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Abstract: We present a framework for the modelling and synthesis of sensor and actuator
attacks on discrete event systems. Initially, we consider systems composed of a single plant
and supervisor subject to an attack that can modify the supervisor’s observations and control
actions. The problem of designing stealthy attacks that can always inflict damage on the system
is formulated as a standard supervisory control problem. Next, we show how to apply our
framework to a decentralised system. Distributed attackers, one for each subsystem, are realised
as nonconflicting supervisors that must coordinate to achieve their individual goals.
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1. INTRODUCTION

We consider the problem of synthesizing distributed at-
tacks that coordinate to disrupt their respective subsys-
tem’s behaviours while remaining undetected. First, we
present a framework modelling a single attacker on a plant
in closed-loop with a supervisor. We assume they can
modify the supervisor’s sensor readings from the plant
– by its sensor attack component – and the control ac-
tion emitted by the supervisor – by its actuator attack
component. We show that these attackers can be realised
as supervisors solving a basic supervisory control problem
(Wonham and Cai, 2019). In the case of full observation,
we can synthesise supremal solutions which identify all of
the system’s behaviours that are vulnerable to attack. We
then extend this framework to the distributed setting with
multiple subsystems, each subject to a different attacker.
The implemented attackers coordinate by synchronization
on common events. This framework is similar to that of Tai
et al. (2023), which presents a corresponding centralised
synthesis algorithm for distributed attacks as distributed
supervisors satisfying global specifications. Our main con-
tributions and key differences over the aforementioned
work are twofold: 1. Our proposed framework models a
rich set of attacks with a compact representation. 2. We
apply distributed synthesis methods to design distributed
attacks over decentralised plants with local specifications.
To the first point, our framework models preemption. The
sensor attacker may only be able to insert a fixed number
of events that preempt the plant, after which the plant
may execute an event or the insertions may continue. To
the second point, we utilise the assume-guarantee algo-
rithm of Mainhardt and Schmuck (2022) for distributed
supervisor synthesis to design distributed attacks. This al-
gorithm possesses a number of desirable qualities from the
viewpoint of attackers. Notably, it maintains information
integrity, as computations are performed locally with min-
imal exchange of local information between subsystems.
⋆ Research supported in part by the US NSF under grant ECCS-
2144416, and by the DFG Emmy Noether grant SCHM 3541/1-1.

This permits the consideration of attackers with distinct
goals that do not wish to share their private knowledge
beyond what is needed for coordination.
Our framework draws from the many existing DES models
of sensor or deception attacks and actuator or enable-
ment/disablement attacks, as summarised by Hadjicostis
et al. (2022) 1 . We consider attacks that must remain
covert, or stealthy, while always being able to achieve
their goals, known as for all attacks. Supervisory control
algorithms have been used extensively for attack synthesis;
see Hadjicostis et al. (2022) and the references therein.
Many such works model the system as a game between
the supervisor and the attacker or the similar bipartiza-
tion structure. Alternatively, we view the attacker as a
controller or coordinator of decoupled plant and supervisor
subsystems. This approach results in compact state space
representations, which is critical for efficiency in synthesis
for the distributed case.
We consider attacks which do not eavesdrop on the control
actions output by the supervisor. Instead, they predict
supervisor outputs using partial observation of its in-
puts. This approach avoids introducing events modelling
attacker insertions and deletions, as well as supervisor
control actions. Also, our parameterization of preemption
generalizes the notion of preempting states in Zhang et al.
(2022) and race conditions in Meira-Góes et al. (2020).
Example 1. Consider the manufacturing system depicted
in Fig. 1. This system consists of a robotic arm that grabs
items from a buffer and then drops them in one of two
drop-off zones. We consider two attackers with distinct
goals. The first attempts to force the arm to try to grab
an item from the drop-off zone. The second attempts to
force the buffer to overflow by having multiple items arrive
at once. Using their model of the local subsystem, each
attacker may independently find solutions achieving their
goals; however, they may conflict when the subsystems are
run in parallel in the actual system. This leads us to ask the
following question: Is it possible for attackers to cooperate
1 Due to strict page limitations, our bibliography is unusually brief.
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Fig. 1. Motivating manufacturing example. The dashed
edge represents eavesdropping of the supervisor con-
trol action by the attacker, absent in our framework.

