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SUMMARY

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can
be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respec-
tively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during
social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a
large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of
the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting
that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the
magnitude of the integration dimension time constant were strongly correlated with differences in aggres-
siveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neu-
rons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct
neural population codes to represent similar social behaviors.

INTRODUCTION

A fundamental problem in neuroscience is to understand how
the brain controls innate behaviors. Many such behaviors are
governed by the hypothalamus, a deep subcortical brain region
present in all vertebrates.1,2 Classical brain stimulation and
lesion experiments have implicated different hypothalamic re-
gions (‘‘nuclei’’) in diverse innate behaviors (reviewed in Paredes
and Baum,3 Siegel et al.,4 Canteras,5 King,6 Kruk,7 Swanson,8

and Simerly9). More recently, optogenetic stimulation has identi-
fied genetically marked neuronal subpopulations that can evoke
such behaviors10–13 (reviewed in Yamaguchi,14 Zha and Xu,15

Augustine et al.,16 and Sternson17). Genetic ablation or reversible
silencing has demonstrated that these subpopulations are
essential for natural occurrences of these behaviors.10–12,18

An important open question is how the activity of these neural
subpopulations during naturally occurring behavior reflects their

‘‘causative’’ function. Relatively few single-unit recordings have
been performed in hypothalamic nuclei because of their inacces-
sibility.13,19–21 Recordings of bulk calcium signals22 have
confirmed that these neuronal subpopulations are active during
the natural behaviors they can artificially evoke.23–25 However,
this averaging method obscures individual cell activity patterns.
Miniature head-mounted microscopes allow calcium imaging

with single-cell resolution in freely moving animals.26,27 Applica-
tion of this approach to the hypothalamus has identified cells ex-
hibiting stimulus-locked activity during natural behavior.28–30 For
example, imaging of estrogen receptor type 1 (Esr1)-expressing
neurons in the medial preoptic area (MPOA), whose optogenetic
activation can elicit mounting behavior in male mice,31,32 has re-
vealed cells that respond specifically during spontaneous
mounting of females (see also Figure 1E). Such results, together
with single-cell transcriptomic analysis, have reinforced the pre-
vailing view that the hypothalamus controls different survival
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behaviors via genetically determined, functionally specific
neuronal subpopulations.33,34

Thecaseofaggression, however,presentsaparadoxseemingly
at odds with this view. On one hand, optogenetic stimulation of
Esr1+ neurons in the ventrolateral subdivision of the ventromedial
hypothalamus (VMHvl) neurons triggers attack behavior,12,39–41

identifying theseneuronsas the likelycellular substrateofelectrical
brain-stimulated aggression.4,7,42 Conversely, genetic ablation of
VMHvl neurons expressing the progesterone receptor (PR; co-ex-
pressed with Esr1) or optogenetic silencing of VMHvlEsr1 neurons
blocks natural aggression12,18

On the other hand, miniscope imaging of VMHvlEsr1 neurons
during natural fighting revealed surprisingly few cells that ex-
hibited time-locked, attack-specific activity.29 Instead, most
such neurons exhibited ‘‘mixed selectivity,’’ responding during
different phases of an aggressive interaction. Different subsets
of Esr1+ neurons responded to male versus female conspecifics,

suggesting an encoding of conspecific sex.29,31,43 Nevertheless,
decoders trained on VMHvlEsr1 neural imaging data could accu-
rately distinguish episodes of attack from sniffing.29

Thus, observational versus perturbational studies of VMHvlEsr1

neurons yield seemingly inconsistent views: these neurons caus-
ally control aggressive behavior; however, very few of them are
specifically ‘‘tuned’’ to attack. There are two possible explana-
tions for this paradox. First, the small fraction of VMHvlEsr1 neu-
rons that are more active during attack may be the ones respon-
sible for the specific causative influence of this population.
Alternatively, the majority of VMHvlEsr1 neurons, despite their
mixed behavioral selectivity, may control attack through some
type of population code.
In other systems where there is no clear correlation between

single-unit spiking patterns and behavior, modeling neural pop-
ulations as a dynamical system44–46 (reviewed in Vyas et al.47)
has revealed signals in the dynamics of population activity that

Figure 1. Cytoarchitectures and cellular representations in a neural system regulating social behavior
(A and B) Cytoarchitecture and input-output maps of MPOA33,35 (A) and VMHvl31,36–38 (B).

