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Abstract

We introduce a novel, biologically plausible local learning rule that provably increases the

robustness of neural dynamics to noise in nonlinear recurrent neural networks with homoge-

neous nonlinearities. Our learning rule achieves higher noise robustness without sacrificing

performance on the task and without requiring any knowledge of the particular task. The

plasticity dynamics—an integrable dynamical system operating on the weights of the net-

work—maintains a multiplicity of conserved quantities, most notably the network’s entire

temporal map of input to output trajectories. The outcome of our learning rule is a synaptic

balancing between the incoming and outgoing synapses of every neuron. This synaptic bal-

ancing rule is consistent with many known aspects of experimentally observed heterosynap-

tic plasticity, and moreover makes new experimentally testable predictions relating plasticity

at the incoming and outgoing synapses of individual neurons. Overall, this work provides a

novel, practical local learning rule that exactly preserves overall network function and, in

doing so, provides new conceptual bridges between the disparate worlds of the neurobiol-

ogy of heterosynaptic plasticity, the engineering of regularized noise-robust networks, and

the mathematics of integrable Lax dynamical systems.

Author summary

The precise pattern of synaptic connections in a neural network entirely determines the
network’s function. Learning rules are programs for modifying synapses to allow the net-
work to attain some functional goal. By carefully tweaking synaptic connectivity, neural
networks are able learn new tasks, form new memories, and stabilize neural activity. Due
to the complexity of network structure, there are many different synaptic weight patterns
that can in principle perform the same computation. These different solutions, however,
may be more or less desirable in other other ways, such as their vulnerability to unreliable
components in the network. In this paper, we present a synaptic learning rule which
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locates robust solutions among many synaptic weight configurations that equivalently
perform the same task. Our biologically plausible rule relies on information which is
entirely locally available to each neuron and possesses a number of desirable mathematical
properties. Our analysis reveals that networks are most robust when the aggregate incom-
ing and outgoing synapses are balanced in every neuron. Intriguingly, our learning rule
makes predictions which resemble widely experimentally observed patterns of compensa-
tory heterosynaptic plasticity in cortical dendrites.

Introduction

As any neural circuit computes, it is subject to additional fluctuations either within the circuit
or from other brain regions [1–4], and these fluctuations can impair performance [5–8]. The
fundamental puzzle we address is what kind of plasticity rule can make the dynamics of a neu-
ral circuit more robust to such fluctuations in a manner that: (1) works for any task; (2) is
completely agnostic to the learning rule used to solve a task; and (3) does not impair network
performance after a task is learned. Our main contribution is the discovery of a plasticity rule
that provably accomplishes all of three objectives for any nonlinear recurrent neural network
with a homogeneous nonlinearity, such as the commonly studied rectified linear function.
Furthermore, our plasticity rule is biologically plausible and computable using only informa-
tion that is locally available at each synapse and its adjacent neurons. Finally, at a mathematical
level our plasticity rule connects to the theory of integrable dynamical systems [9–11] and heat
diffusion, while experimentally, its features are similar to observed aspects of heterosynaptic
plasticity [12–16].

The key idea behind our learning rule is to exploit a many-to-one mapping between pat-
terns of synaptic strength and the task, or the temporal input-output map implemented by a
recurrent neural network. Indeed, modern neural network models of animal behavior typically
possess a large number of tunable parameters—far more than necessary to perform a given
simple behavior. In this overparameterized regime, it has been observed across multiple behav-
iors and organisms that many distinct model configurations are able to generate equivalent
levels of task performance [17, 18]. This observation has spurred theoretical and numerical
investigations into specific means by which a task may constrain network connectivity and
function [19–23]. However, the complex, nonlinear nature of many classes of network models
in neuroscience—notably recurrent neural networks (RNNs)—has made it difficult in many
cases to obtain a precise theoretical characterization of the space of synaptic patterns that all
map to the same task [24].

Besides a theoretical interest in formally characterizing equivalence classes of synaptic
weights that solve the same task, we are also motivated by a complementary biological ques-
tion: how might neural systems actually implement local plasticity rules which take advantage
of network overparameterization to maintain desirable functional properties, including task
performance, in the presence of internal and external sources of variation? Studies of homeo-
static plasticity in cortical circuits have shed light on synaptic mechanisms thought to maintain
stable computation, including synaptic scaling, heterosynaptic plasticity, and other compensa-
tory processes [13, 25–28]. However, a fundamental neuroscientific question remains: can
such local homeostatic or compensatory plasticity rules operate in such a way so as not to
impair task performance, while still accruing some other additional benefit?

In this work, we provide insights into both the nature of overparameterization in recurrent
neural networks and how local plasticity rules might exploit this overparameterization to
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specifically improve network robustness without impairing task performance. First we pre-
cisely characterize the equivalence classes of synaptic weights that all solve the same task in
nonlinear recurrent networks with homogenous nonlinearities. Using this characterization,
we derive a simple associated plasticity rule that locally modifies synaptic weights while
remaining within these equivalence classes. Intriguingly, we find our theoretically derived plas-
ticity rule resembles experimentally observed heterosynaptic plasticity rules.

Outline of this paper

The structure of this paper is as follows. First, we introduce the nonlinear recurrent network
model and a transformation of network weights that exactly preserves task performance. Sec-
ond, we formalize a notion of noise robustness in recurrent networks and show that this quan-
tity is convex with respect to the coordinates of the task-preserving transformation. We then
derive a dynamical transformation of the network, called synaptic balancing, which maximizes
robustness while exactly maintaining task performance, and which is implementable entirely
by local update rules. We next show that synaptic balancing is exponentially stable in any
recurrent network which does not contain irreducible feedforward structure. Subsequently, we
introduce several generalizations of our model and show that synaptic balancing is an instance
of a broader class of integrable dynamical systems on synaptic weight matrices known as Lax
dynamical systems. These dynamical systems lead to isospectral flows on matrices that pre-
serve all eigenvalues of the matrix.

Turning to the behavior of synaptic balancing alongside task-relevant learning dynamics,
we then prove that a broad class of regularized networks naturally approaches the equilibrium
of our rule throrightugh training. We conversely show empirically that our rule is able to
improve the task performance of trained networks in previously unseen noisy regimes.

Finally, we address the role of synaptic balancing as a candidate local plasticity rule for
maintaining stable network computation in neural circuits. We present exact and approximate
solutions to the trajectory of synaptic balancing, deriving a formal connection between synap-
tic balancing and heat diffusion in a network. In closing, we draw a connection between synap-
tic balancing and experimentally observed patterns of heterosynaptic plasticity in cortical
synapses.

Results

A task-preserving transformation defines a manifold of equivalent
recurrent networks

In this section, we first describe a class of nonlinear recurrent neural networks that has been
extensively studied in diverse contexts [6, 7, 19, 23, 24, 29–31]. We then describe a natural
symmetry acting on the weight space of these neural networks that exactly preserves the entire
temporal mapping of input to output trajectories. Since the input-output mapping determines
the task a neural network performs, the action of this symmetry enables us to traverse the man-
ifold of weight configurations that preserve the task performed by any neural network.

Recurrent network model. Consider a recurrent rate network of N neurons with an N ×
N synaptic weight matrix J, such that neuron j is connected to neuron i with synaptic weight

Jij. The vector of neural activity x 2 RN and readout vector y evolve under a time-varying
external input u as

t _x à f
W
Öx; uÜ à �x á J�ÖxÜ áWinu; Ö1Ü

y àWoutx: Ö2Ü
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Here τ is a fast timescale of neural dynamics, ϕ is a typically nonlinear scalar function applied

element-wise to x, and the tupleW à ÖWin; J; WoutÜ is the weight configuration which param-
eterizes the network.

We assume for simplicity that neural activity is initialized at the origin and runs until some
time T. The dynamics of the full network, and in particular the output trajectory y(t), are a
deterministic function of the input trajectory u(t) and the weight configurationW. More for-
mally, the input-output map FRNN computed by the network is the map from input to output
trajectories under a particular weight configuration:

FRNNÖWÜ : fuÖtÜgTtà0 7!fyÖtÜg
T
tà0

Ö3Ü

In this work, we introduce a model of synaptic updates whose properties are well behaved

when ϕ is a homogeneous function; that is, when ϕ(αx) = αϕ(x) for all x 2 R and a 2 Rá.
Common activation functions which satisfy this condition include the linear (ϕ(x) = x) and
rectified linear (ϕ(x) = max(0, x)) units. In the main text of this paper we assume that ϕ is
homogeneous, however, in S1 Appendix. 4 we give an extension to the more general class of
positively homogeneous nonlinearities, which satisfy ϕ(sx) = skϕ(x), for any s> 0 and k 2 R.

Task-preserving transformation. We now describe a symmetry in weight space that
exactly preserves the map (3). Indeed, the observation that many distinct weight configura-
tions may yield quantitatively similar network behavior is widespread both in neuroscience,
where simulations of the crustacean stomatogastric ganglion found a range of synaptic
strengths producing a given network output [17], and in machine learning, in which non-con-
vex cost functions possess many roughly equivalent local minima [19, 32]. In the class of net-
works we study, part of the degeneracy between weights and a given task originates from a
symmetry in weight space that exactly preserves the deterministic input-output map computed
by the network. Intuitively, this symmetry scales neurons’ inputs while reciprocally scaling
their outputs, such that the overall function computed by each neuron remains intact.

