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SUMMARY

Understanding the circuit mechanisms of the visual code for natural scenes is a central goal of sensory neuro-
science.We show that a three-layer networkmodel predicts retinal natural scene responses with an accuracy
nearing experimental limits. The model’s internal structure is interpretable, as interneurons recorded sepa-
rately and not modeled directly are highly correlated with model interneurons. Models fitted only to natural
scenes reproduce a diverse set of phenomena related to motion encoding, adaptation, and predictive cod-
ing, establishing their ethological relevance to natural visual computation. A new approach decomposes the
computations of model ganglion cells into the contributions of model interneurons, allowing automatic gen-
eration of new hypotheses for how interneurons with different spatiotemporal responses are combined to
generate retinal computations, including predictive phenomena currently lacking an explanation. Our results
demonstrate a unified and general approach to study the circuit mechanisms of ethological retinal computa-
tions under natural visual scenes.

INTRODUCTION

How neural circuit functions emerge in natural, ethologically rele-
vant settings from the activity of multiple cell types is a funda-
mental open question in neuroscience. The retina has evolved
to convey information about natural visual scenes to the brain1

using a large, diverse set of interneurons.2 Yet, because of the
inability to model natural scene responses,3,4 we neither under-
stand the neural code for natural scenes nor how interneurons
generate that code. Nearly all of our understanding of retinal
computations and circuit mechanisms comes from artificial stim-
uli, such as flashing spots, drifting gratings, and white noise,5,6

which have unknown relevance to natural visual processing.
Although numerous computations have been identified by such
methods, including various types of motion selectivity, adapta-
tion, and prediction of visual features,5 the number of interneu-
rons (>50) is even greater, suggesting an undiscovered
complexity in retinal processing.

A major barrier toward understanding how neural circuits
function is the lack of models that can achieve three objec-
tives: (1) capture the input-output relationship of neural circuits
under natural inputs, (2) have an interpretable computational
structure to enable analyses of how those computations are
performed, and (3) relate the internal structure of the model
to real interneurons to yield a mechanistic explanation of cir-
cuit function.
Deep neural network models have excelled at capturing com-

plex phenomena, including how the ventral visual stream per-
forms object recognition7–9 and how the auditory cortex per-
forms sound discrimination.10 However, it is unclear how to
interpret these models in terms of their contribution to neural
computation or relationship to individual biological neurons.
Simple linear-nonlinear (LN) models,11 generalized linear
models (GLMs),6 or two-layer LN-LN models with nonlinear
subunits,12–16 show higher computational interpretability—the
ability to understand the mathematical components of the
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model—yet an LNmodel’s single spatiotemporal filter, or the two
sequential stages of an LN-LN model, are inadequate to capture
the complex visual processing of natural stimuli.
Here, we analyze neural network models of the retina that fulfill

the goals of capturing the neural code for natural scenes,
computational interpretability, and mechanistic interpretability,
and use these models to generate new testable hypotheses for
how interneurons generate specific ethological computations.
In the salamander retina, we use three-layer convolutional neural
network (CNN) models that accurately capture natural scene re-
sponses—nearly to within the limits set by the variability of retinal
ganglion cells. These models, fitted only to natural scenes, cap-
ture a broad range of previously described phenomena related to
motion encoding, adaptation, and predictive coding, defined us-
ing only artificially structured stimuli, thereby establishing the
ethological relevance of these phenomena to natural visual pro-
cessing. Models fitted to white noise do not capture all of these
phenomena, pointing to the critical need to study natural scenes.
These models have mechanistic interpretability in that models
fitted only to ganglion cell responses nevertheless have internal
units that are highly correlated with interneuron recordings from
separate preparations.
Finally, we achieve the goal of computational interpretability

using a novel general approach to attribute any retinal computa-
tion to the actions of model interneurons, analyzing several
ethological computations. This analysis confirms existing mech-
anistic hypotheses and automatically generates new hypothe-
ses, including those for predictive visual computations currently
without explanation. We further find that, compared with white
noise, natural scene responses are generated by a broader
range of model interneuron pathways so as to engage a greater
set of ethological phenomena. These findings present a unifying
approach to study the retinal neural code and to generate hy-
potheses for the specific actions of interneuron pathways for
any and all stimuli, including natural scenes.

RESULTS

The first goal was to create aminimal CNNmodel that could cap-
ture the retinal neural code for natural scenes. Between photore-
ceptors and ganglion cells, there are three levels of strong recti-
fication, the bipolar cell terminal, the amacrine cell terminal, and
ganglion cell spiking. Although there is greater complexity in the
retina, one might expect that a minimum of three network layers
consisting of filtering followed by a threshold might be needed to
approximate the set of retinal computations. We therefore tested
whether CNN models of up to three synaptic layers (Figure 1)
could predict the responses of populations of salamander retinal
ganglion cells responding to a 50-min sequence of either natural
images or white noise. Natural scene images changed every sec-
ond and were jittered every 30-Hz frame in a random walk with
the statistics of fixational eye movements,17,18 creating a spatio-
temporal stimulus. The final chosen structure of our model had
eight different cell types in each of two convolutional layers
that tiled the visual field, with each cell type receiving input
from the previous layer that was limited in spatial extent, up to
750 mm for the first spatiotemporal layer and 550 mm for the sec-
ond spatial layer. In the final synaptic layer, model ganglion cells

received input across the entire spatial extent of themodel’s pre-
ceding layer (up to 1.3 mm). Each synaptic layer also had a
threshold following its spatiotemporal or spatial filter. Models
were initialized randomly and then optimized via a gradient
descent algorithm (see STAR Methods) so that the model’s
output most closely matched the responses of ganglion cells re-
sponding to a set of training stimuli. The model was then evalu-
ated on the average response to repeated trials of a separate test
dataset not used in training.
We found that CNN models could predict ganglion cell re-

sponses to either natural scenes or white noise substantially
more accurately than LN models11 or GLMs that incorporate
an additional spike history feedback term6 (Figures 1B, 1C,
and S1). Although LN models can accurately predict ganglion
cell responses to uniform-field stimuli at a fixed contrast19 and
GLMs can accurately predict responses to small patches of
white noise with larger squares,6 the strong spatial nonlinearities
of salamander ganglion cells require models with more than a
single spatiotemporal stage.13 The accuracy of the prediction
approached the limit of precision set by intrinsic neural vari-
ability, given the number of test trials (5–10), although this limit
would increase with more trials. We also tested a range of
different models by varying the number of model cell types in
the first two layers and chose eight cell types as the minimum
number that achieved near-maximal model performance
(Figures 1D and 1E).

