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Regularity of minimal surfaces near
quadratic cones

By Nick EDELEN and LUCA SPOLAOR

Abstract

Hardt-Simon proved that every area-minimizing hypercone C having
only an isolated singularity fits into a foliation of R™™* by smooth, area-
minimizing hypersurfaces asymptotic to C. In this paper we prove that if a
stationary integral n-varifold M in the unit ball B; C R™ lies sufficiently
close to a minimizing quadratic cone (for example, the Simons’ cone 03’3),
then spt M N By s is a CY* perturbation of either the cone itself, or some
leaf of its associated foliation. In particular, we show that singularities
modeled on these cones determine the local structure not only of M, but of
any nearby minimal surface. Our result also implies the Bernstein-type re-
sult of Simon-Solomon, which characterizes area-minimizing hypersurfaces
asymptotic to a quadratic cone as either the cone itself, or some leaf of the
foliation.
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1. Introduction
In this paper we are interested in the following question:

Question 1.1. Suppose M; is a sequence of minimal n-dimensional sur-
faces, converging to some M with multiplicity one in the unit ball in R**+!.
How does the singular structure of M determine the singular or regular struc-
ture of the M; in By /57

This question and its variants underlie a significant amount of research
in the field of minimal surfaces, and other variational problems. Question 1.1
arises when attempting to study the singularity structure or compactness prop-
erties of some class of surfaces. For example, often the M; form some kind
of “blow-up” sequence for a singularity, and the resulting M is a singularity
model. In the very important special case when M; are dilations around a
fixed point of a given minimal M, i.e., when

M; =X (M — ), A\ — oo,

then M is dilation invariant, and any such M arising in this fashion is called
a tangent cone of M at x.

Question 1.1 is entirely answered when M is smooth; in this case Allard’s
theorem [1] implies that for 7 large, the M; N By ;5 must be smooth also (in fact
must be C1® perturbations of M).

For singular M, Question 1.1 has been answered under some structural
assumptions. When M has at most a “strongly isolated” singularity,’ and each
M; has at least one singularity of the same type (i.e., with the same or greater
density), then profound work of [2], [11] shows that the M; N By, must be
C! perturbations of M for large i. This situation naturally occurs when M is
a tangent cone of some minimal surface, and M; are dilations around a fixed
singular point.

In certain particular cases one can use the topology of M to deduce the
singular structure on M;. For example, when M is a union of three half-
planes, then [12] showed that M; N B/, are a Ch perturbation of M. Similar
results hold if M has tetrahedral singularities and the M; have an associated
“orientation structure” ([6]), or when M is a union of two planes and the M;
are 2-valued graphs ([3]).

1Strongly isolated here means that some tangent cone of M at the singularity is a
multiplicity-one cone with an isolated singularity at 0.
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Notice that in these theorems, either by assumption or by the nature of
M, all the M; have the same regular or singular structure as M.

Question 1.1 becomes more subtle when one does not assume anything
about the singular nature of the M;. In this case it is possible for a sequence
of smooth minimal (even area-minimizing!) surfaces to limit to a singular one.
For example, Bombieri, De Giorgi, and Giusti [4] have constructed a foliation
by smooth minimal surfaces of the complement of the Simons’s cone

C** = {(z,y) € R®: |z| = |y}

More precisely, the authors in [4] showed that there exist two smooth, area-
minimizing hypersurfaces Sy, contained respectively in the connected com-
ponents Ey = {(x,y) € R® : +|z| > |y|} of R®\ C33, which are smoothly
asymptotic to C>3 at infinity, and whose dilations Uy~oAS4+ foliate E4. Simi-
lar S5 satisfying the same properties were constructed by Hardt and Simon [9]
for any area-minimizing cone C® C R"*! having an isolated singularity (see
Section 2.3), and often the associated family of dilations UyASy is called the
Hardt-Simon foliation of C.

In the above circumstances the M; need not have the same singularity
structure as M. More generally, it is possible that singularities of one type
can limit to a singularity of a different type. Or, even worse, it is possible
that multiple singularities of various types or dimensions could collapse into
an isolated singularity of some other type.

In this paper we answer Question 1.1 in the case when M has singularities
modeled on area-minimizing quadratic cones CP4) i.e., so-called minimizing
(p, q)-singularities (see Definition 1.1.1). One of the main results of this paper is
that the foliation collapsing into CP*4 is the “worst” behavior one will ever see.
In particular, in any minimal surface which is sufficiently nearby a minimizing
(p, q)-singularity, there is at most one singularity, and necessarily of the same
type.

We contrast our result with recent constructions of [14], [17], which give
examples of multiple singularities of different types/dimensions collapsing into
cylindrical-type singularities like C*3 x R (provided one allows the ambient
metric to change smoothly also). One can also of course build many toy exam-
ples out of geodesic nets. It would be very interesting to understand whether
this behavior can occur for smooth, multiplicity-one or area-minimizing hyper-
cones of dimension > 1. (See [7] for related work when n = 7.)

It is important to note that, due to the presence of multiplicity, many
examples of aforementioned pathology can also occur for area-minimizing cur-
rents in higher codimension, or stationary varifolds in arbitrary codimension.
For example, the sequence of area-minimizing currents

Ty:={(z,w) € C? : w? = (2 — )2 2%} c C?,
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for a sequence (z)r converging to 0, is such that each I'y has two singular
points of branching type at 0 and zy, while the limit

I:={(z,w) € C? : w =2} c C?

is singular only at 0. The tangent cones at all these singularities are planes
with multiplicity > 1. Similar examples can be constructed for codimension
one stationary varifolds using Weierstrass representation.

Definition 1.1.1. Following [15], define the CP*? quadratic minimal cone
as the hypersurface

CPd — {(xvy) c RP_H % Rq—i—l . q‘$|2 _ p|y‘2} C Rn—i—l’

where p,q > 0 are integers and p + ¢ = n — 1. Some people refer to the cones
CP4 as generalized Simons’ cones.

Given a surface or varifold M, we say that x €sptM is a (p, ¢)-singularity if
some tangent cone of M at x is (up to rotation) equal to CP¢ with multiplicity-
one. We say z is a minimizing (p, q)-singularity if the associated cone CP-? is
area-minimizing.

Some remarks are in order.

Remark 1.2. An easy computation shows that each CP*¢ is minimal. How-
ever, there are no non-flat area-minimizing hypercones in R"*! for n < 7, and
of course by dimension-reducing there are no singular area-minimizing hyper-
surfaces in these dimensions either. When n = 7, the cones C*3 and C%*
are area-minimizing, and in fact up to rigid motions these are the only known
area-minimizing hypercones in R®. When n > 7, then every CP? cone is area-
minimizing. See, e.g., [10] and the references therein. Thus our results are
motivated by, and most relevant to, the regularity theory for area-minimizing
hypersurfaces.

Remark 1.3. By work of [2], if z is a (p, ¢)-singularity of an M which is
stationary (or has LP mean curvature, for p > n), then nearby x, sptM is a
C1@ perturbation of CP4.

As a corollary to our main Theorem 3.1, we obtain the following answer
to Question 1.1.

THEOREM 1.4. Let M be a multiplicity-one, stationary integral n-varifold
in By, which is reqular away from 0 and has a minimizing (p, q)-singularity at 0.
Let M; be a sequence of stationary, integral varifold in B1, so that M; — M
as varifolds. Then for each i sufficiently large, M; By 5 has either an isolated
singularity of the same type (p,q), or is entirely regular.

Furthermore, if we let My be the smooth manifolds obtained by replacing a
small neighborhood of 0 in My := sptM (in which My is a CY* perturbation of
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CP9) with a suitable dilation of S+, then, for i sufficiently large, sptM; N By o
is a C1 deformation of one of Mo, M., M_.

We remark that, only from the information that M; — M, one cannot
distinguish a priori whether each M; is regular or singular. See Section 3
for a more detailed statement of our main regularity theorem, and for other
corollaries.

The main novelty of Theorem 3.1 is that, unlike previous regularity re-
sults for minimal surfaces near isolated singularities (e.g., [2], [11]), we do not
prescribe a priori the density of the M; at any point; that is, we do not impose
them to be singular at the origin, nor at any other point. As a consequence,
even if a minimal surface is close at scale 1 to a cone with an isolated singu-
larity, the surface itself may be entirely smooth.

We can give a further characterization of the M; when they are singular; in
this case the M; must be one of the examples of minimal surfaces as constructed
in [5]. Finally, we can use our regularity theorem to reprove the rigidity result
of [15], which characterize complete minimal surfaces asymptotic to quadratic
cones.