More precisely, consider a map π, parameterzied by h 2 RN , which takes as input a weight

configurationW à ÖWin; J; WoutÜ, and produces as an output the weight configuration

phÖWÜ à Öe�HWin; e�HJeH; WouteHÜ: Ö4Ü

Here H denotes the diagonal matrix diag{h}.
It is worth emphasizing some basic properties of the transformation πh. The sign of synap-

ses is preserved, and synapses which are initially zero remain so. Thus, the transformation
does not modify the basic wiring diagram of the network—for example by creating or remov-
ing synapses, or changing excitatory to inhibitory synapses and vice versa. Rather, it scales the
strength of existing synapses by a positive quantity. In addition πh acts on the recurrent weight
matrix J through a similarity transformation. Thus the entire eigenspectrum of the recurrent
weight matrix is conserved under this map.

However, πh satisfies an additional important condition: it exactly preserves the entire
input-output output map of the network. For this reason, we refer to πh as the task-preserving
transformation. More formally, for any (finite) value of h,

FRNNÖWÜ à FRNNÖphÖWÜÜ: Ö5Ü

This claim is summarized in Fig 1, which shows in panels a—f that while the dynamics of the
hidden units for two networks related by the task-preserving transformation are different, the
output trajectories agree. Eq (5) is proved in the following proposition.

Proposition 1 (Task-preserving transformation). The transformation (4) exactly preserves
the input-output relationship of the neural dynamics (1). Given two networks receiving the same
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time course of inputs u(t) and with weight configurationsW0 andW à phÖW
0Ü respectively,

then:

1. If x0(t) is the time course of hidden unit neural activity underW0, then e−Hx0(t) is the time
course of hidden unit neural activity underW.

2. If y0(t) is the time course of output neural activity underW0, then y0(t) is also the time course
of output unit neural activity underW.

The proof of proposition 1 is straightforward and can be found in S1 Appendix 1.

Given an initial weight configurationW0, we define the task-preserving manifold ofW0 to

be the manifold of weight configurations accessible fromW0 by the task-preserving transfor-

mation, i.e., the orbit ofW0 under the symmetry πh: fphÖW
0Ü : h 2 RNg. The vector h pro-

vides a set of coordinates on this manifold. When referring to the task-preserving manifold we

implicitly assume there exists some reference weight configurationW0 at which h = 0.

A measure of robustness to noise in neural activity

We have shown that every weight configuration on the task-preserving manifold computes the
same deterministic input-output map. However, biological systems are inherently noisy [1],
and it has been found that cortical spike trains vary at the sub-millisecond level across trials
with identical inputs [2–4]. Interestingly, even two networks which compute the same deter-
ministic input-output map may exhibit differing responses to neural noise. In Fig 1, we give an
example of two networks which perform identically in the deterministic setting but which
respond differently when noise is injected to hidden units.

Fig 1. Two nonlinear recurrent networks consisting of input, hidden, and output neurons possess an identical input-output
relationship, but behave differently in the presence of noise. (a-b) A single input u (teal) drives two recurrent neurons x1 (yellow)
and x2 (red) which project to a single output y (purple). The connectivity patterns of the two networks are related by the task-
preserving transformation (4). Line thickness denotes synaptic strength. (c) Input trajectory, fed to both networks. Horizontal axis
in all panels is time. (d) Output trajectory, produced by both networks when run according to the deterministic dynamics (1). (e-f)
Hidden unit neural activity under deterministic dynamics, for networks a and b respectively. Trajectories are identical up to a per-
neuron scale factor, determined by the parameters of the task-preserving transformation. (g-h) Hidden neuron neural activity for
networks a and b respectively when additive Gaussian noise is injected into the neural dynamics (1). 50 trials are shown. (i-j)
Output neuron neural activity in the noisy case.

https://doi.org/10.1371/journal.pcbi.1010418.g001
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In this section we introduce a quantitative notion of a network’s robustness to noise, which
we call sensitivity. This function describes the degree to which noise in neural activity may
interfere with the underlying computation of the network. We connect our notion of sensitiv-
ity to the gain of neurons in the network and show that the sensitivity is well-behaved on the
task-preserving manifold; in particular, that it possesses a convex geometry in the coordinates
h.

Robustness of neural dynamics to random perturbations. A recurrent network whose
dynamics are easily perturbed by small variations in neural activity is unlikely to perform a
task robustly in the presence of neural noise. To capture this notion, we consider the magni-
tude of the response to a small, isotropic Gaussian perturbation d ⇠ N Ö0; ε2IÜ to the neural
dynamics (1), averaged over the distribution of states X visited by the network during a task:

1

ε2
hkfÖxá d;uÜ � fÖx; uÜk2

2id;x;

where for simplicity we have dropped from f an explicit dependence on the weightsW. We
define the sensitivity of a network to be the first-order approximation of this quantity,

S à hk @f
@x
k2

Fix⇠X ; Ö6Ü

where the approximation is made via Taylor expansion of f about x. Networks with lower sen-
sitivity are less easily pushed away from their original trajectories and are therefore more likely
to be robust to noise while performing tasks, as is illustrated in Fig 1(g)–1(j). In this paper,
robustness refers to S−1, the reciprocal of sensitivity.

In the case of the neural dynamics (1), the Jacobian matrix takes the form,

@f
@x
à �Iá J diagf�0ÖxÜg: Ö7Ü

This expression makes use of the gain, ϕ0(xi), of neuron i. With respect to the distribution of
neural activity X , the gain has first and second moments

mi à h�
0ÖxiÜixi⇠X i

s2
i à h�0ÖxiÜ

2ixi⇠X i

Ö8Ü

for each neuron i. We may rewrite the definition of sensitivity (6) using the Jacobian of the
neural dynamics (7) in terms of the moments (8) to obtain

S à hk @f
@x
k2

Fix⇠X

à hTrâÖ�Iá J diagf�0ÖxÜÜÖ�Iá J diagf�0ÖxÜÜTäix⇠X

à TrâI� J hdiagf�0ÖxÜgi
X
� hdiagf�0ÖxÜgi

X
JT á Jhdiagf�0ÖxÜg2i

X
JTä

à N � 2TrâJ hdiagf�0ÖxÜgi
X
ä á TrâJhdiagf�0ÖxÜg2i

X
JTä

S à
X

ij

s2
j J

2
ij � 2

X

i

miJii á N: Ö9Ü

The sensitivity, then, can be succinctly written as a function of the recurrent weights and
the moments of the neural gains. However, because the moments μ and σ2 are defined as an
average over the distribution of network states that depends—generally intractably—on the
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weights themselves, sensitivity is not, as it may appear, a straightforward quadratic function of
J. We next show that, perhaps surprisingly, sensitivity turns out to be well behaved as a func-
tion on the task-preserving manifold.

Sensitivity is a convex function on the task-preserving manifold. Because networks
attaining weight configurations of lower sensitivity might see improved task performance in
noisy environments (as in Fig 1), it is useful to analytically characterize how S varies as a func-
tion of network weights. We have just mentioned the complications of studying this question
in general. Here, we find that S becomes tractable when we consider its variation on the task-
preserving manifold, parameterized by the coordinates h. In particular, we show that S is con-
vex with respect to h.

Proposition 2. When considered as a function on the coordinates h of the task-preserving
manifold, the sensitivity S is a convex function

S à
X

ij

c0
ije

pÖhj�hiÜ á Sconst Ö10Ü

for some constants fc0
ijg

N
i;jà1, p, and Sconst, where c0

ij � 0 for all i, j.
Proof. Assume there is some original networkW0 à ÖWin;0; J0;Wout;0Ü, whose distribution

of neural activity is X 0, and whose gains have moments fm0
i g

N
ià1 and fÖs0

i Ü
2gNià1. Consider a

transformed networkW à phÖW
0Ü, with analogous quantities X , fmig

N
ià1, and fs2

i g
N
ià1. From

(4), the recurrent connectivity of the transformed network is Jij à J0
ijehj�hi . The sensitivity of the

transformed network in terms of the task-preserving transformation is obtained by plugging
this Jij into (9):

S à
X

ij

s2
j ÖJ0

ijÜ
2e2Öhj�hiÜ � 2

X

i

miJ0
ii á N: Ö11Ü

For convexity, it is sufficient to show that the moments of the gain, μi and s2
i , are constant

with respect to the task-preserving transformation; i.e., that mi à m0
i and s2

i à Ös0
i Ü

2 for each

neuron i. From Prop. 1, the transformed neural activity can be written in terms of the original

rates as xi à e�hix0
i for all t> 0. By assumption, ϕ satisfies ϕ(αx) = αϕ(x), and therefore ϕ0(αx)

= ϕ0(x), for all x 2 R and a 2 Rá. So �0ÖxiÜ à �
0Öe�hix0

i Ü à �
0Öx0

i Ü, and

mi à h�
0ÖxiÜi à h�

0Öx0
i Üi à m0

i

s2
i à h�

0ÖxiÜ
2i à h�0Öx0

i Ü
2i à Ös0

i Ü
2

for each neuron i. Therefore the moments of the gains are constant with respect to h.

