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SUMMARY

The discovery of entorhinal grid cells has generated considerable interest in how and why hexagonal firing
fieldsmight emerge in a generic manner from neural circuits, andwhat their computational significancemight
be. Here, we forge a link between the problem of path integration and the existence of hexagonal grids, by
demonstrating that such grids arise in neural networks trained to path integrate under simple biologically
plausible constraints. Moreover, we develop a unifying theory for why hexagonal grids are ubiquitous in
path-integrator circuits. Such trained networks also yield powerful mechanistic hypotheses, exhibiting real-
istic levels of biological variability not captured by hand-designed models. We furthermore developmethods
to analyze the connectome and activity maps of our networks to elucidate fundamental mechanisms under-
lying path integration. These methods provide a road map to go from connectomic and physiological mea-
surements to conceptual understanding in a manner that could generalize to other settings.

INTRODUCTION

The discovery of spatially regular hexagonal grid-cell firing pat-
terns in the medial entorhinal cortex (MEC) has been widely
observed as a function of spatial position in mice (Fyhn et al.,
2008), rats (Hafting et al., 2005), and bats (Yartsev et al., 2011)
and as a function of gaze position in monkeys (Killian et al.,
2012). In addition, fMRI studies have revealed evidence for
grid-like representations in humans (Doeller et al., 2010). The
regularity and ubiquity of grid cells raises two related classes
of scientific questions. First, what generic circuit mechanisms
might give rise to grid cells? Second, what computational rea-
sons might explain the pervasive existence of grid cells across
many species? In essence, if hexagonal grid cells are evolution’s
answer to an ethologically relevant computational question, then
what is that question?
On the mechanistic side, many works have hand tuned the

connectivity of model recurrent neural circuits with a center-sur-
round structure specifically to generate grid-cell firing patterns
(Fuhs and Touretzky, 2006; Guanella et al., 2007; Burak and
Fiete, 2009; Ocko et al., 2018a), building on prior models of
head-direction cells (Skaggs et al., 1994; Blair, 1996; Zhang,
1996; Redish et al., 1996; Hahnloser, 2003; see also Ben-Yishai
et al., 1995) and place cells (McNaughton et al., 1996; Samsono-
vich and McNaughton, 1997; Conklin and Eliasmith, 2005). Such
continuous attractor models can robustly integrate velocity to
store spatial position via path integration (Burak and Fiete,

2009). More recent attractor networks that incorporate plastic in-
puts from landmark cells can explain why grid cells deform in
irregular environments (Skaggs et al., 1994; Ocko et al.,
2018a), and when they either phase shift or remap in altered vir-
tual reality environments (Campbell et al., 2018). However, such
hand-tuned models raise two issues. First, they involve many
choices about circuit connectivity and dynamics, and it is un-
clear how generic such choices are. In essence, could there be
different classes of neural networks that both path-integrate
and generate hexagonal firing patterns? Second, none of these
models demonstrate that hexagonal firing patterns naturally
arise as the optimal solution to any computational problem, pre-
cisely because these patterns are assumed in the first place by
hand tuning the connectivity.
In contrast, normative models attempt to shed light on the

question of why grid firing patterns might be found in many
species by demonstrating that these patterns are optimal for a
solving a particular task. For example, Dordek et al. (2016)
demonstrated that single neurons that receive place cell inputs
through plastic synaptic weights undergoing Oja’s learning rule
develop grid-like receptive fields (RFs) with a square lattice
structure. If these synapses are also constrained to be positive,
then these same neurons learn hexagonal grid-like RFs. An alter-
native approach focuses on optimal representations of the sta-
tistics of spatial transitions (Stachenfeld et al., 2017; Whittington
et al., 2018), finding that square grids are optimal in square envi-
ronments. Other works have assumed the existence of grid-like
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representations with different lattice structures, finding hexago-
nal lattices, outperform other lattice structures in terms of either
decoding position under noise (Mathis et al., 2015) or a notion of
economy (Wei et al., 2015). However, unlike the hand-tuned
attractor network models described above, these normative ap-
proaches primarily tackle the issue of spatial representations
and do not address the central issue of how neural circuits might
actually solve the problem of path integration, which is believed
to be a computational function of entorhinal cortex, whether in
real space or in abstract spaces (Aronov et al., 2017; Constanti-
nescu et al., 2016).

More recent normative approaches have tackled this central
issue by training, rather than hand tuning, neural networks to
accurately solve the navigational problem of path integration.
Indeed, Cueva andWei (2018) found that square grid cells spon-
taneously emerge in square environments in such trained net-
works. Also, Banino et al. (2018) suggested that hexagonal grid
cells emerge even in square environments, though the grid-cell
patterns were highly heterogeneous. The process of training
neural networks to solve different computational problems can
be a powerful method for hypothesis generation in neurosci-
ence, yielding a more unbiased search over the space of circuit
solutions than might be possible through imagination alone.
Indeed, the representations of trained rather than hand-de-
signed networks have been successfully compared with actual
neural representations in the retina (McIntosh et al., 2016;
Ocko et al., 2018b; Lindsey et al., 2019; Tanaka et al., 2019), in-
ferotemporal cortex—V4 and V1 (Yamins et al., 2014; Yamins
and DiCarlo, 2016)—motor cortex (Sussillo et al., 2015), and
prefrontal cortex (Mante et al., 2013). However, in comparisons
to the behavior of entorhinal representations, the trained net-
works in (Cueva and Wei, 2018) and (Banino et al., 2018) exhibit
mismatches along two important dimensions. First, as we will
show below, the learned lattice structure is inconsistent with
data (square versus hexagonal in the case of Cueva and Wei
[2018], and smooth and random versus truly hexagonal in the
case of Banino et al. [2018]). Second, as we will show below,
the methods of training neural networks in Banino et al. (2018)
do not yield grid cells whose representations generalize to
expanded environments.

Despite these mismatches, these two works exemplify inter-
esting advances in generating, in a more unbiased manner, neu-
ral networks that path-integrate with grid-like representations,
and they naturally suggest important yet unanswered questions.
First, when and why do grid-like representations spontaneously
emerge from neural circuits that are trained to solve navigational
problems, or other normative problems like efficient spatial en-
coding (Dordek et al., 2016)? Second, if grid-like representations
appear, when and why are they sometimes square, hexagonal,
or heterogeneous? Third, focusing on the networks trained
to path integrate, what circuit mechanisms yield grid-like
responses? Are these circuit mechanisms for both path integra-
tion and grid cells in trained models at all related to the circuit
mechanisms in prior hand-tuned models? In essence, how can
we obtain conceptual insight into how circuit connectivity and
dynamics conspire to yield the emergent computational func-
tions of these trained circuits? This latter question is a founda-
tional question for neuroscience in general, especially as we

encounter more and more circuit models generated via machine
learning-based training methods (Tanaka et al., 2019). Although
such models often involve a considerable simplification of the
neural microcircuitry (see, e.g., Winterer et al., 2017), they have
the advantage of giving us access to the entire connectome
and the activity patterns of every model neuron. Thus, the pro-
cess by which we might go from such connectivity and activity
data to conceptual understanding (Gao andGanguli, 2015) could
be instructive in teaching us how we might leverage data gener-
ated by investments in both large-scale connectomics (Seung,
2009) and brain activity maps (Insel et al., 2013). In the following,
we address the above questions through circuit simulations, the-
ory, and comparisons to experiments. We summarize our results
in the discussion.

RESULTS

Diverse lattice structures and generalization properties
of trained path integrators
Path integration, the process of integrating instantaneous veloc-
ity signals to obtain an estimate of current position, is thought to
be amajor computational function of MEC. Although much theo-
retical work based on hand-designed attractor models suggests
a close connection between entorhinal grid cells and path inte-
gration, there is little direct experimental evidence for this
connection due to the difficulty of cleanly separating grid cells
from the rest of MEC (see e.g., Gil et al., 2018). We sought to
work in reverse, by elucidating the conditions under which the
computational demand of path integration, in conjunction with
simple biologically plausible constraints, might naturally lead to
the spontaneous emergence of hexagonal grid cells in a trained
neural network.
In particular, we simulated an animal exploring a square envi-

ronment following a smooth random walk (Figure 1A). As the an-
imal moves, different subsets of simulated place cells become
active. At each time step, the network receives the animal’s
2-dimensional body velocity v!ðtÞ as input. Although recent
work shows that primarily head, rather than body, direction is
represented within MEC (Raudies et al., 2015; Gerlei et al.,
2020), we assumed that a body velocity signal is available in
the input andwere agnostic as to whether this same signal would
be found in the model MEC neurons themselves (see discus-
sion). The velocity signal is integrated by the network’s recur-
rently connected units, and the entire network is trained to report
its current position by generating an output place cell code (Fig-
ure 1B), mirroring the basic grid cell-to-place cell organization
observed in MEC and hippocampus. We note that this training
procedure, based on backpropagation, is not meant to capture
how grid cells might actually develop in the brain. Our goal
was simply to discover networks that path integrate in a manner
that is less biased than traditional approaches based on hand
design.
Recent work (Cueva andWei, 2018; Banino et al., 2018) has

shown that recurrent neural networks trained on path-integration
tasks learn grid-like representations in their hidden units. How-
ever, the grids in Cueva and Wei (2018) were square, and
the representations in Banino et al. (2018) had two biologically
unrealistic characteristics. First, we found that even the highest
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grid-score units in their network (Figure 1C, bottom right) did not
match the regular hexagonal firing of grid cells in the brain (Fig-
ure 1C, top, data from Butler et al. 2019 and Gardner et al.,
2022), either qualitatively (Figure 1C) or quantitatively (Figure 1D).
Indeed, we found that the units in their network did not have
higher grid scores than low-pass filtered noise maps (Figure S2).
Second, the network was unable to path integrate outside of the
training arena (Figure 1E, upper inset). When the animal’s simu-
lated walk passed beyond a removed wall of the square environ-
ment used during training, the hidden unit activities in the trained
network usually froze at their boundary values, rather than
continuing to fire in a spatially informative way, as biological
grid cells do (Savelli et al., 2008).
We found that we could obtain similar results in a signifi-

cantly simpler recurrent neural network (RNN) architecture
(shown in Figure 1B), without the complexity of the architec-
ture of Banino et al. (2018) (see ‘‘rnn training’’ for details).
The simple RNN learned to path integrate comparably well,
gave rise to stable rate maps over the environment, and
developed qualitatively similar grid-like patterns in its hidden
units. The simple RNN architecture has several advantages:
(1) the grid cells are recurrently connected, like grid cells in
MEC and unlike those in Banino et al. (2018), and (2) this ar-
chitecture corresponds exactly to traditional path-integrator
models of grid cells, except that although the recurrent

weights in traditional models are chosen by hand, ours are
learned over the course of training.
Next, we found that two simple changes to the training pro-

cedure encouraged the network to (1) reliably learn regular hex-
agonal grids like those in MEC and (2) learn a path-integration
mechanism that generalizes outside of the training environment,
resolving both the problems identified above and rendering the
model more biologically realistic. First, inspired by Dordek
et al. (2016), we retrained the network with the additional
constraint that hidden unit activities might be nonnegative by
simply changing the single-neuron nonlinearity from hyperbolic
tangent to a rectified linear unit (ReLU) (Figure 1C, black traces
at left). Under these conditions, many units develop strikingly
regular hexagonal grid maps similar to those of entorhinal grid
cells (Figure 1C, lower), and the distribution of grid scores shifts
to larger values (Figure 1E; see also Figure S2 for examples of
model grid cells with different grid scores; compare with
ExtendedData Figure 2 of Banino et al., 2018). Second, we found
that training with a small amount of regularization via weight
decay on the recurrent weights, leading to small synaptic
strengths, encourages a path integration mechanism that con-
tinues to operate well beyond the walls of the training environ-
ment (Figure 1E, middle). In Figure 1E, we disentangle the roles
of nonnegativity and weight decay. We find that models with
and without nonnegativity constraints can be trained to achieve

Figure 1. Learned spatial representations of neural networks trained to path integrate
(A) A simulated animal trajectory (gray curve), and the decoded position from the network’s output (orange curve). Place cell centers (blue dots) are distributed

uniformly and isotropically over a square enclosure.

(B) Our general model architecture includes a velocity input that is fed to a set of recurrently connected hidden units. These hidden units must then generate the

desired place cell output representation.

(C) Comparing spatial representations of cells in the brain (top row) with those in trained RNNs (bottom row). Each panel shows the top 25most grid-like cells. Our

model closely matches the regular hexagonal firing fields of grid cells in the brain. Dataset 1 is obtained from Butler et al. (2019), dataset 2 is obtained from

Gardner et al. (2022), and the units at bottom right are the top 25 most grid-like cells from Extended Data Figure 2 of Banino et al. (2018).