It would be interesting to know whether our results carry over to other
(area-minimizing) singularity models. Unfortunately, the only other known
smooth, area-minimizing hypercones are of so-called isoparametric type, and
for these other examples, our techniques do not seem to work. See Section 4
of [15] for further discussions.

2. Notation and preliminaries

We work in R"T!. We denote by H" the n-dimensional Hausdorff measure.
Given a subset A C R we let da(z) = infuea |z — a| be the Euclidean
distance to A, and given r > 0, we write

Br(A) :={z e R" 1 dy(x) < r}

for the (open) r-tubular neighborhood of A. Similarly, B, (z) is the open r-ball
centered at z € R. If x = 0, we may sometimes just write B,. We write B,(A)
for the closed tubular neighborhood or r-ball. We set w,, = H"(R™ N By) to be
the volume of the n-dimensional unit ball. We define the translation/dilation
map 1.r(2) == (z —z)/r.

We may occasionally use the notation of Cheeger: we denote by ¥(eq, ...,

€xlc1, ..., cn) a non-negative function, which for any fixed ¢y, ..., cy, satisfies
lim \If(el,...,ek]cn,...,c]v):O.
61,...,€k—>0

We use the convention that ¢; always denotes constants > 1, while Greek letters
(such as €;,0;, A;) denote constants < 1.



1018 NICK EDELEN and LUCA SPOLAOR

We shall always treat graphing functions as scalars. Given oriented hy-
persurfaces M, N, and an open subset U C N, if we write

M = graphy (u),
we mean that M = {z+u(x)vy(z) : € U C N}, where vy is the unit normal
of N.

Given an (oriented) hypersurface N, a function v : N — R™, and a § €
(0,1), we define the Holder semi-norm

u(xr) —uly
= sp | u@ @)
2£yeNNB,\B,. /2 |z — |

and, given an integer k > 0, the Holder norm

k
|ulg,pr = [DFulg, + Z ri7F e sup [Vl
pard 2ENNB,\B,

Typically when we use these norms, N will be conical or nearly conical.

2.1. Varifolds and first variation. We are concerned with integral n-vari-
folds that are stationary, or have LP” mean curvature. Recall that an n-varifold
M is integral if it has the following structure: there is a countably n-rectifiable
set M, and there is an H" M -integrable, N-valued function 6, so that

M(¢(z,V)) = /M o(x, T, M)0(z) dH™ (z) Yo € CO(R™ x Gr(n,n + 1)).

Here Gr(n,n + 1) is the Grassmannian bundle, i.e., the space of unoriented
n-planes in R**!. If N is an n-manifold, then N induces a natural n-varifold
in the obvious fashion, which we write as as [N]. Given a proper, C! map 7,
we write ny M for the pushforward of M.

We write pps for the mass measure of M. The first variation of M in an
open subset U C R™*! is the linear functional

SM(X) = /divM(X)duM, X € CHU,R™),

where divs(X) is defined for pps-a.e. x as follows: if e; is an orthonormal basis
for the tangent space T, M, then
divar(X) = (e, De, X).

)

An integral n-varifold M (or surface) is stationary in U C R"*1 if §M (X) =
0 for all X compactly supported in U. We say that M has generalized mean
curvature Hjys and zero generalized boundary in U if

SM(X) = —/HM Xdpy VX € CHU,R™Y),

where H); is some ppr-integrable vector field.



REGULARITY OF MINIMAL SURFACES NEAR QUADRATIC CONES 1019

Let M have generalized mean curvature Hj; in Bj, and zero generalized

boundary, and suppose |[Haz||»( y < A < oo for some p > n. Then M

Bispnm
admits the area monotonicity (see [1])

(1) (uM(%(iﬂ))>1/p < L(rlfn/p —glmn/py 4 (“M(%(x)))l/p
s p—n r
for any z € By, and 0 < s < r < 1 — |z|. Of course if M is stationary, then
" upr(Br(z)) is increasing for all » < 1 — |x|.
Further, Allard’s theorem [1] implies that, as in the previous paragraph,
M admits the following regularity: there is a d(n,p) > 0 so that if for some
n-plane V' we have

[t dias By < B < 5
1

3 _ 1
pm (Br) < Z%¥n and  pin(Byji0) > §Wn(1/10)na
then there is a C1="/P function u: V N By — VL, so that
sptM N By = graph(u) N By g,  [u|cti-n/ < c(n)EY2.

2.2. Jacobi fields. Given a smooth, oriented minimal hypersurface N, let
us write My for the mean curvature operator on graphs over N, i.e., so that
givenu: U C N — R, and z € U, then My (u)(z) denotes the mean curvature
of graphy;(u) at the point = + u(z)vy(z). Equivalently, — My is the Euler-
Lagrange operator for the area functional on graphs over N. The operator
My is a second-order, quasi-linear elliptic operator

Mn(u) = an(z,u, Vu)ijvl?ju + by (2, u, Vu),
whose coefficients an(zx, z,p), by(x, z,p) depend smoothly on x, z,p and the
submanifold N.
Write Ly for the linearization of My at uw = 0. We call £y the Jacobi

operator, and we call any solution w to Ly (w) = 0 a Jacobi field. The operator
Ly is a linear, elliptic operator:

Ly =AN+ ‘AN‘Q.

Here Ay is the second fundamental form of N C R"! and Ay is the con-
nection Laplacian. If ¢; is a family of compactly supported diffeomorphisms
of R"™ and 0;¢¢|t—0zen = fvn on N, then

dQ
dt? =0

The hypersurface N is called stable if L < 0 when restricted to any compact
subset of V.

vol(¢y(N)) = — /N LN f K",
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When N = C\ {0} is a cone, with smooth, compact cross section 3 =
C N S™, then we can further decompose

Ly =02+ (n—1r"10,+r 2Ly, Ly =Ax+ |Ax|?,

where r = |z| is the radial distance, w = x/|z|, and Ay, Ay are the connection
Laplacian, second fundamental form (resp.) of ¥ C S™.

Since ¥ is compact, there is L?(X)-orthonormal basis of eigenfunctions ¢;
of —Ls, with corresponding eigenvalues p1 < pg < -+ — o00:

Lsdi + pigi =0, / $idjdH" ! = §yj.
>

By the Rayleigh quotient, u; < —(n — 1). On the other hand, when C is

stable, we have u; > — ("772)2, and we have strict inequality when C is strictly

stable (see [5]). If we define
2
W=y (2 )J”“’
then for any solution w to Lc(w) = 0, with C being strictly stable, we can
expand in L2 (C):

loc

o0
w(rw) = Y (a1 4 a7 )gi(w),
i=1
where for each r the sum is L?(%) orthogonal.

2.3. Hardt-Simon foliation. Taking C, ¥ as above, then C divides R"*!
into two connected, open, disjoint regions F; and E_. We can choose an
oriented unit normal v¢ for C, so that v¢ points into E5 .

When C is area-minimizing, in the sense of currents, then Hardt and
Simon [9] have shown there are smooth, area-minimizing hypersurfaces Sy C E1
which are asymptotic to C. Moreover, the S4 are radial graphs, and hence
the collection of dilations ASy (A>0) form a foliation of E1 by smooth, area-
minimizing hypersurfaces, sometimes called the Hardt-Simon foliation. Let
us orient Sy with unit normals vg, compatible with C, so that as |z| — oo,
Vg, — VC.

When C is strictly minimizing, then Sy decays to C like the larger homo-
geneity 1. In particular, after a normalization as necessary, there is a radius
Rop > 1 and ag > 0 so that

(2) S+ \ Br, = graphg(v+),
where v1 : C\ Bpg,/2 — R is a smooth function satisfying
2
+ _
(8)  wa(rw) = £ (), S rEVE(fe - 61)] = O(r).
k=0
For shorthand, we will set v = ;7. See [9] for details about strictly minimizing.
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Given A € R, define

>\S+ A >0, )\’U+(7’/)\) A >0,
(4) Sy=41C A =0, ua(rw) =<0 A =0,
NS A <0, Av—(r/|A]) A <0
so that
(5) S\ Bar, = graphg(vy).
Let Sy have the same orientation as Sgjgn(y). Observe that
(6) UA(T) = Sign()‘)’)‘lli'yr'yfsign()\) (7’/|>\D

For shorthand, we will often write A% := sign(A)|A|“.
The following straightforward lemma will be useful.