We conclude that (11) takes the form of (10), where the constants are c0
ij à Ös0

j Ü
2jJ0

ijj
2 � 0,

p = 2, and Sconst à �2
P

im
0
i J0

ii á N. As (10) is a positive linear combination, with constant coef-

ficients, of exponentiated linear functions of h (which are convex), then it is in turn a convex
function of h [33, ch. 3].

Other notions of robustness. Our definition of sensitivity (6) is chosen to emphasize the
aspect of recurrent networks which is typically most crucial to task performance; that is, the
neural dynamics. However, there are other notions of robustness which are useful to mention.
Here we briefly address how the task-preserving transformation (4), parameterized by h, inter-
acts with several additional relevant notions of sensitivity.

First, consider the sensitivity Su!y of the output trajectory {y(t)} to fluctuations in the input
trajectory {u(t)}. In our analysis, no choice of h can affect this quantity, precisely because the
task-preserving transformation exactly preserves the input-output map. Put differently, this
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notion of sensitivity is intrinsic to the function being computed, not to the manner in which
the recurrent network computes it.

Second, consider the sensitivity Sx!y of the output trajectory {y(t)} to fluctuations in the
time course of neural activity {x(t)} (Fig 1(i) and 1(j)), and respectively, the sensitivity Su!x of
neural activity {x(t)} to fluctuations in the input trajectory {u(t)}. These sensitivities can be
individually minimized by taking h! −1 to minimize the norm of Wout and, respectively, h
!1 to minimize the norm of Win. The resulting tradeoff between Sx!y and Su!x is separate
from the problem of minimizing our choice of S, and it may be solved independently of the
method we now present. In what follows, we will present a local learning rule that maximizes
the robustness of the neural dynamics. We will further show that these dynamics will never
result in the case of h or any of its elements becoming ±1.

A local learning rule maximizes robustness while preserving task
performance

We have introduced the task-preserving manifold as the set of weight configurations accessible
by a symmetry transformation which preserves a given deterministic input-output map. We
have also shown that the sensitivity of neural dynamics to small perturbations in activity—the
generally intractable quantity S—is well behaved when constrained to the task-preserving
manifold. A simple question emerges: how might networks traverse the task-preserving mani-
fold to maximize robustness while preserving underlying task performance? To address this
question, we derive gradient descent dynamics that maximize network robustness in the coor-
dinates of the task-preserving manifold. We find, perhaps surprisingly, that these dynamics are
wholly implementable by biologically plausible local computations within neurons and
synapses.

From (10), the problem of maximizing robustness S−1 is equivalent to that of minimizing
the total cost:

C à
X

ij

cij; Ö12Ü

where cij is the synaptic cost

cij à s2
j jJijj

p Ö13Ü

à c0
ijepÖhj�hiÜ; Ö14Ü

with p = 2, and in the second line we have rewritten the synaptic costs in terms of the initial

cost c0
ij à Ös0

i Ü
2jJ0

ijj
p and the coordinates h, obtained by writing out (13) in terms of the task-

preserving transformation Jij à J0
ijehj�hi (4).

We call the network connected if the directed graph whose edge weights are given by the
initial synaptic cost matrix C0 is connected. We assume, without loss of generality, that the net-
work is connected (if not, a similar theory applies to each connected component separately).

We turn to deriving synaptic dynamics that transforms h over time so as to maximize
robustness on the task-preserving manifold. Until now we have treated the vector h as a free
coordinate on the task-preserving manifold. Henceforth we consider it as a function of time,
initializing at the origin and evolving under gradient descent on the total cost. Similarly, we

now viewW à ÖWin; J;WoutÜ à phÖW
0Ü as a time-varying weight configuration, with initial

valueW0 corresponding to h = 0.
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Let the time derivative of h be denoted by _h à g, which we refer to as the neural gradient
vector. The dynamics of gradient descent on C with respect to h is given by

g à �g @C
@h

; Ö15Ü

where g ⇠ OÖ1Ü is the descent rate. We assume a separation of timescales, such that neural
dynamics (1) are much faster than the weight dynamics (15).

The synaptic costs (13) obey

@cij
@hk
à p cij Ödkj � dkiÜ; Ö16Ü

where δ is the Kronecker delta. In the present regime where g ⇠ OÖ1Ü and p ⇠ OÖ1Ü, we are
free to adopt throughout γp = 1 for notational convenience. Using this, we evaluate the right
hand side of (15) via (12) and (16) to find,

gk à
X

j

ckj �
X

i

cik: Ö17Ü

Finally, to see how synaptic strengths are updated, we differentiate the task-preserving trans-

formation Jij à J0
ijehj�hi with respect to time, finding that

_J ij à JijÖgj � giÜ; Ö18Ü

_W in
ik à �W in

ik gi Ö19Ü

_W out
kj àWout

kj gj Ö20Ü

Eqs (17) through (20), along with the definition of synaptic costs (13), are self-contained and
collectively comprise the dynamics of our proposed update rule, which we call synaptic
balancing.

Interestingly, we find that synaptic balancing is entirely implementable by local computa-
tions in a network. First, costs (13) are computed at the synapse as a product of the square of
the synaptic weight and the presynaptic average gain. Second, neural gradients (17) are com-
puted centrally in the neuron by aggregating and comparing the costs of incoming and outgo-
ing synapses. Third, synaptic weights (18) are updated in proportion to the difference between
the presynaptic and postsynaptic neural gradients.

In this scheme we assume that the synaptic weights, synaptic costs, and neural gradients
can be represented as biophysical quantities inside neurons and synapses. We suppose, as
depicted in Fig 2, that in one direction a neuron traffics its gradient from the soma to incom-
ing and outgoing synapses, and, in the other, it traffics synaptic costs from synapses to the
soma. Finally, we assume that each synapse is able to measure and store certain statistics of
presynaptic activity, namely, the average presynaptic gain. This assumption is in line with
other models of synaptic plasticity which introduce some form of leaky integration of neural
activity, e.g. the sliding threshold of the BCM rule [34, p. 288].

Notably, although the coordinates h and the task-preserving transformation πh are of
instrumental value in deriving and analyzing our rule, the biological procedure just described
implements synaptic balancing without an explicit representation of h.

Next, we study the equilibrium state of synaptic balancing and offer a simple condition
under which an equilibrium exists, thereby guaranteeing the stability of our rule.
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Strongly connected networks attain balanced equilibrium

Synaptic balancing asymptotically converges to a global minimum on the task-preserving
manifold, by construction, because it is gradient descent on the convex function C. However, a
global minimum may not exist at any finite value of the task-preserving manifold coordinates
h. For example, the convex function f(h) = eh on the real line possesses no global minimum at
finite h, and the asymptotic convergence of gradient descent is not assured. It is therefore
important to establish the criteria under which we expect synaptic balancing to stably converge
to a (finite) minimizer h⇤. To do this, we provide two simple criteria: first, a balance condition
which describes the set of equilibria of synaptic balancing, and second, a strongly-connected
condition which implies the existence of an equilibrium on the task-preserving manifold that
attains exponential convergence.

A weight configuration globally minimizes the total cost on the task-preserving manifold if
and only if it satisfies the balance condition

X

i

cik à
X

j

ckj Ö21Ü

for each neuron k. To see this, observe that because the total cost C is convex and differentiable

as a function of h, a coordinate h⇤ achieves a global minimum if and only if @C
@h Öh

⇤Ü à 0, which,

from (15), holds if and only if g = 0. Solving for g = 0 in (17) yields the balance condition (21).
It is because of (21) that we use the term balancing to describe our rule: the total cost is min-

imized, and a weight configuration is a stable fixed point of the weight dynamics (18), if and
only if the total synaptic costs of each neuron’s incoming and outgoing synapses are equal. It

Fig 2. The local computations underlying synaptic balancing. Each synapse (indicated in teal) calculates a cost as a function of synaptic strength, as in
(13). Neuron k receives signals of incoming synaptic cost ckj and outgoing synaptic cost cik (teal arrows from synapses to soma) and computes the difference
gk as in (17). The signal gk then propagates outwards (purple arrows from soma to synapses) to modify the strength of incoming and outgoing synaptic
connections, as in (18), such that the total incoming and total outgoing costs are eventually balanced in every neuron.

https://doi.org/10.1371/journal.pcbi.1010418.g002
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remains unclear, however, whether the balance condition (21) is attainable in every case, or
put differently, whether synaptic balancing is stable from every initial condition.

We now state a simple topological criterion which (we will show) implies the stability of
synaptic balancing. A recurrent network is said to be strongly connected if between every pair
of neurons i and j there exists a path of synapses, each with positive synaptic cost, from i to j.
Conceptually, this condition simply means that the recurrent connectivity does not possess
any embedded directed acyclic structure, such as purely feedforward connections.

With regard to biology, it is of course generally challenging to show that any given biologi-
cal network is strongly connected. With that said, we believe that the highly recurrent nature
of the central nervous system suggests that this assumption may not be far from reality in cer-
tain cortical regions. Long-range feedback projections as well as local recurrence in cortex sug-
gest that non-negligible sub-networks of neurons participating in, for example, the ventral
visual stream are indeed strongly connected [35, 36]. Such networks are strong candidates for
synaptic balancing.