CNNs’ internal units are highly correlated with
interneuron responses
Amodel that captures the neural code for natural scenes is by it-
self useful for analyzing how visual features are sensed and to
serve as a compact description of retinal output for studies of
the higher visual system. However, another important goal was
to examine whether themodel’s internal computational structure
showed similarity to that of the retina.
To examine whether the internal computations of CNNmodels

approximated those of the retina, we computed receptive fields
(RFs) for layer 1 and 2 model interneurons of CNNs trained using
natural scenes. We compared model responses to interneuron
soma voltage recordings by taking the layer 1 and 2 signals after
the filter but before the threshold. For example, the bipolar cell
soma is the last retinal stage before strong rectification at the bi-
polar cell synaptic terminal, corresponding to the model’s layer 1
signal before the threshold.
We found that the RFs of CNN model interneurons had the

well-known structure of retinal interneurons,20,21 with a spatially
localized center-surround structure as first appears in bipolar
cells (Figures 2A and 2B), ON and OFF responses, monophasic
and biphasic temporal filters, and rectified nonlinear responses
in the second layer (Figure S2), all properties that have been ex-
plained by principles of efficient coding in the retina.22–25

In the inferotemporal cortex, CNN units have been shown to
be correlated with activity of a linear combination of neurons,7

making it difficult to draw conclusions about individual neu-
rons. We compared our CNN interneuron activity directly
without modification to interneuron recordings performed on
separate retinae that the model was never fitted to (Figure 3A).
The stimulus presented to the retina—and separately to the
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model—was a spatiotemporal white noise checkerboard hav-
ing no spatiotemporal correlations except for the 50-mm size
and 33-ms duration of square stimulus regions. We correlated
each interneuron recording with 8 model interneurons of both
layer 1 and 2 at each location to find the most-correlated
model interneuron at the location of the cell. We always
searched only over a single model, 16 cell types for the stan-
dard CNN model, and report all results separately for each
model. We found that each recorded interneuron showed a
high and spatially localized correlation with a particular model
interneuron type (Figures 3B–3E). Spatiotemporal RFs were
similar in appearance between recorded interneurons and
their most-correlated model interneuron type (Figure 3B),
including the time course of center and surround, although
model interneurons appeared to have a systematically stron-
ger surround.

To assess the similarity between model and real interneurons,
we compared the correlations between cells in our set of re-
corded interneurons and between interneurons and model inter-
neurons (Figures 3D and 3E). The comparison between different
recorded interneurons gives a similarity measure for interneu-
rons of the same cell type, which is the maximum correlation
that wewould expect between ourmodel and the recorded inter-
neurons.We found that the best match within our interneuron set
(interneuron-interneuron) had a similar correlation to the best
match between model cells and interneurons (model-inter-
neuron). Thus, model interneurons revealed the responses of in-
terneurons nearly to within the variability of those interneurons,
despite having never been fit directly to neural responses. The
range of correlations were similar in the model to those in our
interneuron set, although there were fewer examples of negative
interneuron-interneuron correlations. This result was likely

Figure 1. Convolutional neural networks provide accurate models of the retinal response to natural scenes
(A) Convolutional neural network model trained to predict the firing rate of simultaneously recorded ganglion cells. The first layer is a spatiotemporal convolution,

the second is a spatial convolution, and the third is a fully connected (dense) layer, with rectifying nonlinearities in between each layer.

(B) Peristimulus time histograms (PSTHs) comparing recorded data and LN or CNN models for the test dataset.

(C) Correlation coefficients for LN, GLM, and CNN model predictions for 60 s of natural scenes test data. Dotted line is mean reliability of ganglion cell PSTHs

correlated between different sets of trials, gray bar indicates one SEM.

(D) Correlation coefficient betweenmodel and test data for different numbers of cell types in layers 1 and 2. Star indicates 8 cell types, the value chosen for further

analysis. Left column showing zero second layer cell types indicates a two-layer (LN-LN) model.

(E) Same as (D) for equal numbers of cell types in both first and second layers. Dashed line indicates 8 cell types. Error bars indicate mean ± S.E.M.
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because our interneuron dataset consisted primarily of OFF type
cells recorded for other studies and did not fully represent the
true interneuron distribution.
To assess the similarity of different models, we correlated

model interneurons with their best match in different models
(model-model), finding that on average the model-model corre-
lation was similar to the model-interneuron correlation (Fig-
ure 3F).We further tested the reproducibility of these correlations
by initializing the model with different random seeds. We found
high reproducibility when random seed was varied in the re-
sponses of model interneurons (Figure 3G), in the correlation be-
tweenmodel interneurons and real interneurons (Figure S3A) and
in the model’s prediction of ganglion cells (Figure S3A).
To assess whether the number of cell types might influence

whether those cells were correlatedwith real interneurons, we var-
ied the number of model cell types and found that as the number
increased, the model first produced cell types that were corre-
lated with recorded interneurons (Figure S3B). This indicates
that to capture the ganglion cell response, as the model was al-
lowed to havemorecell types, it rapidly and consistently found so-
lutions that relied onmodel interneurons that were correlated with
real interneurons. We further found that the model interneurons
most highly correlated with real interneurons were also highly
correlated acrossmodels fit to different retinae (Figure 3H), further
indicating the importance that themodel contain interneurons that

correlate with real interneurons. Furthermore, because individual
models are highly reproducible with different random seeds, the
model interneurons less highly correlated with interneurons in
our dataset likely indicate real preparation-to-preparation differ-
ences. Therefore, fitting a CNN model to ganglion cell natural
scene responses alone models an entire population of interneu-
rons, many of which have high correlation with measured inter-
neuron responses to a different stimulus in a different retina.
Although we do not think that there is necessarily a direct corre-
spondence betweenCNN layer and cell type (bipolar vs. amacrine
cell), model interneurons have a high enough similarity to real in-
terneurons to give interpretablemechanistic insight as to the inter-
nal structure of retinal computations.

