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Regularity of minimal surfaces near
quadratic cones

By Nick Edelen and Luca Spolaor

Abstract

Hardt-Simon proved that every area-minimizing hypercone C having

only an isolated singularity fits into a foliation of Rn+1 by smooth, area-

minimizing hypersurfaces asymptotic to C. In this paper we prove that if a

stationary integral n-varifold M in the unit ball B1 ⊂ Rn+1 lies sufficiently

close to a minimizing quadratic cone (for example, the Simons’ cone C3,3),

then sptM ∩B1/2 is a C1,α perturbation of either the cone itself, or some

leaf of its associated foliation. In particular, we show that singularities

modeled on these cones determine the local structure not only of M , but of

any nearby minimal surface. Our result also implies the Bernstein-type re-

sult of Simon-Solomon, which characterizes area-minimizing hypersurfaces

asymptotic to a quadratic cone as either the cone itself, or some leaf of the

foliation.
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1. Introduction

In this paper we are interested in the following question:

Question 1.1. Suppose Mi is a sequence of minimal n-dimensional sur-

faces, converging to some M̃ with multiplicity one in the unit ball in Rn+1.

How does the singular structure of M̃ determine the singular or regular struc-

ture of the Mi in B1/2?

This question and its variants underlie a significant amount of research

in the field of minimal surfaces, and other variational problems. Question 1.1

arises when attempting to study the singularity structure or compactness prop-

erties of some class of surfaces. For example, often the Mi form some kind

of “blow-up” sequence for a singularity, and the resulting M̃ is a singularity

model. In the very important special case when Mi are dilations around a

fixed point of a given minimal M , i.e., when

Mi = λi(M − x), λi →∞,

then M̃ is dilation invariant, and any such M̃ arising in this fashion is called

a tangent cone of M at x.

Question 1.1 is entirely answered when M̃ is smooth; in this case Allard’s

theorem [1] implies that for i large, the Mi∩B1/2 must be smooth also (in fact

must be C1,α perturbations of M̃).

For singular M̃ , Question 1.1 has been answered under some structural

assumptions. When M̃ has at most a “strongly isolated” singularity,1 and each

Mi has at least one singularity of the same type (i.e., with the same or greater

density), then profound work of [2], [11] shows that the Mi ∩ B1/2 must be

C1 perturbations of M̃ for large i. This situation naturally occurs when M̃ is

a tangent cone of some minimal surface, and Mi are dilations around a fixed

singular point.

In certain particular cases one can use the topology of M̃ to deduce the

singular structure on Mi. For example, when M̃ is a union of three half-

planes, then [12] showed that Mi∩B1/2 are a C1,α perturbation of M̃ . Similar

results hold if M̃ has tetrahedral singularities and the Mi have an associated

“orientation structure” ([6]), or when M̃ is a union of two planes and the Mi

are 2-valued graphs ([3]).

1Strongly isolated here means that some tangent cone of M at the singularity is a

multiplicity-one cone with an isolated singularity at 0.
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Notice that in these theorems, either by assumption or by the nature of

M̃ , all the Mi have the same regular or singular structure as M̃ .

Question 1.1 becomes more subtle when one does not assume anything

about the singular nature of the Mi. In this case it is possible for a sequence

of smooth minimal (even area-minimizing!) surfaces to limit to a singular one.

For example, Bombieri, De Giorgi, and Giusti [4] have constructed a foliation

by smooth minimal surfaces of the complement of the Simons’s cone

C3,3 = {(x, y) ∈ R8 : |x| = |y|}.

More precisely, the authors in [4] showed that there exist two smooth, area-

minimizing hypersurfaces S±, contained respectively in the connected com-

ponents E± = {(x, y) ∈ R8 : ±|x| > |y|} of R8 \ C3,3, which are smoothly

asymptotic to C3,3 at infinity, and whose dilations ∪λ>0λS± foliate E±. Simi-

lar S± satisfying the same properties were constructed by Hardt and Simon [9]

for any area-minimizing cone Cn ⊂ Rn+1 having an isolated singularity (see

Section 2.3), and often the associated family of dilations ∪λλS± is called the

Hardt-Simon foliation of C.

In the above circumstances the Mi need not have the same singularity

structure as M̃ . More generally, it is possible that singularities of one type

can limit to a singularity of a different type. Or, even worse, it is possible

that multiple singularities of various types or dimensions could collapse into

an isolated singularity of some other type.

In this paper we answer Question 1.1 in the case when M̃ has singularities

modeled on area-minimizing quadratic cones Cp,q, i.e., so-called minimizing

(p, q)-singularities (see Definition 1.1.1). One of the main results of this paper is

that the foliation collapsing into Cp,q is the “worst” behavior one will ever see.

In particular, in any minimal surface which is sufficiently nearby a minimizing

(p, q)-singularity, there is at most one singularity, and necessarily of the same

type.

We contrast our result with recent constructions of [14], [17], which give

examples of multiple singularities of different types/dimensions collapsing into

cylindrical-type singularities like C3,3 × R (provided one allows the ambient

metric to change smoothly also). One can also of course build many toy exam-

ples out of geodesic nets. It would be very interesting to understand whether

this behavior can occur for smooth, multiplicity-one or area-minimizing hyper-

cones of dimension > 1. (See [7] for related work when n = 7.)

It is important to note that, due to the presence of multiplicity, many

examples of aforementioned pathology can also occur for area-minimizing cur-

rents in higher codimension, or stationary varifolds in arbitrary codimension.

For example, the sequence of area-minimizing currents

Γk := {(z, w) ∈ C2 : w3 = (z − zk)2 z2} ⊂ C2,
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for a sequence (zk)k converging to 0, is such that each Γk has two singular

points of branching type at 0 and zk, while the limit

Γ := {(z, w) ∈ C2 : w3 = z4} ⊂ C2

is singular only at 0. The tangent cones at all these singularities are planes

with multiplicity > 1. Similar examples can be constructed for codimension

one stationary varifolds using Weierstrass representation.

Definition 1.1.1. Following [15], define the Cp,q quadratic minimal cone

as the hypersurface

Cp,q = {(x, y) ∈ Rp+1 × Rq+1 : q|x|2 = p|y|2} ⊂ Rn+1,

where p, q > 0 are integers and p+ q = n− 1. Some people refer to the cones

Cp,q as generalized Simons’ cones.

Given a surface or varifold M , we say that x∈sptM is a (p, q)-singularity if

some tangent cone of M at x is (up to rotation) equal to Cp,q with multiplicity-

one. We say x is a minimizing (p, q)-singularity if the associated cone Cp,q is

area-minimizing.

Some remarks are in order.

Remark 1.2. An easy computation shows that each Cp,q is minimal. How-

ever, there are no non-flat area-minimizing hypercones in Rn+1 for n < 7, and

of course by dimension-reducing there are no singular area-minimizing hyper-

surfaces in these dimensions either. When n = 7, the cones C3,3 and C2,4

are area-minimizing, and in fact up to rigid motions these are the only known

area-minimizing hypercones in R8. When n > 7, then every Cp,q cone is area-

minimizing. See, e.g., [10] and the references therein. Thus our results are

motivated by, and most relevant to, the regularity theory for area-minimizing

hypersurfaces.

Remark 1.3. By work of [2], if x is a (p, q)-singularity of an M which is

stationary (or has Lp mean curvature, for p > n), then nearby x, sptM is a

C1,α perturbation of Cp,q.

As a corollary to our main Theorem 3.1, we obtain the following answer

to Question 1.1.

Theorem 1.4. Let M be a multiplicity-one, stationary integral n-varifold

in B1, which is regular away from 0 and has a minimizing (p, q)-singularity at 0.

Let Mi be a sequence of stationary, integral varifold in B1, so that Mi → M

as varifolds. Then for each i sufficiently large, MixB1/2 has either an isolated

singularity of the same type (p, q), or is entirely regular.

Furthermore, if we let M± be the smooth manifolds obtained by replacing a

small neighborhood of 0 in M0 := sptM (in which M0 is a C1,α perturbation of
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Cp,q) with a suitable dilation of S±, then, for i sufficiently large, sptMi ∩B1/2

is a C1,α deformation of one of M0, M+, M−.

We remark that, only from the information that Mi → M , one cannot

distinguish a priori whether each Mi is regular or singular. See Section 3

for a more detailed statement of our main regularity theorem, and for other

corollaries.

The main novelty of Theorem 3.1 is that, unlike previous regularity re-

sults for minimal surfaces near isolated singularities (e.g., [2], [11]), we do not

prescribe a priori the density of the Mi at any point; that is, we do not impose

them to be singular at the origin, nor at any other point. As a consequence,

even if a minimal surface is close at scale 1 to a cone with an isolated singu-

larity, the surface itself may be entirely smooth.

We can give a further characterization of the Mi when they are singular; in

this case the Mi must be one of the examples of minimal surfaces as constructed

in [5]. Finally, we can use our regularity theorem to reprove the rigidity result

of [15], which characterize complete minimal surfaces asymptotic to quadratic

cones.

It would be interesting to know whether our results carry over to other

(area-minimizing) singularity models. Unfortunately, the only other known

smooth, area-minimizing hypercones are of so-called isoparametric type, and

for these other examples, our techniques do not seem to work. See Section 4

of [15] for further discussions.

2. Notation and preliminaries

We work in Rn+1. We denote byHn the n-dimensional Hausdorff measure.

Given a subset A ⊂ Rn+1, we let dA(x) = infa∈A |x − a| be the Euclidean

distance to A, and given r > 0, we write

Br(A) := {x ∈ Rn+1 : dA(x) < r}

for the (open) r-tubular neighborhood of A. Similarly, Br(x) is the open r-ball

centered at x ∈ R. If x = 0, we may sometimes just write Br. We write Br(A)

for the closed tubular neighborhood or r-ball. We set ωn = Hn(Rn ∩B1) to be

the volume of the n-dimensional unit ball. We define the translation/dilation

map ηx,r(z) := (z − x)/r.