(D) We quantify the similarity between grid-like units in the trained RNNs and grid cells in the brain using two metrics: grid score (based on 6-fold symmetry of the

rate maps; Langston et al., 2010) and firing sparsity, defined as the fraction of time firing between the 40th and 60th percentile of firing rate. Bars show stadard

deviation of scores.

(E) We disentangle the roles of regularization strength and non-negativity and study their effects on training error (top), generalization error (middle), and average

grid score (bottom). Training error remains low for a wide range of regularization strengths (top) but fails when this strength is above a certain threshold.

Generalization performance outside the training arena (middle) improves with increasing regularization strength, up until this threshold. Average grid score

(bottom) is significantly higher in ReLU networks than in Tanh networks for all choices of regularization strength.
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low path integration error in the training environment, provided
the weight-decay regularization is not too strong. Increasing reg-
ularization improves generalization performance up until the
point where training fails. Finally, including a nonnegativity
constraint promotes hexagonal grid cells with substantially
higher average grid score for all choices of regularization
strength.

After demonstrating that training a simple RNN with nonnega-
tive firing rates leads to the spontaneous emergence of hexagonal

grid maps (Figure 1C, bottom left), we tested whether this effect
generalizes todifferent network architecturesand further explored
the effects of the target place cell output. We focused on three
cases. First, we explored the feedforward architecture of Dordek
et al. (2016) that does not path integrate but rather takes place
cell inputs and learns grid-cell outputs (Figure 2A, left). Second,
we considered the complex path integrator of Banino et al.
(2018) that generates grid responses in a disconnected layer
of neurons presynaptic to the desired place cell code and

A

B

C

D

Figure 2. Neural networks trained on normative tasks develop grid-like firing fields
(A) From left to right, we train a single layer neural network, an LSTM, and an RNN on place cell outputs, reproducing the results of Dordek et al. (2016), Cueva and

Wei (2018), and Banino et al. (2018).

(B) When the place cell RF field (left) is broad, all networks learn square grids.

(C) When the place cell RF exhibits center-surround structure, all networks learn amorphous, quasi-periodic patterns.

(D) In addition to place cell center-surround structure, when a nonnegativity constraint is imposed on hidden unit activations, all networks now learn regular

hexagonal grids.
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Figure 3. A theory for predicting the structure of learned spatial maps
(A) A central row of the place cell correlation matrix S, indicating similarity in the target place cell code as a function of spatial displacement, illustrating center-

surround structure as in Figure 2CD. Red (blue) indicates positive (negative) similarity.

(B) Eigenvectors of S are well approximated by Fourier plane waves and are shown arranged on a discrete lattice of integers ðkx; kyÞ corresponding to the

frequencies of each plane wave along the two cardinal axes.

(C) The eigenvalues of S corresponding to the eigenvectors in (B). Darker red indicates larger eigenvalues.

(D) Particular linear combinations of plane waves yield grid patterns. A square grid can be generated by combining waves that oscillate along the cardinal axes

(left). A heterogeneous grid can be generated by arbitrary combinations of waves with frequencies near an annulus of fixed radius (middle). A hexagonal grid

pattern arises when waves whose frequencies form an equilateral triangle in the ðkx ; kyÞ plane are combined (right).

(legend continued on next page)
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postsynaptic to a hidden recurrently connected network
(Figure 2A, middle). This network also possesses complex
nonlinear single-neuron properties corresponding to long-short
termmemory (LSTM) cells (Dordek et al., 2016). Third, we consid-
ered our simple architecture that generates grid-like responses in
a single hidden layer of recurrently connected neuronswith simple
sigmoidal or ReLU nonlinearities (Figure 2A, right) (see ‘‘rnn
training’’ for details of all architectures and training).

These three diverse architectures exhibited fairly universal
properties of the learned hidden representations as a function
of both the assumed place cell code and the constraints on syn-
apses in the feedforward model or firing rates in the recurrent
models. First, for wide place cell outputs without any surround
inhibition, and with no constraints on synapses or firing rates,
all three models learned square grid-like responses (Figure 2B),
similar to those found in Cueva and Wei (2018). If place cells
have a surround inhibition, then all three models learn highly het-
erogeneous grid-like responses (Figure 2C). In the feedforward
model, this surround inhibition corresponds to place cell input
firing rates suppressed below spontaneous rates, as in Dordek
et al. (2016). In the recurrent models, this surround corresponds
to the layer of grid-like cells exciting the place cells with spatial
RFs closest to the current position and inhibiting the neighboring
place cells. If in addition to the surround inhibition, we further
constrain either synapses or firing rates to be nonnegative,
then all three models learn hexagonal firing fields (Figure 2D).

A theory for the emergence of diverse grid structures in
trained neural circuits
The collection of training experiments in Figure 2 raises an
intriguing question: why do these diverse neural architectures,
across multiple tasks, all converge to grid-like solutions, and
what governs the lattice structure of this solution? We address
this question by noting that all of the models described above
contain within them a common position encoding sub-problem
that involves selecting an optimal hidden representation that
can generate place cell activity patterns through one layer of syn-
aptic transformation with minimum neural activity cost. We
develop our mathematical theory of this common sub-problem
in full detail in ‘‘pattern formation theory predicts structure of
learned representations’’ and summarize its salient points here
at a conceptual level. Overall, our theory allows us to understand
the nature and structure of the resultant grid-like solutions in Fig-
ure 2, and their dependence on various modeling choices.
Readers who are primarily interested in how hexagonal grid-
cell responses are mechanistically generated from the connec-
tivity and dynamics of the learned circuit, as well as comparisons
to neural data, can safely skip this section.

To define the position encoding problem, we begin with a min-
imal subcircuit found in all of the above networks, schematized
as g/

wi
pi. Here, g denotes an nx dimensional firing rate vector

of a position encoding cell across nx spatial bins; when the ani-
mal is at spatial bin x, this cell’s firing rate is given by gðxÞ. Simi-
larly, pi for i = 1;.;np denotes the firing rate vectors of np place
cells with similarly defined rate maps piðxÞ. Finally, wi denotes
the strength of a feedforward synaptic connection from the posi-
tion encoding cell to place cell i. We collect the place cell firing
rate vectors as the np columns of the nx by np matrix P. Now,
the goal of position encoding problem is to choose an optimal
position encoding rate map gðxÞ satisfying two criteria: accu-
rately generate the desired place cell activities piðxÞ and mini-
mize a negativity cost sðgÞ that is large (small), if g is negative
(positive). After optimizing over the synaptic weights wi, the po-
sition encoding problem can be expressed as:

ming k P # ggTPk2 + sðgÞ subject to gTg = 1: (Equation 1)

According to our theory, the solutions to (1) can be roughly un-
derstood by considering the two terms separately. Minimizing
the first term requires picking an encoding map g that accurately
reconstructs place cell ratemaps and corresponds exactly to ex-
tracting the top principal component (PC) of the place cell activ-
ities. As we explain below, this activity has multiple top PCs with
equal variance, giving rise to multiple encoding rate maps with
equal accuracy. The second term breaks the tie: among equally
accurate encoding maps, sðgÞ favors the one with the lowest
negativity cost.
We now perform a detailed analysis of each term. As noted

above, thefirst termrequiresus toextract the topprincipal compo-
nent of the place cell activity. To do so, we construct the nx by nx
spatial correlationmatrixS of the place cell activities. Its matrix el-

ements are Sxx0 = ðPPT Þxx0 =
P
i
piðxÞpiðx0Þ. Here, a positive

(negative) matrix element Sxx0 quantifies how similar (dissimilar)
the place cell population code is at two points x and x0 in space.
Figure 3A shows a single row of the spatial correlation matrix
wherex is the centerof a2Denclosure and x0 variesover theenclo-
sure, in thecasewhere theplacecellmapspiðxÞhaveacenter-sur-
round structure as in Figures 2C and 2D. The similarity is high and
positive for points x0 near the center, low and negative for points
further away, and close to zero for points even further away.
Next, the top principal component is obtained by extracting

the eigenvectors and eigenvalues ofSxx0 . Indeed, such eigenvec-
tors of inputs and outputs often determines the nature of learned
representations in neural networks, from the development
of ocular dominance columns (Miller et al., 1989) to the

(E) If the similarity structure in (A) is wide, the annulus of S eigenvalues will be small, shown in gray, and will only intersect a few plane modes oscillating primarily

along the cardinal axes.

(F) Simulations confirm that neural circuits with unconstrained firing rates will learn combinations of precisely these cardinal modes, generating square grids.

(G) For narrow similarity structure, the large eigenvalues of S lie near an annulus of large radius, shown in gray.

(H) Simulations confirm that neural circuits with unconstrained firing rates learn arbitrary linear combinations of plane waves with oscillations frequencies near this

annulus, generating heterogeneous grids.

(I) The nonnegativity constraint creates a cooperative interaction among frequency triples that sum to 0 as vectors in the ðkx ; kyÞ lattice. Since these frequencies

must lie on the annulus of large eigenvalues, they must form an equilateral triangle (dashed red).

(J) Simulations confirm that neural circuits with nonnegative firing rates learn hexagonal grids, as predicted in (D) (right) and (I). Panels (F), (H), and (J) show the

learned grid-cell representation and Fourier power spectrum (inset).
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development of semantic categories (Saxe et al., 2014, 2018). In
our context, the eigenvectors are rate maps, i.e., spatial func-
tions of 2D position and are well approximated by Fourier plane
waves that oscillate in different frequencies and directions (Fig-
ure 3B; see ‘‘pattern formation theory predicts structure of
learned representations’’). The eigenvectors are indexed by
two integers, kx and ky , indicating the spatial frequency of oscil-
lation in each of the two cardinal spatial directions. Each such
eigenvector has an associated nonnegative eigenvalue. These
eigenvalues are shown in Figure 3C at the integer ðkx; kyÞ lattice
points associated with the corresponding eigenvectors in Fig-
ure 3B. The strength of these eigenvalues can be obtained by
computing the power in each Fourier mode at spatial frequency
ðkx; kyÞ of the similarity function displayed Figure 3A (see ‘‘pattern
formation theory predicts structure of learned representations’’).
Because this similarity function has a center-surround structure,
the maximal Fourier power occurs near an annulus in the ðkx; kyÞ
lattice, and the narrower the similarity function in Figure 3A, the
larger the radius of this annulus in Figure 3C.
Crucially, as Figure 3C shows, there are multiple maximal ei-

genvalues distributed over a ring centered on the origin, corre-
sponding to multiple equal-variance top principal components.
Consequently, there is an entire family of equally accurate grid
maps consisting of arbitrary linear combinations of eigenvectors
in Figure 3B with maximal associated eigenvalue (see ‘‘pattern
formation theory predicts structure of learned representations’’).
Figure 3D indicates how, for example, square, heterogeneous, or
hexagonal grid patterns can be constructed from appropriate
combinations of these top principal components. The key issue
then is how does the structure of the place cell code conspire
with constraints on hidden representations of the form sðgÞ to
generate these three types of grid codes?
Our theory answers this question by elucidating three general

scenarios that lead to these three qualitatively distinct types of
codes. In the first case, if the place cell similarity structure in Fig-
ure 3A is wide relative to the size of the enclosure, then the
maximal eigenvalues will occur near an annulus of small radius,
as in Figure 3E. This annulus will intersect a small number of lat-
tice points in the ðkx; kyÞ plane corresponding to low frequency
eigenmode oscillations aligned along the cardinal axes of the
enclosure, and linear combinations of these oscillations along
these cardinal directions would predict square grid cells as in
Figure 3D, left. This prediction is confirmed in simulations of
our position encoding problem in Figure 3F (see ‘‘pattern forma-
tion theory predicts structure of learned representations’’).
Indeed, square grid cells were previously found in trained path
integrators (Cueva and Wei, 2018). On the other hand, if the sim-
ilarity structure in Figure 3A is narrow, the maximal eigenvalues
will occur near an annulus of large radius, which intersects
many lattice points in the ðkx; kyÞ plane, as in Figure 3G. As
described above, without further constraints sðgÞ, the hidden
representation of neural circuits will learn arbitrary linear combi-
nations of eigenmodes associated with the many lattice points
on the large annulus, yielding relatively heterogeneous patterns,
as predicted in Figure 3D, middle. This prediction is confirmed in
simulations in Figure 3H. Indeed, Banino et al. (2018) found high-
ly heterogeneous grid-like representations, with a few cells
having a high grid score, but the entire distribution of grid scores

was indistinguishable from that obtained by grid patterns ob-
tained by low-pass filtering random noise, as demonstrated in
Figure 1E
We now turn to the effect of the second term, sðgÞ. As noted

above, sðgÞ ’s role is to single out maps with minimum negativity
penalty among the equally accurate maps found on the ring of
maximal eigenvalue in Figures 3B and 3C. We prove (see
‘‘pattern formation theory predicts structure of learned represen-
tations’’) that the effect of this penalty is to favor 3-fold combina-
tions of eigenvectors whose spatial frequencies ðkx; kyÞ form an
equilateral triangle centered at the origin (Figure 3I). This combi-
nation of eigenvectors predicts a hexagonal grid representation
as in Figure 3D, right. This prediction is confirmed in simulations
of our position encoding problem in Figure 3J. Thus, although
non-hexagonal maps are also possible, they are not optimal in
the sense of solving the problem with both minimum activity
and nonnegativity.
Taken together, our theory provides a unifying conceptual

explanation for when and why square, heterogeneous, or hexag-
onal grids spontaneously emerge across three diverse architec-
tures depicted in Figure 2A and elucidates why prior work (Cueva
and Wei, 2018; Banino et al., 2018) on training path-integrator
neural networks did not find truly hexagonal grid structure. We
have shown that under a wide range of assumptions, any
network trained to solve the position-encoding problem of effi-
ciently generating relatively narrow center-surround place cell
maps with minimum total grid-cell activity consisting of only
nonnegative firing rates will have a tendency to develop hexag-
onal grid maps. We now move beyond the computational origin
of grid cells to understanding the mechanistic origins of these
cells in trained neural networks.