A wide range of retinal phenomena are engaged by
natural stimuli
Numerous nonlinear retinal computations have been identified
using artificial stimuli, including flashing spots, moving bars,
andwhite noise. However, we neither understand towhat degree
natural vision engages these computations nor how retinal cir-
cuitry implements them under natural scenes. We tested models
fit to either natural scenes or white noise by exposing them to a
battery of structured artificial stimuli. We focused on effects
shorter than 400 ms—the longest timescale our model could
reproduce as limited by the first layer spatiotemporal filter.
Remarkably, the CNNmodel exhibited all of these computations,
described below.
In response to a uniform-field flickering stimulus with a con-

stant mean, the retina adapts to temporal contrast, defined as
the ratio of the standard deviation to the mean intensity. High
contrast stimuli cause ganglion cells to respond with a time
course that is faster, more biphasic, and less sensitive than dur-
ing low contrast.19,26,27 These properties can be assessed with
an LN model consisting of a linear temporal filter and static
nonlinearity fit at different contrasts. We found that both natural
scene and white noise models reproduced temporal processing
changes that occur during contrast adaptation (CA) (Figure 4A).
However, only models fit to natural scenes correctly reproduced
the decrease in sensitivity—the average slope of the nonline-
arity—at high contrast, likely because white noise stimuli did
not explore a sufficient range of contrasts.
A second ganglion cell phenomenon is that for flashed stimuli,

as stronger stimuli decrease the response latency, allowing de-
coding of stimulus intensity using latency31 (Figure 4B). Natural
scenes models reproduced latency coding, but white noise
models did so much less, indicating that white noise did not
generate this property in a manner that could be captured by
the model. Both models reproduced frequency doubling (FD),
observed when ganglion cells respond at 2 Hz to a 1-Hz period-
ically reversing grating12 (Figure 4C). Additionally, ON-OFF cells
had RFs that reversed in polarity during a dynamic stimulus32

(Figure 4D).
The model also reproduced several predictive phenomena.

When a moving bar reverses in direction, the ganglion cell pop-
ulation responds synchronously, signaling the violation of the
prediction that motion will continue smoothly28 (Figure 4E). The
model reproduced this reversal response with high accuracy,
having a time course that closely matched published data.

A

B

Figure 2. Structure of receptive fields of model cell types
(A) RFs of layer 1 cells computed by reverse correlation of a white noise

stimulus presented to the model, shown as the spatial average (top), and the

time course of the RF center and surround (bottom).

(B) Same for layer 2.
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Figure 3. Model internal units are correlated with interneuron responses
(A) Schematic of experiment. White noise responses of bipolar or amacrine cells from a different retina were recorded intracellularly.

(B) Top: correlation map, where each pixel is the correlation between a different spatial location within a single model cell type and the interneuron recording from

a different retina using the same stimulus. Bottom: responses of the interneuron and the most-correlated model interneuron.

(C) Spatiotemporal RFs of example interneurons recorded from a separate retina, and the model interneuron from Figure 2 that was most correlated with that

recorded interneuron. Themodel was never fit to the interneuron’s response. The time courses of the spatially integrated center and surround are shown scaled to

the minimum and maximum.

(D) Histogram of correlation coefficients between interneurons for all interneuron-interneuron pairs, and the best match (7 bipolar cells, 26 amacrine cells, and 10

cells that were either bipolar or amacrine cells).

(E) Histogram of correlation coefficients between model interneurons of CNN models fit to ganglion cells and recorded interneurons. Shown are all model

interneuron-interneuron pairs and the best match. Each of three natural scenes and three white noise CNN models were searched separately to find the best

match, and the results of all models are shown (see STAR Methods).

(legend continued on next page)
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As a separate predictive phenomenon, ganglion cells antici-
pate the motion of a steadily moving bar, shifting the traveling
wave of population activity in the direction of motion.29 Motion
anticipation (MA) is thought to compensate for the lagging repre-
sentation of a moving object due to processing delays. The
model ganglion cell population anticipated motion similarly to
previously published results (Figure 4F).
A final predictive phenomenon is the omitted stimulus

response30 (OSR) (Figure 4G) in which a periodic flash sequence
entrains the ganglion cell response, but when a single flash is
omitted, the cell produces an even larger response at the ex-
pected time of the response to the omitted flash. Moreover,
the OSR occurs at the expected time over a range of fre-
quencies, suggesting that the retina somehow retains a memory
trace of the flash period. Models fit to natural scenes, but not to
white noise, reproduced the OSR over a range of frequencies.
These phenomena arose in a CNN model as a byproduct of

optimization to natural scenes. Compared with natural scene
models, white noise models showed a great reduction in CA, la-
tency coding, and the OSR (Figure S4), as well as reduced polar-
ity reversal (PR) and motion reversal (MR), slightly reduced MA,
and a similar level of FD. These results indicate that natural scene
statistics trigger nonlinear computations that white noise does
not. Even though natural scenes consisted only of a sequence
of jittered images with no explicit object motion or periodic pat-
terns, models still exhibited MA and reversal responses, and
the OSR.
The only phenomenon tested that was not captured by the

model initially was the objectmotion sensitive (OMS) response,18

which discriminates differential motion as caused by an object
moving against a background from global motion, as occurs
from eye movements. The OMS response was tested by pre-
senting a jittering central object grating along with a jittering
background grating, with the two gratings having either the
same trajectory (global motion) or different trajectories (differen-
tial motion). We hypothesized that the model’s lack of an OMS
response was due to the absence of differential motion in the
training stimulus. To test this idea, we trained additional models
on the retinal response to movies of swimming fish that included
differential motion. We found that these models did indeed
exhibit an OMS response of a similar range as did previous
experimental data, verifying that if a stimulus does not engage
a computation, the model cannot capture it (Figure 4H). Thus,
themodel reveals that the nonlinear properties and circuit mech-
anisms of a broad range of ethological computations are
engaged during natural scenes.

INCs to a dynamic visual code
The ability of the model to accurately capture retinal responses
and ethological computations, and the correlation of model in-
terneurons with real interneurons, creates the opportunity to
analyze the model to generate hypotheses as to the circuit ba-

ses of these computations. To do this, we calculated for each
stimulus the contribution of each model interneuron to the
model’s response, which we term the interneuron contribution
(INC) (Figure 5A).33 The INC for each model interneuron at
each time point is the product of the interneuron’s activity
caused by the stimulus and the sensitivity of the model output
to the model interneuron, which takes into account both an in-
terneuron’s input (RF) and its output (projective field),34 where
both input and output stages can be polysynaptic. The INC is
the net excitation or inhibition that each interneuron contributes
across the circuit to the model’s firing rate, and the sum of all
INCs is the model’s firing rate output (Figure 5A). Therefore,
INCs reveal which model interneurons create different
computations.
If one considers a linear ganglion cell whose RF is stimulus-

independent, this linear RF arises from a weighted sum of the
RFs of the contributing interneurons. Each INC is then the prod-
uct of the interneuron’s response (the stimulus projected onto
the interneuron’s RF) and its output synaptic weight to the gan-
glion cell. In an arbitrarily nonlinear circuit, the ganglion cell’s
linear RF can change at each point in stimulus space (Fig-
ure S5). In this case, we can compute the instantaneous RF
(IRF) as the direction of greatest sensitivity (steepest slope) or
the gradient of the response with respect to the stimulus.
Because of the local response surface, the IRF can change di-
rection and magnitude, and is a weighted sum of the IRFs of
the interneurons that create it. To compute the INCs to the
response for a particular stimulus, we used the method of inte-
grated gradients33,35 (see STAR Methods), which computes the
average INC as the stimulus is changed from zero stimulus (a
gray screen) in a straight path to the chosen stimulus (Fig-
ure S5). A straight path is the one choice that satisfies the re-
quirements that the method should be sensitive to any inter-
neuron in the circuit that causes a change in the response,
and it should be invariant to the particular implementation of
the network.35 We performed an exact decomposition of a gan-
glion cell’s response into the unique INCs of each of the 8
model cell types in the first layer at each time point, using the
method of integrated gradients.