We may occasionally use the notation of Cheeger: we denote by Ψ(ε1, . . . ,

εk|c1, . . . , cN ) a non-negative function, which for any fixed c1, . . . , cN , satisfies

lim
ε1,...,εk→0

Ψ(ε1, . . . , εk|cn, . . . , cN ) = 0.

We use the convention that ci always denotes constants ≥ 1, while Greek letters

(such as εi, δi,Λi) denote constants ≤ 1.
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We shall always treat graphing functions as scalars. Given oriented hy-

persurfaces M,N , and an open subset U ⊂ N , if we write

M = graphN (u),

we mean that M = {x+u(x)νN (x) : x ∈ U ⊂ N}, where νN is the unit normal

of N .

Given an (oriented) hypersurface N , a function u : N → Rn, and a β ∈
(0, 1), we define the Holder semi-norm

[u]β,r = sup
x 6=y∈N∩Br\Br/2

|u(x)− u(y)|
|x− y|

and, given an integer k ≥ 0, the Holder norm

|u|k,β,r = [Dku]β,r +
k∑
i=0

r1−k sup
x∈N∩Br\Br/2

|∇iu|.

Typically when we use these norms, N will be conical or nearly conical.

2.1. Varifolds and first variation. We are concerned with integral n-vari-

folds that are stationary, or have Lp mean curvature. Recall that an n-varifold

M is integral if it has the following structure: there is a countably n-rectifiable

set M̃ , and there is an HnxM̃ -integrable, N-valued function θ, so that

M(φ(x, V )) =

∫
M̃

φ(x, TxM̃)θ(x) dHn(x) ∀φ ∈ C0
c (Rn+1 ×Gr(n, n+ 1)).

Here Gr(n, n + 1) is the Grassmannian bundle, i.e., the space of unoriented

n-planes in Rn+1. If N is an n-manifold, then N induces a natural n-varifold

in the obvious fashion, which we write as as [N ]. Given a proper, C1 map η,

we write η]M for the pushforward of M .

We write µM for the mass measure of M . The first variation of M in an

open subset U ⊂ Rn+1 is the linear functional

δM(X) =

∫
divM (X)dµM , X ∈ C1

c (U,Rn+1),

where divM (X) is defined for µM -a.e. x as follows: if ei is an orthonormal basis

for the tangent space TxM , then

divM (X) =
∑
i

〈ei, DeiX〉.

An integral n-varifold M (or surface) is stationary in U⊂Rn+1 if δM(X)=

0 for all X compactly supported in U . We say that M has generalized mean

curvature HM and zero generalized boundary in U if

δM(X) = −
∫
HM ·XdµM ∀X ∈ C1

c (U,Rn+1),

where HM is some µM -integrable vector field.
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Let M have generalized mean curvature HM in B1, and zero generalized

boundary, and suppose ||HM ||Lp(B1;µM ) ≤ Λ < ∞ for some p > n. Then M

admits the area monotonicity (see [1])

(1)

Å
µM (Bs(x))

sn

ã1/p

≤ Λ

p− n
(r1−n/p − s1−n/p) +

Å
µM (Br(x))

rn

ã1/p

for any x ∈ B1, and 0 < s < r < 1 − |x|. Of course if M is stationary, then

r−nµM (Br(x)) is increasing for all r < 1− |x|.
Further, Allard’s theorem [1] implies that, as in the previous paragraph,

M admits the following regularity: there is a δ(n, p) > 0 so that if for some

n-plane V we have∫
B1

d2
V dµM + ||HM ||2Lp(B1;µM ) ≤ E ≤ δ

2,

µM (B1) ≤ 3

2
ωn and µM (B1/10) ≥ 1

2
ωn(1/10)n,

then there is a C1,1−n/p function u : V ∩B1/2 → V ⊥, so that

sptM ∩B1/2 = graph(u) ∩B1/2, |u|C1,1−n/p ≤ c(n)E1/2.

2.2. Jacobi fields. Given a smooth, oriented minimal hypersurface Nn, let

us write MN for the mean curvature operator on graphs over N , i.e., so that

given u : U ⊂ N → R, and x ∈ U , thenMN (u)(x) denotes the mean curvature

of graphU (u) at the point x + u(x)νN (x). Equivalently, −MN is the Euler-

Lagrange operator for the area functional on graphs over N . The operator

MN is a second-order, quasi-linear elliptic operator

MN (u) = aN (x, u,∇u)ij∇2
iju+ bN (x, u,∇u),

whose coefficients aN (x, z, p), bN (x, z, p) depend smoothly on x, z, p and the

submanifold N .

Write LN for the linearization of MN at u = 0. We call LN the Jacobi

operator, and we call any solution w to LN (w) = 0 a Jacobi field. The operator

LN is a linear, elliptic operator:

LN = ∆N + |AN |2.

Here AN is the second fundamental form of N ⊂ Rn+1, and ∆N is the con-

nection Laplacian. If φt is a family of compactly supported diffeomorphisms

of Rn+1, and ∂tφt|t=0,x∈N = fνN on N , then

d2

dt2

∣∣∣
t=0

vol(φt(N)) = −
∫
N

fLNf dHn.

The hypersurface N is called stable if LN ≤ 0 when restricted to any compact

subset of N .
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When N = C \ {0} is a cone, with smooth, compact cross section Σ =

C ∩ Sn, then we can further decompose

LN = ∂2
r + (n− 1)r−1∂r + r−2LΣ, LΣ = ∆Σ + |AΣ|2,

where r = |x| is the radial distance, ω = x/|x|, and ∆Σ, AΣ are the connection

Laplacian, second fundamental form (resp.) of Σ ⊂ Sn.

Since Σ is compact, there is L2(Σ)-orthonormal basis of eigenfunctions φi
of −LΣ, with corresponding eigenvalues µ1 < µ2 ≤ · · · → ∞:

LΣφi + µiφi = 0,

∫
Σ

φiφjdHn−1 = δij .

By the Rayleigh quotient, µ1 ≤ −(n− 1). On the other hand, when C is

stable, we have µ1 ≥ −
(
n−2

2

)2
, and we have strict inequality when C is strictly

stable (see [5]). If we define

γ±i = −n− 2

2
±

 Å
n− 2

2

ã2

+ µi,

then for any solution w to LC(w) = 0, with C being strictly stable, we can

expand in L2
loc(C):

w(rω) =
∞∑
i=1

(a+
i r

γ+i + a−i r
γ−i )φi(ω),

where for each r the sum is L2(Σ) orthogonal.

2.3. Hardt-Simon foliation. Taking C, Σ as above, then C divides Rn+1

into two connected, open, disjoint regions E+ and E−. We can choose an

oriented unit normal νC for C, so that νC points into E+.

When C is area-minimizing, in the sense of currents, then Hardt and

Simon [9] have shown there are smooth, area-minimizing hypersurfaces S±⊂E±
which are asymptotic to C. Moreover, the S± are radial graphs, and hence

the collection of dilations λS± (λ>0) form a foliation of E± by smooth, area-

minimizing hypersurfaces, sometimes called the Hardt-Simon foliation. Let

us orient S± with unit normals νS± compatible with C, so that as |x| → ∞,

νS± → νC.

When C is strictly minimizing, then S± decays to C like the larger homo-

geneity rγ
+
1 . In particular, after a normalization as necessary, there is a radius

R0 ≥ 1 and α0 > 0 so that

(2) S± \BR0 = graphC(v±),

where v± : C \BR0/2 → R is a smooth function satisfying

(3) v±(rω) = ±rγ
+
1 f±(rω),

2∑
k=0

rk|∇k(f± − φ1)| = O(r−α0).

For shorthand, we will set γ = γ+
1 . See [9] for details about strictly minimizing.
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Given λ ∈ R, define

(4) Sλ =


λS+ λ > 0,

C λ = 0,

|λ|S− λ < 0,

vλ(rω) =


λv+(r/λ) λ > 0,

0 λ = 0,

|λ|v−(r/|λ|) λ < 0

so that

(5) Sλ \BλR0 = graphC(vλ).

Let Sλ have the same orientation as Ssign(λ). Observe that

(6) vλ(r) = sign(λ)|λ|1−γrγfsign(λ)(r/|λ|).

For shorthand, we will often write λα := sign(λ)|λ|α.

The following straightforward lemma will be useful.

Lemma 2.4. Provided R0(C) is sufficiently large, and |µ|, |λ| ≤ 1, r ≥
max{|µ|, |λ|}R0, we have

(7)
1

4
|µ1−γ − λ1−γ |2r2γ ≤ |vµ(r)− vλ(r)|2 ≤ 4|µ1−γ − λ1−γ |2r2γ .

Proof. If λ 6= 0, |λ| ≤ 1, and r ≥ |λ|R, then we have

d

dλ
vλ(r) = (1− γ)|λ|−γrγfsign(λ)(r/|λ|)− |λ|−1−γr1+γf ′sign(λ)(r/|λ|)

= (1− γ)|λ|−γrγ(1 +O(|λ|α0R−α0)).

If µλ ≥ 0, then the required result follows from the above and the fundamental

theorem of calculus.

If µλ < 0, |λ| ≥ |µ| > 0, then we have (recalling our shorthand µβ =

sign(µ)|µ|β)

|vµ(r)− vλ(r)|2 = (|µ|1−γ + |λ|1−γ)2r2γ(1 +O(|λ|α0R−α0))

= |µ1−γ − λ1−γ |2r2γ(1 +O(|λ|α0R−α0)). �

2.5. Minimizing quadratic cones. Take C = Cp,q to be an area-minimizing

quadratic cone. There are two key properties of C which we shall need. These

are proven in [15, Prop. 2.7].

(1) C is strictly-minimizing, so that the foliation decays like rγ
+
1 . In fact, since

C is rotationally symmetric, we have that

(8) v±(rω) = ±rγ
+
1 f±(r),

2∑
k=0

rk|∇k(f± − 1)| = O(r−α0).