LEMMA 2.4. Provided Ro(C) is sufficiently large, and |u|, |\ < 1, r >
max{|u|, |A|}Ro, we have

1
(7) Z\,uk” . S lou(r) — oa(r)]? < 4lpt = XA

Proof. If A # 0, |\| <1, and r > |A|R, then we have

d _ _1—
av)\(r) - (1 - 7)‘A‘ ’yr’yfsign()\)(r/‘)“) - ‘)“ ! ’yr1+’yfs/ign(A)(r/‘)“)

= (1= DA (1 O(ARTR ).
If uA > 0, then the required result follows from the above and the fundamental
theorem of calculus.
If uh < 0, |A| > |g| > 0, then we have (recalling our shorthand p® =
sign(p)|p|?)
[0 (r) = wA(r)]? = ("7 + X772 (1 4+ O (A R™))
= | = NP (1 + O R™)). O

2.5. Minimizing quadratic cones. Take C = CP*? to be an area-minimizing
quadratic cone. There are two key properties of C which we shall need. These
are proven in [15, Prop. 2.7].

(1) C s strictly-minimizing, so that the foliation decays like P Tn fact, since
C is rotationally symmetric, we have that

2
(8) ve(rw) =+ fo(r), Y rFVR(fL - 1)) = 0.
k=0

Recall that for shorthand we write v = 77"
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(2) C is strongly integrable, in the following sense: any solution of Lc(w) = 0
can be written

w(z =rw) = Z a; i gi(w) + er + (b+ Azx) - vo(w) + Z a;rrﬁ@(w),
i>1 i>4

where e € R, b € R"™! and A is a skew-symmetric (n + 1) x (n + 1)
matrix. In other words, '7; =0, 'y;f = 1, and the eigenfunctions ¢s, ¢3 are
generated by translations/rotations.

Every result in our paper holds for any area-minimizing hypercone satis-
fying the above two conditions. Rotational symmetry as in (8) simplifies our
computations slightly, but has no bearing on our proof. We write all our results
for quadratic cones because these are the only area-minimizing cones which we
can verify as “strongly integrable.”

3. Main theorems

For the duration of this paper, we fix C = CP¢ to be an area-minimizing
quadratic cone, Sy the Hardt-Simon foliation, and we use the notation associ-
ated to C, S, as introduced in Section 2.3.

Our main theorem is the following, from which Theorem 1.4 follows di-
rectly.

THEOREM 3.1. There are positive constants §1(C), A1(C), ¢1(C), B(C)
so that the following holds. Take |\| < A1, and let M be a stationary integral
varifold in By, satisfying

d%, duy < E < 67,

(9) 5 b o

i (B1) < §MC(31)7 and  pn(Byijio) > 5#0(31/10)-
Then there are a € R g € SO(n + 1), N € R, with
(10) la| + |¢ — Id| + |sign()\')|)\’|1_7 - sign(/\)])\|1_7| <o EY?,
and there is a C* function u : (a + q(Sx)) N Byj2 — R, so that

sptM N Byjp = graphaJrq(SA,)(u) N By 2,

and u satisfies the estimates
(11) 7 Huleos, @) + [Vuleos, @) + r’[Vulg p,@) < cir’EYV? Ve < %

In particular, M By 1s either smooth, or has an isolated singularity
modeled on C.
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Remark 3.2. The precise form of the lower bound on jup(By/10) in (9) is
of no consequence, nor is the precise ball radius 1/10. One could easily assume
(for example) pns(Bij9) > v > 0 and obtain the same conclusions, except
that the constants d; and Ay would depend on the choice of v also. The upper
bound on pps(By) is more important; we require it to be strictly less than
2pc(B1).

A further characterization is possible in the case when M as in Theo-
rem 3.1 is singular. Caffarelli, Hardt, and Simon [5] have constructed a large
class of examples of minimal surfaces in By, which are singular perturbations of
a given minimal cone (see Section 9.1). In fact, in a sufficiently small neighbor-
hood, these are the only minimal surfaces which are graphical over C. It would
be interesting to know whether examples like those in [5] exist as perturbations
over a foliate S).

PROPOSITION 3.3. Let M, N be as in Theorem 3.1. If N =0, and E <
62(C) is sufficiently small, then sptM N By 4 coincides with one of the graphical
solutions as constructed in [5].

The most interesting consequence of Theorem 3.1 is that singularities mod-
eled on (minimizing) Simons’s cones propagate out their structure not only to
a neighborhood of the original surface, but also of nearby surfaces. If these
nearby surfaces are not minimal, but instead of LP mean curvature, then essen-
tially the same structure holds, but with slightly less regularity. In this sense
the minimizing Simons’s singularities can be thought of as “very strongly iso-
lated.”

COROLLARY 3.4. Given any p > n, there are positive constants d3(C),
e3(p, C), A3(C), c3(C) so that the following holds. Let M be an integral
n-varifold in By with generalized mean curvature Hyy, zero generalized bound-
ary, satisfying (9) with 63 in place of 62, and

1/p
(/ |HM|deM) < €.
B

Then there are a € By, N € R so that

e cither N = 0, in which case sptM N By is a CYP perturbation of C, and
MuBy 5 is regular away from an isolated singularity modeled on C;

e or N #0, in which case MuBy 5 is entirely reqular, and for every 0 < r < %,
we can find a g € SO(n + 1), so that sptM N By(a) \ B,/100(a) is a C*°
graph over a + q,(Sy).

Ezample 3.5. This corollary rules out many possible examples of singu-
larity formation. For example, in an 8-dimensional manifold this rules out the



1024 NICK EDELEN and LUCA SPOLAOR

possibility that S3 x S3 singularities are collapsing into an S? x S4 singularity,
or even worse, that multiple types of isolated singularities are collapsing into
and single S x §3 or S? x S* singularity.

Remark 3.6. We cannot obtain directly that the ¢, have a limit as r — 0.
If X' = 0, then we can use [2] to deduce a posteriori that M N By, is a Ccla
perturbation of C. If ) # 0, then we do not need to worry about the limiting
behavior of the g, to deduce that M N By is some C1® perturbation of Sy.
However, because we have no control over g, as r — 0, we cannot obtain any
effective estimates on the C1'® map in question. It would be interesting to
resolve this.

Another direct consequence of our regularity theorem is the following rigid-
ity theorem for area-minimizing surfaces asymptotic to Simons’s cones, which
was originally proven by Simon-Solomon:

COROLLARY 3.7 ([15]). Let M be an area-minimizing hypersurface in
R and suppose there is a sequence of radii R; — oo so that

R'M —C

in the flat distance. Then up to translation, rotation, and dilation, M = C, Sy,
or S_q.

Remark 3.8. We remark that our result is much stronger than the char-
acterization of [15]. As illustrated by the examples of [5], being close to the
Simons’s cone at scale 1 is much weaker than being close on all of R**!; in
particular, the latter precludes any modes growing faster than 1-homogeneous.
One can think of [15] as a Bernstein-type theorem, while our theorem can be
thought of as an Allard-type regularity theorem.

4. Outline of proof

Our strategy is to prove the following excess-decay type estimate (Propo-
sition 6.1): provided both A and [ B, d?gA duys are sufficiently small (plus some
restrictions on the mass of M), then we have a decay estimate of the following
form:

1
(12) 9”2/ d2, ,,wMg/dsz
Bo(a') a’+q'(Syr) 2 B, Sx

That is, provided .S} is sufficiently close to the cone C, and we are sufficiently
L? close to Sy, then after a translation/rotation/dilation as necessary (de-
pending on M), our L? distance to the foliation improves at a smaller scale ¢
(depending only on the cone C).

We can continue iterating (12) while S is scale-invariantly close to C,
and we obtain a decay of the form: there is an a” € R"*!, ¢’ € SO(n+ 1), and
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N e R so that

(19 T_n_2/3 (@) Ay o (5,0 Bt < Cr?7 e M| <7 < 1L

By two straightforward contradiction arguments (one for M close to Sy N By \
Bj /100 with A small, and one for M close to S+1 M B.), we can use [1] with (13)
to deduce that sptM N By, is graphical over a” + ¢"(Sx).

We would like to prove (12) by contradiction,with an argument that loosely
resembles the original “excess decay” proof due to De Giorgi and, as imple-
mented in a fashion closer to our style, [2], [12], [13]. Briefly, we would like to
suppose (12) fails for some sequence M; and \; — 0, E; = f B, d%xd,uMi — 0.
Then over larger and larger annuli By, \ By, (7; — 0) we can write sptM =

graphg, (u;). If we rescale v; = E; 1 Zui, then the v; have uniformly bounded
|[villz2(B,), and after passing to a subsequence, we get convergence

v; > w with Lg(w)=0.