The computation of latency coding
To assess how individual interneurons contributed to latency
encoding, we computed INCs during sudden intensity decre-
ments for different contrasts. Previous pharmacological
studies demonstrated the effects of ON and OFF pathways,
supporting a proposed model with two excitatory neural path-
ways, an OFF pathway and an ON pathway with delayed ki-
netics,31 creating threshold crossings whose timing was stim-
ulus-dependent.
To test whether our CNNmodel produced latency encoding in

this simple manner, we first separated INCs that generated exci-
tation and inhibition according to the sign of the final effect on the

(F) Histogram of correlation coefficients between model interneurons of CNN models from different preparations. Shown are all model-interneuron pairs and the

best match for each model.

(G) Reproducibility of model interneuron-interneuron correlations, as assessed by comparing the best match between the same model initialized with different

random seeds, which shows fitting reproducibility vs. the best match between model interneurons and interneurons.

(H) Same as (G) for a comparison betweenmodels from different retinae, showing cell type reproducibility across preparations. Error bars indicate mean ± S.E.M.
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Figure 4. Models reveal that many nonlinear retinal computations are engaged in natural scenes
Artificially structured stimuli were presented to models fit to natural scenes or models fit to white noise, where indicated. All panels showmodel results, except for

the left panels of (E)–(H), which show new or previously published experimental data.

(A) Contrast adaptation. Left: LN model of a model ganglion cell responding to a uniform-field stimulus with low or high contrast. Middle: median temporal

frequency taken from the Fourier transform of the temporal filter, averaged over a population of model ganglion cells. Right: averaged sensitivity measured as the

slope of the nonlinearity.

(B) Latency encoding. Left: flash response at different intensities. Right: latency of the peak response vs. stimulus intensity for models trained on natural scenes or

white noise.

(C) Frequency doubling in response to reversing gratings of different width, computed as the ratio of the response at twice the stimulus frequency (F2) and at the

stimulus frequency (F1).

(D) Polarity reversal. Example reversal of polarity during a natural image sequence. Each panel shows the stimulus (top) and corresponding instantaneous RF

(bottom) for an example model ganglion cell at a fixed delay (!100 ms) relative to the stimulus at different times, showing fast kernel reversal from an OFF feature

(blue) to an ON feature (red), and back.

(E) Motion reversal. Stimulus consists of a moving bar that abruptly reverses direction at different positions. Left: published results28 of a ganglion cell population

showing a synchronous reversal response (arrow). Right: population response of CNN model ganglion cells.

(F) Motion anticipation. Population ganglion cell responses to a flashed bar and left or right motion, from published results29 (left) or the CNN model (right). Note

the x axis represents the ganglion cell position relative to the instantaneous position of the moving bar, and the shift in the population firing rate in the direction of

motion indicates motion anticipation.

(G) Omitted stimulus response (OSR). Left: published results30 showing the response to a missing stimulus following a train of flashes. Middle: CNN model

response to a flash sequence, showing the OSR (arrow) for models trained on natural scenes but not white noise. Right: histogram for a population of model

ganglion cells of the slope of the OSR delay as a function of the stimulus period, which is centered near one.

(H) Object motion sensitivity. CNN models were fit to either jittered static images or jittered natural movies consisting of swimming fish and abrupt image

transitions representing saccades. Models were then shown a jittering central grating surrounded by a jittering background grating that moved either

(legend continued on next page)
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ganglion cell (Figure 5B). Under a moderate contrast decrement,
excitatory contributions dominated, having a peak that matched
the timing of the ganglion cell response (Figure 5B). But as the
magnitude of the contrast decrement increased, delayed inhibi-
tion increased, truncating excitation and causing a shift in the
location of the peak response to earlier times. Also, both excita-
tion and inhibition arose at an earlier time at high contrast. The
dual pathway mechanism is consistent with the previous model.
However, in our model we could examine not only excitation

and inhibition onto the ganglion cell but also whether that excita-
tion or inhibition originated from ON vs. OFF pathways, as deter-
mined by the filter of layer 1 cells (Figure 5C). We found that both
ON and OFF pathways showed latency encoding due to
increased inhibition at high contrast. Although this result at first
seemed in conflict with previous pharmacological experiments,
in fact a closer examination of previous results shows that
when the ON pathway is blocked, the OFF pathway still exhibits
latency encoding.31 Thus, latency coding in our CNN model is
consistent with the details of previous experimental results
and, in fact, reproduces those results better than the previous
model. It is well established that salamander ON-OFF ganglion
cells receive excitation and inhibition that originate in both ON
and OFF pathways.36,37 Therefore, the CNN model’s implemen-
tation of latency encoding is also more consistent with the phys-
iological literature than the previous two pathway model. We
propose that rather than relying solely on timing differences be-
tween ON and OFF pathways, latency coding is also generated
by timing differences between excitatory and inhibitory path-
wayswithin both ON andOFF pathways. This example illustrates
the power of training a CNN on natural scenes, followed by
model analysis on other stimuli to automatically generate
hypotheses.

Motion anticipation
For MA, it has been proposed that for a moving bar, delayed in-
hibition causes a delayed reduction in sensitivity, suppressing
the lagging edge of the traveling wave of activity so its peak
shifts toward the leading edge.29,38 Our INC analysis revealed
a computational mechanism consistent with this hypothesis (Fig-
ure 6A). However, excitation and inhibition largely overlapped in
time, and different asymmetries in excitation and inhibition
caused inhibition to shift population activity in the direction of
motion. Although this model is qualitatively consistent with pre-
vious proposals,29,38 it adds additional information as to the time
course of the responsible neural pathways.