Two-dimensional attractor dynamics underlies path
integration in trained networks
Any neural circuit that is required to maintain a memory trace of
position while the animal is standing still, with no velocity or other
sensory inputs, mustmaintain a set of stable attractor patterns of
neural activity. Many traditional hand-designed neural network
models for grid cells build in, by design, a 2D attractor manifold
of stable activity patterns that has the structure of a torus (Con-
klin and Eliasmith, 2005; Fuhs and Touretzky, 2006; Guanella
et al., 2007; Burak and Fiete, 2009; Ocko et al., 2018a). This rai-
ses the question of whether our network, which does not build in
any attractor structure a priori, naturally develops a similar
toroidal manifold.We took advantage of having complete access
to both the connectome and dynamics of our trained networks to
search for and characterize neural activity patterns that are sta-
ble for long periods of time, using the methods of Sussillo and
Barak (2013).We found a large number of such attractor patterns
that when projected into a high-variance 6 dimensional sub-
space could be arranged continuously along a 2D manifold
with the shape of a torus (Figure 4A; see ‘‘attractor manifold anal-
ysis’’ for details). Moreover, the attractor patterns were in corre-
spondence with both positions in physical space (Figure 4A, red
dashed lines) and the network’s decoded position (Figure 4A,
blue-green colormap). Furthermore, we found that as the animal
moves from one end of the enclosure to another, at least within
this 6-dimensional subspace, the neural trajectory wraps
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multiple times around the 2D attractor manifold. Figure 4B illus-
trates three different 2D projections, which show how the neural
trajectory wraps multiple times around the torus as the animal
moves either 0+, 60+, or 120+ relative to the horizontal axis of
the enclosure.

As a simple control, we repeated the analyses shown in
Figures 4B and 4D on random patterns obtained by low-pass
filtering spatial noise as in Figure 1D. The results, shown in
Figures 1A and 1B, indicate a clear qualitative departure from a
toroidal manifold structure, indicating that our novel toroidal sub-
space finding method only detects statistically robust tori and
will not spuriously generate them when they do not exist, even
in high dimensional datasets.

Next, we investigated the structure of the attractor manifold in
the full activity space, rather than just the high-variance 6-D
space, using two model-free approaches. First, we performed
a persistent homology analysis (Zomorodian and Carlsson,
2005), which identifies topological holes of different dimensions

in the data and produces a barcode characterizing its topology
(see ‘‘persistent homology’’). A perfect torus (Figure 4C, left) is
characterized by a barcode with one connected component,
two 1-D cycles (representing the two orthogonal ways of encir-
cling the torus), and one 2-D hole (representing the 3-D volume
enclosed by the torus). In Figure 4C, right, we compute the bar-
code for the attractor manifold in our trained model and find that
it matches the barcode of a torus. This reproduces a similar to-
pological analysis done on actual MEC grid cells (Gardner
et al., 2022). Second, we note that a key property of the toroidal
structure in 6-D space is that as the animal moves along the 0+,
60+, and 120+ directions in physical space, motion along the at-
tractormanifold curls back to itself to a very good approximation.
We can similarly compute distances between different pairs of
attractor patterns in the full space of all N = 4096 neurons,
without relying on dimensionality reduction (Figure 4D). Each
heatmap shows the neural activity distance when one environ-
mental location is fixed at the black ‘‘x,’’ and the other is varied

Figure 4. Emergent two-dimensional attractor neural dynamics in trained path integrators
(A) A toroidal manifold of stable attractor patterns in neural activity space, visualized via dimensionality reduction, with each attractor pattern colored by the

decoded position within the 2d environment in the inset. The neural trajectory corresponding to the animal trajectory in the inset is shown as a red dashed line.

(B) Projecting attractor patterns onto three suitably chosen pairs of axes (see ‘‘attractor manifold analysis’’) reveals three rings, representing position along the 0+;

60+, and 120+ vectors in real space. Colors correspond to decoded position in the 2d environment (insets).

(C and D) Model-free analyses for identifying toroidal structure.

(C) Persistent homology indicates that the attractor manifold has the topology of a torus. Left: Betti barcode for a synthetic torus with additive gaussian noise.

Prominent bars (indicated by arrows) reflect the presence of one connected component (H0), two 1-D holes (H1), and one 2-D hole (H2), which persist across

scales. Right: the attractormanifold of our trainedmodel has the same barcode, indicating toroidal structure. The four prominent bars are substantially longer than

a null barcode (shaded region), defined as the longest lifetimes obtained over many shuffles of the data.

(D) Distance between attractor patterns at different spatial locations. One point is varied over the environment and the other is fixed at the black ‘‘x.’’
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over all environmental locations. These distances indicate
that as the animal moves in physical space along the 0+, 60+,
and 120+ directions, the attractor manifold does indeed approx-
imately, but not fully, return to itself multiple times in the full
space of all neurons. Repeating this analysis on cells with a
high grid score, the manifold returns much more closely to itself
(Figure S1C), indicating that the partial departure from toroidal
structure is due to heterogeneous neural activity patterns that
coexist with more regular hexagonal grid patterns.
Thus, overall, trained neural networks, although containing

some of the structure of the perfect toroidal attractor manifold
that underlies hand-designedmodels, nevertheless, also contain
within them amore general and varied 2Dmanifold structure that
goes beyond the Platonic torus. This larger space of network so-
lutions includes many neurons with highly regular grid patterns
that simultaneously coexist withmany neuronswithmore hetero-
geneous patterns (Figure S2), as is consistent with a recent sta-
tistical analysis of MEC firing patterns (Hardcastle et al., 2017).
Interestingly, path-integrator networks with a simultaneous
coexistence of neurons with both highly structured and highly
heterogeneous firing patterns have been difficult to hand design.
Thus, neural network training, which naturally finds such solu-
tions, can generate circuit-level hypotheses for neural function
with more biologically realistic levels of heterogeneity.

Mechanisms underlying path integration
We next turn our attention to how circuit connectivity and dy-
namics conspire to both generate the 2D attractor manifold
and update position along this manifold as velocity signals enter
the network. Below we review how traditional hand-designed
models solve these two core problems. We find that at the level
of individual neurons and synapses, the mechanisms of trained
networks are much less readily apparent. We then develop and
apply several analyses that reveal emergent, population-level
mechanisms generalizing traditional mechanisms. In the supple-
ment, we give an account of the simpler 1-dimensional version of
this problem, where the results are easier to visualize and under-
stand (see ‘‘analysis of 1D path integrator network mecha-
nisms’’; Methods S1 and S2).
Stable storage of positional information in two
dimensions
We first study the problem of storing position in two dimensions.
Traditional models accomplish this by arranging neurons on a
two-dimensional neural sheet, with a center-surround connec-
tivity over this sheet (Figure 5A), yielding a set of stable hexago-
nal firing patterns on the neural sheet (Figure 5B; simulation
details in ‘‘idealized path integrator models’’). To better under-
stand how this tailored connectivity gives rise to periodic bump
patterns, we first plotted the average connectivity as a function
of displacement on the neural sheet, which clearly exhibits the
center-surround structure built into the model (Figure 5C, left).
To obtain an approximate, low-dimensional characterization of
the connectivity, we computed its top eigenmodes, correspond-
ing to activity patterns that are strongly amplified. The 6 top
eigenmodes are plotted as heatmaps over the neural sheet (Fig-
ure 5D) and correspond simply to quadrature pairs of Fourier
waves at 0+, 60+, and 120+ along the neural sheet. Next, to char-
acterize the full, high-dimensional behavior of the connectivity,

we measured how a complete set of wave inputs of various fre-
quencies and orientations are transformed over time (this
approach is equivalent to Fourier analysis of the connectivity ma-
trix; see ‘‘fourier analysis of recurrent weights’’). The connectivity
in hand-designed models transforms a single-wave input into a
single-wave output of the same frequency and orientation, with
a given amplification factor. These amplification factors are
shown Figure 5C, right, demonstrating that only a small number
of low frequency periodic patterns are amplified by the connec-
tivity. In essence, a 2D family of stable patterns is maintained
fundamentally through the self-excitation of low frequency Four-
ier modes on the 2D neural sheet (Figures 5A–5D).
A key impediment to applying the same analyses to the trained

network lies in the absence of any organizing principle to sort the
neurons onto a putative neural sheet and to understand the con-
nectivity as a function of the relative position of pairs of neurons on
the neural sheet. For a one-dimensional head-direction network,
we show how to easily sort neurons by their preferred head direc-
tion to obtain a neural ring (Figure S4C). This simple strategy does
not generalize to two dimensions because single-neuron firing
rate maps are now multi-modal, and also, many are significantly
heterogeneous. To address these issues, we developed a new,
noise-tolerant sorting procedure tailored to hexagonal maps (Fig-
ure 5I). Briefly, for each rate map, we measured 3 spatial phases
designed to locate the neuron’s hexagonal grid along the 0+, 60+,
and 120+ axes of physical space. We then arranged the neurons
onto a 2D neural sheet such that neurons with similar spatial
phases were physically close (Figure 5E; see ‘‘sorting RNN units
onto a neural line and a neural sheet’’ for full details).
After sorting the neurons, when we plot stable activity patterns

of the trained network as patterns over the sorted 2D neural sheet,
we obtain, remarkably, hexagonal firing patterns over the emer-
gent neural sheet (Figure 5F). We note that these hexagonal firing
patterns are distinct from, but related to, the firing fields of individ-
ual grid cells across physical space, as shown for example in Fig-
ure 2D. The latter involve the average firing rate of single cells
across all of physical space, whereas the former involve the activ-
ity of all neurons across a neural sheet, although the animal is at a
singlepoint in physical space, analogous to a single frame in aCal-
cium imaging experiment (Gu et al., 2018).
After using activity to organize the neurons on a 2D neural

sheet, we examined the neural connectivity. The insets in Fig-
ure 5G, showing three examples of outgoing connectivity of a
single neuron as a function of displacement on the neural sheet,
exhibit very little structure. However, when outgoing connectivity
is averaged over all neurons, clear center-surround structure
emerges (Figure 5G, left). We next extracted the top eigenvec-
tors of the connectivity matrix. Although the eigenmodes did
not form clear Fourier waves over the neural sheet, we found
linear combinations of the top 10 eigenmodes (see ‘‘extracting
Fourier modes from top connectivity eigenvectors’’ for details)
that resemble the simple structure of the traditional model
(Figures 5D and 5H). Moreover, the eigenvalues of the connectiv-
ity, shown in Figure 5J, reveal a small number of strong eigen-
modes in the connectivity. Finally, replicating the wave analysis
of Figure 5C, right, we found that the connectivity primarily am-
plifies a small number of wave inputs while preserving frequency
and orientation (Figure 5G, right; see ‘‘fourier analysis of
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recurrent weights’’). Geometrically, the simple Fourier waves
over the neural sheet sustained by the connectivity (Figures 5F
and 5K, bottom) form a toroidal attractor manifold in activity
space (middle), where each point represents a specific spatial
location in the arena (top).

In summary, remarkably, the trained neural network finds a so-
lution to the problem of storage of 2D position in a manner that is

quite similar, at a collective level, to the hand-designed neural
network, as seen by the qualitative similarity of Figures 5A–5H.
This conclusion was not a priori obvious and required analysis
methods that: (1) employ activity to organize neurons on a neural
sheet and (2) find combinations of connectivity eigenmodes that
behave simply as functions on the neural sheet. Notably, individ-
ual synaptic strengths have a much less clear meaning

Figure 5. Mechanisms of information storage in two dimensions in hand-designed and trained neural networks
(A) Hand-designed networks employ a 2D sheet of neurons, with local excitation and long-range inhibition to yield stable activity patterns (simulation details in

‘‘idealized path integrator models’’).

(B) Stable activity patterns on the neural sheet when the animal is at 5 successive positions in physical space.