Mathematically, it is known that the connected components of any balanced matrix, i.e., a
matrix satisfying (21), are strongly connected [37], and that, conversely, such matrices may be
made balanced through a positive diagonal similarity transformation [38].

Before formally describing the stability of our rule, we make the preliminary observation
that the synaptic costs in (14) are invariant under the transformation h 7! h + b1, for b 2 R.
Therefore the gradient of the total cost C is perpendicular to the all ones vector 1, and gradient

descent on C does not explore that direction: From (17), 1T _h à
P

igi à 0. Assuming as before

that h0 = 0, synaptic balancing exclusively yields solutions that satisfy

1Th à 1Th0 à 0: Ö22Ü

We may now connect these remarks to our weight dynamics, showing that synaptic balanc-
ing converges exponentially to a balanced configuration whenever the initial cost matrix is
strongly connected. Fig 3 illustrates this point in two-neuron networks, showing the time
course of synaptic balancing and the geometry of the cost function. In the first case of a single
feedforward connection, a stable equilibrium is not reached at any finite h. In the second case
of recurrent connections but asymmetric initial synaptic costs, the network converges to a sta-
ble equilibrium at finite h and positive total cost C, with symmetric final costs. A short proof is
provided in the following proposition.

Proposition 3. In a strongly connected network, synaptic balancing converges to a globally
exponentially stable equilibrium, which is the unique solution to (22) and (21) on the task-pre-
serving manifold.

Proof (Sketch). Because synaptic balancing does not increase the total cost C = ∑ij cij (12),
and because the synaptic costs are nonnegative, we have that cij C0 along the trajectory of

synaptic balancing for all i, j. If c0
ij > 0, then since cij à c0

ijepÖhj�hiÜ (14), it follows directly that

ehj�hi  ÖC0=c0
ijÜ

1=p <1. If c0
ij à 0, then an “indirect” upper bound for ehj�hi is obtained by col-

lapsing the direct upper bounds along a path of positive synaptic costs from j to i: In the case

of a single intervening neuron k, for example, ehj�hi à ehj�hkehk�hi  ÖC0=c0
kjÜ

1=pÖC0=c0
ikÜ

1=p. By

the strong connectedness assumption, such a path exists between every i and j, so we may in
this way obtain upper bounds on hj − hi, and therefore on |hj − hi|, for all i, j. Combined with
the constraint ∑i hi = 0 (22), it follows that h is contained in a compact set over the trajectory of
synaptic balancing. We conclude that the minimizer of C, a convex function of h, is attained in
this set. To show that the minimizer is unique and globally exponentially stable, it is sufficient
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to show that under strong connectedness, C is strongly convex on the sublevel set of C0. This is
shown in S1 Appendix 2 with a more detailed proof.

In summary, synaptic balancing consists of local synaptic updates which are stable in any
recurrent network that does not possess directed acyclic structure. By minimizing a convex
cost on the task-preserving manifold, the rule maximizes the robustness of neural dynamics to
noise while maintaining underlying task performance. In the following section we will men-
tion a few useful generalizations of our model.

Generalizations and a connection to Lax dynamical systems

We have derived synaptic balancing as gradient descent on a behaviorally-relevant convex
function—the sensitivity of the network to neural noise—and characterized the stability and
equilibria of the rule. We now observe that our framework for synaptic balancing admits sev-
eral generalizations: first, a broader class of synaptic costs, of which sensitivity is a particularly
salient example, and second, a yet more general class of matrix-valued dynamical systems
known as Lax dynamics, which have found widespread applications in fields from physics [9]
to optimization and numerical linear algebra, where they are known as isospectral flows [10,
11].

A general class of well-behaved synaptic costs. The expression for synaptic costs (13)
was derived to maximize robustness by minimizing the behaviorally relevant sensitivity func-
tion (6). Generally, however, the framework presented here admits a broad class of synaptic
cost functions. If the total cost is the sum of synaptic costs, as in (12), then the synaptic cost cij
may be an arbitrary fixed function of Jij. Importantly, the stability of the resulting weight
dynamics, and the optimality of any equilibria, are not guaranteed in general.

Fig 3. Network topology determines the geometry of the task-preserving manifold and the dynamics of synaptic balancing.
Top row: ReLu network with two hidden units connected by a single synapse, corresponding to initial synaptic cost c0

12. Bottom
row: ReLu network network with two hidden units connected reciprocally, with initial synaptic costs c0

12 and c0
21. (a-b) Network

diagrams showing topology and initial synaptic costs, indicated by line thickness. Input and output neurons are not shown. (c-d)
Trajectory of synaptic costs over the course of synaptic balancing. Line colors match synapse colors in panels (a-b). Panel (c)
matches (31) and panel (d) matches (29). (e-f) The feasible set of h satisfying (22), with flow lines indicating trajectory of synaptic
balancing. Panel (f): Red point indicates the (finite) minimizer of the total cost. (g-h) Tradeoff between c12 and c21 as a function
of h2 − h1, with red point indicating the optimal value of total cost C = c12 + c21. (i-j) Total cost C as a function of h2 − h1. (i)
Optimal cost is zero, attained at an infinite value of h. (j) Optimal cost is positive, attained at finite h.

https://doi.org/10.1371/journal.pcbi.1010418.g003
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A sensible class of synaptic costs which are convex in h are the power-law costs

cij à aijjJijj
p; Ö23Ü

where αij� 0 for all i, j, and p> 0. This definition includes sensitivity (13) as a special case,
with aij à s2

j and p = 2. Other costs of the power-law form include the ℓ1 and ℓ2 matrix penal-

ties studied in statistics and machine learning [39, Ch. 3.4]. Notably, the power-law costs (23):
i) obey (14), ii) correspond to neural gradients of the form (17), and iii) inherit the stability
result of Prop. 3, extending the findings of this work to a broader class of cost function.
Robustness, specifically, is only maximized with the particular choice of costs (13).

Synaptic Lax dynamics. A yet further generalization of our synaptic update framework
dispenses with a cost function entirely. A Lax dynamical system is an evolution on an N × N
matrix A such that

_A à âA; kÖAÜä; AÖ0Ü à A0; Ö24Ü

where k : RN⇥N ! RN⇥N is a matrix-valued function which depends on time only through its
argument A, and [�, �] denotes the Lie bracket, which is defined as

âA; Bä à AB� BA:

An important property of Lax dynamics is that the evolution of A takes the form of a time-
varying similarity transformation. To see this, consider the N × N matrix K which evolves in
time according to

_K à KkÖAÜ; KÖ0Ü à I:

It is straightforward to show that K(t) is nonsingular for all t and that the similarity transfor-
mation

AÖtÜ à KÖtÜ�1A0KÖtÜ

is the unique solution of (24). As a consequence, Lax dynamical systems conserve the entire
spectrum of the matrix A and are sometimes referred to as isospectral flows.

Synaptic balancing is a specific instance of Lax dynamics. We may rewrite (18) as

_J à âJ; diagfggä; Ö25Ü

noting that the elements of g depend on time only through a dependence on the elements of J.
Thus this dynamics is a special case of the general definition (24).

The Lax dynamics of synaptic balancing (25) encompass a very general form of task-pre-
serving local learning rule. If the neural gradient gk is allowed to depend arbitrarily on the
incoming and outgoing weights of neuron k, then synaptic Lax dynamics remains confined to
the task-preserving manifold and is fully locally computable in the sense of Fig 2. Further, all
quantities which are conserved on the task-preserving manifold—including the spectrum of
the recurrent weight matrix and the product of synaptic weights along every directed closed
loop—are conserved by the synaptic Lax dynamics as well.

Synaptic Lax dynamics, if chosen in such a way to be stable, might be used to regulate any
number of structural properties of the network. Any equilibrium of the synaptic Lax dynamics
satisfies the equality condition gi = gj for all pairs (i, j), which generalizes the balance condition
(21). For choices of neural gradient for which this equilibrium is attainable and stable, the syn-
aptic Lax dynamics offer a flexible framework for adapting network weights without affecting
task performance. For example, [40] studies the problem of stably balancing the maximum
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incoming and outgoing synaptic strengths, and [41] studies the problem of balancing the
incoming and outgoing products of synapses. Each of these aims could be implemented by the
synaptic Lax dynamics through proper choice of gk. Our work unifies these efforts under a gen-
eral framework of continuous-time weight dynamics (25), and, unlike previous approaches,
derives from functional considerations a particular form of neural gradient that provably mini-
mizes a behaviorally-relevant cost function on the task-preserving manifold.

Regularized networks are nearly balanced

Our focus so far has been on establishing theoretical links between the balance condition,
noise-robust computation and the proposed local plasticity rule. We now turn to studying the
interaction of these concepts with other forms of plasticity, such as task-relevant learning. In
this section we present evidence that commonly studied classes of network are, in fact, generi-
cally in the vicinity of equilibrium, and that the balance condition (21), far from being an
obscure edge case of network configurations, is in some sense a generic state. In particular, we
find that the balance condition is approximately attained by any learning algorithm minimiz-
ing a very general class of regularized loss functions.