Motion reversal
When a moving bar suddenly reverses direction, ganglion cells
near the reversal location synchronously fire. This burst occurs
at a fixed latency after the reversal, rather than coinciding with
the spatial re-entry of the bar into the RF center. What causes
the burst and why does it occur at a fixed latency? The total
INCs show that excitation drives the burst at a fixed latency. How-

ever,when the reversal is further from theRF, excitation is stronger
and more prolonged. Therefore, excitation alone fails to account
for the synchronous activation of the burst at different spatial loca-
tions. Inhibition, however, is delayed relative to excitation, and is
also stronger when the reversal occurs further from the RF center
(Figure 6B). The net effect is a response that occurs at approxi-
mately a fixed latency and duration relative to the reversal.
At different spatial locations, the linear activity of layer 1 inter-

neurons fails to account for the nonlinear reversal response (Fig-
ure 6C).28 However, the net contributions (sum of excitation and
inhibition) at each spatial location show that interneurons gener-
ating the synchronous burst are located near the RF center.
Furthermore, the net contribution of those interneurons to the to-
tal response switches between excitation and inhibition at
different times. INC analysis reveals that the fixed temporal la-
tency of the MR response can be explained by truncation of
the lagging edge of excitation by inhibitory pathways. Thismech-
anism is qualitatively consistent with a recent experimentally
motivated model39 that points out the crucial role of dual path-
ways of ON and OFF bipolar cells.

Omitted stimulus response
It is currently unclear how the OSR response might be created,
although pharmacological experiments suggest that On bipolar
cells are required.40,41 For periodic flashes of 6–12 Hz, the la-
tency between the omitted flash and the OSR is proportional to
the period of the flash sequence.30,40 Two fundamental ques-
tions are: what computational mechanism causes the large
amplitude burst, and how is the timing of the peak sensitive to
the period of the flashes? One model proposes that bipolar cell
activity responds to each flash with an oscillatory response
whose period adapts to the flash train period.42 However, recent
bipolar cell recordings suggest that such adaptation to the stim-
ulus period is not present.43 Another model proposes that ON
and OFF pathways together can reproduce most experimental
aspects of the phenomena.41 However, the model only shifts
at the onset of the burst with stimulus frequency, but not at the
peak of the burst, which has the critical predictive latency.42

An analysis of the INCs of the CNNmodel (Figure 7A) revealed
a more sophisticated mechanism than either prior model, con-
sisting of three important cell types, including two OFF cell types
and a biphasic ON cell type. This ON cell type was missing from
the model fit to white noise, which failed to reproduce the OSR
(Figure 7B). The periodic response preceding the OSR was
caused by INCs from layer 1 OFF cell types, and the OSR itself
was generated by different cell types (Figure 7A). In addition,
the ratio of contributions between two main layer 1 model cell
types is responsible for shifting OSR latency as a function of fre-
quency (Figure 7C). We explicitly tested this idea by creating a
reduced model with only three parallel pathways having only
two layers, which is an LN-LN model (Figures 7D–7F). The three
cell types of this reduced model were sufficient to reproduce the
key features of the OSR.

synchronously (global motion), representing eyemovements, or asynchronously (differential motion), representing object motion. Shown is the ratio of firing rates

of global to differential motion (OMS index). A ratio much less than one indicates OMS. Left: OMS index computed directly from the spiking responses of recorded

ganglion cells responding to jittering grating stimuli. Right: OMS index from CNN model ganglion cells fit to jittered natural scenes or natural movies. Results for

(A)–(F) are from a population of 26 ganglion cells. Figures reproduced with permission from authors. Error bars indicate mean ± S.E.M.
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Thus, our INC analysis uncovers a new plausible mechanism
of the OSR that cures important inadequacies of prior models.
The model yields a new, experimentally testable scientific hy-
pothesis that the OSR is an emergent property of at least two
OFF bipolar pathways and a biphasic ON bipolar pathway with
different timing.

Model generalization from natural scenes to ethological
computations
The generalization of conclusions from one stimulus to another
is an important topic, reflecting all of sensory neuroscience, as
experiments must always choose one specific set of stimuli.
Are phenomena identified with artificial stimuli relevant to natu-
ral scenes, and are their mechanisms also engaged during nat-
ural scenes? Why do models trained with white noise stimuli
not generalize to certain artificial stimuli? To gain insight into
these questions, we examined the internal states of the model
by calculating the INC to model output. Points in the high
dimensional space of INCs for different stimuli can be clustered
to examine their similarity or difference. Across the entire natu-
ral scene response, we clustered the set of INCs to identify the
different patterns of interneuron activity that were directly
responsible for retinal output. To simplify the analysis, we
chose the eight-dimensional space defined by the eight cell
types in layer 1, averaged spatially. We found that different
bursts were generated by different combinations of layer 1
cell types and that these patterns clustered into several
different modes. Natural scenes activated a broader range of

these modes than did white noise, which primarily activates a
single mode (Figures 8A–8C), showing that natural scenes
explore a wider range of internal states of the model than white
noise.
We then examined the entire space of INCs for natural stimuli,

white noise, and those that create ethological computations by a
t-distributed stochastic neighbor embedding (t-SNE) analysis.
The space of INCs for natural scenes and for white noise was
in part distinct, which is expected from the two different stimulus
distributions. We observed that the natural scenes’ INC distribu-
tion wholly encompassed the smaller white noise distribution.
However, we found, surprisingly, that the interneuron patterns
generating responses to some artificial stimuli lie within the
space of those elicited by natural stimuli but not within the space
of white noise (Figure 8D). Latency coding, OSR, and CA, which
occurred much more in natural scenes models than for white
noise models (Figure S4), created INCs that were positioned
outside the space occupied by white noise (Figure 8D). For
MR, MA, and PR, which were more similar between white noise
and natural scenes models, INCs occurred only partially outside
the space covered by white noise. FD, which was produced by
both white noise and natural scenes models, occurred within
the space covered by white noise.
This result explains why models fit to natural scenes, but not

white noise, recapitulated some phenomena triggered by struc-
tured stimuli. White noise does not explore the stimulus space
that generates these phenomena, but natural scenes do. We
conclude that natural scenes drive the pattern of INCs into

Figure 5. Interneuron contributions to the computation of latency encoding
(A) Top: conceptual diagram of interneuron contributions (INCs), which represent how much each model interneuron contributes to the model’s output for each

particular stimulus (see STARMethods). Bottom: INCs for layer 1 model units, averaged over all units of a given type for the 8 cell types for the model’s first layer

for a short natural stimulus sequence. Each colored row shows the contribution of a layer 1 cell type.

(B) Top: INCs for net excitatory and inhibitory input to a ganglion cell for a low intensity flash. Excitation is defined functionally as a positive contribution to the

ganglion cell firing rate, regardless of the sign of themodel interneuron response or intervening circuitry. Bottom: same as for a high intensity flash, showing a shift

in the peak of the firing rate consistent with latency encoding. The temporal shift is caused by both excitation and inhibition arising at an earlier time, and by

asymmetric delayed inhibition that is proportionally larger for a strong flash.

