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Abstract

Identification of clusters of co-expressed genes in transcriptomic
data is a difficult task. Most algorithms used for this purpose can be
classified into two broad categories: distance-based or model-based ap-
proaches. Distance-based approaches typically utilize a distance func-
tion between pairs of data objects and group similar objects together
into clusters. Model-based approaches are based on using the mixture-
modeling framework. Compared to distance-based approaches, model-
based approaches offer better interpretability because each cluster can
be explicitly characterized in terms of the proposed model. However,
these models present a particular difficulty in identifying a correct
multivariate distribution that a mixture can be based upon. In this
manuscript, we review some of the approaches used to select a distri-
bution for the needed mixture model first. Then, we propose avoiding
this problem altogether by using a nonparametric MSL (Maximum
Smoothed Likelihood) algorithm. This algorithm was proposed earlier
in statistical literature but has not been, to the best of our knowledge,
applied to transcriptomics data. The salient feature of this approach
is that it avoids explicit specification of distributions of individual bi-
ological samples altogether, thus making the task of a practitioner
easier. We perform both a simulation study and an application of
the proposed algorithm to two different real datasets. When used
on a real dataset, the algorithm produces a large number of biologi-
cally meaningful clusters and performs at least as well as several other
mixture-based algorithms commonly used for RNA-seq data cluster-
ing. Our results also show that this algorithm is capable of uncovering
clustering solutions that may go unnoticed by several other model-
based clustering algorithms. Our code is publicly available in Github at
https://github.com/Matematikoi/non_parametric_clustering
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1 Introduction

Increasingly complex studies of transcriptome dynamics can be car-
ried out now using high-throughput sequencing of reverse-transcribed
RNA molecules. Such a procedure is typically called RNA-sequencing
(RNA-seq). Studying RNA-seq data helps researchers gain a deeper
understanding of how changes in transcriptional activity reflect various
cell types and contribute to phenotypic differences. One of the ways to
gain new insights from RNA-seq data is to identify groups (clusters) of
co-expressed genes. This can help researchers target genes involved in
similar biological processes, thus helping in the design of new pharma-
ceutical drugs, or finding genes that are candidates for co-regulation.
Identification of clusters of co-expressed genes also helps characterize
biological functions for orphan genes.

By now, a number of algorithms has been proposed for clustering
RNA-seq data. Note that these data have a number of characteristics
that makes modeling them rather difficult. First of all, they tend
to be highly skewed and have a large dynamic range. Second, they
typically demonstrate positive correlation between the gene length and
read counts. Third, these data are almost always overdispersed (i.e.
their variance is larger than their mean).

Most of the model-based clustering methods used for RNA-seq data
typically view each cluster as represented by a distinct distribution,
while the entire dataset is modeled as a finite mixture of these distri-
butions. One of the advantages of this approach is that it allows a
researcher to assess the appropriate number of clusters, the distance
between clusters, and test hypotheses about these quantities. In the
existing literature, most of these models tend to be parametric; in
other words, it is assumed that distributions of individual biological
samples are modeled as belonging to a particular distribution. The
choice of distribution ranges from Poisson [1] to negative binomial [2]
to complicated distributions built specifically for the given task, such
as multivariate Poisson-lognormal [3, 4]. The choice that has to be
made here is a rather difficult one as there are few ready-made good-
ness of fit tests for most multivariate discrete distributions. Although
parametric approaches enjoy, as a rule, lower computational costs and
have a benefit of rather simple interpretation, it may be beneficial to
look for a possible alternative. Such an alternative can be provided by
the use of nonparametric finite mixtures for biological clustering. In
particular, nonparametric modeling makes very few assumptions about
the nature of the analyzed data.

More specifically, we suggest viewing the distributions used to model
components of a mixtures as “just” probability density functions that
do not belong to any such family. The nonparametric approach to mul-
tivariate mixture modeling and clustering has been studied in statistics



for some time; several methods have been proposed to fit such mod-
els and establish the structure of relevant clusters [5, 6, 7]. However,
their use in bioinformatics in general has been very limited (see e.g.
[8]); to the best of our knowledge, they have not been used to cluster
transcriptomic data at all.

In this work, we suggest the use of an algorithm that can fit a
general multivariate nonparametric mixture model with conditionally
independent marginals in the RNA-seq data context. This method
is a so-called npMSL (the nonparametric Maximum Smoothed Likeli-
hood) method that was originally proposed in [6]. The corresponding
algorithm is an MM (Maximization-Minorization) algorithm that pos-
sesses the monotonicity property, similarly to the EM algorithm, and
is guaranteed to converge.

The remainder of this article is organized as follows. In the Methods
section, we describe the model used in detail, introduce the necessary
notation, and define the algorithm that is to be used to perform the
clustering task. Here, we also describe the model selection procedure
that we use to select an appropriate number of clusters. Next follows
the Simulation section that uses a synthetic dataset to analyze the
proposed method. In the Real Data Analysis section, we describe in
detail a human prostate cancer dataset that we use to illustrate our
approach. The results are illustrated using both a simple visualization
method and the results of a GO functional enrichment analysis. This
study suggests that the proposed algorithm may be able of uncovering
practically important clustering solutions that may go unnoticed by
other mixture model based clustering algorithms. Some concluding re-
marks are provided in the Discussion section. Finally, the performance
of the proposed algorithm is studied using an additional mouse tissue
dataset in the Appendix.

