. The next step is to define the most permissive
controller with respect to Td.
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Table 1: Summary of synthesis results

Existence Most tol. Point B Most perm. Point C
Theorem Thm. 4 Thm. 5 Thm. 6

Complexity O(|QN |+|RN |+|Q|2) O(|QN |+|RN |) O(|Q|+|R∪d|)

Theorem 6 Controller fd defined as fd(q):={a∈Act |PostTd
(q,a)⊆Qinv} is a solution to Problem 5.

Proof Since fd is memoryless, then (fd,⌈fd⌉) is Pareto optimal. Next, we show that d⊆⌈fd⌉ by a direct proof.
For any T and invariant controller f , we have that R⊆⌈f⌉. Controller fd is an invariant controller with respect
to Td and Qinv, i.e., Td|fd |=Qinv and all actions of fd are invariant actions. Thus, we have that d⊆⌈fd⌉.

We show that N⊆Runs(TΩ|fd) by contradiction. Assume that N ⊈Runs(TΩ|fd), then there exists a
run in N\Runs(TΩ|fd). This run also belongs to Runs(TΩ|fN) by definition of fN . It follows that in some
state q, fN can take an action that fd cannot. Based on the definition of fd, we have that d⊈⌈fN⌉, which
contradicts our assumption. Therefore, it must be that N⊆Runs(TΩ|fd).

We establish that (Perm) holds by contradiction. Assume that there exists an invariant controller f ′ that
is a solution to Problem 3 and fd⊆f ′. We can establish that every action fd can take f ′ can also take, but
there is an action that f ′ takes but fd does not. By the definition of fd, it follows that f ′ is not an invariant
controller with respect to Td and d⊈⌈f ′⌉. It must be that fd satisfies condition (Perm).

Example 12 Let us return to the premises in Example 10. We want to synthesize the most permissive controller
that satisfies N={1a4b2b1} and d={(2,a,3)}. Theorem 6 guarantees that controller fd is the most permissive
controller that satisfies Problem 3, where fd(1)={a,b}, fd(2)=fd(4)={b}, and fd(3)=∅. This controller
has tolerance ⌈fd⌉=(Q×Act×Q)\{(1,a,3),(1,b,3),(2,b,3),(4,b,3)}.

Controller fd differs from controller fN in state 1. In state 1, the most permissive controller allows actions
a and b while the most tolerant only allows action a. In this manner, the run 1b1b1b... is feasible in the
controlled system T |fd, but it cannot be executed in the controlled system T |fN . On the other hand, fN

is tolerant against perturbation (1,b,3) while fd is not.

6.7 Complexity analysis

In this section, we analyze the computational complexity of our solutions to Problems 3-5. We summarize
our results in Table 1.

To obtain these results, we assume that the set of runs N is represented as an LTS. With abuse of notation,
we say that LTS N defined by ⟨QN ,Act,RN ,IN⟩ generates the desired level of permissiveness. Note that the
runs of N are defined over states QN while runs of TΩ are defined over states Q. Therefore, we assume that we
are given a mapping from QN to Q to circumvent this problem. This mapping can be obtained by composing
LTSs TΩ and N, i.e., TΩ||N where || is the standard parallel composition operator [11]. Based on LTS N, we
provide the complexity analysis of our results.

Checking the conditions in Theorem 4 has worst-case complexity O(|QN |+|RN |+|Q|2) due to the con-
struction of fN and ⌈fN⌉. Both constructions are reducible to reachability analysis over N and TΩ. Similarly,
the worst-case effort to compute the most tolerant controller, Theorem 5, is O(|QN |+|RN |). Lastly, fd(d),
Theorem 6, can be computed by executing a one step transition in the relation R∪d. Therefore, computing
fd has O(|Q|+|R∪d|) worst-case complexity.

7 Case studies

In this section, we demonstrate the utility of the proposed notion of tolerance through case studies on the
surveillance example described in Section 2 as well as on a simple robot motion planning scenario as described
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in [56]. We have built a prototype tool2 that can compute the tolerance of a given controller (Alg. 2) and
synthesize controllers f∅, finv, fN and fd with respect to invariance properties using the MDESops library [40].
We also evaluate the scalability of our tool by comparing it against the brute force Alg. 1 for computing the
tolerance of a controller. The experiments for the case studies were performed on a Linux Ubuntu 20.04 LTS
OS machine with 3.2GHz CPU and 32GB memory.

