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The determination of ultra-long-range molecular potential curves has been reformulated using the Coulomb

Green’s function to give a solution in terms of the roots of an analytical determinantal equation. For a system

consisting of one Rydberg atom with a fine structure and a neutral perturbing ground state atom with hyperfine

structure, the solution yields potential energy curves and wave functions in terms of the quantum defects

of the Rydberg atom and the electron-perturber scattering phase shifts and hyperfine splittings. This method

provides a promising alternative to the standard currently utilized method of diagonalization, which suffers from

problematic convergence issues and nonuniqueness, and can potentially yield a more quantitative relationship

between Rydberg molecule spectroscopy and electron-atom scattering phase shifts.
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I. INTRODUCTION

For the past 15 years, the spectroscopy of ultra-long-range

Rydberg molecules consisting of a bond between one Rydberg

atom and one or more ground-state atoms has flourished and

become increasingly quantitative [1–21]. The basic picture

of the bonding mechanism remains rooted in the scattering

of the Rydberg electron by the ground-state perturbing atom,

which is qualitatively the same as in early studies of Rydberg-

neutral interactions [22–26]. This picture produces unusual

oscillatory Born-Oppenheimer potential curves and intriguing

electron probability distributions for some of the electronic

states, which resemble trilobites or butterflies [5,8,25,26]. The

aim of the present article is to implement a Green’s function

treatment that includes the effects of all spin interactions to

make first-principles theory far more quantitative than existing

theoretical techniques.

Since the earliest experimental observations of this class

of molecular bound states, the original picture of the atom-

atom bonding has been confirmed in its basics [25]. That

picture derives from the Fermi-Omont representation of the

effective energy associated with the electron-atom scattering

phase shifts δL(ε), but while it has been confirmed, its limita-

tions have also become apparent. The Fermi-Omont effective

zero-range interaction terms in the Hamiltonian [27,28] are

proportional to tan δL(ε), where ε is the kinetic energy of

the electron at the point where it collides with the perturbing

electron. For systems possessing a low-energy shape reso-

nance, like the e-Rb and e-Cs systems, that tangent function

can diverge to infinity. This is the case, in particular, for the

butterfly Rydberg molecule states whose potential curves are

controlled by a 3Po scattering resonance [26,29]. The resulting

divergence poses a stringent challenge for any theory aiming

to quantitatively describe the molecular spectroscopy.

The presence of occasionally divergent terms in the Hamil-

tonian produces instabilities that require renormalization

when standard methods for computing energy eigenvalues are

utilized, such as diagonalization of H in a truncated expansion

into an orthonormal basis set. That diagonalization approach

has until now been the method of choice for calculations of

the Rydberg molecule Born-Oppenheimer potential energy

curves; this preference is in part because of the relative ease

with which one can add additional spin-spin and spin-orbit

interaction terms to the Hamiltonian, when higher precision

is desired [30–34]. (While Refs. [30,34] have both developed

Hamiltonians for the diagonalization method which include

all of the spin degrees of freedom treated in the present

article, we recommend that calculations using this method

should preferably implement the final result of Ref. [30], for

the reasons discussed in that article.) A drawback is that the

expansion is known to not converge, leading to nonunique

basis size-dependent potentials that make it challenging, if not

impossible, to compare experiment and theory in a fully ob-

jective manner [35]. Furthermore, the electron energy needed

to evaluate the energy-dependent scattering phase shifts can-

not be determined self-consistently in such diagonalization

approaches, leading to a lack of self-consistency [20].

Our treatment implements a nonperturbative Green’s func-

tion description of the electronic energy eigenstates of such

Rydberg-ground state diatomic molecules, which incorpo-

rates, in principle, all spin-dependent interactions in addition

to the basic Coulombic Hamiltonian. The goal is to make

fully quantitative the mapping of electron-atom scattering

information and the Rydberg atomic quantum defects into

accurate Born-Oppenheimer potential energy curves whose

rovibrational states can be measured and tested accurately.

The Green’s function treatment developed here has been mo-

tivated by an earlier Kirchoff integral formulation [26,29,36],

which does not suffer from nonconvergence issues that plague

numerical diagonalization treatments. Because the method

manipulates the phases of the wave function near the per-

turbing atom instead of performing a diagonalization of the

Hamiltonian based on the scattering volume-dependent and

energy-dependent pseudopotentials, the divergences of tan δ
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FIG. 1. Electron-Rb scattering phase shifts used in this article.

The black (dark) curves are calculated ab initio using a relativistic

model potential [36]. The blue (light) curves show phase shifts which

were modified (in the triplet case only) by Ref. [12] to produce

electronic potential curves whose vibrational energies match those

observed in experiment.

cause no difficulties in the Green’s function theory. Our re-

sulting extension of that Kirchoff integral Green’s function

method to include all spin-dependent interactions, presented

here, is expected to significantly reduce much of the cur-

rent uncertainty in comparing theoretical and experimental

Rydberg molecule energy levels. With this improvement, it

should allow sharper conclusions to be drawn in deducing

electron-atom scattering information from spectroscopic mea-

surements. Other promising approaches to the calculation of

Rydberg molecule spectra have been developed in recent years

[37,38], but they have not yet been extended to include the

full set of spin-orbit and hyperfine interactions built into the

present treatment.

II. THEORY

A. The basic ideas and notation

We use atomic units throughout, based on the reduced mass

of the atomic ion–electron system. The full Hilbert space of

interest includes the Rydberg electron’s position and orbital

angular momentum operators, �r and ��, respectively, relative

to the Rydberg core. Relative to the perturber, at a position
�R = Rẑ, these operators are denoted �X = �r − �R and �L. The

remainder of the state space of interest includes multiple spin

operators: the Rydberg electron spin �sR, the perturber atom

electronic spin �sp, and the perturber atom nuclear spin �I .

The nuclear spin I should not be confused with the identity

operator, 1. The Rydberg molecules studied experimentally to

date have involved perturbing ground state atoms from either

the first or second column of the periodic table, which have

no orbital angular momentum. Our formulas omit reference

to the Rydberg atom’s nuclear spin quantum number IR since

its associated hyperfine structure decreases rapidly with �

and with n as n−3, and is typically negligible for currently

achievable spectroscopic resolution. However, if ever appro-

priate, this can be readily incorporated without changing the

basic structure of our approach. The reader can find a visual

depiction of all of these angular momentum vectors in Fig. 1

of the authors’ previous article, Ref. [30].

In addition to these operators, some key intermediate an-

gular momentum sum operators used in the following are the

total angular momentum operator of the perturber, �f = �sp + �I ,

and the total electronic spin of the molecule, �S = �sR + �sp.

Other summed angular momenta that enter our treatment in-

clude the total angular momentum of the Rydberg electron

relative to the positive ion nucleus, �j = �sR + ��, and the to-

tal electronic angular momentum of the electron-perturber

system relative to the perturbing atom, namely, �J = �L + �S.

The following formulation does not explicitly describe the

Rydberg electron as indistinguishable from the perturber elec-

tron(s), although their indistinguishability is understood to

have been incorporated when computing the scattering phase-

shifts of a free electron (i.e., the Rydberg electron in the

present context) from the perturbing atom. Accordingly, a

complete set of states in the Hilbert space is the ket

|r, �, m�; sR, mR; sp, msp
; I, mI〉, (1)

where we imply that this state has an angular dependence

associated with a spherical harmonic Yl,ml
(θ, φ) with respect

to the Rydberg core. Note that we use Y to denote spherical

harmonics in order to avoid confusion with the variable Y .

Table I summarizes this list of different quantities and their

allowed values.