(C) The average outgoing connectivity profile (left; red (blue) indicates excitation (inhibition)), and the degree of self-excitation of Fourier modes over the 2D neural

sheet (right). Fourier modes on the neural sheet are indexed by 2 discrete frequency variables, just as the Fourier modes in physical space Figures 3B and 3C. A

small number of low frequency Fourier modes excite themselves.

(D) The top 6 eigenmodes of the connectivity correspond to low frequency Fourier modes on the 2D neural sheet.

(E) Schematic of our method to order neurons in a trained recurrent network along a 2D neural sheet.

(F–H) Replication of (B)–(D), now for the trained network using the extracted 2D neural sheet (see ‘‘sorting RNN units onto a neural line and a neural sheet’’ for sort

details). The additional 3 insets in (G, left) show outgoing connectivity profiles for three neurons, revealing no discernible structure. Structure only appears after

averaging outgoing connectivity profiles across neurons (G, left) or in the basis of Fourier modes (G, right), both as functions on our extracted 2D neural sheet.

(I) Schematic of method to position neurons on a 2D neural sheet. Each cell has a Fourier phase along 3 different axes. For hexagonal patterns, these phases obey

a linear relation enabling us to explain them using only two variables, which then become coordinates on a neural sheet. Formore heterogeneous cells, we find the

best coordinates we can to explain the 3 phases, thereby placing all neurons (gray dots) at some point on a 2D neural sheet, revealing the emergent structure of

trained networks in (F–H).

(J) Eigenvalues of the trained connectivity, indicating positive feedback for a small number of eigenmodes.

(K) Visualizing the storage of position in three different spaces. (Upper) The animal at a location in physical space; (middle) The current neural activity pattern

corresponds to a point on a 2-D toroidal manifold in neural activity space. (Lower) The current neural activity as a pattern of hexagonal bumps on a 2D neu-

ral sheet.
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(Figure 5G, insets). Instead, our ability to understand the essen-
tial principles underlying memory storage in this network
required the combined analysis of both activity patterns and
the connectome.
Velocity-based updating of positional information in two
dimensions
We next asked how the trained RNN updates its stored location
as it receives velocity inputs. See Figure S5 for an analysis of how
this is done for a one-dimensional head direction system. In a
two-dimensional path-integration circuit, hand-designed
models accomplish velocity updating through multiple subpop-
ulations of neurons with offset outgoing connections, biased in
different directions on the neural sheet (Figure 6A). To update po-
sition correctly, each neuron’s preferred velocity matches its
biased pattern of outgoing connectivity. When the animal re-
ceives a northward velocity signal, for example, this leads to a
sequence of steps. First, the velocity inputs activate cells that
are selective for northward movement. These cells then transmit
increased activation through their northward biased recurrent
connectivity. Thus, cells on the north edge of the activity bump
are excited, causing the activity bump to shift in this direction.
This structure yields a situation in which animal motion in any di-
rection in physical space moves the bump on the neural sheet in
a corresponding direction. The precise combined effect of these
steps can be understood by linearizing the dynamics, whereas
the network is at a stable bump pattern and a velocity input is
given to the network. This yields a quantitative expression for
the activity pattern change Di =

P
j
Jijs0jðMjxvx +MjyvyÞ that com-

bines the velocity vx; vy, velocity input weights Mjx;Mjy, neuron
gain s0j , and the recurrent connectivity Jij (see full derivation in
‘‘linearized RNN dynamics’’). Consistent with the intuition given
above, these update patterns Di, shown in Figure 6B, excite
(inhibit) the leading (trailing) edge of the activity bump and thus
cause the activity pattern to shift in the appropriate direction.
Geometrically, the dynamics of these hand-designed networks
can be thought of as motion along a toroidal manifold of stable
activity patterns that is pushed along this manifold in a veloc-
ity-dependent manner (Figure 6C), resulting in translation of a
hexagonal pattern on the 2D neural sheet (Figure 6D).
We next askedwhether trained networks learn the same struc-

ture in their feedforward and recurrent connectivity. Leveraging
our ability to sort the neurons onto a 2D neural sheet using activ-
ity patterns alone (Figures 5E and 5I), we examined the histo-
gram of biases in the outgoing connectivity of each neuron
over the neural sheet. For a hand-designed network, this histo-
gram would yield four populations of biases in outgoing projec-
tions (Figure 6E, left). However, in trained networks, we found
that the histogram of biases was random and unimodal,
centered around zero bias (Figure 6E, right; details in ‘‘connectiv-
ity bias’’). Nevertheless, after sorting the units onto a neural
sheet (Figure 6F), when we used the same linearization tech-
nique to compute the velocity-induced pattern of excitation
and inhibition delivered across the neural sheet, given by Di =P
j
Jijs0jðMjxvx +MjyvyÞ, we found this pattern, obtainable only

by summing over all neurons j in the network, behaved as in
the hand-designed network, providing the correct excitation (in-
hibition) pattern to neurons at the leading (lagging) edge of the
current activity bump along the correct axis on the neural sheet

(Figure 6G). This yields a geometric picture in which the stable
activity patterns form a toroidal manifold in the same 6 dimen-
sional subspace of Figures 4B and 4D, and the pattern of excita-
tion/inhibition Di, when reduced to this space, pushes activity
tangent to the manifold along a direction determined by the ve-
locity in physical space (Figure 6H). This push moves the hexag-
onal pattern on the neural sheet in the correct direction (Fig-
ure 6I), and indeed, the cosine of the angle between the push
is given by Di, and the tangent direction of correct motion along
the manifold stays roughly constant along the entire manifold of
stable activity patterns (Figure 6J).
Thus, relative to a hand-designed model, the updating mech-

anism of the trained network remains murky at the level of indi-
vidual synapses and neurons (compare Figure 6E, left and right),
and it is only at a collective level that similar bump-pushing dy-
namics emerge (compare Figures 6B and 6G).

Investigating the role of heterogeneous cells in trained
networks
Beyond the regular hexagonal grids predicted by our theory, our
trained networks contain a number of units that exhibit more het-
erogeneous firing patterns, not unlike the diverse heterogeneous
cells found in MEC (Hardcastle et al., 2017). These heteroge-
neous units develop late in training, after a large population of
regular hexagonal grid cells have already emerged. We therefore
sought to investigate whether the heterogeneous units play a key
functional role in navigation and whether the heterogeneity in our
trainedmodels quantitatively matches the heterogeneity inMEC.
To address the first question, we ablated either the highest or

lowest scoring grid cells in our model (see ‘‘analysis of heteroge-
neous cells’’). We then evaluated the path integration perfor-
mance of the ablated networks by measuring the distance be-
tween the location of the maximally activated place cell and
the animal’s true position at each time step. This mimics an
experiment in an animal in which either grid cells or non-grid cells
are selectivity knocked out, but the downstream circuitry from
the remaining entorhinal cells to other cells mediating either
behavior, or the animal’s internal estimate of position, remain
intact without modification. We found that performance
degraded significantly when high grid score cells were ablated
(Figure 7A, left), but not when low grid-score cells were ablated
(Figure 7A, right), indicating that grid cells, but not heteroge-
neous cells, play a central role in path integration in our models.
What then is the role of heterogeneous cells? And why do they

consistently emerge in trained networks? We hypothesized that
although grid cells form the backbone of the path integrator, het-
erogeneous cells help solve the readout problem of transforming
spatial information present in the path integrator to a place cell
code. To test this hypothesis, we examined the ability of our
model to generate the population code of place cells as we
included increasing numbers of heterogeneous cells (Figure 7B,
pink). We compared this with the readout performance of a pop-
ulation of pristine grid cells like those in a continuous attractor
model (hexagonal grids with scale matched to RNN maps; Fig-
ure 7B, blue). We found that performance is similar across the
two populations when only the most grid-like cells are included,
but performance continues to improve as heterogeneous cells
from our model are added, whereas performance quickly
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Figure 6. Mechanisms of 2-D path integra-
tion in hand-designed and trained neural
networks
(A) Schematic of connectivity rule for updating

position in many hand-designed models (full de-

tails in ‘‘idealized path integrator models’’).

Incoming velocity inputs v! (black cell) with feed-

forward synapses Mj (black arrows) excite a pop-

ulation of eastward-projecting neurons (blue). The

active eastward-projecting neurons (blue circle,

top) excite neurons (blue circle, bottom) to the east

of the current bump of activity (dashed-gray circle,

bottom), through eastward-offset recurrent con-

nectivity (blue arrow, J), shifting the bump of ac-

tivity to the east. Analogous dynamics capture

southward, westward, or northward motion

(colored planes).

(B) The pattern of excitation (red) and inhibition

(blue) Di over the neural sheet when the animal

moves in eight directions in physical space. The

central pattern is a small section of the neural sheet

before the motion (white-dashed box in inset).

(C) Motion of the animal in the environment (bottom

right) corresponds to excitation/inhibition pattern

Di that are tangent along the 2D toroidal manifold

of stable activity patterns.

(D) Motion of the hexagonal pattern on the 2D

neural sheet for motions of the animal in physical

space.

(E) Histogram of outgoing connectivity biases as a

function of the relative displacement on the neural

sheet, for hand-designed (left) and trained (right)

networks (see ‘‘connectivity bias’’).

(F) Schematic of sorting procedure (see Figure 5I

and ‘‘sorting RNN units onto a neural line and a

neural sheet’’).

(G–I) Same as (B)–(D) for 2D neural sheet extracted

from the trained network.

(J) Histogram of the cosine angle between the ve-

locity-generated pattern of excitation inhibition Di ,

and the correct direction of motion along the at-

tractor manifold, across all points on the manifold.

A roughly constant value (even if this value is not 1)

is sufficient for accurate path integration.
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saturates as increasing numbers of pristine grid cells are added
(see ‘‘analysis of heterogeneous cells’’ for details). We obtained
similar results when RNN maps/pristine grid maps were used to
read out random value functions, rather than place cells (Fig-
ure S7; see ‘‘analysis of heterogeneous cells’’). Together,
Figures 7A and 7B suggest that grid cells form the core path inte-
grator, whereas heterogeneous cells provide a richer repertoire
of maps with which to readout downstream population codes
such as place cells or arbitrary value functions.
Motivated by these observations, we next asked whether the

structure of heterogeneity in our trained model might explain
that of population codes in MEC. Using electrophysiology re-
cordings from 778 MEC neurons in awake, behaving rats per-
forming a free-foraging task (Butler et al., 2019), we evaluated
the ability of our model neurons to predict the spatial rate
maps of MEC neurons, including the heterogeneous non-grid
cells, through linear regression under a sparsity penalty, using
varying numbers of model rate maps as regressors (see ‘‘anal-
ysis of heterogeneous cells’’).
As an upper bound on the ability of any model to predict MEC

activity, we first examined the ability of neurons in one animal to
predict the activity of neurons in another animal (Figure 7C, pur-
ple). As a lower bound, we examined the ability of a population of
pristine, regular hexagonal grids, constructed by hand across
several spatial scales, to predict population activity in MEC
(Figure 7C, red; see ‘‘analysis of heterogeneous cells’’). We
observed a significant gap between the upper and lower bounds,
indicating that the heterogeneity in MEC contains structure,
beyond that explained by regular hexagonal grids, and that this
structure is preserved across animals. We next asked whether
this structure is captured by the heterogeneity in our trained
model. We found that its prediction performance nearly satu-
rates the upper bound (Figure 7C, blue), indicating that the struc-
ture learned in our model captures nearly all of the heterogeneity
in MEC. We additionally examined the performance of the model

in Banino et al. (2018) and found that it is similar to ours, suggest-
ing a match between MEC and model heterogeneity (despite the
mismatch for high-scoring grid cells; Figure 1).
To better understand the heterogeneity that is preserved

across animals, we also examined how well a maximum entropy
model can predict MEC firing patterns. We constructed this
maximum entropy model by creating a new population of model
cells with random gaussian spatial firing patterns subject to the
same first- and second-order statistics of actual MEC firing pat-
terns (see ‘‘analysis of heterogeneous cells’’). Thus, this popula-
tion of cells has no statistical structure in its firing patterns above
and beyond theseMEC statistics and is otherwise essentially un-
structured noise. Surprisingly, the maximum entropy model can
predict actual MEC firing patterns in an animal (Figure 7C, black)
essentially as well as MEC firing patterns in another animal can
(Figure 7C, purple). Finally, in our trained model, we replicated
a published analysis of heterogeneous cells in MEC (Hardcastle
et al., 2017) and demonstrated that heterogeneous cells in our
model, just like in data, lack any clear organizing structure along
their top principal components (Figure S3).
Thus, overall, these results yield several insights into the na-

ture of heterogeneous firing patterns in MEC: (1) at least by
this prediction assay, they are unlikely to contain significant
structure above and beyond their first- and second-order spatial
statistics, (2) these spatial statistics are preserved across ani-
mals but further structure beyond that is unlikely to be preserved,
and (3) our trained model, but not hand-designed continuous at-
tractor networks, can account for almost all of this statistical
structure in heterogeneous MEC firing patterns.

