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The determination of ultra-long-range molecular potential curves has been reformulated using the Coulomb
Green’s function to give a solution in terms of the roots of an analytical determinantal equation. For a system
consisting of one Rydberg atom with a fine structure and a neutral perturbing ground state atom with hyperfine
structure, the solution yields potential energy curves and wave functions in terms of the quantum defects
of the Rydberg atom and the electron-perturber scattering phase shifts and hyperfine splittings. This method
provides a promising alternative to the standard currently utilized method of diagonalization, which suffers from
problematic convergence issues and nonuniqueness, and can potentially yield a more quantitative relationship
between Rydberg molecule spectroscopy and electron-atom scattering phase shifts.
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I. INTRODUCTION

For the past 15 years, the spectroscopy of ultra-long-range
Rydberg molecules consisting of a bond between one Rydberg
atom and one or more ground-state atoms has flourished and
become increasingly quantitative [1-21]. The basic picture
of the bonding mechanism remains rooted in the scattering
of the Rydberg electron by the ground-state perturbing atom,
which is qualitatively the same as in early studies of Rydberg-
neutral interactions [22-26]. This picture produces unusual
oscillatory Born-Oppenheimer potential curves and intriguing
electron probability distributions for some of the electronic
states, which resemble trilobites or butterflies [5,8,25,26]. The
aim of the present article is to implement a Green’s function
treatment that includes the effects of all spin interactions to
make first-principles theory far more quantitative than existing
theoretical techniques.

Since the earliest experimental observations of this class
of molecular bound states, the original picture of the atom-
atom bonding has been confirmed in its basics [25]. That
picture derives from the Fermi-Omont representation of the
effective energy associated with the electron-atom scattering
phase shifts 8 (¢), but while it has been confirmed, its limita-
tions have also become apparent. The Fermi-Omont effective
zero-range interaction terms in the Hamiltonian [27,28] are
proportional to tandz(e), where € is the kinetic energy of
the electron at the point where it collides with the perturbing
electron. For systems possessing a low-energy shape reso-
nance, like the e-Rb and e-Cs systems, that tangent function
can diverge to infinity. This is the case, in particular, for the
butterfly Rydberg molecule states whose potential curves are
controlled by a * P scattering resonance [26,29]. The resulting
divergence poses a stringent challenge for any theory aiming
to quantitatively describe the molecular spectroscopy.

The presence of occasionally divergent terms in the Hamil-
tonian produces instabilities that require renormalization
when standard methods for computing energy eigenvalues are
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utilized, such as diagonalization of H in a truncated expansion
into an orthonormal basis set. That diagonalization approach
has until now been the method of choice for calculations of
the Rydberg molecule Born-Oppenheimer potential energy
curves; this preference is in part because of the relative ease
with which one can add additional spin-spin and spin-orbit
interaction terms to the Hamiltonian, when higher precision
is desired [30-34]. (While Refs. [30,34] have both developed
Hamiltonians for the diagonalization method which include
all of the spin degrees of freedom treated in the present
article, we recommend that calculations using this method
should preferably implement the final result of Ref. [30], for
the reasons discussed in that article.) A drawback is that the
expansion is known to not converge, leading to nonunique
basis size-dependent potentials that make it challenging, if not
impossible, to compare experiment and theory in a fully ob-
jective manner [35]. Furthermore, the electron energy needed
to evaluate the energy-dependent scattering phase shifts can-
not be determined self-consistently in such diagonalization
approaches, leading to a lack of self-consistency [20].

Our treatment implements a nonperturbative Green’s func-
tion description of the electronic energy eigenstates of such
Rydberg-ground state diatomic molecules, which incorpo-
rates, in principle, all spin-dependent interactions in addition
to the basic Coulombic Hamiltonian. The goal is to make
fully quantitative the mapping of electron-atom scattering
information and the Rydberg atomic quantum defects into
accurate Born-Oppenheimer potential energy curves whose
rovibrational states can be measured and tested accurately.
The Green’s function treatment developed here has been mo-
tivated by an earlier Kirchoff integral formulation [26,29,36],
which does not suffer from nonconvergence issues that plague
numerical diagonalization treatments. Because the method
manipulates the phases of the wave function near the per-
turbing atom instead of performing a diagonalization of the
Hamiltonian based on the scattering volume-dependent and
energy-dependent pseudopotentials, the divergences of tan
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FIG. 1. Electron-Rb scattering phase shifts used in this article.
The black (dark) curves are calculated ab initio using a relativistic
model potential [36]. The blue (light) curves show phase shifts which
were modified (in the triplet case only) by Ref. [12] to produce
electronic potential curves whose vibrational energies match those
observed in experiment.

cause no difficulties in the Green’s function theory. Our re-
sulting extension of that Kirchoff integral Green’s function
method to include all spin-dependent interactions, presented
here, is expected to significantly reduce much of the cur-
rent uncertainty in comparing theoretical and experimental
Rydberg molecule energy levels. With this improvement, it
should allow sharper conclusions to be drawn in deducing
electron-atom scattering information from spectroscopic mea-
surements. Other promising approaches to the calculation of
Rydberg molecule spectra have been developed in recent years
[37,38], but they have not yet been extended to include the
full set of spin-orbit and hyperfine interactions built into the
present treatment.

II. THEORY
A. The basic ideas and notation

We use atomic units throughout, based on the reduced mass
of the atomic ion—electron system. The full Hilbert space of
interest includes the Rydberg electron’s position and orbital
angular momentum operators, 7 and Z, respectively, relative
to the Rydberg core. Relative to the perturber at a posmon
R = RZ, these operators are denoted X =7—R and L. The
remainder of the state space of interest includes multiple spin
operators: the Rydberg electron spin sg, the perturber atom
electronic spin §,, and the perturber atom nuclear spin I
The nuclear spin / should not be confused with the identity
operator, 1. The Rydberg molecules studied experimentally to
date have involved perturbing ground state atoms from either
the first or second column of the periodic table, which have
no orbital angular momentum. Our formulas omit reference
to the Rydberg atom’s nuclear spin quantum number I since
its associated hyperfine structure decreases rapidly with ¢
and with n as n=3, and is typically negligible for currently
achievable spectroscopic resolution. However, if ever appro-
priate, this can be readily incorporated without changing the
basic structure of our approach. The reader can find a visual
depiction of all of these angular momentum vectors in Fig. 1
of the authors’ previous article, Ref. [30].

In addition to these operators, some key intermediate an-
gular momentum sum operators used in the following are the
total angular momentum operator of the perturber, f =5,+ I,
and the total electronic spin of the molecule, S= Sk + 5.
Other summed angular momenta that enter our treatment in-
clude the total angular momentum of the Rydberg electron
relative to the positive ion nucleus, j’z Sk + Z, and the to-
tal electronic angular momentum of the electron-perturber
system relative to the perturbing atom, namely, J=L+S5.
The following formulation does not explicitly describe the
Rydberg electron as indistinguishable from the perturber elec-
tron(s), although their indistinguishability is understood to
have been incorporated when computing the scattering phase-
shifts of a free electron (i.e., the Rydberg electron in the
present context) from the perturbing atom. Accordingly, a
complete set of states in the Hilbert space is the ket

|r7£’m€;SRamR;Sp5msp;l7ml>? (1)

where we imply that this state has an angular dependence
associated with a spherical harmonic ), ,,, (6, ¢) with respect
to the Rydberg core. Note that we use ) to denote spherical
harmonics in order to avoid confusion with the variable Y.
Table I summarizes this list of different quantities and their
allowed values.