Space is partitioned into three parts: a small sphere cen-

tered on the Rydberg core, where short-ranged interactions

between the multielectron core and the Rydberg electron pro-

duce quantum defects μ�, j , a second small sphere centered

on the neutral perturber, where the Rydberg electron scatters

with known phase shifts δS,L,J (k), and finally, the vast region

of space outside these two spheres. In this latter region, the

Hamiltonian is written

H0 = hRyd ⊗ 1sp
⊗ 1I + 1�r ⊗ 1sR

⊗
∑

f ,m f

| f m f 〉E f 〈 f m f |. (2)

Here hRyd is the full short-range Hamiltonian of the Ryd-

berg electron in the field of the positive ion nucleus and any

screening or spectator core electrons in the singly charged

ionic ground state. The unit operators for various degrees of

freedom are also indicated in this Hamiltonian in an obvious

notation. The state | f m f 〉 ≡ |(spI ) f m f 〉 is the coupled nuclear

spin state of the perturber, and its hyperfine energy levels E f

are given by

E f = A

2
[ f ( f + 1) − I (I + 1) − sp(sp + 1)]. (3)

A is the hyperfine structure constant of the perturber. The

Rydberg electron energy levels En� j are determined by the

single-channel quantum defects via

En� j = − 1

2(n − μ� j )2
. (4)

This can be generalized to a multichannel quantum defect

theory (MQDT) representation of the atomic Rydberg levels

[39–41], as in Ref. [42], when appropriate.

If electron-perturber interactions are neglected and if quan-

tization of the radial {r} degree of freedom is initially

postponed in the spirit of MQDT, the set of channels are

characterized by the commuting observables for H0. This set
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TABLE I. Summary of the operators and other quantities used here to describe long-range Rydberg dimers involving two alkali atoms. The

hyperfine details assume that the perturber atom is 87Rb. The zero of our energy scale is the statistical average of perturber hyperfine energy

levels plus the positive-ion ground-state energy.

Operator Eigenvalues Physical meaning

�L L = 0, 1 electron orbital angular momentum relative to the perturber

�� � = 0, 1 . . . n − 1 electron orbital angular momentum relative to the Rydberg core

�sR sr = 1

2
Rydberg electron spin

�sp sp = 1

2
perturber electron spin

�I I = 3

2
perturber nuclear spin

�f f = 1, 2 total angular momentum of the perturber

�S S = 0, 1 total electron spin of the molecule

�j j = 1

2
, 3

2
, . . . n − 1

2
total angular momentum of the Rydberg electron relative to its core

�J J = 0, 1, 2 total electronic angular momentum of the anion, relative to its core

Quantity Possible values Physical meaning

mR, mp ± 1

2
electronic spin magnetic quantum numbers

mI ± 3

2
,± 1

2
nuclear spin magnetic quantum number

m� = mL |m�| � 1 projection of the Rydberg electron orbital angular momentum onto ẑ

Mtot = m� + mR + mp + mI |Mtot| � 7

2
projection of the total angular momentum onto ẑ

μ�, j − quantum defect of the Rydberg atom

δSLJ − scattering phase shift of the electron-perturber system

ν ν = (−2E )−1/2 the effective principal quantum number defined at E < 0

n n = 1, 2 . . . integer-valued principal quantum number for hydrogenic Rydberg states

of channel functions has the structure

|i〉 ≡ |(sR�) jm j, f m f 〉, (5)

corresponding to channel threshold energies equal to

Ei ≡ E f . (6)

This representation describes a set of diagonal potentials that,

in the absence of electron-perturber interactions, have no cou-

pling whatsoever,

Vii′ (r) = δii′

(

Ei − 1

r
+ �(� + 1)

2r2

)

, (7)

for electron-ion distances r > r0. Here it is assumed that

there is a relatively small distance r0 ∼ 20 a.u. beyond which

the electron-ion interaction potential can be approximated as

purely Coulombic. Of course, at distances r < r0 the Ryd-

berg electron experiences complex screening and exchange

interactions with the ionic core electrons, but the effect of

those complex interactions is fully encapsulated in the weakly

energy-dependent quantum defects μ� j .

Green’s function methods can be implemented in various

alternative approaches. For instance, one can impose physi-

cal boundary conditions at r → ∞ at the outset, or one can

postpone the large-r finiteness boundary condition in the spirit

of MQDT, which would imply utilizing the so-called smooth

Green’s function, G(S) [22,23,43,44]. Our present formulation

utilizes the former method based on the physical Green’s

function. Owing to the spin degrees of freedom in this system,

the Green’s function G for H0 is a diagonal matrix in the spin

indices, which at total energy E satisfies

(H0 − E )GC (�r, �r ′) = δ(�r − �r ′)δmR f m f ,m
′
R f ′m′

f
. (8)

In particular, the present treatment adopts the Green’s function

that imposes the correct boundary conditions for the Rydberg

electron as it emerges from the ionic core in a specified (�sR) j

channel with its appropriate j-dependent quantum defect.

This is especially important for the Rydberg p and d states.

B. Review of the key Green’s function equations

The method developed here builds on the original spin-

independent formulation of Hamilton [45], which in turn

is based on the closed-form Coulomb Green’s function de-

rived by Hostler and Pratt [46]. This Green’s function,

which ignores spin degrees of freedom and atomic quantum

defects, is

GC (�r, �r ′; ν) = �(1 − ν)

2π |�r − �r ′|

[

M ′
ν,1/2(η)Wν,1/2(ξ )

− Mν,1/2(η)W ′
ν,1/2(ξ )

]

, (9)

where W and M are standard Whittaker functions, primes

denote ordinary derivatives with respect to the argument, ν =√−2E is the principal quantum number defined at E < 0, and

ξ, η = (r + r′ ± |�r − �r ′|)/ν. (10)

Quantum defects can be included naturally via a correction

term to be added to GC , derived originally by Davydkin et al.

[47],

Gq.d.(�r, �r ′; ν) =
�0
∑

�=0

m�=�
∑

m�=−�

λ�(ν)Y�m�
(θ, φ)Y∗

�m�
(θ ′, φ′)

× Wν,�+1/2(r)Wν,�+1/2(r′)/(rr′), (11)
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where �0 is the highest angular momentum with a nonvanish-

ing quantum defect and

λ�(ν) ≡ π sin πμ�

sin πν sin π (μ� + ν)
. (12)

The rescaled Whittaker functions in Eq. (11),

Wν,l+1/2(r) =
√

ν

�(ν − �)�(� + ν + 1)
Wν,�+ 1

2

(

2r

ν

)

, (13)

have an energy-normalized amplitude
√

2(πk(r))−1/2 in the

classically allowed region [48].

A first key generalization needed here to incorporate the

full spin-dependent physics of the Rydberg molecule is to in-

clude the perturber’s hyperfine structure as a constant energy

shift dependent on the f quantum number. This is done by

inserting the identity operator
∑

f ,m f
| f m f 〉〈 f m f | into Eq. (9)

and evaluating the Green’s function at the principal quantum

number ν f , where E − E f ≡ − 1
2ν f

2 . Equation (9) becomes

ĜC (�r, �r′; ν) =
∑

mR, f ,m f

|sRmR, f m f 〉GC
ν f

(�r, �r ′)〈 f m f , sRmR|,

(14)

which is also diagonal with respect to the Rydberg electron’s

spin. The generalization of Eq. (11) includes the j-dependent

quantum defects of the Rydberg electron, yielding

Ĝq.d.(�r, �r ′; ν) =
∑

f ,m f

∑

�, j,m j

λ�, j (ν f )
Wν f ,�+1/2(r)Wν f ,�+1/2(r′)

rr′

× | jm j〉〈 jm j | × | f m f 〉〈 f m f |. (15)

The quantity λ�, j (ν f ) is identical to λ�(ν), but generalized

to accept j-dependent quantum defects, μ� → μ�, j . The full

operator is the sum Ĝ = ĜC + Ĝq.d.. To organize the angu-

lar momentum and spin indices, we introduce a shorthand

notation,

i ≡ L, ML, mR, f , m f , (16)

which also defines a corresponding state:

|i〉 ≡ |sRmR, (spI ) f m f , LML〉. (17)

Since the Coulomb Green’s function of Eq. (14) is diagonal in

all of the i quantum numbers except for L, another useful index

will be ī, consisting of all i quantum numbers except L. We

define δī,ī′ ≡ δ f , f ′δm f ,m f ′ δmR,m′
R
δML,M ′

L
. Note that the size of the

set of quantum numbers included in i, which will eventually

set the dimension of the determinantal equation, is restricted

by the number of partial waves included, the hyperfine spin

of the perturber, and the projection of the total angular mo-

mentum onto the internuclear axis, Mtot, which is a good

quantum number. The number of quantum defects included

does not affect this size, nor does the energy of the Rydberg

states in question. This is an important difference between this

approach and diagonalization of a basis expansion, where the

matrix dimension grows linearly with ν.

