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Abstract
In this manuscript, we consider a finite multivariate nonparametric mixture model where 
the dependence between the marginal densities is modeled using the copula device. 
Pseudo expectation–maximization (EM) stochastic algorithms were recently proposed 
to estimate all of the components of this model under a location-scale constraint on 
the marginals. Here, we introduce a deterministic algorithm that seeks to maximize a 
smoothed semiparametric likelihood. No location-scale assumption is made about the 
marginals. The algorithm is monotonic in one special case, and, in another, leads to 
“approximate monotonicity”—whereby the difference between successive values of the 
objective function becomes non-negative up to an additive term that becomes negligible 
after a sufficiently large number of iterations. The behavior of this algorithm is illustrated 
on several simulated and real datasets. The results suggest that, under suitable condi-
tions, the proposed algorithm may indeed be monotonic in general. A discussion of the 
results and some possible future research directions round out our presentation.
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1  Introduction

Let

be a multivariate mixture model with K components (or clusters—we shall use these 
two words interchangeably). We view the model (1) as a nonparametric mixture 
model where individual components fk are not defined as belonging to any specific 
parametric family. The research on selecting the number of components for non- and 
semiparametric density mixtures is currently at a very early stage; some develop-
ments in this area can be found in e.g. Kasahara and Shimotsu (2014) and Kwon and 
Mbakop (2021). Due to this, we assume that the number of components K is fixed 
and known in our model. In general, most of the work on nonparametric mixture 
modeling so far assumed that the marginal distributions fk1,… , fkd of each compo-
nent are conditionally independent. Such an assumption implies that, conditional on 
knowing which component a particular observation has been generated from, its dis-
tribution is equal to the product of its marginals. More formally, this means that

This model has been introduced for the first time in Hall and Zhou (2003). The con-
ditions sufficient to ensure identifiability for the conditionally independent model 
are known (Allman et al. 2009). There are also a number of approaches to estimat-
ing their parameters (Xiang et al. 2019), both iterative (Benaglia et al. 2009, Lev-
ine et al. 2011) and closed form solutions (Bonhomme et al. 2016). However, the 
assumption of conditional independence is not always a realistic one. For example, 
it is unlikely to be true when dealing with RNA-seq data (Rau et al. 2015). Thus, it 
seems desirable to relax this assumption while retaining the generality of the non-
parametric approach.

To the best of our knowledge, the only known results on estimation of nonpara-
metric mixture models with conditionally non-independent components are Mazo 
(2017), Mazo and Averyanov (2019). A somewhat related model was also consid-
ered in Vrac et  al. (2012). There, however, the authors model not the distribution 
of observations, but rather the distribution of a number of cumulative distribution 
curves assumed to represent observations. Thus, they assume that, at any moment 
in time, one can observe an entire cumulative distribution curve F(x) for any of the 
K possible distributions comprising the overall mixture. This is not at all possible in 
our setting.

Mazo (2017) and Mazo and Averyanov (2019) consider a special case of the gen-
eral nonparametric mixture model, allowing for a non-trivial dependence structure 
where the marginals are assumed to belong to a location-scale family. Stochastic 
algorithms were proposed to estimate the copula parameter and the nonparametric 
marginals. The estimation algorithms, while performing well in practice, do not 

(1)g(x) = g(x1,… , xd) =
K
∑

k=1
�kfk(x1,… , xd)

g(x) =

K∑

k=1

�k

d∏

j=1

fkj(xj).
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optimize any particular objective function. Because of this, their convergence analy-
sis will necessarily be a difficult one. In this manuscript, our goal is to suggest a 
deterministic algorithm capable of estimating the components of a nonparametric 
mixture model with conditionally non-independent components without a location-
scale assumption for the marginals, since such an assumption is far from commonly 
satisfied in applications.

In order to continue, we are going to fix the notation first. It is well-known that, 
due to Sklar’s theorem (Nelsen 2007,  p. 18), every d− dimensional multivariate 
cumulative distribution function can be represented as a copula of the corresponding 
marginal cumulative distribution functions. Indeed, let Fk1(x1),… ,Fkd(xd) be the 
marginal cumulative distribution functions of the cumulative distribution function 
Fk(x1,… , xd) that corresponds to the density fk(x1,… , xd). Then, there exists a d− 
copula Ck, which is a function Ck ∶ [0, 1]d → [0, 1], such that

see Nelsen (2007, p. 46). If the marginal cumulative distribution functions are con-
tinuous, then the copula is unique. The copula Ck can be viewed as a d-dimensional 
cumulative distribution function with uniform marginal distributions. Taking the 
derivative of order d, one immediately obtains the representation

where ck is the density of the copula Ck . We assume that each copula density ck 
belongs to some parametric family of copula densities indexed by a parameter �k . 
Due to this, from now on we will use the index k as a subscript for �k only but 
will drop this subscript for ck . Denoting by � the set of all marginal densities {fkj} , 
and denoting by � = (�1,… ,�K)

� and � = (�1,… , �K)
� the vectors of all weights and 

copula parameters, respectively, we have

so that (1) and (2) define a class of mixture densities that can be stated as g(⋅;�, �,�). 
To the best of our knowledge, no identifiability results are available concerning this 
model.