(C and D) Example traces from Esr1+ neurons in MPOA (C) and VMHvl (D).

(E and F) Clustering of recorded Esr1+ neurons in MPOA (E, n = 306 neurons from 3 mice) and VMHvl (F, n = 391 neurons from 4 mice) using a regression model.

Rows, hand-annotated behaviors; columns, individual neurons.
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can robustly predict motor actions.48,49 We have therefore car-
ried out similar modeling of VMHvlEsr1 neural activity dynamics
during naturalistic social behaviors, using legacy data from pre-
vious studies.29,31,43 Our results reveal line attractor dynamics
in VMHvl that correlate with escalating levels of aggressive
behavior, suggesting that they may represent or encode an
aggressive internal state. Strikingly, line attractor dynamics are
absent in MPOA activity during both mating and aggression.
This analysis therefore reveals fundamental differences in the
neural coding of social behaviors by different hypothalamic
nuclei.

RESULTS

Cellular tuning analysis confirms behaviorally selective
neural populations in MPOA but not in VMHvl
Calcium imaging of MPOAEsr1 or VMHvlEsr1 neurons revealed
distinct patterns of neuronal activation during social interac-
tions29,31 (Figures 1A and 1B). To quantify these differences,
we re-analyzed calcium imaging data31 from sexually experi-
enced male C57Bl/6NEsr1-2A-Cre/+ mice during standard resi-
dent-intruder assays, using male or female BalbC intruders
(Figures 1C and 1D). We then computed the mean activity of
each neuron during each of 14 different hand-annotated ac-
tions and clustered them using a regression model (VMHvl:
n = 306 neurons from 3 mice; MPOA: n = 391 neurons from 4
mice, see STAR Methods).

Confirming previous observations,29,31 many MPOA clusters
contained neurons only active during specific behavioral actions,
such as intromission or mounting toward females (Figure 1E). In
contrast, most VMHvlEsr1 neurons were activated in response to
either males or females, with very few neurons showing
behavior-specific activation (Figure 1F).

Unsupervised dynamical systems analysis of neural
activity during social behavior
In other systems, population analysis via fit dynamical systems
has revealed a neural encoding of behavioral actions that were
not apparent in neuron-by-neuron analysis.47,48,50,51 We there-
fore investigated whether behavioral representations among
VMHvlEsr1 neuronsmight be encoded at a population level, using
an unsupervised dynamical systems approach.

To do so, we fit a dynamical model to the population activity of
VMHvlEsr1 cells from each of multiple mice (n = 6), from two
different studies31,43 in which recordings were made throughout
male-male or male-female encounters (average duration 5.1 ±
0.68 min and 11.4 ± 0.68 min, respectively; mean ± SEM). Spe-
cifically, we fit a recurrent switching linear dynamical system
(rSLDS) model,52 which approximates a complex non-linear
dynamical system as a composite of more easily interpretable
linear dynamical systems, or ‘‘states’’ (Figure S1A).

rSLDS first reduces neural activity to a set of latent variables
(also called ‘‘dimensions’’ or ‘‘factors’’), defining a low-dimen-
sional ‘‘state space’’ in which the time-evolving population neural
activity vector can be analyzed (Figure 2A➀). Population activity
in this low-dimensional space is then segmented into a set of
discrete states (Figure 2A②) while fitting a linear dynamical sys-
tem model (Figure 2A③) to neural activity within each state.

