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Measuring the dimensionality of behavior

Surya Ganguli*®!

The conjunction of high-speed video and machine learning
advances now enables us to almost automatically extract
detailed descriptions of highly complex animal behaviors
across multiple species (1, 2) as they engage in complex
tasks or naturalistic behaviors. This explosion of behavioral
data, along with advances in our ability to record the si-
multaneous dynamics of many neurons or genes, raises
profound questions about how we should efficiently orga-
nize our scientific efforts to conceptually understand the
emergence of behavior from underlying neural or biochem-
ical mechanisms. Bialek (3) addresses this question, arguing
first for the importance of quantitative phenomenological
characterizations of behavior and then providing a frame-
work for studying one quantitative aspect of behavior: its
dimensionality.

In Defense of Phenomenology in Biology

From the perspective of a biologist who can simultaneously
measure neural or biochemical dynamics in conjunction
with behavior, one might then be tempted to delve directly
into the question of mechanism (i.e., how do neural circuits
in the brain or biochemical circuits in cells generate such
behavior?). In contrast, Bialek (3) urges us to also examine
the question of what aspects of behavior we would like to
explain. In convincingly arguing for this viewpoint, Bialek (3)
marshals together a wealth of instructive examples across
multiple fields of biology in which a purely phenomeno-
logical yet highly quantitative characterization of behav-
iors came long before the elucidation of their underlying
mechanisms. Moreover, such detailed quantitative behav-
ioral phenomenology provided essential clues as to what
sorts of underlying mechanisms one ought to search for.
For example, the quantitative observation that error rates
in copying DNA are multiple orders of magnitude smaller
than predicted by equilibrium thermodynamics suggests
the existence of an important nonequilibrium or kinetic
proofreading mechanism (4) underlying the transmission of
genetic information. Also, a quantitative characterization of
the dimmest flash of light a human can still perceive led to
the remarkable conclusion that individual retinal photore-
ceptors can absorb single photons, implying that a funda-
mentally quantum mechanism underlies the first steps of
vision (5). Hodgkin and Huxley's (6) detailed quantitative and
purely phenomenological characterization of the dynamics
of the neuronal action potential yielded fundamental clues
as to its mechanistic basis in terms of ion channel conforma-
tional dynamics. More recently, limits of perceptual acuity
for small changes in shape suggest that correlated noise
in the nervous system may limit the information content in
neural ensembles (7, 8).

Now, while history rarely exactly repeats itself, it cer-
tainly rhymes. Thus, in this modern day and age, given the
seminal lessons of our past, it would certainly behoove us
to engage in a careful and quantitative phenomenological
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characterization of the much richer behaviors we can only
now recently measure. Just as many times before, such a
quantitative characterization will likely help us understand
what aspects of behavior are most interesting to explain
and provide essential clues as to what sorts of underlying
mechanisms we should search for.

A General Definition of Dimensionality in
Behavior

With this defense of quantitative behavioral phenomenol-
ogy in hand, Bialek (3) goes on to provide a framework
for quantifying, at a significant level of generality, what is
perhaps one of the most fundamental aspects of behavior:
its dimensionality. The dimensionality of behavior provides
an important clue as to how many degrees of freedom
an underlying neural or biochemical system may need in
order to generate the behavior (9, 10). It can also suggest
how many measurements might be required to accurately
capture the underlying dynamics (11). Building on ref. 12, in
ref. 3 a candidate general definition of the dimensionality of
a single scalar behavioral time series (e.g., the joint angle of
a single joint, the speed of a single bacterium, or a discrete
dynamic behavioral state of an organism) is constructed
in a sequence of steps starting from particular cases and
culminating in a general information theoretic definition.
Here, we start from the general definition.

At an intuitive level, the dimensionality d* of a time series
can be defined as how many functions of its past one needs
to measure in order to accurately predict its future as well
as possible. Consider a scalar behavioral time series x(t)
observed from t = —T to T. The past of this time series is
defined as Xpast =x(—T...0), and its future is defined as
Xee = X(0...T) (Fig. 1A). The total amount of predictable
information the past contains about the future can be
quantified by the mutual information

lpred (T) = l(xpast; xfut)- [1]