2 Methods

Let Y;; be the random variable corresponding to the digital gene ex-
pression measure for a biological entity ¢ (¢ = 1,...,n) of condition j
(7 =1,...,d). We denote the corresponding observed value y;;. This
setting implies that the data y is the n x d matrix of the digital gene
expression for all observations and variables. Also, y; is the d— dimen-
sional vector of digital gene expression for all variables of observation
i.



2.1 Nonparametric mixture model with condition-
ally independent measurements

Historically, it has been common to use parametric mixture models to
cluster RNA-seq data (see e.g.[2, 1, 9]). To the best of our knowledge,
nonparametric approach to model-based clustering of RNA-seq data
has not been tried before. At the same time, it has been used in
many other statistical application areas e.g. developmental psychology,
hydrology, and others [7, 10]. This approach assumes that the density
functions of clusters do not come from a particular parametric family
(e.g. Gaussian, Poisson etc.). More specifically, the data are assumed
to come from m distinct clusters with the density of the kth cluster,
k=1,...,m being fi. It is further assumed that each one of these
densities fj is equal with probability 1 to the product of its marginal
densities:

d
)= kaj(yz‘j) (1)

with y; = (yi1,- . -, ym),- Taking a fully nonparametric approach with
regard to the fj;, we may therefore express the density function of any
observation Y; according to a nonparametric finite mixture model as

m

d
Y ~ go(yi) = > me [ fri(wis), (2)
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where v = (m1,...,T) must satisfy
m
Zwk =1 and each 7 > 0. (3)
k=1
Here, we assume Y; = (Yiq,... ,Yid)/ and we let @ denote the vec-
tor of parameters to be estimated, including the mixing proportions
T1,..., Ty and the univariate densities f;. For convenience, we will

also use the notation f for a vector of all the marginal densities { fx;},
j=1,...,d,k=1,...,m. Furthermore, throughout this article, k£ and
j always denote the component and coordinate indices, respectively;
thus, 1 < j < dand 1 < k < m. Thus, the overall population of the
sample size n is distributed according to

n o m d
flyi;m,0) :HZW H 1 (Yij)- (4)

i=1k=1

The conditional independence may seem rather limiting at first
sight. However, it may be thought of as a simplification of the com-
monly used repeated measures random effects model. In such a model,



one usually assumes that the multivariate observations on an individual
are independent, conditional on the identity of the individual in ques-
tion. Here, the individual-level effects are replaced by the entity (gene)-
level effects. Note also that the conditional independence assumption
has been used on a number of occasions when modeling RNA-seq data
using parametric mixtures e.g. [1, 2]. On the other hand, no indi-
vidual marginal density f;; is assumed to have come from a family
of densities indexed by a finite-dimensional parameter vector, such as
Gaussian, Student, etc. Such a nonparametric approach represents a
substantial generalization compared to approaches typically used in
bioinformatics literature.

2.2 Inference

We are going to start with some needed notation. First, let Z;, € {0,1}
be a Bernoulli random variable indicating that an individual ¢ comes
from the component k. Because each individual comes from exactly
one component, it implies that ka:1 Z;r. = 1. Therefore, the complete
data would be the set of all (x;,Z;), where 1 < ¢ < n. This suggests
that the entire data can be viewed as consisting of observable and
unobservable parts. Therefore, an EM-type algorithm seems to be an
appropriate option for estimating of parameters of the model (2).

[6] introduced an algorithm that minimizes a smoothed loglikeli-
hood function of the data produced by the model (2). This algorithm
has a provable monotonicity property. We only give a brief description
of this algorithm; for detailed discussion of its monotonicity property
see [6]. For the purpose of this discussion, some additional notation is
needed.

Let K(-) be a kernel density function on the real line. With a
slight abuse of notation, let us define the product kernel function in
the d-dimensional space as K(u) = H?zl K (u;) and its rescaled ver-
sion Kj(u) = ¢ H?:l K(h~™lu;) for a positive parameter h that is
commonly called the bandwidth. Furthermore, we smooth a function f
using the following smoothing operation Sf(y) = [ Kn(y —u)f(u) du.
The same smoothing operation can be applied to an m-dimensional
vector of functions by defining Sf = (Sfy,...,Sfm) . We also define a
nonlinear smoothing operation N as

NF(y) = exp{(Slog /)(y)} = exp / Ky — ) log f(u) du.

To simplify notation, we introduce the finite mixture operator M, f(y) :

S ore 7k fk(y), whence we obtain M,f(y) = ge(y). Also, we denote
MNE(y) = > 0L, mNfi(y). With this notation in mind, we de-
fine the following algorithm. Given initial values (f°, w?), iterate the
following three steps for t =0,1,...:



e E-step: Define, for each i and k,

wt = TNIy) _ mN ()
T MaNT (y) L mN (i)

e M-step, part 1: Set

t+1 Z wt), (6)

fork=1,...,m
e M-step, part 2: For each j and k, let

ft-i-l( ) _ E?:l gl%[ihuf;i_ yij) (7)

—Yi
= e 2 er (")

Let us define the following functional of 8 (and, implicitly, g):

9(y)
10) = [ a(y)1og 20— . 0
This functional represents conceptually a smoothed negative log-likelihood.
Then, [6] shows that the value of this functional decreases at each step

of the introduced algorithm. This algorithm will be referred to as
npMSL (nonparametric Maximum Smoothed Likelihood) algorithm.