C. Green’s function terms evaluated near the perturber

Now that the Green’s function matrix has been determined,

the electron-perturber scattering information will be incorpo-

rated into the calculation simply as boundary information on

the tiny sphere centered on the perturber. To set the stage

for this, this section presents analytic results for the Green’s

function matrix in the vicinity of the perturber. The vectors �X
and �Y are defined according to �r ≡ �R + �X and �r ′ ≡ �R + �Y ,

with the goal in mind that all relevant Green’s functions or

Rydberg wave functions will be evaluated at these coordi-

nates. The next step is to evaluate all of these expressions

at Y 
 X 
 1, corresponding to a tiny region around the

perturber. The Green’s operator in the i representation can be

expressed conveniently in these coordinates.

The Green’s function expansion about the perturber posi-

tion reads

GC
ν f

(�r, �r′) ≈
∑

L,L′

∑

ML

YLML
(X̂ )
ML

L,L′ (X,Y )Y∗
L′ML

(Ŷ ).

Analytical expressions for 

ML

L,L′ (X,Y ), to lowest order in X

and Y , are given in Appendix B, specifically Eqs. (B21) and

(B23). These terms vanish when ML �= M ′
L due to cylindrical

symmetry. Insertion of this expansion into Eq. (14) yields

ĜC (�r, �r′; ν) = 〈X̂ |

⎡

⎣

∑

i,i′

|i〉δī,ī′

ML

L,L′ (X,Y )〈i′|

⎤

⎦|Ŷ 〉. (18)

The number of partial waves in the expansion about the per-

turber has been restricted here to L � 1, which is generally

sufficient for long-range Rydberg molecules. We will discuss

the possible effects of higher partial waves [49] in more de-

tail in Sec. IV. Should it become necessary to extend the

present treatment to higher partial waves, the derivations in

Appendix B can be generalized.

To obtain a similar form as Eq. (18) for the quantum defect

correction in Eq. (15), the Taylor expansion of the Coulomb

wave function is needed for small X and Y . These expansions

are derived in Appendix C, namely, Eqs. (C7)–(C9), and are

Wν f ,�+1/2(r)

r
Y

(�)
ML

(r̂) ≈
1
∑

L=|ML |
X Lb

(�,ν f )

LML
Y

(L)
ML

(X̂ ). (19)

We insert this expansion, the analogous expansion of the r′

dependence in terms of the variable Y , and the same iden-

tity operators in terms of L and ML as above, into Eq. (15),

obtaining

Gq.d.(�r, �r ′; ν) = 〈X̂ |

⎧

⎨

⎩

∑

i,i′

|i〉δ f , f ′δm f ,m f ′ X
LY L′ ∑

�, j,m j

λ�, j (ν f )b
(�,ν f )

L,ML

[

b
(�,ν f )

L′,ML′

]∗
S

�, j

ML,ML′ ,mR,mR′ 〈i′|

⎫

⎬

⎭

|Ŷ 〉, (20)
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where

S
�, j

ML,ML′ ,mR,mR′ ≡
∑

m j

C
jm j

lML,sRmR
C

jm j

lML′ ,sRmR′ . (21)

Equations (18) and (20) give a useful form for the full Green’s

function when it will be evaluated in the vicinity of the per-

turber, at small X and small Y :

G(�r, �r ′; ν) =
∑

i,i′

〈X̂ |i〉
(

GC
i,i′ (X,Y ) + G

q.d.

i,i′ (X,Y )
)

〈i′|Ŷ 〉.

(22)

D. Integral equation

The next step utilizes this spin-dependent Coulomb

Green’s function treatment to calculate the molecular poten-

tial energy curves. The derivation starts from the following

integral equation for the electronic wave function �(�r), valid

everywhere outside of a small volume of radius Y around the

perturber:

�(�r) = Y 2

2

∮

{

∂G(�r, �r ′)

∂Y
�(�r ′) − ∂�(�r ′)

∂Y
G(�r, �r ′)

}

dŶ .

(23)

The most convenient expression for the Rydberg electron’s

wave function in the perturber’s vicinity is its partial wave

expansion, since a small collection of energy-dependent spin-

orbit coupled phase shifts δSLJ (k) suffice to parametrize the

full wave function. As with the shorthand index i, here it is

useful to define a second index,

α ≡ S, L, J, MJ , I, mI , (24)

along with the state

|α〉 ≡ |[(sRsp)SL]JMJ , ImI〉, (25)

incorporating all of the degrees of freedom of the perturber

spins and atom-electron scattering complex. The size of the

set α is equal to that of i. In the |α〉 representation, the wave

function near the perturber is

〈�r|�〉 =
∑

α

Bα�α(k,Y )〈Ŷ |α〉. (26)

For Y sufficiently large that the perturber-electron potential

has vanished, but small enough that the Coulomb potential is

effectively constant, the radial wave function is given in terms

of spherical Bessel functions jL and yL,

�α(k,Y ) = jL(kY ) cos δSLJ (k) − yL(kY ) sin δSLJ (k). (27)

Some discussion is needed of the meaning of Eq. (27) and,

in particular, the choice of the electron momentum k. When

hyperfine structure can be ignored, k is obtained semiclassi-

cally via k =
√

− 1
ν2 + 2

R
. This expression already makes one

approximation, namely, that the electron-ion reduced mass

is equal to the electron-perturber reduced mass, certainly

adequately accurate in typical applications. (Recall that our

choice of units throughout this article is atomic units based

on the electron-ion reduced mass, set here to unity.) A fur-

ther complication arises when the perturber possesses very

low-lying energy levels such as hyperfine structure, because

when the Rydberg electron collides with the perturber atom

with kinetic energy equal semiclassically to ε = − 1
2ν2 + 1

R
, it

is actually a multichannel problem and there is an electron-

perturber scattering matrix with different wave numbers k f

in the different hyperfine channels. For this situation, we

interpret the rest of our derivation in this article, based on

Eq. (28), as making a frame transformation approximation,

as in the spirit of Refs. [50–52], this will normally be an

excellent approximation because k f ≈ k, but it can begin to

fail (implying a need for improvement) in those limited ranges

of R where k → 0.

Inserting the expression for the Green’s function near the

perturber [Eq. (22)] and the wave function near the perturber

[Eq. (27)] into Eq. (23) yields

∑

α

�α(k, X )〈X̂ |α〉Bα

= 1

2

∑

i,i′,α

〈X̂ |i〉Y 2

∮

{[∂Y Gi,i′ (X,Y )�α(k,Y )

− Gi,i′ (X,Y )∂Y �α(k,Y )]〈i′|Ŷ 〉〈Ŷ |α〉}dŶ Bα. (28)

Because of the form of Gi,i′ (X,Y ) derived in Eq. (22), the

integration over Ŷ is trivially removed by the presence of

the identity operator in Eq. (28). The transformation of the

integral equation in Eq. (26) into a matrix equation is accom-

plished now by projecting onto 〈α′| and
∮

dX̂ |X̂ 〉 from the

left:

�
α

′ (k, X )B
α

′ = 1

2

∑

i,i′,α

〈α′|i〉Y 2[∂Y Gi,i′ (X,Y )�α(k,Y )

− Gi,i′ (X,Y )∂Y �α(k,Y )]〈i′|α〉Bα. (29)

The spin recoupling matrix elements 〈i|α〉 are

Aiα ≡ 〈i|α〉 = 〈α|i〉 = δLi,Lα

∑

MS ,mp

C
JMJ

SMS ,LαML
CSMS

sRmR,spmp
C

f m f

spmp,ImI
.