Now, to define dimensionality, consider predicting the fu-
ture Xq,: not directly from an observation of the past Xpast but
from d measurements or smooth functions of the past [i.e.,
from F.(Xpast) for p=1,...,d] (Fig. 1A). Moreover, of the
space My of all such possible d measurements, consider
the optimal set that maximizes the predictive information

lorea(T,d) = max  I({F.} Xeur). [2]
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Fig. 1. (A) Asingle sample x(t) of a behavioral time series (blue curve) can be divided into the past Xpast from t = —T to t = 0 and the future x¢, from t = 0 to
t = T. One can then either predict X, directly from Xpast, leading to the mutual information /,eq (T) defined in Eq. 1. Alternatively, one could construct d optimal
measurements of the past F,, (Xpast) for =1, ..., d (red circles) and use these to predict the future X, leading to the mutual information lp,ed(T, d) defined
in Eq. 2. (B) A schematic of a d*-dimensional dynamical system consisting of d* interacting scalar variables (red circles) that generates behavior (blue circle)
through a set of outgoing connections (red arrows). (C) The top curve (darkest green) shows a schematic /,eq (T) for behavior generated by a dynamical system
as in Bwith a maximal autocorrelation time Tmax. lpreq (T) Saturates around T & Tmax. The bottom curves show a schematic of /4 (T, d) for increasing d reflected
by the deepening shade of green. In the situation where behavior is generated by a d*-dimensional dynamical system with a maximum autocorrelation time,
lored (T, d™) is close to the upper bound set by /preq(T). (D) The top curve shows a schematic of /peq(T) for a behavioral time series with temporal correlations
that decay as a power law. Such long-range correlations lead to a logarithmic divergence of /,req(T) with T. The bottom curves show /,eq (T, d) for increasing d
reflected by the deepening shade of green. For any fixed d, /yreq (T, d) often saturates with time T due to a finite number of measurements, with the saturation
value necessarily increasing with d. Thus, given the divergence of /,eq(T), an increasing number of measurements d will be required for /p.eq(T, d) to approach

lored(T) as T increases. This leads to an effective infinite dimensionality of long-range temporally correlated behavior.

Then, the ratio

 lorea(T, d)
f(dl T) - lpred(T)

measures what fraction of the total information about the
future one captures from the best possible d measurements
of the past given a past-future time horizon of T. For any
fixed T, f(d,T) is necessarily a monotonically increasing
function of d. One might expect that at very large T, f(d, T)
will first saturate to a fixed value for all d greater than d*.
The minimal value of d* at which this saturation occurs is
then a candidate measure for the dimensionality of the time
series x(t). Intuitively, this saturation means that at large
time horizons 7, taking more than d* measurements does
not help one predict the future any better.

To understand why d* is a sensible measure of dimen-
sionality, it is useful to consider the properties of /preq(T)
and I,eq(T,d) as a function of T and d for specific cases.
Consider, for example, a dynamical system (i.e., a neural
circuit) with d* scalar degrees of freedom interacting via
some generic connectivity subject to internal noise sources,
and suppose further that the behavior x(t) is some instanta-
neous function of these degrees of freedom (Fig. 1B). Thus,
a d*-dimensional stochastic dynamical system is generating
behavior. Suppose, furthermore, that the interactions in this
dynamical system are such that there is a maximum auto-
correlation time mmax in the dynamical system and therefore,
also in the behavioral time series x(t). This means that
the autocorrelation between x(t) and x(t') is exponentially
suppressed in ';;—:x‘ As a consequence, looking back into
past behavior for any time T longer than mmax cannot help
predict future behavior any better since this distant past
is uncorrelated with the future.* Thus, we expect /preq(T)
to rise with T but saturate for T larger than mmax (Fig. 1C).
Similarly, we expect Ieq(T, d) to saturate at least by T ~ Tmax
but at a lower level than /y.q(T) because of the limited
number of d measurements. However, at a fixed large
T > Tmax, We also expect /peq(T, d) to increase with d but

[31

*More precisely, we make the stronger assumption that x(> 0) is approximately condi-
tionally independent of X(< —7max) given X(—7Tmax - - - 0).
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saturate at d = d*. The key intuition is since the behavior x(t)
is generated by a d*-dimensional dynamical system, then
with d* measurements, the best one could do to predict
future behavior is use the past behavioral time series Xpast
to reconstruct the d*-dimensional state of the generating
dynamical system since the future behavior is independent
of the past conditioned on this state. Taking more than
this number of past measurements, assuming we chose
them optimally, is unlikely to appreciably help our ability
to better predict future behavior. In this fashion, f(d, T) for
T > mmax Will saturate with d when it increases past d*. Thus,
this particular statistical analysis of behavior x(t) alone will
recover the underlying dimensionality d* of the dynamical
system that generated it. We note that while we have
provided a qualitative intuition for why this information
theoretic characterization of dimensionality makes sense
in the context of a given dynamical system that generates
behavior, all of this intuition can be justified analytically
when x(t) obeys jointly Gaussian statistics across time (3).