Space is partitioned into three parts: a small sphere cen-
tered on the Rydberg core, where short-ranged interactions
between the multielectron core and the Rydberg electron pro-
duce quantum defects ¢ j, a second small sphere centered
on the neutral perturber, where the Rydberg electron scatters
with known phase shifts 655/ (k), and finally, the vast region
of space outside these two spheres. In this latter region, the
Hamiltonian is written

Hy=hpya ® 1, @ 1, + L; @ 1, ® Y _ |fms)Es(fmyl. (2)

fomg

Here hgyq is the full short-range Hamiltonian of the Ryd-
berg electron in the field of the positive ion nucleus and any
screening or spectator core electrons in the singly charged
ionic ground state. The unit operators for various degrees of
freedom are also indicated in this Hamiltonian in an obvious
notation. The state | fmy) = |(s,])fmy) is the coupled nuclear
spin state of the perturber, and its hyperfine energy levels E
are given by

A
Ep =SIf(f + D= IU+1) = sp(sp + DI 3)

A is the hyperfine structure constant of the perturber. The
Rydberg electron energy levels E,;; are determined by the
single-channel quantum defects via

1
2(n — pe)?
This can be generalized to a multichannel quantum defect
theory (MQDT) representation of the atomic Rydberg levels
[39-41], as in Ref. [42], when appropriate.
If electron-perturber interactions are neglected and if quan-
tization of the radial {r} degree of freedom is initially

postponed in the spirit of MQDT, the set of channels are
characterized by the commuting observables for Hy. This set

Enyj=— 4)
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TABLE I. Summary of the operators and other quantities used here to describe long-range Rydberg dimers involving two alkali atoms. The
hyperfine details assume that the perturber atom is 8’Rb. The zero of our energy scale is the statistical average of perturber hyperfine energy

levels plus the positive-ion ground-state energy.

Operator Eigenvalues Physical meaning

L L=0,1 electron orbital angular momentum relative to the perturber

l £=0,1...n—1 electron orbital angular momentum relative to the Rydberg core

Sk s =1 Rydberg electron spin

5p sp=1 perturber electron spin

T 1= % perturber nuclear spin

f f=12 total angular momentum of the perturber

Ky S$=0,1 total electron spin of the molecule

j j= %, %, coon— % total angular momentum of the Rydberg electron relative to its core
J J=0,12 total electronic angular momentum of the anion, relative to its core
Quantity Possible values Physical meaning

mg, m, :I:% electronic spin magnetic quantum numbers

my :i:%, :I:% nuclear spin magnetic quantum number

my = my, [me] < 1 projection of the Rydberg electron orbital angular momentum onto %
M = my +mg +m, +my M| < % projection of the total angular momentum onto 2

e, j - quantum defect of the Rydberg atom

85t - scattering phase shift of the electron-perturber system

v v = (=2E)"1? the effective principal quantum number defined at E < 0

n n=172... integer-valued principal quantum number for hydrogenic Rydberg states

of channel functions has the structure

i) = [(srl)jmj, fmy), ®)
corresponding to channel threshold energies equal to
E, =E;. (6)

This representation describes a set of diagonal potentials that,
in the absence of electron-perturber interactions, have no cou-
pling whatsoever,

1 e+ 1)> o

Vie(r) =8\ Ei — -
") < r + 2r2

for electron-ion distances r > ry. Here it is assumed that
there is a relatively small distance ry ~ 20 a.u. beyond which
the electron-ion interaction potential can be approximated as
purely Coulombic. Of course, at distances » < ry the Ryd-
berg electron experiences complex screening and exchange
interactions with the ionic core electrons, but the effect of
those complex interactions is fully encapsulated in the weakly
energy-dependent quantum defects fiy;.

Green’s function methods can be implemented in various
alternative approaches. For instance, one can impose physi-
cal boundary conditions at » — oo at the outset, or one can
postpone the large-r finiteness boundary condition in the spirit
of MQDT, which would imply utilizing the so-called smooth
Green’s function, G [22,23,43,44]. Our present formulation
utilizes the former method based on the physical Green’s
function. Owing to the spin degrees of freedom in this system,
the Green’s function G for Hy is a diagonal matrix in the spin

indices, which at total energy E satisfies
(Ho — E)GC(;:v ;:/) = 8(? - 7/)8memf,mkf’m/f' 3

In particular, the present treatment adopts the Green’s function
that imposes the correct boundary conditions for the Rydberg

electron as it emerges from the ionic core in a specified (£sg)j
channel with its appropriate j-dependent quantum defect.
This is especially important for the Rydberg p and d states.

B. Review of the key Green’s function equations

The method developed here builds on the original spin-
independent formulation of Hamilton [45], which in turn
is based on the closed-form Coulomb Green’s function de-
rived by Hostler and Pratt [46]. This Green’s function,
which ignores spin degrees of freedom and atomic quantum
defects, is

Cro 1 ra-—-v) ,
G (F,75v) = m M,y ,(MW,1/2(8)
- Mu,l/z(ﬁ)Wlf,l/z(?)i|s )

where W and M are standard Whittaker functions, primes
denote ordinary derivatives with respect to the argument, v =
+/—2FE is the principal quantum number defined at E < 0, and

En=@+r£[F-F]/v (10)
Quantum defects can be included naturally via a correction

term to be added to G, derived originally by Davydkin et al.
[47],

by my={t

G F ) =D kW) Vom0, $)V;,, (0, ¢))

=0 my=—

X W es12(0OWae12(e) ("), (11)
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where £ is the highest angular momentum with a nonvanish-
ing quantum defect and

7T SIN 7T g
A(V) =

; - . (12)
sinvsinw(uy + v)

The rescaled Whittaker functions in Eq. (11),

v 2r
Watip(r) = \/F(v —OF(+v+ 1)WM+% (7) (13)

have an energy-normalized amplitude V2(k(r))""? in the
classically allowed region [48].

A first key generalization needed here to incorporate the
full spin-dependent physics of the Rydberg molecule is to in-
clude the perturber’s hyperfine structure as a constant energy
shift dependent on the f quantum number. This is done by
inserting the identity operator fomy |fmg){fmy| into Eq. (9)
and evaluating the Green’s function at the principal quantum
number vy, where £ — Ef = —#. Equation (9) becomes

GEF.7iv)y= Y lseme, fmy)GS (F.F'){(fmy, sgmgl,
mg, f,mys

(14)

which is also diagonal with respect to the Rydberg electron’s
spin. The generalization of Eq. (11) includes the j-dependent
quantum defects of the Rydberg electron, yielding

cid e W, e120O0Wa, e12(F)
Gq‘d‘(r, v l)) = Z Z A.[,j(v.f) ! p !

r/

fomy €, j,m;

x| jmj)(jmj| < | fmg)(frmyl. 5)

The quantity A, ;(vr) is identical to A.(v), but generalized
to accept j-dependent quantum defects, ¢ — g, j. The full
operator is the sum G = G¢ + G%“-. To organize the angu-
lar momentum and spin indices, we introduce a shorthand
notation,

iEL,MLv””R&fvmfs (16)
which also defines a corresponding state:
[i) = [srmg, (sp])fmp, LM). 17

Since the Coulomb Green’s function of Eq. (14) is diagonal in
all of the i quantum numbers except for L, another useful index
will be i, consisting of all i quantum numbers except L. We
define &3 = 8¢,y 8msm b Sty Saa, My - Note that the size of the
set of quantum numbers included in i, which will eventually
set the dimension of the determinantal equation, is restricted
by the number of partial waves included, the hyperfine spin
of the perturber, and the projection of the total angular mo-
mentum onto the internuclear axis, My, which is a good
quantum number. The number of quantum defects included
does not affect this size, nor does the energy of the Rydberg

J

states in question. This is an important difference between this
approach and diagonalization of a basis expansion, where the
matrix dimension grows linearly with v.