(30)

Equation (29) is the key equation, but it is not yet ready to

implement, until we expand everything to lowest orders in

X and Y , again assuming that Y 
 X throughout. This has

already been accomplished for the Green’s functions, using

the equations Eqs. (B21), (B23), and (20), and additionally

the expansion of


̄
ML

L,L′ (X,Y ) =
∮

dX̂

∮

dŶY∗
LML

(X̂ )∂Y GC
ν ( �X , �Y )YL′ML

(Ŷ )

(31)

derived in Eq. (B22) in Appendix B. After plugging in the

lowest terms in these expansions and those for the spherical

Bessel functions in the radial wave function �α(k,Y ), we

finally obtain the set of linear equations to be solved for the

electronic energies. With the definition of B̄α ≡ Bα ( k
3

)Lα , the

final key set of linear equations becomes

∑

α

(

− δα′α cos δSα ,Lα ,Jα + �α′α
)

B̄α ≡
∑

α

Mα′α (ν, R)B̄α = 0,

(32)
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in terms of the matrix

�α′α = sin δSα ,Lα ,Jα

k2Lα+1

∑

i,i′
AT

α′i

[

1
∑

K ′=0

1
∑

K=0

δLα′ ,K ′δLα ,K

×
(

δī,ī′PK ′,K (ν fi
, R) + 8Lα + 1

2
Qii′

)

]

Ai′α, (33)

where

Qii′ ≡ δ f , f ′δm f ,m
′
f

∑

�, j

λ�, j (ν f )b
(�,ν f ′ )

Li,ML
b

(�,ν f )

Li
′,M ′

L

S
�, j

ML,M ′
L,mR,m′

R

.

(34)

Here b
(�,ν f )

Li,ML
is defined in Appendix C, Eqs. (C7)–(C9), and

with K ∈ {0, 1}, the PK ′K are matrix elements of

P =
(

�v 3
√

3�uv

1√
3
�uv −�vvv + 3δM ′

L,0�uuv

)

. (35)

E. Numerical procedure

Equation (32) is satisfied only at discrete values of ν, which

we obtain numerically by finding the roots of det M(ν, R)

at each R. In practice, to make the root-finding procedure

more stable, we conduct the numerical search for roots in the

quantity

M̃(ν, R) = sign[�l, j, f sin π (μl, j + ν f ) det M(ν, R)]

× |�l, j, f sin π (μl, j + ν f ) det M(ν, R)|1/7. (36)

The product �l, j, f is taken over all l and j values with nonzero

quantum defects and over all hyperfine levels; this term re-

moves singularities stemming from λl, j (ν f ). The choice of a

power of 1/7 is to “smooth” the variation (of many orders

of magnitude) in the determinant as a function of ν, and the

numerical procedure could be improved in different regimes

by adjusting this.

The unusual characteristics of Rydberg molecule potential

curves makes it challenging in some cases to obtain these

roots. The breaking of different symmetries by the relativistic

or hyperfine couplings in the Hamiltonian is often quite weak,

which means that the oscillatory potential curves can fre-

quently become nearly degenerate, impeding the resolution of

multiple roots. Furthermore, these potential curves can change

from a rather smooth variation in regions where the electronic

state is primarily in a Rydberg state of low angular momentum

to rapid variations when the electronic state becomes domi-

nated by high angular momentum trilobite and butterfly states.

This combination of rapid fluctuations and near degeneracies

complicates the choice of search grid used to numerically find

the roots.

To resolve these issues, in a first pass the potential energy

curves are computed for a large value of Mtot where the num-

ber of roots, and, in particular, of nearly degenerate roots, is

diminished. We exploit the adiabaticity of the potential curves

by starting our search at large R, where the threshold values

of the potential curves are known, and proceeding inwards

to small R by searching for each discrete root ν(Ri ) within

a series of energy windows bracketing the roots found at

Ri+1. For smaller Mtot values, we implement this same process

but also include search windows centered around the roots

found for higher Mtot. This helps to treat regions where nearly

degenerate potential energy curves vary rapidly as a function

of R.

It is interesting that the computation of highly excited

spectra of quantum billiards is often accomplished by solving

a very similar determinantal equation also derived using the

relevant Green’s function [53]. Some approximation methods

developed in this context may be useful here [54]. Alterna-

tively, it may be advantageous to search instead for zeros in

the eigenvalues of M(ν, R) to avoid missing roots due to near

degeneracies.

F. Atomic parameters

The hyperfine splitting, atomic quantum defects, and po-

larizabilities utilized in our calculations have been determined

via precision spectroscopy to very high accuracy and are col-

lected in Ref. [31]. The electron-atom scattering phase shifts,

on the other hand, are only available from theoretical calcula-

tions and the values of key properties, such as the zero-energy

scattering lengths and shape resonance widths and positions,

vary from source to source [31,33]. For example, relativistic

e-Rb phase shifts for L � 1 were published by Khuskivadze

et al. in Ref. [36], and are shown as black (dark) curves

in Fig. 1. The blue (light) curves in this figure are phase

shifts which were fit to experimental data taken in s-state

Rydberg molecules [12]. This was accomplished by varying

the triplet scattering phases so the potential energy curves—

computed using a basis set benchmarked to the results of

a spin-independent Green’s function calculation—predicted

vibrational states and binding energies in agreement with the

measurements [12]. The zero-energy scattering length ob-

tained from this calculation is about 10% smaller than the

ab initio value, but its value remains within the spread of

scattering lengths obtained theoretically and from similar ex-

periments [2,10,31]. The position of the P-wave resonance is

about 20% lower than calculated.

The next section presents potential curves obtained from

our present Green’s function method, alongside those ob-

tained by diagonalizing the zero-range Hamiltonian. These

illustrate that our present method can be reliably used to

obtain accurate potential energy curves without the debilitat-

ing dependence on the basis size. From these comparisons,

we emphasize that the phase shifts previously obtained from

the diagonalization method are most likely valid only as

model-dependent fit parameters. This is due to the inability

to benchmark the potential curves with alternative methods,

and worse, the fact that the dependence of the potential curves

on the input phase shifts varies with internuclear distance,

and measurements taken over a finite range of Rydberg levels

or bond lengths likely do not provide unique fits. We will

further emphasize this point by comparing the potential curves

obtained from the Green’s function method with these two

sets of phase shifts, showing that the current best set of phase

shifts are incompatible with experiment when used outside the

scope of the model.
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FIG. 2. Potential energy curves with threshold values at the

25p j, f = 1, 2 levels, presented relative to the 25p1/2, f = 1 thresh-

old. The deep wells at smaller R values host butterfly molecular

states. The calculation uses the fitted phase shifts of Ref. [12].

III. RESULTS

After they are found numerically, the collection of roots

νi(R) determine the potential energy curves

Ui(R) = − 1

2νi(R)2
− α

2R4
, (37)

where the second term denotes the polarization interaction

between the Rydberg ion and the neutral atom.

A. Rydberg p states and butterfly molecules

A fertile environment for testing our method is provided

by the molecular states asymptotically reaching the unper-

turbed (n + 2)p j Rydberg states of rubidium. The label n here

represents the hydrogenic manifold lying energetically above

these states, which are shifted by the large quantum defects

of Rb. The relevant potential energy curves, with energies

displayed relative to that of the 25p1/2, f = 1 asymptote, are

shown in Fig. 2. At large R, the molecular electronic char-

acter resembles that of the unperturbed atomic state, and the

potential curves are subsequently of the shallow low-� type.

Reference [7] reports molecular spectroscopy in this energy

range. At smaller R (around 400 a.u., the butterfly states de-

scending from the unperturbed manifold of degenerate high-�

states with principal quantum number n mix strongly with

the (n + 2)p j states. This interaction dramatically deepens the

potential wells. The deepest vibrational states, having bond

lengths between 150 and 350 a.u., were observed in Ref. [8].

The measurement of large electric dipole moments in these

molecular states confirmed that they were butterfly states.