DISCUSSION

In summary, we addressed the questions raised in the intro-
duction concerning the computational and mechanistic origins
of grid cells across normative representational models and

A B C D

Figure 7. Investigating the role of heterogeneous cells in trained models
(A and B) (A) Ablating the highest-scoring grid cells during navigation significantly degrades spatial information within the network, whereas (B) ablating the

heterogeneous cells has comparatively little effect, suggesting that grid cells play a more important role in path integration.

(C) On the other hand, heterogeneous cells significantly improve the network’s ability to read out spatial information from the recurrent units into an output place-

cell code. Cyan dots represent pristine grid maps with scale matched to the RNN; magenta dots represent trained RNN maps (ordered by grid score). For small

numbers of regular grid cells, both sets perform similarly; as more heterogeneous cells are added to the RNN set, it significantly outperforms the pristine model.

(D) We compare the ability of our model (blue) and that of Banino et al. (2018) (green) to predict ratemaps of MEC neurons (from Butler et al., 2019), along with

several controls: (1) a ceiling obtained by fitting one subset of the recorded data with another (purple), (2) a maximum entropy model with mean and covariance

matched to MEC activity (black), and (3) a set of pristine grid maps as in continuous attractor models (Burak and Fiete, 2009) with several modules (red). L1

regularized fit performance is measured by cross-validated Pearson correlation (r2) between actual and predicted ratemaps. Performance is plotted as the l1

regularization coefficient is varied (the x axis represents fraction of regression coefficients equal to zero). All heterogeneous models, including the maximum

entropy model, roughly saturate the prediction ceiling set by brain-brain fitting, suggesting maps may be well characterized by second-order statistics alone.
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hand-tuned as well as trained path integrators. First, we obtain
more robust hexagonal grid-like representations in neural net-
works trained to path integrate by introducing two simple bio-
logical constraints: nonnegative firing rates (inspired by Dordek
et al., 2016) and a center-surround structure of inputs to place
cells. Second, we demonstrate that our models not only path
integrate with hexagonal grid cells in a square environment
but also generalize this hexagonal pattern outside the original
square, as this environment is expanded. Our networks thus
go beyond prior trained networks, which neither yield robust
hexagonal grids nor generalize in expanded environments.
Third, we develop a general unified theory for why grid cells
can spontaneously emerge in diverse normative as well as
mechanistic models, including in recurrent networks trained
to path integrate (Cueva and Wei, 2018; Banino et al., 2018)
as well as feedforward networks trained to efficiently encode
place cell inputs (Dordek et al., 2016). Fourth, across all these
works, our general theory explains when and why different grid
lattice structures (i.e., square, hexagonal, and heterogeneous)
spontaneously emerge. Fifth, we develop novel algorithmic
methods to extract, from the seemingly highly unstructured
connectomes of such trained networks, a conceptual under-
standing of how they both path integrate as well as mechanis-
tically generate hexagonal grid-cell responses. Sixth, we relate
our conceptual understanding of the circuit mechanisms under-
lying trained grid-cell path integrators to those of hand-tuned
path integrators, showing that the former obeys similar compu-
tational principles as the latter, but these principles only
emerge at a collective level of analysis and are hard to discern
from the properties of single neurons and synapses. Seventh,
we uncovered a functional dichotomy between grid cells and
heterogeneous cells in our model, with the former primarily
contributing to path integration and the latter primarily contrib-
uting to the construction of diverse spatial functions of posi-
tions. Finally, we quantitatively matched the heterogeneous
firing patterns in our model to those of actual MEC neurons,
finding that our model could predict the structure of this hetero-
geneity almost as well as neurons in another animal could.
These results address and raise a host of interesting issues.

Limitations and future directions
In this work, we have worked backward from function to struc-
ture by showing that neural networks trained to path integrate,
under two additional simple constraints, yield the structure of
grid cells. (Of course, the converse, namely that the mere exis-
tence of grid cells by themselves implies the task of path integra-
tion, is not true: indeed, the model of Dordek et al. (2016) pro-
vides a counterexample). It would be interesting to study how
additional normative criteria could yield more detailed predic-
tions about MEC recurrent connectivity, such as its purely inhib-
itory nature (Couey et al., 2013), as the attractor framework alone
cannot predict synapse polarity since both polarities can yield
similarly functioning networks (Fuhs and Touretzky, 2006; Burak
and Fiete, 2009). These extensions could help shed light on the
precise relation between biological grid cells and path integra-
tion, which remains a challenging open question, due to the
experimental difficulty of specifically perturbing grid cells (Gil
et al., 2018).

Another interesting extension would be to incorporate land-
marks and/or other movement or direction signals such as
head direction, in addition to the body velocity inputs we
consider here, as additional sources of information about posi-
tion. The fusion of landmark and velocity inputs has been previ-
ously studied in hand-designedmodels, which have successfully
accounted for the deformation of grid cells in irregular environ-
ments (Ocko et al., 2018a) and the remapping of grid cells in vir-
tual reality environments (Campbell et al., 2018). However, such
models, with their crystalline grid-cell structure, cannot make
predictions for what heterogeneous cells would do under the
same experimental manipulations. Intriguingly, non-grid spatial
cells have been shown to remap more readily to environmental
manipulations than grid cells (Diehl et al., 2017).
Also, recent work has shown that changes in rewarded loca-

tion can affect grid-cell firing properties (Butler et al., 2019; Boc-
cara et al., 2019). Training neural networks to forage in response
to changed rewarded locations could yield new, general hypoth-
eses about interactions between reward, spatial location, and
grid-cell and heterogeneous-cell firing patterns. We note that
our model is trained using a place cell-like code as a teacher
signal (although our theory reveals that any set of stable spatial
responses with the same spatial correlational structure as our
place cell code will produce grid cells; see ‘‘pattern formation
theory predicts structure of learned representations’’). This
teaching process is simply a method for exploring the space of
path-integrator models and is not meant to model the actual bio-
logical development of grid cells. A future direction would be to
investigate whether a more general framework can promote
the simultaneous emergence of grid and place cells within a sin-
gle model.
Perhaps more ambitiously, it would be exciting to explore the

functional role of MEC grid cells in more general settings beyond
that of path integration, for example, in general episodic mem-
ory, abstract reasoning, planning, and imagination (Moser and
Moser, 2013; Constantinescu et al., 2016; Bellmund et al.,
2016; Whittington et al., 2020). Indeed, ancient mechanisms
for integrating velocity to arrive at position, in path integration,
may have been co-opted by evolution to integrate individual
deductive steps to arrive at final inferences, in general processes
of reasoning and imagination. To obtain mechanistic hypotheses
as to how neural circuits can accomplish such remarkable feats,
the proximal path may lie in training them on complex tasks,
developing analytic tools to understand their function and ex-
tracting predictions that can be tested at emergent levels of cir-
cuit organization—perhaps beyond individual neurons and syn-
apses—in large-scale connectomes and brain activity maps.
We hope our work along these lines in the simple setting of
path integration inspires similar ways forward in more complex
settings.
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Data and code availability
d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key re-
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d All original code has been deposited at https://github.com/ganguli-lab/grid-pattern-formation and is publicly available as of the

date of publication. DOIs are listed in the key resources table.
d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

NOTATION

RNN TRAINING

Path integration task
The task and training protocol shown in 1 were replicated from Banino et al. (2018). Place cell receptive field centers c!i(np = 512)
were distributed randomly over a ð2:2m32:2mÞ environment. The response of the ith place cell was simulated using a difference of

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Giocomo lab grid dataset Lab of Lisa Giocomo. FigShare: https://doi.org/10.25452/figshare.plus.15041316

Gardner et al. grid cell activity maps Gardner et al. (2022) manuscript. https://doi.org/10.1038/s41586-021-04268-7

Banino et al. network activity maps. Banino et al. (2018) manuscript. https://doi.org/10.1038/s41586-018-0102-6

Software and Algorithms

Custom network training/analysis

code

Code was written by the authors.

Available at https://github.com/ganguli-lab/

grid-pattern-formation

Github: https://doi.org/10.5281/zenodo.7110765

ng number of hidden recurrent neurons

np number of output place cells

nx number of spatial arena locations

x! position in 2d physical space (arena)

k
!a

unit vectors in a = 0+;60+;120+ directions.

s!i position of neuron i on neural sheet

rti activity of neuron i at time t

rið x!Þ activity of neuron i at arena location x!

4a
i measured phase of neuron i’s spatial rate map in k

!a
direction

b4a
i ideal phase of neuron i’s spatial rate map in k

!a
direction

bi outgoing connectivity bias of neuron i
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softmax tuning curve, similar to a difference of gaussians, but with a slightly different normalization to match the tuning curves in Ba-

nino et al. (2018), pið x!Þ = e
# k x!# c!ik

2
=2s21=

Pnp
j = 1e

# k x!# c!jk
2
=2s21 # e

# k x!# c!ik
2
=2s22=

Pnp
j = 1e

# k x!# c!jk
2
=2s22 where x is the current loca-

tion of the agent, and s1 and s2 represent the width of the center and surround, respectively. Agent trajectories were generated using
the rat motion model described in Raudies and Hasselmo (2012). Velocity signals from the simulated trajectory were given as input,
and the network was expected to produce the simulated place cell activities as output.

Network architecture
The trained RNN studied throughout this work (cf. sections ‘‘two dimensional attractor dynamics underlies path integration in trained
networks’’ and ‘‘mechanisms underlying path integration’’) is a ‘‘vanilla’’ RNN with the familiar discrete-time dynamics used in con-
ventional ring attractor networks:

rt + 1
i = s

"
Xng

j = 1

Jijr
t
j + Mixv

t
x +Miyv

t
y

#

(Equation 2)

where rt is the population activity at time t, J is the ðng; ngÞ recurrent connectivity matrix, v!t
is the 2-dimensional velocity input at time

t,M is the ðng;2Þmatrix of velocity input weights, and s is a pointwise nonlinearity (either tanh or relu). Predicted place cell outputs bpt

are read out linearly by a ðnp; ngÞ matrix of weights W:

bpt
i =

Xng

j = 1

Wijr
t
j (Equation 3)

Rather than tuning the weights J;M;W by hand, we allowed them to be trained by gradient descent on the objective of reconstruct-
ing the true place cell outputs pt as accurately as possible. The loss function we used for training was a cross-entropy loss. Task,
architecture and training hyperparameters are collected in the table below:

1d RNN
Head direction (HD) networks (Methods S1 and S2; Figures S4 and S5) were trained on a simplified 1D circular version of the spatial
navigation task (described below). We simulated 32 head direction cells with preferred HD evenly spaced over 360 degrees. HD cell
responses as a function of true head direction were computed as hiðqÞf exp ðkcosðq # qiÞÞ with k = 2 and qi is the preferred head
direction of HD cell i. Agent heading trajectories were generated by first sampling turning velocity at each step from a Gaussian dis-
tribution with m = 0 and s = 0:8 radians. Velocity trajectories were then smoothed over timewith a gaussian filter with s = 1 step, and
integrated to give head direction as a function of time. The network was given the trajectory velocities as input, and was expected to
produce the responses of the 32 simulated HD cells as output. We used the same ‘‘vanilla’’ RNN architecture as for the 2D integration
task, but with ng = 512 hidden neurons rather than 4096.

1-layer neural network
The 1-layer neural network shown in Figure 2B solves the problem of optimally reconstructing place cell activities P from k encoding
maps G using readout weights W:

Task

Arena size (2.2m x 2.2m)

Average agent speed 0.1 m/sec

np(# place cells) 512

place cell s1;s2 20cm, 40cm

Architecture

ng(# RNN units) 4096

Input ðvx; vyÞ
Training

Path length 20

Batch size 200

Number of batches 10000

Optimizer RMSProp

Learning rate 1e-4

l2 regularization 1e-4
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min
W;G

kP # WGk2: (Equation 4)

Without any additional constraints, this just amounts to low rank matrix factorization. By the Eckart-Young-Mirsky theorem, the
optimal low rank WG has the same left and right singular vectors as P, and its singular values are obtained from P’s singular values
by keeping the top k values and zeroing all others. This gives a particularW andG. All other optimal solutions can be obtained via the
transformation W/WM, and G/M# 1G for some invertible matrix M. The optimal maps G shown Figure 2B, left were obtained
following the above by computing the singular value decomposition of P and extracting the top k = 9 left singular vectors.

With positivity constraints on W, and G, the problem becomes nonnegative matrix factorization. We used a standard toolbox for
nonnegative matrix factorization (scikit-learn) for k = 9 maps. The resulting maps G are shown in Figure 2D, left.