The idea now, in vague terms, is to use good decay properties for solutions
to the linearized problem Lc(w) = 0, to prove good decay for solutions to
the non-linear problem Mc(u) = 0; that is, we would like to arrange so that
w = O(r'¢) and then use this to deduce L? decay of the u; as in (12).

To ensure this argument works we need to

(i) ensure the decaying norm for the non-linear problem is comparable to the
linear one (also known as non-concentration of L? norm at singularities)
— that is for any p small,

Eil/B d?g)\idMMi — HwH%Q(CﬂBP);
P

(ii) prove good decay for the linear problem (a.k.a. killing bad homogeneities
through integrability) — that is w = O(r*¢).

The latter issue is where the concept of integrability arises. A minimal
cone C is called integrable if every 1-homogeneous Jacobi field arises from
a l-parameter family of minimal cones. The idea of [1], [2] is that, under
suitable density assumptions in the argument above, one can typically show

I+€ For a cone with an isolated

that w = O(r), but one needs it to grow like r
singularity, the homogeneities are discrete, and so provided C is integrable,
one can rewrite the minimal surface as a graph over a slightly adjusted cone,
chosen to cancel the r term in the Fourier expansion of w.

The main novelty in our approach is in treating the foliation Sy as a di-
rection of integrability. In other words, we are relaxing the original notion of
integrability, as a movement through cones, to allow one to push off the cone
into families of entirely smooth hypersurfaces and, in particular, we are allow-

ing for a notion of integrability in which the singularity behavior changes. In
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order to handle this we require new decay and non-concentration estimates for
minimal surfaces near an arbitrary foliate .Sy without any structural assump-
tion on M. This is the content of Theorem 5.1.

More precisely, the key observation is that the foliation is generated by a
positive Jacobi field of the form

-2
v(r)=r", 0>~vy> —nT,
and this Jacobi field has itself good L? decay:
(14) / v2dH" < cp2/ v2dH".
B,NC BiNnC

To deal with point (i), we use the maximum principle to “trap” M between
two foliates, and thereby show that M cannot diverge from a given S) any faster
than the foliation itself. This allows us to prove that [ B, d?% dpps has a decay

similar to (14), and hence no L? norm can accumulate near the non-graphical
region. (Away from 0 we of course have strong L? convergence since the v;
converge smoothly there.)

To deal with point (ii), we can prove that the v;, and hence the resulting
Jacobi field w, grow at least as fast as v(r) = r” as r increases. Using the
strongly integrable nature of C, we can then deduce that w looks like

w(z =rw) = er’ + (b+ Azx) - vc + O(r' 1)
for f € R, b € R"!, A skew-symmetric. In other words, w has the growth we
require except for terms generated by moving into the foliation, translation,
and rotation. By replacing the S, with a new sequence of foliates a; + ¢; (S /\;)
and repeating the above contradiction argument with this new sequence, we

can arrange so that these three lower homogeneities disappear, and thereby
deduce w = O(r'*¢).

5. Non-concentration of L%-excess

Our main theorem of this section is the following. It is spiritually similar
to Theorem 2.1 in [13], except we are proving non-concentration with respect to
an arbitrary foliate Sy instead of just C, and we additionally obtain a pointwise
decay estimate on the graphing function. Recall the shorthand v = vfr .

THEOREM 5.1. For every 0 < 7 < %, 0 < B, there are positive Ay(C,T),
€4(C, B,7), c4(C) so that the following holds: if |\| < Ag and M is a stationary
integral n-varifold in By satisfying

7 - 1
(15) /B d% dun < €3, par(Br) < 1#0(31)7 pa(Bijio) > 5#0(31/10)7
1

then there is a smooth function u: Sx N Bys \ B;/2 — R so that

3
(16)  sptM N By \ Br = graphg, (u) N B2 \ Br, Zrkflkauf <B.
k=0
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For every t < p < i, we have

(17) / uw’duc + /
B,\B, B

Moreover, u has the following L*° decay bound:

d%AdMM < C4p2/ d%AduM.
By

P

(18) sup u? < 047“27/ d?% Vr € (r,1/4).
S\NOB; B
Proof. Let Ry(C) be as in Lemma 2.4, and recall the definitions of vy, Ry
in (2)—(5) from Section 2.3. Taking A4(C, 7) sufficiently small, we can assume
A4Ry < 7/100 and

2
(19) ST rE VR <8 W € (7/100,1).
k=0

We claim that, provided e4(C, Ay, 7, 3) is sufficiently small, we have

3

(20) sptM N By \ By /10 = graphg, (u), Z VR < 8
k=0

for w: S\ N Byy \ Brjao — R smooth.

Indeed, otherwise there is a sequence of stationary integral n-varifolds M;,
and numbers ¢; — 0, \; € [—Ay, Ay4], for which (15) holds but (20) fails. We can
without loss assume A; — A for some |A| < A4. By compactness of stationary
varifolds with bounded mass, we can pass to a subsequence (also denoted 1)
and get varifold convergence M; — M for some stationary integral n-varifold

M in B;y. The resulting M satisfies
7
(21) / A3, dupr =0, 0 < ppr(Br) < 1hc(Bu).
By

The constancy theorem implies that M = k[S,] for some natural number k.
The lower bound of (21) implies & > 1. Ensuring A4(C) is sufficiently small,
the upper bound in (21) implies £ < 1. So in fact M; — [S)], and hence by
Allard’s theorem convergence is smooth on compact subsets of By \ {0}. This
proves our claim.

It will be more convenient in this proof to work with graphs over C. By
a similar contradiction argument as above, we have (again taking e4(C, 7, 3),
A4(C, 1, ) sufficiently small)

3

(22) sptM N Bsyy \ By 1o = graphg(h), Y _r* VPR < 8
k=0

for h: CN By \ By /o — R smooth.
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Ensuring B(C) is sufficiently small, u is effectively equivalent to h — vy.
Precisely, if rw € CN By s\ By/4 and x = 1w + vz (r)vc(rw) € Sy, then

(23) u(z)vs, (x) = (h(rw) —ox(r))ve(rw)| < ¢(C)Blu(z)].

To see this, observe that if  is the nearest-point projection to C, then provided
B(C) is sufficiently small, the map F(rw) = ((rw + v (r)vc(rw) + u(z)vs, (x))
as a map C — C is smooth, well-defined, and satisfies

(24) |F(rw) — rw| < ¢(C)Blu(z)| < cf?r.
Hence we can write
(25) rw + vp(r)ve(rw) + uw(x)vs, (z) = F(rw) + h(F(rw))ve(F(rw)).

Estimate (23) then follows from (25), (24), and (22).
Choosing a possibly smaller (C), (23) implies

(26) sup |u| <2  sup |h— vyl Vre (1/2,1/4)
S\NIOB; CﬂBz»,»\BT/Q
and
(27) [ s <2 Pl
Br\B; 3 B2r\B7 /4
(28) / |h — vy 2duc < 2/ d%, dpar,
Br\B; /s Bar\B 4
(29) / d%Ad,uM < 2/ u’dusg, .
Br\B, /o B2r\Br /4

So we can prove the required estimates for h — vy instead of w.
For p € (7/10,3/4), define

)\: =inf{p : vu(p) > h(pw) Vw € X},

A, =sup{p:vu(p) < h(pw) Vw € X}
Of course all sups/infs above are actually maxs/mins, so that
(30) vat (p) = maxh(pw), vy~ (p) = minh(pw).

From (6) and (22), we have |)\;Jt| = ¥(B|C, 1), and so ensuring 3(C, 1)
is sufficiently small, XX*Ro < 7/10 for all p € (7/10,3/4). By the maximum
principle ([16]), we have that sptM N B, is trapped between S N and S Ve This
implies that )\;L is increasing in p, while A" is decreasing in p, and
(31) Urs (r) < h(rw) < Unt (r) Vre(r/2,p).

We note, however, that A need not be trapped between )\ff.

Both h and vy solve the minimal surface equation over C, with uniform
bounds (19) and (22), and so provided (r, C) is sufficiently small the difference
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h — vy solves a linear, second order, uniformly elliptic operator on C N By s \
B; 1o (see, e.g., [8, §§10.1, 8.6]). Standard iteration techniques at scale r imply
that

(32)

sup |h(rw) — vx(r)]? < c(C)r_”/ |h —vp2duc Vr € (7/5,1/4).
w BQT\BT/2

Since )\; is increasing in p, A, is decreasing in p, and A, < )\;r, we get
that

(33) max{\()\;)k” — A2 ]()\;)1*7 — A7} s increasing in p.