Recall that for shorthand we write γ = γ+
1 .
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(2) C is strongly integrable, in the following sense: any solution of LC(w) = 0

can be written

w(x = rω) =
∑
i≥1

a−i r
γ−i φi(ω) + erγ

+
1 + (b+Ax) · νC(ω) +

∑
i≥4

a+
i r

γ+i φi(ω),

where e ∈ R, b ∈ Rn+1, and A is a skew-symmetric (n + 1) × (n + 1)

matrix. In other words, γ+
2 = 0, γ+

3 = 1, and the eigenfunctions φ2, φ3 are

generated by translations/rotations.

Every result in our paper holds for any area-minimizing hypercone satis-

fying the above two conditions. Rotational symmetry as in (8) simplifies our

computations slightly, but has no bearing on our proof. We write all our results

for quadratic cones because these are the only area-minimizing cones which we

can verify as “strongly integrable.”

3. Main theorems

For the duration of this paper, we fix C = Cp,q to be an area-minimizing

quadratic cone, Sλ the Hardt-Simon foliation, and we use the notation associ-

ated to C, Sλ as introduced in Section 2.3.

Our main theorem is the following, from which Theorem 1.4 follows di-

rectly.

Theorem 3.1. There are positive constants δ1(C), Λ1(C), c1(C), β(C)

so that the following holds. Take |λ| ≤ Λ1, and let M be a stationary integral

varifold in B1, satisfying ∫
B1

d2
Sλ
dµM ≤ E ≤ δ2

1 ,

µM (B1) ≤ 3

2
µC(B1), and µM (B1/10) ≥ 1

2
µC(B1/10).

(9)

Then there are a ∈ Rn+1, q ∈ SO(n+ 1), λ′ ∈ R, with

(10) |a|+ |q − Id|+
∣∣sign(λ′)|λ′|1−γ − sign(λ)|λ|1−γ

∣∣ ≤ c1E
1/2,

and there is a C1,β function u : (a+ q(Sλ′)) ∩B1/2 → R, so that

sptM ∩B1/2 = grapha+q(Sλ′ )
(u) ∩B1/2,

and u satisfies the estimates

(11) r−1|u|C0(Br(a)) + |∇u|C0(Br(a)) + rβ[∇u]β,Br(a) ≤ c1r
βE1/2 ∀r ≤ 1

2
.

In particular, MxB1/2 is either smooth, or has an isolated singularity

modeled on C.
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Remark 3.2. The precise form of the lower bound on µM (B1/10) in (9) is

of no consequence, nor is the precise ball radius 1/10. One could easily assume

(for example) µM (B1/10) ≥ v > 0 and obtain the same conclusions, except

that the constants δ1 and Λ1 would depend on the choice of v also. The upper

bound on µM (B1) is more important; we require it to be strictly less than

2µC(B1).

A further characterization is possible in the case when M as in Theo-

rem 3.1 is singular. Caffarelli, Hardt, and Simon [5] have constructed a large

class of examples of minimal surfaces in B1, which are singular perturbations of

a given minimal cone (see Section 9.1). In fact, in a sufficiently small neighbor-

hood, these are the only minimal surfaces which are graphical over C. It would

be interesting to know whether examples like those in [5] exist as perturbations

over a foliate Sλ.

Proposition 3.3. Let M , λ′ be as in Theorem 3.1. If λ′ = 0, and E ≤
δ2(C) is sufficiently small, then sptM∩B1/4 coincides with one of the graphical

solutions as constructed in [5].

The most interesting consequence of Theorem 3.1 is that singularities mod-

eled on (minimizing) Simons’s cones propagate out their structure not only to

a neighborhood of the original surface, but also of nearby surfaces. If these

nearby surfaces are not minimal, but instead of Lp mean curvature, then essen-

tially the same structure holds, but with slightly less regularity. In this sense

the minimizing Simons’s singularities can be thought of as “very strongly iso-

lated.”

Corollary 3.4. Given any p > n, there are positive constants δ3(C),

ε3(p,C), Λ3(C), c3(C) so that the following holds. Let M be an integral

n-varifold in B1 with generalized mean curvature HM , zero generalized bound-

ary, satisfying (9) with δ2
3 in place of δ2

1 , andÇ∫
B1

|HM |pdµM

å1/p

≤ ε3.

Then there are a ∈ B1/4, λ′ ∈ R so that

• either λ′ = 0, in which case sptM ∩ B1/2 is a C1,β perturbation of C, and

MxB1/2 is regular away from an isolated singularity modeled on C;

• or λ′ 6= 0, in which case MxB1/2 is entirely regular, and for every 0 < r ≤ 1
2 ,

we can find a qr ∈ SO(n + 1), so that sptM ∩ Br(a) \ Br/100(a) is a C1,β

graph over a+ qr(Sλ′).

Example 3.5. This corollary rules out many possible examples of singu-

larity formation. For example, in an 8-dimensional manifold this rules out the



1024 NICK EDELEN and LUCA SPOLAOR

possibility that S3×S3 singularities are collapsing into an S2×S4 singularity,

or even worse, that multiple types of isolated singularities are collapsing into

and single S3 × S3 or S2 × S4 singularity.

Remark 3.6. We cannot obtain directly that the qr have a limit as r → 0.

If λ′ = 0, then we can use [2] to deduce a posteriori that M ∩ B1/2 is a C1,α

perturbation of C. If λ′ 6= 0, then we do not need to worry about the limiting

behavior of the qr to deduce that M ∩ B1/2 is some C1,α perturbation of Sλ′ .

However, because we have no control over qr as r → 0, we cannot obtain any

effective estimates on the C1,α map in question. It would be interesting to

resolve this.

Another direct consequence of our regularity theorem is the following rigid-

ity theorem for area-minimizing surfaces asymptotic to Simons’s cones, which

was originally proven by Simon-Solomon:

Corollary 3.7 ([15]). Let M be an area-minimizing hypersurface in

Rn+1, and suppose there is a sequence of radii Ri →∞ so that

R−1
i M → C

in the flat distance. Then up to translation, rotation, and dilation, M = C, S1,

or S−1.

Remark 3.8. We remark that our result is much stronger than the char-

acterization of [15]. As illustrated by the examples of [5], being close to the

Simons’s cone at scale 1 is much weaker than being close on all of Rn+1; in

particular, the latter precludes any modes growing faster than 1-homogeneous.

One can think of [15] as a Bernstein-type theorem, while our theorem can be

thought of as an Allard-type regularity theorem.

4. Outline of proof

Our strategy is to prove the following excess-decay type estimate (Propo-

sition 6.1): provided both λ and
∫
B1
d2
Sλ
dµM are sufficiently small (plus some

restrictions on the mass of M), then we have a decay estimate of the following

form:

(12) θ−n−2

∫
Bθ(a′)

d2
a′+q′(Sλ′ )

dµM ≤
1

2

∫
B1

d2
Sλ
dµM .

That is, provided Sλ is sufficiently close to the cone C, and we are sufficiently

L2 close to Sλ, then after a translation/rotation/dilation as necessary (de-

pending on M), our L2 distance to the foliation improves at a smaller scale θ

(depending only on the cone C).

We can continue iterating (12) while Sλ is scale-invariantly close to C,

and we obtain a decay of the form: there is an a′′ ∈ Rn+1, q′′ ∈ SO(n+ 1), and
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λ′′ ∈ R so that

(13) r−n−2

∫
Br(a′′)

d2
a′′+q′′(Sλ′′ )

dµM ≤ Cr2β ∀c|λ′′| ≤ r ≤ 1.

By two straightforward contradiction arguments (one for M close to Sλ ∩B1 \
B1/100 with λ small, and one for M close to S±1∩Bc), we can use [1] with (13)

to deduce that sptM ∩B1/2 is graphical over a′′ + q′′(Sλ′′).

We would like to prove (12) by contradiction,with an argument that loosely

resembles the original “excess decay” proof due to De Giorgi and, as imple-

mented in a fashion closer to our style, [2], [12], [13]. Briefly, we would like to

suppose (12) fails for some sequence Mi and λi → 0, Ei =
∫
B1
d2
Sλi
dµMi → 0.

Then over larger and larger annuli B1/2 \ Bτi (τi → 0) we can write sptM =

graphSλi
(ui). If we rescale vi = E

−1/2
i ui, then the vi have uniformly bounded

||vi||L2(B1), and after passing to a subsequence, we get convergence

vi → w with LC(w) = 0 .

The idea now, in vague terms, is to use good decay properties for solutions

to the linearized problem LC(w) = 0, to prove good decay for solutions to

the non-linear problem MC(u) = 0; that is, we would like to arrange so that

w = O(r1+ε) and then use this to deduce L2 decay of the ui as in (12).

To ensure this argument works we need to

(i) ensure the decaying norm for the non-linear problem is comparable to the

linear one (also known as non-concentration of L2 norm at singularities)

— that is for any ρ small,

E−1
i

∫
Bρ

d2
Sλi
dµMi → ||w||2L2(C∩Bρ);

(ii) prove good decay for the linear problem (a.k.a. killing bad homogeneities

through integrability) — that is w = O(r1+ε).

The latter issue is where the concept of integrability arises. A minimal

cone C is called integrable if every 1-homogeneous Jacobi field arises from

a 1-parameter family of minimal cones. The idea of [1], [2] is that, under

suitable density assumptions in the argument above, one can typically show

that w = O(r), but one needs it to grow like r1+ε. For a cone with an isolated

singularity, the homogeneities are discrete, and so provided C is integrable,

one can rewrite the minimal surface as a graph over a slightly adjusted cone,

chosen to cancel the r term in the Fourier expansion of w.

The main novelty in our approach is in treating the foliation Sλ as a di-

rection of integrability. In other words, we are relaxing the original notion of

integrability, as a movement through cones, to allow one to push off the cone

into families of entirely smooth hypersurfaces and, in particular, we are allow-

ing for a notion of integrability in which the singularity behavior changes. In
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order to handle this we require new decay and non-concentration estimates for

minimal surfaces near an arbitrary foliate Sλ without any structural assump-

tion on M . This is the content of Theorem 5.1.

