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Emergent reliability in sensory cortical 
coding and inter-area communication


Sadegh Ebrahimi1,2,3,4 ✉, Jérôme Lecoq1,2,4,7, Oleg Rumyantsev1,2,5, Tugce Tasci1,2,3, 
Yanping Zhang1,2,6, Cristina Irimia1,2,4, Jane Li1,4, Surya Ganguli1,5 & Mark J. Schnitzer1,2,4,5,6 ✉

Reliable sensory discrimination must arise from high-fidelity neural representations 
and communication between brain areas. However, how neocortical sensory 
processing overcomes the substantial variability of neuronal sensory responses 
remains undetermined1–6. Here we imaged neuronal activity in eight neocortical areas 
concurrently and over five days in mice performing a visual discrimination task, 
yielding longitudinal recordings of more than 21,000 neurons. Analyses revealed a 
sequence of events across the neocortex starting from a resting state, to early stages of 
perception, and through the formation of a task response. At rest, the neocortex had 
one pattern of functional connections, identified through sets of areas that shared 
activity cofluctuations7,8. Within about 200 ms after the onset of the sensory stimulus, 
such connections rearranged, with different areas sharing cofluctuations and 
task-related information. During this short-lived state (approximately 300 ms 
duration), both inter-area sensory data transmission and the redundancy of sensory 
encoding peaked, reflecting a transient increase in correlated fluctuations among 
task-related neurons. By around 0.5 s after stimulus onset, the visual representation 
reached a more stable form, the structure of which was robust to the prominent, 
day-to-day variations in the responses of individual cells. About 1 s into stimulus 
presentation, a global fluctuation mode conveyed the upcoming response of the 
mouse to every area examined and was orthogonal to modes carrying sensory data. 
Overall, the neocortex supports sensory performance through brief elevations in 
sensory coding redundancy near the start of perception, neural population codes that 
are robust to cellular variability, and widespread inter-area fluctuation modes that 
transmit sensory data and task responses in non-interfering channels.

Given a fixed sensory scene or object, sensory recognition is normally 
reliable. However, sensory cortical neurons have stochastic responses 
that vary over timescales from seconds to days1–4,6,9. These variations 
are often shared between cells and across cortical areas1–6, raising basic 
questions about how neural populations encode and transfer informa-
tion reliably despite activity fluctuations over multiple spatiotemporal 
scales9–11.

Many studies have argued that neurons' shared fluctuations con-
strain the signalling capacity of cortical coding3,12–14, while perhaps 
also facilitating the decoding of transmitted messages6,15,16. However, 
the relationships between shared fluctuations, the redundancy of 
large-scale neural coding and the reliability of sensory cortical repre-
sentations remain poorly understood. Neural populations can show 
greater long-term coding stability compared with single cells, but the 
mechanism for stability and its relationship with shared fluctuations 
merit further examination17–20.

Human neuroimaging studies usually interpret cofluctuations 
across brain areas as denoting functional connections for information 

transmission8,21. Neuronal recordings have shown that inter-area fluc-
tuations can reflect arousal, neuromodulatory levels or spontaneous 
movements11,22,23 and might also communicate functional information10. 
However, whether the cortex uses inter-area fluctuations to encode 
task-related sensory data has not been tested empirically.

To uncover neural coding and inter-area dynamics promoting reliable 
sensory processing, we recorded neuronal activity across the entire 
visual cortex in mice performing a visual task. We analysed thousands 
of cells, how their visual representations attain coding redundancy 
and long-term stability, and whether brain areas share information 
through cofluctuations.

Imaging neuronal activity across the cortex
To study visual processing, we trained head-fixed mice to perform a 
Go/No-Go task (Fig. 1a, b and Methods). On each trial, mice viewed a 
moving grating stimulus (duration, 2 s) oriented either horizontally or 
vertically (termed Go and No-Go stimuli, respectively). Half a second 

https://doi.org/10.1038/s41586-022-04724-y

Received: 29 December 2020

Accepted: 4 April 2022

Published online: 19 May 2022

 Check for updates

1James Clark Center for Biomedical Engineering, Stanford University, Stanford, CA, USA. 2CNC Program, Stanford University, Stanford, CA, USA. 3Department of Electrical Engineering, Stanford 
University, Stanford, CA, USA. 4Department of Biology, Stanford University, Stanford, CA, USA. 5Department of Applied Physics, Stanford University, Stanford, CA, USA. 6Howard Hughes 
Medical Institute, Stanford University, Stanford, CA, USA. 7Present address: Allen Institute, Mindscope Program, Seattle, WA, USA. ✉e-mail: sadegh@stanford.edu; mschnitz@stanford.edu

https://doi.org/10.1038/s41586-022-04724-y
mailto:sadegh@stanford.edu
mailto:mschnitz@stanford.edu


714  |  Nature  |  Vol 605  |  26 May 2022

Article

after the offset of a Go stimulus, the mouse could receive a reward by 
licking a spout. Incorrect licking after a No-Go stimulus elicited an 
aversive air puff. To minimize motor-related neural activity during 
stimulus presentation, we trained the mice to withhold licking until 
the response period (Fig. 1b). Near the end of training and before brain 
imaging began, we reduced the grating contrast so mice just surpassed 
80% success on both trial types.

As the mice performed the task, we used a fluorescence macroscope 
(16 mm2 field of view) to image somatic Ca2+ dynamics in neocortical 
layer 2/3 pyramidal neurons (Fig. 1c, d and Supplementary Video 1). To 
avoid conflating locomotor-evoked and visual neural signals, we ana-
lysed only trials in which locomotion remained <1 cm s–1. Each recording 
spanned nearly all of the primary and higher-order visual cortical areas, 
plus parts of somatosensory, auditory, posterior parietal, motor and 
retrosplenial cortex. By identifying cells within concatenated datasets, 
we tracked 21,570 neurons (3,597 ± 1,082 (mean ± s.d.) in 6 mice that 
performed 2,000 ± 415 trials over 5–7 days; Figs. 1d and 2a and Extended 
Data Figs. 1 and 2a–d), thereby attaining long-term and concurrent 
access to neuronal dynamics in multiple cortical areas.

Variability of cellular-level coding
Across eight cortical areas, many cells preferentially responded to one 
of the two stimuli, with variable time-dependencies across cells and 
areas (Extended Data Figs. 2e–h and 3a, b). To characterize cellular 
coding, we examined correctly performed trials and determined the sta-
tistical fidelity, d′, with which one could distinguish the two trial types 
on the basis of the dynamics of each cell during the stimulus, delay or 
response intervals. Notably, (d′)2 relates to the Fisher information con-
veyed about trial type12–14. In merged datasets across all days, most cells 
exhibited tuning to trial type in at least one of the trial periods (16,682 
cells with significant tuning; 10,329, 9,204 and 11,958 in the stimulus, 
delay and response periods, respectively; P < 0.01; permutation test; 
710–1,340 trials per mouse; Fig. 2b, c and Extended Data Fig. 2h). The 
fractions of cells tuned to trial type were similar across visual areas, 
but the distributions of d′ varied, especially owing to outlier cells with 
high d′ values (Fig. 2c, d).

Many cells had d′ values and coding properties that changed 
within individual sessions, even while their Ca2+ traces retained high 
signal-to-noise ratios and stable event rates (Extended Data Fig. 1i–k).  
Some cells increased their d′ values while others decreased theirs 
(Extended Data Fig. 2g, j). These bidirectional changes were balanced 

in magnitude, could not result from photobleaching and were unlikely 
to reflect movement-induced effects because movement generally 
increases pyramidal cell activity11,23,24.

To assess coding stability, we tested whether cells concentrated 
their coding responses into subportions of the ~1 h imaging sessions 
by computing d′ separately for the two halves of each session. We also 
analysed shuffled datasets with random permutations of the trial order. 
If coding cells concentrate their responses into specific epochs, cod-
ing should vary more across half sessions in real than trial-shuffled 
data, which indeed was the case (Extended Data Fig. 2e), indicative of 
intrasession coding fluctuations.

Many cells also had variable coding fidelity across days (Extended 
Data Fig. 2f, h, i). However, as in previous research20, only a minority 
flipped their coding preference (1.7 ± 0.9% of coding cells) and these 
cells had very low d′ values (0.13 ± 0.05, mean ± s.d.; n = 587 cells that 
flipped preference in 6 mice). Notably, fluctuations were correlated 
across timescales; cells with variable intraday coding were about 
fourfold more likely to have variable across-day coding (Extended 
Data Fig. 2l). The anatomic comingling of cells with greater and lesser 
stability (Extended Data Fig. 2i) and correlations between short- and 
long-term fluctuations make it hard to argue that coding variability 
arose from imperceptible changes in image quality or focal plane drift.

Time-invariant decoding strategies
Given the non-stationarities in cellular coding, we examined whether 
an area receiving such variable signals would need to continually adjust 
its readout strategy to optimally extract stimulus information. Ongo-
ing plasticity might enable such adjustments or, alternatively, neural 
ensembles might achieve reliability through redundant signalling 
across multiple cells, information encoded in the correlation struc-
ture of neural population activity or combinations thereof5,9,14,15,19,25.

To examine these issues, we trained optimal linear decoders for 
each brain area to distinguish between the two types of correctly per-
formed trials on the basis of neural ensemble activity in 100 ms time 
bins (Methods). These ‘instantaneous decoders’ accurately determined 
the trial type and, as previously3, had a stable form over the latter 1.5 s of 
the 2 s stimulus presentation (Fig. 3a, b and Extended Data Fig. 3c, f–h).  
Given this constancy, for the interval 0.5–2 s after stimulus onset, we 
trained ‘consensus decoders’, the performance of which matched 
or surpassed that of the instantaneous decoders in most time bins 
(Extended Data Fig. 3g). Notably, the form of the consensus decoder was  
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Fig. 1 | Cellular-level imaging across multiple cortical areas during a visual 
discrimination task. a, Imaging of Ca2+ activity in thousands of layer 2/3 
pyramidal neurons using a custom macroscope. b, On each trial, mice viewed  
a moving grating (2 s duration). After a 0.5 s delay, an auditory tone initiated a 
response period of 3 s, during which mice could respond by licking a spout. 
Responses to a horizontal grating (the ‘Go’ stimulus) elicited a water reward.  
If the mouse responded to a vertical grating, it received an air puff and an 8 s 
timeout before the next trial. Mice performed 83 ± 3% of the trials correctly 

(mean ± s.e.m.; n = 6 mice; Extended Data Fig. 1). c, The imaged brain areas. 
Scale bars, 1 mm. Inset: magnified view. A, auditory cortex; LV, lateral visual 
cortex; M, motor cortex; MV, medial visual cortex; PPC, posterior parietal 
cortex; RSC, retrosplenial cortex; S, somatosensory cortex; V1, primary visual 
cortex. The same abbreviations are used in all subsequent figures. d, Maximum 
projection of a Ca2+ video (280 min duration) with 5,292 cells, overlaid with 
cortical area boundaries. Inset: magnification of the area enclosed within the 
red box. Scale bars, 1 mm (main image), 0.1 mm (inset).
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stable over days (Fig. 3c (inset)), especially for visual areas (Extended 
Data Fig. 3i (insets)).

This across-day stability led us to train one decoder for each area, plus 
a separate one for all of the areas grouped together, which we termed 
‘common decoders’ and optimized for the 0.5–2 s interval after stimulus 
onset using all correct trials from all sessions. Notably, common decod-
ers outperformed decoders optimized for single sessions; instead of 
yielding a suboptimal compromise between the best decoders for 
different days, common decoders benefited from training on multi-
ple days’ data (Fig. 3c and Extended Data Fig. 3i). However, the exist-
ence of successful common decoders stemmed not just from greater 
training data, for when we trained them on equally sized datasets as 
single-day decoders the two decoder types performed equivalently 
(Extended Data Fig. 3l). Although, in principle, common decoders 
could use stimulus- or choice-related neural activity to discriminate 
between trial types, in practice, common decoders that were trained 
on stimulus-period data used only stimulus information (Extended 
Data Fig. 3j), implying that their stability reflected that of stimulus 
representations.

To identify a basis for stability, we compared common and single-day 
decoders using trial-shuffled datasets, in which each cell’s responses 
were randomly permuted across trials of the same type from the 
same day (Fig. 3d). Trial shuffling leaves the statistical properties of 
individual cells unchanged but eradicates correlated fluctuations 
between cells. In contrast to the results obtained from real data, when 
we used trial-shuffled data the common decoders performed equiv-
alently or worse than decoders optimized for single days (Fig. 3d). 
Furthermore, with real datasets, accounting for noise correlations 
was important for extracting information optimally, as decoders that 

ignored noise correlations did much less well, especially for common 
decoders (Fig. 3e). Overall, accounting for correlated fluctuations in 
the real data was especially important for constructing decoders that 
were invariant across days (Extended Data Fig. 3i).

We next examined why accounting for noise correlations was so ben-
eficial to stable decoding performance. Strikingly, in real but not shuf-
fled datasets, day-to-day changes in stimulus-evoked neural responses 
aligned to the principal eigenvectors of the noise covariance matrix 
describing trial-to-trial response fluctuations (Fig. 3f and Extended Data 
Fig. 4a). Mathematical modelling showed that this similarity between 
fluctuations on distinct timescales allows common decoders to be 
naturally resistant to both forms of variability, instead of compromis-
ing between structures optimized for single days, and that this ‘dual 
robustness’ emerges even for simple feedforward networks in which 
activity fluctuations on different timescales propagate through the 
same pathways (Supplementary Information).

To examine how the mouse’s upcoming responses might have affected 
stimulus encoding, we trained ‘stimulus-only’ and ‘response-only’ con-
sensus decoders that distinguished either the stimulus or the mouse’s 
upcoming response, with the other factor held fixed. For example, using 
trials on which mice withheld licking (No-lick trials), we trained decod-
ers to identify the stimulus type. Cells that made the largest contribu-
tions to stimulus- and response-only decoders were interspersed across 
the cortex (Fig. 3g–j and Extended Data Fig. 4). Stimulus-only decod-
ers attained high accuracy independently of the mouse’s upcoming 
response (P < 0.7; signed-rank test; n = 6 mice; Extended Data Figs. 3k 
and 4), suggesting that the sensory cortex separably encodes stimulus- 
and choice-related signals. Consistent with this, trial-type decoders 
for the stimulus period captured stimulus-related information, not 
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(vertical), 10 s (horizontal). c, Pie charts, percentages of cells in each area 
significantly encoding the stimulus type (yellow; P < 0.01; permutation test; 
n = 710–1,340 trials) on correct trials, across all sessions. Venn diagrams, the 
proportions of coding cells with dynamics that significantly encoded the 
stimulus type during one or more of the intervals within correct trials. Data are 
mean ± s.d. over six mice. d, For each area, we computed the distribution of 
cellular d′ values for trial-type encoding on correct trials. The plots show d′ 
values for each percentile of the distributions, averaged over six mice.
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response-related information. Furthermore, trial-to-trial variations 
in stimulus encoding were uncorrelated with the mouse’s responses 
(Extended Data Figs. 3j and 6d), suggesting that incorrect responses 
were not directly related to the quality of visual coding and instead 
stemmed from other factors.

Notably, response-only decoders attained significant accuracy dur-
ing stimulus presentation on Go but not No-Go trials (Extended Data 
Figs. 3k and 4). Thus, the cortex exhibits signals related to the mouse’s 
decision or lick preparation on Go trials that are absent on No-Go tri-
als. This may reflect differences in how the brain couples a Go cue to a 
correct response versus a failure to suppress licking after a No-Go cue. 
Previous studies have reported similar asymmetries26,27.

Modulation of visual coding redundancy
Since classic studies of motion perception5,28, neuroscientists have 
appreciated that neural ensembles with correlated fluctuations encode 
information redundantly, enabling subsets of cells to convey most of 
the same information as the full ensemble3,5,12–14,25. However, previous 
research has not directly measured how the redundancy of large-scale 
neural coding relates to shared fluctuations, especially across brain 
areas.

We examined three inter-related facets of redundancy: resilience 
to a hypothetical loss of one cell; the number of cells, N0.5, needed to 
convey 50% of the stimulus-identity information conveyed by all cells; 
and the levels of correlated fluctuations between cell pairs (Fig. 3k–o 
and Extended Data Fig. 5). Unexpectedly, correlated fluctuations and 
visual coding redundancy were time-varying throughout stimulus 
presentation. Both rose within 100 ms and crested around 200 ms 

after stimulus onset, at which time N0.5 had its minimum value, stimu-
lus coding was most redundant and correlated fluctuations peaked 
(Fig. 3k–n). These conditions persisted for only ~300 ms; subsequently, 
correlated fluctuations and redundancy declined and neurons acted 
more independently. On average across mice, just after stimulus onset 
N0.5 was about 350 cells, but near stimulation offset N0.5 was about 800 
cells (Fig. 3l). Within individual mice, the full range of redundancy (N0.5) 
variations was a factor of 3.5 ± 0.5 (mean ± s.e.m.; n = 6 mice).