(C) Response latency plotted against inhibitory contributions for layer 1ON cells (top), andOFF cells (bottom), defined by the sign of the layer 1 cell flash response.
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a set of states that encompasses previously explored artificial
stimuli, showing the ethological relevance of these stimuli to nat-
ural scenes, including those of unknown functional importance,
such as the OSR.30

DISCUSSION

These results capture for the first time the retinal neural code for
natural scenes, enabling analyses of that code in terms of the cir-
cuit elements that generate any response or computation. By
connecting the actions of model interneurons to the responses
of real interneurons, and by assigning the responsibility for spe-
cific computations to those model interneurons, our approach
provides a roadmap to understand how interneurons implement
that neural code under a wide range of stimuli.

Understanding ethological phenomena
The process of assigning ethological functions to interneurons
has typically taken an ad hoc approach, using fortuitous pharma-
cology44,45 or prior knowledge of anatomy or cellular re-
sponses.20,46 One successful approach directly tests computa-
tional models of hypothetical neurons proposed to perform a
function against interneuron recordings.18 Our approach gener-
alizes this strategy across a wide range of stimuli and interneu-
rons, yielding an automatic approach to hypothesizing specific
roles for interneurons in the response to any stimulus. Guided
by an attribution analysis that reveals the internal model states

Figure 6. Interneuron contributions to pre-
dictive motion computations
(A) Interneuron contributions for motion anticipa-

tion, showing excitation and inhibition when a bar

moves in different directions. Excitation and inhi-

bition largely overlapped in time, but temporal

asymmetry that differed for inhibition and excita-

tion shifted the firing rate in the direction of motion.

As in Figure 4F, the x axis represents ganglion cell

position relative to the instantaneous moving bar

position. A shift of the population firing rate in the

direction of motion indicates motion anticipation.

(B) INCs for reversal of a moving bar at t = 0 for

three different spatial locations. Delayed inhibition

(blue solid line, dashed line is inverted inhibition) is

greater at a more distal location (left plot), causing

a greater truncation of the firing rate. Across the

population, this differential response truncation at

different locations synchronizes the response.

(C) Left: activation map of layer 1 cells for one cell

type, showing a linear response. Right: spatial map

of INCs. At the RF center (dashed box), cells switch

the sign of their contribution over time, with the

synchronous burst after the reversal comprised

predominantly of net excitation. Note that this is

only the net effect (excitation plus inhibition) arising

from a single cell type. The total excitation and

inhibition shown in (B) arises from multiple layer 1

cell types.

(Figure 8), a future goal will be defining a
minimal sufficient stimulus set, including
natural images, movies, and potentially

artificial stimuli that engage all circuit properties, thus efficiently
generating a model that captures all nonlinear properties and
phenomena of the retinal circuit.

Correspondence of model and retinal architecture and
future extensions
The correspondence of CNN model architecture to that of the
retina is not exact, and future versions will more directly match
neural and model synaptic connections. Because the first CNN
synaptic layer is linear and has spatiotemporal center-surround
RF properties found in bipolar cells (the last stage prior to strong
rectification), it is reasonable to propose a correspondence be-
tween the first CNN layer and the photoreceptor to bipolar cell
transformation or to the outer retinal synaptic layer. Although
we found that some amacrine cells were highly correlated with
layer 1 CNN cells, some amacrine cells are linear and some
are strongly nonlinear.47 Further studies are required to deter-
mine whether more nonlinear amacrine cells are more similar
to layer 2 in the CNN, or even require three layers. A simplified
hypothesis is that the second CNN layer corresponds to the bi-
polar-cell-to-amacrine cell transformation, and that the last layer
adds additional processing found in the amacrine-cell-to-gan-
glion cell transformation. In our model, all transmission goes
through the second layer, whereas a closer correspondence to
bipolar-to-ganglion-cell transmission would have direct layer 1
to 3 transmission. This model architecture is known as a skip
connection and implies that some layer 2 neurons in our current
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model acts as relay cells. However, the present analysis of com-
putations is directed toward layer 1 output neurons, and we
expect that this more correct architecture would only affect an-
alyses of layer 2 neurons.

A second deviation of the model from the retina affecting pri-
marily the second layer is that our model neurons can have
both positive and negative synaptic weights. Retinal synaptic ef-
fects are generally restricted to a single sign for each cell,
although counterexamples exist, such as photoreceptors having
opposite effects on ON and OFF bipolar cells due to different
glutamate receptors, and amacrine cells making both chemical
inhibitory and electrical excitatory synapses.48 The addition of
this sign constraint could potentially increase the number of
cell types required. There are not necessarily the same number
of response types as anatomical cell types, as different cells
may have the same response type but different targets. In a pre-
vious reanalysis of the kinetics of published amacrine re-
sponses,49,50 we concluded that there were approximately eight
kinetic classes of salamander amacrine cells, even though there
are anatomically more cell types, matching well our conclusion
here that eight cell types in the second layer are sufficient to cap-
ture amacrine-cell-layer dynamics. However, we expect that a
sign constraint on synapses will result in more required model
interneuron types than eight in each layer, as separate cells will
be needed to create excitation and inhibition, perhaps matching

more closely the larger number of anatomical bipolar and ama-
crine cell types.
Further variations of the model could include recurrent con-

nections to account for horizontal cell connections to the photo-
receptor synaptic terminal and recurrence among amacrine
cells. Such architectures would necessarily induce additional
complexity, which should be evaluated as to tradeoffs in mech-
anistic understanding vs. simplicity in analysis.
Because the current model has a 400-ms integration time, it

cannot capture prolonged phenomena such as slow CA and
sensitization.27,51 However, we have begun to extend the model
to longer timescales by incorporating biophysical components
that capture the slow synaptic dynamics thought to underlie
these phenomena.52

Modes in RFs and neural populations
The different INC modes (Figure 8) indicate different network
states for different stimuli and are pooled spatially over all of
each cell type. A greater number ofmodesmay exist when spatial
variation is considered. A possibly related phenomenon to these
modes has been observed in ganglion cells, whereby population
responses occupy distinct modes53 under natural visual stimuli. A
potential connection between the two observations may exist, in
that the INCmodes that we observemay underlie distinct clusters
of ganglion cell population activity. Similarly, one might predict

Figure 7. New hypothesis for the omitted stimulus response
(A) Top: strong omitted stimulus response for an examplemodel ganglion cell, consisting of a small periodic response and amuch larger burst at themissing flash.

Bottom: interneuron contributions from layer 1, showing that excitation from one OFF and a biphasic ON cell drives the burst (cell types 2 and 4), whereas other

cells drive the response to periodic flashes.