The npMSL algorithm can also be generalized to a model where
there are blocks of coordinates that are identically distributed (in ad-
dition to being conditionally independent). If we let b; be the block
index of the jth coordinate, where 1 < b; < L and L is the total
number of such blocks, then the model (2) is modified as

m d
) = 2 me [ L s (wy)-

k=1 j=1
If all the blocks have the size 1, we are back to the original model (2).
The nonlinear smoothing operator N fj, = H 1 N fre, and definitions
of Myf and M, NT remain unchanged. T he only element of the al-
gorithm that actually needs an update is the density estimation step
(7). For the kth component and block [ € {1,..., L}, we now have

d
() = 21 i1 Wiglo, = Kn(u — yij)
kl = d

Zj:l Z?:l wfk’[bj:l
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where I, —; is an indicator function of the event b; = I. The block
version of the npMSL algorithm is the one that we have used in our
study. In other words, when applying the npMSL method, we assume
that replicates of the same condition represent a block of identically
distributed coordinates.

2.3 Bandwidth and kernel function selection issues

Of the two issues - kernel and bandwidth selection - mentioned in the
heading above, the first is a simpler of the two. There seems to be a
general consensus in the literature on the density estimation that the
choice of the kernel function does not matter much, at least in terms of
efficiency of resulting estimators; see e.g. [11] for a general discussion
of this issue.

On the contrary, sensible choice of the bandwidth h is a challenging
problem. The form of the npMSL algorithm introduced here assumes
that h is the same for each component and coordinate, or block. It
is straightforward to introduce component- and block-specific band-
widths hj;. Note also that individual component densities are not
observed in the mixture setting. This fact complicates selection of the
bandwidth in the mixture setting.

From the practical viewpoint, we found out that selecting a con-
stant bandwidth according to the so-called Silverman’s rule of thumb
[12], p. 48, works reasonably well. This method suggests choosing the
bandwidth as

IQR

- —1/5 13 kg
h = 0.9(nd) mln{SD, 1.34} (9)

where SD is the standard deviation, IQ R the interquartile range, and
nd is the size of the entire dataset. In this approach, the SD and IQR
are the standard deviation and interquartile range of the nd univariate
observations that are available from n d-dimensional observations.
Note that this is a rather crude method in the nonparametric mix-
ture setting. It is possible that it may result in under- or oversmooth-
ing. First, pooling all of the data implies that one treats all of the
mixture components as though they are from the same distribution.
This can lead to an inflation of the bandwidth, especially if the mix-
ture components’ centers are well-separated. This is true because, in
such a case, the variability of the pooled dataset will be larger than
that of the individual components. Similarly, if the vector coordinates
are not identically distributed within each component /block, the band-
width could be biased upward for the same reason. Yet operating in
the opposite direction is the fact that the expression nd in the formula
defining the bandwidth above is an overestimate of the “true” sample



size. One can think of the “true” sample size from each component
being approximately equal to Agnd.

The arguments above show first of all that it would be useful to
know something about the mixture structure in order to select a band-
width. This suggests an iterative procedure in which the value of h is
modified, and the algorithm reapplied, after the output from the al-
gorithm is obtained. This, however, is going to result in the violation
of monotonicity property of npMSL algorithm. For a more detailed
discussion of this topic, see [13]. As the above suggests, a careful ex-
ploration of the bandwidth selection question is a research topic unto
itself. Thus, to make our application of npMSL algorithm to the analy-
sis of RNA-seq data simpler, we are only using the constant bandwidth
value selected according to (9).

2.4 Selecting the number of clusters

The npMSL algorithm assumes that the number of clusters is known in
advance. This is almost never true when working with biological data.
Unlike the case of parametric mixture models, there are few if any
practically feasible approaches to determining the number of clusters
in a nonparametric mixture model with independent marginals. The
first suggested partial solution of this problem appeared in [14] but it
can only provide an estimate of a lower bound on the number of com-
ponents, not of the number of components itself. A later idea of [15]
proposes an estimator of the number of components in such a model
that is consistent. However, this approach requires some additional as-
sumptions on the joint distribution of the latent and observed variables
which may not be true in transcriptomics applications. Moreover, this
method requires practitioner to choose several auxiliary parameters
while the theoretical guidance concerning their choice is completely
absent.

Due to the above, we decided to pursue a different approach. Recall
that a very wide variety of different distributions can be modeled using
finite normal distributions [16]. The number of Gaussian components
required to achieve this goal may be, however, quite large. This is
especially likely to be so in the case of bulk RNA-seq data that possess
a large dynamic range and tend to be strongly skewed. Moreover, these
components may not at all have any practical interpretation and may
not represent individual clusters present in the data. It is possible,
however, that any cluster contained in the data may be fitted with a
linear combination (that is, a finite mixture) of some subset of these
Gaussian components as has been discussed in detail in [17]. Thus, this
would be a situation where a cluster and finite mixture component need
not be one and the same object.