The rest of this manuscript is structured as follows. Section 2 introduces a gen-
eral algorithm that can be used to estimate finite mixtures of multivariate densities 
with a dependence structure defined through the use of copulas. Section 3 provides 
some results about the monotonicity property of two simplified versions of this algo-
rithm. Section 4 details the implementation of the algorithm. Section 5 analyses the 
performance of our algorithm with several simulation studies. Section  6 presents 
applications to two real datasets. Finally, the conclusion section discusses the results 
obtained and suggests possible directions for future research.

Fk(x1,… , xd) = Ck(Fk1(x1),… ,Fkd(xd)),

fk(x1,… , xd) = ck(Fk1(x1),… ,Fkd(xd))

d∏

j=1

fkj(xj)

(2)fk(x;�,�) = fk(x1,… , xd;�,�) = c(Fk1(x1),… ,Fkd(xd);�k)

d∏

j=1

fkj(xj),
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2 � Algorithm

The goal of our manuscript is to estimate the components and weights of the 
model (1)–(2). The definition of such an algorithm starts with an objective func-
tion that we are going to introduce next. First, let K(⋅) be a proper univariate den-
sity function that can be used for kernel density estimation and Kh(⋅) ∶=

1

h
K
(

⋅

h

)
 

its rescaled version where h > 0 is a bandwidth. Next, for a generic function f,  we 
define

which is a nonlinear smoother of the function f. Note that, even if f is a density, Nf  
is not, in general a density due to Jensen’s inequality. Now, we define the opera-
tor O by Ofk(x;�,�) = c(Fk1(x1),… ,Fkd(xd);�k)

∏d

j=1
Nfkj(xj) . This definition allows 

different bandwidths for different dimensions and clusters, if needed. Finally, let us 
denote ǧ(x;𝜋, 𝜃,𝜑) =

∑K

k=1
𝜋kOfk(x;𝜃,𝜑).

The objective function we seek to maximize is the population version of the 
smoothed semiparametric log-likelihood, given by

over all (�, �,�) ; here g(x) is the target density. If the marginal distributions are con-
ditionally independent then c(u1,… , ud;�k) ≡ 1 for every �k and k, and hence  (4) 
reduces to the smoothed semiparametric log-likelihood considered in Levine et al. 
(2011).

Lemma 1  For any choice of parameters �̃, �̃, �̃, the smoothed loglikelihood differ-
ence is bounded as

where the cumulative distribution functions F̃kj are those associated with {f̃kj} = �̃ 
and

k = 1,… ,K.

(3)Nhf (x) ∶= exp

(

∫ Kh(x − u) log f (u) du

)

(4)�(𝜋, 𝜃,𝜑) = ∫ g(x) log
ǧ(x;𝜋, 𝜃,𝜑)

g(x)
dx,

�(�, �,�) − �(�̃, �̃, �̃) ≤
K�

k=1

− log
�̃k

�k � g(x)wk(x;�, �,�)dx

− � g(x)

K�

k=1

wk(x;�, �,�) log

∏d

j=1
Nf̃kj(xj)

∏d

j=1
Nfkj(xj)

dx

− � g(x)

K�

k=1

wk(x;�, �,�) log
c(F̃k1(x1),… , F̃kd(xd);�̃k)

c(Fk1(x1),… ,Fkd(xd);�k)
dx

∶=Ψ1(�̃�� , � ,�) + Ψ2(�̃�� , � ,�) + Ψ3(�̃, �̃�� , � ,�),

(5)wk(x;𝜋, 𝜃,𝜑) = 𝜋kOfk(x;𝜃,𝜑)∕ǧ(x;𝜋, 𝜃,𝜑),
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Proof of Lemma 1  By definition, the difference of smoothed log-likelihoods can be 
written down as

At this point, it remains only to apply Jensen’s inequality to a convex combination 
on the right-hand side whose coefficients are wk(x;�,�). 	�  ◻

Instead of minimizing �(�, �,�) − �(�̃, �̃, �̃) with respect to (�̃, �̃, �̃) directly, 
we seek to minimize the upper bound proposed by Lemma 1. This approach is in 
the spirit of Minimization–Majorization (MM) algorithms; see e.g. Wu and Lange 
(2010) for the detailed discussion. To do this, our heuristic is to minimize each of 
the three terms Ψ1(�̃|� , � ,�) , Ψ2(�̃|� , � ,�) , Ψ3(�̃, �̃|� , � ,�) separately. This is 
sometimes called “minimization by part”. To minimize the first term Ψ1(�̃|� , � ,�) , 
we have to choose �̃ = �̂  where �̂k = ∫ g(x)wk(x;� , � ,�) dx, k = 1,… ,K. This is 
the result that can be obtained using standard constrained optimization techniques. 
Note that the resulting minimum must be non-positive since the first term can be 
made zero by choosing �̃ = �. To minimize the second term Ψ2(�̃|� , � ,�) , define, 
as a first step,

for any k = 1,… ,K and j = 1,… , d , where �kj is the normalizing constant ensuring 
that the newly defined f̂kj is, indeed, a proper density function. Then, we have

The same argument as in Levine et al. (2011) applies: the quantity above is mini-
mized if we select f̃kj(u) = f̂kj(u). The resulting minimum will also be less than or 
equal to zero because Ψ2(�̃|� , � ,�) = 0 when �̃ = �.