The relative depths of the butterfly molecule potential

wells, at R < 400 a.u., are sensitive to the position of the P-

wave shape resonance, the energy dependence of the P-wave

phase shifts above resonance, and, due to the divergence of the

P-wave term in the zero-range pseudopotential, the number of

included Rydberg basis states in the diagoanlization method.

We illustrate this in Fig. 3 by plotting the deepest butterfly

FIG. 3. The deepest butterfly potential energy curve near the

25p1/2, f = 1 state representing the zero of the energy scale, cal-

culated using our Green’s function method (in black) and compared

with diagonalization in six different basis sizes (colored and dashed).

The basis sets include states from the degenerate Rydberg manifolds

22 � n � 23 (purple), 21 � n � 23 (blue), 21 � n � 24 (cyan),

21 � n � 25 (green), 20 � n � 24 (orange), and 20 � n � 25 (red),

as well as all quantum defect-shifted states within these energy

ranges. These curves show the potential curves due to electron-atom

scattering only, i.e., without the additional polarization interaction

from Eq. (37).

potential curve computed with various basis sets and compar-

ing those with the present Green’s function method.

The calculated curves using the two basis sizes which were

used in recent papers, Refs. [12,15], are shown in purple

and orange. Both of these disagree with the Green’s func-

tion results by, on average, around 10 GHz; moreover, the

diagonalization results do not converge to the Green’s func-

tion result as the basis increases. The agreement between a

given diagonalization calculation and the Green’s function

also varies with internuclear distance, calling into question the

validity of fitting basis set sizes to specific vibrational states

in one or two potential wells alone.

Figure 4 explores this further by comparing Green’s func-

tion PECs calculated using the fitted phase shifts of Ref. [12]

(in black) and the calculated ab initio phase shifts of Ref. [36]

(in blue). The results obtained from the modified scattering

phase shifts are 15–20 GHz shallower than those calculated

from the calculated phase shifts over the full range of R.

The modified phase shifts are therefore inconsistent with the

experimental measurements of the butterfly-type vibrational

bound states of Ref. [8], which were detected for energies

above −50 GHz. We conclude that the modified phase shifts

of Ref. [12] remain model-dependent fitting parameters which

allowed for accurate reproduction of the ns-state molecules

detected there but are not the correct, model-independent,

scattering parameters.

However, one should not prematurely conclude from Fig. 4

that the calculated phase shifts are correct, even though they

provide qualitatively better calculations than the fitted phase

shifts for these butterfly states. We illustrate this using the
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FIG. 4. Potential energy curves for Rb∗Rb supporting butterfly

molecules with Mtot = 1

2
. At large R, these potential curves approach

threshold values at the noninteracting 25p j, f = 2 energy levels. The

black curves were calculated with the fitted phase shifts of Ref. [12],

and those in blue using the calculated phase shifts of Ref. [36].

Vibrational levels and their dipole moments were reported in Ref. [8]

in the energy range from −50 GHz to −40 GHz.

same class of (n + 2)p states in Figs. 5 and 6, where now

n = 14. The potential curves in the upper subfigures are again

comparing the two different sets of phase shifts using the

Green’s function method, while the bottom two figures show

the potentials obtained from diagonalization using the fitted

phase shifts. The interesting region here are the three potential

wells highlighted in Fig. 6, which were found to support vibra-

tional levels via molecular spectroscopy reported in Ref. [15].

Here, the perturbation on the (n + 2)p states due to the but-

terfly potentials occurs at a larger R for the calculated phase

shifts than for the fitted phase shifts, disrupting the inner wall

of this potential well. This would dramatically change, if not

eliminate, the positions of vibrational lines in this well, in

contradiction to the experimental evidence. It is clear from

the bottom two panels why attempts to fit phase shifts with

the diagonalization are not effective; the differences due to

nonconvergence in the basis set size can be patched over by

modifying the phase shifts. Future work should reinvestigate

these comparisons between experiment and theory for these

16p molecular states. A new fit of the phase shifts using

the method presented here will likely show that the physical

phase shifts are in between these two sets compared here.

B. Effect of hyperfine splitting across the Rydberg series

Although the previous section demonstrated the quanti-

tative differences between the present method and diago-

nalization of the zero-range pseudopotential, both methods

yield qualitatively the same results. Exploration of new types

of molecular features can, in principle, be done with either

method, but having a complementary approach at hand can,

through its relative benefits or disadvantages, lead to new real-

izations. In this section, we discuss two previously unnoticed

effects related to the interplay between the different energy

scales—the hyperfine splitting, the splitting between singlet

and triplet energies, and Rydberg level density—in Rydberg

molecules.

Figure 7 shows the potential energy curves with Mtot = 1
2

in the vicinity of the degenerate manifold of hydrogenic states

with n = 22, just below the 25p potential curves discussed in

the previous section. At this relatively low principal quantum

number, the hyperfine splitting is small compared the energy

shifts caused by the perturber on the hydrogenic states, and

the total electron spin of the perturber-electron complex can

be considered to be an approximately good quantum number

for the trilobite and butterfly potential curves. The singlet

trilobite potential curve is everywhere positive due to the

monotonically increasing positive scattering length in the sin-

glet channel. Contrast this with the same trilobite level at a

much higher energy, as shown in Fig. 8. Here, for n = 70,

the hyperfine splitting is much larger than the energy scale

of the potential energy curves, and couples singlet and triplet

scattering states together. The upper potential curve develops

a large well due to its strong admixture of triplet character.

Such a well could support bound states localized at very large

internuclear distances, in contrast to the very broad triplet-

dominated trilobite potential below. Note that this calculation

does not include quantum defects for � > 4 to highlight this

well; a more careful study including the finite quantum defects

of high-� states would be necessary to quantitatively investi-

gate its properties.

The hyperfine splitting also plays a role in breaking the

degeneracy of the butterfly potential energy curves in the

singlet-dominated P-wave scattering channel. The inset of

Fig. 7 highlights these levels. The oscillating potential curve

is, to an excellent approximation, a � molecular state having

ML = 0, while the smooth potential curve is actually two

nearly degenerate � curves having ML = ±1. For this n, these

energy levels are split by approximately 1 Hz, making them

challenging to obtain with the Green’s function. Again, as a

function of n, the role of the hyperfine coupling changes, and

at high n it plays a key role in breaking this degeneracy. The

potential curves for n = 70 shown in Fig. 9 demonstrate this,

where now the ML states are coupled and the degeneracy is

broken on the MHz scale.

IV. DISCUSSION

The level of spectroscopic accuracy currently attainable

in Rydberg molecule experiments reaches the level of a few

MHz. Although the dominant sources of inaccuracy in the

calculation of potential energy curves are eliminated in our

method, there are still corrections outside the scope of this

theory which could hinder comparison of predicted and ob-

served binding energies.

One source of error is our truncation to partial waves

L � 1, which is the standard assumption made in the litera-

ture, with the sole exception being Ref. [49]). As shown there,

the main effect of including higher partial waves is to induce

additional trilobitelike potential curve which descend from the

degenerate manifolds. These potential curves are proportional

to ∼ − (RL3)−1, and are therefore suppressed at large R. We

estimate the contribution of L = 2 scattering in Appendix F 1,
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FIG. 5. Potential energy curves for Rb∗Rb with threshold values at the 16p j, f = 1, 2 levels, presented relative to the 16p1/2, f = 1

threshold. The upper left (black) Green’s function calculation uses the fitted phase shifts of Ref. [12], while the upper right (blue) Green’s

function calculation uses the calculated phase shifts of Ref. [36]. The bottom two panels show results using the fitted phase shifts and obtained

via diagonalization with two different basis sizes. In the bottom left (orange), the basis includes states with 12 � n � 14; in the bottom right

(magenta), the basis includes 12 � n � 15.

concluding that it increases the depth of the potential wells by

approximately one percent.