in designing nonconflicting solutions while exchanging a
minimal amount of information? △

2. PRELIMINARIES

We assume familiarity with basic concepts related to
strings, languages, and automata (Wonham and Cai,
2019). A deterministic (partial) finite automaton over
an alphabet Σ is defined as a tuple Λ = (Q,Σ, δ, q0, Qm)
in the standard way and denoted by a boldface character.
For a plant M represented by automaton M with alphabet
Σ = Σc∪̇Σuc = Σo∪̇Σuo, a supervisor S is a map of control
actions Γ : L(M) → 2Σ such that, for all w,w′ ∈ L(M),
and for the natural projection P : Σ∗ → Σ∗

o, we have that:
(i) Σuc ⊆ Γ(w), hence satisfying controllability, and (ii)
Γ(w) = Γ(w′) if P(w) = P(w′), satisfying observability
(Wonham and Cai, 2019). An automaton S implements
Γ if, for all σ ∈ Σ, we have that σ ∈ Γ(w) if and only
if wσ ∈ L(S); we assume that transitions by events in
Σuo only appear as selfloops, as they cannot be observed
by the supervisor and, therefore, cannot change its control
action. The generated and marked languages of the closed-
loop behaviour of the supervised plant are the respective
languages of the product M || S. We say that S satisfies a
specification K over Σ′ ⊆ Σ if Lm(M || S) ⊆ P−1 Lm(K),
with P : Σ∗ → Σ′∗. Finally, we say that S is nonblocking
if M || S is nonblocking.

3. ATTACKER FORMULATION

First, we consider attacks on a single plant, M , in closed
loop with a single supervisor, S, enforcing a nonblocking
behaviour. In order to apply the theory of supervisory
control, we view the attacker as a supervisor A with
malicious objectives over an augmented plant formed by
both the original M and supervisor S. The attacker
updates its internal state based on observed events as
input, while outputting control actions consisting of a set
of events that depends on the current state.
The architecture of our attacks is depicted in Fig. 1. Here,
an attack A is composed of a sensor attack, SA, and an
actuator attack, AA. The latter tampers with the control
actions of the supervisor, while the former alters the events
perceived by the supervisor. In order to distinguish events
that occur in M from the ones S observes under attack, we
keep different copies of each event that SA can manipulate
in the alphabets of the plant and of the supervisor, which
are from now on denoted by ΣM and ΣS , respectively. The
intersection of these sets consists of events that cannot be
affected by SA and is denoted by ΣNSA; it includes all
events of the plant that are unobservable to the attacker,

denoted by ΣM,uo/A. Moreover, we assume that A cannot
observe plant events unobservable by S, i.e., Σuo/S ⊆
ΣM,uo/A ⊆ ΣNSA. This implicitly means the attacker does
not have access to more sensors than the supervisor does.
Based on the sequence of events observed by the attacker
so far, SA outputs a control decision γSA ⊆ ΣS . One
event σ′ from this set is then picked to be observed by
S; this event is also observed by the attacker, because we
assume SA would not insert an event that the attacker
itself cannot detect. In this paper we consider that there
is a nondeterministic mechanism that makes the choice
of selecting σ′ from γSA; this is analogous to the common
assumption that the plant selects one event to be executed
from the set enabled by the supervisor. We model SA this
way to be able to represent all feasible edits it can do that
lead to a successful attack. So the problem of finding the
most permissive behaviour in supervisory control theory
translates here to the synthesis of all possible strategies
that satisfy the specifications for the attack.
The sequence of events the supervisor observes is then
composed of both events executed by the plant that are
not deleted by SA and events inserted by SA that did not
occur in the plant. Based on this sequence, S outputs a
control action γS , which is the set of events it decides to
enable in the plant. Under attack, this action is affected
by AA, which outputs its own control action γAA. Finally,
the set of enabled events the plant receives, denoted here
by γ, is then a function that depends both on γS and γAA.
Even though SA and AA are implemented separately, they
are synthesised as a single attacker. Hence, both receive
as inputs the events σ executed by the plant – as long
as the attacker can observe them – and the events σ′