For any 7/5 < r < p < 1/4, we have by (31), Lemma 2.4, (33), (30) and
(32) (in order of usage):

(34)
|h(rw) — oa(r)]* < 2max{lv,+ (r) — oa(r)?, [oy (1) — oA (r)[*}
< er® max{| (A7) = AT ()T = AT}
< er maxf|(Af,)' 7 = AT ()T - A
<er? max{\ka/4(1/4) —ux(1/4), |u/\1,/4(1/4) —ux(1/4)]?}
= or® max{| sup hw/4) = or(1/4)[%, | inf A(w/4) = r(1/9))

= cr?Y sgp |h(w/4) — vr(1/4)

< cr%’/ |h — vy|?duc,
B1/2\Bi/s

where ¢ = ¢(C). Combined with (26) and (28), we obtain estimate (18).
Integrating (34) in r € (7/2, p) and w € ¥, in combination with (28), gives

c(C
/ b — v *dpc < (Q)p”“”/ ds, dpoar
BP\BT/Z n+ 2 By

<(©)? [ & duy

B1
since 2y +n > —(n — 2) +n > 2. Using the bounds (20), (22) and (26), as in
the proof of (27) and (29), we have

(35) / d%kduM < cp2/ dgkduM.
By\B- By

We focus now on proving the final part of (17), i.e., bounding the excess
in the ball B;. Since S is graphical over C near 0Bpg,, we have

dH(S)\ N Bmax{\M,\u\}Rov S,u N Bmax{\M,\u\}Ro) < C(C)‘)\ - :UJ‘
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Let Ay = max{|\}|,|\7|}. Then, recalling how spt M N B; is trapped between
Sy+ and S,-, and ensuring A4(7, C) is sufficiently small, we get

2
/ dg, dpns
B, Ry

< max{dy (Sy+ N Bx, Ry, Sx N Bx, g, )*,

dr1(Sy- N B, ro» Sx N B, 1y)* e (B, 1y
< o(C)max{]\F — A%, — APIAIR
c(C) 7" max{|(AF) 7T = ATV (AT = AP

IN

The last line follows because there is a constant ¢(n) so that whenever |ul,
|A| <1, we have (recall v < 0)

1
1—’y _ )\1—’}/ 2 >
Iz © > o)

Choose I so that 2\, Ry < 7 < 2T\, Ry. We compute

max{|p|, A} 7| = A%

(37)

/ d%, dpn
BT\B)\T Rq

< Z/ d%, dpn

Byit1a, RO 22>\-,-R0

< Z sup max{\v/\i(r) —ux(r)]?,

i=0 2l)\7— R() STS27;+1 )\7— R()

[03= () = ox()[*}ar (Baitax, gy

1
< Z )(2'Ar Ro)*¥ max{| (A1) ™7 = ATV [(AD) 1T = ATV (20A Ro)"
=0

< C(C)T"+27 max{|(AF)1 77 = ATV (D) = AT,

where in the third inequality we used (7) in Lemma 2.4, while the last inequality
follows since n + 2y > 2.
Combining (36) and (37) with the computations of (34), we obtain

[ duns < (€ max{| ()1 - X! - AT

T

SC(C)T2/ d%AdMM-
B1

Together with (35), this gives the required estimate (17). O

The following corollary will also be useful.



REGULARITY OF MINIMAL SURFACES NEAR QUADRATIC CONES 1031

COROLLARY 5.2. There is a positive A5(C) so that if |A|,|N| < As, and
M satisfies the hypotheses of Theorem 5.1, then

/ d%*’duM = C(C)/ d2SAdMM + ¢(C) AT — ()72
B B,

Proof. The computations of Theorem 5.1 show that, provided |A[, |N] <
A4(C), we have

/31/4 d%A,dMM < ¢(C) max{\(/\f/4)1_7 — ()\’)1_7‘27 |()\1—/4)1—7 _ ()\/)1—7‘2}
< c(C)/ d%, dpuar + c(C)IAT7 = (N2,
By

It remains only to control the annular region By \ By 4.

Choose €(A4, C) sufficiently small so that if |A\] < A4, then the nearest
point projection from B.(C) N By \ B4 onto Sy is smooth and lies in Sy N
Bs \ By /g. Ensure that As(e, A4, C) < A4 is sufficiently small, so that |A\| < As
implies Sy N Bz \ By/g C Be/2(C).

Given = € By \ By, first assume that x ¢ B(C). In this case

¢/2 < d(z,Sy) < 2,

and hence we have

da,dﬂM <Adpp(By) < (16/62)6(0)/ d%AduM.
(Bi\B1/4)\B¢(C)
Now assume = € B.(C). Let 2’ be the nearest point projection to C, and
let u(z') = — 2. Since |vx| + [Vur| < ¢(C)|As|™" on By \ By g, we have
d(z,853) = (1 +¥(As5]C))|z — va(a’)-
In particular, ensuring that As(C) is sufficiently small and using Lemma 2.4,
we get,

/(31\31/4)\35(0)

d(:c, S}J) S 2‘1‘ — ’U)J(l'/)‘
< 2z — oa(z)] + 2Jon (z) — va(2)]
< dd(z, 83) + ¢(C)|(\) 77 = A7,

Integrating duy over Bi N Be(C) \ By 4 gives the required result. O

6. L*-excess decay
In this section we work towards the following decay estimate.

PROPOSITION 6.1 (Decay Lemma). Given any 0 < 6 < %, there are posi-
tive constants 06(C, 0), Ag(C, ), c6(C), and a(C), so that the following holds:
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If IN < Ag, and M is a stationary integral n-varifold in By, satisfying
(38)

7 N 1
de dpy < E <63, pu(By) < 1#0(31)7 pnm (Byio) > 5#0(31/10),

B1
then we can find a € R"! g € SO(n + 1), and N € R with
(39) lal + g = 1d[ + [(X)'77 = A7 < BV
so that

o . 3
(40) ¢ 2/3 ( )d?ﬁq(s ydpnr < c60** B, par(Byjio(a)) > 1#c(Bojio)-
o(a

We first define a general notion of blow-up sequence and show how any
blow-up sequence gives rise to a Jacobi field, i.e., a solution of the linearized
problem L¢(w) = 0.

Definition 6.1.1. Consider the sequences a; ER"1, \;€R, ¢;€SO(n + 1),
M; stationary integral n-varifolds in B; € R™! and E; € R. We say the
collection (M;, E;, a;, Ai, ;) is a blow-up sequence if
(1) a; =0, \; = 0, ¢; — Id, E; — 0;

(2) pag,(B1) < fpc(Br), par,(Bijio) > Suc(Bijo);
-1
(3) limsup; E; fBl lli+Qi(S>\i)d'uMi < 0.

PROPOSITION 6.2. Let (M;, B, ai, Niyqi) be a blow-up sequence. From
Theorem 5.1, there is a sequence of radit ; — 0 so that

M 0 Byjs \ Br, = graphy, o q,s, ) (i), Zrk LVRu| — 0
k=0
and
(a; 4+ qi(Sy,)) \ By, = graphg(¢:), Zrk LV — 0.
k=0

Write ®;(z) = x + ¢;(x)ve for the graphing function associated to ¢;.

There is a subsequence, also denoted i, and there is a solution w : CN
Byjy — R to Lc(w) = 0 satisfying the following:
(1) smooth convergence: Ei_l/Qui o ®; — w smoothly on compact subsets of

CN B\ {0};
(2) L decay: for all v < 1/4:

w(rw)? < ¢(C)r (hmsupE / a,Jrql(S/\.)dlu’Mi) ;

(3) strong L? convergence:

»Jk\’—‘
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Remark 6.3. For shorthand, we will often say F, Y 2ui converges smoothly
to w to indicate convergence as in Proposition 6.2(1).

Proof. Part (1) is a fairly standard argument (see, e.g., [12]). Parts (2)
and (3) follow directly from Theorem 5.1. We outline the argument of part
(1). Since a;+¢q;(Sy,) converges smoothly to C on compact subsets of By \ {0},
the coefficients of Mai+Qi(SAi)7 Lot S,,) converge locally smoothly to those of
Mg, Lc. Using this and standard elliptic estimates, we have for any compact
K C (a; + qi(Sx;)) N Byja \ {0}, and I = 0,1,2...., uniform estimates of the

form
1/2
u? d7-[">

1/2
172 (. _
< (K, l)Ei/ (hmsupEi l/B dzﬁqi(ski)dum) .
g 1

sup [Vhui| < e(K, I ( /
(41) K (ai+qi(Sx;))NB1/2

Of course by assumption, ®; — 0 in CX(C N By \ {0}). After passing to
a subsequence, we deduce Cfy (C N Byy \ {0}) convergence of the functions

E_l/Qui o ®; to some w € C°(C N Byyy).