C. Green’s function terms evaluated near the perturber

Now that the Green’s function matrix has been determined,
the electron-perturber scattering information will be incorpo-
rated into the calculation simply as boundary information on
the tiny sphere centered on the perturber. To set the stage
for this, this section presents analytic results for the Green’s
function matrix in the vicinity of the perturber. The vectors X
and Y are defined according to ¥ = R+Xand7 =R+ 17,
with the goal in mind that all relevant Green’s functions or
Rydberg wave functions will be evaluated at these coordi-
nates. The next step is to evaluate all of these expressions
at ¥ <« X « 1, corresponding to a tiny region around the
perturber. The Green’s operator in the i representation can be
expressed conveniently in these coordinates.

The Green’s function expansion about the perturber posi-
tion reads

GS (R )~ Y Vi, OAE (X, V)V, (7).

L.L' M

Analytical expressions for Aﬁ"LL (X,Y), to lowest order in X
and Y, are given in Appendix B, specifically Eqs. (B21) and
(B23). These terms vanish when M, # M; due to cylindrical
symmetry. Insertion of this expansion into Eq. (14) yields

GEF Fiv) = (RI| D Isp AL (XL Y)W |IP).  (18)

.o
11

The number of partial waves in the expansion about the per-
turber has been restricted here to L < 1, which is generally
sufficient for long-range Rydberg molecules. We will discuss
the possible effects of higher partial waves [49] in more de-
tail in Sec. IV. Should it become necessary to extend the
present treatment to higher partial waves, the derivations in
Appendix B can be generalized.

To obtain a similar form as Eq. (18) for the quantum defect
correction in Eq. (15), the Taylor expansion of the Coulomb
wave function is needed for small X and Y. These expansions
are derived in Appendix C, namely, Egs. (C7)—(C9), and are

W, e41/2(r) . 1 . A
%Yﬁmw 3 X P &), 19)
L=|M, |

We insert this expansion, the analogous expansion of the r’
dependence in terms of the variable Y, and the same iden-
tity operators in terms of L and M| as above, into Eq. (15),
obtaining

N 5 . ’ ¢, Ly o . 5
G477 v) = (RIS 0875 0mm, XY D" a0 byt 550 1St at e W1 17 (20)

ii

£, j.m;
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where

Syl =N'ch .o choo 1)

My, ,mg,mpr IMy sgmg " IM; s, spmp
lle
Equations (18) and (20) give a useful form for the full Green’s
function when it will be evaluated in the vicinity of the per-
turber, at small X and small Y:

> Xy (GH;

ii’

G(F, 7'iv) = X, Y)+ G (X, V) {|P).

(22)

D. Integral equation

The next step utilizes this spin-dependent Coulomb
Green’s function treatment to calculate the molecular poten-
tial energy curves. The derivation starts from the following
integral equation for the electronic wave function W(#), valid
everywhere outside of a small volume of radius Y around the
perturber:

) = — yg YTy, r) V(') -
2 aY
(23)

The most convenient expression for the Rydberg electron’s
wave function in the perturber’s vicinity is its partial wave
expansion, since a small collection of energy-dependent spin-
orbit coupled phase shifts 65/ (k) suffice to parametrize the
full wave function. As with the shorthand index i, here it is
useful to define a second index,

IV )
7 )G(7,7’)}dY.
Y

a=SLJ M1 m, (24)
along with the state
lae) = |[(srsp)SLYM;, Imy), (25

incorporating all of the degrees of freedom of the perturber
spins and atom-electron scattering complex. The size of the
set « is equal to that of i. In the |a) representation, the wave
function near the perturber is

(FIW) = Y By®u(k, Y)(¥|0r). (26)

For Y sufficiently large that the perturber-electron potential
has vanished, but small enough that the Coulomb potential is
effectively constant, the radial wave function is given in terms
of spherical Bessel functions j; and y;,

Oy (k,Y) = jr(kY)cos 855 (k) — y, (kY ) sin 852 (k).  (27)

Some discussion is needed of the meaning of Eq. (27) and,
in particular, the choice of the electron momentum k. When
hyperfine structure can be ignored, k is obtained semiclassi-

cally via k = —% + 1%. This expression already makes one
approximation, namely, that the electron-ion reduced mass
is equal to the electron-perturber reduced mass, certainly
adequately accurate in typical applications. (Recall that our
choice of units throughout this article is atomic units based
on the electron-ion reduced mass, set here to unity.) A fur-
ther complication arises when the perturber possesses very

low-lying energy levels such as hyperfine structure, because

when the Rydberg electron collides with the perturber atom
with kinetic energy equal semiclassically to ¢ = — L + =, it
is actually a multichannel problem and there is an electron-
perturber scattering matrix with different wave numbers k
in the different hyperfine channels. For this situation, we
interpret the rest of our derivation in this article, based on
Eq. (28), as making a frame transformation approximation,
as in the spirit of Refs. [50-52], this will normally be an
excellent approximation because ks ~ k, but it can begin to
fail (implying a need for improvement) in those limited ranges
of R where k — O.

Inserting the expression for the Green’s function near the
perturber [Eq. (22)] and the wave function near the perturber
[Eq. (27)] into Eq. (23) yields

D @k, X) (X |a)By

= 5 @Y il G (6. 1tk )

lld

— Gii(X, Y )y Dok, Y'Y ) (Y |@)}dY By (28)

Because of the form of Gjy(X,Y) derived in Eq. (22), the
integration over Y is trivially removed by the presence of
the identity operator in Eq. (28). The transformation of the
integral equation in Eq. (26) into a matrix equation is accom-
plished now by projecting onto (o'| and § dX|X) from the
left:

1 :
o (k, X)By = - Z(a'wz[ayGi,mx, Y)®(k, Y)

= Giy (X, Y)dy Dok, Y)(i'l0)Ba.  (29)

The spin recoupling matrix elements (i|e) are

(eli) = 67,1, Z cM CSMs clm

SMs, Lo, M|, sRmR Sphy " spmp Imy*

Aia = (ila) =
Ms mpy

(30)

Equation (29) is the key equation, but it is not yet ready to
implement, until we expand everything to lowest orders in
X and Y, again assuming that ¥ <« X throughout. This has
already been accomplished for the Green’s functions, using
the equations Egs. (B21), (B23), and (20), and additionally
the expansion of

A (X, Y) = fdx f a7 Vi, (R)0y GE R 7 )Vioan, (F)