picked from γSA to be sent to the supervisor. That is,
the sequence composed of such events impact both γSA
and γAA. Moreover, each possible control action of the
supervisor, γS , is not explicitly represented as an event in
our modelling framework, in contrast to Lin et al. (2020)
for instance. Here, since the attacker has knowledge of the
model of S, whether or not γS – and then also γ – can
be inferred by the attacker depends on its observability
settings when compared to the ones of the supervisor. E.g.,
if all the events observable by S are also observable by A,
then we may consider the attacker to be eavesdropping,
as it can exactly predict the supervisor’s action γS , and
hence, also γ; otherwise, this may not be the case.
Decoupling of events We decouple the alphabets of the
plant and of the supervisor, ΣM and ΣS , in order to
distinguish events executed by the plant from the ones
observed by the supervisor. We have, in each one of
these alphabets, distinct copies of each event that can be
attacked by SA. The set of copies for the plant and for the
supervisor are, respectively, denoted by ΣM,SA and ΣS,SA.
We use the subscripts, M and S, to indicate to which
set an event σM or σS belongs. We do not keep copies
of the events that cannot be attacked by SA, so they are
in the intersection set ΣNSA = ΣM ∩ ΣS . Thus, we have
that ΣM = ΣM,SA ∪̇ ΣNSA, and ΣS = ΣS,SA ∪̇ ΣNSA. To
map the events from M to S, we define the isomorphism
ΘS : ΣM → ΣS , such that ΘS(σ) = σ, for all σ ∈ ΣNSA,
and ΘS(σM ) = σS , for all σM ∈ ΣM,SA. Note that
ΣS,SA = ΘS(ΣM,SA). With a slight abuse of notation, this



mapping can be extended to strings and languages. We
also define ΘM as the inverse of ΘS . We use the same letter
with different subscripts to denote events that are the copy
of each other; e.g., αM = ΘM (αS) and αS = ΘS(αM ).
Supervised plant under attack The plant M is modelled
by an automaton M over alphabet ΣM , where all its
states are marked. Under attack, we define the supervisor
in terms of ΣS , and not ΣM , as follows. Its alphabet
can be partitioned as ΣS = Σc/S ∪̇Σuc/S , where Σc/S

are its controllable events, and Σuc/S its uncontrollable
ones. Under partial observation, its alphabet can also be
partitioned into its observable and unobservable events,
Σo/S and Σuo/S , respectively, and we assume that ΣNSA ⊇
Σuo/S . The control action of the supervisor S is given by
the map ΓS : ΘS L(M) → 2ΣS implemented by a given
automaton S over ΣS , where all the states are marked.
Attacker A The attack we wish to synthesise is represented
by an automaton A over ΣA, which is the global alphabet
of the attacked system. The behaviour of the attacked
system is given by A || G, where G is the attack plant,
composed of the models of the plant, M, and of the sensor
and actuator attackers, respectively GSA and GAA, which
embed the structure of the supervisor S. We denote by
LA the language accepted by the attacked system, i.e.,
LA = Lm(A || G). We use the notation P� for natural
projections of the form P� : Σ∗

A → Σ∗
�, where � is any

symbol such that Σ� ⊆ ΣA.
Next, we introduce the attack constraints denoted by A =(
ΣM,o/A,Σ

ins
M,SA,Σ

del
M,SA,Σ

ins
M,AA,Σ

del
M,AA, npre

)
, and define

GSA and GAA reflecting such constraints. In Sec. 4, we
properly define the alphabet ΣA, the attack plant G, and
the attack specification K for damage and stealthiness.
Finally, we show that A is equivalent to a (malicious)
supervisor for this attack plant and this specification,
with respect to the partition into controllable and un-
controllable events, denoted by ΣA = Σc/A ∪̇Σuc/A, and
observable and unobservable events, ΣA = Σo/A ∪̇Σuo/A.
From A we can then extract the control actions for the
sensor and actuator attacker, γSA and γAA, respectively.
Deletion, replacement and insertion by SA If we ignore
the constraints and requirements for A developed in the
remainder of Sec. 3, an all-out sensor attack completely
decouples the plant behaviour and supervisor observa-
tions; this attack realises the closed-loop behaviour over
ΣM ∪ ΣS given by shuffle L(M) || Σ∗