Each state has a different dynamics matrix, which dictates how
neural activity evolves over time from any given point within
that state space. Quantitative examination of parameters from
this matrix after model fitting can unveil dynamical properties of
the neural circuit, such as the time constant of each dimension.46

Finally, to visualize more easily the dynamical properties of each
state, we plotted its ‘‘flow field’’ in 2D using principal component
analysis (PCA) (Figure 2A④ right; see STAR Methods).
In fitting the rSLDS model, we chose the minimum number of

states and dimensions that could capture 90% of observed vari-
ance in neural activity, determined using cross validation in each
mouse separately (Figures S1B–S1E; 7–8 dimensions [7.2 ± 0.1,
N = 6 mice] and 3–4 states). We evaluated the ‘‘goodness of fit’’
of eachmodel iteration using both the log likelihood of the data52

and an additional metric that we call the ‘‘forward simulation er-
ror’’ (FSE; Figure S1F; see STARMethods). Plotting the FSE over
time allows visualization of periods wherein model performance
drops (Figure S1G). By this metric, our best-fit models captured
most of the variance in neural data (model performance [1-FSE] =
0.72 ± 0.02, N = 6 mice; Figure S1H).
The rSLDS framework allows the fit dynamical systemmodels

to be either autonomous or to receive external input. Since
VMHvl neuron firing rates correlate with the distance to another
male or to male mouse urine,53 likely reflecting the concentration
of chemosensory cues,54 we used the distance between animals
and their facing angle as a proxy for external sensory input
strength53,55 (see STAR Methods).

rSLDS analysis of VMHvl neural activity discovers an
integration dimension that correlates with aggressive
escalation
Next, we performed retrospective alignment of the unsupervised
neural data model with behavioral annotations over time. This
comparison revealed that the probability of attack was elevated
during a single rSLDS state (state 3, Figures S1I–S1K). Impor-
tantly, attacks were not time-locked to the onset/offset of this
state; rather, epochs of this state outlasted individual attack
bouts (state 3 epoch duration: 79.5 ± 5.5 s, attack bout duration:
4.86 ± 0.44 s, N = 6 mice, Figures S1I5, S1J3, and S1K3). This
suggests that the state did not simply represent motor activity
(Figure S1A, cf. case 2 versus 1).
To better understand the neural population dynamics related

to attack behavior, we examined the dynamics matrix for this
state, which describes how dimensionally reduced neural activ-
ity in that state changes over time. The eigenvalues of this matrix
reflect the rate at which activity along each of these dimensions
decays to zero following external input and can be converted to a
time constant for each dimension.56,57 Input to dimensions with
short time constants will quickly decay to zero, whereas input to
dimensions with long (large) time constants persists and decays
slowly. Strikingly, one of the rSLDS dimensions had an estimated
time constant of over 100 s that was significantly higher than that
of all other dimensions (Figures 2B red dot, 2C, and 2D, N = 6
mice). Because systems with long time constants approximately
integrate their input over time, we refer to the longest time con-
stant dimension as the ‘‘integration’’ dimension.58,59

The integration dimension accounted for 19.5% ± 1.9% of the
overall variance in neural activity (N = 6 mice). In contrast, a
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support vector machine (SVM) decoder trained on all neural data
to distinguish attack from sniffing periods explained much less
variance (0.3% ± 0.1%, N = 6 mice, p < 0.001, Figure S2B).
Examining the activity of individual neurons that were weighted
strongly in the integration dimension (Figure S2D) revealed that
around 20%of neurons per animal contributed to this dimension,
with some showing ramping and persistent activity (Figures S2I,

S2J, S2L, and S2N). Moreover, most of these neurons were
tuned tomale intruders (Figures S3A and S3B). Thus, the integra-
tion dimension encapsulates a signal that is present at the level
of at least some individual neurons but is also an emergent prop-
erty of the population.51

We next compared the time-varying activity of the integration
dimension with the animals’ actions during aggressive

Figure 2. Dynamical analysis of VMHvl neural activity reveals an integrator dimension that correlates with aggressive escalation
(A) Schematic illustrating rSLDS52 analysis. Steps ➀–④ are shown sequentially for illustrative purposes only.