These changes arose from modulations in task-related neurons. Spe-
cifically, correlated fluctuations in similarly tuned stimulus-coding cells 
rose to a peak around 200 ms after stimulus onset (Fig. 3m). These corre-
lation dynamics had greater amplitudes and distinct kinetics from those 
of single-cell variability, arose within pairs of cells in the same or different 
areas and could not be simply explained as due to changes in the activity 
rates of stimulus-coding cells (Extended Data Fig. 5d–j). Although some 
cells were modulated by the mouse’s upcoming response (11 ± 3% of 
stimulus-coding cells; mean ± s.e.m.; n = 6 mice; P < 0.01, permutation 
test), response-related modulations had slower kinetics than corre-
lated fluctuations and, at the neural-ensemble level, were orthogonal to 
stimulus representations and did not affect stimulus-coding redundancy 
(N0.5) (Extended Data Fig. 6c, d). Throughout stimulus presentation, N0.5 
varied inversely with correlated noise levels in similarly tuned cell pairs, 
with the same proportionality in all mice (r = 0.9; P < 1.4 × 10–25; Fig. 3o). 
Thus, the 3.5-fold variations in coding redundancy seen in individual 
mice reflected approximately comparable variations in correlated noise 
among task-related neurons. Since correlated fluctuations probably 
arise from the shared inputs of cells3,29, the invariant proportionality 
constant probably reflects invariant aspects of mouse cortical con-
nectivity. Overall, in contrast to studies that assessed widespread noise 
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correlations with a lower time-resolution11, during passive viewing3,10,11, 
or without cellular resolution23, here noise correlations in task-related 
neurons increased during early phases of perception to more than triple 
the redundancy of sensory encoding.

We next examined how much of the information, (d′)2, provided 
by our decoders was redundant across brain areas. Decoder outputs 
proved to be highly correlated between sensory areas; if on one trial 
stimulus encoding in one area was weaker or stronger than average, this 
was usually so in other areas (Fig. 4a–c and Extended Data Fig. 6). This 
interdependence and the resulting coding redundancy across areas had 
a similar time-dependence to the noise correlations among task-related 
cells. Within ~200 ms of stimulus onset, decoder score correlations 
peaked, yielding approximately a threefold redundancy across the 
brain areas examined (Fig. 4d). This was not just from replication of 
information within the primary visual cortex (V1), because the full set 
of cells conveyed almost twice the information of those in V1 (Extended 
Data Fig. 4b), suggesting that higher-order areas receive additional 
information from outside V1. After attaining their peak values, coding 
redundancy and decoder score correlations declined for the remainder 
of visual stimulation. Near stimulus offset, visual representations in 
different areas were almost mutually independent, consistent with the 
vanishing correlated noise levels between cell pairs (Figs. 3m and 4d). 
Overall, time-varying cofluctuations among task-related cells greatly 
impacted visual processing, leading to severalfold increases in coding 
resilience (Extended Data Fig. 5i), redundancy and inter-area correla-
tions that peaked soon after stimulus onset.

 
Communication through inter-area fluctuations
Activity cofluctuations of cell ensembles are thought to reflect shared 
connectivity, such as common inputs, or direct interconnections10,30,31. 
In the absence of sensory stimuli, such fluctuations can reflect an ani-
mal’s spontaneous behaviour11. During sensory tasks, previous studies 
examined shared fluctuations across pairs of electrodes32–35 and decoder 
score correlations across a pair of brain areas36, but the anatomic distri-
butions and time-dependencies of neuronal cofluctuations across multi-
ple areas and how they relate to task performance remain unexplored10.

To identify cofluctuating cell ensembles across pairs of areas, we 
applied canonical correlation analysis (CCA) to mean-subtracted neural 
activity traces, which represent trial-by-trial activity fluctuations. CCA 
identifies dimensions of shared activity and paired sets of dynami-
cal or communication modes10 (CCA modes) ranked by their levels of 
co-varying activity (Extended Data Figs. 7–9 and Methods). During 
visual stimulation, the number of CCA modes with significant cofluc-
tuations varied across different pairs of areas but was generally <20 in 
our datasets (Extended Data Fig. 7). Inter-area, CCA fluctuation modes 
comprised about 60% of the total power of all cortical fluctuations, 
implying a majority of fluctuation power during visual stimulation 
propagates across cortical regions (Fig. 4e, f).

Given the time dependence of the correlated fluctuations of 
task-related cells, we compared the CCA modes arising during visual 
stimulation to those present just beforehand. Notably, by around 
200 ms after stimulus onset, CCA modes present in inter-trial intervals 

Fig. 3 | Accounting for correlated fluctuations among task-related cells 
facilitates stable representations of stimulus type. a, Mean accuracies for 
inferring stimulus identity using optimal instantaneous (100 ms time bins) 
linear decoders of activity for individual (coloured traces) or all brain areas 
(black trace). Dashed lines in a, l, m demarcate stimulus, delay and response 
intervals. Data are mean ± s.e.m. across six mice b, Mean similarities between all 
pairs of instantaneous decoders, assessed by correlation coefficients between 
pairs of decoder weights for all cells in each mouse (n = 6 mice). Given the 
decoder constancy across stimulus presentation, in c–j we trained ‘consensus’ 
decoders, optimized for 0.5–2.0 s after the stimulus onset (Extended Data 
Fig. 3f, h). c, d, To assess decoder stability, we trained ‘common’ consensus 
decoders on data from all days and compared them to consensus decoders 
trained on data from single days. We evaluated real (c) and trial-shuffled (d) 
datasets in which each cell’s Ca2+ traces were randomly permuted across trials 
of the same stimulus type from the same day. Each blue shade in c–e denotes 
data from one mouse during stimulus presentation. Each data point in c and d is 
from one session and shows the stimulus-identity information (d′)2 conveyed 
by common and single-day decoders given identical test datasets from 
individual days. On real datasets, common decoders outperformed single-day 
decoders (c). On trial-shuffled datasets, single-day decoders generally  
outperformed common decoders (d). Data are mean ± s.d. across 100 random 
divisions of each dataset into thirds, for dimensionality reduction, decoder 
training and testing. Insets: correlation coefficient, r, values between 
consensus decoders from individual days and the common decoder (C), 
averaged over six mice (Extended Data Fig. 3i). e, Left, optimal linear decoders 
outperformed diagonal decoders that ignore correlated fluctuations (68 ± 6% 
(mean ± s.e.m.; P < 1.7 × 10−6) and 40 ± 5% (P < 2.3 × 10−6) more information was 
captured by the optimal decoders of trial type for common and single-day 
decoders of activity during stimulus presentation; signed-rank test; n = 30 
sessions in 6 mice). Right, the superiority of optimal over diagonal decoders 
was greater for common than single-day decoders. Increases in (d′)2 for optimal 
versus diagonal decoders were 55 ± 26% (mean ± s.e.m.) greater for 
common than single-day decoders (P < 4.9 × 10−5, signed-rank test; n = 30 
sessions). Each connected pair of blue-shaded points shows results from one 
session and one mouse; red points show mean values for individual mice. f, 
Day-to-day drifts in neural responses were aligned with within-day, trial-to-trial 
fluctuations. To assess day-to-day drift, we computed the unity-normalized 
vector between the mean neural ensemble responses to each stimulus on 
consecutive days, (μ2 − μ1)/(||μ2 − μ1||). To characterize trial-to-trial 

fluctuations, we computed the noise covariance matrix of ensemble responses, 
averaged over both stimuli, for the first day of all consecutive pairs of days. We 
projected (μ2 – μ1)/(||μ2 – μ1||) onto this matrix’s eigenvectors, {ei}, and 
averaged over both stimuli and all pairs of consecutive days. Day-to-day drifts 
aligned with within-day, principal noise eigenvectors in real (purple points; 
r = 0.95; P < 10–50) but not trial-shuffled (red points; r = 0.02; P = 0.82) data. 
Inset: cumulative plots of the fraction of the power of day-to-day variations 
within the subspace defined by the first n noise eigenvectors (where n is the 
abscissa value) for real (purple) and trial-shuffled (red) data. g–j, Cells 
contributing most to the performance of stimulus-only decoders were 
interspersed across the cortex. Maps of these most-informative cells (with 
decoder weights that deviated >2 s.d. from the mean) are shown for one mouse 
(stimulus interval (g), delay interval (h) and response interval (i)) averaged over 
both response types. Scale bar, 1 mm. j, Mean ± s.e.m. (six mice) percentages of 
the most-informative cells in each brain area (colours as in a). For response 
decoder results, see Extended Data Fig. 4h–m. k, Coding redundancy peaked 
just after stimulus onset. For each time bin after stimulus onset (colours), we 
used instantaneous decoders to measure the information (d′)2 conveyed about 
stimulus identity by subsets of cells randomly chosen across all areas. Data are 
from one mouse and are averages over 100 subsets of each size, normalized to 
the result for all cells. For results for all mice and delay and response periods, 
see Extended Data Fig. 5b, c. s.e.m. values (not shown) are <8% for all points. l, 
Mean ensemble sizes, N0.5, at which (d′)2 reached its half-maximum, estimated 
for each time bin using instantaneous decoders of activity across all imaged 
areas. Data are mean ± s.e.m. across six mice. m, The absolute values of mean 
noise correlations in Ca2+ event rates for pairs of the most-informative cells 
both tuned to Go stimuli (blue trace), both tuned to No-Go stimuli (red trace) or 
oppositely tuned (magenta trace). Black trace, results for untuned cells. Data 
are mean ± s.e.m. across six mice. n, Cell pairs with similar stimulus tuning had 
their greatest noise correlation coefficients just after stimulus onset. Data 
show distributions of these coefficients at different times (denoted in colours) 
pooled over six mice. Error bars (s.d.) are too small to be visible. o, N0.5 versus 
the ratio of the mean of the noise covariance matrix’s diagonal elements (Σii) to 
the mean of its non-diagonal elements (Σij) for the most-informative neurons. 
Each data point is from one mouse and time bin during stimulus presentation. 
The colours denote individual mice and reveal a linear relationship (r = 0.9; 
P < 1.4 × 10–25), consistent with mice having statistically similar neural 
connectivity matrices. Data are mean ± s.e.m. over 100 subsamplings of cells 
( y-axis) or 51–296 cells (x-axis).
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(ITIs) had decayed and a new set of modes had activated (Fig. 4g and 
Extended Data Fig. 8). Thus, inter-area fluctuations in animals nominally 
at rest11,37 appear to be distinct from those during an active sensory task.

To characterize the spatial structure of inter-area fluctuations, for 
each choice of brain area as a source, we quantified the similarity of 
its CCA modes with each of the seven other imaged areas. Strikingly, 
for every source area, the primary communication mode was nearly 
the same, irrespective of the target, implying that there was a global 
mode of cofluctuations (Fig. 5a, b). Secondary modes were more local-
ized and shared across subsets of areas. For example, V1 shared one 

secondary mode with the auditory cortex and the somatosensory 
cortex, and another with the lateral visual and medial visual cortical 
areas and the posterior parietal cortex (Fig. 5a–c). Thus, CCA revealed 
a hierarchical structure in which each area shared a global fluctua-
tion mode with all other areas, and distinct secondary modes with 
different sets of areas.

We examined whether cofluctuation modes carried signals relating 
to the visual discrimination task (Fig. 5d, e). About 0.5 s after stimulus 
onset, activity in the second and higher CCA modes accurately encoded 
stimulus identity. Up to ~80% of the total information encoded in the 
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Fig. 4 | Inter-area fluctuations and stimulus encoding redundancy peaked 
around 200 ms after stimulus onset. a, Different sensory areas had strongly 
correlated decoder scores. Shown is an example scatter plot for one mouse for 
which we trained stimulus-type decoders using either V1 or S1 activity from 
0.5–0.6 s after stimulus onset on correctly performed trials. Each data point 
shows the two decoder scores on one trial. Extended Data Fig. 6a shows another 
example from areas PPC and RSC. b, c, Correlation coefficients, r, for decoder 
scores peaked ~200 ms after stimulus onset. b, Time-varying mean ± s.e.m. 
(n = 6 mice) r values between V1 and seven other regions. c, Peak r values for all 
area pairs, averaged over mice (Extended Data Fig. 6b, d). Dashed lines in b and 
d demarcate the stimulus, delay and response periods. d, Redundancy of 
stimulus encoding across the cortex peaked ~200 ms after stimulus onset and 
then declined towards unity. Data are mean ± s.e.m. over six mice. e, Bottom, 
raster plots of Ca2+ events in individual cells (from eight areas in one mouse) 
with large contributions to inter-area cofluctuation modes found by CCA. Top, 
coloured traces show the dynamics of the largest CCA modes between V1 and 
seven other areas. The V1 trace is an average of results from all seven analyses. 

Cyan and grey shading mark Go and No-Go stimulus presentations, 
respectively. Scale bars, 5 s.d. (vertical), 10 s (horizontal). f, Inter-area 
cofluctuations comprised about 60% of the total power of cortical noise 
modes. The plot shows the mean powers, σ2 (the variance), of the ten largest 
CCA modes (red curve, left y-axis), averaged over all 28 area pairs and both areas 
per pair, and the mean power of the 10 largest noise modes (blue curve) found 
by principal component analysis (PCA) of fluctuations in each area, averaged 
over all 8 areas. Noise modes found by randomly shuffling weights from CCA 
(black curve) had substantially less power. Ratios of noise power in CCA and 
PCA modes (magenta curve, right y-axis) were consistently around 60%. For f 
and g, data are mean ± s.e.m. over 6 mice. g, Distinct inter-area cofluctuations 
arose during visual stimulation and ITIs, defined as 2 s intervals preceding 
stimulus onsets. We separately applied CCA to ITIs and stimulus presentation 
periods. The time-varying correlation coefficients for the largest noise modes 
between V1 and seven other areas are plotted (coloured as in b). At the stimulus 
onset, correlated activity rose considerably in modes found during visual 
stimulation, whereas activity in the ITI modes declined (Extended Data Fig. 8).
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cortex about stimuli identity was shared between areas in these modes, 
which conveyed almost nothing about the mouse’s upcoming response 
(Fig. 5e–f and Extended Data Fig. 9a). Later, around 1 s into stimulus 
presentation, on Go trials the global cofluctuation mode encoded 
the upcoming response but no stimulus information, consistent with 

our ability to decode upcoming responses on Go but not No-Go trials. 
Overall, the neocortex uses non-interfering communication chan-
nels, that is, orthogonal cofluctuation modes, to convey stimulus- and 
response-related signals to distinct sets of areas, in a targeted and 
global manner, respectively.
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Fig. 5 | Orthogonal inter-area cofluctuations communicate sensory data 
and the mouse’s upcoming response. a, Each matrix shows correlation 
coefficients, r, for CCA modes between one of eight source areas (listed at 
bottom) and two target regions (arranged as in the insets). A large matrix 
element value indicates that the source cofluctuated with the two targets 
using a similar activity mode; small values imply distinct cofluctuation modes. 
Results are shown for the five largest CCA modes for each source–target pair, 
averaged over six mice. The largest CCA mode (top row) was largely invariant to 
source–target choices and thus globally shared across areas (the mean r values 
of the largest modes for individual mice were 0.99, 0.95, 0.85, 0.91, 0.92 and 
0.68). Insets: magnified views for the largest CCA modes involving V1 and one 
of seven other areas (top), and the second-largest modes between V1 and these 
other areas (bottom). In five out of six mice, there were at least two clusters 
(orange and olive fonts) of secondary modes with moderate similarity 
(schematic in c). Modes involving V1 and LV, MV or PPC comprised one cluster; 
modes involving V1 and either area A or S comprised another. b, Left, map of 
neurons (green) contributing significantly (weights deviating by >2 s.d. from 
mean values) to the global fluctuation mode in one mouse. Right, map of 
neurons in the two clusters of second-largest CCA modes involving V1 (see a 
and c). Cells marked red contributed to cofluctuations between V1 and either S 
or A. Cells marked cyan contributed to cofluctuations between V1 and LV, MV 
or PPC. c, Left, clustering revealed two subsets of target areas with similar 
second-largest CCA modes in V1, as seen in a and b. Right, ten example activity 
traces for these modes, coloured to match the areas on the left. Solid traces 
show activity within the CCA mode in V1. Dotted traces show activity in the 
target area’s CCA mode. Scale bar, 5 s. d, Aggregate neural Ca2+ signals in one 

mouse within the population vector dimensions determined by the largest 
three CCA modes (columns), for four different area pairs (rows) and trial 
outcomes (coloured traces). The dashed line marks the stimulus onset. 
Ordinate values are shifted and normalized to lie within [0,1]. Data are 
mean ± s.e.m. n = 100–678 trials. e, Right, the global fluctuation mode, 
identified in a, lies in the dimension encoding information late in the stimulus 
period about the mouse’s upcoming response. Left, the second- to fifth-largest 
CCA modes lie in dimensions encoding stimulus type. The results are from a 
CCA analysis of V1, LV, MV, PPC, A and S in which the cell ensembles 
significantly encoded stimulus type or the mouse’s upcoming response 
(P < 0.01, permutation test across trials of different types, using equal trials of 
each type; n = 52–854 trials per type per mouse). We analysed the 15 area pairs, 
projected activity in each area onto the dimensions identified, and computed 
how much information, (d′)2, this activity subset encoded about the 
stimulus type (on Lick and No-Lick trials, on which the mouse, respectively,  
did or did not exhibit a licking response during the response interval), or 
about the upcoming response (on Go trials). The time-varying (d′)2 values, 
averaged over both projections for each of 15 area pairs in 6 mice, are shown for 
the 10 largest CCA modes (Extended Data Fig. 8). f, To determine the 
proportion of stimulus information shared through CCA modes, we plotted 
the total information encoded in CCA modes between a source (coloured 
traces) and the other seven areas, relative to the total information encoded 
within the source. Visual areas had a preponderance of their stimulus 
information encoded within CCA modes, especially early during stimulus 
presentation. Ratios for non-visual areas peaked later in the trial. Data are 
mean ± s.e.m. over six mice (Extended Data Fig. 9a).