S . In practice, how-
ever, there may be limitations on how the sensor attacker
can edit events, which we model as follows. A sensor
deletion prevents an event executed by the plant to be
observed by the supervisor. We denote the set of events
that SA can delete by Σdel

M,SA ⊆ ΣM,SA, and its copy
in ΣS by Σdel

S,SA = ΘM (Σdel
M,SA) ⊆ ΣS,SA. Thus, if an

event αM ∈ Σdel
M,SA occurs in the plant, then SA may

decide whether or not the supervisor observes its copy αS

before the execution of the next event by the plant, or
before SA inserts other events. This insertion, on the other
hand, happens whenever SA feeds to the supervisor an
observation βS when βM was not the last event executed
by the plant, or after another sensor insertion — since we
assume there are no delays in the occurrence of an event
and its observation by the supervisor. We denote the set of

events that can be inserted by Σins
S,SA ⊆ ΣS,SA, and its copy

in ΣM by Σins
M,SA = ΘM (Σins

S,SA) ⊆ ΣM,SA. A replacement
consists of a deletion followed by an insertion.
We formally define these attacks as follows. Take any
w ∈ LA\{ϵ}, any p < w, and any s ∈ Σ∗. For any
αM ∈ Σdel

M,SA such that w = pαMs, we say αM is deleted
in w after pαM if either s = ϵ and w ∈ LA, or s ̸= αSt for
all t ∈ Σ∗. For any βS ∈ Σins

S,SA, if pβS ≤ w and p ̸= tβM

for all t ∈ Σ∗, then βS is inserted in w after p. Finally, βS

replaces αM after p in w (for α ̸= β) if αM is deleted and
βS inserted after pαM .
Events in Σins

S,SA ∩ Σdel
S,SA impose no restriction, as they

can be both inserted and deleted. Likewise, there is no
restriction on events in ΣNSA that are not attacked by SA,
because they can only occur when feasible in the plant
and are observed immediately by the supervisor. However,
for events that can be exclusively inserted or deleted by
SA, we model the following constraints. First, every event
βM ∈ Σins

M,SA\Σdel
M,SA should be immediately followed by

its copy βS ; this is represented by G
ins\del
SA,βM

in Fig. 2,
together with a nonblockingness requirement expressed by
its marking. Second, for every αM ∈ Σdel

M,SA\Σins
M,SA, we

have the automaton G
del\ins
SA,αM

given in Fig. 2, where we
restrict the copy αS to only occur immediately after αM .

1 2

G
ins\del
SA,βMβM

ΣS ∪ ΣM \ {βM}

βS

1 2

G
del\ins
SA,αMαM

(
ΣS ∪ ΣM

)
\ {αM , αS}

ΣS ∪ ΣM \ {αM}

αM

Fig. 2. Models of deletion and insertion constraints for SA.

Preemption of plant events by SA A sensor attack SA
may be able to insert a sequence of events before the
supervisor can issue a new control action that is subse-
quently executed by the plant. We refer to this ability
as preemption. We suppose that after replacing an event,
SA can only preempt the plant with a number npre of
insertions. This constraint requires that plant events can
be executed depending on the previous number of consec-
utive insertions. We could express this as state-dependent
controllability, as in Wang and Cai (2009). However, in
order to formulate our problem as one of basic supervisory
control, we opt for capturing this constraint with the
standard notion of controllability, by introducing the
alphabet Σend = {endc, enduc} to explicitly model the
end of a sequence of sensor insertions. Its event endc is
controllable, representing that the sensor attack chooses
to stop inserting. In contrast, the event enduc ∈ Σend is
uncontrollable, representing the sequence of insertions is
interrupted by a plant event.
We can then construct automata Gpre

SA (npre) as in Fig. 3;
we omit the input npre when it is clear from context. If
we assume that SA can preempt forever, then we use the
automaton at the left (npre = ∞), otherwise, the one at
the right (0 ≤ npre < ∞). In the latter, the transition
from state 1 to 0 occurs with the event endc, because
we assume SA can always do replacement; moreover, from
state 0 with events in ΣNSA there is a transition to state
2, instead of 1, since these events can always be observed
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Fig. 3. Automata Gpre
SA (npre) modeling preemption. If

npre = 0, then states 2 and npre + 2 are merged, the
outgoing transition to 0 only occurs by enduc.