Recall that we denote by FRNNÖWÜ the input-output map of the network (3), which takes
input trajectories {u(t)} to output trajectories {y(t)} and which is parameterized by the weight

configurationW à ÖWin; J;WoutÜ. Consider an arbitrary loss function L on the input-output
map FRNN. We are not concerned with the particular functional form of L—just that it depends
on the weight configuration only through the input-output map. For example, the loss might
measure the performance of the network on some task, with weight configurations that attain
lower loss achieving better task performance.

We consider a regularized loss function Lreg which is the sum of the loss L and element-
wise regularization of the recurrent weight matrix:

LregÖWÜ à LÖFRNNÖWÜÜ á
X

ij

aijjJijj
p; Ö26Ü

where p, αij> 0 for all i, j. The expression for Lreg encompasses both ℓ1 and ℓ2 regularization of
the recurrent weight matrix, for example, by setting p = 1 and p = 2 respectively.

Proposition 4. Suppose Lreg has a local minimum at the weight configurationW⇤. ThenW⇤

satisfies the balance condition (21), with synaptic costs cij = αij|Jij|p.
Proof. We provide a proof by contradiction. Assume that there exists a weight configuration

W
0 which is a local minimum of Lreg but which is not an equilibrium of synaptic balancing.

Let h(t), t� 0, describe the trajectory of synaptic balancing initialized atW0, with synaptic
costs cij = αij|Jij|p. Because synaptic balancing preserves the input-output map FRNN, the loss

function LÖFRNNÖphÖtÜÖW
0ÜÜÜ is constant as a function of t, i.e.,

d
dt

LÖFRNNÖphÖtÜÖW
0ÜÜÜ à 0: Ö27Ü

Because we have assumed thatW0 is not an equilibrium of synaptic balancing, the total cost C
= ∑ij αij|Jij|p is strictly decreasing at t = 0, i.e.,

d
dt

CÖphÖtÜÖW
0ÜÜ < 0: Ö28Ü
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Combining (27) and (28), we have that

d
dt

LregÖphÖtÜÖW
0ÜÜ à d

dt
LÖFRNNÖphÖtÜÖW

0ÜÜÜ

á d
dt

CÖphÖtÜÖW
0ÜÜ

< 0

for all t and in particular, t = 0. Thus, Lreg is a decreasing function on the trajectory of synaptic

balancing initialized atW0, andW0 is not a local minimum of Lreg. We conclude that every
local minimum of Lreg satisfies the balance condition (21).

An inverse result—that in unregularized networks trained with gradient descent, the initial
(generally nonzero) neural gradients are exactly conserved by training—has been noted in,
e.g., [42, 43].

In practice, numerical optimization algorithms for network training terminate before
achieving true local minima, so we do not expect every network trained with regularization to
exactly exhibit the balance condition (21). In Fig 4a we show, however, that trained, ℓ2-regular-
ized networks exhibit neural gradients that are substantially lower than would be attained by
chance, under random perturbation of rows of the weight matrix.

In understanding these results, the reader should keep in mind that under our terminology,
a network may be balanced with respect to one cost function (say, the ℓ2 cost), but not bal-
anced with respect to another cost function (say, the robustness cost). Similarly, the form of
regularization that is used during training affects the balance properties of the local minimum

Fig 4. The balance condition in trained networks. (a) ReLu networks with N = 256 neurons are trained via gradient descent on a context-dependent
integration (CDI) task modeled after [23], with varying levels of ℓ2 penalty l

P
ijJ2

ij . The norm of neural gradients, kgk, is shown over the course of training.

When λ = 0, neural gradients are fixed by gradient descent dynamics. When λ> 0, trained solutions tend towards the balance condition (21), with cij à J2
ij .

Histograms at right denote the empirical null distribution of kgk under permutation of the rows of C at the final training iteration. For positive values of λ,
the actual value of kgk (dotted line) falls significantly below the null distribution. (b) Synaptic balancing with the robustness cost function (13) is applied to
several ReLu networks trained with λ = 0.3 (corresponding to the purple curve in panel a). The original and balanced networks are run on the CDI task at
varying levels ε of Gaussian noise injected into hidden dynamics. For each network pair the ratio is plotted of task loss of the balanced network to that of
the original network, as a function of ε. As dynamics become more noisy, the performance of the original networks (as measured by loss on the task)
degrades faster than that of the corresponding balanced networks. Inset: total cost C of the original vs. balanced networks (12).

https://doi.org/10.1371/journal.pcbi.1010418.g004
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reached; a network trained with ℓ2 regularization need not satisfy the robustness balance
condition.

Nonetheless, we have showed that any regularized network will become exactly balanced
(in some sense) through training. This observation suggests that attaining the equilibrium con-
dition of synaptic balancing is not only functionally desirable from a robustness standpoint
but also is a generic consequence of learning rules which optimize a loss function of the form
(26).

Balancing empirically improves task performance

To experimentally measure the effect of synaptic balancing on task performance, we trained
networks via gradient descent on a context-dependent integration task modeled after [23].
This process yielded a trained network which adequately performed the task. We applied syn-
aptic balancing to the trained network, using the robustness cost function (13), and stored the
equilibrium weight configuration as our balanced network. We simulated the trajectories of
the original (trained) versus balanced network and observed task performance while varying
the levels of additive Gaussian noise in the neural dynamics (1). Details of the task and network
training are provided in S1 Appendix 5.

As expected, both the original and balanced networks perform identically in the absence of
noise, due to the task-preserving nature of synaptic balancing. We also found that the task per-
formance, as measured by the trial-averaged task loss on held-out test data, deteriorated in
both the trained and balanced networks as the noise level increased. However, this deteriora-
tion was noticeably attenuated in the balanced networks, and trained networks that had not
been balanced proved more sensitive to higher levels of Gaussian noise. The decay in relative
performance of original versus balanced networks is illustrated across several network instanti-
ations in Fig 4b.

The improvement exhibited by the balanced network is remarkable in part because synaptic
balancing does not make use of a task-specific error signal, but merely uses summary statistics
of the average neuronal gain during the task. These results confirm that in networks which are
already performing a task, the variability of neural responses can be suppressed simply by shift-
ing synaptic weights towards a balanced configuration via the task-preserving transformation.
As noted above, this task preserving transformation can be implemented by local synaptic
learning rules that require no knowledge of the task.

Exact and approximate trajectories of synaptic balancing

We have shown that the ordinary differential Eq (18) is a member of a widely studied class of
dynamical systems called Lax dynamics. In the interest of better understanding the action of
our dynamics on the recurrent weight matrix as a whole, we now turn to closed-form solutions
to (18) that specify the evolution of synaptic balancing over time. When the network has just
two neurons, our solution is exact; in general, we derive a quadratic approximation taking the
form of a heat equation.

Exact trajectory with two neurons. In a two-neuron network, the balancing dynamics
admit an exact analytical solution for the time course of the synaptic costs c12 and c21, when
these costs take the power-law form (23). If both initial synaptic costs are positive, we find that
they evolve as

c12ÖtÜ à ĉ12 qÖtÜ

c21ÖtÜ à ĉ12 qÖtÜ
�1;

Ö29Ü
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where

ĉij à
ÅÅÅÅÅÅÅÅ
c0
ijc0

ji

q
Ö30Ü

and

qÖtÜ à tanh â2p2Öĉ12Üt á tanh�1Öc0
12=c0

21Ü
1=2ä

If just a single initial synaptic cost is positive—suppose it is c12—then it evolves as

c12ÖtÜ à
c0

12

2c0
12gp2 t á 1

Ö31Ü

while c21 is fixed at zero. In agreement with Prop. 3, the latter case suffers from unbounded
growth of the input and output weights over time as J12! 0, and there is no stable equilibrium
of the dynamics. The trajectories in (29) and (31) are illustrated in panels (g-h) of Fig 3.

Approximate trajectory via the heat equation. Except in the two-neuron scenario, we
are not aware of a general analytic solution to the trajectory of synaptic balancing. Here we
show that a closed-form approximate solution is attainable in general, however, shedding light
on the macroscopic patterns of weight modification that synaptic balancing induces in a net-
work. Our approach is to consider the time evolution of the neural gradients, which we tie to
solutions of the heat equation on a graph. This then yields a closed-form approximate local
solution for the trajectory of the coordinates h.

The time evolution of the neural gradients (17) is given by

_g à @g
@h

g: Ö32Ü

Since h evolves under gradient descent (15), the Jacobian of the dynamics of h is a sign-flipped
version of the Hessian of the cost function (12),

@g
@h
à �g @

2C
@h2 : Ö33Ü

A short calculation via (16) finds the Hessian to be

@2C
@h2 à p2L; Ö34Ü

where L takes the form of a Laplacian matrix corresponding to a graph with edge weights

given by what we call the conductance matrix �C, which has ijth element

�cij à cij á cji; Ö35Ü

and which is evidently symmetric. Explicitly, the Laplacian L has elements drawn from �C as
follows:

Lij à
��cij; i 6à j;
P

k6ài�cki; i à j:

8
<

: Ö36Ü

Combining (32), (33) and (34), and maintaining γ = p−1 as before, the time derivative of the
neural gradients is

_g à �pLg: Ö37Ü
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Eq (37) is the heat equation of the graph corresponding to L, in analogy to the heat equation in
continuous environments [44]. This suggests an intuitive physical description, and approxi-
mate mathematical solution, of the evolution of neural gradients.