€2y

derived in Eq. (B22) in Appendix B. After plugging in the
lowest terms in these expansions and those for the spherical
Bessel functions in the radial wave function ®(k,Y), we
finally obtain the set of linear equations to be solved for the
electronic energies. With the definition of B, = Ba(g)Lﬂ, the
final key set of linear equations becomes )

Z ( — 80{’0{ COS SS”’LHJH + Qa’a)Ba = ZMO(/O[(va R)Boz - 0,
‘ ‘ (32)
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in terms of the matrix

Seir Lo 11
o= BT AL 3 S

K'=0 K=0

8Ly + 1
x (51 iPe x(vy, R) + —Qii’>j|-/4i’aa (33)

2
where
_ ve), (L) ol,j
Qii’ = 3f,f’8m/,m}. Z )‘«Z,j(vf)b[_ My bL M, SML M} gy

e
(34)

Here b(Z Kg) is defined in Appendix C, Eqgs. (C7)-(C9), and
with K € {O 1} the Px/k are matrix elements of

» o, 330, 35)
N \%cpuv — Dy + 38Mi,0q)uuv .
E. Numerical procedure
Equation (32) is satisfied only at discrete values of v, which
we obtain numerically by finding the roots of det M(v, R)
at each R. In practice, to make the root-finding procedure
more stable, we conduct the numerical search for roots in the

quantity

M(v,R) = sign[I1; ; rsinmw (uy,j + vy)det M(v, R)]
x [T psinmw(us ; + vy)det M(v, R)[V7. (36)

The product IT; ; r is taken over all / and j values with nonzero
quantum defects and over all hyperfine levels; this term re-
moves singularities stemming from A; ;j(v). The choice of a
power of 1/7 is to “smooth” the variation (of many orders
of magnitude) in the determinant as a function of v, and the
numerical procedure could be improved in different regimes
by adjusting this.

The unusual characteristics of Rydberg molecule potential
curves makes it challenging in some cases to obtain these
roots. The breaking of different symmetries by the relativistic
or hyperfine couplings in the Hamiltonian is often quite weak,
which means that the oscillatory potential curves can fre-
quently become nearly degenerate, impeding the resolution of
multiple roots. Furthermore, these potential curves can change
from a rather smooth variation in regions where the electronic
state is primarily in a Rydberg state of low angular momentum
to rapid variations when the electronic state becomes domi-
nated by high angular momentum trilobite and butterfly states.
This combination of rapid fluctuations and near degeneracies
complicates the choice of search grid used to numerically find
the roots.

To resolve these issues, in a first pass the potential energy
curves are computed for a large value of M, where the num-
ber of roots, and, in particular, of nearly degenerate roots, is
diminished. We exploit the adiabaticity of the potential curves
by starting our search at large R, where the threshold values
of the potential curves are known, and proceeding inwards

to small R by searching for each discrete root v(R;) within
a series of energy windows bracketing the roots found at
R; 1. For smaller M, values, we implement this same process
but also include search windows centered around the roots
found for higher M. This helps to treat regions where nearly
degenerate potential energy curves vary rapidly as a function
of R.

It is interesting that the computation of highly excited
spectra of quantum billiards is often accomplished by solving
a very similar determinantal equation also derived using the
relevant Green’s function [53]. Some approximation methods
developed in this context may be useful here [54]. Alterna-
tively, it may be advantageous to search instead for zeros in
the eigenvalues of M(v, R) to avoid missing roots due to near
degeneracies.

F. Atomic parameters

The hyperfine splitting, atomic quantum defects, and po-
larizabilities utilized in our calculations have been determined
via precision spectroscopy to very high accuracy and are col-
lected in Ref. [31]. The electron-atom scattering phase shifts,
on the other hand, are only available from theoretical calcula-
tions and the values of key properties, such as the zero-energy
scattering lengths and shape resonance widths and positions,
vary from source to source [31,33]. For example, relativistic
e-Rb phase shifts for L < 1 were published by Khuskivadze
et al. in Ref. [36], and are shown as black (dark) curves
in Fig. 1. The blue (light) curves in this figure are phase
shifts which were fit to experimental data taken in s-state
Rydberg molecules [12]. This was accomplished by varying
the triplet scattering phases so the potential energy curves—
computed using a basis set benchmarked to the results of
a spin-independent Green’s function calculation—predicted
vibrational states and binding energies in agreement with the
measurements [12]. The zero-energy scattering length ob-
tained from this calculation is about 10% smaller than the
ab initio value, but its value remains within the spread of
scattering lengths obtained theoretically and from similar ex-
periments [2,10,31]. The position of the P-wave resonance is
about 20% lower than calculated.

The next section presents potential curves obtained from
our present Green’s function method, alongside those ob-
tained by diagonalizing the zero-range Hamiltonian. These
illustrate that our present method can be reliably used to
obtain accurate potential energy curves without the debilitat-
ing dependence on the basis size. From these comparisons,
we emphasize that the phase shifts previously obtained from
the diagonalization method are most likely valid only as
model-dependent fit parameters. This is due to the inability
to benchmark the potential curves with alternative methods,
and worse, the fact that the dependence of the potential curves
on the input phase shifts varies with internuclear distance,
and measurements taken over a finite range of Rydberg levels
or bond lengths likely do not provide unique fits. We will
further emphasize this point by comparing the potential curves
obtained from the Green’s function method with these two
sets of phase shifts, showing that the current best set of phase
shifts are incompatible with experiment when used outside the
scope of the model.
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1000 1200

FIG. 2. Potential energy curves with threshold values at the
25p;, f =1, 2 levels, presented relative to the 25p,, f = 1 thresh-
old. The deep wells at smaller R values host butterfly molecular
states. The calculation uses the fitted phase shifts of Ref. [12].

III. RESULTS

After they are found numerically, the collection of roots
v;(R) determine the potential energy curves

1 o

UR) = ————— — ——,
®) 20(R? 2R*

(37
where the second term denotes the polarization interaction
between the Rydberg ion and the neutral atom.

A. Rydberg p states and butterfly molecules

A fertile environment for testing our method is provided
by the molecular states asymptotically reaching the unper-
turbed (n + 2)p; Rydberg states of rubidium. The label n here
represents the hydrogenic manifold lying energetically above
these states, which are shifted by the large quantum defects
of Rb. The relevant potential energy curves, with energies
displayed relative to that of the 25p; 2, f = 1 asymptote, are
shown in Fig. 2. At large R, the molecular electronic char-
acter resembles that of the unperturbed atomic state, and the
potential curves are subsequently of the shallow low-{ type.
Reference [7] reports molecular spectroscopy in this energy
range. At smaller R (around 400 a.u., the butterfly states de-
scending from the unperturbed manifold of degenerate high-£
states with principal quantum number n mix strongly with
the (n + 2)p; states. This interaction dramatically deepens the
potential wells. The deepest vibrational states, having bond
lengths between 150 and 350 a.u., were observed in Ref. [8].
The measurement of large electric dipole moments in these
molecular states confirmed that they were butterfly states.