(a) LTS representation of T |f1 (b) LTS representation of T |f2

Fig. 6: Ego under control of f1 and f2

7.1 Surveillance example

In our first case study, we demonstrate how our tool can be used to automatically compute tolerance for
different controllers, and how this information can be used to systematically compare alternative controller
designs with respect to their tolerance. We also evaluate the scalability of our tool.

7.1.1 Models and property

Example 1 describes how the surveillance example is modeled as an LTS. The invariance property is defined
as Qinv=Q\{(2,2),(3,3),(4,4),(5,5)}. Next, we define two controllers, f1 and f2, that satisfy this invariance
property. First, we consider controller f1 to be the one described in Example 2 where it maintains ego in
location 1. Another controller f2 ensures that ego visits all locations without being captured by srv. Formally,
f2 is defined as follows: f2(q)= f1(q) if q∈Q\{(1,4),(2,5)}, f2(1,4)= {m1,m2}, and f2(2,5)= {m1,m3}.
Figure 6 shows the LTS representations of T |f1 and T |f2.

7.1.2 Computing the tolerance

We use our tool to compute the tolerance for both controllers f1 and f2. Note that LTS T has 20 states, 5
actions, 60 transitions, and the safe set Qinv has 16 states. The tolerance ⌈f1⌉ has 1936 transitions of which
1876 are new transitions with respect to the transition relation R. On the other hand, ⌈f2⌉ has 1928 transitions
where 1868 are new transitions. In both cases, it takes about 8ms to compute the tolerance. In comparison,
the most tolerant controller f∅ characterized by ⌈f∅⌉=Q×Act×Q has 2000 transitions, i.e., the transition
relation is complete. The least tolerant controller finv has tolerance ⌈finv⌉ with 1716 transitions.

2 https://github.com/romulo-goes/tolerancetool

https://github.com/romulo-goes/tolerancetool
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Table 2: Scalability of tolerance computation

System |Q| |Act| |R| |⌈finv⌉| time
1 srv, 5 loc. 20 5 60 1716 0.01 sec
1 srv, 10 loc. 80 10 272 59030 0.46 sec
2 srv, 10 loc. 640 10 2176 3618978 30.88 sec
3 srv, 10 loc. 5120 10 17408 out of memory − sec

7.1.3 Comparing controllers

Controllers f1 and f2 select the same control decisions in all states except in states (1,4) and (2,5). In these
two states, controller f2 allows ego to venture closer to the building. Therefore, controller f1 should be more
tolerant than controller f2. This intuition is confirmed by our notion of tolerance where ⌈f2⌉ ⊂ ⌈f1⌉, i.e.,
controller f1 tolerates more perturbations than f2. Even though f1 is more tolerant, it is also less permissive
as it prevents the ego drone from traveling to certain locations that f2 allows.

7.1.4 Performance analysis

To evaluate the performance of Algorithm 2, we scale the surveillance example by adding more locations as
well as more surveillance drones. Table 2 summarizes the evaluation of our tool. The tolerances ⌈finv⌉ in each
of these examples are almost the complete transition relation, i.e., ⌈finv⌉≈Q×Act×Q. Our tool ran out of
memory and it could not compute the tolerance for the system with 10 locations and 3 srv drones; the complete
transition relation for this system has 262 144 000 transitions. As part of future work, we plan to improve our
tool by symbolic encoding of the LTS, e.g., using OBDD [10]. We also compare Alg. 2 against the brute force
Alg. 1. We implement Alg. 1 leveraging FuseIC3 [18], a state-of-the-art tool that can be used to verify a family of
LTS. FuseIC3 more efficiently verifies every possible pertubed system Td|f that satisfies an invariance property
P (lines 2-4 in Alg. 2). Since the brute force algorithm verifies Td|f |=P for every perturbation d⊆Q×Act×Q,
it is infeasible to use the surveillance example as there are 21940 systems to verify. For this reason, we make
this comparison using a modified version of the LTS shown in Fig. 3a. Table 3 summarizes the results of our
comparison, which shows that our tool provides a more efficient way of computing tolerance. To be fair, this is not
surprising, as although FuseIC3 efficiently verifies a large family of LTS, it was not developed to solve Problem 2.
On the other hand, Alg. 2 directly computes the tolerance of the LTS by leveraging the results of Theorem 1.

Table 3: Comparison with FuseIC3

|Q| |Act| |R| # perturbations Alg. 2 Alg 1 with FuseIC3
4 2 22 210 0.001 sec 1.5 sec
4 2 17 215 0.001 sec 48.1 sec

7.2 Robot motion planning

In this second case study, we demonstrate how our tool can be used to synthesize a controller that meets a
minimum required level of tolerance and permissiveness as specified by the designer.