720  |  Nature  |  Vol 605  |  26 May 2022

Article

Discussion
By tracking neurons across all visual cortical areas, our study reveals 
information-processing mechanisms that are likely to underlie reliable 
sensory performance. Historically, neuroscientists viewed correlated 
neuronal fluctuations as imposing limits on coding accuracy5,12–14, which 
our study supports. However, our data also show that accounting for 
correlated fluctuations facilitates the long-term reliability of neural 
population activity decoders, because day-to-day variations in popula-
tion coding strongly correlate with the faster coding variations occur-
ring within individual days. This similarity across timescales arises 
even in simple network models and enables decoding strategies that 
are intrinsically robust to both forms of variability (Supplementary 
Information). Decoders that neglect correlated fluctuations lack this 
dual robustness.

Beginning <100 ms and reaching an apex around 200 ms after stimu-
lus onset, task-related neurons across the cortex momentarily increase 
their correlated fluctuations for ~300 ms. Importantly, these rapid 
dynamics in no way conflict with reports that variability in the activity 
of individual cells declines after stimulus onset38, a pattern that our 
data confirm (Extended Data Fig. 5e–g). Moreover, the modulation of 
shared fluctuations seen here in mice performing a visual task contrasts 
with findings in untrained mice passively viewing stimuli, during which 
modulations of shared fluctuations were unapparent in V13. Thus, task 
performance, long-term training or both might alter the dynamics of 
correlated fluctuations19,39.

The stimulus-evoked increase in shared fluctuations among 
task-related cells boosts the redundancy of cortical representations 
severalfold within a ~300 ms interval. The transient, shared fluctuation 
modes convey a majority (about 80%) of sensory information across 
cortical areas within signalling streams orthogonal to that conveying 
the animal’s response. Here, information about the mouse’s upcom-
ing response arose in a unique, global mode of fluctuations starting 
around 0.6 s and peaking about 1 s after stimulus onset. In visual tasks 
without a delay period, choice-related fluctuations arose sooner after 
stimulus onset40,41.

In our experiments, the time-interval following the redundancy peak, 
namely 0.5–2 s after stimulus onset, was when our stimulus decoders 
attained a stable form (Fig. 3b). Our analyses of long-term decoder 
stability used data from this 0.5–2 s interval and showed that common 
decoders can succeed across days without need for daily adjustments. 
However, these results carry no implications regarding the long-term 
stability of stimulus decoders trained on time bins within the 0–0.5 s 
interval, during which decoder forms were changing too rapidly for 
us to draw conclusions about long-term stability.

The rise and decay of shared fluctuations seen here after stimulus 
onset may reflect successive feedforward and feedback phases of infor-
mation flow across sensory cortical areas42–44. In this view, the early 
sensory cortex uses redundant, inbound sensory data to represent the 
basic features of a stimulus within the first few hundred milliseconds 
of its appearance; during later sensory processing, probably involving 
feedback from higher-order areas, the representations become less 
redundant and more efficient. This transition, which probably occurs 
more quickly in primates than mice, may reflect a shift in spiking pat-
terns from those driven initially mainly by incoming sensory signals, 
arriving through overlapping connections, to those reflecting a ris-
ing influence of top-down or recurrent signals propagating through 
distinct circuitry. This processing shift may help to relate local visual 
features to their global context or task demands42–44.

The time-varying, anatomic patterns of shared fluctuations are likely 
to support inter-area communication within distinct subnetworks. 
Human neuroimaging studies describe a ‘default-mode’ network 
of areas with characteristic cofluctuations that typify the brain’s 
resting state7, and other sets of functionally connected areas that 
cofluctuate during performance of specific tasks21. Here, inter-area 

cofluctuations during a visual task differed from those during ITIs, 
providing cellular-level evidence of task-dependent changes in the 
brain’s functional connectivity. Bolstering the idea that shared fluctua-
tions subserve specific components of animal behaviour, information 
about sensory stimuli and upcoming responses was communicated 
to distinct groups of areas, in orthogonal fluctuation modes and with 
distinct timing. Future work should quantify the extent to which fluc-
tuation modes are task specific or generalize across tasks with similar 
components.

It is striking that response-related data were transmitted within 
a global fluctuation mode that engaged every area examined. Past 
observations of widespread fluctuations came from animals with no 
active task to perform10,11 or in which fluctuations reflected spontane-
ous movements or arousal23. Notably, widespread dissemination of 
perceptual decisions across brain areas distinguishes some models of 
conscious perception45 and, when related to reward expectation, is a 
key element in some models of reinforcement learning46. As previous 
reports suggest that brain connectivity might resemble ‘small-world’ 
networks47,48, we simulated small-world networks with varying con-
nectivity and linear dynamical fluctuations, but they all lacked a global 
fluctuation mode; however, networks in which a single source broad-
casted common signals to multiple areas did exhibit a global mode 
(Extended Data Fig. 9). Future research should determine whether 
such a broadcast exists in the mammalian brain and, if so, in which 
area or areas it originates.
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Methods

Mice
The Stanford University Administrative Panel on Laboratory Animal 
Care approved all procedures using animals. For imaging studies of 
layer 2/3 neocortical pyramidal neurons in live mice, we used 4 male 
and 2 female triple transgenic GCaMP6f-tTA-dCre (Rasgrf2-2A-dCre; 
Camk2a-tTA; Ai93) mice developed by the Allen Institute. Mice were 
10–16 weeks old at the time of surgery. Because there was only one 
group of mice, randomization and blinding procedures for the assign-
ment of mice to different groups were not applicable. We did not use 
formal statistical methods to predetermine the sample size but instead 
replicated our main findings in all six mice used.   

Surgical procedures
To prepare mice for in vivo imaging sessions, we performed surger-
ies while mice were mounted in a stereotaxic frame under isoflurane 
anaesthesia (1.5–2% isoflurane in O2). To reduce post-operative inflam-
mation and pain, we administered a preoperative dose of carprofen 
(5 mg kg−1; subcutaneous injection into the mouse’s lower back), which 
we repeated once a day for 3 days after the surgery. We created a cranial 
window by removing a 5-mm-diameter skull flap (centred at AP –2.5, 
ML 2.7) over the right cortical area V1 and surrounding cortical tissue. 
We covered the exposed cortical surface with a 5-mm-diameter glass 
coverslip (no. 1 thickness, 64-0700, CS-5R, Warner Instruments) that 
was attached within a circular steel annulus (1 mm thick, 5 mm outer 
diameter, 4.5 mm inner diameter, 50415K22, McMaster) and secured to 
the cranium using ultraviolet-light curable cyanoacrylate glue (Loctite, 
4305). Using dental acrylic, we cemented a metal head-plate to the 
skull for head-fixation during imaging. In vivo brain imaging studies 
commenced at least 7 days after surgery.

Retinotopic mapping
To locate the boundaries of the visual cortical areas, we performed 
retinotopic mapping of the visual cortex in awake mice using widefield 
Ca2+ imaging by adopting a protocol that was used previously for reti-
notopic mapping by intrinsic signal imaging49–52. As in all subsequent 
imaging experiments, we held mice on top of a 11.4-mm-diameter 
Styrofoam ball (Plasteel) using a two-point head-holder positioned 
under the objective lens of our custom-built epi-fluorescence mac-
roscope (see the ‘Fluorescence macroscope’ section below; Fig. 1a). 
The Styrofoam ball floated on a thin layer of water within a plastic 
bowl of nearly identical diameter (Critter-Cages), as previously 
described53.

Mice viewed a visual stimulus comprising a drifting bar (10° wide) 
displayed on a video monitor positioned 13 cm from the left eye. The bar 
swept across the entire monitor in 14 s at a speed of 7° s–1 and was filled 
internally with a contrast-reversing checkerboard pattern (0.035 per 
degree spatial frequency; 1.25 Hz temporal frequency of checkerboard 
reversal). The bar drifted either left, right, up or down on the monitor; 
each mouse viewed 100 repetitions of this stimulus for each direction 
of motion. The monitor remained grey for a 2 s interval between suc-
cessive stimulus repetitions49,51. Throughout the mapping session, we 
imaged baseline and evoked neocortical Ca2+ activity using the fluo-
rescence macroscope.

The visual stimulus used for mapping generally evoked retinotopic 
neural Ca2+ activity across the visual cortex, followed by a strong decline 
in Ca2+ activity below baseline levels. For each direction of stimulus 
motion, we computed the trial-averaged video of evoked Ca2+ activity, M 
(a three-dimensional matrix with spatial indices i and j, and a temporal 
index t), across all 100 stimulus repetitions, temporally aligned to the 
moment of stimulus onset. To map positions of the moving bar within 
the visual field to the corresponding anatomic coordinates within 
the visual cortical retinotopic maps, we calculated the phase of Ca2+ 
excitation within the i,jth pixel at each time t by approximating M with 

a factorized model of a moving wave for each stimulus direction, so as 
to minimize the reconstruction error:

∑ M A f t pMinimize ( − ( − )) .A f p i j t ijt ij ij, , , ,
2

Through this factorization, we approximated the average video M 
using a single waveform, f, with amplitude, Aij, and phase, pij, at the 
i, jth pixel. We determined the values for the matrices, A and p, and 
the function, f, by using gradient descent to minimize the squared 
reconstruction error, summed over all pixels and time bins. We spatially 
smoothed the resulting phase maps using a Gaussian low-pass filter 
(σ = 40 μm) (Extended Data Fig. 1e).

On the basis of the smoothed phase maps determined for the  
vertical and horizontal directions of stimulus motion, we located the 
boundaries between V1 and the secondary visual areas (the medial 
visual (MV) and lateral visual (LV) cortical areas)49. We inferred the 
locations of other cortical areas by aligning the Allen Brain Atlas 
cortical map54 to the V1 boundaries determined in each mouse. 
Throughout the paper, for simplicity, we refer to the union of the 
lateromedial (LM) and anterolateral (AL) cortical areas as the LV, to 
the union of the anteromedial (AM) and posteromedial (PM) areas as 
the MV areas, and to the union of the rostrolateral (RL) and anterior (A) 
areas as posterior parietal cortex (PPC). This grouping of the smaller  
secondary visual areas reduced to 8 the number of areas used in our 
subsequent analyses.

Training procedure and behaviour
We trained mice to perform the Go/No-Go task through succes-
sive stages of training (detailed below) that enabled us to gradually 
increase the complexity of the task performed by the mice while also 
ensuring that the association between visual stimuli and rewards 
remained stable. All of the mice in this study associated a Go stimu-
lus with a horizontal grating orientation. To prevent light from the 
visual stimuli from entering the fluorescence collection pathway of 
the microscope, the stimuli used only the blue component of the RGB 
colour model, which was blocked by the fluorescence emission filter. 
We also placed a colour filter (Rosco, 382 Congo Blue) on the moni-
tor screen. The mean luminance from the stimulus at the mouse eye 
was approximately 5 × 1010 photons mm–2 s–1, which is more than two 
orders of magnitude higher than the transition threshold to photopic 
vision in mice.

In the first stage, we trained water-deprived mice (target weight, 
80% of initial body weight) to respond to a 100% contrast single drift-
ing grating stimulus (2 s in duration; 2 Hz temporal frequency; 0.04 
per degree spatial frequency; located within a 40° wide circle at the 
centre of a video monitor positioned 13 cm from the eye throughout 
all stages). In the first stage, mice learned that, by licking a spout dur-
ing presentation of the Go stimulus, they would immediately receive a 
drop of 5% sucrose in water (~5 μl per drop). After a few days of training, 
mice that consistently licked only during Go trials progressed to the 
next stage of training.

In the second training stage, in addition to the Go stimulus, mice also 
viewed an orthogonal drifting grating stimulus or No-Go stimulus. Simi-
larly to the first stage, mice were trained to respond on Go trials during 
the grating presentation, but we also included a grace period (1 s) at the 
onset of the grating stimuli that did not count towards a response. This 
allowed for some level of compulsive licking. After the grace period, 
if mice responded during No-Go stimuli, they received two aversive 
stimuli: (1) a small air puff (100 ms long) delivered to one eye of the 
mouse (contralateral eye to the stimulus); (2) simultaneously with 
the delivery of the air puff, the trial aborted and an 8 s timeout period 
occurred, during which the video monitor was held entirely grey at its 
mean luminance value. During this timeout, any additional lick(s) by 
the mouse resulted in the delivery of additional air puff(s). Once mice 
learned to perform the visual discrimination correctly on >75% of trials 



by licking in response to the Go stimulus and not licking in response to 
the No-Go stimulus, training progressed to its next stage.

In the third training stage, we sought to create a separate response 
window so that rewards would not be provided at the same time as 
presentation of the visual stimuli. In this stage, mice learned to with-
hold their licks during stimulus presentation and to wait for a response 
period that was cued by an auditory tone (3.4 kHz; 100 ms duration). As 
in the second training stage, if mice licked during the visual stimulus 
they automatically received an air puff and a timeout (timeout dura-
tion was 3 s in the third training stage). As this training stage was the 
most challenging for the mice, we gradually increased the duration of 
the delay period either from session to session, or in three sub-blocks 
within one session, such that each mouse eventually performed the 
task with a delay of 0.5 s between the stimulus period (2 s duration) 
and the response period (3 s duration).

On a final day of training, we decreased the contrast of the moving 
gratings on both the Go and No-Go trials to between 50% and 12% to 
increase the proportion of error trials. Mice received only a single day 
of training on which the visual discrimination task was presented with 
this reduced level of visual contrast. By the end of training, all of the 
mice used for neural Ca2+ imaging studies performed the task with an 
accuracy of >75% with the low-contrast stimuli, for both Go and No-Go 
trials (Extended Data Fig. 1g, h; 83 ± 3% correct trials; mean ± s.e.m.; n = 6 
mice). Mice took 21–29 days of training (mean: 25 days; n = 6 mice) to 
reach the end of the training protocol.

Fluorescence macroscope design
To image neural Ca2+ activity across 11 mouse cortical areas, we designed 
and built a custom wide-field fluorescence macroscope with a field of 
view spanning 4 mm in diameter (Fig. 1a). For epifluorescence illumi-
nation, we used a light-emitting diode (LED) (Thorlabs, M470L2) with 
an emission spectrum centred in the 440–480 nm range. The imag-
ing pathway comprised an objective lens (Leica, ×5.0 Planapo 0.5 NA; 
19 mm working distance; anti-reflection coated for 400–1,000 nm 
light; transmission >90% at 520 nm), a tube lens (75 mm focal length; 
Thorlabs, AC508-075-A-ML), a custom fluorescence filter cube (exci-
tation filter, Semrock FF01-466/40-25; dichroic mirror, Semrock 
FF495-Di03, custom-sized to 35 mm × 50 mm; emission filter, Semrock 
FF02-525/40, custom-sized to 30 mm × 30 mm) and a scientific-grade 
CMOS camera (Hamamatsu ORCA-Flash4.0 V2 sCMOS). To control 
image acquisition, we used the HCImage software (Hamamatsu), which 
communicated with the camera through an Active Silicon Firebird 
Camera Link Board.

To collect light from the LED, we used a 75 mm focal length focus-
ing lens (Thorlabs LA1680, Thorlabs) to project convergent rays of 
excitation light at the back aperture of the microscope objective. We 
aligned the focusing lens to provide approximately uniform illumi-
nation across the field of view (5 mm diameter), that is, close to the 
regime of Kohler illumination, while also ensuring that that the illu-
mination rays were divergent as they entered the brain. The purpose 
of this illumination strategy was to create more intense illumination 
within neocortical layer 2/3 and to reduce fluorescence excitation 
within out-of-focus, deeper cortical layers. To improve the optical 
resolution at the periphery of the field of view, beyond the nominal 
~2-mm-diameter field of view of the objective lens, we reduced the 
effective numerical aperture by placing a 10-mm-diameter iris at the 
back aperture of the objective lens.