More precisely, the key observation is that the foliation is generated by a

positive Jacobi field of the form

v(r) = rγ , 0 > γ > −n− 2

2
,

and this Jacobi field has itself good L2 decay:

(14)

∫
Bρ∩C

v2dHn ≤ cρ2

∫
B1∩C

v2dHn.

To deal with point (i), we use the maximum principle to “trap” M between

two foliates, and thereby show thatM cannot diverge from a given Sλ any faster

than the foliation itself. This allows us to prove that
∫
Bρ
d2
Sλ
dµM has a decay

similar to (14), and hence no L2 norm can accumulate near the non-graphical

region. (Away from 0 we of course have strong L2 convergence since the vi
converge smoothly there.)

To deal with point (ii), we can prove that the vi, and hence the resulting

Jacobi field w, grow at least as fast as v(r) = rγ as r increases. Using the

strongly integrable nature of C, we can then deduce that w looks like

w(x = rω) = erγ + (b+Ax) · νC +O(r1+ε)

for f ∈ R, b ∈ Rn+1, A skew-symmetric. In other words, w has the growth we

require except for terms generated by moving into the foliation, translation,

and rotation. By replacing the Sλi with a new sequence of foliates ai + qi(Sλ′i)

and repeating the above contradiction argument with this new sequence, we

can arrange so that these three lower homogeneities disappear, and thereby

deduce w = O(r1+ε).

5. Non-concentration of L2-excess

Our main theorem of this section is the following. It is spiritually similar

to Theorem 2.1 in [13], except we are proving non-concentration with respect to

an arbitrary foliate Sλ instead of just C, and we additionally obtain a pointwise

decay estimate on the graphing function. Recall the shorthand γ = γ+
1 .

Theorem 5.1. For every 0 < τ < 1
4 , 0 < β, there are positive Λ4(C, τ),

ε4(C, β, τ), c4(C) so that the following holds : if |λ| ≤ Λ4 and M is a stationary

integral n-varifold in B1 satisfying

(15)

∫
B1

d2
Sλ
dµM ≤ ε24, µM (B1) ≤ 7

4
µC(B1), µM (B1/10) ≥ 1

2
µC(B1/10),

then there is a smooth function u : Sλ ∩B1/2 \Bτ/2 → R so that

(16) sptM ∩B1/2 \Bτ = graphSλ(u) ∩B1/2 \Bτ ,
3∑

k=0

rk−1|∇ku| ≤ β.
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For every τ ≤ ρ ≤ 1
4 , we have

(17)

∫
Bρ\Bτ

u2dµC +

∫
Bρ

d2
Sλ
dµM ≤ c4ρ

2

∫
B1

d2
Sλ
dµM .

Moreover, u has the following L∞ decay bound :

(18) sup
Sλ∩∂Br

u2 ≤ c4r
2γ

∫
B1

d2
Sλ

∀r ∈ (τ, 1/4).

Proof. Let R0(C) be as in Lemma 2.4, and recall the definitions of vλ, R0

in (2)–(5) from Section 2.3. Taking Λ4(C, τ) sufficiently small, we can assume

Λ4R0 < τ/100 and

(19)
2∑

k=0

rk−1|∇kvλ| ≤ β ∀r ∈ (τ/100, 1).

We claim that, provided ε4(C,Λ4, τ, β) is sufficiently small, we have

(20) sptM ∩B3/4 \Bτ/10 = graphSλ(u),
3∑

k=0

rk−1|∇ku| ≤ β

for u : Sλ ∩B3/4 \Bτ/20 → R smooth.

Indeed, otherwise there is a sequence of stationary integral n-varifolds Mi,

and numbers εi → 0, λi ∈ [−Λ4,Λ4], for which (15) holds but (20) fails. We can

without loss assume λi → λ for some |λ| ≤ Λ4. By compactness of stationary

varifolds with bounded mass, we can pass to a subsequence (also denoted i)

and get varifold convergence Mi → M for some stationary integral n-varifold

M in B1. The resulting M satisfies

(21)

∫
B1

d2
Sλ
dµM = 0, 0 < µM (B1) ≤ 7

4
µC(B1).

The constancy theorem implies that M = k[Sλ] for some natural number k.

The lower bound of (21) implies k ≥ 1. Ensuring Λ4(C) is sufficiently small,

the upper bound in (21) implies k ≤ 1. So in fact Mi → [Sλ], and hence by

Allard’s theorem convergence is smooth on compact subsets of B1 \ {0}. This

proves our claim.

It will be more convenient in this proof to work with graphs over C. By

a similar contradiction argument as above, we have (again taking ε4(C, τ, β),

Λ4(C, τ, β) sufficiently small)

(22) sptM ∩B3/4 \Bτ/10 = graphC(h),
3∑

k=0

rk−1|∇kh| ≤ β

for h : C ∩B3/4 \Bτ/20 → R smooth.
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Ensuring β(C) is sufficiently small, u is effectively equivalent to h − vλ.

Precisely, if rω ∈ C ∩B1/2 \Bτ/4 and x = rω + vλ(r)νC(rω) ∈ Sλ, then

(23) |u(x)νSλ(x)− (h(rω)− vλ(r))νC(rω)| ≤ c(C)β|u(x)|.

To see this, observe that if ζ is the nearest-point projection to C, then provided

β(C) is sufficiently small, the map F (rω) = ζ(rω+ vλ(r)νC(rω) +u(x)vSλ(x))

as a map C→ C is smooth, well-defined, and satisfies

(24) |F (rω)− rω| ≤ c(C)β|u(x)| ≤ cβ2r.

Hence we can write

(25) rω + vλ(r)νC(rω) + u(x)νSλ(x) = F (rω) + h(F (rω))νC(F (rω)).

Estimate (23) then follows from (25), (24), and (22).

Choosing a possibly smaller β(C), (23) implies

(26) sup
Sλ∩∂Br

|u| ≤ 2 sup
C∩B2r\Br/2

|h− vλ| ∀r ∈ (τ/2, 1/4)

and ∫
Br\Bτ/2

u2dµSλ ≤ 2

∫
B2r\Bτ/4

|h− vλ|2dµC,(27) ∫
Br\Bτ/2

|h− vλ|2dµC ≤ 2

∫
B2r\Bτ/4

d2
Sλ
dµM ,(28) ∫

Br\Bτ/2
d2
Sλ
dµM ≤ 2

∫
B2r\Bτ/4

u2dµSλ .(29)

So we can prove the required estimates for h− vλ instead of u.

For ρ ∈ (τ/10, 3/4), define

λ+
ρ = inf{µ : vµ(ρ) ≥ h(ρω) ∀ω ∈ Σ},
λ−ρ = sup{µ : vµ(ρ) ≤ h(ρω) ∀ω ∈ Σ}.

Of course all sups/infs above are actually maxs/mins, so that

(30) vλ+ρ (ρ) = max
ω

h(ρω), vλ−ρ (ρ) = min
ω
h(ρω).

From (6) and (22), we have |λ±ρ | = Ψ(β|C, τ), and so ensuring β(C, τ)

is sufficiently small, λ±ρ R0 < τ/10 for all ρ ∈ (τ/10, 3/4). By the maximum

principle ([16]), we have that sptM∩Bρ is trapped between Sλ−ρ and Sλ+ρ . This

implies that λ+
ρ is increasing in ρ, while λ−ρ is decreasing in ρ, and

(31) vλ−ρ (r) ≤ h(rω) ≤ vλ+ρ (r) ∀r ∈ (τ/2, ρ).

We note, however, that λ need not be trapped between λ±ρ .

Both h and vλ solve the minimal surface equation over C, with uniform

bounds (19) and (22), and so provided β(τ,C) is sufficiently small the difference
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h− vλ solves a linear, second order, uniformly elliptic operator on C ∩B1/2 \
Bτ/10 (see, e.g., [8, §§10.1, 8.6]). Standard iteration techniques at scale r imply

that

sup
ω
|h(rω)− vλ(r)|2 ≤ c(C)r−n

∫
B2r\Br/2

|h− vλ|2dµC ∀r ∈ (τ/5, 1/4).

(32)

Since λ+
ρ is increasing in ρ, λ−ρ is decreasing in ρ, and λ−ρ ≤ λ+

ρ , we get

that

(33) max{|(λ+
ρ )1−γ − λ1−γ |2, |(λ−ρ )1−γ − λ1−γ |2} is increasing in ρ.

For any τ/5 < r < ρ < 1/4, we have by (31), Lemma 2.4, (33), (30) and

(32) (in order of usage):

|h(rω)− vλ(r)|2 ≤ 2 max{|vλ+ρ (r)− vλ(r)|2, |vλ−ρ (r)− vλ(r)|2}

≤ cr2γ max{|(λ+
ρ )1−γ − λ1−γ |2, |(λ−ρ )1−γ − λ1−γ |2}

≤ cr2γ max{|(λ+
1/4)1−γ − λ1−γ |2, |(λ−1/4)1−γ − λ1−γ |2}

≤ cr2γ max{|vλ+
1/4

(1/4)− vλ(1/4)|2, |vλ−
1/4

(1/4)− vλ(1/4)|2}

= cr2γ max{| sup
ω
h(ω/4)− vλ(1/4)|2, | inf

ω
h(ω/4)− vλ(1/4)|2}

= cr2γ sup
ω
|h(ω/4)− vλ(1/4)|2

≤ cr2γ

∫
B1/2\B1/8

|h− vλ|2dµC,

(34)

where c = c(C). Combined with (26) and (28), we obtain estimate (18).

Integrating (34) in r ∈ (τ/2, ρ) and ω ∈ Σ, in combination with (28), gives∫
Bρ\Bτ/2

|h− vλ|2dµC ≤
c(C)

n+ 2γ
ρn+2γ

∫
B1

d2
Sλ
dµM

≤ c(C)ρ2

∫
B1

d2
Sλ
dµM ,

since 2γ + n ≥ −(n− 2) + n ≥ 2. Using the bounds (20), (22) and (26), as in

the proof of (27) and (29), we have

(35)

∫
Bρ\Bτ

d2
Sλ
dµM ≤ cρ2

∫
B1

d2
Sλ
dµM .