by the supervisor, i.e., they cannot be deleted and, hence,
a subsequent insertion does not constitute a replacement.
Model for SA By taking the synchronous composition of
Gpre

SA (Fig. 3) and the automata G
ins\del
SA,βM

and G
del\ins
SA,αM

(Fig. 2), we obtain the model for the sensor attacker, GSA.
The alphabet for SA is then ΣSA = ΣM ∪ ΣS ∪ Σend.
Example 2. For illustration, we use a simple model of
the arm component in the manufacturing system of Ex-
ample 1, given by the plant M0 depicted in Fig. 4. Its
events are ‘l’ moves left, ‘r’ moves right, ‘g’ grab item, ‘d’
drop item. The indicated forbidden transitions of M0 are
disabled by the supervisor S0 while the attacker A0 seeks
to execute them to inflict damage.
We suppose this attacker can only insert the sensor event
ℓ, i.e., Σins,0

M,SA = {ℓ}, and can observe all events, i.e.,
Σ0

M,o/A = Σ0
M . For npre = 1, the model G0

SA is depicted
in Fig. 5. Note that, after the plant event r, SA can only
insert one event ℓS before the plant can interrupt it, which
is represented by the uncontrollable event enduc. △

Now we introduce the remaining constraints from A, and
define the model GAA for the actuator attacker, AA. This
component of the attacker acts by inserting events to, or
deleting from, the current control action of the supervisor,
γS , or from what the attacker can infer from it, in the
case of partial observation. Denote by Σdel

M,AA and Σins
M,AA,

respectively, the set of events in ΣM that can be deleted
and inserted by AA; their intersection may be nonempty.
We assume that ΣNSA ∩Σins

M,AA = ∅, for if an event in this
intersection is added by AA to the control action of the
supervisor and subsequently executed by the plant, then
SA cannot delete it from the supervisor’s observation, so
the attack would not be stealthy. Note that there are copies
of the events from Σdel

M,AA in ΣS only if they can also be
attacked by SA.

0 12
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Fig. 4. Models of the arm and buffer subsystems with
forbidden transitions indicated with dashes.
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Fig. 5. The sensor attack model for the arm subsystem and
actuator attack model for the buffer subsystem.

State-dependent controllability and renaming Events that
can be inserted but not deleted by AA require special
attention. When present in the control action of the
supervisor, they cannot be deleted, in which case they
should be considered as uncontrollable for the attacker.
However, when enabled by the supervisor, the attacker
may decide whether or not to insert them; hence, in this
scenario, they are controllable. Similar to the issue of
preemption for the sensor attack, rather than enforcing a
state-dependent notion of controllability, we will split the
problematic events into controllable and uncontrollable
copies. Let us denote by Σr the set Σins

M,AA\Σdel
M,AA, and

introduce the alphabets Σr,c : {σr,c |σM ∈ Σr} and
Σr,uc : {σr,uc |σM ∈ Σr}. Then, we define the renaming
map r : Σr,c ∪Σr,uc → Σr such that, for all σr,c ∈ Σr,c and
σr,uc ∈ Σr,uc, r(σr,c) = r(σr,uc) = σM .
Model for AA We construct the actuator attacker model
from the given automaton S; thus, we denote it as a
function of the supervisor by GAA(S); when the context is
clear, we omit the input S. The idea is that, at each state
of GAA, the transitions by events in ΣM give us the control
action γAA, which in turn depends on γS . Therefore, ex-
cept for uncertainties arising from partial observation, we
need to keep track of current state of the supervisor. Given
supervisor S = (QS ,ΣS , δS , qS0 , QSm), we define the ac-
tuator attack model GAA = (QAA,ΣAA, δAA, qAA0