We built the opto-mechanical assembly using a combination of 
commercially available components (Thorlabs) and custom-designed 
mechanical parts machined in high-strength 7075 aluminium. The 
entire macroscope was mounted on a manual vertical translation stage 
that enabled the user to conveniently adjust the image focus by mov-
ing the entire optical pathway of the macroscope while the specimen 
was held immobile on the vibration-isolation table upon which the 
macroscope was built.

Image acquisition and preprocessing
We acquired Ca2+ videos of neural activity (20 fps, 2,048 × 2,048 pixels) 
on the fluorescence macroscope using 40–160 μW mm–2 illumination. 
Custom software written in MATLAB (v.2013b) controlled the presenta-
tion of the visual stimuli to the mouse, ran the behavioural apparatus 
via a NI-USB 6008 card and triggered the start of video capture on the 
fluorescence macroscope.

After video acquisition, we downsampled each video to 1,024 × 1,024 
pixels and 10 fps. We next corrected videos for lateral movements of the 
brain using the Turboreg software package for image alignment55. To 
remove scattered fluorescence and background fluorescence signals 
from neuropil or neural elements outside the focal plane, we applied 
a Gaussian spatial high-pass filter (σ = 80 μm) and calculated the video 
of relative fluorescence changes, ΔF(t)/F0, for each imaging session, 
where F0 is the mean activity of each pixel over the entire session and 
ΔF(t) is the mean subtracted activity of each pixel at time t.

To quantify the slight lateral spatial displacements of the field of 
view between different imaging sessions, we computed the maximum 
projection image of each session’s ΔF(t)/F0 video over its entire duration 
(around 1 h per session). We used the MATLAB imregtform() function 
to find the optimal ‘similarity’ transformations (translation, rotation 
and scaling) between the maximum projection image determined for 
the first imaging session and each of the other individual sessions. We 
aligned all Ca2+ videos to the video from the first session using this same 
set of transformations. Finally, we concatenated the aligned ΔF(t)/F0 
videos from all sessions and proceeded to extract individual cells and 
their Ca2+ activity traces (see below; Extended Data Fig. 1).

Cell sorting
We extracted the activity of individual neurons from the concatenated 
ΔF(t)/F0 videos through the successive application of principal and 
independent analyses (PCA/ICA)56. We divided the concatenated, 
preprocessed Ca2+ video from each mouse (about 1 TB in size) into 16 
tiles; each tile comprised 256 × 256 pixels collectively covering about 
1 mm × 1 mm in the specimen plane. We ran PCA/ICA in parallel for all 
16 tiles on 16 separate computing nodes (20 cores per node; 320 total 
cores; about 4 TB of random-access memory (RAM) for each video) and 
thereby identified Ca2+ activity traces and spatial filters for individual 
neurons. To isolate each cell soma, we thresholded each cell’s spatial 
filter at 4 s.d. of its noise fluctuations (determined by fitting a Gauss-
ian distribution to the negative values of each cell’s spatial filter) and 
replaced all filter weights below this threshold with zeros. To attain a 
final set of Ca2+-activity traces, we reapplied the truncated spatial filters 
to the ΔF(t)/F0 video (Extended Data Fig. 1).

To separate the sources of Ca2+ activity that represented individual 
cells from those that did not, for each mouse, we took 3 of the 16 image 
tiles and we manually identified individual neurons on the basis of 
both their morphologies and the temporal waveforms of their Ca2+ 
transients. To identify cells located within the other 13 tiles, we trained 
3 different types of binary classifiers (support vector machine (SVM), 
generalized linear model (GLM) and neural network) to perform the 
classification by using the set of manually identified cells as training 
data and a set of 12 predefined cellular features that characterized a 
candidate neuron’s morphology (spatial features: eccentricity, diam-
eter, area, orientation, perimeter and solidity) and Ca2+ activity trace 
(mean peak amplitude of Ca2+ transients; signal-to-noise ratio between 
Ca2+ transients and baseline fluctuations; number of Ca2+ transients 
peaks that were 3 s.d. above baseline fluctuations; the number of Ca2+ 
transients peaks that were 1 s.d. above baseline fluctuations; the dif-
ference of the mean decay and mean rise times of the Ca2+ transients, 
normalized by the sum of these two values; and the FWHM of the aver-
age Ca2+ transient) to perform this classification. We used the trained 
classifiers to identify cells in the 13 remaining tiles based on a majority 
vote of the 3 classifier outputs. We manually checked that every cell 
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determined by this algorithm indeed met our visual inspection criteria 
to qualify as a neuron.

Event detection and definition of active cells
Using the fluorescence activity traces for the sources identified as neu-
rons, we created binarized Ca2+ event traces for each cell (100 ms per 
time bin). To do this, we first subtracted the median level of fluorescence 
from each trace; we then calculated the s.d. of each cell’s fluorescence 
fluctuations about baseline by fitting the statistical distribution of the 
activity trace’s negative values to a Gaussian function constrained to have 
zero mean. To identify individual Ca2+ events, we looked for individual 
Ca2+ transients with peak amplitudes >4 s.d. above baseline fluctuations. 
The resulting binarized event traces had entries of ‘1’ between the time 
at which the fluorescence amplitude of a Ca2+ transient surpassed 4 s.d. 
and the time at which the fluorescence amplitude started its decline back 
to baseline levels (Extended Data Fig. 1b). Entries were ‘0’ for all other 
time bins. To account for slight day-to-day variations in the illumina-
tion, optical focal plane or amplitude of fluorescence fluctuations, we 
performed these computations separately for each imaging session.

To determine whether a cell was active during an individual imaging 
session, we counted the number of time bins in the session in which 
the cell’s fluorescence emission was >3 s.d. above baseline fluctua-
tions. We considered the cell to be ‘active’ if this number was >2 times 
greater than what would be predicted on the basis of a null hypothesis 
that the fluorescence variations simply reflected Gaussian-distributed 
noise (that is, the prediction that 0.27% of the time bins per session 
should have trace values >3 s.d. above baseline fluctuations) (Fig. 2a 
and Extended Data Fig. 1d).

Assessments of spatial alignment quality
To evaluate the quality of spatial registration between datasets from 
different imaging sessions, we computed the spatial cross-correlation 
functions between corresponding image patches, (256 μm × 256 μm 
in size) within the maximum projection images determined from the 
Ca2+ videos from the first imaging session and one of the subsequent 
sessions. We determined the slight day-to-day shifts in each patch’s loca-
tion by finding for each session the displacement value corresponding 
to the peak amplitude in the cross-correlation function (Extended Data 
Fig. 2a). By sliding the location of the 256 μm × 256 μm patch used in 
this computation across the field of view, and computing the spatial 
cross-correlations for each location of the patch, we constructed maps 
of spatial displacement across the imaging field. These displacement 
maps revealed that our spatial alignments were almost perfect near the 
centre of the field of view (mean displacements, <1 pixel), and slightly 
deteriorated near the corners of the field of view (mean displacements 
≈ 1 pixel).

To evaluate how these small imperfections in spatial registration 
might have affected alignments of cells and their identities across 
imaging sessions, we determined the displacement of each cell across 
sessions by examining 256 μm × 256 μm image patches centred on 
each cell on each day of the experiment and then computing spa-
tial cross-correlation functions as above. We determined each cell’s 
day-to-day displacements in the datasets by identifying the maxima 
of these cross-correlations. This analysis showed that 98.5% of cells 
exhibit ≤1 pixel displacement across days (Extended Data Fig. 2b). We 
calculated each cell’s mean displacement across all imaging sessions 
and plotted the cumulative distribution of cells’ displacements by pool-
ing the data from all of the mice (Extended Data Fig. 2c). For each cell, we 
also measured the distance to the nearest neighbouring cell and plotted 
the cumulative distribution of these values for all of the mice (Extended 
Data Fig. 2d). These two cumulative distributions revealed that only a 
small percentage (~2%) of nearest neighbor cell pairs were separated by 
<5 μm, whereas 95.4% of cells had mean day-to-day displacements that 
were ≤5%, indicating that slight imperfections in image alignment were 
highly unlikely to affect the registrations of cells’ identities across days.

Analyses of single-cell coding
To characterize the extent to which individual neurons responded dif-
ferentially to the two visual stimuli, we calculated the fidelity, d′, with 
which the two stimuli could be distinguished on the basis of a cell’s 
stimulus-evoked dynamics:
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No-Go are variances 
of the cell’s evoked Ca2+ dynamics (based on the binarized Ca2+ event 
traces) in response to Go and No-Go stimuli. We computed these quan-
tities as trial-averages across either the stimulus, delay or response 
periods of the correctly performed trials, as specified in the figure 
captions. To allow even-handed comparisons between single-cell 
and neural population coding properties, for analyses of single-cell 
stimulus-evoked responses, we used the same time interval within 
the stimulus presentation period, [0.5 s, 2 s] after stimulus onset, that 
we used to train consensus decoders (see below). We also computed 
a distribution of d′ values for a set of trial-shuffled datasets, denoted 
d′shuffle . We created the set of trial-shuffled datasets by performing 1,000 
random permutations of the Go and No-Go trial labels. We determined 
that an individual neuron coded significantly for stimulus identity 
during the stimulus, delay or response periods if the cell’s d′ value for 
that period was significantly greater than its d′shuffle values for the same 
interval (P < 0.01; permutation test; n = 710–1,340 trials). All analyses of 
single-cell coding, as well as those of neural ensemble coding and CCA 
modes were performed using only those trials on which the mouse’s 
locomotor speed remained <1 cm s–1 throughout the trial.

Decoding neural population activity with optimal linear Fisher 
decoders
To quantify the information conveyed by neural ensemble dynamics 
about either the visual stimulus or the mouse’s response, we used partial 
least squares analysis (PLS) as a supervised method for performing a 
dimensionality reduction, followed by optimal linear decoding in the 
space of reduced dimensionality, to determine d′, the fidelity with 
which the two stimuli or two responses could be distinguished on the 
basis of the activity patterns of the neural ensemble. The quantity (d′)2 
is a discrete analogue of the Fisher information conveyed by the neural 
ensemble about the binary classification57. Recent theoretical and 
computational work has shown that this approach for determining (d′)2 
can yield accurate estimates even in the regime in which the number of 
experimental trials is far less than the number of neurons3.

For all decoding studies, we started by dividing all trials performed 
by each mouse into two distinct subsets, one used for decoder train-
ing and the other for decoder testing, and we represented the neural 
ensemble activity data in each subset using a three-dimensional tensor. 
The tensor elements, Tijk, denoted the binarized activity of cell i on trial 
j at time bin k (Extended Data Fig. 3c). To train decoders, we used two 
different ways to convert these tensors into two-dimensional matrices.

In the first approach, we fixed the value of k in the tensor and trained a 
separate decoder based on the two-dimensional data matrix, Xij, created 
for each time bin, k. We termed these decoders ‘instantaneous decod-
ers’, because they enabled us to study the time-dependent dynamics of 
neural ensemble representations (Fig. 3a,b and Extended Data Fig. 3f, g). 
Notably, however, the instantaneous decoders of stimulus identity were 
largely stationary across the interval [0.5 s, 2 s] after stimulus onset. On 
the basis of this finding, we also pursued a second decoding approach 
that involved what we termed a single ‘consensus decoder’, which was 
designed to capture the non-dynamical aspects of the neural ensemble 
stimulus representations across all time bins in the [0.5 s, 2 s] interval.

In this second approach involving the consensus decoder, we 
took all 15 time bins of 100 ms each within the [0.5 s, 2 s] interval and 



concatenated the data from these time bins along the trial index dimen-
sion, yielding a two-dimensional data matrix, Xij . This matrix contained 
the data from the same number of cells as used for instantaneous decod-
ing, but the effective number of trials was 15 times larger (Fig. 3c–j and 
Extended Data Fig. 3g). We used these matrices Xij to train the consensus 
decoders of either stimulus identity or the mouse’s response.

An important consideration when training optimal linear Fisher 
decoders of either the instantaneous or consensus type was the fact 
that Fisher decoders require an estimate of the inverse of the noise 
covariance matrix of the neural ensemble activity patterns. When the 
number of recorded neurons surpasses the number of experimen-
tal trials, one cannot accurately estimate the individual elements of 
the noise covariance matrix. However, the principal eigenmodes and 
eigenvalues of this matrix can be determined accurately with a much 
smaller number of trials than neurons, which in turn enables accurate 
decoding and estimation of (d′)2 values3.

To achieve these estimates, as in our previous work, we first used PLS 
analysis to perform a supervised linear dimensionality reduction3 by 
identifying dimensions of the neural population activity in which the 
amplitude is correlated with the outcome of the binary classification 
task58,59. The decoding strategy involved retaining a moderate number 
of these activity dimensions—while discarding the others—and then 
computing the optimal linear Fisher decoder and its associated d′ value 
in this space of reduced dimensionality.

To train the optimal linear Fisher decoder for one of the binary 
classifications (that is, of either the stimulus identity or the mouse’s 
response), we split the two-dimensional data matrix, Xij, as determined 
above, into two subsets, XA and XB, corresponding to the pair of con-
ditions to be decoded. Specifically, the conditions A and B referred 
either to the two different visual stimuli or the two different possible 
responses by the mouse. Each row of the matrices XA and XB represented 
the neural activity data on a trial of type A or B, and each column rep-
resented the activity data from an individual neuron across all trials of 
this type. We randomly subsampled (with no replacement) the rows of 
XA and XB to create three distinct equally sized smaller data matrices, 
denoted Xdr, Xtr and Xte, which we used for dimensionality reduction, 
decoder training and decoder testing, respectively, such that all of the 
data from any given trial were used in only one of these three matri-
ces. Specifically, we used Xdr to find the set of PLS basis vectors, which 
comprised the columns of a coordinate transformation matrix, U. We 
transformed the training and testing datasets into the coordinate sys-
tem defined by these PLS basis vectors:

X X U^ =tr tr

X X U^ = ,te te

We systematically varied from 1–50 the number of PLS dimensions 
retained for the decoding analysis; the ∙̂ symbol indicates the vector 
space of reduced dimensionality. To determine the number of retained 
dimensions that yielded the highest decoding performance, we evalu-
ated and optimized decoder performances through a cross-validation 
procedure (Extended Data Fig. 3c). Specifically, in the space of reduced 
dimensionality, we computed the optimal linear Fisher decoder, wopt, 
from the training datasets, using the formula

Σ= ^−
^ , (1)opt

1
w Δμ

where Σ = 0.5ΣA + 0.5ΣB is the average noise covariance matrix and 
Δμ = μA – μB is the vector difference between the trial-averaged 
responses under conditions A and B. Δμ is also termed the ‘diagonal 
decoder’, namely a linear decoder that accounts for the mean responses 
under conditions A and B but not the covariances in these responses. 
We determined the binary decision boundary for the optimal linear 
decoder as the hyperplane normal to wopt that bisected Δμ. To attain 

a decoder output or ‘score’ for an individual trial in the experiment, 
we projected the neural population dynamics from that trial onto wopt 
and then subtracted 0.5μavg · wopt, where μavg is the mean of μA and μB, 
so the decoder score would have zero mean when averaged across a set 
of trials with equal numbers of A and B trials. We determined the binary 
classification using the sign of the score. Using the testing dataset, we 
estimated the discriminability of the two trial types, (dʹopt)
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We repeated this process 100 times using 100 different random subsam-
plings of the trials for the construction of the dimensionality reduction 
dataset, the training dataset and the testing dataset.

To examine the extent to which visual stimulus encoding remained 
stationary over the course of the experiment, we trained an optimal 
‘common decoder’ on the data recorded across all imaging sessions. To 
create the common decoder, we pooled all the data from each mouse 
and divided this aggregate set of data as described above into three 
subsets to be used for dimensionality reduction, decoder training and 
decoder testing. Given this division and using the procedures described 
above, we trained a consensus decoder for the interval [0.5 s, 2 s] after 
stimulus onset, yielding an across-day common decoder. We addition-
ally assessed the values of (d′)2 for this common decoder on the testing 
datasets from the individual imaging sessions. This analysis revealed 
that the performance of the common decoder generally slightly sur-
passed that of decoders trained and tested on data exclusively from 
one imaging session (Fig. 3c and Extended Data Fig. 3i).

Analysis of error trials to distinguish neural coding of visual 
stimuli and mouse responses
On trials on which mice performed the Go/No-Go task correctly, the 
visual stimulus and the mouse’s response are perfectly correlated, pre-
cluding determinations of whether neural activity during the stimulus 
presentation is primarily evoked by the stimulus or also influenced 
by the mouse’s visual decision or information processing related to 
its upcoming response. To address this issue, we analysed error trials 
and trained decoders of neural ensemble activity that were sensitive 
to only the stimulus or only the animal's decision, while keeping the 
other factor fixed.