Now, we can propose the following general algorithm for estimation of (�, �,�).

	(A1)	 Choose initial values �0, �0, �0
	(A2)	 Compute the initial set of weights 

�(�, �,�) − �(�̃, �̃, �̃) = −∫ g(x) log

∑K

k=1
�̃kOfk(x;�̃, �̃)

∑K

k=1
�kOfk(x;�,�)

dx

= −∫ g(x) log

K�

k=1

wk(x;� , � ,�)
�̃kOfk(x;�̃, �̃)

�kOfk(x;�,�)
dx

f̂kj(uj) = �kj ∫ g(x)wk(x;� , � ,�)Khkj

(
xj − uj

)
dx,

− ∫ g(x)wk(x;� , � ,�) logNf̃kj(xj) dx

= −∫ g(x)wk(x;� , � ,�)

(

∫ Khkj

(
xj − uj

)
log f̃kj(uj) duj

)
dx

= −∫ log f̃kj(uj )̂fkj(uj) duj.

wk(x;𝜋
0, 𝜃0,𝜑0) = 𝜋0

k
Ofk(x;𝜃

0,𝜑0)∕ǧ(x;𝜋0, 𝜃0,𝜑0).
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	(A3)	 At any step of iteration t = 1, 2,… select 

k = 1,… ,K.

	(A4)	 Select as the next value of the density function vector �t = {f t
kj
} where 

 where �kj is the normalizing constant ensuring that the newly defined func-
tion is, indeed, a density function. As a part of this step, also compute updated 
cumulative distribution functions Ft

kj
(uj) = ∫ uj

−∞
f t
kj
(y) dy.

	(A5)	 Choose the value 

	(A6)	 Redefine weights 

 and return to step A3.
At each step of the algorithm defined above, the marginals are updated first and 
independently of the copula parameter. This strategy was used in Mazo (2017), 
Mazo and Averyanov (2019).

Remark 1  In practice, one implements the empirical version of the algorithm. Every 
integral of the form ∫ g(x)� (x) dx , where � is some arbitrary function, is replaced by 
1

n

∑n

i=1
�(Xi) , where Xi = (Xi1,… ,Xid) , i = 1,… , n , are observations from the tar-

get density g. The objective function to be maximized is then the empirical version 
of the smoothed log-likelihood, given by 1

n

∑n

i=1
log ǧ(Xi;𝜋, 𝜃,𝜑) (up to an additive 

constant). Here the bandwidths of the nonlinear smoothers are allowed to depend on 
the data.

3 � Studying the algorithm

Whether the algorithm proposed in Sect. 2 is monotonic with respect to the objec-
tive functional (4) is an open question. In some special cases, the answer is positive. 
One such case that we identified is when probabilities �k and the marginal densities 
fkj are known beforehand. In such a case, the simplified algorithm is as follows. 

	(B1)	 Choose initial value of the copula parameter �0.
	(B2)	 Compute the initial set of weights 

�t
k
= ∫ g(x)wk(x;�

t−1, �t−1,�t−1) dx,

f t
kj
(uj) = �kj ∫ g(x)wk(x;�

t−1, �t−1,�t−1)Khkj

(
xj − uj

)
dx

�t = argmin
�

Ψ3(�,�
t|�t−1, �t−1,�t−1).

wk(x;𝜋
t, 𝜃t,𝜑t) = 𝜋t

k
Ofk(x;𝜃

t,𝜑t)∕ǧ(x;𝜋t, 𝜃t,𝜑t).

wk(x;𝜋, 𝜃
0,𝜑) = 𝜋kOfk(x;𝜃

0,𝜑)∕ǧ(x;𝜋, 𝜃0,𝜑).
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	(B3)	 For any t = 1, 2,… choose the value 

	(B4)	 Redefine weights 

 and return to step B3.

Proposition 1  The algorithm defined in B1–B4 is monotonic with respect to � , that 
is, �(�, �t−1,�) − �(�, �t,�) ≤ 0 for every t = 1, 2,…

Proof  The smoothed likelihood difference is bounded from above as

Choosing �∗ = argmin�̃ Ψ3(�̃,�|� , � ,�) produces

since there exists a value �̃ = � such that Ψ3(�,�|� , � ,�) ≡ 0 , the minimal value of 
Ψ3(�̃,�|� , � ,�) will be less than or equal to zero. 	�  ◻

Another interesting special case results when one assumes that both component 
weights �k and copula parameters �k are known while the marginal densities fkj are 
unknown. In this case, the simplified algorithm will be as follows. 