We focus now on proving the final part of (17), i.e., bounding the excess

in the ball Bτ . Since S is graphical over C near ∂BR0 , we have

dH(Sλ ∩Bmax{|λ|,|µ|}R0
, Sµ ∩Bmax{|λ|,|µ|}R0

) ≤ c(C)|λ− µ|.
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Let λτ = max{|λ+
τ |, |λ−τ |}. Then, recalling how sptM ∩Bτ is trapped between

Sλ+τ and Sλ−τ , and ensuring Λ4(τ,C) is sufficiently small, we get∫
BλτR0

d2
Sλ
dµM

≤ max{dH(Sλ+τ ∩BλτR0 , Sλ ∩BλτR0)2,

dH(Sλ−τ ∩BλτR0 , Sλ ∩BλτR0)2}µM (BλτR0)

≤ c(C) max{|λ+
τ − λ|2, |λ−τ − λ|2}λnτRn0

≤ c(C)τn+2γ max{|(λ+
τ )1−γ − λ1−γ |2, |(λ−τ )1−γ − λ1−γ |2}.

(36)

The last line follows because there is a constant c(n) so that whenever |µ|,
|λ| ≤ 1, we have (recall γ < 0)

|µ1−γ − λ1−γ |2 ≥ 1

c(n)
max{|µ|, |λ|}−2γ |µ− λ|2.

Choose I so that 2IλτR0 ≤ τ < 2I+1λτR0. We compute

∫
Bτ\BλτR0

d2
Sλ
dµM

≤
I∑
i=0

∫
B2i+1λτR0

\B2iλτR0

d2
Sλ
dµM

≤
I∑
i=0

sup
2iλτR0≤r≤2i+1λτR0

max{|vλ+τ (r)− vλ(r)|2,

|vλ−τ (r)− vλ(r)|2}µM (B2i+1λτR0
)

≤
I∑
i=0

c(C)(2iλτR0)2γ max{|(λ+
τ )1−γ − λ1−γ |2, |(λ−τ )1−γ − λ1−γ |2}(2iλτR0)n

≤ c(C)τn+2γ max{|(λ+
τ )1−γ − λ1−γ |2, |(λ−τ )1−γ − λ1−γ |2},

(37)

where in the third inequality we used (7) in Lemma 2.4, while the last inequality

follows since n+ 2γ ≥ 2.

Combining (36) and (37) with the computations of (34), we obtain∫
Bτ

d2
Sλ
dµM ≤ c(C)τn+2γ max{|(λ+

τ )1−γ − λ1−γ |2, |(λ−τ )1−γ − λ1−γ |2}

≤ c(C)τ2

∫
B1

d2
Sλ
dµM .

Together with (35), this gives the required estimate (17). �

The following corollary will also be useful.
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Corollary 5.2. There is a positive Λ5(C) so that if |λ|, |λ′| ≤ Λ5, and

M satisfies the hypotheses of Theorem 5.1, then∫
B1

d2
Sλ′
dµM ≤ c(C)

∫
B1

d2
Sλ
dµM + c(C)|λ1−γ − (λ′)1−γ |2.

Proof. The computations of Theorem 5.1 show that, provided |λ|, |λ′| ≤
Λ4(C), we have∫

B1/4

d2
Sλ′
dµM ≤ c(C) max{|(λ+

1/4)1−γ − (λ′)1−γ |2, |(λ−1/4)1−γ − (λ′)1−γ |2}

≤ c(C)

∫
B1

d2
Sλ
dµM + c(C)|λ1−γ − (λ′)1−γ |2.

It remains only to control the annular region B1 \B1/4.

Choose ε(Λ4,C) sufficiently small so that if |λ| ≤ Λ4, then the nearest

point projection from Bε(C) ∩ B1 \ B1/4 onto Sλ is smooth and lies in Sλ ∩
B2 \B1/8. Ensure that Λ5(ε,Λ4,C) ≤ Λ4 is sufficiently small, so that |λ| ≤ Λ5

implies Sλ ∩B2 \B1/8 ⊂ Bε/2(C).

Given x ∈ B1 \B1/4, first assume that x 6∈ Bε(C). In this case

ε/2 ≤ d(x, Sλ) ≤ 2,

and hence we have∫
(B1\B1/4)\Bε(C)

d2
Sλ′
dµM ≤ 4µM (B1) ≤ (16/ε2)c(C)

∫
(B1\B1/4)\Bε(C)

d2
Sλ
dµM .

Now assume x ∈ Bε(C). Let x′ be the nearest point projection to C, and

let u(x′) = x− x′. Since |vλ|+ |∇vλ| ≤ c(C)|Λ5|−γ on B2 \B1/8, we have

d(x, Sλ) = (1 + ψ(Λ5|C))|x− vλ(x′)|.

In particular, ensuring that Λ5(C) is sufficiently small and using Lemma 2.4,

we get

d(x, Sλ′) ≤ 2|x− vλ′(x′)|
≤ 2|x− vλ(x)|+ 2|vλ′(x)− vλ(x)|

≤ 4d(x, Sλ) + c(C)|(λ′)1−γ − λ1−γ |.

Integrating dµM over B1 ∩Bε(C) \B1/4 gives the required result. �

6. L2-excess decay

In this section we work towards the following decay estimate.

Proposition 6.1 (Decay Lemma). Given any 0 < θ ≤ 1
8 , there are posi-

tive constants δ6(C, θ), Λ6(C, θ), c6(C), and α(C), so that the following holds :
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If |λ| ≤ Λ6, and M is a stationary integral n-varifold in B1, satisfying

(38)∫
B1

d2
Sλ
dµM ≤ E ≤ δ2

6 , µM (B1) ≤ 7

4
µC(B1), µM (B1/10) ≥ 1

2
µC(B1/10),

then we can find a ∈ Rn+1, q ∈ SO(n+ 1), and λ′ ∈ R with

(39) |a|+ |q − Id|+ |(λ′)1−γ − λ1−γ | ≤ c6E
1/2

so that

(40) θ−n−2

∫
Bθ(a)

d2
a+q(Sλ′ )

dµM ≤ c6θ
2αE, µM (Bθ/10(a)) ≥ 3

4
µC(Bθ/10).

We first define a general notion of blow-up sequence and show how any

blow-up sequence gives rise to a Jacobi field, i.e., a solution of the linearized

problem LC(w) = 0.

Definition 6.1.1. Consider the sequences ai∈Rn+1, λi∈R, qi∈SO(n+ 1),

Mi stationary integral n-varifolds in B1 ⊂ Rn+1, and Ei ∈ R. We say the

collection (Mi, Ei, ai, λi, qi) is a blow-up sequence if

(1) ai → 0, λi → 0, qi → Id, Ei → 0;

(2) µMi(B1) ≤ 7
4µC(B1), µMi(B1/10) ≥ 1

2µC(B1/10);

(3) lim supiE
−1
i

∫
B1
d2
ai+qi(Sλi )

dµMi <∞.

Proposition 6.2. Let (Mi, βi, ai, λi, qi) be a blow-up sequence. From

Theorem 5.1, there is a sequence of radii τi → 0 so that

M ∩B1/2 \Bτi = graphai+qi(Sλi )
(ui),

3∑
k=0

rk−1|∇kui| → 0

and

(ai + qi(Sλi)) \Bτi = graphC(φi),
3∑

k=0

rk−1|∇kφi| → 0.

Write Φi(x) = x+ φi(x)νC for the graphing function associated to φi.

There is a subsequence, also denoted i, and there is a solution w : C ∩
B1/4 → R to LC(w) = 0 satisfying the following :

(1) smooth convergence: E
−1/2
i ui ◦ Φi → w smoothly on compact subsets of

C ∩B1/4 \ {0};
(2) L∞ decay : for all r < 1/4:

w(rω)2 ≤ c(C)r2γ

Ç
lim sup

i
E−1
i

∫
B1

d2
ai+qi(Sλi )

dµMi

å
;

(3) strong L2 convergence:

E−1
i

∫
Br

d2
ai+qi(Sλi )

dµMi →
∫
Br

w2dµC ∀r ≤ 1

4
.
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Remark 6.3. For shorthand, we will often say E
−1/2
i ui converges smoothly

to w to indicate convergence as in Proposition 6.2(1).

Proof. Part (1) is a fairly standard argument (see, e.g., [12]). Parts (2)

and (3) follow directly from Theorem 5.1. We outline the argument of part

(1). Since ai+qi(Sλi) converges smoothly to C on compact subsets of B1 \{0},
the coefficients ofMai+qi(Sλi )

, Lai+qi(Sλi ) converge locally smoothly to those of

MC, LC. Using this and standard elliptic estimates, we have for any compact

K ⊂ (ai + qi(Sλi)) ∩ B1/2 \ {0}, and l = 0, 1, 2. . . ., uniform estimates of the

form

sup
K
|∇lui| ≤ c(K, l)

Ç∫
(ai+qi(Sλi ))∩B1/2

u2
i dHn

å1/2

≤ c(K, l)E1/2
i

Ç
lim sup

i
E−1
i

∫
B1

d2
ai+qi(Sλi )

dµMi

å1/2

.

(41)

Of course by assumption, Φi → 0 in C∞loc(C ∩ B1 \ {0}). After passing to

a subsequence, we deduce C∞loc(C ∩ B1/4 \ {0}) convergence of the functions

E
−1/2
i ui ◦ Φi to some w ∈ C∞(C ∩B1/4).

Now we can write

0 =Mai+qi(Sλi )
(ui) = Li(ui) + Ei(ui),

where Li ≡ Lai+qi(Sλi ) converges smoothly away from 0 to the operator LC,

and where

sup
K
|ESλi (ui)| ≤ C(K)|u|2C2(K) = o(1)E

1/2
i .