For example, on Go trials the mouse could either lick (Hit) or not 
lick (Miss) (Fig. 1b). By training a ‘response decoder’ to discriminate 
between Hit and Miss trials on the basis of the neural activity during the 
stimulus presentation period, we estimated the encoded information 
about the mouse’s upcoming response while it observed the Go stimu-
lus. As Hit trials were far more common than Miss trials, we randomly 
subsampled the set of Hit trials to construct unbiased datasets with 
equal numbers of Miss and Hit trials. Using these datasets, we trained 
consensus common decoders of neural population activity following 
the procedures discussed in the section above, as there were insuf-
ficient numbers of incorrectly performed trials to accurately train 
instantaneous decoders. Analyses of the visual stimulus period were 
based on the same interval, [0.5 s, 2 s] after stimulus onset, that was 
used to construct trial-type decoders. As the timing of the mouse’s 
responses differed from trial to trial and across trial types, we sought 
to retain sensitivity to the time dependence of coding by evaluating 
the response decoders’ (dʹ)2 values across the individual time bins of 
the trial structure. To construct the plots of Extended Data Figs. 3k and 
4b–g, we identified the time bin of each trial with the maximum (dʹ)2 
value and used that (dʹ)2 value when tabulating the results across trials 
and mice. Our decoding results revealed distinct patterns of neural 
activity during Go stimulus presentations that were predictive of the 
mouse’s upcoming response. We also executed an identical decoding 
analysis using equally sized datasets constructed from the neural activ-
ity recorded on No-Go trials (that is, Correct Rejection and False Alarm 
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trials). However, in this case, we did not find neural activity patterns 
during stimulus presentation that predicted the mouse’s response 
(Extended Data Figs. 3k and 4e). As the response decoders trained on 
Go and No-Go trials were constructed using equally sized datasets, the 
differences in their performances cannot be readily explained as due 
to a discrepancy in statistical power.

To determine whether visual stimulus coding during stimulus presen-
tation might have been affected by the mouse’s upcoming response, we 
trained and evaluated separate common consensus stimulus decoders 
for Lick trials (False Alarm and Hit) and No-Lick trials (Correct Rejection 
and Miss), using the same methods as for response decoders and with 
equally sized datasets that were constructed through subsampling. This 
analysis yielded no evidence that the quality of stimulus representa-
tions was impacted by the mouse’s upcoming response (Extended 
Data Figs. 3k and 4b).

Calculations of information redundancy across cortical areas
To assess the extent to which Fisher information about the stimulus was 
represented independently across different cortical areas, we exam-
ined inter-area correlations in the output scores of the instantaneous 
neural activity decoders (see above). We quantified these correlations 
separately for the two types of correctly performed trials and then 
averaged the resulting correlation coefficients.

The results revealed that fluctuations in neural ensemble activity 
along the stimulus coding direction were strongly correlated between 
the different sensory areas just after stimulus onset and then progres-
sively decayed (Fig. 4a–c and Extended Data Fig. 6). If information were 
represented independently in the different cortical areas, the sum of 
the information encoded in each of the individual brain areas would 
equal that encoded in the aggregate of all the brain areas25. Positive 
correlations in the decoder scores from different brain areas can reflect 
redundancy (Fig. 4d) such that this equality is not met and there are 
shared copies of the same information25:
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Determination of noise correlations among neuron pairs
To measure noise correlations between pairs of similarly tuned neurons, 
we trained instantaneous population decoders of the stimulus based 
on the neural activity recorded in each mouse on all trials performed 
correctly (see above). We selected cells that significantly contributed 
to each decoder by identifying those cells with decoder weights that 
deviated >2 s.d. from the mean value across the entire set of cells con-
sidered (Fig. 3g–j). We divided the resulting set of cells into two groups 
based on the sign of the individual cells’ mean-subtracted decoder 
weights as an indicator of similarity in the cells’ tuning to the visual 
stimulus. We then computed the noise correlation coefficients char-
acterizing the joint activity fluctuations of pairs of cells around their 
mean responses. We averaged the values of these coefficients over 
the two types of correctly performed trials. The time dependence of 
these correlations closely resembled that of the noise correlations in 
decoder scores across brain areas (see above).

In our analysis, we did not find substantial noise correlations between 
cells with dissimilar stimulus tuning or between cells without stimulus 
tuning. This is in agreement with our past findings in untrained mice 
viewing moving grating stimuli that differed by 60° in orientation3 but, 
here, with trained mice actively performing a task involving an orthogo-
nal pair of moving grating stimuli, the differences between the distribu-
tions of noise correlation coefficients between cell pairs with similar and 
dissimilar stimulus tuning were more substantial43,60 (Fig. 3m).

To estimate the time-dependent mean variability, σ2(t), of indi-
vidual neuronal responses in each mouse, we computed the variance 
in the activity level of each cell at time, t, relative to stimulus onset, 

across the set of all correctly performed Go and No-Go trials. We aver-
aged the results across all cells and both trial types. To compute the 
time-dependent Fano factor across the set of all neurons (Extended 
Data Fig. 5e), we divided σ2(t) by μ(t), the cells’ mean response at time 
t, averaged over all cells and correctly performed trials. Both σ2(t) and 
the Fano factor declined after stimulus onset, consistent with previous 
studies38 (Extended Data Fig. 5e).

Determinations of information saturation in large neural 
ensembles
Previous theoretical and recent experimental work has shown that 
the Fisher information encoded in the dynamics of a cortical neural 
ensemble saturates at large ensemble sizes, due to the existence of 
eigenvectors of the noise covariance matrix with eigenvalues that 
grow linearly in the limit of large ensemble size3,5,14,25 (Extended Data 
Fig. 5a). To characterize this information saturation at each time bin 
after stimulus onset, we trained instantaneous decoders of the visual 
stimulus based on the activity of a subset of the neurons recorded in 
each brain area. We systematically varied the size of this subset and 
measured the encoded information using the decoder (d′)2 values for 
each ensemble size, as averaged over 100 random selections of neurons 
for each time bin during which the entire cell population significantly 
encoded information about the stimulus (P < 0.01; permutation test; 
n = 710–1,340 trials). We normalized the (d′)2 values from each time 
bin to the total information encoded by all neurons during this same 
time bin.

In agreement with recent studies of V13,25, in all of the cortical areas 
examined here the information encoded by a cell ensemble saturated 
at large ensemble sizes (Extended Data Fig. 5a). Furthermore, just 
after stimulus onset, this saturation occurred at much smaller neural 
ensembles compared with later on in the trial. As stimulus presenta-
tion proceeded, the functional dependence of (d′)2 on ensemble size 
became more similar to the form observed in trial-shuffled datasets 
(Fig. 3k and Extended Data Fig. 5b, c).

To estimate the sensitivity of the ensemble neural code to the hypo-
thetical loss of one neuron, we determined the number of neurons of 
which the loss would result in a 10% decrement in the total information 
encoded by the cell population. We rescaled the result to express the 
information loss per cell removed (Extended Data Fig. 5h).

Determinations of the similarity between pairs of vector subspaces
To assess the similarity between two K-dimensional subspaces 
(Extended Data Figs. 3e and 5j), we first calculated the K × K matrix 
S = UT V, where U and V are N × K matrices of which K orthonormal col-
umns form a basis for each subspace. We then performed a singular 
value decomposition of S and determined the subspace similarity as the 
mean of the K singular values. This calculation yields zero for orthogo-
nal subspaces and one for identical subspaces. As each singular value is 
the cosine of a canonical angle between the two subspaces, this meas-
ure is equivalent to the mean of the cosines of the K canonical angles.

Assessments of how day-to-day drifts in neural encoding relate 
to trial-to-trial activity fluctuations
To assess how the day-to-day variations in stimulus-evoked neural 
responses related to the trial-to-trial variations in these responses 
within individual imaging sessions, we first rescaled each neuron’s 
activity trace to have zero mean and unit variance on each day of the 
experiment. Using these traces, we calculated the noise covariance 
matrix of the stimulus-evoked neural responses on each day, and we 
averaged these matrices across the two trial types. To identify the prin-
ciple directions of the trial-to-trial activity fluctuations on each day, 
we performed an eigenvector decomposition of each of the averaged 
covariance matrices.

To examine how the day-to-day variations in the neural representa-
tions related to the trial-to-trial activity fluctuations, we projected the 



changes between successive days in the mean neural ensemble response 
on each trial type onto the eigenvectors of the noise covariance matrix 
for the first day in each pair of consecutive days (we obtained similar 
results if we alternatively chose the eigenvectors from the second day 
of each pair). We averaged the results over both stimuli and all pairs 
of consecutive days. As control, we performed the same analysis with 
trial-shuffled datasets, in which the noise covariance matrix was ren-
dered isotropic by permuting the activity traces of each cell across trials 
of the same stimulus type. The results showed that day-to-day drifts in 
the neural ensemble representations of the stimuli were significantly 
aligned with the principal directions of the trial-to-trial variations within 
individual days (Fig. 3f and Extended Data Fig. 4a). We obtained similar 
results when we projected the day-to-day changes in the visual stimulus 
tuning curve onto the eigenvectors of the within-day, noise covari-
ance matrix. A theoretical explanation for how this observation can 
enable optimal decoders to be robust across days, and an explanation 
of how this alignment between within-day fluctuations and across-day 
changes in mean neural ensemble responses can arise mechanistically 
in a simple network model without any fine tuning are provided in 
the Supplementary Information.

Effects of correlated noise in a two-layer feedforward network 
model of the visual cortex
To guide our examinations of how redundant information coding across 
different neural ensembles is related to correlated fluctuations in activ-
ity that reflect neuronal connectivity patterns (Fig. 3o), we analysed a 
two-layer feedforward network model, also discussed elsewhere3. This 
network comprises an input layer of ‘sensory neurons’ and an output 
layer of ‘cortical neurons’, of which the activity levels are denoted by 
the vectors r and s, respectively, and related by the expression

W= ( + ) + .in outξ ξr F s

Here ξin and ξout are zero-mean Gaussian-distributed additive noise 
vectors that represent the stochastic components of the input and 
output activity levels, W denotes the connection matrix between the 
two layers, and F is a nonlinear transfer function relating the net input 
and output levels of activity. We approximate the response to a specific 
stimulus A via a Taylor expansion:

ξ ξr F s sW F W= ( ) + ′( ) + ,A A A T in out

where the prime symbol denotes the first derivative. As both ξin and 
ξout have zero means, the mean output response to this specific stimu-
lus is W= ( )A Aμ F s  where As  is the mean activity evoked in the sensory 
layer by stimulus A. Under these assumptions, the noise covariance 
matrix between neurons in the cortical layer is:

G W W GΣ = Σ + Σ ,A A in AT out

where GA is a diagonal matrix of which the elements denote the linear 
gain of each neuron around stimulus A, as determined from the func-
tion F ′. If all neurons operate at similar gains (assumed to be 1 here for 
simplicity), and if the noise terms ξin and ξout are uncorrelated between 
neurons, independent of the stimulus, and have variances, σ2

in and σ2
out, 

that are uniform for all cells in each layer, then:

σ WW σ IΣ = + , (4)in
2 T

out
2

where I is the identity matrix. To compute the (d′)2 value for distinguish-
ing between two distinct stimuli using an optimal linear decoder of activ-
ity in the output layer, the application of equation (1) above leads to:

d W σ WW σ I W( ′) = Δ Σ Δ = Δ ( + ) Δ . (5)2 T −1 T T
in
2 T

out
2 −1μ μ s s

Our previous analysis of this model3 shows that, if we replace W in 
equation (5) by its singular value decomposition, the minimum number 
of neurons, Nα

0.5, needed on average to extract >50% of the encoded 
information along each left-singular vector, uα, of W is determined by:
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where d̄α
2

 is the square of the αth largest singular value of W, divided 
by the total number of cortical neurons. From equation (4) we can also 
estimate the average value of the diagonal ( Σii) and non-diagonal ( Σij) 
elements of the noise covariance matrix:

w wσ σΣ = ⟨ , ⟩ + (7)ii i iin
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where w w w w⟨ , ⟩ = ∑i i N i
N

i i
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T  is a mean amplification factor, averaged 

over the N singular vectors of W (where N is the number of cells in the 
output layer) and ⟨ , ⟩ = ∑i j N N i j i j

1
( − 1) ≠

Tw w w w  is the mean similarity 
between the receptive fields of cells in the output layer.

Dividing equation (7) by equation (8) yields:
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Finally, substituting equation (9) into equation (6) yields:
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Equation (10) shows how the number of cells in the output layer 
needed to extract half-maximal information is related to the basic 
structure of the connectivity matrix, W (Fig. 3o).

Empirical analyses of redundancy and noise covariance in 
cortical ensembles
To study whether equation (10) held empirically in our datasets, we 
computed the ratio, Σii/ Σij, from our recordings of cortical neurons 
and studied its relationship to N0.5. In equation (10), Nα

0.5 is related to 
an individual eigenvector of the connectivity matrix, W. The value of 
N0.5 for an entire neural ensemble will be primarily determined by those 
eigenvectors of the connectivity matrix that make significant contribu-
tions to stimulus coding. As we do not have direct access to W, the 
connectivity matrix of the mammalian brain, to test equation (10) we 
estimated the noise properties of neurons that contributed signifi-
cantly to stimulus coding.

To estimate Σ, we computed the noise covariance for each stimulus 
separately and then averaged the results for both stimuli (Go and 
No-Go). We estimated N0.5 during the stimulus interval separately for 
each time bin (Fig. 3l; see above for detailed methods). In our experi-
ment, the N0.5 values and noise correlation coefficients varied over time 
during the stimulus presentation period. Equation (10) suggests that 
this time dependence should be constrained such that there is a linear 
relationship between N0.5 and (Σii/ Σij) at all time points. To test this, for 
each time bin, we plotted the empirically determined values of N0.5 
(Fig. 3l) against the ratio, Σii/ Σij, computed across the set of all cells 
that significantly encoded the stimulus type (see above for how we 
identified these neurons). The results were strikingly consistent with 
the linear relationship predicted by equation (10) (Fig. 3o). The slope 
of the linear relationship was similar for all of the mice in the experi-
ment, which presumably reflects conserved properties of the ana-
tomical neural connectivity within the mouse visual pathways, such 
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as the degree of overlap in the receptive fields of nearby cells and the 
amplification factors across different stages of visual processing.

Analysis of canonical noise correlations
To examine the structure of correlated activity fluctuations across 
different cortical areas and their relationships to the representation 
of information, we used CCA61 to study the co-variations of activity 
fluctuations within pairs of brain areas. For each trial type, we computed 
the trial-by-trial fluctuations in stimulus-evoked activity by subtracting 
from each fluorescence Ca2+ trace the mean Ca2+ activity trace, aver-
aged over all trials. We concatenated the traces representing these 
fluctuations across trials that the mouse performed correctly. For a 
given pair of brain areas, we represented the dynamics in the two areas 
with matrices, X and Y. These matrices were Nt × N1 and Nt × N2 in size, 
where Nt was the total number of time points after the concatenation, 
and N1 and N2 were the numbers of cells detected in each brain area. 
We standardized these zero-mean matrices of fluctuations X and Y by 
scaling each matrix column to have unit variance.

Following the standard approach in CCA, we identified two sets of 
loading vectors, {wi} and {vi}, termed here as CCA modes, each of which 
was an activity mode within one of the two neural ensembles (that is, with 
N1 and N2 elements, respectively). The index i ∈ {1, 2, 3, ..., minimum(N1, 
N2)} denoted the individual modes, which we determined such that the 
projections of the neural activity fluctuations, X and Y, onto wi and vi, 
were maximally correlated between the two ensembles,

w vw v X YMaximize ( ) ( ), (11)i i,
T

i i

subject to the normalization constraint, w w v vX X Y Y= = 1i i i i
T T T T . Given 

this normalization condition, the quantity X Y( ) ⋅ (i i
Tw v ) equals the 

correlation coefficient of the activity modes, vY i and wX i, in the two 
different brain areas. After finding the first CCA mode (i = 1), we identi-
fied successive modes in an iterative manner. Specifically, for all previ-
ously identified CCA modes we removed the CCA fluctuations, Y iv  and 
X iw , respectively, from X and Y. We applied equation (11) to the residu-
als and thereby identified a set of orthonormal fluctuation modes with 
correlation coefficient values that progressively declined with the 
index, i. To identify the maxima specified by equation (11), we first 
randomly initialized the vectors wi and vi while constraining them to 
have unity length. We then found values of wi and vi that maximized 
the objective function in equation (11) by performing an alternating 
optimization62.

To create training and validation datasets, we randomly divided the 
full datasets into two subsets with equal numbers of trials, with all the 
data from each trial used only in one of the two subsets. We used the 
first subset to find the top 20 CCA modes for all pairs of cortical areas. 
We used the second subset of trials to determine the inter-area corre-
lation coefficients of the fluctuations in each of the CCA modes; this 
revealed significant correlated fluctuations in the test dataset with no 
signs of overfitting (Extended Data Fig. 7d). We also performed a CCA 
of trial-shuffled datasets. By comparing the correlation coefficients 
for CCA fluctuations in the real data with those observed across 100 
different trial-shuffled datasets, we determined that the correlation 
coefficients in the real data were significantly larger than expected by 
chance (P < 0.01; permutation test; n = 710–1,340 trials; 525 cells per 
brain area on average, range: 31–2,297 cells; Extended Data Fig. 7a).