(A
Now we can write

0= Mai+q7;(5)\i)(ui) - [’Z(ul) + g’b(ul)a

where £; = L, 4,(s,,) converges smoothly away from 0 to the operator Lc,
and where

)

1/2
up €s,, ()] < O lula ey = o) ;"
It follows easily that w solves the Jacobi operator Lc(w) = 0. O

Proof of Proposition 6.1. Choose a(C) so that 7§ = 1 < 1+ a < 7.
Fix 0 < 6 < 1/8. We first prove the decay estimate. Suppose, towards a
contradiction, that there are sequences of numbers ; — 0, \; — 0, E; — 0,
and stationary integral varifolds M; in By which satisfy

/B1 d%&dﬂMi < E; <6, pu(Br) < ZMC(Bl), pinr;, (Bij0) > éMC(Bum),
but for which
o2 /B " &2 s,y dmt, > cot” E;
for any a € R"*1, ¢ € SO(n + 1), X' € R satisfying
al +lg = 1d] + X = "7 < e,
and ¢(C) to be fixed shortly.



1034 NICK EDELEN and LUCA SPOLAOR

For any sequence 7;, §; tending to 0 sufficiently slowly, by Theorem 5.1
we can write

sptM; N Byjy \ By, = graphSAi(ui), Zrkil\vkui\ < Gi.
k=0

By definition, (M;, E;, 0, \;, Id) is a blow-up sequence, and so by Proposition 6.2
there is a solution w : CN By /4y — R to Lw = 0 satisfying:

(42) / w?duc <1, |w(rw)| < e(C)r7,
By
so that, after passing to a subsequence (also denoted i),
Ei_l/2u7; —w

smoothly on compact subsets of C N By \ {0}, and
— 1
B, B,

Using the pointwise bound (42) combined with [15, (2.10) Lemma)] to kill
the modes v, ", 7 € N, and the strongly integrable nature of C, there are e € R,
b€ R"! and A a skew-symmetric (n + 1) x (n + 1) matrix, so that we can
expand w in L?(C N Bi4) as

wirw =) = er’ +vg(rw) - (b+ Az) + Z r“’;zj(w),
i >1+a

where the sum is L?(X)-orthogonal for each fixed r. In particular, using the
L? bound (42) and an appropriate choice of r € (3, 1), we get
le| + [b] + [A] < e2(C),

and by L?(X)-orthogonality,

43) Rl g

+
j:'y;rZH-a 27j tn
We shall demonstrate that by choosing appropriate A, a;, g;, we can ar-
range so that e =0, b =0, A = 0. Define
(44) Xo= () 4 A7)0,
(45) a; = bE?,

(46) qi = exp(4;) for A; = AEil/z.
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We first show that by replacing A\; with A}, we can get the same Jacobi
field except with e = 0. Trivially A, — 0, and Corollary 5.2 implies that
(M;, E;,0,X;,1d) is a blow-up sequence also. Our choice (44) implies that

vy — v, = (1+0(D) ()7 = A7) = (1+o(1)eE; 7,

7

where we write o(1) to signify any function which tends to 0 as i — co. We
can write

S)\fb_ n Bl \Bq—l - graphs)\i (vi)a

where setting z = rw + vy, (rw)ve(rw),

vi(@) = (va; — va)(@)] < o(1)|(vy — vx,)(@)]-
In other words,

vi(z) = (1 + o(1))eE .

(2

Write
SptMrL N Bl/2 \ BTi == graphSM (’Ebl)

If we set y =z + vi(z)vg, (z) (for  as above), then

- 1/2
i(y) = (1+ 0(1)) (us(w) — vi(@)) = (14 o(1))us(w) — (1 + o(1))e B/ %17,
Applying Proposition 6.2 to the blow-up sequence (M;, E;, 0, A, 1d), we deduce
that, after passing to a further subsequence, £, Y/ 2111‘ converges smoothly on
compact subsets to
w—-er’ =ve(rw) - (b+ Az) + Z Tﬁzj(w),
Jf >14a
and we have strong L? convergence
1
Ez_l/ d%  duns, — (w—er")dpc Vp < =
B, i B 4
P p
We now show how our choice a;, ¢; as defined in (45) and (46) yields the
same Jacobi field except with b = 0, A = 0 (in addition to e = 0). This is more
standard and essentially follows the usual “integrability through rotations”
argument.
It is easy to check that |a;| + [¢; — Id| < C(C)Eil/2. Since
drr(Sy N Ba, (a; + 4i(Sy) N Ba) < ¢(C)E}"?,
it follows that (M;, Ej, a;, \;, g;) is a blow-up sequence also. We can write
(ai +qi(Sx;)) N By \ Br, = graphg,, (vs)
(for 7; — 0 sufficiently slowly), where

vi(@) = (L+o(1)vs,, (z) - (a; + Ai(2))-
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So now if @; is the graphing function of M; over a; + ¢;(.S ,\2), and u; is the
graphing function of M; over S X then we have

@i + vi(@)vs,, (@) = (ui(@) = vi(@))] < o(D)lui() = vi(a)]
This implies that
iiy) = (1+ o(1))(wi(x) — vi(a)
= (L+o(1)ui(w) — (14 o(L)vs,, (2) - (b+ A(x)) E;"*.
Applying Proposition 6.2 to this new blow-up sequence, we deduce that (after

passing to a further subsequence) E; Y 2711‘ converges smoothly on compact
subsets to

w—er’ —ve(rw) - (b+ Az) = Z T’Y;sz(w),
i) 214a

and we have strong L? convergence

|

P

We have demonstrated that by judiciously choosing our a;, ¢;, A, we can
arrange so that .
w = Z i zi(w),
Jf >1+a

where z; continue to satisfy the bound (43). Using (43) and the fact that
40 < 1, we compute

+
26 2'Yj “+n
Pao jot>ida >

+
< max (89)%% "
Jf >14a

< (89)n+2+2a‘
So by the strong L? convergence, for sufficiently large i, we must have
/ Qo gi(sy) Ang, < 16™HHH20gnE22e
Bao @

To recenter, we simply observe that for ¢ sufficiently large, we have
Byg(a;) C Bag,

and hence we get
—n—2 2 402
o / a;+q,(5,) M < 32" 6 E;,
By(a;) o

which is a contradiction for sufficiently large 7.
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Finally let us establish the lower volume bound (40). This is a straightfor-
ward proof by contradiction. Suppose otherwise: there is a sequence §; — 0,
Ai — 0, and M; satisfying the hypotheses (38), and the decay of (39) and (40),
but for which

i (Boyno(a) < > uc(Boo)
for all 4.
By compactness of stationary varifolds, we can pass to a subsequence (also
denoted 7) so that M; — M in B; for some integral stationary n-varifold M

in By. Since
/ d&dpyr, — 0,
B1

by the constancy theorem, M = k[C] for some integer k. Since /JM(T/IO) >

%MC(B1/10), we must have k > 1. Since pa(B1) < Zuc(Bi), we must have

kE <1. Soin fact k =1, and we deduce that M; varifold converge to [C] in B;.
Since |a;| — 0, for any 0 < € < 1 and sufficiently large i, we have

par; (Baio(ai)) > par, (Bi—eyo/10) — pe(Ba—ae/i0) = (1 —€)"uc(Bg/io)-

Choosing €(n) sufficiently small, so that (1—¢)” > %, we obtain a contradiction
for large 4. This completes the proof of Proposition 6.1 U

7. Regularity

The key idea to obtain regularity is to iterate the (scale-invariant) Propo-
sition 6.1 at decreasing scales r; = 6%, obtaining for each scale an a;, ¢;, A}, until
we reach a scale at which r; &~ |\;|. This is the radius at which we start to
“see” the foliation as separate from the cone, and this is the radius at which
we stop. If no such radius exists, we keep iterating until radius 0 to deduce
regularity over the cone. Note that, from only the information we start with,
we have no way of predetermining how large this radius is.