	(C1)	 Choose initial values �0

	(C2)	 Compute the initial set of weights 

	(C3)	 For t = 1, 2,… select as the next value of the density function vector �t = {f t
kj
} 

where f t
kj
(uj) = �kj ∫ g(x)wk(x;�, �,�

t−1)Khkj

(
xj − uj

)
dx . Here, �kj is a normal-

izing constant, ensuring that the newly defined function is, indeed, a density 
function. As a part of this step, also compute updated cumulative distribution 
functions Ft

kj
(uj) = ∫ uj

−∞
f t
kj
(y) dy.

	(C4)	 Redefine weights 

 and return to step C3.
The special case of the general algorithm defined above possesses an “approximate 
monotonicity” property in the following sense.

�t = argmin
�

Ψ3(�,�|�, �t−1,�).

wk(x;𝜋, 𝜃
t,𝜑) = 𝜋kOfk(x;𝜃

t,𝜑)∕ǧ(x;𝜋, 𝜃t,𝜑).

�(�, �,�) − �(�, �̃,�) ≤ Ψ3(�̃,�|� , � ,�)

= −� g(x)

K∑

k=1

wk(x;� , � ,�) log
c(Fk1(x1),… ,Fkd(xd);�̃k)

c(Fk1(x1),… ,Fkd(xd);�k)
dx.

�(�, �,�) − �(�, �∗,�) ≤ Ψ3(�
∗,�|� , � ,�) = min

�̃
Ψ3(�̃,�|� , � ,�);

wk(x;𝜋, 𝜃,𝜑
0) = 𝜋kOfk(x;𝜃,𝜑

0)∕ǧ(x;𝜋, 𝜃,𝜑0).

wk(x;𝜋, 𝜃,𝜑
t) = 𝜋kOfk(x;𝜃,𝜑

t)∕ǧ(x;𝜋, 𝜃,𝜑t).
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Proposition 2  We assume that the target density g(x) has a compact support Ω . We 
also assume that none of the known weights �k is equal to zero. Suppose that the ker-
nel function K(⋅) is a proper density function defined on [−1, 1] , bounded away from 
zero by K∗ > 0 , and Lipschitz continuous with a positive Lipschitz constant L. We 
assume that the copula density function c(u1,… , ud;�) is also Lipschitz continuous 
on [0, 1]d and bounded away from zero. Then, there exists a subsequence 
�tl = (f

tl
kj
, k = 1,… ,K, j = 1,… , d) , l = 1, 2,… , such that the the algorithm C1–C4 

is “approximately monotonically ascending” along this subsequence:

as l → ∞.

Remark 2  It follows directly from the definition that K∗ ≤ K(⋅) ≤ K∗ where both K∗ 
and K∗ are positive. The assumptions of Lipschitz continuity and boundedness away 
from zero for the kernel function K(⋅) do not represent a practical problem since they 
are not concerned with the actual data—rather, K(⋅) is a tool used to analyze the 
data. Our simulation results suggest that they also may not be necessary.

Remark 3  The assumption of compact support for the target density g(x) and, by 
extension, for all of the marginal densities fkj does not represent a problem from the 
practical viewpoint. From the theoretical viewpoint, a result analogous to Proposi-
tion 2 can be proved if one assumes that all of the marginal densities decay to zero 
sufficiently fast at infinity and using the Fréchet–Kolmogorov theorem instead of the 
Arzelà–Ascoli theorem (Brezis 2011, p. 126).

Remark 4  As an example of copulas satisfying conditions of Proposition 2 we can 
point out Farlie–Gumbel–Morgenstern (FGM) copulas as well as so-called copulas 
with cubic sections (that are direct generalizations of FGM copulas) Nelsen (2007 
pp. 77–84).

Proof  The difference in log-likelihoods can be bounded as

Recall that minimization of Ψ2(�
tl |�, �,�tl−1) always results in Ψ2(�

tl |�, �,�tl−1) ≤ 0 
since the choice f tl

kj
= f

tl−1
kj

 for all k = 1,… ,K and j = 1,… , d makes this term equal 
to zero. Therefore, it remains to show that Ψ3(�,�

tl |�, �,�tl−1) → 0 as l → ∞ . To do 
this, let us introduce a lemma.

�(�, �,�tl−1 ) − �(�, �,�tl ) ≤ o(1)

�(�, �,�tl−1 ) − �(�, �,�tl ) ≤ Ψ2(�
tl ��, �,�tl−1) + Ψ3(�,�

tl ��, �,�tl−1)

= −� g(x)

K�

k=1

wk(x;�, �,�
tl−1) log

∏d

j=1
Nf

tl
kj
(xj)

∏d

j=1
Nf

tl−1
kj

(xj)
dx

− � g(x)

K�

k=1

wk(x;�, �,�
tl−1) log

c(F
tl
k1
(x1),… ,F

tl
kd
(xd);�k)

c(F
tl−1
k1

(x1),… ,F
tl−1
kd

(xd);�k)
dx.
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Lemma 2  For each k = 1,… ,K and j = 1,… , d , the sequence f t
kj

 , t = 1, 2,… has a 
uniformly converging subsequence f tl

kj
 , l = 1, 2,….