The method proposed in [17] is as follows. As a first step, the



total number of Gaussian mixture components K needs to be selected
to fit the given multivariate density. One can also use all possible
covariance matrix structures for these Gaussian components. Next, one
would use a mclustBIC function from the mclust R package [18] to find
an optimal finite Gaussian mixture for the given multivariate dataset
where optimality is measured by BIC (Bayesian Information Criterion).
From this setting, we proceed to establish a hierarchy of clusterings
combining individual Gaussian components according to the entropy
principle. The result is a unique soft clustering for each number of
clusters from 1 to K. The optimal number of clusters is then selected
in the data-driven way by using a piecewise linear regression fit for the
rescaled entropy plot as described in [17]. For the detailed discussion
of MCLUST family of mixture models see e.g. [19]. Since one of
the rationales of using nonparametric mixtures is to avoid classical
Gaussian assumptions on the components, we believe that the resulting
non-Gaussian clustering solution may provide a possible benchmark
for the number of clusters in our nonparametric model. Note that this
method also produces its own clustering solution that we will use in
the following sections of this manuscript for comparison purposes. We
will refer to it as a combination clustering approach.

3 Simulation study

As a first step, we conduct a simulation study to compare our proposed
method with three other model-based methods: a Poisson model-based
method of [1], the transformation-based method of [9] and the combi-
nation method of [17]. To avoid the situation where a synthetic dataset
has been made “to order” based on a particular distribution, we use
a selection of datasets generated using negative binomial distributions
that has been suggested in [2]. We will only give a brief description
of the data generating scheme here as the detailed description can be
found in [2].

First, we start with a brief general description of the model used
to generate synthetic data. We assume that Ng;; is a count of reads
mapped to gene g for replicate j of treatment ¢ for ¢ = 1,...,G,
i=1,....,0 and j = 1,...,n;. Here, G is the total number of genes
considered, I is the number of treatment groups, and n; is the number
of replicates for ith treatment. Thus, the data consist of counts Ny;;.
It is assumed that the mean of Ng;; is Ags; such that

log Agij = 8gij + g + Bgi (10)

where Zle Bgi = 0 while s4;; is an offset term and o is a geomet-
ric mean expression level of gth gene across all treatments. Finally,
Bgi measures the gene expression level for gth gene in treatment ¢



relative to the overall mean expression. To model the overdispersion
phenomenon, we model the variance of counts as

Var(Ngij) = Agij + dgXys; (11)
where ¢4 is a dispersion parameter.

Now we describe exactly how the model (10)-(11) is parameterized.
The synthetic data are based on an experiment with three treatment
groups and three replicates for each treatment group. It is assumed in
advance that there are K = 7 different expression patterns in the data
that correspond to clusters. Centers of these clusters are characterized
by pr = 1,0, where 7, determines the magnitude of gene expression
changes across treatments and 0y is a three-dimensional vector that
describes the pattern of changes for kth cluster, k =1,..., K. Each of
the clusters has a distinct profile characterized by values of coordinates
of ;. For every gth gene in the study, g = 1, ..., G a multivariate index
Zg = {ng :k=1,...,K} is drawn from a multinomial distribution
with equal probabilities. The choice ng = 1 means that gth gene
belongs to kth cluster and Zgok = 1 otherwise. Given Zgok =1, the gene
expression profile is simulated as 8, = pu,+¢, where e, = (€41, 42, 43)’
is an added fluctuation around cluster center puy specifically for gth
gene. Univariate random variables e4; for ¢ = 1,2, 3 are sampled from
nun=X where X ~ N(0,0.2%). The overall mean expression ay is drawn
from 7, Y where Y ~ N(4,1) and 7, controls the magnitude of average
expression level. The dispersion parameter ¢4, has been modeled as 142
where Z ~ I'(0.75,2) while changing values of 7, allows for different
levels of dispersion. Finally, the offset sg;; ~ N(0,1). Given these
parameters, the gene expression count Ng;; is modeled as a negative
binomial random variables with the mean exp (sgi; + g + f4i) and
dispersion ¢g.

The performance of different clustering approaches is assessed by
comparing resulting partitions with the original partitions of genes de-
fined by Z° = {Zg :g=1....,10000}. As usual, a better performance
is indicated by a stronger agreement between the two partitions. We
used two specific statistics to perform these comparisons. The first
one is the pairwise sensitivity which describes the proportion of pairs
of genes that are clustered together among all pairs that had the same
original assumption. The second one is the pairwise specificity which
describes the proportion of pairs of genes that clustered to different
groups among all pairs that had different original assignment. Both
approaches had been used previously in clustering applications [20],
21], [2].

The performance of our method compared to the other three meth-
ods is illustrated under the two different assumptions. The first visu-
alization (la) shows what happens when the true number of clusters
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K = 7 is known. The second one (1b) illustrates the situation where
the number of clusters is assumed to be equal to 10. This is done
since the true number of clusters is unknown in practice and we would
like to illustrate the comparison between our proposed method and
the two other methods under this misspecification as well. Note that
the assumption about the number of clusters is only important for the
npMSL, Poisson and transformation methods but not for the combina-
tion method. This is because the combination method determines the
number of clusters automatically from the data. We let the fluctuation
level 7. vary between 0.2 and 2 in steps of size 0.25 while keeping 7, 7a,
and 74 fixed at 1. For each combination of parameters stated above,
we produce 100 datasets with that combination of parameters. For
each resulting dataset, we compare the clustering result based on the
use of npMSL and compare it with clustering results based on the Pois-
son method, the transformation method, and the combination method.
While using the npMSL method, we used Silverman’s rule of thumb as
suggested in (9) to select the bandwidth and the Gaussian kernel for
smoothing. Each comparison is performed using pairwise sensitivity
and pairwise specificity. For both measures, we show the mean with a
confidence band including 90% of results for all 100 generated datasets.
For Poisson and transformation methods, these confidence bands are
very narrow and cannot be seen well in plots. The plots in Figure
(1a) - (1b) refer to the combination clustering method as the mclust
method.