PROPOSITION 7.1. There are positive constants (C), 07(C), A7(C), and
c7(C) so that the following holds. Take |A| < A7, and let M be a stationary
integral varifold in By satisfying

(47)
3 - 1
; d% duy < E <63, pn(Br) < Jhc(B), - uai(Bijio) = Sre(Bijo):
1
Then there are a € R g € SO(n + 1), and N € R with
(48) la] + | = 1d| + |(N)' 77 = A7 < r B2,

so that for all 1 > r > c7|N'|, we have the decay

(49) o /B (a) dirq(s/\/)d’u’M < C7T2/BE
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and the volume bounds

7 —_— 1
(50) v (Br(a)) < ZMC(Br)a MM(Br/lo(a)) 2 ;NC(BT/N)‘

Remark 7.2. In fact one can take 8 to be anything in the interval (0, «),
except of course in this case the various constants d7, ¢y will depend on the

choice of 3 also.

Proof. Ensure A7 <min{As, Ag} (the constants from Corollary 5.2, Propo-
sition 6.1). Fix 6(C) < 1/4 sufficiently small so that cg0** < 1/4. Set r; = 6°.
We claim that we can find an integer I < oo and sequences a; € R"1,
¢ € SO(n+1),and \; € R, (i =0,1,...,I), so that for all i < I we have

(51) ao=0, qg=Id, X=X 1r9=1,

sy el a0 = ()1
< 2 'EY?,

(53) |Ai| < Agry,

the decay

(54) ry " / ( )dii sy < 47E,

and the volume bounds
1

(55)  p(Brfas) < (B, rar(Bropuo(@) 2 e (B o)
Moreover, if I < oo, then
|)\[| > A7ry.
Let us prove this by induction. Let us first show how the upper volume
bound of (55) follows from (52). If we have ay, ..., a;, satisfying (52), then

i—1 i—1
|ai\ S Z |CL]'+1 — CL]'| S 06E1/2 Z’I“i S 26667.
7=0 7=0

Therefore, provided §7(C) is sufficiently small, by volume monotonicity we
have

pna (Bri(ai)) < (1 = 2¢667)"" pag (Bu)ry’

(1 = 2c667) " (3/2)uc(By)ry

(7/4) nc(Br,).-

It remains to show the existence of the a;, q;, ;. We set ag = 0, qo = 1d,

Ao = A as in (51). Since |Ag| = |A| < A7, we can apply Proposition 6.1 to M
to obtain a, q1, A1, which satisfy the required estimates. If |A\1| > A7ri, we set

<
<

I =1 and stop. This proves the base case of our induction.
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Suppose, by inductive hypothesis, that we have found a;, g;, \; satisfying
(52), (53), (54) and (55), and for which |A;| < A7r;. By inductive hypotheses,
we can apply Proposition 6.1 to the varifold M; = (¢;” 1)ﬁ(77ai,ri)ﬁM and foliate

Sr;lAi to obtain @;11, Gi+1, \i+1 satisfying (39) and (40). If we let

is1 = qi(ri@iis1) + @i, Gis1 =i 0 Gir1s  Aip1 = Fidiy1,
then it follows by scaling that this a;i1,¢;+1, Air1 satisfies the requirement
estimates. If |A;11| > A77ip1, we stop and set I =i + 1. Otherwise, continue.
By mathematical induction this proves the existence of the sequences.

If I < oo, then let a = aj,q = g7, N = A\;. Otherwise, observe that (52)
implies that a;, ¢; form a Cauchy sequence, and hence we take a = lim; a;,
q = limi q;, N = 0= limi )\Z‘.

From (52), for every i < I, we have

rita —ai| + g — i)+ T = ()] < 6eg2 7 BV,

In particular, taking i = 0 gives (48).

Given any r; < r < 1, choose integer ¢ < I so that r;11 < r < r;. Then,
ensuring that A7(C), d7(C) are sufficiently small and using Corollary 5.2, we
have

—n—2 2
T d;, N,
/B,.(a) FaSy)

<erPla—aif’ +elg —al® + e TN = ()P

56 —n—2 2
( ) -+ C?"l- /; (a dari’%(s)\l)duM

< ¢(C)4'E
< ¢(C)r?°E,

where 8 =log(1/2)/log(6) > 0. Finally, observe that (52) and (53) imply
Arp < |>\/’ < Arp_1+ (66(57)1/(177)7"1_1 < C(C)T‘[.

Therefore, after enlarging our constant ¢(C), we can take r > |X| in (56). The
volume bounds follow directly from (55) and (52), and monotonicity. This
finishes the proof of Proposition 7.1. ([

The proof of Theorem 3.1 is now essentially a straightforward application
of Allard’s theorem.

Proof of Theorem 3.1. Ensure that 61 < d7, and take Ay = A;. Apply
Proposition 7.1 to obtain a, g, \'. For every c¢7|\'| < r < 1, a straightforward
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contradiction argument as in the proof of Theorem 5.1 implies that
sptM N Br/? (a) \ Br/lOO(a) = grapha+q(s>\/)(u)v
rHul + |Vul 4 [Vulg, < (C)rPEY?

for some w : (a4 q(Sx)) N B, j2(a) \ B, ja00(a) — R. If X = 0, we are done.
Suppose X' # 0. After scaling up by |\'|, it suffices to show that there is
au: (a+q(Ssgnny)) N Be,2(a) = R so that

sptM N Bc7/2(a) = glraphcqu(ssign(A,))(u)7 | + V| + [Vl < C(C)E1/27
provided
Ch9 )
Cr /BC7(a) da-l—q(Ssign()\,))dpM <cFE
and

7 _ 1
MM(BC7(CL)) < 1“0(307)7 /’LM(BC7/10(G’)) 2 ;HC(Bw/lO)'

However because Sgign(r) N B, is smooth with bounded geometry, the required
statement follows by Allard regularity and an easy contradiction argument,
taking £ — 0. U

8. Mean curvature

When M has non-zero mean curvature, then we cannot use the maximum
principle to conclude as in Proposition 6.1. However, provided the mean cur-
vature is sufficiently small and L? excess sufficiently large, then we can still
get decay to one scale (Proposition 8.1), by a straightforward contradiction
argument, which suffices to characterize the singular nature, if not the precise
local structure.

Iterating this gives scale-invariant smallness of the excess (Proposition 8.2),
rather than decay. At each scale we can deduce closeness to some rotate/
translate of the cone C (and hence foliate Sy ), but we cannot deduce that the
rotations form a Cauchy sequence as we progress in scale. If at some scale A
becomes big, we stop, and we can deduce that M N By, is a C1® deformation
of S1 (without effective estimates). If we continue all the way to scale 0,
then we deduce that M N By, has an isolated singularity modeled on C, and
a posteriori by [2] we can deduce that M N By 5 is a C1® graph over C.

PROPOSITION 8.1. For any 6 € (0,%), Ey € (0,62), there is a positive

es(C, 0, Ey) so that the following holds. Assume that M is an integral n-varifold
in By, satisfying ||0M||(B1) < es, and for some E € [Ep, 82], |A\| < Ag, we have

7 N 1
(57) /B d% dun < B, pu(By) < ZHC(B1)7 i (Bij10) > 5#0(31/10)-
1
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Then there is an a € R"1 g € SO(n + 1), X € R, satisfying
(58) la + lg = 1d[ +|(N)' 77 = A'77| < 26 B2,
so that

—n— « n (N 1
(59) 6 2/3 ( )d(21+q(SA,)dMM < 2¢60°*E,  par(Byio(a)) > 2#c(Bg/io0)-
ola

Here §6(C, 0), c6(C) are the constants from Proposition 6.1.

Proof. Suppose, towards a contradiction, there are sequences of integral
n-varifolds M;, and numbers ¢; — 0, E; € [Ey, 62], so that M; satisfy (57) and
[|6M;||(B1) < €, but for which (59) fails for all a, ¢, \" satisfying (58).