The relative depths of the butterfly molecule potential
wells, at R < 400 a.u., are sensitive to the position of the P-
wave shape resonance, the energy dependence of the P-wave
phase shifts above resonance, and, due to the divergence of the
P-wave term in the zero-range pseudopotential, the number of
included Rydberg basis states in the diagoanlization method.
We illustrate this in Fig. 3 by plotting the deepest butterfly

=10}

-20f;

-30

U(R) (GH2)

40P

-50t

~60500 250 300 350 400

FIG. 3. The deepest butterfly potential energy curve near the
25pi., f =1 state representing the zero of the energy scale, cal-
culated using our Green’s function method (in black) and compared
with diagonalization in six different basis sizes (colored and dashed).
The basis sets include states from the degenerate Rydberg manifolds
22 < n <23 (purple), 21 < n <23 (blue), 21 < n <24 (cyan),
21 < n < 25(green), 20 < n < 24 (orange), and 20 < n < 25 (red),
as well as all quantum defect-shifted states within these energy
ranges. These curves show the potential curves due to electron-atom
scattering only, i.e., without the additional polarization interaction
from Eq. (37).

potential curve computed with various basis sets and compar-
ing those with the present Green’s function method.

The calculated curves using the two basis sizes which were
used in recent papers, Refs. [12,15], are shown in purple
and orange. Both of these disagree with the Green’s func-
tion results by, on average, around 10 GHz; moreover, the
diagonalization results do not converge to the Green’s func-
tion result as the basis increases. The agreement between a
given diagonalization calculation and the Green’s function
also varies with internuclear distance, calling into question the
validity of fitting basis set sizes to specific vibrational states
in one or two potential wells alone.

Figure 4 explores this further by comparing Green’s func-
tion PECs calculated using the fitted phase shifts of Ref. [12]
(in black) and the calculated ab initio phase shifts of Ref. [36]
(in blue). The results obtained from the modified scattering
phase shifts are 15-20 GHz shallower than those calculated
from the calculated phase shifts over the full range of R.
The modified phase shifts are therefore inconsistent with the
experimental measurements of the butterfly-type vibrational
bound states of Ref. [8], which were detected for energies
above —50 GHz. We conclude that the modified phase shifts
of Ref. [12] remain model-dependent fitting parameters which
allowed for accurate reproduction of the ns-state molecules
detected there but are not the correct, model-independent,
scattering parameters.

However, one should not prematurely conclude from Fig. 4
that the calculated phase shifts are correct, even though they
provide qualitatively better calculations than the fitted phase
shifts for these butterfly states. We illustrate this using the
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FIG. 4. Potential energy curves for Rb*Rb supporting butterfly
molecules with My, = % At large R, these potential curves approach
threshold values at the noninteracting 25p;, f = 2 energy levels. The
black curves were calculated with the fitted phase shifts of Ref. [12],
and those in blue using the calculated phase shifts of Ref. [36].
Vibrational levels and their dipole moments were reported in Ref. [8]
in the energy range from —50 GHz to —40 GHz.

same class of (n+ 2)p states in Figs. 5 and 6, where now
n = 14. The potential curves in the upper subfigures are again
comparing the two different sets of phase shifts using the
Green’s function method, while the bottom two figures show
the potentials obtained from diagonalization using the fitted
phase shifts. The interesting region here are the three potential
wells highlighted in Fig. 6, which were found to support vibra-
tional levels via molecular spectroscopy reported in Ref. [15].
Here, the perturbation on the (n 4+ 2)p states due to the but-
terfly potentials occurs at a larger R for the calculated phase
shifts than for the fitted phase shifts, disrupting the inner wall
of this potential well. This would dramatically change, if not
eliminate, the positions of vibrational lines in this well, in
contradiction to the experimental evidence. It is clear from
the bottom two panels why attempts to fit phase shifts with
the diagonalization are not effective; the differences due to
nonconvergence in the basis set size can be patched over by
modifying the phase shifts. Future work should reinvestigate
these comparisons between experiment and theory for these
16p molecular states. A new fit of the phase shifts using
the method presented here will likely show that the physical
phase shifts are in between these two sets compared here.

B. Effect of hyperfine splitting across the Rydberg series

Although the previous section demonstrated the quanti-
tative differences between the present method and diago-
nalization of the zero-range pseudopotential, both methods
yield qualitatively the same results. Exploration of new types
of molecular features can, in principle, be done with either
method, but having a complementary approach at hand can,
through its relative benefits or disadvantages, lead to new real-
izations. In this section, we discuss two previously unnoticed

effects related to the interplay between the different energy
scales—the hyperfine splitting, the splitting between singlet
and triplet energies, and Rydberg level density—in Rydberg
molecules.

Figure 7 shows the potential energy curves with My, = %
in the vicinity of the degenerate manifold of hydrogenic states
with n = 22, just below the 25p potential curves discussed in
the previous section. At this relatively low principal quantum
number, the hyperfine splitting is small compared the energy
shifts caused by the perturber on the hydrogenic states, and
the total electron spin of the perturber-electron complex can
be considered to be an approximately good quantum number
for the trilobite and butterfly potential curves. The singlet
trilobite potential curve is everywhere positive due to the
monotonically increasing positive scattering length in the sin-
glet channel. Contrast this with the same trilobite level at a
much higher energy, as shown in Fig. 8. Here, for n = 70,
the hyperfine splitting is much larger than the energy scale
of the potential energy curves, and couples singlet and triplet
scattering states together. The upper potential curve develops
a large well due to its strong admixture of triplet character.
Such a well could support bound states localized at very large
internuclear distances, in contrast to the very broad triplet-
dominated trilobite potential below. Note that this calculation
does not include quantum defects for £ > 4 to highlight this
well; a more careful study including the finite quantum defects
of high-¢ states would be necessary to quantitatively investi-
gate its properties.

The hyperfine splitting also plays a role in breaking the
degeneracy of the butterfly potential energy curves in the
singlet-dominated P-wave scattering channel. The inset of
Fig. 7 highlights these levels. The oscillating potential curve
is, to an excellent approximation, a ¥ molecular state having
M; = 0, while the smooth potential curve is actually two
nearly degenerate I1 curves having M; = 1. For this n, these
energy levels are split by approximately 1 Hz, making them
challenging to obtain with the Green’s function. Again, as a
function of n, the role of the hyperfine coupling changes, and
at high n it plays a key role in breaking this degeneracy. The
potential curves for n = 70 shown in Fig. 9 demonstrate this,
where now the M| states are coupled and the degeneracy is
broken on the MHz scale.

IV. DISCUSSION

The level of spectroscopic accuracy currently attainable
in Rydberg molecule experiments reaches the level of a few
MHz. Although the dominant sources of inaccuracy in the
calculation of potential energy curves are eliminated in our
method, there are still corrections outside the scope of this
theory which could hinder comparison of predicted and ob-
served binding energies.

One source of error is our truncation to partial waves
L < 1, which is the standard assumption made in the litera-
ture, with the sole exception being Ref. [49]). As shown there,
the main effect of including higher partial waves is to induce
additional trilobitelike potential curve which descend from the
degenerate manifolds. These potential curves are proportional
to ~ — (RL?)~', and are therefore suppressed at large R. We
estimate the contribution of L = 2 scattering in Appendix F 1,
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FIG. 5. Potential energy curves for Rb*Rb with threshold values at the 16p;, f = 1,2 levels, presented relative to the 16p;,, f =1
threshold. The upper left (black) Green’s function calculation uses the fitted phase shifts of Ref. [12], while the upper right (blue) Green’s
function calculation uses the calculated phase shifts of Ref. [36]. The bottom two panels show results using the fitted phase shifts and obtained
via diagonalization with two different basis sizes. In the bottom left (orange), the basis includes states with 12 < n < 14; in the bottom right

(magenta), the basis includes 12 < n < 15.

concluding that it increases the depth of the potential wells by
approximately one percent.