(B) Time constants of rSLDS dimensions (see A➀) in attack enriched state from VMHvl mouse 1. Dimensions with longest (red dot) and shortest (yellow dot) time

constants are indicated.

(C) Projection onto time axis of integration dimension with overlayed behavior annotations.

(D) Average time constant of all dimensions, arranged in decreasing order. (***p < 0.001, n = 6 mice.)

(E) Average F1 score of binary decoder of behavior pairs trained on integration dimension activity (**p < 0.005, *p < 0.01, n = 6 mice).

(F) Cumulative distribution of integration dimension value (normalized) for different behaviors.

(G) Projection of fastest dimension in example VMHvl mouse 1.

(H) Performance of binary decoder of behavior pairs trained on fastest dimension activity (n = 6 mice). For additional data, see Figures S1, S2, and S3.
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Figure 3. VMHvl contains an approximate line attractor that integrates aggressive escalation
(A) Behavior rasters shown with first two principal components of dynamical system (see STAR Methods) for example VMHvl mouse 1.

(B) Schematic illustrating inferred dynamics shown as idealizedflow fields (with attractors highlighted by red dashed lines) and 3D landscapes for point attractors

(left) and line attractors (right).

(C) Neural state space with population trajectories and inferred flow field colored by rSLDS states for VMHvl mouse 1, with line attractor highlighted. The slight

shift in line attractor position in state S2 vs S4 accounts for the curvature in the attractor in (D) and (E).

(D–F) Neural state space for VMHvl mouse 1 (D), mouse 2 (E), and mouse 3 (F) with line attractor highlighted (see STAR Methods).

(G) Line attractor score (see STAR Methods) for VMHvl (red bar, n = 6 mice).

(H and I) Inferred 3D dynamic landscape in VMHvl mouse 1. Front and side views of line attractor are shown.

(legend continued on next page)
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encounters. In mouse 1, activity along the integration dimension
was low during sniffing, ramped up at the onset of dominance
mounting (a low-intensity aggressive behavior31), and increased
further to a stable plateau value as the animal attacked (Fig-
ure 2C). A cumulative distribution function (cdf) of the normalized
level of activation along the integration dimension during sniffing,
dominance mounting, and attack revealed that these three be-
haviors occurred at low, medium, and high values of this dimen-
sion, respectively (Figure 2F; distribution means: sniffing: 0.30,
dominance mount: 0.66, attack: 0.82, N = 6 mice).
Remarkably, a binary classifier created by thresholding the

value of the integration dimension could distinguish periods of
sniffing from attack or from dominance mounting, with a high
F1 score (0.89 ± 0.02, N = 6 mice; Figure 2E). The same method
could also distinguish dominance mounting versus attack (F1
score 0.74 ± 0.03, N = 6 mice; Figure 2E). However, such classi-
fiers could not distinguish behaviors occurring close together
in time, such as attack and sniff-attack (defined as periods of
sniffing that occurred within 1 s prior to attack, as described
recently60), perhaps due to the gradual ramping of activity along
this dimension. Remarkably, none of the other seven fit dimen-
sions could be used to distinguish aggressive behaviors from
sniffing with above chance accuracy (Figures 2G and 2H;
Figure S2C).
The foregoing analysis suggested that a low-dimensional

signal in VMHvl represents escalating aggressive behaviors. To
account for possible spurious behavioral correlations due
to the slow decay of activity in this dimension, we devised a
version of session permutation as described recently,61 by cross
validating decoder thresholds between animals (see STAR
Methods). This more rigorous paradigm could still decode be-
haviors with high F1 scores (Figure S2H).
Sniffing, attack, and dominance mounting are performed in