It follows easily that w solves the Jacobi operator LC(w) = 0. �

Proof of Proposition 6.1. Choose α(C) so that γ+
3 = 1 < 1 + α ≤ γ+

4 .

Fix 0 < θ ≤ 1/8. We first prove the decay estimate. Suppose, towards a

contradiction, that there are sequences of numbers δi → 0, λi → 0, Ei → 0,

and stationary integral varifolds Mi in B1 which satisfy∫
B1

d2
Sλi
dµMi ≤ Ei ≤ δi, µMi(B1) ≤ 7

4
µC(B1), µMi(B1/10) ≥ 1

2
µC(B1/10),

but for which

θ−n−2

∫
Bθ(a)

d2
a+q(Sλ′ )

dµMi ≥ c6θ
2αEi

for any a ∈ Rn+1, q ∈ SO(n+ 1), λ′ ∈ R satisfying

|a|+ |q − Id|+ |λ′ − λi|1−γ ≤ c6E
1/2
i ,

and c6(C) to be fixed shortly.
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For any sequence τi, βi tending to 0 sufficiently slowly, by Theorem 5.1

we can write

sptMi ∩B1/2 \Bτi = graphSλi
(ui),

3∑
k=0

rk−1|∇kui| ≤ βi.

By definition, (Mi, Ei, 0, λi, Id) is a blow-up sequence, and so by Proposition 6.2

there is a solution w : C ∩B1/4 → R to Lw = 0 satisfying:

(42)

∫
B1/4

w2dµC ≤ 1, |w(rω)| ≤ c(C)rγ ,

so that, after passing to a subsequence (also denoted i),

E
−1/2
i ui → w

smoothly on compact subsets of C ∩B1/4 \ {0}, and

E−1
i

∫
Bρ

d2
Sλi
dµMi →

∫
Bρ

w2dµC ∀ρ ≤ 1

4
.

Using the pointwise bound (42) combined with [15, (2.10) Lemma] to kill

the modes γ−i , i ∈ N, and the strongly integrable nature of C, there are e ∈ R,

b ∈ Rn+1, and A a skew-symmetric (n + 1) × (n + 1) matrix, so that we can

expand w in L2(C ∩B1/4) as

w(rω = x) = erγ + νC(rω) · (b+Ax) +
∑

j:γ+j ≥1+α

rγ
+
j zj(ω),

where the sum is L2(Σ)-orthogonal for each fixed r. In particular, using the

L2 bound (42) and an appropriate choice of r ∈ (1
8 ,

1
4), we get

|e|+ |b|+ |A| ≤ c7(C),

and by L2(Σ)-orthogonality,

(43)
∑

j:γ+j ≥1+α

(1/4)2γ+j +n

2γ+
j + n

∫
Σ

z2
j ≤ 1.

We shall demonstrate that by choosing appropriate λ′i, ai, qi, we can ar-

range so that e = 0, b = 0, A = 0. Define

λ′i = (eE
1/2
i + λ1−γ

i )1/(1−γ),(44)

ai = bE
1/2
i ,(45)

qi = exp(Ai) for Ai = AE
1/2
i .(46)
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We first show that by replacing λi with λ′i, we can get the same Jacobi

field except with e = 0. Trivially λ′i → 0, and Corollary 5.2 implies that

(Mi, Ei, 0, λ
′
i, Id) is a blow-up sequence also. Our choice (44) implies that

vλ′i − vλi = (1 + o(1))((λ′i)
1−γ − λ1−γ

i )rγ = (1 + o(1))eE
1/2
i rγ ,

where we write o(1) to signify any function which tends to 0 as i → ∞. We

can write

Sλ′i ∩B1 \Bτi = graphSλi
(vi),

where setting x = rω + vλi(rω)νC(rω),

|vi(x)− (vλ′i − vλi)(x)| ≤ o(1)|(vλ′i − vλi)(x)|.

In other words,

vi(x) = (1 + o(1))eE
1/2
i rγ .

Write

sptMi ∩B1/2 \Bτi = graphSλ′i
(ũi).

If we set y = x+ vi(x)νSλi (x) (for x as above), then

ũi(y) = (1 + o(1))(ui(x)− vi(x)) = (1 + o(1))ui(x)− (1 + o(1))eE
1/2
i rγ .

Applying Proposition 6.2 to the blow-up sequence (Mi, Ei, 0, λ
′
i, Id), we deduce

that, after passing to a further subsequence, E
−1/2
i ũi converges smoothly on

compact subsets to

w − erγ ≡ νC(rω) · (b+Ax) +
∑

j:γ+j ≥1+α

rγ
+
j zj(ω),

and we have strong L2 convergence

E−1
i

∫
Bρ

d2
Sλ′i
dµMi →

∫
Bρ

(w − erγ)2dµC ∀ρ ≤ 1

4
.

We now show how our choice ai, qi as defined in (45) and (46) yields the

same Jacobi field except with b = 0, A = 0 (in addition to e = 0). This is more

standard and essentially follows the usual “integrability through rotations”

argument.

It is easy to check that |ai|+ |qi − Id| ≤ c(C)E
1/2
i . Since

dH(Sλ′i ∩B2, (ai + qi(Sλ′i) ∩B2) ≤ c(C)E
1/2
i ,

it follows that (Mi, Ei, ai, λ
′
i, qi) is a blow-up sequence also. We can write

(ai + qi(Sλ′i)) ∩B1 \Bτi = graphSλ′i
(vi)

(for τi → 0 sufficiently slowly), where

vi(x) = (1 + o(1))νSλ′i
(x) · (ai +Ai(x)).
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So now if ũi is the graphing function of Mi over ai + qi(Sλ′i), and ui is the

graphing function of Mi over Sλ′i , then we have

|ũi(x+ vi(x)νSλi (x))− (ui(x)− vi(x))| ≤ o(1)|ui(x)− vi(x)|.

This implies that

ũi(y) = (1 + o(1))(ui(x)− vi(x))

= (1 + o(1))ui(x)− (1 + o(1))νSλ′i
(x) · (b+A(x))E

1/2
i .

Applying Proposition 6.2 to this new blow-up sequence, we deduce that (after

passing to a further subsequence) E
−1/2
i ũi converges smoothly on compact

subsets to

w − erγ − νC(rω) · (b+Ax) ≡
∑

j:γ+j ≥1+α

rγ
+
j zj(ω),

and we have strong L2 convergence

E−1
i

∫
Bρ

d2
ai+qi(Sλ′i

)dµMi →
∫
Bρ

(w − erγ − νC · (b+Ax))2dµC ∀ρ ≤ 1

4
.

We have demonstrated that by judiciously choosing our ai, qi, λ
′
i, we can

arrange so that
w =

∑
j:γ+j ≥1+α

rγ
+
j zj(ω),

where zj continue to satisfy the bound (43). Using (43) and the fact that

4θ ≤ 1, we compute∫
B2θ

w2dµC =
∑

j:γ+j ≥1+α

(2θ)2γ+j +n

2γ+
j + n

∫
Σ

z2
j (ω)dω

≤ max
j:γ+j ≥1+α

(8θ)2γ+j +n

≤ (8θ)n+2+2α.

So by the strong L2 convergence, for sufficiently large i, we must have∫
B2θ

d2
ai+qi(Sλ′i

)dµMi ≤ 16n+2+2αθn+2+2αEi.

To recenter, we simply observe that for i sufficiently large, we have

Bθ(ai) ⊂ B2θ,

and hence we get

θ−n−2

∫
Bθ(ai)

d2
ai+qi(Sλ′i

)dµMi ≤ 32n+4θ2αEi,

which is a contradiction for sufficiently large i.
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Finally let us establish the lower volume bound (40). This is a straightfor-

ward proof by contradiction. Suppose otherwise: there is a sequence δi → 0,

λi → 0, and Mi satisfying the hypotheses (38), and the decay of (39) and (40),

but for which

µM (Bθ/10(ai)) <
3

4
µC(Bθ/10)

for all i.

By compactness of stationary varifolds, we can pass to a subsequence (also

denoted i) so that Mi → M in B1 for some integral stationary n-varifold M

in B1. Since ∫
B1

d2
CdµMi → 0,

by the constancy theorem, M = k[C] for some integer k. Since µM (B1/10) ≥
1
2µC(B1/10), we must have k ≥ 1. Since µM (B1) ≤ 7

4µC(B1), we must have

k ≤ 1. So in fact k = 1, and we deduce that Mi varifold converge to [C] in B1.

Since |ai| → 0, for any 0 < ε < 1 and sufficiently large i, we have

µMi(Bθ/10(ai)) ≥ µMi(B(1−ε)θ/10)→ µC(B(1−ε)θ/10) = (1− ε)nµC(Bθ/10).

Choosing ε(n) sufficiently small, so that (1−ε)n ≥ 7
8 , we obtain a contradiction

for large i. This completes the proof of Proposition 6.1 �

7. Regularity

The key idea to obtain regularity is to iterate the (scale-invariant) Propo-

sition 6.1 at decreasing scales ri = θi, obtaining for each scale an ai, qi, λ
′
i, until

we reach a scale at which ri ≈ |λ′i|. This is the radius at which we start to

“see” the foliation as separate from the cone, and this is the radius at which

we stop. If no such radius exists, we keep iterating until radius 0 to deduce

regularity over the cone. Note that, from only the information we start with,

we have no way of predetermining how large this radius is.

Proposition 7.1.There are positive constants β(C), δ7(C), Λ7(C), and

c7(C) so that the following holds. Take |λ| ≤ Λ7, and let M be a stationary

integral varifold in B1 satisfying

(47)∫
B1

d2
Sλ
dµM ≤ E ≤ δ2

7 , µM (B1) ≤ 3

2
µC(B1), µM (B1/10) ≥ 1

2
µC(B1/10).