Since L is itself time-varying, the dynamics (37) do not admit a straightforward exact solu-

tion. However, in the vicinity of a weight configuration ~W , we may take L to be fixed at ~L to
obtain a closed-form expression which approximates the exact solution to (37). This corre-
sponds to gradient descent dynamics on the quadratic Taylor approximation of C in h evalu-

ated at ~W . Under fixed ~L, (37) is a (time-invariant) linear dynamical system, and the solution

at time t may be expressed in terms of the heat kernel e�p~Lt:

gÖtÜ à e�p~Ltg0

à
X

i:li>0

e�pli tviÖviÜTg0; Ö38Ü

where g0 denotes the neural gradient at time t = 0, and λi, vi denote the ith eigenvalue and

eigenvector of ~L. The sum is taken over all i such that λi is positive, since if λi = 0 for some i
then vi is an indicator vector of a connected component, which must be orthogonal to any real-
izable neural gradient g0.

Integrating (38) yields a closed-form approximate expression for the evolution of the coor-
dinates h on the task-preserving manifold:

hÖtÜ à
X

i:li>0

ÖpliÜ
�1Ö1� e�pli tÜviÖviÜTg0; Ö39Ü

where we have chosen boundary conditions such that h(0) = 0. As t!1, the network reaches
an equilibrium h! h⇤, given by

h⇤ à p�1~Lyg0: Ö40Ü

The notation ~Ly denotes the Moore-Penrose pseudoinverse of ~L.
To illustrate these concepts, Fig 5 shows how a 12-neuron, ring topology network, redistrib-

utes synaptic cost by synaptic balancing dynamics in response to a perturbation of a single syn-
aptic cost (a—b), as well as the evolution of h in the Laplacian matrix eigenmode basis (c-d).
The approximate closed-form dynamics derived in this section, and especially the role of the
Laplacian matrix L, help shape intuition about the behavior of our rule: Neural gradients dif-
fuse in a network akin to heat diffusing on a graph, with higher spatial-frequency modes of the
graph decaying more quickly than lower spatial-frequency modes. As shown in Fig 5(d),
numerical simulations verify that the quadratic approximate dynamics presented here accu-
rately describe synaptic trajectories near equilibrium.

General bounds on equilibrium cost. We have provided exact and approximate closed-
form dynamics of synaptic balancing. To complement these results, we now turn to results on
the optimal value of the cost function, stated in terms of the initial cost matrix C0.

Proposition 5. Suppose synaptic costs are of the power-law form (23). Then given initial neu-
ral gradients g0 and initial total cost C0, the minimum total cost C⇤ on the task-preserving mani-
fold is bounded above by

C⇤  C0 � 1

8C0
kg0k2

2; Ö41Ü
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and below by

X

ij

ĉij  C⇤; Ö42Ü

where ĉij à
ÅÅÅÅÅÅÅÅ
c0
ijc0

ji

q
for all i, j, as in (30).

A proof is given in S1 Appendix. Intuitively, the upper bound (41) says that the greater the
initial deviation from the balance condition (in the form of large neural gradients), the greater
the guarantee that synaptic balancing will improve the total cost. The lower bound (42) says
that the more symmetric the initial cost matrix, the less that synaptic balancing is able to
improve the costs.

Recall that in a two-neuron network, the equilibrium cost matrix is symmetric (29). In fact,
we find that symmetry is preferred by synaptic balancing, and the equilibrium cost matrix will
be symmetric in any circumstance in which symmetry is attainable on the task-preserving
manifold. If C0 is the initial matrix of synaptic costs, and C0 is positive diagonally symmetriz-

able, then the minimum is attained at the cost matrix Ĉ à e�H⇤C0eH⇤ , whose i, jth element is
the geometric mean of initial costs (30), and equality is attained in (42).

As an example of symmetric equilibrium beyond the case of N = 2, consider a rank-one net-
work whose initial costs factor as C0 = abT. This network is strongly connected only if every

Fig 5. Dynamics of synaptic balancing in a 12-neuron ring network with single perturbed synapse. (a). Left: A ring network is at
an initial equilibrium C⇤ i with all synaptic costs equal to 1. Nodes indicate neurons; arrows indicate directed synapses. Center:
Synapse A, from neuron j to i, is instantaneously potentiated to a synaptic cost of c0

ij à 3. Right: Synaptic balancing relaxes to a new

equilibrium C⇤f. Synapse colors and thickness indicate synaptic cost. Neuron colors indicate value of h⇤f according to color scheme of
panel (c). (b) Time course of synaptic balancing following perturbation. Incoming synapses to neuron i (A and D) are weakened and
outgoing synapses from neuron i (B and C) are strengthened. Incoming synapses to neuron j (B and E) are strengthened and outgoing
synapses from neuron j (A and F) are weakened. Synapses (H and G) that are distant from the site of perturbation respond more
slowly than proximate synapses though they reach the same equilibrium values. (c) Three eigenmodes v3, v5, v7, with eigenvalues λ3,
λ5, λ7, of the Laplacian matrix L0 corresponding to the conductance matrix at the moment of perturbation. Color indicates mode value
at each neuron. (d) Dynamics of h approximately decompose into the basis of Laplacian eigenmodes. The scalar projection of h onto
each mode v is shown along with the quadratic approximation (39), using L0 as Laplacian. Line color matches eigenvalue color in
panel (c).

https://doi.org/10.1371/journal.pcbi.1010418.g005
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element of a and b is positive, in which case the equilibrium cost matrix is C⇤ = a⇤b⇤T, where

a⇤i à b⇤i à
ÅÅÅÅÅÅÅ
aibi

p
.

It is not just symmetric matrices which are fixed points of synaptic balancing: all normal
matrices—including symmetric matrices as a special case—are equilibria of our rule, i.e., they
satisfy the balance condition (21). This more general result is shown in S1 Appendix.

In purely linear networks, arbitrary similarity transformations of the recurrent matrix—not
just positive diagonal transformations—are task-preserving. The positive diagonal similarity
transformation (4), then, will generically not achieve the optimal sensitivity among task-equiv-
alent linear networks. It would be interesting to explore how optimizing over similarity trans-
forms involving all invertible matrices might perform relative to our purely diagonal similarity
transformation. However, we note that such an optimization will not generically lead to a bio-
logically plausible local learning rule.

Synaptic balancing predicts heterosynaptic plasticity

Previous sections demonstrated that the balance condition (21) is not only functionally useful
for noise robustness but also in a sense generic in trained, regularized recurrent networks.
These findings suggest that synaptic balance may be a widespread phenomenon, with many
networks attained through regularized training naturally exhibiting the equilibrium condition
of synaptic balancing (21). In a biological context, where we hypothesize that synaptic balanc-
ing would continually operate alongside other weight dynamics, we predict that the network is
generically in a state fluctuating around the balance condition. For example, fast-acting, inher-
ently unstable plasticity rules—Hebbian or otherwise—might temporarily bring synapses and
firing rates away from equilibrium, while synaptic balancing slowly tunes the network in
response to those modifications, so that the balance condition is always approximately
maintained.

This suggests that synaptic balancing might most commonly play a role in fine-tuning net-
works that are already in the vicinity of a balanced equilibrium. To explore this scenario in a
specific, experimentally testable regime, we consider the response of synaptic balancing to a
single synaptic potentiation or depression near equilibrium, as depicted for a ring network
case in Fig 5.

Synaptic perturbations induce compensatory heterosynaptic plasticity. Suppose the

that network begins at an initial equilibrium configurationW⇤i satisfying the balance condi-
tion (21), and that a perturbation is applied. Specifically, let the i, jth synapse (i 6à j) be instan-
taneously modified by a small factor η⇡ 0 while every other synapse is unchanged. Call the

perturbed weight configurationW0. Then

J0
kl à J⇤ikl Ö1á ZdikdjlÜ: Ö43Ü

If η> 0, this perturbation corresponds to synaptic potentiation of Jij, and if η< 0, it corre-
sponds to synaptic depression.

By first-order expansion of the power-law synaptic costs (23), we have that the costs adjust
as

c0
kl à c⇤iklÖ1á ZpdikdjlÜ: Ö44Ü

Plugging the perturbed synaptic costs (44) into the expression for the neural gradient (17), and
using that the network was initialized at equilibrium, i.e. that g⇤ik à 0 for all k, we have,

g0
k à Zpc⇤iij Ödik � djkÜ: Ö45Ü
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Finally, by plugging (43) and (45) into (18), the learning rule becomes, to first order,

_J kl à ZpJ⇤ikl c⇤iij Ödil � djl á djk � dikÜ Ö46Ü

This rule predicts that a perturbation from equilibrium at a single synapse from j to i will lead
to multiplicative plasticity at the outgoing and incoming synapses of both neurons. Specifi-
cally, if Jij is potentiated, i.e., if η> 0, then the response of synaptic balancing is potentiation of
the presynaptic neuron’s incoming synapses (Jjl) and of the postsynaptic neurons’ outgoing
synapses (Jki), as well as depression of the presynaptic neuron’s outgoing synapses (Jkj) and the
postsynaptic neuron’s incoming synapses (Jil).