We also measured the amplitude of canonical correlations separately 
for Go and No-Go trials and found that, on average, the correlation 
coefficients had similar values for the two stimulus types (Extended 
Data Fig. 7d). Thus, for most of our analysis, to simplify visualization 
of the data, we combined the sets of mean-subtracted activity traces 
for the two stimuli and identified a single set of CCA modes between 
each pair of brain areas, independent of the stimulus type.

As a control analysis to ensure that the inter-area activity fluctuations 
that we had identified had not artifactually arisen from slight errors in 

determining the boundaries between brain areas, we performed CCA 
analysis on a control dataset in which we excluded all cells located 
<60 μm to the other brain area under consideration. These exclusions 
did not notably modify the amplitudes of correlated fluctuations or 
other aspects of our findings (Extended Data Fig. 7e).

To assess how the CCA correlation coefficients varied as a function 
of time relative to stimulus onset, for each pair of brain areas we pro-
jected the neural activity at different time bins onto the CCA modes 
and computed the correlation coefficient using the validation dataset; 
this yielded different values of the correlation coefficients for each 
time bin (Extended Data Fig. 8a). Across most of the visual stimulation 
period, the CCA fluctuations exhibited significantly greater correla-
tion coefficients in the real than in trial-shuffled datasets (P < 0.01, 
permutation test, n = 710–1,340 trials 525 cells per brain area on aver-
age; range, 31–2297 cells).

To examine how the brain’s fluctuations modes might change at the 
onset of visual stimulation, we first used CCA to identify a distinct set 
of CCA modes of the neural ensemble dynamics during ITIs, within the 
period [–2 s, 0 s] relative to stimulus onset. We then compared these 
CCA modes to those found within the visual stimulus period [0 s, 2 s]. 
To do this, once we had identified CCA modes during visual stimu-
lus presentation using training datasets, we extended the temporal 
range of the validation datasets to include the [–0.5 s, 0 s] interval. 
Conversely, once we had identified CCA modes during the ITIs, we 
extended the temporal range of the validation datasets to include the 
[0 s, 0.5 s] interval. We found that the correlation coefficient values 
of the ITI CCA modes declined after stimulus presentation, whereas 
those for the stimulus period CCA modes sharply increased shortly 
after stimulus onset (Extended Data Fig. 8a). For each CCA mode 
index, i, we also compared the directions of the mode vectors within 
the neural population activity vector space for the two different sets 
of CCA results by determining the cosines of the angles between the 
ith CCA mode vectors from before versus after visual stimulus onset 
(Extended Data Fig. 8b).

For comparison, we trained CCA modes using the data from the entire 
[–2 s, 2 s] interval, subsampled so that the training datasets were equally 
sized to those used to train the ITI and stimulus CCA modes from the 
[–2 s, 0 s] and [0 s, 2 s] intervals, respectively. At stimulus onset, many of 
these CCA modes exhibited either a rise or a decline in their canonical 
correlation coefficients, consistent with the results obtained when we 
trained CCA modes separately for the [–2 s, 0 s] and [0 s, 2 s] intervals. 
However, the values of the canonical correlation coefficients for the 
modes trained for the [–2 s, 2 s] interval were generally less than those 
of the CCA modes trained separately for the stimulus presentation and 
ITI presentations, suggesting that the implicit assumption in CCA of 
statistical stationarity does not hold at stimulus onset and that there 
is a bona fide transition in the noise correlation structure of cortical 
activity at stimulus onset.

Simulations of multi-area neural fluctuations
To study how neural connectivity can give rise to CCA modes that share 
information between brain areas, we modelled the linear network sche-
matized in Extended Data Fig. 9f with Nc = 500 cells in each of one ‘early 
visual area’ and three ‘cortical areas’ (termed A, B and C). Neural activity 
in the early visual area, E, were set by

ξE S Mv W u= + ( ) + ,E
DE

where S and M were 500-dimensional unit vectors (with fixed values 
in each simulation) representing input patterns of neural ensemble 
activity encoding the stimulus and the mouse’s response, respectively, 
and v and u were binary variables with values of either –1 or 1 that rep-
resented the two stimulus and response conditions. WDE was a linear 
low-rank projection matrix from the space of the decision variable to 
that of the neural activity levels; we systematically varied the rank, k, 



of this matrix from 1–10 across multiple runs of the simulation. Spe-
cifically, WDE was the outer product of two Nc × k matrices in which 
all of the elements were randomly and independently chosen from a 
zero-mean unit variance Gaussian distribution, and each column of 
these two matrices was normalized to have an L2-norm of 1. ξE was an 
additive noise vector in which the individual elements were indepen-
dently drawn from identical zero-mean Gaussian distributions with 
variance = 1/Nc. The neural dynamics in areas A, B and C differed in 
that, instead of directly receiving stimulus information, they received 
it indirectly via a low-rank linear projection from area E. For example, 
activity levels in area A were set by

W W u= + ( ) + ,A
EA DA ξA E M

where WEA and WDA are linear low-rank projection matrices; analo-
gous equations governed the dynamics for areas B and C. As with ξE, 
the elements of the additive noise terms, ξA, ξB and ξC were indepen-
dently drawn from identical zero-mean Gaussian distributions with 
variance = 1/Nc. We systematically varied the ranks of the matrices WDE, 
WEA, WDA, WEB, WDB, WEC and WDC to have values between 1 and 10; for 
each of the 10 different values of k, we repeated the simulations 25 
times with different sets of randomly chosen matrix elements and 
different randomly chosen values for S and M. We simulated each of 
the 250 models for 20,000 trials; on each trial, we chose the stimulus 
and decision variables, u and v, randomly and independently of each 
other. We used the methods described above to find the CCA modes 
of each model (Extended Data Fig. 9g–i).

Simulations of small-world networks
As shown in Extended Data Fig. 9f, g, the global transmission of a com-
mon decision signal to multiple cortical areas can produce a global CCA 
mode that is shared among all pairs of cortical areas, similar to what 
we found in the real neural recordings. To examine whether a global 
CCA mode can also arise in the absence of a globally transmitted signal, 
we modelled networks with 11 brain areas that were interconnected 
according to a small-world connectivity rule63, with unidirectional 
connections30,64,65 (Extended Data Fig. 9b).

We simulated 30 different networks with varying degrees of intercon-
nectivity and varying levels of randomness and regularity in the pattern 
of connections. For each network, we set the graph of connections by 
arranging the 11 brain areas in a ring formation. We then created unidi-
rectional projections to each brain area from its K nearest neighbours 
on the ring (that is, from K/2 neighbouring areas on both sides of each 
brain area). To introduce randomness into the connectivity pattern, the 
brain areas sending each of these unidirectional projections were then 
randomly re-assigned with probability, P, to a different brain area that 
was randomly selected with uniform probability 1/(11 – K) from among 
those areas that had originally lacked such a projection.

Within each area, there were 500 neurons, of which the activity lev-
els were a linear function of the neural activity in the brain areas from 
which they received inputs:

∑t α t
β
K

a W t( ) = ( ) + ( − 1).n n

m

N

m n
m n m

,
,

area

ξX X

Here Xn(t) is a vector of 500 elements that represent the activity of 
the 500 cells in the nth brain area at time t. ξn(t) is an additive noise 
term for the nth area, in which the individual elements at time t were 
independently drawn from identical zero-mean Gaussian distributions 
with a variance of 4 × 10−4. W m,n is a 500-rank projection matrix from 
area m to area n, in which all the elements were chosen randomly and 
independently from a zero-mean unit variance Gaussian distribution; 
all of the columns of W m,n were normalized to have an L2 norm of 1. 
am,n = 1 if and only if there was an edge from node m to node n in the 
small-world graph; otherwise am,n = 0. The parameters α and β were gain 

factors; their relative amplitudes determined the degree of coupling 
between areas.

In general, β < 1, because increasing the value of β too close to 1 can 
cause the whole network to enter a global oscillation mode with a period 
of 2 cycles. With further increases of β → 1, the network becomes unsta-
ble. We therefore selected β so as to provide strong coupling between 
brain areas while avoiding the fast global oscillatory mode. We simulated 
this linear system for all possible combinations of K ∈ {2, 4, 6, 8, 10} 
and P ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. To reproduce CCA modes with similar 
correlation coefficients to those we had observed in the real cortical 
recordings, we set α = 0.01 and β = 0.9. For each set of K and P values, we 
initialized the neural activity levels, Xn(t), in the model with zero-mean 
Gaussian noise with variance = 4 × 10−8 and ran the simulation for 50,000 
time points. To avoid effects arising from initial transients, we omitted 
from all analyses the data from the first 500 time steps.

Data and statistical analyses
We performed all data and statistical analyses using MATLAB (version 
R2019a; MathWorks). All statistical tests were two-sided, except for 
permutation tests, which were one-sided. All signed-rank tests were 
Wilcoxon signed-rank tests.

Computational simulations
We performed all simulations using MATLAB (version R2019a; Math-
Works).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data supporting the findings of this study are available from the 
corresponding authors on reasonable request.

Code availability
We used open source software routines for image registration55 (http://
bigwww.epfl.ch/thevenaz/turboreg/) and PLS analysis (https://www.
mathworks.com/matlabcentral/fileexchange/18760-partial-least-squar
es-and-discriminant-analysis). Software code for extracting individual 
neurons and their calcium activity traces from calcium videos by using 
principal component and then independent component analyses56 is 
available online for free (https://www.mathworks.com/matlabcentral/
fileexchange/25405-emukamel-cellsort), although, for convenience, we 
used a commercial version of these routines (Mosaic software, v.0.99.17, 
Inscopix). We used MATLAB (v.2019a) to write all other analytical rou-
tines. The primary software code used to support the findings of the 
study is available at Zenodo (https://doi.org/10.5281/zenodo.6314932).
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Extended Data Fig. 1 | Long-term imaging and computational analysis of 
neural Ca2+ dynamics across multiple cortical areas during a visual 
discrimination task. (a) Schematic of the algorithmic pipeline used for video 
preprocessing and cell extraction, as implemented using cluster computing. 
Pre-processing (steps shown in green): For each movie of Ca2+ activity, we 
performed an image registration across all frames of the movie to correct for 
small displacements of the brain. We removed background noise and neuropil 
Ca2+ activity by applying a spatial Gaussian high-pass filter (σ = 80 μm) and 
computed a movie of the relative changes in fluorescence (ΔF(t)/F0). We then 
aligned and concatenated all the ΔF(t)/F0 movies for each individual mouse, 
across all imaging sessions. Cell extraction (steps shown in yellow): We 
divided each concatenated movie into 16 spatial tiles and then extracted 
individual cells within each tile by successively applying principal component 
and independent component analyses (PCA/ICA algorithm)56 to all tiles in 
parallel using the Stanford Sherlock computing cluster (using up to 320 cores 
and ~2 TB of memory for each concatenated movie). Ca2+ event detection 
(steps shown in cyan): We converted the ΔF(t)/F0 traces for each neuron to 
traces expressing the time-dependent fluorescence changes as a z-score, z(t), 
relative to the s.d. of the baseline fluctuations in each cell’s fluorescence trace 
(computed separately for each imaging session). We detected Ca2+ events by 
identifying Ca2+ transients that attained a peak fluorescence value of z(t) ≥ 4 
s.d., and we assigned the cell as being ‘active’ within the interval between the 
initial threshold crossing and the time at which the Ca2+ event attained its peak 
fluorescence (Methods). (b) Left: A maximum projection image over an entire 
concatenated set of Ca2+ movies from an example mouse. Red lines mark the 4 
× 4 set of tiles that we processed in parallel during cell extraction. Scale bar: 
1 mm. Middle: Magnified view of the area enclosed in orange in the left panel. 
Scale bar: 0.1 mm. Right: Z-scored traces (coloured traces) of fluorescence Ca2+ 
activity for 10 example neurons in the middle panel marked with colour-
corresponding boundaries. Raster traces show the binarized patterns of 
activity for each cell. (c) Most detected cells were active in all recording 
sessions, as illustrated via a map, computed for one example mouse, in which 
each detected cell is marked with a colour-code indicating the number of days 

in which it was detected as active (Methods). Scale bar: 1 mm. (d) Histograms of 
the number of days that each cell was detected as active for 6 different mice. 
Error bars are s.d. estimated as counting errors. (e) Vertical and horizontal 
retinotopic maps of visual cortex in an example mouse (Methods). After 
identifying borders of area V1 determined by retinotopic mapping studies in 
each mouse, we aligned these borders with those in the Allen Brain 
Observatory map of the mouse cortex and thereby inferred the locations of 
other brain areas. (f) Histogram of the mean Ca2+ event rate for each of 21,570 
cortical neurons (N = 6 mice). Error bars are s.d. estimated as counting errors. 
(g) Mean probability of licking within individual time bins (0.1 s duration) over 
the time course of a trial, averaged over all trials and trained mice, for Go 
(green) and No-Go (red) trials. Shaded areas denote s.e.m. over N = 6 mice. 
After mice learned to discriminate between Go and No-Go visual stimuli, we 
trained them to withhold licking behaviour during the stimulus presentation, 
[0 s, 2 s], and delay, [2 s, 2.5 s], intervals and to respond only during the 
response interval, [2.5 s, 5.5 s] (Fig. 1 and Methods). Trained mice occasionally 
licked before the response interval; we discarded these trials from our 
analyses to allow inferences regarding stimulus encoding, decision-making, 
and motor preparation in the absence of overt licking responses. (h) The mean 
behavioral performance of all mice on Go (cyan) and No-Go (grey) trials in 
which the mouse did (right) or did not exhibit locomotor behaviour (left) 
(Methods). Individual data points denote values from individual mice. (i, j) 
For every individual cell (blue data points), the plots show the mean signal-to-
noise ratio (SNR) of Ca2+ activity, i, or the mean occurrence rate of Ca2+ 
transient events per time bin (0.1 s duration), j, in the first half of each imaging 
session versus that in the second half of the same session. From linear 
regression, the mean SNR and Ca2+ event rate in the second half of each session 
were 96 ± 2 % (N = 6 mice) and 99 ± 3 % (N = 6 mice), respectively, of their values 
in the first half. (k) A box and whisker plot of the Ca2+ event rate across all cells 
imaged for 5 days in each mouse (N = 2236-5292 cells). Horizontal lines indicate 
median values across all cells, boxes cover the second and third quartiles, and 
whiskers extend to 1.5 times the interquartile distance. Dots show median 
values for individual mice.
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Extended Data Fig. 2 | Cortical neurons exhibit variable coding properties 
across timescales from minutes to days. (a) Maps for two example mice, 
showing how mean lateral displacements in cells’ centroid positions across 
multiple imaging sessions depended on their locations in the field of view. 
Across most of the field of view, mean displacements were <1 pixel, 
corresponding to <4 μm. To determine these displacements, we first computed 
the maximum projection image (MPI) of the Ca2+ video from each session. Using 
the MPI from the first session as a reference, we computationally aligned it to 
the MPI from each of the other sessions. We then computed the spatial cross-
correlation function between patches of the MPI containing ≥10 cells from the 
first session (patch size: 256 μm × 256 μm) and MPIs from each of the other 
sessions. For each session other than the first, we determined the displacement 
of a patch to be the argument of the cross-correlation function that yielded its 
maximum value. We averaged these displacements across all sessions after the 
first. By examining all possible MPI patches (spaced 64 μm apart) in this way, we 
created the maps shown. Scale bars: 1 mm. (b) Two-dimensional probability 
distribution of cells’ daily lateral displacements from their mean position, 
averaged across all days and imaged neurons (21,570 cells) from N = 6 mice 
(Methods). About 50% of the time, cells had a displacement of zero pixels from 
their mean position; 98.5% of the time these displacements were ≤1 pixel (4 μm). 
(c) Cumulative distribution of cells’ mean displacements (averaged over all 
sessions) from their mean positions across the entire experiment. Red dashed 
line indicates that 95.4% of cells had a mean displacement of ≤5 μm. (d) 
Cumulative distribution of the lateral separations between nearest neighbour 
cell pairs. Red dashed line indicates that only 2% of nearest neighbour cell pairs 
were within 5 μm of each other. (e) Among 18,528 cells with significant d’ values 
on one or more sessions for encoding the trial-type in the stimulus period 
(P < 0.01; permutation test; N = 94–354 trials), 41% of these had significant d’ 
values in only one half-session, split nearly evenly between the first (21%) and 
second (20%) half-sessions. Whereas in trial-shuffled data, only 10% of the cells 
had this variable coding, a highly significant difference from the real data 
(P<0.001) indicating that trial-shuffling diluted the temporal concentration of 
trials in which cells had coding responses. In real data, 91% of the 18,528 cells 
retained significant coding in one or both halves of the full sessions in which 
they displayed significant coding (P<0.01; permutation test; 40–175 trials). But 
in trial-shuffled data, only 51% of the cells retained this coding in one or both 
half-sessions, a highly significant difference from real data (***P<0.001; 
permutation test; 94–354 trials), again showing that in real data cells had 
temporally concentrated coding epochs far more than expected by chance. All 
s.d. values on the above percentages of cells were estimated as counting errors 