LSTM path integrator network
The task and training protocol were identical to that of the RNN described above. Themodel architecture shown in Figure 2 was repli-
cated from Banino et al. (2018), consisting of x- and y-velocity inputs to an LSTM with 512 hidden units, followed by a linear layer of
128 units (which the authors called the ‘‘g-layer’’), followed by a final readout to the estimated place cell activities. We trained both
with and without an additional output to a population of head direction cells, as the authors in Banino et al. (2018) did, and obtained
similar results. We report results for the network that was trained to predict only place cell outputs. A summary of the task, architec-
tural, and training parameters is given below:

We found that training themodel in Banino et al. (2018) with the following set of hyperparameters produced square grids (Figure 2B),
similar to those found in Cueva and Wei (2018),

Task

Arena size (2.2m x 2.2m)

Average agent speed 0.1 m/sec

np(# place cells) 512

place cell s1;s2 20cm, 40cm

Architecture

ng(# LSTM units) 512

# g-layer units 128

Input ðvx ; vyÞ
Training

Path length 50

Batch size 200

Number of batches 10000

Optimizer RMSProp

Learning rate 1e-4

Task

Arena size (2.2m x 2.2m)

Average agent speed 0.1 m/sec

np(# place cells) 256

place cell s1 5cm

Architecture

ng(# LSTM units) 128

nonlinearity tanh

# g-layer units 512

Input ðvx ; vyÞ
Training

Path length 100

Batch size 100

Number of batches 1500

Optimizer Adam

Learning rate 1e-2

l2 regularization 1e-5
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The square maps in the left panel of Figure 2B were obtained by optimizing a 1-layer network, as described above, using these
simulated trajectories and place cell outputs.

Biological constraints
We imposed the following biologically inspired constraints on the RNN analyzed throughout the paper (sections ‘‘two dimensional
attractor dynamics underlies path integration in trained networks’’ and ‘‘mechanisms underlying path integration’’) Nonnegativity:
In order to achieve regular hexagonal grids, as our theory predicts, we imposed a nonnegativity constraint on the activities of the
recurrent units in the RNN. We imposed this constraint by simply swapping the tanh nonlinearity for a relu (cf. Figure 1C), though
we found that softer versions of this constraint, such as adding a penalty on negative firing rates to the loss function, also achieved
the same effect.

Weight decay: We found that a small penalty LW = a
Png

i;j = 1J
2
ij on the magnitudes of the recurrent weights encouraged a represen-

tation that generalizes beyond the boundaries of the training environment (Figure 1F). We simply added this penalty to the loss

function for a = 10# 5.

GRID SCORE

Grid score was evaluated as in Banino et al. (2018). A spatial ratemap was computed for each neuron by binning the agent’s position
into 2cm3 2cm bins, and computing the average firing rate within each bin. Grid score was evaluated by rotating a circular sample of
the spatial autocorrelogram of this ratemap in steps of 30+, and computing the correlation between the rotated map and the original.
The grid score was defined as theminimum difference between the correlation at the expected peaks, (60+;120+), and the correlation
at the expected troughs (30+;90+;150+). The distribution of grid scores for all hidden units in the sigmoidal networkwith unconstrained
firing rates, the null model, and the ReLU network with nonnegative firing rates are shown in Figure 1E.

Noise model
The null model used for comparison consisted of low-pass filtered noise maps. Gaussian random coefficients for all frequencies be-
tween 0 cycles/pixel and 0.0625 cycles/pixel were generated, and then inverse Fourier transformed, giving rise to randommaps with
frequency content in the desired range (this is equivalent to generating gaussian random maps over space, and then convolving the
map with a low-pass filter with flat spectrum in the desired frequency range and 0 spectrum elsewhere). Maps of the desired size
(40x40 pixels) where then cropped out. The same process and comparable values of the frequency cutoff were used in all other ex-
periments where null maps were needed (ie. Figures S1 and S2).

PATTERN FORMATION THEORY PREDICTS STRUCTURE OF LEARNED REPRESENTATIONS

All of the trained models discussed in this work face essentially the same encoding problem of choosing ng encoding maps that
generate np place cell spatial maps through a single layer of synaptic weights (graphically depicted in Figure 1). We formalize this
objective mathematically as follows:
Define the following matrices: P˛Rnx3np contains the responses of the np place cells at all nx spatial locations;G˛Rnx3ng contains

the responses of the ng encoding cells at all nx spatial locations;W ˛Rng3np contains the readout weights from encoding cells to place
cells. The goal is then to minimize

EðG;WÞ = kP # bPk
2

F ; where bP = GW: (Equation 5)

Here we consider an L2 penalty on encoding errors because it simplifies the analysis, but we observe similar results for numerical
simulations with a softmax cross-entropy loss (see Figure 3).
Because we would like to understand the dominant patterns learned by the hidden neurons G, we make two simplifications to the

above objective. First, we replace W by its optimal value for fixed G:

0 =
vE
vW

= # 2GTP+ 2GTGW (Equation 6)

0W$ðG;PÞ =
!
GTG

"# 1

GTP: (Equation 7)

Observing that the objective E in (5) is invariant to any invertible transformation Z of the form G/GZ,W/Z# 1W, we can simplify
our objective by choosing Z so that G’s columns are orthonormal. (Because we will eventually consider the simpler case of a single
encoding map, in which case orthogonality holds trivially, transforming by Z has no effect on our final conclusions.) Plugging (7) into
(5) (and multiplying by a factor of 1

np
for convenience), we obtain the following constrained optimization problem for G:
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min
1

np
kP # GGTPk

2

F ; s:t:G
TG = I: (Equation 8)

This constrained optimization problem can be solved by considering the Lagrangian

L = Tr
h
GTSG # l

!
GTG # I

"i
; (Equation 9)

where S = ð1 =npÞPPT is the nx3nx place cell similarity matrix (shown in Figure 3A).
To build intuition, we consider the optimal pattern learned by a single hidden neuron. Replacing G with g, an nx31 vector of acti-

vations of a single hidden neuron at all points in space, we obtain the single-neuron Lagrangian

L = gTSg+ l
#
1 # gTg

$
: (Equation 10)

This is the simplest version of the position encoding objective. If wemodel the training of our neural network as performing gradient
ascent on this objective, then the learning dynamics take the following form:

d

dt
g = # lg+Sg: (Equation 11)

This is a pattern forming dynamics. As gradient ascent proceeds, the firing fields at two locations gx;gx0 will mutually excite
(inhibit) one another if the place cell similarity Sxx0 at the two locations is positive (negative), and over time g will develop stable pat-
terns across space. Solving these dynamics subject to the normalization constraint gTg = 1, we find that the stable fixed point cor-
responds to the top eigenmode of S.

The top eigenmodes of S then take a very simple form. Assuming the place cell receptive fields uniformly cover space,
then in the limit of many place cells, their similarity structure S is translation invariant: Sx;x0 = ð1 =npÞ

P
i
piðxÞpiðx0Þ =

ð1 =npÞ
P
i
piðx +DÞpiðx0 +DÞ = Sx +D;x0 +D. Without the boundaries, or with periodic boundary conditions on the box, this translation

invariance would imply thatS ’s eigenvectors are exactly Fourier modes across space. However, evenwith the boundaries,Sx;x0 has a
Toeplitz structure and its eigenmodes are still well approximated by Fourier plane waves across space (Figure 3B). To compute the
eigenvalue lk associated to the kth Fourier mode fk , let pðxÞ be the place cell tuning curve over space, and Di be the receptive field
center of the ith place cell. Then

lk = fkySfk (Equation 12)

=
1

np

X

i;x;x

fkðxÞ$fkðx0ÞpiðxÞpiðx0Þ (Equation 13)

=
1

np

X

i

 
X

x

fkðxÞpðx # DiÞ
!$ X

x0

fkðx0Þpðx0 # DiÞ
!

(Equation 14)

=
1

np

X

i

#
ei4ðDiÞ bpk

$$#
ei4ðDiÞ bpk

$
(Equation 15)

= jbpk j
2: (Equation 16)

In essence, the eigenvalue associated to the kth Fouriermode is just the power of that Fourier mode in the place cell tuning curve, so
that the optimal pattern g will be the Fourier mode with maximum power.

If the place cells are distributed isotropically across space, and their tuning curve is circularly symmetric then SRx;Rx0 = Sx;x0 for any
rotation matrix R, and consequently all rotations of the optimal Fourier mode will also be optimal:

lRk =
X

x;x0

Sx;x0
#
fRkx

$$
fRkx0 (Equation 17)

=
X

x;x0

Sx;x0
#
fkR# 1x

$$
fkR# 1x0 (Equation 18)
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=
X

x;x0

SRx;Rx0
#
fkx
$$
fkx0 (Equation 19)

=
X

x;x0

Sx;x0
#
fkx
$$
fkx0 (Equation 20)

= lk (Equation 21)

Thus, the top eigenspace of S is degenerate and consists of all Fourier modes whose wavevector k lies on a ring centered around
the origin in Fourier space (Figure 3C). In other words, the optimal map g is any linear combination of plane waves of optimal wave-
length 1=jk$j, which can combine to form square, or hexagonal or even amorphous grid maps (Figure 3D). As we show below, this
multiplicity of solutions is a special feature due to the lack of constraints. Once a nonlinear constraint such as non-negativity is added,
the optimization favors a single type of map corresponding to hexagonal grid cells.

A nonnegativity constraint favors hexagonal grids
We have seen empirically that a nonnegativity constraint tends to produce hexagonal grids (Figure 2D). To understand this effect, we
add a softened nonnegativity constraint to our objective function as follows

L = gTSg+ l
#
1 # gTg

$
+ sðgÞ; (Equation 22)

where sðgÞ penalizes negative activities in themap g. It will be convenient to write gx as gð x!Þ, treating g as a scalar field defined for
all points in space. Our objective then takes the form

L½gð x!Þ& =

ZZ

x;x0

gð x!ÞSð x! # x!0Þgð x!0Þ+ l

0

@1 #
Z

x!g2ð x!Þ

1

A+

Z

x!sðgð x!ÞÞ: (Equation 23)

We can approximate the negativity penalty by Taylor expanding about 0: sðgÞzs0 + s1g+ s2g2 + s3g3. Our Lagrangian then has a
straightforward form in Fourier space

~L
h
~g
!
k
!"i

z
Z

k
!j~g

!
k
!"

j2~S
!
k
!"

+ l

0

B@1 #
Z

k
!j~g

!
k
!"

j2

1

CA

+

2

64s0 + s1 ~g
!
0
!"

+ s2

Z

k
!j~g

!
k
!"

j2 + s3

ZZZ

k
!

; k
!0

; k
!00

~g
!
k
!"

~g
!
k
!0"

~g
!
k
!00"

d
!
k
!

+ k
!0

+ k
!00"

3

75:

(Equation 24)

s0;s1; and s2 will not qualitatively change the structure of the solutions: s0 simply shifts the optimal value ofL, but not its argmax; s1
controls the amount of the constant mode in the maps, and does not affect their qualitative shape; and s2 can be absorbed into ~l
(Cross and Greenside, 2009). Critically, however, the cubic term s3 introduces an interaction between wavevector triplets
k
!
; k
!0

; k
!00

whenever the three sum to zero (3I).
In the limit of weak s3, the maps will be affected in two separate ways. First, weak s3 will pull the maps slightly outside of the linear

span of the optimal plane-waves, or eigenmodes of S of largest eigenvalue. As s3/0, this effect shrinks and effectively disappears,
so that we can assume the optimal maps are still constrained to be linear combinations of plane waves, with wave-vectors on the
same ring in Fourier space. The second, stronger effect is due to the fact that no matter how small s3 is made, it will break L ’s sym-
metry, effectively forcing it to choose one solution from the set of previously degenerate optima. Therefore, in the limit of small s3, we
can determine the optimal maps by considering which wavevector mixture on the ring of radius k$ maximizes the nonlinear term

Lint =

ZZZ

k
!

; k
!0

; k
!00

~g
!
k
!"

~g
!
k
!0"

~g
!
k
!00"

d
!
k
!

+ k
!0

+ k
!00"

: (Equation 25)

Subject to the normalization constraint
R
j~gðkÞj2 = 1, this term is maximized when ~g puts all weight on a single wavevector triplet

which sums to zero: k
!

+ k
!0

+ k
!00

= 0
!
. The only such combination on the ring of radius jk$j is an equilateral triangle, so that the

optimal solutions (up to rotation) are ~gðkÞ = ð1 =
ffiffiffi
6

p
Þ

P
a = 0;60;120

dð k! # k
!a

Þ+ cc1 (Figure 3I; Note that cc. is shorthand for complex
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conjugate. For any real solution g(x) to Equation 22, ~gðkÞ = ~g y ð# kÞ. Therefore, for each wavevector k we must also include its
negative,#k). Therefore, rather than arbitrary linear combinations of plane waves, the optimal solutions consist of three plane waves
with equal amplitude and wavevectors that lie on an equilateral triangle.

gðxÞ =
1ffiffiffi
6

p
!
ei k
!1

, x!+41 + ei k
!2

, x!+42 + ei k
!3

, x!+43 + cc:
"
: (Equation 26)

The interaction Lint is maximized when 41 +42 +43 = 0, in which case the three plane waves interfere to form a regular hexagonal
lattice (Figure 3J).