A second source of error is nonadiabatic coupling, which
is typically neglected in studies of long-range Rydberg
molecule. Only a few exceptions have considered these cor-
rections [55-57]. There is no inherent limitation in using
the Green’s function method to compute nonadiabatic ef-
fects, but the computation of the electronic eigenstates and
their derivatives, the key ingredients of nonadiabatic coupling
terms, is beyond the present scope of this article. We have
estimated the diagonal coupling term due to nonadiabatic
physics in Appendix F2. It is inconsequential for vibrational
levels bound in potential wells isolated from extremely sharp
avoided crossings for most n values, although at higher n
the shifts can become measurable in trilobite and butterfly
states [55].

Another source of error derives from the fact that in
electron scattering from an atom with no permanent elec-
tric quadrupole moment, the dominant long-range interaction
is the induced dipole polarizability, varying asymptotically
like r~*. This produces a modification of the Wigner

threshold law for all partial waves L > 0, which in turn causes
all non-S-wave generalized Fermi-Omont pseudopotentials to
diverge at zero collision energy [58-60] [e.g., for p-wave
collisions, the coefficient of the Omont contact potential is
—6m tan 8p/k(R)? while 8p o< k(R)? at k(R) — 0]. Ideally,
those L > 0 partial wave phase shifts should be broken into
a short-range contribution whose effects can be incorporated
as a zero-range pseudopotential, plus a long-range contri-
bution that causes the modified non-Wigner threshold law
treated perturbatively as an explicit polarizability potential
between the electron and the perturbing atom. The devel-
opment of this type of formulation could be important for
high-precision applications, and remains a goal for future
studies. For now, we adopt an extrapolation of the scattering
length and volume at large R beyond the point where the semi-
classical energy becomes negative. An alternative strategy to
deal with the negative kinetic energy phase-shift information,
which was proposed in Ref. [61], could be tested in future
calculations.

One desirable future development would extend the present
Green’s function treatment to handle multiple perturbing
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FIG. 6. Potential energy curves for Rb*Rb with threshold values at the 16p;, f =1, 2 levels, presented relative to the 16p,, f =1
threshold. These panels show the potential wells supporting the vibrational levels detected in Ref. [15]. The upper left (black) Green’s function
calculation uses the fitted phase shifts of Ref. [12], while the upper right (blue) Green’s function calculation uses the calculated phase shifts of
Ref. [36]. The bottom two panels show results using the fitted phase shifts and obtained via diagonalization with two different basis sizes. In
the bottom left (orange), the basis includes states with 12 < n < 14; in the bottom right (magenta), the basis includes 12 < n < 15.

atoms. This could be incorporated along the lines of Ref. [62],
for instance. Essentially, each additional perturber would
require establishing a new set of matching conditions, re-
sulting in a determinantal equation to solve, which for N
perturbers would be N times larger than the single perturber
equation. A significant complication would be the more com-
plex hyperfine structure, since there would be 2V different
hyperfine levels.

V. CONCLUSIONS

This article develops and implements a fully spin-
dependent Green’s function method to compute the adiabatic
potential energy curves of long-range Rydberg molecules.
Our method is directly applicable to any combination of al-
kali atoms and, with appropriate extensions, to alkaline earth
atoms. Potential curves are obtained from this method by the
numerical solution of the roots of a determinantal equation.

Nearly all of the dependence on the Rydberg wave functions
and energy is handled analytically, and therefore the dimen-
sionality of the matrix in this determinant does not increase
with v, facilitating the study of very high principal quantum
numbers.

The discussion above emphasizes how the use of this more
accurate approach, which eliminates the ambiguity related to
the nonconvergent diagonalization method that has plagued
other studies, should enable more accurate studies of Rydberg
molecule spectra and the electron-atom scattering phase shifts
upon which they depend. Having more accurate calculations
at hand should also improve the accuracy of proposals in-
volving the exaggerated properties of Rydberg molecules,
such as those to study the strong multipolar interactions be-
tween long-range Rydberg molecules [63,64], the formation
of heavy Rydberg states out of long-range molecules [65,66],
and the behavior of Rydberg atoms within dense ultracold
gases [9,67-69].
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FIG. 7. Potential energy curves of the singlet-dominated trilobite
and singlet-dominated butterfly for Rb*Rb and M, = % The ener-
gies are measured relative to the hydrogenic level with n = 22 and
a perturber in the f = 2 state. The inset shows the three different
singlet butterfly potential energy curves. One is oscillatory and two,

indistinguishable on this scale, are smooth.

A Python implementation of this method and the root-
finding procedure is available upon reasonable request from
Ref. [70].

ACKNOWLEDGMENTS

The work of C.H.G. has been supported in part by NSF
Grant No. 2207977. C.H.G. also appreciates discussions with
E. Hamilton and access to his unpublished Ph.D. thesis and
related computer programs. M.T.E. was supported by an
Alexander von Humboldt Stiftung during the early stages of
this research. M.T.E. is grateful to have benefited from discus-
sions with and help from P. Giannakeas, C. Fey, F. Hummel,
A. Eisfeld, C. Lozej, and A. A. T. Durst.

7.0 W 1S,

6.2}

40 50 60 70 80 90
[R (a.u.)]'"2

FIG. 8. Trilobite potential energy curves for Rb*Rb with thresh-
old energy at the hydrogenic n = 70 level with an f = 2 perturber,
with M, = % The reference energy is set to the f = 1 level. The
lower trilobite level remains a triplet state, while the upper one is a
mixture of singlet and triplet states.
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FIG. 9. Potential energy curves of the M,y = % singlet butterfly
potential curves of Rb*Rb, with the threshold energy set at the hy-
drogenic n = 70 level with an f = 2 perturber. The reference energy
is set to the f = 1 level. The A doublet (lower two curves) has split
due to the relatively strong hyperfine coupling.

APPENDIX A: ALTERNATIVE EXPRESSION
FOR THE COULOMB GREEN’S FUNCTION

For completeness, we state here another useful expression
for the Coulomb Green’s function, which utilizes a partial
wave expansion in terms of standard Whittaker functions:

7 v+ 1—-v)
Z 2rr'(2¢€ 4+ 1)!

2r< 2r
X M, 112 Woer12| —
v v

XY Vi, G Ve ().

ny

(AD)

APPENDIX B: TAYLOR EXPANSIONS OF G¢

Our development requires some Taylor expansions of
GC(7,7') for Y « X < 1. Many of these terms were com-
puted by Hamilton [45]. First, we introduce a convenient
notation:

v=|?—?’|=v@, (B1)
u=r+r/=vw. (B2)

Then the following expansions will prove to be useful:
u—2R = (Xcosbx +Ycosby)+ O(1/R) (B3)

4 . N 5 .
~ %(Xylo(X)yS‘o(Y) + Y Yoo (X))o (Y)),

(B4)
(BS)

v=+yX2+Y2—2XYcosy,
where

cos y = sin 6y sin Oy cos(¢px — ¢y) + cos by cos by ).