We can pass to a subsequence, also denoted ¢, and obtain varifold converge
M; — M and convergence E; — E € [Ep,d3). The resulting n-varifold M is
stationary in By, continues to satisfy (57), but fails (59) for all a, ¢, \’ satisfying
(58). However, M satisfies the hypotheses of Proposition 6.1, contradicting the
conclusions of Proposition 6.1. This proves Proposition 8.1. (]

PROPOSITION 8.2. There are d9(C), cg(C) positive so that for any E €
(0,09] and p > n, we can find an e9(C, E,p) > 0 for which the following holds.
Let M is an integral n-varifold in By with generalized mean curvature Hy; and
zero generalized boundary, and suppose M satisfies

3 —_ 1
[ i < B (B0 < JcBr), nan(Buja) = quc(Bio)
1

1/p
(/ |HM|pd/~LM) < e,
By

for some || < A7 (the constant from Proposition 7.1).
Then we can find a € R" XN € R, and ¢. € SO(n+1) for each 1 > r >
co|N'|, which together satisfy

lal + [og(r)| " gr — Td| + |(N)' 77 = A 77| < e EV/2,

and

and for which we have at every radius 1 > r > cg|N'| the smallness

—n—2 2
T di o s dun < coF,
/Br(a) +qr (S)\ )
and the volume bounds
7 _ 1
pae (Br(a)) < Z,U’C(Br)a ,UM(Br/w(a)) 2 CT).“C(BT/IO)'

Proof. The proof is almost verbatim to Proposition 7.1, except we use
Proposition 8.1 in place of Proposition 6.1. Notice that Proposition 8.1 requires
a lower bound on E, and so we cannot deduce decay of the L? excess, only
smallness. Choose 6(C) as in Proposition 8.1, and set ; = §?. We claim that



1042 NICK EDELEN and LUCA SPOLAOR

we can find an integer I < oo and sequences a; € R"™! ¢; € SO(n+1), \; € R
(i=0,...,I) so that for all i < I, we have

(60) ag = 07 qgo = Id7 )‘0 = 07
61) 7 Yairr — ad + lgi — @l + 75 O )T = )] < 266EY2,
(62)  |Ni| < Aqry,

the smallness
(63)

1/p
i / dovra(spdinr < B, 1 </ ‘HM‘WM> =
Bri(ai) g BT‘,L' ai)

and the volume bounds
7 - 1
(64) par(Bri(ai)) < Jpuc(Br), par(Briolai)) 2 Sue(Brijo)-

We proceed by induction. Ensure that d9 < 07(C). As in the proof of
Proposition 7.1, given ao,...,a; satisfying (61), we have |a;| < 4cgdg, and
hence by volume monotonicity (1),

v (Bri(ai)) < (14 ¢(p, C)eg)(1 — degdo) ™" par (Br)ri" < (7/4)uc(Br,)

provided d9(C) and eg(C, p) are sufficiently small. This proves the upper vol-
ume bounds (64). The mean curvature bound in (63) follows trivially from
p>n.

To obtain the a;, g;, \;, we first observe that, given any «a;, ¢; above, if we
set M; = (¢; )4 (Ma;r )M, then

IoatliB) =+ [ gl
BTi a;

1/p
< (/ ( )|HM|pduM> ping (By, (a;)) =17
BH‘ a;
< ¢(C)eg.

In particular, ensuring eg(C, p) is sufficiently small, we can ensure ||6M;||(B)
< e3(C,p). We can therefore proceed as in the proof of Proposition 7.1, using
Proposition 8.1 in place of Proposition 6.1. O

Proof of Corollary 3.4. Ensuring d3 < dg, €3 < €9(d, p), then we can obtain
a, A and ¢, as in Proposition 8.1. A straightforward argument by contradiction,
like in the proof of Theorem 3.1, shows that for every 1 > r > ¢l N|,

sptMN B, 2(a)\B,100(a) = graphaq (s, (W), 7~ ul+[Vul+[Vulg, < c(C)9,
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(provided 03, €3 are sufficiently small, depending on C, p). If X = 0, this
shows that any tangent cone at a is rotation of C. Therefore, shrinking ds, €3
as necessary, [2] implies sptM N By, is a CY# perturbation of C.

If ) # 0, then arguing as in the proof of Theorem 3.1, we get that

sptM 0 Beypvia(a) = graphyy g (5,0 (W), 7 ul + [Vul + [Vulg < ¢(C)d.

In particular, M By, is entirely regular. ]

9. Corollaries, related results

In this section we give an alternate proof of [15, Th. 0.3] (i.e., Corol-
lary 3.7 of this paper) using our main regularity Theorem 3.1. We also show
how the work of [5] implies a uniqueness result for minimal graphs over C
(Proposition 3.3).

Proof of Corollary 3.7. Let
E;=R;"? / dgdpin.
B,

By hypothesis, F; — 0. For all ¢ sufficiently large, we can apply Theorem 3.1
to deduce the existence of a; € R"™! ¢, € SO(n +1),\; € R, and u; : (a; +
¢i(Sy,)) N Br,(ai) = R, so that for all c7|A\;| <7 < R;,

(65)  sptM N By(a;) = grapha#qi(SAi)(ui), | + | V| < c(C)Eil/z.

Suppose, towards a contradiction, that a; — oo. Let U;(z) = x +
ui(ac)ual.Jrqi(SM)(a:) be the graphing function associated to u;. From (65) we
have that |U;(x) — x| < o(1)|z — a;].

Fix any p > 0. Then by the previous paragraph, we have

U (sptM N B,) C (ai + qi(Sx,)) N Bojay(ai) \ Biay|j2(a:i)

(2

for i sufficiently large. Now the curvature of (a;+qi(Sx,;)) N Bajq,|(ai)\ Bja,|/2(a:)

tends to zero uniformly as i — oo, and |Vu;| = o(1), so we must have that

sptM N B, is contained in a plane. Taking p — oo, we deduce sptM is planar,

and hence C is planar also. This is a contradiction, and so a; must be bounded.
By (65), we have

1
d(0,sptM) = d(0,a; + gi(S»,)) + o(1)]ai| = ml&'l — c(C)]ai|
for 4 large. Since a; is bounded, we must have that A; is bounded also. We
can pass to a subsequence, also denoted i, so that a; —+0, A\; = A, and ¢; — ¢
€ SO(n + 1). We get smooth convergence on compact subsets of R**1\ {a},

a; + qi(Sx;) — a+q(Sy),
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and C’lloC convergence u; — 0. We deduce that sptM = a + ¢(S)), which is the
desired conclusion. ([l

9.1. Uniqueness of graphs over C. In [5], Caffarelli, Hardt, and Simon
prove the following theorem constructing a plethora of examples of minimal
surfaces in By, which are perturbations of a given minimal cone. To state their
theorem properly we need some notation. Given J € N, define the projection
mapping I : L2(X) — L3(%)

M(g)(rw) = > <g,¢; >r2x) 7 ¢(w).
j>J+1

For shorthand, write C; = C N By.

THEOREM 9.2 ([5]). Take m > 1, a € (0,1), and J € N so that v} <
m < ’y}'Jrl. There are e(C,m, ), A(C,m, ) positive so that given any g € C**
satisfying |glo.a < €, and any X € (0, A), then there is a solution uy € C*%(Cy)
to the problem

Mc(u) =0 on Cq, IIj(uy) = Als(g) on X,

satisfying
r""Mulgar < e(C,m, @) gl2a VO <r <1

Loosely speaking, the authors of [5] are solving a boundary-value-type
problem, where one is allowed to specify the decay rate at r = 0, and the
Fourier modes at r = 1 which decay faster than the prescribed rate. Though
they do not comment on it, implicit in their work is the uniqueness statement
of Proposition 3.3. The basic idea is that solutions to the minimal surface
operator can be written as fixed points to a contraction mapping, provided
the solutions decay like r'*¢ and have boundary data sufficiently small. We
illustrate this below.

Proof of Proposition 3.3. We use the notation of Theorem 3.1. Fix an
a € (0,1), and given w € C*%(Cy), define the norm
(66) lw|p = sup Plulzan

0<r<1
Pick J so that ’yj =1, and recall that 1 + 5 € (’yj,fyjﬂ).

By assumption, we have sptM N By, = graphUCa+q(C)(u), where u satis-
fies the estimates (11). Since we are concerned with M N By 4, ensuring d2(C)
is small, there is no loss in assuming (after scaling, translating, rotating) that
sptM = graphg, (u). By standard interior elliptic estimates and decay (11),
we can assume that u is smooth and satisfies

lulp < ¢(C, a)ds.
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We can write the mean curvature operator as
Mc(u) = Lo(u) + E(u),

where the non-linear error part £(u) satisfies certain, relatively standard scale-
invariant structure conditions (see [5]). Given g € C*%(X), in [5] it is shown
that there are numbers €19 < d19, depending only on C, «, so that provided
|g|2,a < €10, then for every w in the convex space

Bi={weC*(C1): Ij(w=)=1(9), |wlp<do}
there is a unique solution v =: U(w) € B to the linear problem

Lc(v) =—=&(w) on C1, I (vy=1)=1I;(g) on X,
1/2
sup r# (/ v(rw)de> < 00,
b

0<r<1

and moreover, that U is a contraction mapping on B.

To prove Proposition 3.3 it therefore suffices to show that, with g = u/,—1,
then w € B and |g|2.« < €10. However, both of these follow from (66) by
ensuring d2(C, «) is sufficiently small. O
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