and were 0.1–0.4%. (f) Some neurons had coding properties that varied across 
days. For 4 example cells (from areas PPC, MV, V1 and PPC, from top to bottom), 
shown are traces of the neuron’s fluorescence intensity (z-scored values of 
ΔF/F0) as a function of time across 5 imaging sessions. Vertical dashed lines 
mark transitions between successive sessions. Insets show maximum 
projection images of the example neurons from each session. Values of d’ 
denote the fidelity with which one can distinguish the two visual stimuli based 
on the binarized event train of the cell’s Ca2+ activity (Methods). In f and g, values 
of d’ coloured red are those for which the stimuli cannot be significantly 
distinguished, as determined using a permutation test over the set of stimulus 
trials and requiring P<0.01 for significance. (g) Some cells had coding 
properties that varied within the 1-h sessions. Shown are fluorescence traces 
(z-scored values of ΔF/F0) for 4 cells (from areas LV, V1, MV and LV, from top to 
bottom) as a function of time across one session. We measured d’ values of 
single neurons for distinguishing the two visual stimuli during the first and 
second halves of each session based on their binarized Ca2+ event traces. 
Neurons that actively fired across the session exhibited variability in their visual 
coding, as did cells that were active during only a portion of the imaging session. 
Insets: Example Ca2+ event images show that the same cells were imaged in the 
first and second halves of each session. (h) Histograms showing the numbers of 
days that neurons from each area significantly encoded the visual stimulus-type 
(permutation test over the set of stimulus trials; requiring P<0.01 for 
significance), for all cells that did so in at least one session (solid bars) and for the 
subset of these cells with statistically significant levels of Ca2+ activity in every 
imaging session (hashed bars). (i) Map of neurons from an example mouse, with 
each cell’s colour denoting the number of days the cell significantly encoded 
the visual-stimulus type. Cells with different day-to-day reliabilities of stimulus-
encoding were interspersed across the field of view. Scale bar: 1 mm. ( j) Scatter 
plot in which, for every individual cell (blue data points), the d’ value for stimulus 
discrimination during the first half of each imaging session is plotted against 
the d’ value for the second half of the same session. (k) Scatter plot in which, for 
every cell (blue data points), the mean d’ value for stimulus discrimination 
(averaged over all sessions) is plotted against the range of d’ values determined 
for the same cell across all sessions. (l) Scatter plot in which, for every cell (blue 
data points), the mean difference between the d’ values for stimulus 
discrimination determined for the first and second halves of each session is 
plotted against the s.d. of the d’ values determined for the same cell across all 
sessions. Variability in d’ values within a session was highly correlated (r = 0.81) 
with variability across sessions, suggesting some neurons have greater intrinsic 
variability in the fidelity of stimulus encoding than others.
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Extended Data Fig. 3 | Neural ensemble representations of the visual 
stimuli were invariant over most of the stimulation period. (a) Mean time-
dependent occurrence rates of Ca2+ transient events per time bin (0.1 s 
duration) across different intervals of the trial-structure (demarcated by 
vertical lines) for 24 neurons from 8 cortical areas, averaged across 5 sessions in 
one mouse on Go (blue traces) and No-Go (black) trials. Shading: s.d. across 415 
trials of each type. (b) For cells that responded significantly to one of the two 
stimuli (see Fig. 2c), shown are mean percentages of coding cells responding to 
the Go stimulus in each of 8 areas. The remainder of coding cells responded to 
the No-Go stimulus. Error bars: s.d. across N = 6 mice. (c) Procedure for training 
cross-validated instantaneous or consensus linear decoders. After 
constructing an unbiased dataset with equal numbers of Go and No-Go trials, 
we divided the set of trials into 3 equal portions, one for dimensionality 
reduction, another for decoder training, and the third for decoder testing. 
Using the first subset, a partial least squares (PLS) analysis identified a low-
dimensional subspace of the neural ensemble activity that was informative for 
stimulus discrimination. Within this subspace, we used the second subset of 
trials to train a Fisher linear decoder (indicated by the vector Wdecoder). We used 
the third subset to test decoder performance. For training and testing datasets, 
we computed the fidelity, d’, with which the stimuli could be distinguished. To 
train decoders for identifying the mouse’s decision, we followed the same 
procedures, starting with equal numbers of correctly and incorrectly 
performed trials with a given stimulus. (d) We trained consensus decoders 
during the stimulus, delay, and response intervals of correctly performed 
trials. Plots show mean (d’)2 values for decoder training (blue) and testing (red) 
datasets, versus the number of PLS dimensions used. When constructing each 
decoder, we used the number of PLS dimensions that maximized (d’)2 for 
testing datasets. All plotted (d’)2 values are separately normalized for each 
mouse to the maximum (d’)2 determined with the testing data. On average, with 
>5 PLS dimensions decoders overfit the training data, yielding greater (d’)2 
values than for testing data. For shuffled datasets, 1 or 2 PLS dimensions 
yielded maximal (d’)2 values (data not shown). Shading: s.d. across N = 6 mice. 
(e) We determined the similarity of the subspaces defined by the top 3 PLS 
dimensions for each mouse on different days (1–5) or for its across-day, 
common decoder (C) (Methods). We used the top 3 dimensions, since these 
contain most of the information (d). The matrices show mean similarity values 
for all pairs of subspaces, averaged over N = 6 mice, for real (left) and shuffled 
(right) datasets. For real datasets, PLS dimensions for common decoders were 
highly similar to those for single-day decoders. (f) Optimal linear decoders of 
stimulus-type retained a constant form across stimulus presentation. Plots 
show Pearson correlation coefficients, r, between all pairs of instantaneous 
decoders (constructed using all imaged neurons in each mouse), for each time 
bin. (g) Due to the stationarity of the optimal decoders across stimulus 

presentation, f, consensus and instantaneous decoders performed nearly 
equivalently. Plots show mean (d’)2 values for consensus decoders of stimulus-
type versus those for instantaneous decoders, for correctly performed trials. 
Each datum shows testing results attained by applying each decoder-type to 
data from one time bin during stimulus presentation. In some mice, e.g. Mice 5 
and 6, the consensus decoder achieved slightly superior performance, 
presumably due to its larger training dataset. (h) Similar results to those of f, 
computed for different areas and averaged over 6 mice. (i) Similar results to 
those of Fig. 3c, computed separately for different areas. ( j) To measure the 
information captured by trial-type decoders about the stimulus (S) or mouse’s 
response (R) in the stimulus (left), delay (middle) or response (right) periods, we 
projected neural activity on all 4 trial-types (Hit, Miss, Correct Rejection, and 
False Alarm) onto the common trial-type decoders trained for each period 
using correctly performed trials. We then computed (d’)2 values using trials in 
which either the stimulus or response was held constant but the other varied. 
Information, (d’)2, about the stimulus did not vary significantly between Lick 
and No-Lick trials, so we averaged (d’)2 values across both stimuli in each plot’s 
left column. Response-coding was much stronger on Go trials (see k), so right 
columns only show (d’)2 values from Go trials. Each blue point shows data from 
one mouse (mean±s.d., N = 100 different subsets of trials, each with equal 
numbers of trials of the two types). Red points: averages across mice 
(mean±s.e.m., N = 6). During the stimulus period, common decoders nearly 
exclusively captured stimulus information, which was 691±315 times greater 
(mean±s.e.m.; N = 6 mice) than information captured about the mouse’s 
response. In the delay period, response information rose. During the response 
period, common decoders captured response information that was 
comparable or greater to information about the stimulus. (k) The mean Fisher 
information encoded by neural ensemble activity about the stimulus-type was 
independent of the mouse’s response (top), as (d’)2 values for consensus 
common stimulus decoders trained and tested on ‘No-Lick’ trials were 
indistinguishable to those for ‘Lick’ trials (P <0.7; Wilcoxon signed-rank test; 
N = 6 mice). On ‘Go’ but not ‘No-Go’ trials, the upcoming response could be 
predicted (P<0.01; permutation test; N = 40–754 trials) from neural activity 
during stimulus presentation (bottom). For each comparison, we constructed 
training datasets for the two decoders to have equal numbers of trials, 50% of 
each type. Blue-shaded points are from individual mice; error bars are s.d. 
(N = 100 different randomly chosen sets of trials. Red points are means; error 
bars are s.d. (N = 6 mice). (l) Control analysis for Fig. 3c. Across-day common 
consensus decoders performed equivalently to single-day consensus decoders 
when they were trained with equally sized datasets. Here we trained common 
decoders by sub-sampling trials from each session so the training dataset had 
the same of number of trials as that of the day with the smallest number of trials. 
We trained single-day decoders using this same number of trials.
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Extended Data Fig. 4 | Neural ensemble representations of the visual 
stimuli and the mouse’s response were widespread across neocortical 
areas. (a) Plots analogous to Fig. 3f for individual mice. In all 6 mice, day-to-day 
changes in coding were correlated with within-day, trial-to-trial fluctuations 
(r = 0.85, 0.66, 0.79, 0.76, 0.83, 0.76 and P was between 5 × 10–14–5 × 10–29 for 
mice 1–6 for the real datasets, but 0.1 ≤ r ≤ 0.15 and 0.12 ≤ P ≤ 0.92 for trial-
shuffled datasets). (b) We trained consensus common decoders to 
discriminate the visual stimuli based on neural activity either in individual 
cortical areas or across the visible cortical regions, during stimulus 
presentation on ‘No-Lick’ trials (trials when the mouse withheld licking 
responses) and Lick trials (on which the mouse made a licking response). Thus, 
decoders for ‘No-Lick’ trials discriminated ‘Correct Rejection’ from ‘Miss’ 
trials, and decoders for ‘Lick’ trials discriminated ‘Hit’ from ‘False Alarm’ trials. 
Both decoder types were trained on equally sized datasets, with equal numbers 
of trials of each type. We evaluated decoder performance across individual 
time bins and then plotted the maximum (d’)2 values attained for each mouse 
across all time bins during stimulus presentation (0.5–2 s after stimulus onset). 
(d’)2 values for stimulus decoding were independent of the mouse’s upcoming 
‘Lick’ or ‘No-Lick’ response (P<0.7; Wilcoxon signed-rank test, N = 6 mice). 
Across b–g, grey and coloured symbols respectively denote (d’)2 values for 
individual mice and mean values averaged over N = 6 mice; note that y-axis 
scales vary substantially across the graphs. (c, d) Using the methods of b, we 
trained consensus common decoders to discriminate the visual stimuli using 
neural activity in different cortical areas during the delay (c) and response (d) 
periods. Similarly to b, we evaluated decoder performance across individual 
time bins and plotted the maximum (d’)2 values attained for each mouse across 
all time bins during the delay, c, or response, d, periods. Whereas (d’)2 values for 
stimulus decoding during the delay period were independent of the mouse’s 
upcoming response (P<0.3; Wilcoxon signed-rank test; N = 6 mice), response 
period (d’)2 values were significantly greater for ‘Lick’ trials (P<0.03). The latter, 
higher values of (d’)2 could stem from the divergent neural signals evoked by 
receipt of a reward or air puff on ‘Hit’ and ‘False Alarm’ trials, respectively. (e–g) 
Using methods analogous to those in b, we trained consensus decoders of the 
mouse’s response on ‘Go’ and ‘No-Go’ trials based on neural activity in different 
cortical areas during the stimulus (e), delay (f), and response (g) intervals. As in 
b–d, we evaluated decoder performance across individual time bins and 
constructed plots using the maximum (d′)2 values attained for each mouse 
across all time bins during the stimulus (0.5–2 s after stimulus onset), e, delay, f, 
or response g, periods. To determine neural representations of the mouse’s 
response during the response interval, g, we used data across the full 3-s 
response interval. Within this interval, the mouse received rewards and 

aversive air-puffs at variable time points. Thus, a distinct analysis would be 
needed to separate coding relating to receipt of the rewarding and aversive 
stimuli from that relating to the mouse’s actions. (d’)2 values for response 
decoding were greater for ‘Go’ trials during stimulus presentation (P<0.03; 
Wilcoxon signed-rank test; N = 6 mice), delay (P<0.06), and response (P< 0.06) 
intervals. These higher (d’)2 values could reflect signals associated with reward 
prediction, motor planning and action on correctly performed ‘Go’ trials. (h–j) 
Map of the cortex for the mouse of Fig. 3g–j. Coloured dots mark locations of 
cells with the greatest contributions to the response decoder score (defined as 
cells with decoder weights deviating >2 s.d. from mean values) during stimulus 
(h), delay (i), and response ( j) intervals. Because the mouse’s response was only 
weakly encoded in the neural dynamics on ‘No-Go’ trials (see e–g), we created 
h–m based on the response decoders found by analysis of ‘Go’ trials. Cells in 
each brain area are coloured differently, following the colour scheme  in m. 
Scale bars: 1 mm. (k–m) Mean±s.e.m. (N = 6 mice) fractions of neurons in each 
area that had response decoder weights deviating >2 s.d. from mean values, 
during the stimulus (k), delay (l), and response (m) intervals. (n) Right, We 
measured the information (d’)2 conveyed about reward and punishment in each 
area by studying the neural activity evoked when the mouse licked. To evaluate 
the encoding of punishment, we compared the mean neural ensemble activity 
in the first 0.5 s after licks that were punished with air-puffs versus after licks 
that occurred during timeout periods and that elicited neither punishment nor 
reward. To evaluate reward encoding, we compared the mean neural ensemble 
activity in the first 0.5 s after licks that occurred during timeouts versus after 
licks triggering a reward. Both punishment and reward were represented to 
varying extents across the different areas. Notably, these representations 
could relate to any aspect of the rewarding or aversive experience, such as the 
experience of receiving or blinking in response to an aversive air-puff or 
receiving or tasting a reward. Left, As a control, we performed the same 
calculations as for the right panel but using neural activity that occurred within 
the 0.5 s intervals just before licks. As expected, during these periods there was 
notably less information encoded about upcoming rewards or punishments 
than about rewards or punishment the mouse has just received. (o) A graph of 
the s.d. of (d’)2 values for each cell (individual data points) across all days of the 
study, for every cell with a significant (P<0.01) d’ value for trial-type encoding 
on at least one day, as a function of the cell’s weight in the across-day common 
decoder. Decoder weights are normalized by the maximum weight in each 
mouse. Results show that cells can have stable or variable coding properties, 
irrespective of their decoder weights. Nevertheless, coding variability 
generally increases for cells with larger weights, as shown by the red line, which 
plots the mean s.d. in (d’)2 values, averaged over all cells within x-axis bins of 0.1.
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Extended Data Fig. 5 | Information-limiting noise correlations and coding 
redundancy peaked just after stimulus onset and then declined for the rest 
of stimulus presentation. (a) The fidelity with which stimulus identity could 
be decoded from neural ensemble activity saturated for large (>2000) 
populations of cells, for real (purple curves) but not trial-shuffled (black 
curves) datasets. To study ensembles of each size (x-axis), we randomly chose 
100 different subsets of cells from the entire pool of neurons imaged across all 
areas. We then trained and tested optimal linear Fisher decoders using the 
neural activity within [0.4 s, 0.5 s] after stimulus onset on correctly performed 
trials. We quantified decoding performance using (d′)2, which relates to the 
Fisher information the neural dynamics conveyed about the trial-type. Each 
curve shows data from one mouse. Whereas (d′)2 saturated for large neural 
populations in real data, this did not occur for trial-shuffled datasets in which 
correlated fluctuations were scrambled. Shading: s.d. across all 100 subsets of 
cells for each ensemble size. Inset: Magnified view near the graph origin for one 
mouse. (b) Using the methods of a, we assessed how well optimal linear 
decoders could discriminate Go and No-Go trials. Plots show mean (d′)2 values 
for this discrimination as a function of neural ensemble size and for different 
time bins, averaged over N = 6 mice. The size of the cell ensemble at which (d′)2 
saturated rose substantially with time during stimulus presentation but stayed 
relatively constant during the delay and response periods. (d′)2 values are 
normalized relative to their maximum (saturating) value at each time bin. 
Ensemble size values are normalized relative to the total number of cells 
recorded in each mouse. (c) Plots like those of b, for individual mice during 
stimulus presentation. Data are shown only for time bins in which (d′)2 values 
were significantly greater than for control datasets in which the trial-type 
labels were randomly shuffled (P<0.01; permutation test; N = 710–1340 trials). 
(d) Mean±s.e.m. (N = 6 mice) Ca2+ event rates per time bin (0.1 s duration) for all 
neurons on correctly performed Go and No-Go trials. These event rates had 
near identical time dependencies on trials of the two types, but the temporal 
variations were distinct from those of decoder score fluctuations (Fig. 4b) or 
correlated fluctuations in cells’ dynamics (panel f). Dashed vertical lines in d–f 
demarcate stimulus, delay and response periods of the trial structure. (e) Time 
dependence of the mean Fano factor, determined for each mouse by 
computing for each cell the ratio of the variance in the cell’s Ca2+ event rate to 
its mean Ca2+ event rate, on correctly performed trials. Shading: s.e.m. values 
(N = 2236-5292 cells). Legend also applies to f and g. (f) Noise correlations 
between pairs of cells with similar stimulus tuning rose sharply after stimulus 
onset, peaked ~0.2 s after stimulus onset, and then decayed to baseline values. 
Each coloured trace shows the mean absolute value of noise correlation 
coefficients for all pairs of similarly tuned cells across all imaged areas in each 
mouse. (g) Cross-correlation functions between the dynamics of absolute 