(B) Same as (A) for a model fit to white noise, which lacks an OSR response and a biphasic ON cell.

(C) The OSR peak time as a function of the ratio of the contribution of two cell types corresponding to cell types 2 and 4 for the natural scenes model. Cell type 2

has a larger contribution at higher frequency. Average is shown over three models.

(D) Left: reduced LN-LNmodel consisting of three pathways corresponding to cell types 2, 4, and 6 in (A). Compared with the full CNN, thismodel has three layer 1

cell types, and then the result is summed and then rectified. Right: OSR response from the reduced model.

(E) Comparison of reduced model with full CNN. Error bars indicate mean ± S.E.M.
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that ganglion cell populationmodes lead to dynamic RFmodes in
the higher brain. Further work to connect these two observations
may connect the proposed functions of error-correcting codes53

and dynamic changes in INCs.
The ability to analyze the state of the neural code and of the cir-

cuit at each time point allows a new level of access to the neural
code and its construction for any arbitrary stimulus, allowing the
statement of detailed quantitative hypotheses for natural scenes
and ethological computations that include specific interneuron
types. These hypotheses will serve as the foundation for future
directed experiments to define how interneuron patterns
generate the dynamic neural code for natural scenes.
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Retinal ganglion cells were recorded using an array of 60 electrodes (Multichannel Systems) as previously described.51 Intracellular
recordings were performed using sharp microelectrodes as previously described.47

Visual Stimuli
A videomonitor projected the visual stimuli at 30 Hz controlled byMatlab (Mathworks), using Psychophysics Toolbox.54 Stimuli had a
constant mean intensity of 10 mW/m2. Images were presented in a 50 x 50 grid with a square size of 50 mm. Static natural jittered
scenes consisted of images drawn from a natural image database.55 To create images for presentation to the retina, original color
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presentation. Images drifted in two dimensions in a random walk,18 moving with a standard deviation of 0.5 pixels per video frame
horizontally and vertically. The image also abruptly changed in a single frame to a different location every one second, representing
saccades, although such transitions did not contain a sweeping shift in the image. Transitions occurred both between different lo-
cations in the same image and between different images. White noise stimuli were binary (black and white) stimuli with the same
frame rate, spatial size and duration as natural scene stimuli. Natural movies consisted of fish swimming in an aquarium and con-
tained both drift and abrupt image transitions that matched static jittered natural scenes. For analysis of model responses to artificial
stimuli (Figure 4), unless otherwise stated stimuli were chosen to match published values for each phenomenon.

Model training
We trained Convolutional Neural Network (CNN) models to predict retinal ganglion cell responses to either a white noise or natural
scenes stimulus, simultaneously for all cells in the recorded population of a given retina.56 All results, unless otherwise specified, are
reported as an average over 26 retinal ganglion cells split between three different datasets. The datasets consisted of 5, 4, and 17 cell
recordings, each with white noise and natural scenes stimulus segments. A single model was trained for each dataset and each stim-
ulus type resulting in 6 models total.
Model parameters were set to a random initial condition and then optimized tominimize a loss function corresponding to the nega-

tive log-likelihood under Poisson spike generation,

Lðyt; bytÞ =
1

T

XT

t = 0

byt $ yt log byt (Equation 1)

where yt and byt are the experimental and predicted firing rates of the retinal ganglion cells at time t, respectively with a batch size of T,
chosen to be 5000 samples. Models were optimized to fit all cells in a preparation simultaneously by minimizing the sum of negative
log-likelihood over all cells. To help with model fitting, we smoothed retinal ganglion responses during training with a 10 ms standard
deviation Gaussian, the size of a single time bin in our model.
The architecture of the CNN consisted of two convolutional layers, with 8 cell types (or channels) per layer, followed by a fully con-

nected layer. Each convolutional layer consisted of a linear spatiotemporal filter and a rectification using a rectified linear unit (ReLU).
The final layer consisted of a spatial filter, a scaling and shifting parameter for each ganglion cell, and a nonlinearity using a softplus
function.
CNN model optimization was performed using Adam,57 a variant of stochastic gradient descent. Models were trained using

TensorFlow58 or PyTorch59 on NVIDIA Titan X GPUs. Training an individual model to convergence required !8 hours on a single
GPU. The networks were regularized with an L2 weight penalty at each layer and an L1 activity penalty at the final layer, which helped
maintain a baseline firing rate near 0 Hz.
The response and stimulus were binned in 10 ms time bins. To present images to the model, the mean intensity across all images

was subtracted from the ensemble of images, and then the ensemble was divided by its standard deviation. We split our dataset into
training (323,786 ten ms samples,! 54 min.), validation (35,976 samples,!6 min.), and test sets (5,957 samples,! 5 min.) The num-
ber of 30 Hz stimulus frameswas one third of these values.We chose the number of layers, number of filters per layer, the type of layer
(convolutional or fully connected), filter kernel sizes, regularization hyperparameters (L1=0.0001, L2=0.001), and learning rate (0.005)
based on performance on the validation set. Training and validation sets were single trials of stimuli. The number of training, validation
and test samples were the same for natural scenes and white noise.
The test set included 5 – 10 sixty second repeats of an identical stimulus different from those used for training, from which we

computed an average firing rate for comparing to the model. We found that increasing the number of layers beyond three did not
improve performance, and we settled on eight filter types in both the first and second layers, with filters that were much larger (Layer
1,15 x 15 and Layer 2, 11 x 11) compared to traditional deep learning networks used for image classification (usually 5 x 5 or smaller).
The spatial components of the convolutional filters were implemented as a series of stacked linear convolutions, each consisting of