A second source of error is nonadiabatic coupling, which

is typically neglected in studies of long-range Rydberg

molecule. Only a few exceptions have considered these cor-

rections [55–57]. There is no inherent limitation in using

the Green’s function method to compute nonadiabatic ef-

fects, but the computation of the electronic eigenstates and

their derivatives, the key ingredients of nonadiabatic coupling

terms, is beyond the present scope of this article. We have

estimated the diagonal coupling term due to nonadiabatic

physics in Appendix F 2. It is inconsequential for vibrational

levels bound in potential wells isolated from extremely sharp

avoided crossings for most n values, although at higher n

the shifts can become measurable in trilobite and butterfly

states [55].

Another source of error derives from the fact that in

electron scattering from an atom with no permanent elec-

tric quadrupole moment, the dominant long-range interaction

is the induced dipole polarizability, varying asymptotically

like r−4. This produces a modification of the Wigner

threshold law for all partial waves L > 0, which in turn causes

all non-S-wave generalized Fermi-Omont pseudopotentials to

diverge at zero collision energy [58–60] [e.g., for p-wave

collisions, the coefficient of the Omont contact potential is

−6π tan δP/k(R)3 while δP ∝ k(R)2 at k(R) → 0]. Ideally,

those L > 0 partial wave phase shifts should be broken into

a short-range contribution whose effects can be incorporated

as a zero-range pseudopotential, plus a long-range contri-

bution that causes the modified non-Wigner threshold law

treated perturbatively as an explicit polarizability potential

between the electron and the perturbing atom. The devel-

opment of this type of formulation could be important for

high-precision applications, and remains a goal for future

studies. For now, we adopt an extrapolation of the scattering

length and volume at large R beyond the point where the semi-

classical energy becomes negative. An alternative strategy to

deal with the negative kinetic energy phase-shift information,

which was proposed in Ref. [61], could be tested in future

calculations.

One desirable future development would extend the present

Green’s function treatment to handle multiple perturbing
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FIG. 6. Potential energy curves for Rb∗Rb with threshold values at the 16p j, f = 1, 2 levels, presented relative to the 16p1/2, f = 1

threshold. These panels show the potential wells supporting the vibrational levels detected in Ref. [15]. The upper left (black) Green’s function

calculation uses the fitted phase shifts of Ref. [12], while the upper right (blue) Green’s function calculation uses the calculated phase shifts of

Ref. [36]. The bottom two panels show results using the fitted phase shifts and obtained via diagonalization with two different basis sizes. In

the bottom left (orange), the basis includes states with 12 � n � 14; in the bottom right (magenta), the basis includes 12 � n � 15.

atoms. This could be incorporated along the lines of Ref. [62],

for instance. Essentially, each additional perturber would

require establishing a new set of matching conditions, re-

sulting in a determinantal equation to solve, which for N

perturbers would be N times larger than the single perturber

equation. A significant complication would be the more com-

plex hyperfine structure, since there would be 2N different

hyperfine levels.

V. CONCLUSIONS

This article develops and implements a fully spin-

dependent Green’s function method to compute the adiabatic

potential energy curves of long-range Rydberg molecules.

Our method is directly applicable to any combination of al-

kali atoms and, with appropriate extensions, to alkaline earth

atoms. Potential curves are obtained from this method by the

numerical solution of the roots of a determinantal equation.

Nearly all of the dependence on the Rydberg wave functions

and energy is handled analytically, and therefore the dimen-

sionality of the matrix in this determinant does not increase

with ν, facilitating the study of very high principal quantum

numbers.

The discussion above emphasizes how the use of this more

accurate approach, which eliminates the ambiguity related to

the nonconvergent diagonalization method that has plagued

other studies, should enable more accurate studies of Rydberg

molecule spectra and the electron-atom scattering phase shifts

upon which they depend. Having more accurate calculations

at hand should also improve the accuracy of proposals in-

volving the exaggerated properties of Rydberg molecules,

such as those to study the strong multipolar interactions be-

tween long-range Rydberg molecules [63,64], the formation

of heavy Rydberg states out of long-range molecules [65,66],

and the behavior of Rydberg atoms within dense ultracold

gases [9,67–69].
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FIG. 7. Potential energy curves of the singlet-dominated trilobite

and singlet-dominated butterfly for Rb∗Rb and Mtot = 1

2
. The ener-

gies are measured relative to the hydrogenic level with n = 22 and

a perturber in the f = 2 state. The inset shows the three different

singlet butterfly potential energy curves. One is oscillatory and two,

indistinguishable on this scale, are smooth.

A Python implementation of this method and the root-

finding procedure is available upon reasonable request from

Ref. [70].
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FIG. 8. Trilobite potential energy curves for Rb∗Rb with thresh-

old energy at the hydrogenic n = 70 level with an f = 2 perturber,

with Mtot = 1

2
. The reference energy is set to the f = 1 level. The

lower trilobite level remains a triplet state, while the upper one is a

mixture of singlet and triplet states.

FIG. 9. Potential energy curves of the Mtot = 1

2
singlet butterfly

potential curves of Rb∗Rb, with the threshold energy set at the hy-

drogenic n = 70 level with an f = 2 perturber. The reference energy

is set to the f = 1 level. The � doublet (lower two curves) has split

due to the relatively strong hyperfine coupling.

APPENDIX A: ALTERNATIVE EXPRESSION

FOR THE COULOMB GREEN’S FUNCTION

For completeness, we state here another useful expression

for the Coulomb Green’s function, which utilizes a partial

wave expansion in terms of standard Whittaker functions:

GC (�r, �r ′; ν) =
∞
∑

�=0

ν�(� + 1 − ν)

2rr′(2� + 1)!

× Mν,�+1/2

(

2r<

ν

)

Wν,�+1/2

(

2r>

ν

)

×
∑

m�

Y∗
�,m�

(r̂′)Y�,m�
(r̂). (A1)

APPENDIX B: TAYLOR EXPANSIONS OF G
C

Our development requires some Taylor expansions of

GC (�r, �r ′) for Y 
 X 
 1. Many of these terms were com-

puted by Hamilton [45]. First, we introduce a convenient

notation:

v = |�r − �r ′| = ν
(ξ − η)

2
, (B1)

u = r + r′ = ν
(ξ + η)

2
. (B2)

Then the following expansions will prove to be useful:

u − 2R = (X cos θX + Y cos θY ) + O(1/R) (B3)

≈ 4π√
3

(XY10(X̂ )Y∗
00(Ŷ ) + YY00(X̂ )Y∗

10(Ŷ )),

(B4)

v =
√

X 2 + Y 2 − 2XY cos γ , (B5)

where

cos γ = sin θX sin θY cos(φX − φY ) + cos θX cos θY ).

(B6)

Equation (B4) is expressed in terms of spherical harmonics

YLM (X̂ ) with L < 2, and in the following expansions we will

continue to write the expansions in these same terms. As

042805-11



CHRIS H. GREENE AND MATTHEW T. EILES PHYSICAL REVIEW A 108, 042805 (2023)

we include only S and P partial waves in the expansion in

Eq. (26), any higher order terms with L � 2 will have vanish-

ing matrix elements. Our Taylor expansion of GC will initially

be represented in powers of (u − 2R) and v. An alternative

expansion for v = | �X − �Y | in terms of spherical harmonics is

[71]

v = 4π
∑

L

1

2L + 1

Y L

X L+1

(

Y 2

2L + 3
− X 2

2L − 1

)

×
∑

M

YLM (X̂ )Y∗
LM (Ŷ ), (B7)

which, truncated to L < 2, is

v ≈ 4π

(

X + Y 2

3X

)

Y00(X̂ )Y∗
00(Ŷ )

− 4π

3

(

Y − Y 3

5X 2

)

∑

M

Y1M (X̂ )Y∗
1M (Ŷ ). (B8)

Squaring Eqs. (B3) and (B5) yields

v
2 = X 2 + Y 2 − 2XY

4π

3

∑

M

Y1M (X̂ )Y∗
1M (Ŷ ), (B9)

(u − 2R)2 ≈ X 2 cos2 θX + Y 2 cos2 θY + 2XY cos θX cos θY .