Following the perturbation from the initial equilibrium configurationW⇤i, the system will

relax under synaptic balancing to a final equilibrium configurationW⇤f (Fig 5(a) and 5(b)). To
calculate the change in synaptic strength of neuron ij from its initial equilibrium to its final
equilibrium value, we plug the value of g0 from (45) into (40) to find

h⇤f à Zc⇤iij L
yÖei � ejÜ; Ö47Ü

where ek is the kth standard basis vector of RN , and we adopt the Laplacian matrix correspond-

ing to the perturbed weight configurationW0. Writing the task-preserving transformation

J⇤fij à J0
ije

h⇤fj �h
⇤f
i in terms of (47), then the log change in synaptic weight, normalized by the per-

turbation η, is

1

Z
log

J⇤fij
J0
ij

 !

à �c0
ijÖÖLyÜii á ÖLyÜjj � 2ÖLyÜijÜ

à �c0
ijR0

ij

Ö48Ü

where R0
ij à ÖLyÜii á ÖLyÜjj � 2ÖLyÜij � 0 is the resistance distance (alternately called effective

resistance) between neurons i and j, on the graph whose edges have conductances �C0. Resis-
tance distance generalizes to arbitrary graphs the formulas for resistance in series and parallel,
and Rij is greater where the paths of conductivity between neurons i and j are fewer or weaker
[45]. We may interpret (48) to mean that synaptic balancing counteracts a potentiation or
depression of Jij by a factor equal to the fraction of overall conductance between neurons j and
i that is attributable to the synaptic cost c0

ij, versus to other paths of synaptic costs in the

network.
Slow, compensatory, and network-wide heterosynaptic plasticity. We have described

synaptic balancing near equilibrium as a slow, compensatory mechanism that adjusts a neu-
ron’s input and output synapses in response to a single potentiation or depression, in a manner
closely resembling known phenomena of heterosynaptic plasticity [12, 13]. Here we discuss
experimental evidence in connection with the predictions of synaptic balancing.

Studies inducing Hebbian plasticity at one or more target synapses have repeatedly
observed compensatory heterosynaptic modification at nearby synapses on the same dendrite
[14–16, 46, 47]. For example, two-photon in vivo imaging of synaptic spines revealed that het-
erosynaptic depression of inputs to mouse V1 layer 2/3 pyramidal neurons follows functionally
induced potentiation (LTP) of synapses on the same dendrite—a result exactly predicted by Eq
(46).

Our specific predictions about the magnitude and direction of heterosynaptic effects also
find experimental support. Eq (46) predicts heterosynaptic modifications that are multiplica-
tive, with the change in weight proportional to the original size of the synapse, and
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independent of the synapse’s sign (i.e., inhibitory or excitatory). Patch-clamp recordings of
synapses in cortical slice after induction of spike-timing-dependent Hebbian plasticity in
paired synapses matched the multiplicative principle, with the heterosynaptic effect applying
more strongly to the initially larger unpaired synapses than to the initially smaller ones [16].
The same work found that heterosynaptic effects could be explained solely in terms of the
absolute strengths of the paired and unpaired synapses: both E and I synapses experienced
compensatory heterosynaptic depression when the paired synapse was potentiated, and both E
and I unpaired synapses experienced compensatory potentiation when the paired synapse was
depressed.

Our rule may be distinguished from existing concepts of compensatory heterosynapstic
plasticity [13, 28] through a further prediction, to our knowledge not yet experimentally
explored: in response to the potentiation of a single neuron’s inputs, not only do input synap-
ses experience heterosynaptic depression, but also output synapses experience potentiation.
This concept is demonstrated in Fig 5 for a 12-neuron ring network that experiences an instan-
taneous synaptic perturbation.

Mechanisms supporting the input-synapse half of our conjectured balancing dynamics are
well studied. In addition to the known heterosynaptic effects already mentioned, neurons are
known to multiplicatively and bidirectionally scale all incoming synapses through synaptic
scaling [25, 26, 48, 49]. While the particular homeostatic trigger posited by synaptic scaling—
deviations from a set-point firing rate—differs from the trigger considered in our model, syn-
aptic scaling lends evidence to the hypothesis that a neural mechanism exists to distribute a
negative feedback signal to incoming synapses and induce coordinated compensatory plastic-
ity, such as is predicted by synaptic balancing.

This work introduces a new view on the possible functional roles of compensatory hetero-
synaptic plasticity. Existing literature has largely focused on the important role it may play in
constraining the inherent instability of Hebbian plasticity [12, 13, 28, 50]. In our model, the
role of heterosynaptic plasticity is to maintain a functional state of noise robustness even as
other learning processes homosynaptically modify synapse strength. We believe that these
traits are suitably thought of as a novel model of homeostatic plasticity: one whose aim is to
maintain, through negative feedback, the functionally-relevant balance condition (21).

Methods

Network training details

We constructed a context-dependent integration task with three input variables: the context a
and two signals s(1) and s(2). Each variable was encoded as a pair of indicator-style inputs,

yielding six dimensions of network inputs. Each pair (a1, a2), ÖsÖ1Ü1 ; s
Ö1Ü
2 Ü, and ÖsÖ2Ü1 ; s

Ö2Ü
2 Ü indepen-

dently took the value (0, 1) or (1, 0), plus Gaussian noise, for the duration (T = 50) of each
trial. Three Boolean variables corresponded to eight total trial conditions.

The task target z (also encoded as indicator variables z1, z2) was the integral of the noisy sig-
nal over time, as gated by the context:

ziÖtÜ à

R t
0
sÖ1Üi Öt0Üdt0; a à Ö0; 1Ü;

R t
0
sÖ2Üi Öt0Üdt0; a à Ö1; 0Ü:

8
<

:

for i = 1, 2.
Networks of the form (1), with rectified linear activation functions, were initialized with i.i.

d. weights Jij ⇠ N Ö0;N�1Ü and were trained via gradient descent to minimize an objective
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consisting of the squared-error loss function ∑i,t(yi(t) − zi(t))2, plus a regularization term
l
P

ij J2
ij . Networks in Fig 4, with N = 256 neurons, learned the task after being trained with a

fixed learning rate of 0.003 for 1,600 training iterations.

Average gains fs2
j g

N
jà1 were calculated across conditions and trials on a separate trial dataset

not used in the training or evaluation of the network. The balanced network was taken to be
the final time step of a numerical solution to the ODE (18), using neural gradients (17) and
synaptic costs (13), with the original (trained) network as initial condition. Fig 4b was attained
by running the original and balanced networks with varying levels of additive Gaussian noise
injected into the recurrent neural dynamics.

Discussion

Lastly, we would like to discuss some important observations, consequences, and limitations
of this work. One particularly notable drawback of this work is the lack of any theoretical guar-
antees of improvement in the robustness to noise of the output trajectory {y(t)} to fluctuations
in either the input trajectory or the internal units. Instead, we study the sensitivity of the neural
dynamics to noise in the internal units, a quantity that is generally considered crucial to task
performance but allows us to study noise robustness in a task-agnostic way. This paper has
intentionally focused on the case of recurrent networks, where task performance is dominated
by the compounded dynamics of the recurrent matrix feeding into itself over time. In the limit
of large trial time, we postulate that it is these recurrent dynamics which contribute most
essentially to task performance. In this light, we believe the apparent feedforward structure of
Win! J!Wout distracts from the essential computations at hand. In other words, since
noise in the recurrent dynamics leads to compounding errors over time, we expect that the
sensitivity of the neural dynamics Sx!x (using the notation of section) matters more than Sx!y

in the limit of large trial time.
As we show that regularized networks lead to more balanced solutions, one may ask if a bio-

logical system would be better off implementing a form of regularization rather than our local
synaptic update rule. Synaptic balancing explores a limited manifold with N degrees of free-
dom, where the underlying input-output function is fixed. In contrast, network training may
optimize over the entire input, recurrent, and output matrices. Even highly regularized loss
functions, which effectively constrain the degrees of freedom available to the optimization,
allow the network to optimize over different input-output functions. Our analysis of synaptic
balancing as a dynamical system reveals a connection between learning in noise-robust sys-
tems and heterosynaptic plasticity. This connection is new to our knowledge and merits fur-
ther investigation. Furthermore, we believe our learning rule will be significantly better than
weight decay after a task is learned and no more training data for that task is arriving to further
maintain task performance (i.e. our memory of how to ride a bike when we haven’t ridden a
bike in some time). If we use weight decay in the post learning regime, then weight decay will
clearly destroy task performance (we will forget how to ride bikes during periods when we are
not riding bikes). In contrast, a task-preserving plasticity rule, such as synaptic balancing,
would move trained circuits to solutions that are more robust to internal noise even when the
task is not actively being trained without destroying any learned information (causing us to
forget how to ride a bike).