Under the correct specification of the number of clusters, our method
exhibits sensitivity that is noticeably better than the sensitivity of the
other two methods but inferior to the sensitivity of the combination
method. In the plot describing the specificity, results for the Poisson-
based method and the transformation-based method are very close to
each other and cannot be separated visually. Here, npMSL method
exhibits worse specificity than the other two methods but better then
the specificity of the combination method. Note that the results are
similar under the incorrect assumption on the number of clusters: once
again, npMSL method beats the Poisson and transformation method in
terms of sensitivity but performs worse than the combination method.
The relationship reverses when it comes to specificity: npMSL speci-
ficity is consistently lower than that of either Poisson or transformation
method but better than the specificity of the combination method.

4 Real data analysis
In the following, we illustrate the use of npMSL algorithm using two

real RNA-seq datasets. Note that it is not possible to compare the
co-expression results obtained using various clustering methods to a
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“true” clustering of the data, as, in general, such a classification does
not exist. In order to identify whether the co-expressed genes seem
to be implicated in similar biological processes, we conduct functional
enrichment analysis of gene ontology (GO) terms for the clusters iden-
tified by the suggested methods. The data that we are using are a
mouse RNA-seq dataset consisting of lung, kidney, liver, and small in-
testine tissues [22] and a prostate cancer cell-line RNA-seq dataset [23].
The data are written in the matrix form where each row corresponds to
a gene and each column to an experimental condition. The row names
are the ENSEMBL gene names for each gene (ENSEMBL is a genome
database project that is a scientific project of the European Bioinfor-
matics Institute). Each row constitutes a digital gene expression of a
particular gene across a set of cell lines (together with replicates) in
our case. The goal is to cluster digital gene expression profiles in order
to discover networks of co-expressed genes.

Unless explicitly stated to the contrary, both datasets are normal-
ized first. The normalization procedure that we use is commonly called
FPKM (Fragments Per Kilobase of transcript per Million mapped
reads). Let us denote the result of this procedure Y; for the ith gene.
Then, it is defined as

Y; - N)izsi ¥ 109

where N is the total number of reads sequenced, s; is the length of
gene i, and X; is the number of counts for the ith gene. This type
of normalization is commonly used for visualization and clustering. It
is necessary if we want to be able to perform within sample compar-
isons (“gene A is expressed higher or lower than gene B”) because it
is, effectively, a procedure that normalizes for gene length. Such a
normalization is in order because, the longer the gene’s length is, the
more fragments (“reads”) we sequence from that gene.

The data sets have also been filtered using a cutoff of 1.5 CPM
(counts per million), in which gene read counts are divided by the sum
of read counts for a given sample and multiplied by a million. The
CPM of the ith gene, denoted as C'PM; is defined as

X,
CPM; = =X x10°
N *

where N is the total number of reads sequenced for a given sample and
X; is the number of counts for the ith gene.

In what follows we give the results of the analysis based on the
human prostate cancer cell line dataset. The analysis based on the
second dataset is given in the Appendix.
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4.1 Human prostate cancer cell line dataset

We begin with the description of the dataset. We have four cell lines
used that consist of samples that are sensitive to chemotherapeutic
agents (C4-2 cells and LNCaP cells) as well as those that are resistant
(MRA49F and C4-2B cells). More specifically, a line of C4-2 cells is
a subline of LNCaP cells (described below). Second, C4-2B cells are
enzalutamide-resistant cells derived from C4-2 cells. Third, LNCaP
(Lymph Node Carcinoma of the Prostate) cell line is the line that has
been established from a metastatic lesion of human prostatic adenocar-
cinoma. Finally, the MR49F cell line consists of enzalutamide-resistant
cells derived from LNCaP cells. The resistant cell lines are of interest
because these cells do not respond well to treatment. Also, each of
the cell lines has three replicates. Filtering at the level of 1.5 CPM as
described above results in a file containing sequencing data for 16, 247
genes.

It has been also noted earlier that the RNA-seq data often have a
very large dynamic range and tend to be heavily skewed. This often
represents a significant problem when modeling these data. Therefore,
before modeling the data, we applied a logarithmic transform to it as
a first step.

Note that it is unlikely that replicates in a cell line dataset are in-
dependent. If so, this dataset may violate a conditional independence
model assumption that underlies the npMSL method. Due to this, an
attempt to run our method on such a dataset may be viewed as a test
of the algorithm’s robustness to the violation of the conditional inde-
pendence assumption. Indeed, we discovered that the algorithm tends
not to converge if the dataset is used “asis” even when multiple choices
of starting values are considered. Therefore, we decided to treat zeros
as missing observations and use a simple imputation procedure, which
turned out to be useful. More specifically, every zero was substituted
with a number generated from a uniform distribution on an interval
[0, A] where A was the smallest count observed in the entire dataset.
We would like to note here that the practice of treating zeros as missing
observations, although not very common in the analysis of RNA-seq
data, is quite widespread when analyzing the scRNA-seq (Single Cell
RNA-seq) data [24].