noise correlations across pairs of cells, shown in f, and the Fano factor, shown in 
e, as determined for each mouse over the 2-s-stimulus period. The graph shows 
that changes in pairwise noise correlation coefficients were negatively 
correlated with and most predictive of upcoming variations in the Fano factor 
with a lead time of ~200 ms. Shading: s.e.m. values (N = 10–20 time bins for each 
abscissa value). (h) Plot of the mean time-dependent rate (blue trace) of Ca2+ 
events in Go-stimulus-tuned neurons on Go trials and No-Go-stimulus-tuned 
neurons on No-Go trials, averaged over both cell-types and N = 6 mice. Also 
shown is the mean absolute noise correlation coefficient (red trace) for pairs of 
similarly tuned neurons, computed as in f for the same 6 mice. Notably, changes 
in noise correlation coefficient levels peaked sooner after stimulus onset than 
Ca2+ activity rates of tuned cells. After reaching their peak values, noise 
correlation coefficients declined back to baseline values by stimulus offset, 
whereas Ca2+ activity rates did not. These differences make it hard to explain 
the dynamics of noise correlation coefficients as resulting simply from 
changes in neural activity rates. Shading: s.e.m. across 6 mice. (i) Plot showing 
the change in information encoded by the neural ensemble if one cell were to 
become silent, assessed using instantaneous decoders. Each dot denotes the 
result from one time bin. (As shown in c and f, noise correlation coefficients 
vary with time following stimulus onset). Results for trial-shuffled data, in 
which correlated fluctuations were scrambled, are denoted with crosses and 
reveal a greater sensitivity to loss of one neuron. ( j) Left, Traces of mean 
absolute noise correlation coefficients as a function of time during stimulus 
presentation, determined as in f for cell pairs in primary visual cortex (V1; blue 
trace), secondary cortical visual areas (areas LV, MV and PPC; red trace) or non-
visual cortical areas (areas A, S, M and RSC; black trace). Right, Traces of mean 
absolute noise correlation coefficients between pairs of coding neurons 
located in different brain areas. The rise in noise correlations for similarly 
tuned cells in visual cortex is greater than that for cells outside visual cortex 
(P<0.03; Wilcoxon signed-rank test; N = 6 mice). Shading: s.e.m. across N = 6 
mice. (k) We calculated the covariance in the neurons’ responses on each trial-
type and on each day. We then averaged the covariance matrices for the two 
trial-types and computed the top 3 eigenvectors for each day. Left, A plot 
showing the similarity between the pairs of different subspaces (Methods), 
each defined by the top 3 eigenvectors of the noise covariance matrix on each 
day of experimentation. The matrix row and columns labelled ‘C’ is for the 
noise covariance matrix computed for the set of all trials across all days. Right, 
As control, we computed the subspace similarities for trial-shuffled datasets in 
which each neuron’s responses were permuted across trials with the same 
stimulus. Overall, noise covariance structure in the real data was significantly 
similar across days, to a degree much beyond that in shuffled datasets.



Extended Data Fig. 6 | The discriminability of the two stimuli based on their 
evoked neural dynamics fluctuated trial-by-trial in a way that was highly 
correlated between cortical areas. (a) Example scatter plot for an individual 
mouse in which the instantaneous stimulus decoder scores based on the 
activity patterns of cortical area PPC are plotted against those for cortical area 
RSC. Each data point shows results for an individual trial, at 0.5 s after stimulus 
onset, for Go trials (blue data points) or No-Go trials (black data points). 
Stimulus decoder scores for the two brain areas exhibit positively correlated 
trial-to-trial fluctuations. (b) Traces showing the mean time-dependent 
correlations of the fluctuations in instantaneous stimulus decoder scores for 8 
different cortical areas and each of the other 7 brain areas within the imaging 
field-of-view. For most pairs of brain areas, these correlated noise fluctuations 
in decoder scores attained their maximum shortly after stimulus onset and 
then gradually decayed. Decoder training and testing was limited in this 
analysis to trials that the mice performed correctly. Shading: s.e.m. over N = 6 
mice. Vertical dashed lines demarcate the stimulus presentation, delay and 
response intervals. (c) Two plots showing examples of stimulus-coding cells 
whose responses were modulated by the mouse’s response. Each plot shows 
the mean rate of Ca2+ events in an individual neuron, as a function of time 
relative to stimulus onset at t = 0, for the 4 different trial-types. The cell of the 
top plot is from area MV, and the cell of the bottom plot is from PPC. Both cells 
had P-values of <0.01 for stimulus-coding on Lick and No-Lick trials, and also 

had P < 0.01 for response-coding on GO-trials). We determined P-values 
through comparisons to trial-shuffled datasets (1000 different sub-samplings 
and random permutations of trials using equal numbers of trials of both 
stimulus- or response-types). The separation between the traces for Hit and 
Miss trials shows the extent of response-related modulation on trials with a Go 
stimulus. Shading: s.e.m. over trials (410 Hit trials, 218 Miss trials, 665 Correct 
Rejection trials, 100 False Alarm trials). (d) To determine if the elevated 
correlated noise fluctuations along the stimulus-coding direction within the 
interval [0.2 s, 0.5 s] after stimulus onset (when correlations were at their peak) 
reflects choice information relating to the formation of a motor response plan, 
we computed for each stimulus-type the proportion of the neural activity 
variance along the stimulus-coding direction that co-varied with the mouse’s 
upcoming motor response. The results show that only a tiny percentage (0.5% 
on average) of the variations in stimulus-coding can be explained as reflecting 
the mouse’s decision or response. Blue-shaded points denote data from 
individual mice. Red points are averages across mice. See also Fig. 5e. (e) Peak 
values of the time-dependent decoder score noise correlations (r), determined 
as in b, for all pairs of imaged brain areas for an example mouse, using either the 
data from each of five different imaging sessions, or the aggregated set of data 
from all imaging sessions. Fluctuations of decoder scores were correlated 
between sensory cortical areas during all recording sessions. The same general 
pattern of correlations between brain areas was visible in every session.
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Extended Data Fig. 7 | Canonical correlation noise modes during the visual 
stimulation period for 28 different pairs of cortical areas. (a) Multiple 
ensembles of neurons from different cortical areas had strongly correlated 
noise fluctuations during visual stimulus presentation. By performing a CCA 
on cells’ mean-subtracted activity traces for each trial-type, we identified 
multiple modes of significantly correlated noise modes (P < 0.01; comparisons 
of real vs. trial-shuffled data using the permutation test; N = 710–1340 trials) 
that were shared across 28 different pairs of cortical areas (abbreviated as in 
Fig. 1). Plots show mean ± s.e.m. (N = 6 mice) correlation coefficients for the 
first 20 pairs of CCA noise modes for all pairs of brain areas, as determined from 
validation datasets that were held out from the training datasets used to 
identify the CCA noise modes (Methods). (b, c) In each cortical area, ~70–90% 
of the neurons that contributed substantially to the largest CCA noise mode 
were distinct from the cells that contributed to the second-largest mode. A cell 
was considered to contribute substantially to a CCA noise mode if its weight in 
the CCA mode population vector was >2 s.d. above or below the ensemble 
mean. (b) The mean ± s.e.m. (N = 6 mice) number of cells that contributed 
substantially to both the first and second CCA noise modes in each brain area, 

normalized by the total number of cells that contributed substantially to either 
of these two modes and averaged over all pairings with the other 7 brain areas. 
(c) Distributions of the number of simultaneously active neurons in each time 
bin of the stimulus presentation period for the largest five CCA noise modes 
shared between V1 and the other 7 cortical areas. (d) Mean correlation 
coefficients (N = 6) for neural activity in the first CCA noise mode shared 
between the 28 different pairs of cortical areas, for validation (top left) and 
training (top right) datasets, and on the set of No-Go (bottom left) and Go 
(bottom right) trials. The similarity of the noise correlation coefficients for all 4 
subsets of trials suggests that correlated activity exists in these modes 
irrespective of the trial-type and that the results are not due to overfitting. (e) 
Highly correlated noise fluctuations between cortical areas cannot simply be 
explained as resulting from the activity patterns of cells on the borders 
between pairs of cortical areas. We repeated the analysis in (a) for all pairs of 
areas, while discarding the activity traces of cells in each area closer than 60 μm 
to the boundary of the other area identified by retinotopic mapping. The plot 
shows the resulting mean ± s.e.m. (N = 6 mice) correlation coefficients for the 
CCA noise mode fluctuations between V1 and other cortical areas.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | The canonical correlation noise modes before 
stimulus onset were distinct from those after stimulus onset, which were 
task-related. (a) During the inter-trial interval (ITI), there were significantly 
correlated noise fluctuation modes that were shared between cortical areas. 
However, these modes were not the same as the shared noise fluctuations that 
arose at stimulus onset. The plots show the mean (N = 6 mice) time courses of 
the correlation coefficients for the first- and second-largest noise modes 
shared between 28 different pairs of brain areas (pairs denoted via the graph 
titles and the colour legend at far right), as found by applying CCA separately to 
ITI periods (–2 < t < 0) and visual stimulation periods (2 > t > 0). Dashed traces, 
with and without open circles, respectively show the correlation coefficients 
for the first and second shared noise modes as identified during ITI periods. 
Solid traces, with and without open circles, respectively show the correlation 
coefficients for the first and second share noise modes as identified during 
stimulus periods. At stimulus onset (t = 0), correlated fluctuations declined 
within the CCA noise modes identified during ITI periods, whereas correlated 
fluctuations within the modes identified during the task substantially 
increased. (b) CCA noise modes found during stimulus periods differ from 
those found during ITI periods, as shown by the cross-correlation coefficients 
between the CCA noise modes found for each pair of brain areas before vs. after 
stimulus onset. The plots show these cross-correlation coefficient values for 
the largest 5 modes for each pair of brain areas. To compute these coefficients, 
for each mouse we created 200 different random assignments of half of the 
trials into a training set and half of the trials into a validation set. Using 100 of 
these random assignments, we determined CCA noise modes for the ITI period. 
Using the other 100 assignments, we determined CCA noise modes for the task 
period. For each entry in the plots, we plotted the mean value of the cross-
correlation coefficient, averaged across all 10,000 pairings of one mode from 

the ITI period and one from the stimulus period, and across 6 different mice. 
Within each plot, row labels designate the brain area for which we computed 
the cross-correlation coefficient; column labels designate the area with which 
the row area was paired in the CCA. (c) As a control analysis for the results of (b), 
we examined the variability in our estimates of the largest 5 CCA noise modes 
during the stimulus period. To do this, we computed for each mouse the 
correlation coefficients between the CCA modes determined from 100 
different random assignments of trials into training and validation sets. This 
showed that most CCA modes are stable during the stimulus presentation 
period. For each entry in the plots, we plotted the mean value of the cross-
correlation coefficient, averaged across all 9,900 pairings of two different 
mode determinations from the stimulus period, and across 6 different mice. 
Within each plot, row labels designate the brain area for which we computed 
the cross-correlation coefficient; column labels designate the area with which 
the row area was paired in the CCA. The results show that the relative lack of 
stability exhibited in (b) between CCA noise modes before versus after 
stimulus onset is not simply due to the statistical variability in the 
determination of CCA noise modes. (d) In each imaged brain area, we 
performed a principal component analysis (PCA) of the noise fluctuations 
around the mean stimulus-evoked responses, averaged over both stimuli. For 
each brain area, we then computed the correlation coefficients between the 
modes identified by PCA and those identified by CCA with each of the other 7 
brain areas. The results show that fluctuation modes identified by PCA are 
highly distinct from those found by CCA, indicating that PCA can be incapable 
of detecting correlated fluctuations between brain areas. (e) Analogous plots 
to those in (d), except that we performed the PCA over the aggregated set of all 
brain areas. (f) Plots analogous to those in Fig. 5e, except that results are shown 
for all pairs of brain areas, rather than averaged across all pairs of sensory areas.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Computational simulations of network dynamics 
show that the global CCA mode likely reflects a common signal that is 
broadcast to all the imaged cortical areas. (a) For the real experimental data, 
the graphs show the time dependence of the information, (d’)2, encoded about 
stimulus identity within CCA modes 2–10 in each brain area, plotted as a 
function of time relative to stimulus onset. (We omitted the first CCA mode, 
which does not convey stimulus information, Fig. 5d, e). To compute (d’)2 we 
trained consensus decoders based on the neural activity in each brain area 
during the stimulus presentation period of correctly performed trials. We then 
projected the neural dynamics onto each of the CCA modes and used the 
resulting 9-dimensional activity data to train and test instantaneous decoders 
of the stimulus identity. The vertical dashed lines indicate the stimulus onset. 
(b) To explore the patterns of interconnectivity that can give rise to a global 
CCA noise mode, we simulated neural activity within a range of small world 
networks and systematically varied the extent and randomness of the inter-
connections between pairs of brain areas (Methods). The schematic shows 3 
example small world model networks with unidirectional connections between 
11 brain areas. Each node denotes one brain area with 500 neurons. The 
parameter K is the ‘in-degree’, i.e. the number of projections received by each 
brain area. The parameter P determines the probability that the brain area 
sending a projection is randomly reassigned to a node outside the K nearest 
neighbours of the recipient brain area. The distribution of connection weights 
between areas was set so as to approximately match the canonical correlation 
coefficients observed in the real cortical recordings (Methods). A wide range of 
these models exhibited CCA modes among all pairs of brain areas that 
resembled the patterns of correlated activity fluctuations in our in vivo 
recordings of neural activity (panel c). However, no model had a global CCA 
mode, as each pair of brain areas generally had a unique set of cofluctuations 
distinct from those in other pairs of brain areas (panel d). (c) Canonical 
correlation coefficients for the strongest CCA modes between all pairs of 11 
areas, plotted for different values of K and P. Strongly correlated CCA 
fluctuations were observed between all pairs of areas in most of the 
simulations. (d) Correlation coefficients for the first CCA modes between one 

simulated brain area and each of the other 10 brain areas, plotted as in Fig. 5a. 
Even when strongly correlated CCA modes exist between all pairs of areas, as 
shown in (c), the neural ensembles comprising these modes are largely unique 
and do not establish a global mode—unlike in our actual recordings (Fig. 5a) in 
which the first CCA mode was global and independent of the pair of brain areas 
chosen for CCA. These results suggest that global CCA modes may be 
inconsistent with information transmission through a small-world 
architecture. (e) The number of cells in each simulated brain area that had their 
first PCA weights >2 s.d. away from the mean value. Even though the simulated 
small world networks lacked a global CCA mode, the first mode identified by 
principal components analysis (PCA) was widely distributed across brain areas. 
Thus, the existence of distributed PCA modes does not imply the existence of a 
global CCA mode. (f, g) Schematic, f, of a simulated neural network (Methods) 
in which information about the visual stimulus is transmitted via separate 
channels to different higher-order cortical areas, whereas information about 
the sensory decision is broadcasted in parallel to these higher-order areas. The 
strengths of neural connections from the early visual area and each of the two 
higher-order areas were chosen randomly from a Gaussian distribution. The 
matrix of neural connections between each pair of brain areas had a rank 
between 1–10. g, Correlation coefficients between CCA modes in simulated 
cortical areas. In contrast to small-world connectivity, networks in which a 
single source broadcasted a common signal to multiple brain areas did have a 
global CCA mode, as in cortex (Fig. 5a). These results suggest the global CCA 
mode in cortex reflects the widespread distribution of a common signal 
conveying information about the mouse’s upcoming response to all imaged 
brain areas, rather than via separate inter-area connections. (h, i) Normalized 
values of (d’)2 determined for the simulated network of (f) for distinguishing 
between the two different stimuli, (h), or decisions, (i), plotted for each of the 10 
largest CCA modes between all pairs of areas receiving input from the Early 
Visual Area. Results are shown separately for networks with neural connection 
matrices of different ranks. Results are averaged across 25 different networks 
with similar architecture. Shading: s.e.m. across the 3 different simulated areas, 
Areas A, B and C. Fig. 5e shows similar results for the real experimental data.
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