Then there are a ∈ Rn+1, q ∈ SO(n+ 1), and λ′ ∈ R with

(48) |a|+ |q − Id|+ |(λ′)1−γ − λ1−γ | ≤ c7E
1/2,

so that for all 1 ≥ r > c7|λ′|, we have the decay

(49) r−n−2

∫
Br(a)

d2
a+q(Sλ′ )

dµM ≤ c7r
2βE



1038 NICK EDELEN and LUCA SPOLAOR

and the volume bounds

(50) µM (Br(a)) ≤ 7

4
µC(Br), µM (Br/10(a)) ≥ 1

c7
µC(Br/10).

Remark 7.2. In fact one can take β to be anything in the interval (0, α),

except of course in this case the various constants δ7, c7 will depend on the

choice of β also.

Proof. Ensure Λ7≤min{Λ5,Λ6} (the constants from Corollary 5.2, Propo-

sition 6.1). Fix θ(C) ≤ 1/4 sufficiently small so that c6θ
2α ≤ 1/4. Set ri = θi.

We claim that we can find an integer I ≤ ∞ and sequences ai ∈ Rn+1,

qi ∈ SO(n+ 1), and λi ∈ R, (i = 0, 1, . . . , I), so that for all i < I we have

a0 = 0, q0 = Id, λ0 = λ, r0 = 1,(51)

r−1
i |ai+1 − ai|+ |qi+1 − qi|+ r−1+γ

i |(λi+1)1−γ − (λi)
1−γ |

≤ c62−iE1/2,
(52)

|λi| ≤ Λ7ri,(53)

the decay

(54) r−n−2
i

∫
Bri (ai)

d2
ai+qi(Sλi )

dµM ≤ 4−iE,

and the volume bounds

(55) µM (Bri(ai)) ≤
7

4
µC(Bri), µM (Bri/10(ai)) ≥

1

2
µC(Bri/10).

Moreover, if I <∞, then

|λI | > Λ7rI .

Let us prove this by induction. Let us first show how the upper volume

bound of (55) follows from (52). If we have a0, . . . , ai, satisfying (52), then

|ai| ≤
i−1∑
j=0

|aj+1 − aj | ≤ c6E
1/2

i−1∑
j=0

ri ≤ 2c6δ7.

Therefore, provided δ7(C) is sufficiently small, by volume monotonicity we

have

µM (Bri(ai)) ≤ (1− 2c6δ7)−nµM (B1)rni

≤ (1− 2c6δ7)−n(3/2)µC(B1)rni

≤ (7/4)µC(Bri).

It remains to show the existence of the ai, qi, λi. We set a0 = 0, q0 = Id,

λ0 = λ as in (51). Since |λ0| = |λ| ≤ Λ7, we can apply Proposition 6.1 to M

to obtain a1, q1, λ1, which satisfy the required estimates. If |λ1| > Λ7r1, we set

I = 1 and stop. This proves the base case of our induction.
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Suppose, by inductive hypothesis, that we have found ai, qi, λi satisfying

(52), (53), (54) and (55), and for which |λi| ≤ Λ7ri. By inductive hypotheses,

we can apply Proposition 6.1 to the varifold Mi = (q−1
i )](ηai,ri)]M and foliate

Sr−1
i λi

to obtain ãi+1, q̃i+1, λ̃i+1 satisfying (39) and (40). If we let

ai+1 = qi(riãi+1) + ai, qi+1 = qi ◦ q̃i+1, λi+1 = riλ̃i+1,

then it follows by scaling that this ai+1, qi+1, λi+1 satisfies the requirement

estimates. If |λi+1| > Λ7ri+1, we stop and set I = i+ 1. Otherwise, continue.

By mathematical induction this proves the existence of the sequences.

If I < ∞, then let a = aI , q = qI , λ
′ = λI . Otherwise, observe that (52)

implies that ai, qi form a Cauchy sequence, and hence we take a = limi ai,

q = limi qi, λ
′ = 0 = limi λi.

From (52), for every i < I, we have

r−1
i |a− ai|+ |q − qi|+ r−1+γ

i |(λ′)1−γ − (λi)
1−γ | ≤ 6c62−iE1/2.

In particular, taking i = 0 gives (48).

Given any rI ≤ r < 1, choose integer i ≤ I so that ri+1 ≤ r < ri. Then,

ensuring that Λ7(C), δ7(C) are sufficiently small and using Corollary 5.2, we

have

r−n−2

∫
Br(a)

d2
a+q(Sλ′ )

dµM

≤ cr−2
i |a− ai|

2 + c|q − qi|2 + cr−2+2γ
i |(λ′)1−γ − (λi)

1−γ |2

+ cr−n−2
i

∫
Bri (ai)

d2
ai+qi(Sλi )

dµM

≤ c(C)4−iE

≤ c(C)r2βE,

(56)

where β = log(1/2)/ log(θ) > 0. Finally, observe that (52) and (53) imply

Λ7rI < |λ′| ≤ Λ7rI−1 + (c6δ7)1/(1−γ)rI−1 ≤ c(C)rI .

Therefore, after enlarging our constant c(C), we can take r ≥ |λ′| in (56). The

volume bounds follow directly from (55) and (52), and monotonicity. This

finishes the proof of Proposition 7.1. �

The proof of Theorem 3.1 is now essentially a straightforward application

of Allard’s theorem.

Proof of Theorem 3.1. Ensure that δ1 ≤ δ7, and take Λ1 = Λ7. Apply

Proposition 7.1 to obtain a, q, λ′. For every c7|λ′| ≤ r ≤ 1, a straightforward
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contradiction argument as in the proof of Theorem 5.1 implies that

sptM ∩Br/2(a) \Br/100(a) = grapha+q(Sλ′ )
(u),

r−1|u|+ |∇u|+ [∇u]β,r ≤ c(C)rβE1/2

for some u : (a+ q(Sλ′)) ∩Br/2(a) \Br/200(a)→ R. If λ′ = 0, we are done.

Suppose λ′ 6= 0. After scaling up by |λ′|, it suffices to show that there is

a u : (a+ q(Ssign(λ′))) ∩Bc7/2(a)→ R so that

sptM ∩Bc7/2(a) = grapha+q(Ssign(λ′))
(u), |u|+ |∇u|+ [∇u]β ≤ c(C)E1/2,

provided

c−n−2
7

∫
Bc7 (a)

d2
a+q(Ssign(λ′))

dµM ≤ c7E

and

µM (Bc7(a)) ≤ 7

4
µC(Bc7), µM (Bc7/10(a)) ≥ 1

c7
µC(Bc7/10).

However because Ssign(λ′)∩Bc7 is smooth with bounded geometry, the required

statement follows by Allard regularity and an easy contradiction argument,

taking E → 0. �

8. Mean curvature

When M has non-zero mean curvature, then we cannot use the maximum

principle to conclude as in Proposition 6.1. However, provided the mean cur-

vature is sufficiently small and L2 excess sufficiently large, then we can still

get decay to one scale (Proposition 8.1), by a straightforward contradiction

argument, which suffices to characterize the singular nature, if not the precise

local structure.

Iterating this gives scale-invariant smallness of the excess (Proposition 8.2),

rather than decay. At each scale we can deduce closeness to some rotate/

translate of the cone C (and hence foliate Sλ), but we cannot deduce that the

rotations form a Cauchy sequence as we progress in scale. If at some scale λ

becomes big, we stop, and we can deduce that M ∩B1/2 is a C1,α deformation

of S1 (without effective estimates). If we continue all the way to scale 0,

then we deduce that M ∩B1/2 has an isolated singularity modeled on C, and

a posteriori by [2] we can deduce that M ∩B1/2 is a C1,α graph over C.

Proposition 8.1. For any θ ∈ (0, 1
4), E0 ∈ (0, δ2

6), there is a positive

ε8(C, θ, E0) so that the following holds. Assume that M is an integral n-varifold

in B1, satisfying ||δM ||(B1) ≤ ε8, and for some E ∈ [E0, δ
2
6 ], |λ| ≤ Λ6, we have

(57)

∫
B1

d2
Sλ
dµM ≤ E, µM (B1) ≤ 7

4
µC(B1), µM (B1/10) ≥ 1

2
µC(B1/10).
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Then there is an a ∈ Rn+1, q ∈ SO(n+ 1), λ′ ∈ R, satisfying

(58) |a|+ |q − Id|+ |(λ′)1−γ − λ1−γ | ≤ 2c6E
1/2,

so that

(59) θ−n−2

∫
Bθ(a)

d2
a+q(Sλ′ )

dµM ≤ 2c6θ
2αE, µM (Bθ/10(a)) ≥ 1

2
µC(Bθ/10).

Here δ6(C, θ), c6(C) are the constants from Proposition 6.1.

Proof. Suppose, towards a contradiction, there are sequences of integral

n-varifolds Mi, and numbers εi → 0, Ei ∈ [E0, δ
2
6 ], so that Mi satisfy (57) and

||δMi||(B1) ≤ εi, but for which (59) fails for all a, q, λ′ satisfying (58).

We can pass to a subsequence, also denoted i, and obtain varifold converge

Mi → M and convergence Ei → E ∈ [E0, δ
2
6 ]. The resulting n-varifold M is

stationary in B1, continues to satisfy (57), but fails (59) for all a, q, λ′ satisfying

(58). However, M satisfies the hypotheses of Proposition 6.1, contradicting the

conclusions of Proposition 6.1. This proves Proposition 8.1. �

Proposition 8.2. There are δ9(C), c9(C) positive so that for any E ∈
(0, δ9] and p > n, we can find an ε9(C, E, p) > 0 for which the following holds.

Let M is an integral n-varifold in B1 with generalized mean curvature HM and

zero generalized boundary, and suppose M satisfies∫
B1

d2
Sλ
dµM ≤ E, µM (B1) ≤ 3

2
µC(B1), µM (B1/10) ≥ 1

2
µC(B1/10),

and Ç∫
B1

|HM |pdµM

å1/p

≤ ε9,

for some |λ| ≤ Λ7 (the constant from Proposition 7.1).