The proof of Lemma  2 is similar to the proof of Lemma A2 in Levine et  al. 
(2011) and is not given. Denote by f ∗

kj
 the limit of f tl

kj
 as l → ∞ . Denote by �∗ the col-

lection of all such limits. Since Ω is compact, it follows in a straightforward manner 
from Lemma  2 that each subsequence F

tl
kj
(u) converges uniformly to 

F∗
kj
(u) ∶= ∫ u

−∞
f ∗
kj
(x) dx . To show that Ψ3(�,�

tl |�, �,�tl−1) goes to zero as l goes to 
infinity, we proceed as follows. We have

Each summand is bounded as

Since the copula density is bounded from above and below, the second term is less 
than or equal to a constant times ∫ g(x)|wk(x;�, �,�

tl−1) − wk(x;�, �,�
tl )| dx. But, by 

the dominated convergence theorem, this integral vanishes because the kernel K and 
the copula density are bounded from above and below, the copula density is Lip-
schitz continuous and, from Levine et al. (2011), Nf

tl
kj

 converges uniformly to Nf ∗
kj

 as 
l → ∞.

The first term in (6) is bounded by

But again this bound goes to zero by similar arguments. This finishes the proof. 	�  ◻

4 � Implementation

Details about the implementation of the algorithm of Sect. 2 are given below.

|Ψ3(�,�
tl |�, �,�tl−1)|

≤
K∑

k=1

||||||
� g(x)wk(x;�, �,�

tl−1) log
c(F

tl
k1
(x1),… ,F

tl
kd
(xd);�k)

c(F
tl−1
k1

(x1),… ,F
tl−1
kd

(xd);�k)
dx

||||||
.

(6)

||||||
∫ g(x)wk(x;�, �,�

∗) log
c(F

tl
k1
(x1),… ,F

tl
kd
(xd);�k)

c(F
tl−1
k1

(x1),… ,F
tl−1
kd

(xd);�k)
dx

||||||

+

||||||
∫ g(x)(wk(x;�, �,�

tl−1) − wk(x;�, �,�
tl )) log

c(F
tl
k1
(x1),… ,F

tl
kd
(xd);�k)

c(F
tl−1
k1

(x1),… ,F
tl−1
kd

(xd);�k)
dx

||||||
.

||||||
∫ g(x)wk(x;�, �,�

∗) log
c(F

tl
k1
(x1),… ,F

tl
kd
(xd);�k)

c(F∗
k1
(x1),… ,F∗

kd
(xd);�k)

dx

||||||

+

||||||
∫ g(x)wk(x;�, �,�

∗) log
c(F∗

k1
(x1),… ,F∗

kd
(xd);�k)

c(F
tl−1
k1

(x1),… ,F
tl−1
kd

(xd);�k)
dx

||||||
.
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Initialization For initialization, the data are partitioned into K groups by a k-means 
algorithm. The initial weights �0 are set equal to proportions of observations belong-
ing to each group. The marginal densities �0 are initialized by standard kernel den-
sity estimation methods. The marginal density of the kth group in the jth dimension 
is set to its kernel density estimate calculated from the projection of the data belong-
ing to the kth group into the jth dimension. The bandwidths are specified by stand-
ard bandwidth selection methods (Silverman 1998, p. 47–48). A value for the band-
width of the marginal of the kth group in the jth dimension hkj is selected by applying 
a bandwidth selection method to the projection of the data belonging to the kth 
group into the jth dimension. The bandwidth selection method used consists of tak-
ing hkj = 1.06Akjn

−1∕5

kj
 , where Akj is the minimum between the standard deviation of 

the data and, the interquartile range divided by 1.34 (Scott 2015). The initial copula 
parameters �0 are set to the value corresponding to the independence copula.

Choice of the kernel It is well known in kernel density estimation that the choice of 
the kernel has little impact on the estimates (Silverman 1998). Therefore, the Gauss-
ian kernel was chosen for convenience.

Bandwidth selection Once the bandwidths have been initialized, they can be kept 
fixed or be updated from one iteration to another. In the latter, each observation 
xi is assigned the cluster that maximizes the current value of wk(xi;� , � ,�) over 
k = 1,… ,K and the same bandwidth selection method as in the initialization step 
is applied.