7.2.1 Models and property

We use the robot motion planning described in [56]. Consider a robot in an n×n grid that has three different
control actions, Act={M,R,L}, which correspond to move straight, turn right, and turn left, respectively. The
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state space of the robot is composed of its x,y grid coordinates and its θ∈{0,π2 ,π,
3π
2 } heading angle. The

transition relation is given by the following equations:

– Action = L: x′=x, y′=y, and θ′=θ+ π
2 ;

– Action = R: x′=x, y′=y, and θ′=θ− π
2 ;

– Action = M: x′=x+cos(θ), y′=y+sin(θ), and θ′=θ.

where x′, y′, θ′ describe the next state values. We introduce an additional state Out to indicate when the robot
goes out of the grid. We set the initial state to be in the center of the grid, i.e., q0={(⌊n2 ⌋,⌊

n
2 ⌋,0)} where ⌊.⌋ is the

floor operator. The invariance property is defined by Qinv=Q\{Out}, i.e., the robot cannot go out of the grid.

7.2.2 Perturbation and permissive sets

To demonstrate our tolerant synthesis framework, we introduce perturbations for actions L,R,M that must be
tolerated by the synthesized controller. This perturbation set is constructed based on the following equations:

– Action = L: x′=x+δx
√
2cos(θ+ π

4 ), y
′=y+δy

√
2sin(θ+ π

4 ), and θ′=θ+ π
2 , δx,δy∈{0,1,...,δ1}

– Action = R: x′=x+δx
√
2cos(θ− π

4 ), y
′=y+δy

√
2sin(θ− π

4 ), and θ′=θ− π
2 , δx,δy∈{0,1,...,δ1}

– Action = M: x′=x+(1+δx)cos(θ), y′=y+(1+δy)sin(θ), and θ′=θ, δx,δy∈{0,1,...,δ2}

Here, δ1,δ2 are nonnegative numbers that represent different levels of perturbations. The value δ1 captures
perturbations when the robot turns, i.e., the robot might not stay in the same cell when it turns. Similarly, δ2
allows the robot to move beyond adjacent grid positions when it moves straight. Again, we use the state Out

to indicate when the robot goes out of the n×n grid. The set d(δ1,δ2) denotes the set of perturbed transitions
defined by the equations above.

With respect to permissiveness, we define desired set of runs N based on regions of the grid we want the
robot to explore. Intuitively, we want the robot being able to explore every state in 4≤x≤7 and 4≤y≤7.
Pictorially, the robot must be able to visit at least the red region in Fig. 7a. Formally, the set N is defined
as N={(x0,y0,θ0)...(xm,ym,θm)∈TΩ|(∀i≤m)[4≤xi≤7∧4≤yi≤7]}.

7.2.3 Synthesizing Pareto controllers

Based on Problem 3, we synthesize Pareto controllers for different desired perturbation sets d(δ1,δ2) and set
of runs N. For illustration, we choose n=10 and synthesize Pareto controllers fN as defined in Thm. 5 and
fd(δ1,δ2) as defined in Thm. 6.

1 10
1

10

(a) Pictorial representation
of set N, i.e. the robot’s
desired reachable areas.

1 10
1

10

δ1 = δ2 = 0

δ1 = δ2 = 1

δ1 = δ2 = 2

δ1 = δ2 = 3

(b) Representation of the robot’s reachable
areas under controllers fd(δ1,δ2), i.e., the
reachable states of the controlled system
T |fd(δ1,δ2). The reachable regions are
described by overlapping concentric squares.

Fig. 7: Robot motion planning reachable areas
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Table 4: Scalability of computing tolerant controllers

n |Q| |Act| δ1 δ2 time
10 401 3 3 3 0.21 sec
20 1601 3 3 3 2.87 sec
50 10001 3 3 3 106.70 sec

With respect to the most tolerant controller, fN , we can synthesize a single controller that is tolerant
against perturbations d(δ1,δ2) for 0≤δ1≤3 and 0≤δ2≤3. With fN , the robot can reach exactly the red
region in Fig. 7a. In the case of δ1=δ2=4, Problem 3 does not accept solutions as N and d(δ1,δ2) provide
inconsistent requirements. For example, while N requires the robot to visit state (4,4,0), a disturbance in
d(4,4) can push the robot outside of the grid region. For this reason, there is no controller that achieves the
minimum levels of tolerance d(4,4) and permissiveness N.