A Data-Driven Approach to Estimating
Dimensionality

We note that while it can be difficult to compute mutual
information directly from data, one can obtain an approx-
imate calculation of dimensionality d* by reducing it to the
computation of the eigenvalue spectrum of a certain kernel
matrix connecting the past and the future of behavior,
as described in ref. 3. Moreover, this kernel itself can be
derived from second-order temporal correlations in the be-
havioral time series. The key idea to achieve this reduction,
applicable to both continuous and discrete behaviors in
a unified fashion, is to first approximate the probability
distribution over behavioral time series with a maximum
entropy (MaxEnt) distribution constrained to have the same
second-order temporal correlations as behavior. Then, one
can carry through the information theoretic program for
computing dimensionality, either analytically or numerically,
on the MaxEnt distribution itself. Of course, in doing so,
one must take care to correctly account for statistical sig-
nificance of the results of estimating spectra of kernels
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of MaxEnt distributions with finite amounts of data. The
statistics of random matrices then become highly relevant
in assessing statistical significance (13).

Interestingly, in the case of continuous behavior, linear
dynamical systems driven by white noise generate exceed-
ingly simple and instructive examples of behavioral time
series with jointly Gaussian temporal statistics for which the
MaxEnt approximation is exact (3). For example, when be-
havior x(t) is simply a leaky linear integrator of white noise
with time constant 7max, then /eq(T) saturates at T > Tmax,
and for large T, lpreq(T, d) saturates ind at d = d* = 1. This is
the correct dimension of behavior since a leaky integrator
possesses a single degree of freedom. Moreover, the opti-
mal measurement of the past to predict the future is itself a
leaky integral of the past. Similarly, if behavior corresponds
to the position of a damped harmonic oscillator driven
by noise, the information theoretic characterization of di-
mensionality would again correctly predict d* = 2 since two
degrees of freedom are required to produce oscillations.
Also, in this case, the two optimal measurements of the
past would be smoothed linear filters that approximately
estimate recent position and velocity, which are sufficient
to predict the future of an oscillator.

Power-Law Correlations and Infinite
Dimensionality

A key assumption underlying all examples so far is that
temporal correlations in behavior are exponentially small in
temporal separations greater than a maximum autocorrela-
tion time 7max. This condition is sufficient for /,eq(T) to sat-
urate in T. However, a qualitatively distinct universality class
of behavior can occur if x(t) has temporal autocorrelations
that decay as a power law with time. In such a setting, with
long-range temporal correlations, /,eq(T) need not saturate
with T; instead, it can grow logarithmically with time T. This
means the further back in time one looks, the more one
can predict about the future without bound. Behavioral
time series for which this is the case are inevitably more
interesting than the opposite universality class of leaky inte-
grators and damped oscillators for which /,eq(T) saturates.
A classic example for how such long-range temporally corre-
lated behavior might arise is, for example, written language.
When looking back a few letters, the rules of phonology
can help predict future letters. However, looking back a few
words, qualitatively distinct rules of syntax emerge that can
help predict future words. Finally, over longer timescales
spanning sentences, rules of semantics, human intentions,

R. Moreno-Bote et al., Information-limiting correlations. Nat. Neurosci. 17,1410-1417 (2014).
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and story arcs might constrain the semantic content of
future sentences.

An intriguing consequence of the divergence of /;.eq(T)
with T is that the dimensionality d* of such behavior
may also become effectively infinite (Fig. 1D). For example,
lored (T, d) may require progressively larger and larger d to
approach the progressively larger and larger value of /;.eq(T)
as T increases (Fig. 1D). Therefore, as T — oo, d may also
have to grow without bound in order for the ratio in Eq. 3 to
saturate with d. In essence, for such long-range temporally
correlated behaviors, more and more measurements are
required to predict the future as accurately as possible
over longer and longer time horizons, leading to effectively
infinite dimensionality.

Outlook

As Bialek notes in ref. 3, “the possibility that behavioral
correlations decay as a power of time has a long and some-
times contentious history.” Recent work, however, suggests
that discrete behavioral states visited by Drosophila over
time exhibit such long-range correlations (14). However,
further studies that search for such intriguingly complex
behaviors and accurately characterize the nature of their
temporal correlations and growing dimensionality with time
are certainly a direction for future research.

Interestingly, beyond biology, machine learning attempts
to model complex time series, such as language itself, also
exhibit greater and greater accuracy in predicting future
language given past language and more complex measure-
ments (15), although the details of the analysis are quite
different from those of ref. 3. Nevertheless it is intriguing
to hypothesize that scaling laws exhibited by human gen-
erated behaviors may be intricately related to scaling laws
associated with machine learning attempts to model them.

More generally, zooming out from the analysis of tem-
poral correlations and the dimensionality of behavior (3)
reminds us in a compelling way about the primacy of seek-
ing to quantitatively understand complex behavior before
diving into measurements that seek to relate neural or
biochemical activity to behavior. This reminder is timely
in an age where remarkable advances in technology al-
most taunt us to take detailed large-scale measurements
underlying neural or biochemical activity patterns or even
connectomes. However, before we do, an important guiding
question should always remain at the fore. What is it about
behavior that we would like to explain?
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