(BO)

Equation (B4) is expressed in terms of spherical harmonics
Yim(X) with L < 2, and in the following expansions we will
continue to write the expansions in these same terms. As
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we include only S and P partial waves in the expansion in
Eq. (26), any higher order terms with L > 2 will have vanish-
ing matrix elements. Our Taylor expansion of G¢ will initially
be represented in powers of (# — 2R) and v. An alternative
expansion for v = |X — Y| in terms of spherical harmonics is

[71]
1Yty X2
—4 _
v ”XL:zL+1XL+1(2L+3 2L—1>

X Y V)V (), (B7)
M
which, truncated to L < 2, is
Y2 . .
v A4 (X + 3—>y00(X)y§0(Y)
4
- 7(Y 5X2) D VKV (). (B8)

J

(u—2Rw ~ xz%ym(ﬁ)ygo(?) +XY<%)JOO()?)J)TO(?)> + terms of rank L = 2.

Squaring Egs. (B3) and (B5) yields
4 A N
v = X2y 2XY = ) YOV, (), (BY)
M
(u — 2R)2 ~ X? cos? Ox + Y2 cos? Oy + 2XY cos by cosby.
(B10)

Retaining terms at most quadratic and of spherical harmonic
orders L < 1, we can write

4w N N
(= 2R) ~ —=[(X* + Yoo () V5o (¥)

+2XY Vio(X) V(). (B11)
Lastly, one mixed expansion is required, where only terms that

are at most linear in each variable are retained. In terms of
spherical harmonics, this is

(B12)

With these preliminaries out of the way, we evaluate the Taylor series of G (u, v;v) for small values of u — 2R and v:

1 1
ZJTGC(M, v V) = ;dD(u, v V) X " + &, + b, (u —

1 1
2R) + Eq)vvv + _q>uuv(u

—2R)* + 1c1> (u—2R)v + 1c1> v?
2 2 uvv 6 vvv .

The various ® terms with subscripts here denote derivatives of the Green’s function with respect to u or v and are given by

D,y = —k7, (B13)
o, = LAV (B14)
uv — 2R Vo
d ra—mv) vk MW, 2k2M’W’+ — (MW, + M\W,) ¢, (B15)
vov — -V ~mr A vWy — —
2R3 2 p VY 2R?
2
q:)uvv = ﬁ» (B16)
v 1
D =T — V) —=M, W, — MW, + M, W, B17
(1 =) 33 T + )} (B17)
I'(l—v) "y )
S, = —— M, (VR +1)— R W, + vR(v —vR+ R — D)W, ;) (B18)
2vR?
(1 —v)
+ oo — (v = )M, %(V(R— DW, — (v — HRW, 5 ). (B19)

For brevity, we omit the second subscript on the Whittaker functions when it is equal to 1/2 and do not write out the full argument
2R/v,ie. M, =M, 1 (%), etc. Primes denote derivatives with respect to the full argument. Finally, we insert all expansions into

this expression and regroup the terms according to their angular character relative to the perturber center:

1 1 1 1 1
G (u, v;v) = {( + @y S PuX + o @, X2 + 3d>mx )47 Voo X) VoY)
1 4 PSRN
q)qu + 2q>uva ﬁle(X)yo()(Y)

1
(q)uvY + 2 PunuXY

)

r 1 1q>xy4nly)2y*f
X__E vv 5 VY TM;] lM( ) 1M( ) .

T PO 4 Bk B
_y()O(X)yl()(Y) + q)uquY?ylo(X)yl()(Y)

(B20)
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As discussed in the text, the eventual matrix representation of the solution requires integrating the Green’s function and its

derivative over X and Y:

AN (X, Y) —yg f APy, RIGEE, )V, (),

A (X,Y) —f f AP Vi, Ky GS (X, Y)Y, (V).

We evaluate these integrals analytically in the vicinity of the perturber by using only the relevant terms of Eq. (B20), dropping

higher order terms in X and Y. In a matrix notation in the space L =

{0, 1}, these read

| 1
(M ’70) Y + q)v quDuvY
Apr Lo, X i[L -1, v—(lo P )XY o
FOwX sl =3 ®u¥ = (G — Puw)XY]

B 0 LcI)uv

Ag’ILL',:O) _ 2( . 1 V3 1 ) (B22)
0 5w = 3P0 = (5Pw = Puw)X]

mp=x1 _ 2V (1 1 !

AT = 3\xz 27" §q>vaX (B23)

Note that the lack of symmetry in these matrices stems from the asymmetry in the X and Y variables.

APPENDIX C: TAYLOR EXPANSION
OF THE WHITTAKER FUNCTION

In this Appendix, we develop the Taylor expansion of the
Whittaker function multiplied by an ion-centered spherical
harmonic in the vicinity of the perturber, i.e.,

F(#) = =Wy, 041200 Vem,(7) ~ F(R) + X - (VrF (R)).

(ChH

N |-

Evaluating this explicitly,

W, e+1/2(R)

F#)~ Wy, 0412(R)Vim, (0, 0) + X cos Ox dr R
Wae+12(R) o
X ¥in (0,0 = iR - (7 D)Yan, (Pl
(C2)
Using
L , L,—L_
X - (7 xL)=—Xsinfy cosqﬁxT
i
L L_
+ X sin Oy sin ¢y % (C3)

gives a fairly simple final expression,
—iX - (7 X L)YVem,(Mlo.0
= 31X sin Ox (¢ Vo, 410, 0)y/ €L + 1) — my(mq + 1)
(C4)
= ¢ Vo1 (0, 0L + 1) = me(me = 1)), (C5)

which evidently vanishes unless m, = +1. Evaluating the
right-hand side for these two my; values yields

—iX - (F X L)YV, (P00

L+ 12+ 1 N
xR Dy b (©6)

(

The final equations can be written more simply after introduc-

. . . ¢,
ing a more compact notation. We define the coefficients b(LMvL’ )

as follows:

v V2041
bffib "= TWW,ZJA/Z(R), (CT

. 20 1 Wv. 041 2(R)
(L.vp) (20 + i l+1/
b = b s C8
v (20 4+ 1)L + 1) Wy, e412(R)
b(lz ;) = 6 ! 2/ . (&)

These allow the first-order Taylor expansion to be written as

1
> X b Yo, X). (C10)

L=|M,|

1
;Wu,,e+1/2(r)yZML(?) =

To avoid differentiating the (ordinary) Whittaker function, the
following identity can be used:

R
LR =0+ DIW e p(2) -
= R2[vT(v + £+ DI (v

or

Wit er12(2)
- 0)]'/2

(C11)

APPENDIX D: GREEN’S FUNCTION FORMULATION
WITH NO SPINS OR QUANTUM DEFECTS

In this Appendix, we derive the potential energy curves in
the absence of spins and quantum defects. This clarifies the
more complicated spin-dependent derivation in the main text
and allows for comparisons with the generalized local frame
transformation theory method of Ref. [38] and the Green’s
function results of Ref. [45].