Numerical evaluation of the integral (3). A bottleneck of the algorithm is the numer-
ical evaluation of the integral in (3). Indeed, the quantity log f (u) might be close or 
even equal to −∞ in some regions of the integration domain. Moreover, if the values 
of Kh(x − u) are zero or close to zero, this may create numerical issues of the kind 
“ 0 ×∞ ”. To avoid those issues, two remedies are implemented. First, we substitute 
max{f (u), �} for f(u) where � is some tolerance threshold. We arbitrarily set � = 10−5 . 
Second, we truncate the domain of integration. After thresholding and a change of 
variables, the integral to evaluate becomes ∫ ∞

−∞
Kh(u) log[max{f (x − u), �}] du . We 

evaluate the integral on (0 ± 1.96h) instead of the whole real line, retaining about 
95% of the mass of the kernel.

Stopping criterion To terminate the algorithm, we may let the algorithm run an 
arbitrary number of steps and, in retrospect, visually check the convergence of the 
sequence of the objective function values, or we may stop the algorithm once some 
criterion has been reached. One possible stopping criterion is the relative increase of 
the objective function. That is, if �̄t = ∫ g(x) log ǧ(x;𝜋t, 𝜃t,𝜑t) dx denotes the objec-
tive function to be maximized at step t of the algorithm, then the algorithm may be 
stopped as soon as the inequality |�̄t+1 − �̄

t| < 𝜀|�̄t| occurs k times in a row. In prac-
tice, we arbitrarily set � = 10−2 and k = 3.
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Choice of the number of clusters To estimate the number of mixture components 
K in the mixture model (1–2), the algorithm of Sect. 2 is run with with several val-
ues of K. To select the “best” model, we use the pseudo-AIC criterion introduced 
in Mazo (2017), namely “maximum smoothed semiparametric log-likelihood times 
sample size minus number of copula parameters”. Note that in the definition above 
we need to multiply by the sample size because the smoothed semiparametric log-
likelihood in (4) is defined as an expectation and hence, contrarily to Mazo (2017), 
the sample version is a sample average.

5 � Simulation studies

5.1 � A first study

Five hundred replications of four independent artificial datasets of sizes 
n = 300, 500, 700, 900 were generated from the mixture model (1)–(2) with K = 3 
clusters of equal proportions, FGM copulas with parameters −0.5, 0.5, 0 and mar-
ginals as in Table 1, where N(�, �2) and L(�, �2) refer to the normal and Laplace 
distributions with mean � and standard deviation � , respectively. (The density of 
a L(�, �2) distribution is then given by f (x) = e−

√
2�x−��∕�∕(

√
2�) for any real x.) 

The algorithm of Sect. 2 was run with K = 3 to estimate the cluster proportions, 
the copula parameters and the marginal densities. Initialization was carried out 
as described in Sect. 4. The bandwidths were kept fixed after initialization. The 
algorithm was stopped after 50 iterations.

Figure 1 shows the values of the empirical smoothed log-likelihood (4) at each 
step of the algorithm for the first ten replications in the case n = 300 and n = 900 . 
All of the trajectories look monotonic. It was numerically calculated that, out 
of the N = 500 trajectories, only 17 were non-monotonic for n = 300 at the 10−5 
precision. This number goes down to 1 for n = 500 , and zero for n = 700 and 
n = 900 . This suggests that the algorithm of Sect. 2 may indeed be monotonic for 
the copula and marginal families chosen above.

Figure 2 shows the sum of the estimated squared biases and variances for the 
copula parameter vector. The variance is at least 10 times higher than the squared 
bias for all values of n = 300 . The variance decreases with n at a rate about that 
of the “parametric” rate 1/n: the variance at n = 900 is between 2.18 and 3.02 
times smaller than the variance at n = 300.

Figure  3 shows the marginal density estimates at the last step of the algo-
rithm for n = 900 , for the last replication. The estimates agree well with the true 
marginal densities. We noticed, however, that they were similar to the initial 
estimates.
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5.2 � Sensitivity to initialization

To assess the impact of initialization on the results of the algorithm of Sect. 2, 
the last dataset generated in the simulation experiment of Sect. 5.1 with n = 900 
was reused. Initialization of the algorithm was changed to a fit of a Gaussian 
mixture model with independent components in lieu of the k-means algorithm. 
In other words, in step A1 of the algorithm in Sect.  2, the marginals �0 were 
set to Gaussian marginals with means and variances estimated by the Gaussian 
mixture model. The values of �0 were also obtained from the Gaussian mixture 
model. The other tuning and initialization parameters of the algorithm were left 
unchanged. The number of iterations was arbitrarily set to 30.

The estimated marginal densities at initialization and at the last iteration 
are shown in Fig.  4. On the top row, we see that estimates at initialization are 
as expected: they correctly capture the salient features of the true marginals, 
although they are not able to reproduce non-Gaussian shapes (top row, right, com-
pare with Fig. 3). Intriguingly, the estimates have deteriorated at the last iteration 
of the algorithm—compare the bottom row of Fig. 4 with the top row of Fig. 3. 
This is in sharp contrast with the bottom row of Fig. 3, where the estimates were 
good. It seems that initialization plays a key role in the final performance of the 
algorithm. This is confirmed by comparing the values of the three components 
of the estimated copula parameter vector across iterations, depicted in Fig. 5. We 
see in Fig. 5a that one of the sequence of estimates seems to have not converged, 
while the others have their values stuck at −1 and 1, which is in general not an 
indication that estimation was performed correctly. By contrast, Fig. 5b depicts 
stable and reasonable estimates. In sum, a Gaussian mixture modeling step during 
initialization of the algorithm produced poor estimates.