Hexagonal grids and g/ # g symmetry breaking
We see from the above argument that the rectification nonlinearity is but one of a large class of nonlinearities which will favor hex-
agonal grids. A generic nonlinearity with a non-trivial cubic term in its Taylor expansion will break the g/ # g symmetry, and intro-
duce a three-body interaction which picks out hexagonal lattices. While nonnegativity is a specific nonlinearity motivated by biolog-
ical considerations, a broad class of nonlinearities will achieve the same effect (Sorscher et al., 2019).

Numerical simulation of pattern-forming systems
As we show above, the problem of optimally encoding place cell activities yields the following Lagrangian:

L = gTSg+ l
#
1 # gTg

$
+ sðgÞ (Equation 27)

where S = PTP is a ðnx 3nxÞmatrix encoding the similarity of the place cell activities at any given pair of spatial locations, and s cap-
tures the nonnegativity constraint by penalizing negative activities.

Place cell tuning curves are modelled as above in the path integration task. We sampled these tuning curves (nP = 512) on a
grid of spatial locations (nx 3 nx = 1003 100) to obtain the matrix of place cell responses, P, and computed S = PTP (Figure 3A).
Difference of softmax tuning curves yield a similarity matrix with a characteristic center-surround structure (Figure 3A), very similar
to the similarity matrix for difference gaussian tuning curves, which can be computed analytically (see appendix for details),
although the location of the ring of minima may be different, as the different normalization of the difference of softmax tuning
curves can lead to a different location of the ring of minima. As we have seen, this center-surround structure leads to periodic
grid-like maps.

In the unconstrained case s = 0, the optimum can be obtained directly by sampling from the top eigenspace of S. This is shown in
Figure 3B,C. For other choices of s, we numerically optimized L via gradient descent: g/g+ h vL

vg. Optimization was run until approx-
imate convergence. Figure 3J shows one such map for s = reluðxÞ.

Interpretation of the encoding objective
In the Lagrangian form of Equation 22, one can interpret the optimization as attempting to capture place cell activity (first term, gTSg),
with minimum total neural activity (second term, lð1 # gTgÞ), and minimum negativity penalty (third term, sðgÞ). Interestingly, by
repeating the above analysis, instead optimizing out the activity G rather than the weights W (cf. Equation 7), one arrives at a
Lagrangian for the weights which is identical in form to Equation 22. Thus hexagonal grids can alternatively be interpreted as
maps which fit place cell activity subject to minimum synaptic weight and minimum synaptic negativity penalty.

ATTRACTOR MANIFOLD ANALYSIS

For the analysis of Figure 4, fixed points of the network dynamics are defined as population activity patterns r$i that are left invariant by
a step of the RNN dynamics, in the absence of velocity inputs

r$i = s

"
Xng

j = 1

Jijr
$
j

#

: (Equation 28)

We identified slow points of the network dynamics by minimizing the scalar function

qðrÞ =
X

i

 

ri # s

"
Xng

j = 1

Jijrj

#!2

(Equation 29)

using the procedure outlined in Sussillo and Barak (2013).We collected a set of 1002 fixed points by initializing the network on a grid
of 1003100 spatial locations in the environment.

In order to identify the low-dimensional structure of population activity, we computed three spatial phases for each neuron’s
rate map,

4a
i = arg

&Z
d x! e# k

!a
, x! rið x!Þ

'
; a = 0;60;120: (Equation 30)
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where rið x!Þ is the activity of neuron i at location x!, and k
!0

; k
!60

; k
!120

are the 0+, 60+, and 120+ unit vectors. We then projected the
population activity onto the following three pairs of axes,

vai h cos
#
4a
i

$
;wa

i hsin
#
4a
i

$
; a = 0;60;120: (Equation 31)

If each neuron in the network was a perfect hexagonal grid cell, then its firing rate could be written as,

rið x!Þ =
X

a

cos
!
k
!a

, x! # 4a
i

"
(Equation 32)

=
X

a

cos
#
4a
i

$
cos

!
k
!a

, x!
"
+ sin

#
4a
i

$
sin

!
k
!a

, x!
"

(Equation 33)

=
X

a

vai cos
!
k
!a

, x!
"
+wa

i sin
!
k
!a

, x!
"

(Equation 34)

Hence projecting the population activity onto the three pairs of axes vai ;w
a
i defined above would reveal a set of three perfect rings.

In the case of the trained neural network, projecting the slow points onto the three pairs of axes vai ;w
a
i yields three pronounced rings

4D. The subspace spanned by the six vectors vai ;w
a
i explains 52% of the total variance of the population activity.

As an additional measure to ensure that the twisted torus captures the dominant structure of the attractor manifold, we computed

pairwise distances dð x!Þ = k r!ð x!Þ # r!ð x!0Þk
2

between the population activity r!ð x!0Þ at a reference point in the environment, and

the population activity r!ð x!Þ at all other points in the environment, and plotted dð x!Þ=max
x!dð x!Þ as a function of space 4C.

Persistent homology
As a model-free alternative to the torus-based analysis described immediately above, we performed persistent homology on
the attractor manifold of activity patterns. This analysis was performed on the time-averaged rate map data riðxÞ,
which approximately describes the fixed point in ng -dimensional neural activity space while the agent passes over spatial loca-
tion x.
The maps were first preprocessed by extracting a central L3L square from each rate map. This was done to minimize the effect of

rate map artifacts near the periphery of the environment. Results were broadly similar even when this preprocessing step was skip-
ped. Data corresponding to the ng -dimensional neural activity was then projected into 7 dimensions via PCA in order to reduce the
computational cost of persistent homology (results did not depend sensitively on the exact dimensionality chosen). The resulting
7-dimensional data was used as input to the persistent homology analysis provided by the Ripser python library (coefficient field:
p47, metric: cosine, maximum dimensionality: 2; see documentation at https://ripser.scikit-tda.org/en/latest/index.html). The output
of this analysis is a list of birth and death radii for each cycle present in the data, and for each dimensionality analyzed (in our case, 0,
1, and 2). These birth and death times are plotted in 4C. The beige background is obtained by the same analysis performed on shuf-
fled data where each neuron’s rate map is permuted independently.

IDEALIZED PATH INTEGRATOR MODELS

For all experiments probing trained RNN mechanisms, we implemented an idealized model for comparison (cf. section ‘‘velocity
based updating of positional information in two dimensions’’; Methods S1 and S2; Figures S4 and S5). Idealized models were de-
signed to capture the two core mechanisms of previously published models: center-surround connectivity and offset recurrent
weights. Update equations were

rt +1
i = s

"
Xng

j = 1

Jijr
t
j + Mixv

t
x +Miyv

t
y +bi

#

: (Equation 35)

where J is the recurrent weight matrix,M is the velocity input weights, v is 2-dimensional velocity of the agent, b is a constant vector
representing feedforward drive, and s is the neuron nonlinearity. Neurons were placed uniformly over a grid of integer points on a
2-dimensional neural sheet with side length L =

ffiffiffiffiffi
ng

p
. For two neurons with neural sheet positions s!i and s!j, synapse weight Jij

was set as

Jij = f

(
s!i # s!j # b

!
j

)
(Equation 36)

ll
Article

Neuron 111, 121–137.e1–e13, January 4, 2023 e8

https://ripser.scikit-tda.org/en/latest/index.html


fð x!Þ =
X

a˛ f0;60;120g
cos

(
2p

L
k
!a

, x!
)

(Equation 37)

where k
!0

; k
!60

; k
!120

are the 0+, 60+, and 120+ unit vectors as defined above and bj is the outgoing connectivity bias of neuron j. For

all models, we set bi = 1. Following Burak and Fiete (2009), for a neuron with neural sheet position s!i =

(
p
q

)
we set Mix =

ðqmod2Þð# 1Þp andMiy = ðpmod2Þð# 1Þq (equivalent to dividing the neural sheet into 2x2 neuron zones eachwith a north, east, south

and west-motion sensitive cell).

For Figure 5, b
!

j was set to 0 (ie. weights had no offset) to isolate the stable firing mechanism. For later figures probing updating

mechanisms, b
!

i =

(
Mix

Miy

)
(intuitively, cells recieving north (south) velocity input have north (south) connectivity offsets; similarly for

east/west). For Figure 6, the nonlinearity s is the rectifying linear function.
The idealized 1-dimensional path integrator model referenced in Figures S4 and S5 was implemented analogously. The update

equation was the same as above, with v˛R now representing the agent’s 1-dimensional velocity. Each neuron now has a position
si in a 1-dimensional neural ring. The weight between neurons at ring positions si and sj was set analogously as

Jij = cos

&
2p

N

#
si # sj # bj

$'
(Equation 38)

For all models, we setMi = ð#1Þi andbi = 1. For Figure S4, bj was set to 0 (ie. weights had no offset) to isolate the stable firingmech-
anism. For later figures probing updating mechanisms, bi = ð#1Þid. For Figure S5, the nonlinearity s is the rectifying linear function.

SORTING RNN UNITS ONTO A NEURAL LINE AND A NEURAL SHEET

1-dimensional path integrator networks
Two methods were employed for sorting units in 1-dimensional path integrator networks onto a neural line, one based on neuron
activity and one based on neuron connectivity. The first method consists of sorting neurons by preferred head direction (defined
as the angle eliciting peak response for each neuron). This sort was used to produce the Fourier-transformed weight matrix in Fig-
ure S4F and for Figure S5.

To sort neurons by connectivity, each neuron i was assigned a random embedding coordinate qi. The q’s were then adjusted to

maximize the energy function E =
P
ij
Wijcosðqi # qjÞ by gradient ascent in the direction: q0i = vE

vqi
=
P
j
ðWij +WjiÞsinðqj # qiÞ. The dy-

namics were simulated until improvement in E was small. The resulting q coordinates represent a continuous approximation to the
discrete neuron ordering that optimizes the similarity between the weights and the center-surround connectivity matrix Sij =

cos
#
2p
N ði # jÞ

$
. Neurons were then ordered by their q coordinate, giving the final sort. This sort was used for Figure S4H.

2-dimensional path integrator networks
The guiding intuition behind sorting was that network mechanisms would be easier to discern if neurons with similar spatial response
properties were physically nearby on the neural sheet (Figures 5 and 6). To do this, we obtain ratemaps for all units in the network. For
each neuron’s map, we compute three spatial phases

4a
i = arg

& Z
d x! e# k

!a
, x! rið x!Þ

'
; a = 0;60;120 (Equation 39)

where rið x!Þ is the activity of neuron iwhen themodel is at spatial location x!, and k
!0

; k
!60

; k
!120

as above are the 0+, 60+, and 120+

unit vectors. In the case of a perfect grid map, these phases uniquely determine the rate map of the neuron to be

rið x!Þ =
X

a

cos
!
k
!a

, x! # 4a
i

"
(Equation 40)

Under an ideal sort, moving from neuron to neuron along the neural sheet should continuously shift the rate map. We’ll posit that
this shift of the rate map is proportional to the displacement on the neural sheet - that is a grid cell at neural sheet location s!i would
have rate map

br ið x!Þ =
X

a

cos

(
k
!a

,
(
x! # s!i

))
=
X

a

cos
!
k
!a

, x! # b4a
i

"
(Equation 41)

where b4a
i are the ‘‘ideal phases’’ associated with a neuron at sheet location s!i (and where we’ve slightly abused notation by treating

s!i, which is a neural sheet location, as a real-space location in the the formula above. In reality, there would be a proportionality
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constant relating neural sheet units to real-space units, which we take to be equal to 1 and ignore here).
To approximate this ideal sort, we optimize the position of neuron i on the neural sheet to match the ideal phases b4a

i to the
measured phases 4a

i :

bsi = argmaxsi
X

a

cos

&
4a
i # b4a

i

(
s!i

)'
(Equation 42)

This gives a set of 2d coordinates for each neuron s!i. We bin the first coordinate into quantiles (n = 64) to obtain each neuron’s
first sheet index, and then sort the neurons in each quantile by their second coordinate to obtain each neuron’s second sheet index
(this procedure can be thought of as discretizing the first coordinate and then performing a lexographic sort on the second coordi-
nates). The resulting indices place each of the 4096 neurons onto a single, unique node within a 64x64 grid. This 2D sorting procedure
was used to extract the neural sheet from the activity maps in Figures 5 and 6.