(B10)

Retaining terms at most quadratic and of spherical harmonic

orders L � 1, we can write

(u − 2R)2 ≈ 4π

3
[(X 2 + Y 2)Y00(X̂ )Y∗

00(Ŷ )

+ 2XYY10(X̂ )Y∗
10(Ŷ )]. (B11)

Lastly, one mixed expansion is required, where only terms that

are at most linear in each variable are retained. In terms of

spherical harmonics, this is

(u − 2R)v ≈ X 2 4π√
3
Y10(X̂ )Y∗

00(Ŷ ) + XY

(

8π

3
√

3
Y00(X̂ )Y∗

10(Ŷ )

)

+ terms of rank L = 2. (B12)

With these preliminaries out of the way, we evaluate the Taylor series of GC (u, v; ν) for small values of u − 2R and v:

2πGC (u, v; ν) = 1

v

�(u, v; ν) ≈ 1

v

+ �v + �uv (u − 2R) + 1

2
�vvv + 1

2
�uuv (u − 2R)2 + 1

2
�uvv (u − 2R)v + 1

6
�vvvv

2.

The various � terms with subscripts here denote derivatives of the Green’s function with respect to u or v and are given by

�vv = −k2, (B13)

�uv = −ν�(1 − ν)

2R2
MνWν, (B14)

�vvv = �(1 − ν)

{(

ν

2R3
− k4ν

2

)

MνWν − 2k2

ν
M ′

νW ′
ν + 1

2R2

(

M ′
νWν + MνW ′

ν

)

}

, (B15)

�uvv = 2

R2
, (B16)

�uuv = �(1 − ν)

{

ν

2R3
MνWν − 1

2R2

(

M ′
νWν + MνW ′

ν

)

}

, (B17)

�v = �(1 − ν)

2νR2
Mν

(

(ν2(R2 + 1) − R2)Wν + νR(ν − νR + R − 1)Wν, 3
2

)

(B18)

+ �(1 − ν)

12νR
(ν2 − 1)Mν, 3

2

(

ν(R − 1)Wν − (ν − 1)RWν, 3
2

)

. (B19)

For brevity, we omit the second subscript on the Whittaker functions when it is equal to 1/2 and do not write out the full argument

2R/ν, i.e., Mν ≡ Mν, 1
2
( 2R

ν
), etc. Primes denote derivatives with respect to the full argument. Finally, we insert all expansions into

this expression and regroup the terms according to their angular character relative to the perturber center:

GC (u, v; ν) = 1

2π

{(

1

X
+ �v + 1

2
�vvX + 1

6
�vvvX 2 + 1

3
�uuvX 2)4πY00(X̂ )Y∗

00(Ŷ )

+
(

�uvX + 1

2
�uvvX 2

)

4π√
3
Y10(X̂ )Y∗

00(Ŷ )

+
(

�uvY + 1

3
�uvvXY

)

4π√
3
Y00(X̂ )Y∗

10(Ŷ ) + �uuvXY
4π

3
Y10(X̂ )Y∗

10(Ŷ )

+
(

Y

X 2
− 1

2
�vvY − 1

3
�vvvXY

)

4π

3

1
∑

M=−1

Y1M (X̂ )Y∗
1M (Ŷ )

}

. (B20)
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As discussed in the text, the eventual matrix representation of the solution requires integrating the Green’s function and its

derivative over X̂ and Ŷ :



ML

L,L′ (X,Y ) =
∮

dX̂

∮

dŶY∗
LML

(X̂ )GC
ν ( �X , �Y )YL′ML

(Ŷ ),


̄
ML

L,L′ (X,Y ) =
∮

dX̂

∮

dŶY∗
LML

(X̂ )∂Y GC
ν ( �X , �Y )YL′ML

(Ŷ ).

We evaluate these integrals analytically in the vicinity of the perturber by using only the relevant terms of Eq. (B20), dropping

higher order terms in X and Y . In a matrix notation in the space L = {0, 1}, these read



(ML′=0)

L,L′ = 2

⎛

⎝

1
X

+ �v

1√
3
�uvY

1√
3
�uvX 1

3

[

Y
X 2 − 1

2
�vvY −

(

1
3
�vvv − �uuv

)

XY
]

⎞

⎠ (B21)


̄
(ML′=0)

L,L′ = 2

(

0 1√
3
�uv

0 1
3

[

1
X 2 − 1

2
�vv −

(

1
3
�vvv − �uuv

)

X
]

)

(B22)



M ′

L=±1

1,1 = 2Y

3

(

1

X 2
− 1

2
�vv − 1

3
�vvvX

)

. (B23)

Note that the lack of symmetry in these matrices stems from the asymmetry in the X and Y variables.

APPENDIX C: TAYLOR EXPANSION

OF THE WHITTAKER FUNCTION

In this Appendix, we develop the Taylor expansion of the

Whittaker function multiplied by an ion-centered spherical

harmonic in the vicinity of the perturber, i.e.,

F (�r) ≡ 1

r
Wν f ,�+1/2(r)Y�m�

(r̂) ≈ F ( �R) + �X · (∇RF ( �R)).

(C1)

Evaluating this explicitly,

F (�r) ≈ 1

R
Wν f ,�+1/2(R)Y�m�

(0, 0) + X cos θX ∂R

Wν f ,�+1/2(R)

R

× Y�m�
(0, 0) − i

Wν f ,�+1/2(R)

R2
�X · (r̂ × �L)Y�m�

(r̂)|0,0.

(C2)

Using

�X · (r̂ × �L) = −X sin θX cos φX

L+ − L−
2i

+ X sin θX sin φX

L+ + L−
2

(C3)

gives a fairly simple final expression,

−i �X · (r̂ × �L)Y�m�
(r̂)|0,0

= 1
2
X sin θX (e−iφX Y�m�+1(0, 0)

√

�(� + 1) − m�(m� + 1)

(C4)

− eiφX Y�m�−1(0, 0)
√

�(� + 1) − m�(m� − 1)), (C5)

which evidently vanishes unless m� = ±1. Evaluating the

right-hand side for these two ml values yields

− i �X · (r̂ × �L)Y�m�
(r̂)|0,0

= X

√

�(� + 1)(2� + 1)

6
Y∗

1−m�
(X̂ )δm�,±1. (C6)

The final equations can be written more simply after introduc-

ing a more compact notation. We define the coefficients b
(�,ν f )

LML

as follows:

b
(�,ν f )

0,0 =
√

2� + 1

R
Wν f ,�+1/2(R), (C7)

b
(�,ν f )

1,0 =
√

2� + 1

3
∂R

Wν f ,�+1/2(R)

R
, (C8)

b
(�,ν f )

1,±1 =
√

�(� + 1)(2� + 1)

6

Wν f ,�+1/2(R)

R2
. (C9)

These allow the first-order Taylor expansion to be written as

1

r
Wν f ,�+1/2(r)Y�ML

(r̂) ≡
1
∑

L=|ML |
X Lb

(�,ν f )

LML
YLML

(X̂ ). (C10)

To avoid differentiating the (ordinary) Whittaker function, the

following identity can be used:

∂R

Wν f ,�+1/2(R)

R

= [R − ν(ν + 1)]Wν,�+1/2

(

2R
ν

)

− νWν+1,�+1/2

(

2R
ν

)

R2[ν�(ν + � + 1)�(ν − �)]1/2
.

(C11)

APPENDIX D: GREEN’S FUNCTION FORMULATION

WITH NO SPINS OR QUANTUM DEFECTS

In this Appendix, we derive the potential energy curves in

the absence of spins and quantum defects. This clarifies the

more complicated spin-dependent derivation in the main text

and allows for comparisons with the generalized local frame

transformation theory method of Ref. [38] and the Green’s

function results of Ref. [45].

We begin with the following integral equation for the elec-

tronic wave function, valid everywhere outside of a small
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volume of radius Y around the perturber:

�(�r) = 1

2

∮ {

∂GC (�r, �r ′)

∂Y
�(�r ′) − GC (�r, �r ′)

∂�(�r ′)

∂Y

}

da ′.