With respect to the most permissive controllers fd(δ1,δ2), when δ1=δ2=0, the set d(0,0) is exactly the
same as the set R, i.e., no perturbation. For this reason, the synthesized controller fd(0,0) can reach every
state in the n×n grid as depicted in Fig. 7b which satisfies the permissiveness requirement N. Intuitively, the
robot can go to the border of the grid since it assumes that turns only alter the heading angle and moves
only go to adjacent cells. When δ1=δ2=1, the synthesized controller needs to be more restrictive since moves
can go beyond the adjacent cells and turns can alter the robot’s position. In this case, fd(1,1) restricts the
robot to stay one cell away from the border of the grid as precaution based on the possible perturbations
in d(1,1). In similar manner, the other controllers fd(δ1,δ2) will restrict the robot’s reachable area based on
the perturbations while satisfying the permissiveness constraint N. Figure 7b depicts how restrictive these
controllers are by showing the reachable areas for each controller.

When δ1 ≠ δ2, the reachable states in T |fd(δ1,δ2) are the same as in T |fd(max{δ1,δ2},max{δ1,δ2}), e.g.,
T |fd(0,1) reaches the same states as T |fd(1,1). The difference in these controllers only appears when we analyze
the perturbed systems. For example, controller fd(1,1) is blocking in state (1,2,π) since it cannot turn as
perturbations

(
(1,2,π),L,Out

)
and

(
(1,2,π),R,Out

)
belong to d(1,1). Controller fd(0,1) is nonblocking (1,2,π)

since the same perturbations do not belong to d(0,1).
For n=10, the time to compute controllers fd(δ1,δ2) varies from 82ms when fd(1,1) to 320ms when fd(5,5).

Table 4 summarizes the results of computing fd(δ1,δ2) for various n.

8 Related work

Several works have investigated notions of robustness, tolerance, and resilience for discrete transition systems
by quantifying perturbation via cost functions, metrics, etc. [6,7,12,21,25,33,34,41,49,50,53]. Most of these
works define robustness closely to the notions of robustness in continuous state-space control systems, e.g.,
Bounded-Input-Bounded-Output, [6,7,12,25,33,34,49,53]. Perturbations are either known or they are unknown
but with known metric functions, e.g., cost to transition to a different state. Our notion of tolerance is qualitative
as it captures the set of perturbations for which the controller guarantees the property and avoids the need for
external cost functions over the discrete transition system. In [21], perturbations are also introduced based on a
cost function over regular languages. The authors investigate the problem of synthesizing the largest threshold
that guarantees a system to satisfy a given regular property. Although their synthesis problem is similar to our
definition of tolerance, their definition assumes a given metric whereas our tolerance definition is qualitative.

In [41, 50], perturbations are also interpreted as additional transitions to a nominal system. In [41], a
framework to synthesize optimally resilient controllers based on a metric defined by the number of transitions
needed to violate an ω-property. Their optimal controller synthesis is similar to our synthesis of tolerant
controllers when considering only invariance properties. However, our work also considers permissiveness as
part of our controller synthesis problem for invariance properties. In [50], the authors propose an abstract-based
controller design where the discrete abstraction system is computed with the addition of known perturbations
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called Whigh. Compared to our work, the Whigh perturbations introduced a perturbation set to the finite
state abstraction. An optimal controller is then designed based on techniques from [41].

With respect to qualitative robustness notions, the work in [56] investigated synthesizing controllers robust
against perturbation sets specified by the designer. The framework of [56] does not address the computation of
the tolerance of controllers, and as a result does not provide tools to compare the relative tolerance of different
controllers such as controllers 1 and 2 in our motivating example. In [54], the authors presented the notion of
robust linear temporal logic (rLTL) which extends the binary view of LTL to a 5-valued semantics to capture
different levels of property satisfaction. This work is tangent to ours as it focuses on specifying robustness.

The notion of robustness presented in [27, 59] is only semantically defined. In [59], the environmental
perturbation is captured by a set of input traces the software system accepts. Perturbations in [27] are connected
to different attack models for software systems. We define the syntax of perturbations as additional transitions
in the environment model. Building on our tolerance definition, we have investigated our tolerance definition for
general safety properties in [35]. However, the definition of tolerance in [35] differs from Def. 7 since it directly
compares transitions instead of the runs of the perturbed system. Moreover, computing tolerance for general
safety properties has exponential-time complexity in [35]. Algorithm 2, on the other hand, has quadratic-time
complexity for invariance properties.