a series of 3 x 3 filters with 8 channels. Thus seven 3 x 3 filters were applied in sequence to generate a 15 x 15 filter. After optimization,
we collapsed this series of 3 x 3 convolutional filters into a single larger convolutional filter (15 x 15 or 11 x 11). Therefore, this pro-
cedure did not change the final architecture of the model, but improved the model’s performance, presumably by reducing the num-
ber of parameters and centering the features of the filter. Model interneurons were present at each location. Because the size of
model RFs was unrelated to their spacing, the tiling of cells did not influence filter parameters. The number of model interneurons
was reduced at each layer as a consequence of the filter sizes and edge effects, so that the stimulus input was 50 x 50 regions,
the first convolutional layer output had 36 x 36 units, the second convolutional layer output had 26 x 26 units, and the third fully con-
nected layer had an output equal to the number of recorded ganglion cells. The first layer consisted of eight 15 x 15 x 40 spatiotem-
poral filters, which were fit as 8 channels each having a 3 x 3 x 40 spatiotemporal (x,y,t) filter followed by 6 sublayers each having 8
input channels, 8 output channels and a 3 x 3 spatial filter. The number of filter parameters in the first layer was 8 x 3 x 3 x 40 + 6 x 8 x 8
x 3 x 3 = 6336 parameters. The second layer consisted of 8 channels of 11 x 11 spatial filters, and was fit using five sublayers each
having eight input channels, eight output channels and a 3 x 3 spatial filter for 8 x 8 x 3 x 3 = 576 filter parameters. The third fully
connected layer had 8 x 26 x 26 = 5408 filter parameters for each ganglion cell.
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Several strategies were added to improve optimization. During optimization, independent gaussian noise with zero mean a stan-
dard deviation of 0.05 was added to each activation following the convolutional filter. Batch normalization60 was applied at each
layer, which normalizes the model activations using the mean and standard deviation of inputs collected during training. For the first
two convolutional layers, Batchnorm2Dwas applied which uses the full spatial dimension of each channel for the normalization. In the
last layer, a Batchnorm1D was applied which is specific to each ganglion cell. Values quoted are mean ± s.e.m. unless otherwise
stated.
Linear-Nonlinear Models
Linear-nonlinear models were fit by minimizing the same objective as used for the CNN, the Poisson log-likelihood of data under the
model. Each model, however, was only trained on an individual ganglion cell firing response. We found that these were highly sus-
ceptible to overfitting the training dataset, and imposed an additional regularization procedure of zeroing out the stimulus outside of a
500 mm window centered on the cell’s receptive field. The nonlinearity of the LN model was a soft-plus function.
Generalized Linear Models
Generalized linear models (GLMs) were fit by minimizing the same objective as used for the CNN, the Poisson log-likelihood of data
under themodel. We performed the same cutout regularization procedure of only keeping the stimulus within a 500 mm region around
the receptive field, which was critical for performance. The GLMs differed from the linear-nonlinear models in that they have an addi-
tional spike history feedback term used to predict the cell’s response.6 Instead of the standard exponential nonlinearity, we found that
using soft rectified functions log(1+exp(x)) gave better performance.

Response reliability
The reliability of recorded ganglion cells over the course of each experiment was measured by computing the correlation coefficient
between a cell’s average response to the same stimulus on different blocks of trials. We analyzed only those cells with a correlation
exceeding 0.3. This measure of a cell’s reliability is not the cell’s trial to trial variability, but is an estimate of how closely the average
data matches itself given the number of trials that we have for the purpose of estimating the maximum that a model of the average
response could be expected tomatch the average of the data. This maximum is limited by the number of trials (5 – 10). Of 26 cells that
met our criteria of reliability, 17 were fast OFF-type cells (which are On-Off cells), 5 weremediumOFF, 3 were slow OFF, and one was
anOn cell. Our dataset also included a small percentage of additional ON ganglion cells, but these did notmeet the reliability criterion.

Interneuron correlations
We compared the similarity of responses of recorded interneurons with other interneurons in order to reveal both the diversity of the
interneuron responses and assess the similarity between cells of the same type. However, one cannot directly compare the record-
ings of interneurons because each interneuron is recorded at a different position with respect to the stimulus. However, by fitting a
model to each interneuron recording, the stimulus could then be presented at the same location relative to eachmodel, thus allowing
a direct comparison of the response of a recorded interneuron to the model of another recorded interneuron. To choose a model for
recorded interneurons, we first fit different types of CNN models including single layer, LNLN models, two and three layer CNN
models, and then chose the best performing model individually to represent each interneuron. We then computed the correlation
coefficient for all interneuron pairs, and the best match for each interneuron.

To compare the similarity of recorded interneurons withmodel interneurons, for eachmodel interneuron type in layer 1 and layer 2 it
was necessary to find the location that corresponded to the location of the recorded interneuron. To do this, we computed the cor-
relation coefficient between the actual interneuron recording (not themodel of the recorded interneuron) and eachmodel interneuron
at each spatial location and, and then chose the spatial location with the highest absolute value correlation. We used the absolute
value to account for the fact that Off cells might be compared with On cells, although we report the actual correlation coefficient, not
the absolute value.

To comparemodel interneurons with model interneurons of another model, we adopted a similar procedure as used for comparing
recorded interneurons with model interneurons. We chose the center of the visual field for one model, and found the corresponding
spatial location in another model by finding the model interneuron with the highest absolute value of the correlation coefficient.

When finding the best match between recorded interneurons and model interneurons, or between model interneurons in different
CNN models, we always searched only over a single model, 16 unit types for the standard model and varying numbers of units for
different architectures. Results are reported across all models, either separately or by averaging.

Interneuron contributions
In this section, we outline amethod to determine howmuch eachmodel interneuron contributes to the firing rate of the output neuron.
To do so, we apply a method called Integrated Gradients,33,35 which was originally developed for interpretability in machine learning.
In order to determine which part of the image the model’s decisions originate from, Integrated Gradients decomposes the model’s
output into attributes for each pixel in the input image. Analogously, we apply the chain rule to decompose the firing rate of ganglion
cells into Interneuron Contributions (INCs) for each of the eight model cells by performing path integration.

Mathematically, the trained deep learning model represents a nonlinear function rðtÞ = F ½sðtÞ&, where rðtÞ is the output firing rate
and sðtÞ˛R50350340 is the movie input. Using the line integral sðt;aÞ = asðtÞ where the path takes a straight line a : 0/1, and
assuming F ½sðt; 0Þ& = 0, we obtain an equality
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F ½sðt;1Þ& =

Z 1

0

da
vF
vs

!!!!
sðt;aÞ

$
vsðt;aÞ

va
= sðtÞ$

Z 1

0

da
vF
vs

!!!!
sðt;aÞ

(Equation 2)

Our goal is to quantify the contributions of the first layer model units, whose responses to the stimulus are z½1&c = W ½1&
c ' sðtÞ+ bc,

where [1] refers to an index of the layer, c refers to channel or model cell type, W ½1&
c is the linear convolutional filter, * indicates the

convolution operation and bc is the bias or offset parameter.
Therefore we further apply the chain rule to define Ac; the INC of the cth channel as

rðtÞ =
X

c

"
W ½1&

c ' s
#
$

Z 1

0

da
vF
vz½1&c

!!!!
sðt;aÞ

h
X

c

Ac (Equation 3)

with vF=vz for each model interneuron computed as the gradient of the model output with respect to the model interneuron’s acti-
vation under the stimulus sðt;aÞ = asðtÞ. Finally, the spatially averaged INCs Ac:1$ 8 form a vector with eight elements, which is taken
as the contribution of that model cell type to the model output at that instant of time.
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