Then we can find a ∈ Rn+1, λ′ ∈ R, and qr ∈ SO(n+ 1) for each 1 ≥ r ≥
c9|λ′|, which together satisfy

|a|+ | log(r)|−1|qr − Id|+ |(λ′)1−γ − λ1−γ | ≤ c9E
1/2,

and for which we have at every radius 1 ≥ r ≥ c9|λ′| the smallness

r−n−2

∫
Br(a)

d2
a+qr(Sλ′ )

dµM ≤ c9E,

and the volume bounds

µM (Br(a)) ≤ 7

4
µC(Br), µM (Br/10(a)) ≥ 1

c9
µC(Br/10).

Proof. The proof is almost verbatim to Proposition 7.1, except we use

Proposition 8.1 in place of Proposition 6.1. Notice that Proposition 8.1 requires

a lower bound on E, and so we cannot deduce decay of the L2 excess, only

smallness. Choose θ(C) as in Proposition 8.1, and set ri = θi. We claim that
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we can find an integer I ≤ ∞ and sequences ai ∈ Rn+1, qi ∈ SO(n+ 1), λi ∈ R
(i = 0, . . . , I) so that for all i < I, we have

a0 = 0, q0 = Id, λ0 = 0,(60)

r−1
i |ai+1 − ai|+ |qi+1 − qi|+ r−1+γ

i |(λi+1)1−γ − (λi)
1−γ | ≤ 2c6E

1/2,(61)

|λi| ≤ Λ7ri,(62)

the smallness

(63)

r−n−2
i

∫
Bri (ai)

d2
ai+qi(Sλi )

dµM ≤ E, r
1−n/p
i

Ç∫
Bri (ai)

|HM |pdµM

å1/p

≤ ε9,

and the volume bounds

(64) µM (Bri(ai)) ≤
7

4
µC(Bri), µM (Bri/10(ai)) ≥

1

2
µC(Bri/10).

We proceed by induction. Ensure that δ9 ≤ δ7(C). As in the proof of

Proposition 7.1, given a0, . . . , ai satisfying (61), we have |ai| ≤ 4c6δ9, and

hence by volume monotonicity (1),

µM (Bri(ai)) ≤ (1 + c(p,C)ε9)(1− 4c6δ9)−nµM (B1)rni ≤ (7/4)µC(Bri)

provided δ9(C) and ε9(C, p) are sufficiently small. This proves the upper vol-

ume bounds (64). The mean curvature bound in (63) follows trivially from

p > n.

To obtain the ai, qi, λi, we first observe that, given any ai, qi above, if we

set Mi = (q−1
i )](ηai,ri)]M , then

||δMi||(B1) = r−n+1
i

∫
Bri (ai)

|HM |dµM

≤ r−n+1
i

Ç∫
Bri (ai)

|HM |pdµM

å1/p

µM (Bri(ai))
1−1/p

≤ c(C)ε9.

In particular, ensuring ε9(C, p) is sufficiently small, we can ensure ‖δMi‖(B1)

≤ ε8(C, p). We can therefore proceed as in the proof of Proposition 7.1, using

Proposition 8.1 in place of Proposition 6.1. �

Proof of Corollary 3.4. Ensuring δ3 < δ9, ε3 < ε9(δ, p), then we can obtain

a, λ′ and qr as in Proposition 8.1. A straightforward argument by contradiction,

like in the proof of Theorem 3.1, shows that for every 1 ≥ r ≥ c9|λ′|,

sptM∩Br/2(a)\Br/100(a) = grapha+qr(Sλ′ )
(u), r−1|u|+|∇u|+[∇u]β,r ≤ c(C)δ,



REGULARITY OF MINIMAL SURFACES NEAR QUADRATIC CONES 1043

(provided δ3, ε3 are sufficiently small, depending on C, p). If λ′ = 0, this

shows that any tangent cone at a is rotation of C. Therefore, shrinking δ3, ε3
as necessary, [2] implies sptM ∩B1/2 is a C1,β perturbation of C.

If λ′ 6= 0, then arguing as in the proof of Theorem 3.1, we get that

sptM ∩Bc9|λ′|/2(a) = grapha+qc9|λ′|
(Sλ′ )

(u), r−1|u|+ |∇u|+ [∇u]β ≤ c(C)δ.

In particular, MxB1/2 is entirely regular. �

9. Corollaries, related results

In this section we give an alternate proof of [15, Th. 0.3] (i.e., Corol-

lary 3.7 of this paper) using our main regularity Theorem 3.1. We also show

how the work of [5] implies a uniqueness result for minimal graphs over C

(Proposition 3.3).

Proof of Corollary 3.7. Let

Ei = R−n−2
i

∫
BRi

d2
CdµM .

By hypothesis, Ei → 0. For all i sufficiently large, we can apply Theorem 3.1

to deduce the existence of ai ∈ Rn+1, qi ∈ SO(n + 1), λi ∈ R, and ui : (ai +

qi(Sλi)) ∩BRi(ai)→ R, so that for all c7|λi| ≤ r ≤ Ri,

(65) sptM ∩Br(ai) = graphai+qi(Sλi )
(ui), r−1|ui|+ |∇ui| ≤ c(C)E

1/2
i .

Suppose, towards a contradiction, that ai → ∞. Let Ui(x) = x +

ui(x)νai+qi(Sλi )
(x) be the graphing function associated to ui. From (65) we

have that |Ui(x)− x| ≤ o(1)|x− ai|.
Fix any ρ > 0. Then by the previous paragraph, we have

U−1
i (sptM ∩Bρ) ⊂ (ai + qi(Sλi)) ∩B2|ai|(ai) \B|ai|/2(ai)

for i sufficiently large. Now the curvature of (ai+qi(Sλi))∩B2|ai|(ai)\B|ai|/2(ai)

tends to zero uniformly as i → ∞, and |∇ui| = o(1), so we must have that

sptM ∩Bρ is contained in a plane. Taking ρ→∞, we deduce sptM is planar,

and hence C is planar also. This is a contradiction, and so ai must be bounded.

By (65), we have

d(0, sptM) = d(0, ai + qi(Sλi)) + o(1)|ai| ≥
1

c(C)
|λi| − c(C)|ai|

for i large. Since ai is bounded, we must have that λi is bounded also. We

can pass to a subsequence, also denoted i, so that ai→ 0, λi→ λ, and qi→ q

∈ SO(n+ 1). We get smooth convergence on compact subsets of Rn+1 \ {a},

ai + qi(Sλi)→ a+ q(Sλ),
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and C1
loc convergence ui → 0. We deduce that sptM = a+ q(Sλ), which is the

desired conclusion. �

9.1. Uniqueness of graphs over C. In [5], Caffarelli, Hardt, and Simon

prove the following theorem constructing a plethora of examples of minimal

surfaces in B1, which are perturbations of a given minimal cone. To state their

theorem properly we need some notation. Given J ∈ N, define the projection

mapping ΠJ : L2(Σ)→ L2(Σ)

ΠJ(g)(rω) =
∑
j≥J+1

< g, φj >L2(Σ) r
γ+j φj(ω).

For shorthand, write C1 = C ∩B1.

Theorem 9.2 ([5]). Take m > 1, α ∈ (0, 1), and J ∈ N so that γ+
J ≤

m < γ+
J+1. There are ε(C,m, α), Λ(C,m, α) positive so that given any g ∈ C2,α

satisfying |g|2,α ≤ ε, and any λ ∈ (0,Λ), then there is a solution uλ ∈ C2,α(C1)

to the problem

MC(u) = 0 on C1, ΠJ(uλ) = λΠJ(g) on Σ,

satisfying

r−m|u|2,α,r ≤ c(C,m, α)λ|g|2,α ∀0 < r ≤ 1.

Loosely speaking, the authors of [5] are solving a boundary-value-type

problem, where one is allowed to specify the decay rate at r = 0, and the

Fourier modes at r = 1 which decay faster than the prescribed rate. Though

they do not comment on it, implicit in their work is the uniqueness statement

of Proposition 3.3. The basic idea is that solutions to the minimal surface

operator can be written as fixed points to a contraction mapping, provided

the solutions decay like r1+ε and have boundary data sufficiently small. We

illustrate this below.

Proof of Proposition 3.3. We use the notation of Theorem 3.1. Fix an

α ∈ (0, 1), and given w ∈ C2,α(C1), define the norm

(66) |w|B = sup
0<r≤1

r−β|u|2,α,r.

Pick J so that γ+
J = 1, and recall that 1 + β ∈ (γ+

J , γ
+
J+1).

By assumption, we have sptM ∩B1/2 = graphU⊂a+q(C)(u), where u satis-

fies the estimates (11). Since we are concerned with M ∩B1/4, ensuring δ2(C)

is small, there is no loss in assuming (after scaling, translating, rotating) that

sptM = graphC1
(u). By standard interior elliptic estimates and decay (11),

we can assume that u is smooth and satisfies

|u|B ≤ c(C, α)δ2.
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We can write the mean curvature operator as

MC(u) = LC(u) + E(u),

where the non-linear error part E(u) satisfies certain, relatively standard scale-

invariant structure conditions (see [5]). Given g ∈ C2,α(Σ), in [5] it is shown

that there are numbers ε10 < δ10, depending only on C, α, so that provided

|g|2,α < ε10, then for every w in the convex space

B := {w ∈ C2,α(C1) : ΠJ(wr=1) = ΠJ(g), |w|B ≤ δ10},

there is a unique solution v =: U(w) ∈ B to the linear problem

LC(v) = −E(w) on C1, ΠJ(vr=1) = ΠJ(g) on Σ,

sup
0<r≤1

r−β
Å∫

Σ

v(rω)2dω

ã1/2

<∞,

and moreover, that U is a contraction mapping on B.

To prove Proposition 3.3 it therefore suffices to show that, with g = u|r=1,

then u ∈ B and |g|2,α ≤ ε10. However, both of these follow from (66) by

ensuring δ2(C, α) is sufficiently small. �
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