There also exists a vast literature on robust control in discrete event systems [2,16,29–31,37–39,43,48,
55,57,58]. The notions of robustness in [2,30,31,37–39,48,57] are specific to communication delays, loss of
information, or deception attacks. Our notion of tolerance represents general model uncertainty, which includes
unreliable communication channels in the controlled system.

Of particular relevance to this paper are the works in [16,29,55], where robustness against model uncertainty
is tackled in the context of supervisory control theory. Given a set of plants, [29] describes methods to find
a supervisor that satisfies a property for all plants. [16] focus on synthesizing the most robust supervisor with
respect to perturbations in a nominal plant. Extending the work in [16], [55] investigates the trade-off between
permissiveness and robustness in the context of supervisory control theory. Thus, the work in [55] resembles
to our discussion of permissiveness versus tolerance. However, the semantic of our work differs from [55] as
we use a different modeling formalism. We consider state-based controllers that react based on state history,
while [55] considers controllers that react to action history.

The description of the general algorithm to compute ∆(T,f,P) for any property P connects our work
to the work on verifying software product lines (SPL) described as feature transition systems (FTS) [14,15].
However, verifying FTS has exponential worst-case time complexity even for invariance properties whereas
our method has linear-time complexity. Modal transition systems (MTS) [26,28] can also be used to describe
a family of LTS. In [17], a controller realizability problem is studied for an environment modeled by an MTS,
where a controller satisfies a property in all, some, or none of the LTS family. Our notion of controller explicitly
computes which systems in the LTS family satisfy the property.

Finally, related to this paper is the work on fault-tolerance. Fault-tolerance has been studied in the context
of distributed systems [22,32,44]. The work in [9,13,19,23] focuses on the synthesis of fault-tolerant programs
by retrofitting initial fault-intolerant programs. These works focus on specific types of fault models, whereas
our tolerance notion upper-bounds the perturbations (faults) the controller tolerates.

9 Conclusion

In this paper, we introduced a new notion of tolerance against environmental perturbations for discrete-state
control systems. We provided a general technique to compute this tolerance for general properties modeled as
regular languages over finite strings as well as a more efficient technique specifically for invariance properties. We
also investigated the problem of synthesizing an invariant controller that achieves a given minimum threshold
of tolerance and permissiveness. We used Pareto optimality to capture the trade-off between tolerance and
permissiveness and showed that memoryless controllers are sufficient to capture the Pareto front of this trade-off.

Our notion of tolerance is syntactically defined by additional transitions and semantically defined by the
controlled behavior generated by these additional transitions. However, the additional transitions and new
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controlled behavior need to be analyzed by a designer as to explain them. We leave to future work to bridge
this gap between the syntax of our notion of tolerance with the context of the model to provide tolerance
explanations to the designer. As part of future work, we will also devise more efficient techniques for properties
other than invariance. One may also investigate connections between Problem 1 and the solution of two-player
Büchi games [24]. In Remark 1, we discussed the use of the nondeterministic transition function to model
uncontrollable actions. However, we leave to future work to investigate our framework with controllable and
uncontrollable actions. It would be also interesting to extend our work to investigate tolerance in the context
of partially observable systems. Lastly, the connection between the fields of supervisory control theory and
reactive synthesis has been recently investigated [20,51]. As part of future work, we will investigate if our
framework can be extended to the supervisory control theory framework.
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Appendix

A controller with finite memory M is a triple composed by the control function f :M×Q→2Act, a memory update
function g :M×Q→M, and an initial memory condition m0∈M. In this manner, the closed-loop system T |f can be
represented by an LTS.

Definition 13 Let an LTS T and a controller (f,g,m0) with bounded memory M be given. We can define LTS
T |f=(Q×M,Act,R|f,I×{m0}) where R|f is defined as follows:

R|f :={(q,m,a,q′,m′)∈Q×M×Act×Q×M |(q,a,q′)∈R ∧
a∈f(m,q)∧ m′=g(m,q′)} (1)

Due to the memory M introduced by the controller f, Runs(T |f) and Paths(T |f) are defined over Q×M×Act and
Q×M, respectively. However, the ω-properties are only defined over Q. Therefore, we project Q×M×Act→Q×Act
and Q×M→Q using the operator ⇂. With an abuse of notation, we use Runs(T |f) and Paths(T |f) to be the projected
runs and paths Runs(T |f)⇂ and Paths(T |f)⇂
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