We begin with the following integral equation for the elec-
tronic wave function, valid everywhere outside of a small
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volume of radius Y around the perturber:
BGC - —»/
v = L (250D,
2 oY

The integrals in this expression are intended to be taken over
the surface of a small sphere of radius Y centered on the
perturber, and, in fact, we will simplify many of our final
expressions by taking the limit ¥ — 0. The integrals involve
not only the Green’s function, but also the wave function W
and its radial derivative near the perturber. We describe the
electronic wave function near the perturber using the partial
wave expansion

2 BVED]
WG - GG }da.

(D)

1
Z |L, M;)[j(kY)cos 8¢ — y; (kY )sin 811B;.
L=|M_|

YW =

(D2)

The semiclassical de Broglie wave number for the Rydberg
electron at the point of collision with the perturber defines

k=,/ —5 + %. To turn the integral equation of Eq. (23) into
a matrix equation, we insert Eq. (D2) into (23) and project
from the left over angles X at a small value of X, although
constraining X > Y. We can write our equation symbolically
as

2

, Y ) > o
x (L M) = == ( (L, Mudy G (X, V) W)y

—x (L', M|GS (X, V)oyW)y).  (D3)

Here the implied integrals are taken over d2y and dQ2x. This
is made more explicit by plugging in the expansions for W
very close to the perturber:

(i (kX ) cos 8 — yp (kX ) sin 8% )By,
=’ /2)) (A
L

— AYE (X, Y)dy (jL(kY) cos 8° — y (kY ) sin 8"))By,
(D4)

(X, Y )L (kY ) cos 8% — y (kY ) sin 85)

where ALLL and AL 1, are defined in Egs. (31) and (B21)-
(B23). Equatlon (D4), for any chosen surfaces (assumed to
be small, with X > Y), can be cast as a determinantal equa-
tion whose eigenroots v will be the electronic energies at a
given value of R, i.e., the Born-Oppenheimer potential curves.
We require a handful of expansions of the spherical Bessel
functions, and retain only the first few terms for kX, kY < 1.
Using these, we evaluate Eq. (D4), keeping the lowest order
non-vanishing terms in the expansion. This yields

0 = —By(k* cos 8y — Dk sin 8g) + B1v/3P,, sin sy, (D5)

0= —Bi[k’cosd; + (Pyyy —
+ /3By @,k sin 8.

3®,,,)sind;]
(D6)

These two homogeneous equations imply a transcendental
equation:

tan § t 5
0= (1 _ o, a‘;{ °>[1+(<I>m 30, ) it

tan 8o /k , tandg
1—®,tandp/k " k3

(D7)

This agrees with Hamilton’s transcendental Eq. (4.30) for
% states when quantum defects vanish, correcting a typo
in the progression from Eq. (4.29). The factorization shows
the trilobite and butterfly terms emerging naturally, along
with the (typically weak) coupling between them in the third
term inside the brackets. The corresponding equation for IT

states is
tan &1
Bi(1+ CIDWJk—3 =0.

APPENDIX E: RECOUPLING MATRIX ELEMENT

(D8)

The key recoupling quantity,
Ai = (ila) = (LiMy,spmp,, (Is) fmy|(SLe)IM;, Imy,)

Z Z cM CSMs clm
SM,Lo My, skmka SpMpg  Spip; Imy;

MRy sMpg sMsy My, Mp,; My,

X ‘SLO,,L; 8MLQ .ML’. 8mRa MR, ‘smm R 8m,a Jmy; s (El)
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FIG. 10. The upper panel shows the p-butterfly potential energy
curve, with threshold value set to the 25p asymptotic energy, and
the lower panel shows the difference between this potential curve
Usp(R) = U(R) and the one, Uspp(R), including D-wave physics.
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FIG. 11. The upper panel shows the p-butterfly potential energy
curve, with threshold value set to the 16p asymptotic energy, and
the lower panel shows the difference between this potential curve
Usp(R) = U(R) and the one, Uspp(R), including D-wave physics.

where the Kronecker delta functions in the last line allow us
to eliminate four out of the six sums. This gives the following
simplified expression:

o Z JM; SMs fmy
Alﬂt - SLa,Lz CSMS,LaMLCsRmR,spm,,cspml,,lm,' (E2)

Ms.,m,

APPENDIX F: CORRECTIONS TO THE PECS

This Appendix considers the main sources of error outside
the current scope of our theory and estimates their strengths
using a minimal diagonalization calculation. We consider the
two Rydberg states studied in detail in the main text and focus
on the adiabatic potential curve connecting the asymptotic
Rydberg (n+ 2)p states with the butterfly state at low R.
This is denoted the p-butterfly PEC. The Rydberg basis is
truncated to include the Rydberg manifold in question and the
one below to stabilize the P-wave shape resonance. We ignore
all spin degrees of freedom and use the Rb fine structure-
averaged phase shifts pu, = 3.13, pu, =2.642, g = 1.348,
and py = 0.017. Here only triplet scattering is included, using
the J-independent phase shifts calculated by Ref. [33]. The
p-butterfly PEC is shown for both n levels considered here
in the upper panel of Figs. 10 and 11. Its depth ranges, as n
decreases from 23 to 14, from a few hundred MHz to a few
GHz in the p-state regime (see the inset of Fig. 10) and a few
tens of GHz to a few hundred GHz in the butterfly regime.

0.4

I 03

Unap(R) (G
o
)]

150 200 250 300 350
R (a.u.)

200 300 400 500
R (a.u.)

FIG. 12. The Born-Huang correction for 16p-butterfly (upper
panel) and 23 p-butterfly (lower panel) potential energy curves. The
correction term vanishes for larger R in both cases as the state
becomes almost completely a pure p electronic state.

1. Higher-order partial wave scattering

Next, consider the effect of D-wave interactions on the
other potential curves using this minimal model. The ma-
trix elements of the D-wave pseudopotential are evaluated
explicitly in the Supplemental Material of Ref. [49], where
the D-wave phase shifts can also be found. For L > 1, the
phase shifts are well-described by the partial wave Born

approximation, which gives &, (k) = mff‘—)’(‘;m The lower
panel of Fig. 10 shows the difference between the p-butterfly
PEC computed with [Uspp(R)] and without [Usp(R)] the D-
wave interaction. The correction is on the order of about one
percent, increasing, which leads to shifts in the vibrational
energies of ~60 — 80 MHz in the butterfly region (where the
overall bound states are ~50 — 75 GHz deep) and shifts of
~10 — 30 MHz in the long-range P-state region, where the
binding energies are a few hundred MHz.

At smaller n, the absolute strength of the D-wave inter-
action is larger, as seen in Fig. 11, but the relative strength
remains about one percent. The vibrational bound states are
shifted by about 6 GHz out of 600 GHz in the butterfly region
here as well.

2. Nonadiabatic corrections

Nonadiabatic physics modifies results from the Born-
Oppenheimer picture in two ways: it couples adiabatic
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potentials together through the first-derivative coupling term,
often called the P matrix, and it adds an overall repulsive
correction term due to the second-derivative coupling matrix.
This correction, often called the Born-Huang term, is

82

1
Uyap(R) = _ﬂ<\pU(R)‘ IR:

\IIU(R)> . (F1)

r

Here, |y (R)) denotes the adiabatic eigenstate corresponding
to the potential energy curve U (R).

This correction term is computed for both of the n =
14 and n = 23 p-butterfly PECs, again using our minimal
diagonalization model. As shown in Fig. 12, this correc-
tion is always positive and its size is nearly independent
of n. For the p-butterfly calculations considered in the
main text, this term is sufficiently small to neglect, but
its importance should be reconsidered for higher n levels
where the depth of the potentials decreases to the few GHz
level [55].
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