5.3 � Estimation of the number of mixture components K

A numerical experiment was carried out to see whether the pseudo-AIC crite-
rion described in Sect.  4 is able to select the correct number of components. 
A number of 500 synthetic datasets of size 300 were generated from a mixture 
model with three components of equal weights. The components are bivari-
ate normal distributions with means (0,3), (3,0), (-3,0), standard deviations 
(
√
2, 1∕

√
2), (

√
2, 1∕

√
2), (

√
2, 1∕

√
2) and correlations 0.5, 0.5, 0.5. Gauss-

ian copulas were assumed for all components. For each dataset, the mixture 
model  (1–2) was fitted with the algorithm of Sect.  2 for K = 2,… , 5 , where K 
denotes the number of components of the mixture model, and the pseudo-AIC 

Table 1   Marginals used for 
the numerical experiment of 
Sect. 5.1

Cluster 1 Cluster 2 Cluster 3

Dim 1 N(−3, 22) N(0, 0.72) N(3, 1.42)

Dim 2 L(0, 0.72) L(3, 1.42) L(0, 2.82)
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criterion of Sect. 4 was computed to select the number of clusters. Initialization 
was carried out as described in Sect. 4. The bandwidths were updated at each step 
of the algorithm. The stopping criterion described in Sect. 4 was used to termi-
nate the algorithm.

The results are reported in Fig.  6. Among the 500 estimates, 402 (standard 
error 9) were correct, and 98 were incorrect (standard errors 7 and 6 for K = 4 
and K = 5 , respectively). The chart suggests that the pseudo-AIC criterion is rea-
sonable. This is consistent with the findings in Mazo (2017).
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Fig. 3   True and estimated marginal densities of the three clusters and the two dimensions for n = 900 
(last replication). The top row contains the true marginals and the column on the left contains the first 
dimension. The marginal estimates are those found at the last step of the algorithm
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6 � Real data analysis

6.1 � The iris dataset

The iris dataset has n = 150 observations of d = 4 variables (sepal and petal 
length and width) belonging to three groups (“setosa”, “versicolor”, “virginica”). 
For simplicity and illustrative purposes, only two variables were considered 
(sepal and petal length). The algorithm of Sect. 2 was run with Gaussian copu-
las. Initialization was carried out as described in Sect. 4. The stopping criterion 
was used to terminate the algorithm. For bandwidth selection, the two strategies 
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Fig. 4   Estimated marginal densities of the three clusters and the two dimensions for the last dataset gen-
erated in Sect. 5.1 with n = 900 and initialization by fitting a Gaussian mixture model. The top and bot-
tom rows contain the results after the initialization step and at the last iteration of the algorithm, respec-
tively. The column on the left and on the right contain the first and the second dimensions, respectively
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described in Sect. 4 were tested: the first consists of keeping the bandwidth fixed 
after initialization and the second consists of updating the bandwidth at each step 
of the algorithm. For the first strategy, the algorithm was successfully run with 
K = 2,… , 6 clusters. With 7 clusters, one of the clusters became empty and the 
algorithm was stopped. For the second strategy, the algorithm was successfully 
run with K = 2, 3, 4 clusters.

The values of the pseudo-AIC criterion are depicted in Fig. 7. In Fig. 7a, the val-
ues increase and stabilize at K = 4 . In Fig. 7b, the presence of a plateau is less clear. 
The pseudo-AIC increases as K increases, and hence a reasonable choice would also 
be K = 4 . The obtained classification results are reported in Fig. 8. We see a clear 
difference between the two bandwidth selection strategies. The classification results 
for the case K = 3 are reported in Fig.  9. Here, the results of the two bandwidth 
selection strategies are similar (top row) and better reflect the true partitioning of 
the data than the results of the Gaussian mixture model fitted with 3 clusters (bottom 
row). For the Gaussian mixture model, the optimal number of clusters according to 
the BIC criterion is two.

6.2 � The wine dataset

To illustrate the practical performance of our method, we will apply it to the analy-
sis of the wine dataset that has been analyzed earlier in Bouveyron et al. (2019, pp. 
60–65). This dataset contains 27 physical and chemical measurements on 178 wine 
samples of three types—Barolo, Grignolino, and Barbera. The dataset is publicly 
available as a part of the pgmm R package (McNicholas 2016). Bouveyron et  al. 
(2019) conducted a preliminary principal components analysis and selected 5 vari-
ables with the highest loadings on each of the first five principal components. More-
over, they noted that just two variables—Flavonoids and Color Intensity—seem to 
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Fig. 5   Values of the three components of the estimated copula parameter vector across iterations for the 
last dataset generated in Sect. 5.1 with n = 900 and initialization by fitting a a Gaussian mixture model 
and b a k-means algorithm
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give a strong visual suggestion of clustering, based on the pairs plot. Their analysis 
is based on the use of multivariate Gaussian density mixtures with various covari-
ance matrix structures.