Lastly, the crucial aspects of synaptic balancing that it provably preserves the exact input-
output relation and to do so explores a limited manifold with N degrees of freedom has conse-
quences for the efficacy of this synaptic update rule for high-dimensional networks. We show
in appendix Fig 1 that the relative reduction in total cost (a proxy for sensitivity on the task-
preserving manifold) decreases with the rank of the initial synaptic weight matrix. It is possible
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that this effect of modest improvements for high-dimensional networks could be mitigated by
relaxing this requirement slightly, and transforming the network in a way that only approxi-
mately preserves the task. Perhaps an approximate rule inspired by this work could result in
larger improvements in robustness as a function of initial rank, while any damage done to the
task performance could be corrected with a small amount of retraining. We believe this would
be an interesting future research direction.

Summary

In this work, we introduced a positive diagonal similarity transformation of the recurrent
weight matrix that preserves task performance in nonlinear recurrent networks with homoge-
neous nonlinearities. We showed that a simple class of cost functions, notably including the
sensitivity of the neural dynamics to noise, are convex in the coordinates of the symmetry.
From this observation, we derived a local learning rule—synaptic balancing—that globally
maximizes network robustness whenever the recurrent network is strongly connected.

We found that the synaptic cost matrix is balanced at equilibrium, and that this balance
condition arises at every local minimum of a very general class of regularized loss functions.
To further understand how synaptic balancing dynamics shape network connectivity in the
vicinity of equilibrium, we approximated the dynamics of our rule through a heat equation
and described the diffusion of synaptic modifications throughout the network according to its
Laplacian eigenmodes. We found that near equilibrium, synaptic balancing is well summarized
as slow, compensatory, and heterosynaptic, and that experimental evidence of heterosynaptic
plasticity is consistent with our predictions.

Overparameterization in neural network models may be linked to the biological processes
which sustain task performance under noisy conditions—a possibility known to experimental
neuroscience for some time [51]. Here, we have provided a concrete, analytically tractable
example of this concept, in which an identifiable symmetry in network parameterization gives
rise to a corresponding local process for maintaining stable task performance. We hope that
this work may provide a fruitful framework for future research relating homeostatic processes
to the mathematical structures underpinning neural network redundancy.

Supporting information

S1 Appendix. Additional proofs. Full proofs of Propositions 1, 3 and 5.
(PDF)
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mer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems.
vol. 32. Curran Associates, Inc.; 2019. p. 15696–15705.

32. Dauphin YN, Pascanu R, Gulcehre C, Cho K, Ganguli S, Bengio Y. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In: Advances in neural information process-
ing systems; 2014. p. 2933–2941.

33. Boyd S, Vandenberghe L. Convex optimization. Cambridge university press; 2004.

34. Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural
systems. Computational Neuroscience Series; 2001.

35. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded
neural framework for the processing of object quality. Trends in cognitive sciences. 2013; 17(1):26–49.
https://doi.org/10.1016/j.tics.2012.10.011 PMID: 23265839

36. Nayebi A, Sagastuy-Brena J, Bear DM, Kar K, Kubilius J, Ganguli S, et al. Goal-driven recurrent neural
network models of the ventral visual stream. bioRxiv. 2021;.

37. Hooi-Tong L. On a class of directed graphs–with an application to traffic-flow problems. Operations
research. 1970; 18(1):87–94. https://doi.org/10.1287/opre.18.1.87

PLOS COMPUTATIONAL BIOLOGY A local learning rule that increases network robustness while preserving task performance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010418 September 19, 2022 26 / 27

https://doi.org/10.1016/j.neuron.2020.03.002
https://doi.org/10.1016/j.neuron.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32213321
https://doi.org/10.1038/nn1352
http://www.ncbi.nlm.nih.gov/pubmed/15558066
https://doi.org/10.1016/j.cell.2016.10.019
https://doi.org/10.1016/j.cell.2016.10.019
http://www.ncbi.nlm.nih.gov/pubmed/27814522
http://www.ncbi.nlm.nih.gov/pubmed/32782422
https://doi.org/10.1016/j.conb.2015.04.003
http://www.ncbi.nlm.nih.gov/pubmed/25932978
https://doi.org/10.1016/j.pneurobio.2013.02.002
https://doi.org/10.1016/j.pneurobio.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23438479
https://doi.org/10.1038/nn.4042
https://doi.org/10.1038/nn.4042
http://www.ncbi.nlm.nih.gov/pubmed/26075643
https://doi.org/10.1038/nature12742
http://www.ncbi.nlm.nih.gov/pubmed/24201281
https://doi.org/10.1016/j.conb.2017.06.003
http://www.ncbi.nlm.nih.gov/pubmed/28668365
https://doi.org/10.1016/j.cell.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/18984155
https://doi.org/10.1098/rstb.2016.0258
http://www.ncbi.nlm.nih.gov/pubmed/28093556
https://doi.org/10.1523/JNEUROSCI.5088-12.2013
https://doi.org/10.1523/JNEUROSCI.5088-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/24089497
https://doi.org/10.1098/rstb.2016.0259
https://doi.org/10.1098/rstb.2016.0259
http://www.ncbi.nlm.nih.gov/pubmed/28093557
https://doi.org/10.1146/annurev.neuro.28.061604.135637
http://www.ncbi.nlm.nih.gov/pubmed/16022600
https://doi.org/10.1103/PhysRevLett.61.259
http://www.ncbi.nlm.nih.gov/pubmed/10039285
https://doi.org/10.1016/j.tics.2012.10.011
http://www.ncbi.nlm.nih.gov/pubmed/23265839
https://doi.org/10.1287/opre.18.1.87
https://doi.org/10.1371/journal.pcbi.1010418


38. Eaves BC, Hoffman AJ, Rothblum UG, Schneider H. Line-sum-symmetric scalings of square nonnega-
tive matrices. In: Mathematical programming essays in honor of George B. Dantzig Part II. Springer;
1985. p. 124–141.

39. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and pre-
diction. Springer Science & Business Media; 2009.

40. Schneider H, Schneider MH. Max-balancing weighted directed graphs and matrix scaling. Mathematics
of operations research. 1991; 16(1):208–222. https://doi.org/10.1287/moor.16.1.208

41. Rothblum UG, Zenios SA. Scalings of matrices satisfying line-product constraints and generalizations.
Linear algebra and its applications. 1992; 175:159–175. https://doi.org/10.1016/0024-3795(92)90307-V

42. Tanaka H, Kunin D, Yamins DL, Ganguli S. Pruning neural networks without any data by iteratively con-
serving synaptic flow. Advances in neural information processing systems. 2020;.

43. Du SS, Hu W, Lee JD. Algorithmic regularization in learning deep homogeneous models: Layers are
automatically balanced. In: Advances in neural information processing systems; 2018. p. 384–395.

44. Chung FR, Graham FC. Spectral graph theory. 92. American Mathematical Soc.; 1997.

45. Klein DJ, RandićM. Resistance distance. Journal of mathematical chemistry. 1993; 12(1):81–95.
https://doi.org/10.1007/BF01164627

46. Dunwiddie T, Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippo-
campus: localization and frequency dependency. The Journal of physiology. 1978; 276(1):353–367.
https://doi.org/10.1113/jphysiol.1978.sp012239 PMID: 650459

47. Royer S, Paré D. Conservation of total synaptic weight through balanced synaptic depression and
potentiation. Nature. 2003; 422(6931):518–522. https://doi.org/10.1038/nature01530 PMID: 12673250

48. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal
amplitude in neocortical neurons. Nature. 1998; 391(6670):892–896. https://doi.org/10.1038/36103
PMID: 9495341

49. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. Firing rate homeostasis in visual cor-
tex of freely behaving rodents. Neuron. 2013; 80(2):335–342. https://doi.org/10.1016/j.neuron.2013.08.
038 PMID: 24139038

50. Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homeostatic plasticity.
Current opinion in neurobiology. 2017; 43:166–176. https://doi.org/10.1016/j.conb.2017.03.015 PMID:
28431369

51. Marder E, Goaillard JM. Variability, compensation and homeostasis in neuron and network function.
Nature Reviews Neuroscience. 2006; 7(7):563–574. https://doi.org/10.1038/nrn1949 PMID: 16791145

PLOS COMPUTATIONAL BIOLOGY A local learning rule that increases network robustness while preserving task performance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010418 September 19, 2022 27 / 27

https://doi.org/10.1287/moor.16.1.208
https://doi.org/10.1016/0024-3795(92)90307-V
https://doi.org/10.1007/BF01164627
https://doi.org/10.1113/jphysiol.1978.sp012239
http://www.ncbi.nlm.nih.gov/pubmed/650459
https://doi.org/10.1038/nature01530
http://www.ncbi.nlm.nih.gov/pubmed/12673250
https://doi.org/10.1038/36103
http://www.ncbi.nlm.nih.gov/pubmed/9495341
https://doi.org/10.1016/j.neuron.2013.08.038
https://doi.org/10.1016/j.neuron.2013.08.038
http://www.ncbi.nlm.nih.gov/pubmed/24139038
https://doi.org/10.1016/j.conb.2017.03.015
http://www.ncbi.nlm.nih.gov/pubmed/28431369
https://doi.org/10.1038/nrn1949
http://www.ncbi.nlm.nih.gov/pubmed/16791145
https://doi.org/10.1371/journal.pcbi.1010418