FOURIER ANALYSIS OF RECURRENT WEIGHTS

Weused Fourier analysis on the connectomes of our trained networks to explain the stability of their spatial representations (see ‘‘sta-
ble storage of positional information in two dimensions’’; Figure 5; Method S1; Figure S4). 1-dimensional network units were sorted
by preferred head direction. The weight matrix was reordered to reflect this sort. The matrix was then transformed to the real Fourier
basis using the usual change of basis formula, ~W = F# 1WF, where F is the real Fourier matrix defined as

Fij =

8
>>><

>>>:

cos

(
2pj

ng
i

)
0% j < ng

*
2

sin

(
2pj

ng
i

)
ng

*
2% j < ng

(Equation 43)

with appropriate normalization of each column. For the plots in Figures S4C andS4F, the Fourier transformedweightmatrices were
shifted so that low frequency pattern weights appear in the middle of the weight matrix (‘‘fftshift’’), and the matrix was cropped to a
smaller window around the center so peaks were more easily visible.
For 2-dimensional networks (see ‘‘stable storage of positional information in two dimensions’’), units and weight matrix were first

sorted bymap phases as described above. The weight matrix was then reshaped to have 4 indices - the 2-d neural sheet coordinates
of the input, ðjx; jyÞ, and output ðix; iyÞ neuron. Thematrix was then transformed to the 2d Fourier basis, now using the 2d Fourier matrix
defined as

Fix ;iy ;jx ;jy =

8
>>><

>>>:

cos

(
2p

ng

#
jx ix + jy iy

$)
0% jy < ng; 0% jx < ng

*
2

sin

(
2p

ng

#
jxix + jy iy

$)
0% jy < ng; ng

*
2% jx < ng

(Equation 44)

again with appropriate normalization of each 2-dimensional column F:;:;jx ;jy . Change of basis was accomplished by the analog of the

usual change of basis formula ~Wix ;iy ;jx ;jy =
P
m;n

F# 1
ix ;iy ;mx ;my

Wmx ;my ;nx ;ny Fnx ;ny ;jx ;jy . For plots in Figures 5C and 5G, we again shifted low fre-

quencies to the center, extracted the diagonal ~Wix ;iy ;ix ;iy and cropped around the center.

Peak strength statistics
To quantify the significance of weight matrix ‘‘peaks’’ in Fourier space (cf. Figure S5) we defined the peak strength as the fraction of

matrix power on the lowest frequency sine and cosine self-weight:

(
W
' 2

1;1 +W
' 2

# 1;# 1

)+P
W
' 2

i;j. We trained 1000 1-dimensional path

integrator networks using the protocol above, and obtained initial and final weight matrices under initial and final sorts (initial and final
sorts defined below). These scores are histogrammed in 6.
Two null distributions are shown in Figure S6. The first is the distribution of peak strengths of randomly generated matrices (entries

drawn iid from a standard normal distribution) in their original sort (Figure S6B, first column). The second is the distribution of peak
strengths of optimally sorted random matrices (Figure S6B, second column). Matrices were generated as before, but were then
sorted by the connectivity-based sort designed to maximize peak strength described above (see ‘‘sorting RNN units onto a neural
line and a neural sheet’’).
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LINEARIZED RNN DYNAMICS

To gain a more quantitative understanding of how the 4 circuit components described above interact, we use the RNN’s update
equations to track the effect of a small velocity input dv added to a stable bump pattern (see ‘‘velocity based updating of positional
information in two dimensions’’; Figure 6; Method S2, and Figure S5).

rt + 1
i = s

"
Xng

j = 1

Jijr
t
j + Mixdvx +Miydvy

#

(Equation 45)

zs

"
Xng

j = 1

Jijr
t
j

#

+ s0
i

#
Mixdvx + Miydvy

$
: (Equation 46)

where s0 is a diagonal matrix containing the derivatives of the neuron nonlinearities. Because the system is assumed to be at a fixed

point, we can replace s

&Png
j = 1Jijr

t
j

'
with rti , giving

rt + 1
i = rti + s0

i

#
Mixdvx + Miydvy

$
: (Equation 47)

The term on the right captures the effect of the velocity cell activation dv, travelling through its input weightsM, and subsequently
through the neuron nonlinearity s0. Note, however, that after one step, the velocity input has not yet passed through the offset recur-
rent weights J. This will only occur during the next step:

rt + 2
i = s

"
Xng

j = 1

Jijr
t + 1
j

#

(Equation 48)

= s

2

664
Xng

j = 1

Jijr
t
j + Jijs

0
j

#
Mjxdvx +Mjydvy

$
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D
!

i

3

775: (Equation 49)

To compute D
!
, we note that because s is the rectifying linear function, s0ðxÞ = I½x > 0&, so that D

!
iðqÞ =

P
j active

JijðMjxdvx +MjydvyÞ.

For the 1-dimensional network (Method S2; Figure S5), the ground truth shifting term T
!

is defined as the tangent to the attractor

manifold, T
!

iðqÞ = vriðqÞ
vq , where riðqÞ is the activity of the ith neuron for head direction q. This can be approximated as the difference

between patterns at two nearby head directions: T
!

iðqÞzriðq+DÞ# riðqÞ
D .

For the 2-dimensional network (see ‘‘velocity based updating of positional information in two dimensions’’; Figure 6), the

empirical and ground truth shifting terms depend on the 2-dimensional velocity dv
-!

. The same analysis as above gives D
!

ið x!Þ =
P

j;k active
JijMjk dv

-!
k for the empirical shifting term. The ground truth shifting term was computed as T

!ð x!Þiz
rið x
!

+ dv
-!

Þ# rið x
!

Þ

j dv
-!

j
, or the par-

tial derivative of the attractor manifold in the direction dv
-!

.

EXTRACTING FOURIER MODES FROM TOP CONNECTIVITY EIGENVECTORS

2d RNN
Just as the population activity structure was not clear when projected onto its top PC eigenvectors, but became clear when we
rotated to a more useful subspace, the top eigenvectors of the connectivity matrix J appear as linear combinations of low-frequency
plane waves when viewed on the sorted neural sheet. However, with a simple orthogonal combination of the top eigenvectors, we
can disentangle the consituent plane waves and construct 3 pairs of approximate pure modes, corresponding to the 3 pairs of plane
waves used in traditional attractor model (see ‘‘stable storage of positional information in two dimensions’’; Figure 5). The eigenvec-
tors of the traditional attractor model can be written as

bva
i = cos

(
k
!a

, s!i

)
; bwa

i = sin

(
k
!a

, s!i

)
; a = 0;60; 120 (Equation 50)

To see how closely the top eigenvectors u!j; j = 1;.;10; of the trained RNN connectivity matrix J approximate the perfect plane
waves of the traditional model, we find the best orthogonal combination of the u!j. The connectivity matrix J of the trained RNN has
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ten large eigenvalues (Figure 5J), so we use only the top ten eigenvectors. Collecting the continuous attractor eigenvectors in a ng3 6
matrix V = ½bva; bwa&, and the top ten trained network eigenvectors in a ng310 matrixU = ½ u!1;.; u!10&, we identify the optimal linear
transformation O, a 1036 matrix, by minimizing the mean squared error,

O = argmin
O

kV # UOk2; (Equation 51)

We then orthogonalize O using the Lowdin symmetric orthogonalization O0 = S# 1
2O where S is the symmetric overlap matrix Sij =

Oi,Oj, and S1=2 = US
# 1

2
diagU

y, where Sdiag is obtained by diagonalizing S, Sdiag = UySU. The transformed connectivity eigenvectors
½vaconn:;wa

conn:& = UO look like pure plane waves across the neural sheet, closely matching those in the traditional attractor model
(Figure 5H).

CONNECTIVITY BIAS

In idealized path integrator networks, pattern updating is accomplished by discrete groups of cells with biased outgoing connectivity.
To determine whether a similar pattern of biased outgoing connectivity exists in the trained networks, we first sorted the neurons
onto a neural sheet (see ‘‘sorting RNN units onto a neural line and a neural sheet’’ above). Then, for each neuron, we defined the
connectivity bias as the displacement from the neuron’s own neural sheet position to the center of mass of its outgoing synaptic
weights over the neural sheet:

b
!

i =

P
s!j
Jij s
!

j
P

s!j
Jij

# s!i (Equation 52)

Defined this way, if a neuron projects isotropically around itself on the neural sheet, its connectivity bias is 0
!
.

The 2-dimensional displacements for the trained 2D integrator network are histogrammed in Figure 6E (right), along with those of
the idealized model (left; showing one population of north, west, south, and east projecting cells).

ANALYSIS OF HETEROGENEOUS CELLS

Ablation experiments
Ablation experiments were performed by zeroing the activities of the ablated neurons at each timestep, preventing them from partici-
pating the recurrent dynamics. This mimics an experiment in an animal in which neurons are selectively knocked out, both preventing
downstream neurons from reading out a spatial estimate, and also disrupting the recurrent dynamics of the network.

Readout of place cell maps and value functions
In brief, readout performance of either a) place cell maps (Figure 7C) or b) value functions (Figure S7) was compared for increasing
numbers of either a) pristine grid maps, or b) maps from the trained RNN, which exhibit significant heterogeneity.
Regressor maps
Pristine grid cell maps were constructed to approximate those generated by a continuous attractor network (Burak and Fiete, 2009),
with a spatial scale chosen tomatch that of the trained RNN (z 0.05 cycles/pixel). Specifically, a basic 50x50 pixel template grid map
was generated by adding 3 plane waves with wave vectors at 120 degrees to one another and phases that sum to zero (cf. Equa-
tion 26). The full set of pristine maps was obtained by randomly translating this pattern. These maps were compared to the RNN
rate maps, obtained as in ‘‘grid score,’’ and then down-sampled to 50x50 pixels to match the grid maps. Both sets of maps were
scaled to a mean activity value of 1.
Target maps
In one experiment (Figure 7C), regressor maps were used to fit the place cell maps used during training (see ‘‘rnn training’’ for
details on how these maps were constructed). Each place cell map was scaled to sum to 1 over all spatial locations. In another
(Figure S7), regressor maps were used to fit random value functions. These were constructed using the same procedure as in
‘‘noise model’’ (0.05 cycles/pixel). Maps were then shifted to be nonnegative and scaled to sum to 1, allowing an interpretation
as a reward distribution over space.
Fitting procedure
Pristine grid cells were ordered randomly, while the RNN cells were ordered in descending order by grid score. Cells were progres-
sively added to each network. For each number of cells, weights were fit to minimize cross entropy between the target maps and
regressor maps (optimizer: Adam, 200 steps; learning rate: 23 10# 4; l2 regularization coefficient: 10# 4). The final cross entropy is
reported in Figures 7 and S7.

Brain fitting
Electrophysiology recordings of 778 MEC neurons in awake, behaving rats were obtained from Butler et al. (2019). Models of MEC
were evaluated based on their ability to regress each MEC neuron’s spatial firing rate map under a sparsity (L1) penalty. Regressions
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were performed using the Lasso method in the sklearn.linear_model class. Robustness of this analysis to the choice of the sparsity
penalty was ensured by plotting regression curves across the range of all possible regressor sparsities (Figure 7D), where regressor
sparsity is measured as the fraction of regressor weights equal to zero.
Max-entropy model
The max-entropy model in Figure 7D was fitted to the MEC neuron spatial rate maps xi ˛Rnx ; i = 1.ng, by extracting their first and
second-order statistics, m = ð1 =ngÞ

Png
i = 1xi , S = 1

ng#1

Png
i = 1ðxi # mÞðxi # mÞT . A new population of ng synthetic maps bxi ; i = 1.ng

was then generated from this max-entropy model by sampling from the multivariate normal distribution bxi ' N ðm;SÞ.

ll
Article

e13 Neuron 111, 121–137.e1–e13, January 4, 2023


	A unified theory for the computational and mechanistic origins of grid cells
	Introduction
	Results
	Diverse lattice structures and generalization properties of trained path integrators
	A theory for the emergence of diverse grid structures in trained neural circuits

	Two-dimensional attractor dynamics underlies path integration in trained networks
	Mechanisms underlying path integration
	Stable storage of positional information in two dimensions
	Velocity-based updating of positional information in two dimensions

	Investigating the role of heterogeneous cells in trained networks

	Discussion
	Limitations and future directions

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Notation
	RNN training
	Path integration task
	Network architecture
	1d RNN
	1-layer neural network
	LSTM path integrator network
	Biological constraints

	Grid score
	Noise model

	Pattern formation theory predicts structure of learned representations
	A nonnegativity constraint favors hexagonal grids
	Hexagonal grids and g→−g symmetry breaking
	Numerical simulation of pattern-forming systems
	Interpretation of the encoding objective

	Attractor manifold analysis
	Persistent homology

	Idealized path integrator models
	Sorting RNN units onto a neural line and a neural sheet
	1-dimensional path integrator networks
	2-dimensional path integrator networks

	Fourier analysis of recurrent weights
	Peak strength statistics

	Linearized RNN dynamics
	Extracting Fourier modes from top connectivity eigenvectors
	2d RNN

	Connectivity bias
	Analysis of heterogeneous cells
	Ablation experiments
	Readout of place cell maps and value functions
	Regressor maps
	Target maps
	Fitting procedure

	Brain fitting
	Max-entropy model