Using the method of selecting cluster numbers that we discussed
earlier in section 2.4, we started with choosing the range from 1 to
K = 30. The application of mclustBIC procedure suggests that, in
a typical run, one needs about 29 — 30 clusters with VVI or VVE
covariance matrix structure. Here, VVI implies diagonal covariance
matrices with different volumes and shapes for different components,
with components parallel to coordinate axes. The VVE shape implies
ellipsoidal covariance matrices with different volumes and shapes for
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different components as well as the same orientation. The detailed
discussion about all possible configurations of covariance matrices can
be found in e.g. [19]. We found out that, in a typical run of the
procedure, one ends up with 16-18 clusters as a possible suggestion. In
what follows, we use 17 as a suggested cluster number.

For comparison purposes, we compare clustering results obtained
using the npMSL method with results obtained using the three alter-
native methods: the Poisson method of [1] , the transformation-based
method of [9] and the combination method of [17]. We believe that
the Poisson method is an appropriate comparison benchmark since it,
alongside our method, assumes conditional independence of marginals.
Our method simply takes this assumption one step further and does
not impose any specific distributional assumption on the marginal dis-
tributions. Note that the Poisson distribution only models the integer-
valued data. Thus, when applying the Poisson method, we have used
the raw data counts instead of the FPKM normalized dataset. We used
the so-called slope heuristics method to select the optimal number of
clusters in this case; our approach resulted in the choice of 18 clusters
when running the slope heuristics approach over a range from 1 to 35
clusters.

Another method that we used for comparison purposes has been
the transformation method of [9]. This method is based on the use
of data transformations in conjunction with Gaussian mixture models.
It also uses a penalized model selection criterion to select the number
of clusters present in the data. Compared to the Poisson method, it
allows for modeling of per-cluster correlation among biological samples.
To analyze our dataset, we used this method with an arcsin transform.
To select the number of clusters for this method we used the ICL
(Integrated Complete Likelihood) criterion method [25]. Using this
criterion over a possible range of 1 to 40 clusters, we found that 35
seemed to be the optimal number in this case.

The final comparison method that we use is a combination method
of [17]. We believe that this method is a reasonable comparison bench-
mark for our method since it tries to account for clear non-normality
of clusters commonly observed in transcriptomics data. The difference
is that our method tries to fit clusters based completely on the data
(“letting the data speak for themselves” in the common nonparamet-
ric parlance) while the method of [17] attempts to achieve this goal by
modeling non-Gaussian clusters as mixtures of Gaussians. Note that
this method also allows for per-cluster correlation among genes. Over
a range of 1 to 30 possible clusters, this method suggests anywhere
between 16 to 18 cluster solutions in a typical run of the procedure.
We decided to use a 17 cluster solution in this case.

As is well known, visualizing results of a co-expression analysis for
RNA-seq data can be rather complicated. This is due to the extremely
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large dynamic range of digital gene expression and the fact that the
more highly expressed genes tend to exhibit much higher variability
than weakly expressed genes. The most appropriate manner in which
the results of a co-expression analysis for RNA-seq data should be
displayed is still an open research question. In this manuscript, we
follow the visualization approach that is conceptually similar to what
has been suggested first in [1]. In this approach, bar widths correspond
to the estimated proportions for the corresponding cluster ;. The
proportion of reads that is attributed to each cell line in each cluster
is represented by the corresponding colored segment within each bar.
More specifically, let y;;4 be the read of the ith gene for the gth replicate
of the jth condition where j=1,...,J,i=1,...,I;,q=1,...,3 and
I, is the number of genes in the kth cluster. Then, the height of the
vertical bin that corresponds to the jth condition in kth cluster is

ik 3

. 2;1;1 Zq:l Yijq

- K ' 3 :
Zk:l 221;1 q=1 Yijq

The results are given in the Figure (2).

In order to determine the biological relevance of our clustering re-
sults, we performed gene ontology (GO) enrichment analyses on genes
in clusters. This analysis identifies enrichment of biological processes
amongst genes in clusters, thus investigating whether genes that our
methods identify as co-expressed encode proteins that perform similar
biological functions. In all enrichment analyses, all genes used in the
differential expression analysis serve as the background gene universe,
i.e. all genes remaining after filtering those with lower than 1.5 CPM
expression observed. Overall, the npMSL method identifies more bi-
ologically relevant clusters than any of the other three methods. In
the case of a 17 cluster npMSL solution, 14 (82.4% of clusters) show
enrichment of biological process GO terms. For example, cluster 1 is
associated with terms related to translation initiation (GO:0006413)
such as cotranslational protein targeting to membrane (GO:0006613)
and SRP-dependent cotranslational protein targeting to membrane
(GO:0006614). Cluster 6 is associated with non-coding RNA process-
ing (G0O:0034470). Cluster 10 is heavily enriched for mRNA catabolic
processes(G0:0006402) and cluster 14 is involved in tRNA processing
(G0:0008033) including tRNA modifications (GO:0006400) and tRNA
metabolic processes (GO:0006399). In comparison, the arcSin transfor-
mation method resulted in 12 out of 35 clusters (34.2% of the clusters)
showing a significant enrichment of GO terms and the clusters derived
from the Poisson method results in only 5 out of 18 clusters (27.8%
of clusters) with enrichment of GO terms. The performance of mclust
on the prostate cancer dataset is also quite poor. Only 9 out of 17
clusters (52.9%) that mclust identifies in the prostate cancer dataset