(D1)

The integrals in this expression are intended to be taken over

the surface of a small sphere of radius Y centered on the

perturber, and, in fact, we will simplify many of our final

expressions by taking the limit Y → 0. The integrals involve

not only the Green’s function, but also the wave function �

and its radial derivative near the perturber. We describe the

electronic wave function near the perturber using the partial

wave expansion

〈Y |�〉 =
1
∑

L=|ML |
|L, ML〉[ jL(kY ) cos δL − yL(kY ) sin δL]BL.

(D2)

The semiclassical de Broglie wave number for the Rydberg

electron at the point of collision with the perturber defines

k =
√

− 1
ν2 + 2

R
. To turn the integral equation of Eq. (23) into

a matrix equation, we insert Eq. (D2) into (23) and project

from the left over angles X̂ at a small value of X , although

constraining X > Y . We can write our equation symbolically

as

X 〈L′, ML|�〉 = Y 2

2

(

X
〈L′, ML|∂Y GC

ν ( �X , �Y )|�〉Y

−X 〈L′, ML|GC
ν ( �X , �Y )|∂Y �〉Y

)

. (D3)

Here the implied integrals are taken over d�Y and d�X . This

is made more explicit by plugging in the expansions for �

very close to the perturber:

( jL′ (kX ) cos δL′ − yL′ (kX ) sin δL′
)BL′

= (Y 2/2)
∑

L

(



ML

L,L′ (X,Y )( jL(kY ) cos δL − yL(kY ) sin δL )

− 

ML

L,L′ (X,Y )∂Y ( jL(kY ) cos δL − yL(kY ) sin δL )
)

BL,

(D4)

where 

ML

L,L′ and 

ML

L,L′ are defined in Eqs. (31) and (B21)–

(B23). Equation (D4), for any chosen surfaces (assumed to

be small, with X > Y ), can be cast as a determinantal equa-

tion whose eigenroots ν will be the electronic energies at a

given value of R, i.e., the Born-Oppenheimer potential curves.

We require a handful of expansions of the spherical Bessel

functions, and retain only the first few terms for kX, kY 
 1.

Using these, we evaluate Eq. (D4), keeping the lowest order

non-vanishing terms in the expansion. This yields

0 = −B0(k2 cos δ0 − �vk sin δ0) + B1

√
3�uv sin δ1, (D5)

0 = −B1[k3 cos δ1 + (�vvv − 3�uuv ) sin δ1]

+
√

3B0�uvk sin δ0. (D6)

These two homogeneous equations imply a transcendental

equation:

0 =
(

1 − �v

tan δ0

k

)[

1 + (�vvv − 3�uuv )
tan δ1

k3

− tan δ0/k

1 − �v tan δ0/k
3�2

uv

tan δ1

k3

]

. (D7)

This agrees with Hamilton’s transcendental Eq. (4.30) for

� states when quantum defects vanish, correcting a typo

in the progression from Eq. (4.29). The factorization shows

the trilobite and butterfly terms emerging naturally, along

with the (typically weak) coupling between them in the third

term inside the brackets. The corresponding equation for �

states is

B1

(

1 + �vvv

tan δ1

k3

)

= 0. (D8)

APPENDIX E: RECOUPLING MATRIX ELEMENT

The key recoupling quantity,

Aiα ≡ 〈i|α〉 =
〈

LiMLi
sRmRi

, (Isp) f m f

∣

∣(SLα )JMJ , ImIα

〉

=
∑

mRα ,mpα ,MSα ,MLα

∑

mpi
,mIi

C
JMJ

SMS ,LαMLα
CSMS

sRmRα ,spmpα
C

f m f

spmpi
,ImIi

× δLα,Li
δMLα ,MLi

δmRα ,mRi
δmpα ,mpi

δmIα ,mIi
, (E1)

FIG. 10. The upper panel shows the p-butterfly potential energy

curve, with threshold value set to the 25p asymptotic energy, and

the lower panel shows the difference between this potential curve

USP(R) ≡ U (R) and the one, USPD(R), including D-wave physics.
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FIG. 11. The upper panel shows the p-butterfly potential energy

curve, with threshold value set to the 16p asymptotic energy, and

the lower panel shows the difference between this potential curve

USP(R) ≡ U (R) and the one, USPD(R), including D-wave physics.

where the Kronecker delta functions in the last line allow us

to eliminate four out of the six sums. This gives the following

simplified expression:

Aiα = δLα ,Li

∑

MS,mp

C
JMJ

SMS ,LαML
CSMS

sRmR,spmp
C

f m f

spmp,ImI
. (E2)

APPENDIX F: CORRECTIONS TO THE PECS

This Appendix considers the main sources of error outside

the current scope of our theory and estimates their strengths

using a minimal diagonalization calculation. We consider the

two Rydberg states studied in detail in the main text and focus

on the adiabatic potential curve connecting the asymptotic

Rydberg (n + 2)p states with the butterfly state at low R.

This is denoted the p-butterfly PEC. The Rydberg basis is

truncated to include the Rydberg manifold in question and the

one below to stabilize the P-wave shape resonance. We ignore

all spin degrees of freedom and use the Rb fine structure-

averaged phase shifts μs = 3.13, μp = 2.642, μd = 1.348,

and μ f = 0.017. Here only triplet scattering is included, using

the J-independent phase shifts calculated by Ref. [33]. The

p-butterfly PEC is shown for both n levels considered here

in the upper panel of Figs. 10 and 11. Its depth ranges, as n

decreases from 23 to 14, from a few hundred MHz to a few

GHz in the p-state regime (see the inset of Fig. 10) and a few

tens of GHz to a few hundred GHz in the butterfly regime.

FIG. 12. The Born-Huang correction for 16p-butterfly (upper

panel) and 23p-butterfly (lower panel) potential energy curves. The

correction term vanishes for larger R in both cases as the state

becomes almost completely a pure p electronic state.

1. Higher-order partial wave scattering

Next, consider the effect of D-wave interactions on the

other potential curves using this minimal model. The ma-

trix elements of the D-wave pseudopotential are evaluated

explicitly in the Supplemental Material of Ref. [49], where

the D-wave phase shifts can also be found. For L > 1, the

phase shifts are well-described by the partial wave Born

approximation, which gives δL(k) = παk2

(4L2−1)(2L+3)
. The lower

panel of Fig. 10 shows the difference between the p-butterfly

PEC computed with [USPD(R)] and without [USP(R)] the D-

wave interaction. The correction is on the order of about one

percent, increasing, which leads to shifts in the vibrational

energies of ∼60 − 80 MHz in the butterfly region (where the

overall bound states are ∼50 − 75 GHz deep) and shifts of

∼10 − 30 MHz in the long-range P-state region, where the

binding energies are a few hundred MHz.

At smaller n, the absolute strength of the D-wave inter-

action is larger, as seen in Fig. 11, but the relative strength

remains about one percent. The vibrational bound states are

shifted by about 6 GHz out of 600 GHz in the butterfly region

here as well.

2. Nonadiabatic corrections

Nonadiabatic physics modifies results from the Born-

Oppenheimer picture in two ways: it couples adiabatic
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potentials together through the first-derivative coupling term,

often called the P matrix, and it adds an overall repulsive

correction term due to the second-derivative coupling matrix.

This correction, often called the Born-Huang term, is

UNAD(R) = − 1

2μ

〈

�U (R)

∣

∣

∣

∣

∂2

∂R2

∣

∣

∣

∣

�U (R)

〉

r

. (F1)

Here, |�U (R)〉 denotes the adiabatic eigenstate corresponding

to the potential energy curve U (R).

This correction term is computed for both of the n =
14 and n = 23 p-butterfly PECs, again using our minimal

diagonalization model. As shown in Fig. 12, this correc-

tion is always positive and its size is nearly independent

of n. For the p-butterfly calculations considered in the

main text, this term is sufficiently small to neglect, but

its importance should be reconsidered for higher n levels

where the depth of the potentials decreases to the few GHz

level [55].
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