, QAA),
with states QAA = QS∪{⊥}, and actuator attack alphabet
ΣAA =

(
ΣM\Σr

)
∪ΣS ∪Σr,c ∪Σr,uc ⊆ ΣA, and such that,

for all q ∈ QAA, the function δAA is defined as follows.
(1) ∀σS ∈ ΣS,SA. δS(q, σS)! ⇒ δAA(q, σS) = δS(q, σS),

otherwise δAA(q, σS) = ⊥.
(2) ∀σ ∈ ΣNSA .δS(q, σ)! ⇒ δAA(q, σ) = δS(q, σ).
(3) ∀σM ∈ ΣM,SA\Σins

M,AA .δS(q, σS)! ⇒ δAA(q, σM ) = q.
(4) ∀σM ∈ Σins

M,AA\Σr .δAA(q, σM ) = q.
(5) ∀σM ∈ Σr .δS(q, σS)! ⇒ δAA(q, σr,uc) = q, otherwise

δAA(q, σr,c) = q.
The transitions by events in ΣS not only allows us to
update the current state of the supervisor, but also to know
what is its control action on this state. For that reason,
we copy all the transitions from δS into δAA – see clauses
(1) and (2). However, due to attacks, the supervisor may
observe sequences that do not correspond to the domain of
ΓS ; thus we add a state ⊥ and, still in clause (1), complete
the transition function with respect to events in ΣS,SA. We
do not do so with respect to ΣNSA because this set is also
part of ΣM : in each state of GAA, the transitions by events
in ΣM give us the control action of AA, which cannot insert
events in ΣNSA, so if these transitions are not in S, they
also cannot be in GAA.
The attacker does not need to tamper with every control
action of the supervisor. Therefore, for each state in QS ,
and for every event in ΣS,SA enabled there, we add in
GAA, through clause (3), a selfloop by its copy in ΣM,SA;
we use selfloops since these copies cannot be observed by
S, so they do not change its control action. Clause (4)
represents that A can also insert events from Σins

M,AA even
when their copies in ΣS are not present in ΓS . Events σM

in Σr require special treatment, so we only deal with them
in clause (5), as follows: when S is disabling their copies in
ΣS,SA, we have a selfloop by the controllable version σr,c,



representing the possibility of insertion; otherwise, we use
the uncontrollable version σr,uc.
Example 3. We model the buffer subsystem from Exam-
ple 1 with the plant M1 depicted in Fig. 4. The events
g and d for grabbing and dropping an item are common
with the arm plant M0 from Example 2, while the event a
denotes an item arriving to the buffer. This model assumes
the arm starts having grabbed an item and that at most
one item is present in the system at a time. The supervisor
S1 and attacker A1 again seek to disable and execute the
indicated forbidden transitions, respectively. This attacker
can both delete the sensor event a as well as insert it as
an actuator event, i.e, Σdel,1

M,SA = Σins,1
M,AA = {a}. In this case

their actuator attack model G1
AA is depicted in Fig. 5,

assuming all events are observable Σ1
M,o/A = Σ1

M . As the
attacker cannot disable the event a when it is enabled by
the supervisor, the outgoing transition at state 1 in G1

AA is
labelled by the uncontrollable event auc. This is in contrast
to the event a at state 2 of S1 that, while disabled by the
supervisor, can be inserted by the actuator attacker, as
represented by the controllable event ac in G1

AA. △

4. MONOLITHIC SYNTHESIS OF ATTACKER

The monolithic system under attack is described by the
attack plant G, which is constructed by composing the
models of the plant under attack M, the sensor attack
GSA, and the actuator attack GAA, defined in Sec. 3. This
composition should synchronise the events of Σr ⊆ ΣM

– present in the alphabets of both M and GSA – with
their split copies Σr,c and Σr,uc, used to model different
controllability statuses in the actuator attack model GAA.
In order to do so, let us finally define the alphabet of
attacker as ΣA = ΣAA∪ΣSA\Σr, and introduce a modified
composition operator || r, which is similar to standard
synchronous composition, but using a more general map
Pr in place of the natural projection. We define this
map by Pr : Σ∗

A → Σ∗
SA, such that Pr(σ) = r(σ), if

σ ∈ Σr,c ∪ Σr,uc, and Pr(σ) = σ, otherwise; note that
it can be naturally extended to strings and to languages.
Next, for languages L1 ⊆ Σ∗