We conduct our analysis of this dataset based on these two variables. As a tool for 
selection of the number of clusters, we use the pseudo-AIC criterion introduced ear-
lier in Sect. 4. To do so, we select a range of the possible number of clusters from 2 
to 8 and compute the value of pseudo-AIC for each of these choices. Gaussian cop-
ula was used to model the dependence between the two variables. Initialization was 
carried out as described in Sect. 4. The bandwidths were updated at each iteration of 
the algorithm. The stopping criterion described in Sect. 4 was used to terminate the 
algorithm. The result is illustrated in Fig. 10.

The result suggests the choice of either K = 5 or K = 8 as a possible number of 
clusters. Since the choice of five clusters produces an obviously more parsimoni-
ous model, we proceed with it. (Note that, when using BIC as a model selection 
criterion, Bouveyron et  al. (2019) also comes up with two possible models based 
on either 3 or 7 clusters with different respective covariance matrix structure.) At 
first sight, the choice of 5 clusters does not seem to be a very reasonable one since 
there are only three types of wine described by this dataset. However, we will see 
later that, nevertheless, this solution describes the true classification quite well. The 
resulting classification is illustrated in Fig. 11.

Note that the red group (Grignolino) has about 9 observations separated from the 
main cluster. These observations, that were the source of confusion for Gaussian 
density mixture based solutions of Bouveyron et al. (2019), also present some diffi-
culties for our approach as well. Most of these observations have been separated into 
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Fig. 6   Frequency of the various values for the estimated number of components. The frequency for 
K = 2 is zero. The vertical bars correspond to the Monte Carlo asymptotic confidence intervals of level 
95%
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a separate (green) cluster. Moreover, observations with large values of the Flavo-
noids indicator have become, apparently, a reason for creation of yet another (blue) 
cluster.

At the same time, the confusion matrix of our classification that compares it with 
the partition into three wine types suggests that our classification is not widely off 
the mark. Indeed, consider the confusion matrix given in Table 2. Note that Barbero 
samples are split between Clusters 1 and 4 while Barolo samples are split (with the 
exception of just one sample) between Clusters 3 and 5.

If Clusters 1 and 4, on one hand, and Clusters 3 and 5, on the other hand, are 
merged, one ends up with a 3-clusters solution whose misclassification rate is only 
12

178
. For comparison purposes, when Bouveyron et al. (2019) merge the necessary 

clusters of their 7-clusters solution, the resulting misclassification rate is 11
178

. Even if 
such a merger is not contemplated, the misclassification rate of our 5-clusters solu-
tion is 61

178
 which is less then 52% misclassification rate of the 7-clusters solution of 

Bouveyron et al. (2019). Thus, we believe that our approach provides an adequate 
clustering and classification analysis of the wine dataset.

7 � Conclusion

An algorithm was designed and implemented to estimate the parameters of copula-
based semiparametric mixture models. The model considered is a very general one 
since it does not impose any specific structure (such as the location-scale assump-
tion) on marginal densities. The algorithm is deterministic, and hence always returns 
the same result if fed with the same initial point. Good performance was obtained in 
illustrative numerical examples, which suggests that the algorithm may indeed be 
monotonic under appropriate conditions.
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Fig. 7   The value of pseudo-AIC model selection criterion for several values of the cluster number (iris 
dataset). Left: the bandwidth is kept fixed after initialization. Right: the bandwidth is updated at every 
step of the algorithm
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However, its theoretical analysis proved to be challenging and only partial results 
were obtained for versions of the algorithm where either the copula parameter or 
the marginals were fixed. A future avenue of research may consist of rejecting 
those updates where the smoothed log-likelihood does not increase and investigate 
whether convergence results of Meyer (1976), Zangwill (1969) could be applied. To 
simplify, the full parametric case may first be considered. To improve the numeri-
cal implementation of the algorithm, the integral (3) may be computed using other 
methods, such as Qiang (2010).
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Fig. 8   Iris data: classification based on the choice of 4 clusters. Top left: algorithm of Sect. 2 with the 
bandwidths kept fixed after initialization. Top right: with the bandwidths updated at every step. Bottom 
left: results for the Gaussian mixture model with 4 clusters. Bottom right: true classification
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Fig. 9   Iris data: classification based on the choice of 3 clusters. Top left: algorithm of Sect. 2 with the 
bandwidths kept fixed after initialization. Top right: with the bandwidths updated at every step. Bottom 
left: results for the Gaussian mixture model with 3 clusters. Bottom right: true classification

Fig. 10   The value of pseudo-
AIC model selection criterion 
for several values of the number 
of mixture components K 
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