Ajk
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(a) Cluster behavior for the prostate can-
cer cell line dataset anSL

(b) Cluster behavior for the prostate can-
cer cell line dataset'Poisson method

(¢) Cluster behavior for the prostate
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Method

(d) Cluster behavior for the prostate can-
cer cell line dataset:Mclust Method

Figure 2: Four cluster visualization plots for the prostate cancer cell line
dataset
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show significant enrichment of biological processes and those that do
show an enrichment of much more general biological process terms.

Finally, we note that the analysis was run on a computer with 500
GB RAM with the AMD EPYC 7502 32-Core Processor CPU. The
first (initialization) stage was based on the small EM algorithm of [26]
and took 10 minutes with 1000 starting points. Next, we found out
that it takes around 70 seconds per iteration of the npMSL method to
obtain a clustering solution, with the total number of iterations being
500.

5 Discussion

In this manuscript, we proposed a possible method of discovering gene
co-expression networks in RNA-seq data. The suggested method en-
tails the use of a rigorous framework for parameter estimation, based
on MM (Maximization-Minorization) algorithms. The model we use
is distinct from most models routinely used in the clustering of digital
gene expression profiles since it is a nonparametric one. More specif-
ically, we assume that, conditional on knowing the cluster an obser-
vations has been generated from, biological samples (corresponding to
marginal distributions) are independent. Moreover, each marginal dis-
tribution is not assumed to belong to any predetermined distributional
family.

Conceptually, our proposal is closest to that of [1] that also uses
model with conditionally independent biological samples but imposes
a Poisson restriction on marginal distributions. The Poisson assump-
tion may not be very realistic in practice since it does not account for
the overdispersion routinely observed in the RNA-seq data. The at-
tempts to handle the overdispersion problem from the parametric view-
point typically concentrate on proposing specific distribution to handle
it such as e.g. negative binomial in [2] or the multivariate Poisson-
lognormal in [4]. By comparison, our method is a more general one
since it imposes no specific assumptions on the marginal distributions
of individual biological samples. Moreover, fitting per-gene dispersion
parameters using the experimental data with multiple conditions is
typically rather difficult due to a small number of replicates available
in such datasets. Our proposed method avoids this problem altogether
by avoiding the parametric framework for marginal distributions. The
use of nonparametric multivariate clustering in bioinformatics has so
far been extremely limited [8]; to the best of our knowledge, these mod-
els have not been used for the discovery of gene co-expression networks
before.

We also demonstrate the behavior of our method on two real datasets:
a mouse tissue dataset and a human prostate cancer cell line dataset.
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mclust npMSL | Poisson | Transformation
mclust 1 0.044007 | 0.023163 0.063926
npMSL 0.044007 1 0.089651 0.123015
Poisson 0.023163 | 0.089651 1 0.224809
Transformation | 0.063926 | 0.123015 | 0.224809 1

Table 1: ARI values for the mouse tissue dataset

mclust npMSL | Poisson | Transformation
mclust 1 0.084860 | 0.021193 0.026292
npMSL 0.084860 1 0.013246 0.026827
Poisson 0.021193 | 0.013246 1 0.110776
Transformation | 0.026292 | 0.026827 | 0.110776 1

Table 2: ARI values for the human prostate cancer cell line dataset

The results are compared to those obtained by applying the Poisson
method of [1], the transformation method of [9] and the combination
method of [17] to those same datasets. In both cases, the npMSL
method seems to identify a number of biologically meaningful clusters
that is at least comparable to the number produced by other methods;
in the human prostate cancer cell-line dataset case, it outperforms both
alternative methods. For both datasets, the performance of the meth-
ods has also been compared using the adjusted Rand index (ARI) [27].
The results are summarized in Tables (1) and (2). The most salient
feature of this summaries is that the clustering produced by the non-
parametric npMSL method is very different from those produced by
all three alternative methods. The difference is particularly striking
in the case of the human prostate cancer cell line dataset where the
largest ARI coefficient does not exceed 0.08. At the same time, how-
ever, the npMSL method performs much better than the other three
methods in terms of GO enrichment analysis when it comes to this
dataset. This suggests that this method uncovered practically impor-
tant clusters that couldn’t have been uncovered by other methods. In
other words, these seem to represent different solutions of a problem.
We would like also to note here that in the only case we are aware of
where a researcher tried to applied a nonparametric method to clus-
tering of the RNA-seq data the conclusion was a rather similar one -
the clustering produced has been quite different from those produced
by parametric methods [28].