A and L2,3 ⊆ Σ∗
SA, we define

|| r such that L1 || r L2 = L2 || r L1 = P−1
r (L2) ∩ L1, and

L2 || r L3 = P−1
r (L2) ∩ P−1

r (L3). Finally, this operation
can be extended to automata as follows. For automata
Λ1 over Σ1 ⊆ ΣA or Σ1 ⊆ ΣSA, and Λ2 over Σ2 ⊆
ΣSA, Λ = Λ1 || r Λ2 = Λ2 || r Λ1 is such that L(Λ) =
L(Λ1) || r L(Λ2) and Lm(Λ) = Lm(Λ1) || r Lm(Λ2).
The attack plant used for the synthesis of A is then given
by G = M || r GSA || r GAA over ΣA. In this plant, SA
controls the supervisor copy of events it can edit, ΣS,SA,
as well as the ending event endc. Likewise, AA controls
plant events that it can delete from the supervisor action,
Σdel

M,AA, as well as copies of events it can insert when they
are not in the supervisor action, but not delete otherwise,
Σr,c. In addition to the plant events that are explicitly
unobservable to the attacker, it can also not observe the
end of insertion events in Σend, since consecutive end
events would reveal the occurrence of unobservable plant
events to the attack. This is not an issue if all plant
events are observed by the attacker, in which case we can
treat the end events as observable as well. Then in total
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Fig. 6. The attack events ΣA, with controllable events in
solid colours and uncontrollable ones in patterns.

we define Σc/A = ΣS,SA ∪ {endc} ∪ Σdel
M,AA ∪ Σr,c, and

Σo/A = ΣA\{ΣM,uo/A ∪ Σend}. The events of the attack
and their controllability status is depicted in Fig. 6.
We notate by Ldam ∈ L(M) the language whose strings
correspond to damages the attacker A intends to cause to
the plant M . This language is a specification for A and
can be incorporated in its synthesis procedure by a trim
automaton Kdam such that Lm(Kdam) = Ldam. If, for all
s ∈ Ldam and s′ ∈ L(M)\Ldam, we have that s and s′

do not correspond to the same state in M, then we can
omit Kdam in the synthesis of A and, instead, define the
marking of M such that Lm(M) = Ldam. We then use the
definition below, adapted to our context from Lin et al.
(2020), to express whether A can always inflict damage.
Definition 1. (Damage-nonblocking). For any attacker A
over any plant M and any supervisor S, and given any
damage language Ldam, we say A is damage-nonblocking
if A || G is nonblocking and Lm(A || G) ⊆ Ldam.
Definition 2. (Stealthiness). For any attacker A over any
plant M and any supervisor S, let LS = PS L(A || G)
and Lstealth = L(S) || ΘSL(M). Then A is always stealthy
if LS ⊆ Lstealth.

Stealthiness is a safety condition, so it can be expressed
by an automaton Kstealth over ΣS given as specification in
the synthesis of the attacker. For A to be always stealthy,
this automaton is the one that recognises and accepts the
language Lstealth, and can be trivially obtained from S and
M. Combining damage-nonblocking and stealthiness, we
consider the overall specification K = Kstealth || r Kdam.
We can now state the attack synthesis problem as a su-
pervisory control problem. Using the plant model G from
Sec. 3 and specifications K attacks can be implemented as
supervisors in the following result.
Theorem 1. For any plant M , supervisor S, and dam-
age language Ldam, there is an always stealthy and
damage-nonblocking attack A with constraints A =(
ΣM,o/A,Σ

ins
M,SA,Σ

del
M,SA,Σ

ins
M,AA,Σ

del
M,AA, npre

)
if and only

if A is a nonblocking supervisor for the plant G, specifi-
cation K, controllable events Σc/A, and observable events
Σo/A as defined previously.

Enforcing the controllability and observability settings for
A, we synthesise a trim automaton A as a supervisor for
G satisfying K. The control actions for SA and AA after
observing the string w are constructed from the attack
action ΓA(w) as ΓSA(w) = ΓA(w) ∩ Σo/S and ΓAA(w) =
Pr(ΓA(w)) ∩ ΣM . The set of events Γ(w) ultimately
enabled at the plant M combines the actions of AA and
S given by Γ(w) = ΓAA(w) ∩

(
Σins

M,AA ∪ΘMΓS(PS w)
)
.
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Example 4. We now synthesise local attacks for the manu-
facturing system of Examples 2 and 3. First, we construct
the attack plants G0 and G1 assuming no preemption
and constraints given by A0 = (Σ0

M , {ℓ}, ∅, ∅, {d}, 0) and
A1 = (Σ1

M , ∅, {a}, {a}, ∅, 0). The attack specifications K0

and K1 capture stealthiness and damage achieved by exe-
cuting forbidden transitions. Applying supervisory control
synthesis with full observation, we obtain the supremal
local attacks A0 and A1 depicted in Fig. 7. △
Example 5. While the local attacks from Example 4 can
achieve their goals without preemption (npre = 0), this is
not always the case. Suppose that the first attacker instead
wanted to ensure the arm never moves to zone 2. We can
verify that attacks only exist with preemption (npre > 0)
such as the one depicted in Fig. 8. In words, the attacker
must insert the event ℓS to mislead the supervisor into
thinking the arm is at zone 2 so that it disables the event ℓ.
This must be done before the arm has a chance to actually
move left with ℓ into zone 2. △

5. DISTRIBUTED SYNTHESIS OF ATTACKS

We now consider a decentralised plant with a number of
subsystems, each subject to a different attacker modelled
with the architecture of Fig. 1 as in the centralised setting.
For simplicity, we assume each local attacker has full
observation of its subsystem’s events. Then attacks can
be found as solutions to a distributed supervisory control
problem as in the following result.
Theorem 2. Given plants {M i}, supervisors {Si}, dam-
age languages {Li

dam}, and attacker constraints {Ai} for
i ∈ {1, . . . , n}, there are nonconflicting, stealthy and
damage-nonblocking attacks {Ai} if and only if they are
nonconflicting supervisors for the plants {Gi}, and the
specifications {Ki}, with local controllability requirements
as constructed in Sec. 4. The attacks are nonconflicting if
|| ni=0 Lm(Ai || Gi) = || ni=0 Lm(Ai || Gi).

To solve this problem for the case of two subsystems, we
employ the assume-guarantee algorithm of Mainhardt and
Schmuck (2022). Critically, this approach is distributed,
requiring only local computations and exchange of in-
formation during synthesis. It iterates between negotia-
tion, where attackers exchange the commonly observed be-

haviour of their solutions, and enforcing a local condition
sufficient to ensure they are globally nonconflicting. We
demonstrate this procedure with the following example.
Example 6. Recall the attacks A0 and A1 that were de-
signed independently for the arm and buffer subsystems of
the manufacturing system in Example 4. While they both
achieve their goals locally, they conflict when executed in
parallel, synchronizing on the common events {g, d}. This
can be verified with a global conflict check. If the attack on
the arm does not drop the held item with event d before
achieving its goal, the buffer attack may deadlock at state
0 in A1, where no more items can arrive to overflow the
buffer. Conversely, after achieving overflow at state 3 in
A1, the buffer attack may continue to force more items
to arrive with event a, thus preventing the arm attack to
erroneously pickup an item to reach its state 3 in A0.
To avoid this possibility, both attackers are incentivised
to coordinate in designing their attacks, for example with
the assume-guarantee algorithm. They apply the first step
of the algorithm, negotiation, to refine their solutions.
While not guaranteed by negotiation, a global conflict
check shows that these solutions are nonconflicting. As a
consequence of Theorem 2 from Mainhardt and Schmuck
(2022), these attacks are then guaranteed to be supremal.
However, performing this global conflict check requires
exchanging the attackers’ private information. To avoid
this, the attackers can apply the second step of the algo-
rithm, enforcing a local condition sufficient for nonconflict.
In this case, the resulting solutions are empty, indicating
there is not enough shared information for the attackers to
coordinate in this way. Instead, the first attacker A0 can
share information with A1 about the arm moving left ℓ and
its sensor attack on this event ℓS . Applying the synthesis
algorithm again, now with the common events {g, d, ℓ, ℓS},
results in nonempty solutions that can be implemented to
stealthily damage the system. △
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