The suggested model does not take into account possible depen-
dence between biological samples because it enforces the conditional
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independence between them. The natural next step in this line of
research is to try to lift this assumption while preserving the general
nonparametric nature of marginal distributions in our proposed model.
One way this can be done is by considering explicit dependence struc-
tures between biological samples modeled using the so-called copula
functions [28]. A useful direction of future research will be the intro-
duction of specific multivariate copulas such as e.g. Gaussian copula
to model the dependence between biological samples in RNA-seq data.
Note that this approach allows a researcher to model any type of depen-
dence and not just correlation which is often claimed to be the benefit
of using certain so-called hidden layer approaches [3]. Our research in
this direction is ongoing.
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Appendix

7.1 Mouse tissue dataset

The other dataset that we analyze is the one where the bulk RNA-
seq was performed to profile the gene expression profiles in lung, kid-
ney, liver, and small intestine tissues from six- to ten-week-old male
C57BL/6J mice. As gene expression data is highly tissue-specific, data
such as these can allow for the identification of tissue-specific expres-
sion modules. T'wo biological replicates are present for each tissue type
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and separate mice were used for each replicate. Observations in these
datasets are commonly referred to as “counts” where a count is the
number of reads that align to a particular feature(gene). Filtering at
the level of 1.5 CPM as described above resulted in a file containing
16,512 genes. These data are available through the Gene Expression
Omnibus (GEO) repository through accession number GSE124419. As
before, we applied a logarithmic transform to the data as a first step.

Using again the method of selecting cluster numbers that is sug-
gested in [17], we started with choosing the range from 1 to K = 30.
As is the case with the human prostate cancer dataset, in a typical run,
one needs about 29 — 30 clusters with VVI or VVE covariance matrix
structure. By deploying the automated strategy of the cluster number
selection we found out that, in a typical run of the procedure, one ends
up with 16-18 clusters as a possible suggestion. In what follows, we
use 17 as a suggested cluster number.

For comparison purposes, we again compare clustering results ob-
tained using the npMSL method with the results obtained using the
Poisson method of [1], the transformation-based method of [9] and the
combination method of [17]. We used the slope heuristics method to
select the optimal number of clusters for the Poisson method. This
approach resulted in the choice of 19 clusters when running the slope
heuristics approach over a range from 1 to 35 clusters.

The transformation method has been used with the logit transform
and the number of clusters has been selected using the ICL (Integrated
Complete Likelihood) method [25]. Using this criterion over a possible
range of 1 to 40 clusters, we found that 25 seemed to be the optimal
number in this case.

The final comparison method that we use is a combination method
of [17]. As mentioned earlier while discussing the choice of the number
of clusters for the npMSL method, this approach suggests the choice
of 17 clusters. Visualizations of resulting cluster solutions for all four
methods are given in Figures (3a)-(3b)-(3c)-(3d).

The visualization of results is done in exactly the same manner as
for the human prostate cancer cell line dataset and is given in Figure
(3a)-(3b)-(3c)-(3d).

Note that this approach to visualization allows us to assess the
relative size of clusters with different level of expression in different
tissues. For example, when one looks at the visualization produced
by the npMSL method, one can see that clusters that contain mostly
genes that are strongly expressed in small intestine and lungs tend to
be larger than those that contain mostly genes that are expressed in
liver or kidneys.

In order to determine the biological relevance of our clustering re-
sults, we performed gene ontology (GO) enrichment analyses on genes
in clusters. This analysis identifies enrichment of biological processes
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(d) Cluster behavior for the mouse tissue
dataset: mclust method

Figure 3: Three cluster visualization plots for the mouse tissue dataset
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amongst genes in clusters, thus investigating whether genes that our
methods identify as co-expressed encode proteins that perform simi-
lar biological functions. In all enrichment analyses, all genes used in
the differential expression analysis serve as the background gene uni-
verse, i.e. all genes remaining after filtering those with lower than 1.5
CPM expression observed. All the clustering methods used identify
a somewhat larger number of biologically relevant clusters when ap-
plied to this cell line dataset compared to the human prostate cancer
dataset. Out of the 17 clusters identified by the npMSL method, 16
of them (94.1%) show significant enrichment of biological processes.
The clusters identified are associated with highly specific biological
processes. For example, cluster 2 involves genes that function in wa-
ter homeostasis (G0:0030104). Cluster 12 is clearly associated with
processes involved in the adaptive immune response (G0:0002250),
and also includes specific terms such as regulation of T cell activa-
tion (G0O:0042110) and B cell activation (GO:0042113). Cluster 16 on
the other hand involves GO terms related to the innate immune re-
sponse, such as the innate immune response in mucosa (G0O:0002227)
and the defense response to Gram-positive bacterium (G0O:0050830).
For this dataset, the Poisson method produces 19 clusters that are all
associated with statistically enriched GO terms while the logit trans-
formation method results in the lowest performance, with 22 out of 25
clusters (88%) enriched for biological processes. Finally, we also look
at the GO enrichment analysis of the 17 cluster solution obtained using
the combination method of [17]. This method with 17 clusters chosen
produces a clustering solution that is quite different from other clus-
ters: it suggests one very large clusters with the rest of clusters being
quite small. Nevertheless, all 17 clusters thus produced are enriched for
biological processes, most of which are quite specific, suggesting that
clusters indeed contain genes that perform distinct biological functions.

For this dataset, the first (initialization) stage was again based on
the small EM algorithm and took 15 minutes with 1000 starting points.
Next, we found out that it takes around 330 seconds per iteration of the
npMSL method to obtain a clustering solution, with the total number
of iterations being 500.
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