bouts separated by short inter-bout intervals (IBIs). Because of
its slow ramping and stable plateau, activity in the integration
dimension did not decay during such IBIs and therefore could
not distinguish behavioral bouts from adjacent IBIs (Figure S1A,
case 2). However, decoders trained on this activity could distin-
guish IBIs from sniffing versus attack epochs, whichwere behav-
iorally indistinguishable to a human observer, with a high F1
score (0.83 ± 0.02, N = 6 mice; Figure 2E).
Thus, our unsupervised approach uncovered a one-dimen-

sional signal in VMHvlEsr1 neural population activity that closely
tracks and scales with an animal’s escalating level of aggressive-
ness and is reflected in the activity of approximately 20%
of individual VMHvlEsr1 neurons. Different aggressive actions
are observed as activity along this dimension reaches
different thresholds, suggesting an aggression-intensity code in
VMHvlEsr1 activity. The level of activity along the integration
dimension could not be fully predicted from pose features
such as the acceleration, facing angle, or velocity of the resident,

or from the distance between mice (mean R2: 0.28 ± 0.04, N = 6
mice, Figure S2A). Tracking metrics used as inputs to the model
were also not predictive of behavior annotations (Figures S3F–
S3H). Furthermore, models of VMHvl fit without any tracking in-
puts also recovered an integration dimension with similar time
constants (Figure S3D). These results further highlight that the
relationship between the integration dimension and escalating
aggressive behavior is not due to the incorporation of inputs
such as facing angle and distance betweenmice. Even the incor-
poration of additional trackingmetrics such as speed and area of
the ellipse fit to the resident mouse did not improve rSLDS fits,
suggesting that VMHvl was likely not integrating features of
these sensory related signals (Figure S3I).
This relationship between VMHvlEsr1 activity and aggression

is consistent with our observation that increasing the intensity
of optogenetic stimulation of VMHvlEsr1 neurons progressively
evokes sniffing, dominance mounting, and attack,12 actions
that can be decoded from the integration dimension as its activ-
ity ramps up.

VMHvl contains an approximate line attractor that
represents escalating aggressiveness
We examined next how the integration dimension of the fit model
influences the overall topology of neural state space during social
behavior (Figure 2A④; see STAR Methods). PCA indicated that
the first two PCs accounted for 68.5%± 1.2%of the total variance
in VMHvl activity (N = 6 mice). In all imaged animals, PC1 showed
slow ramping dynamics (Figure 3A; Figures S4C; PC1 [behavior-
triggered average,N = 6mice]).Weconfirmed that the rSLDS inte-
gration dimension makes the largest contribution to this PC (Fig-
ure S4A). Activity along PC2 was high when a new intruder was
introduced (Figure 3A; Figure S4C; PC2 [behavior-triggered
average, N = 6 mice]) but was otherwise low.
To visualize neural state space dynamics, we next generated a

2D flow field in PC space, whose vectors at each point indicate
how neural dynamics evolve according to the fit rSLDS model
(see Figure 2A④). This revealed a region of low vector flow
that forms an approximate line attractor (Figures 3B, right and
3C), meaning that the neural population activity vector tends to
move toward persistent points along a line62 (Figure 3D, t50-
t340). To quantitatively delimit this attractor, we calculated the
points in the flow field where vector length is at a minimum
(‘‘slow points’’; see STAR Methods) and linked these points
into a dashed line (Figure 3D, dashed black line). Such approxi-
mate line attractors were observed in multiple mice (Figures 3E
and 3F; Figures S4D and S4E). Importantly, these line attractors
are largely aligned with the PC1 axis, which principally reflects
variance in the slow integration dimension identified by rSLDS
(Figure 2B; Figure S4A and S4B).
To quantitatively test for the existence of a line attractor in

each mouse, we devised a ‘‘line attractor score’’ as the base-2

(J and K) Same as (H) but for VMHvl mouse 2 (J) and mouse 3 (K).

(L) Position of various behaviors along trough, i.e., PC1 in neural state space (n = 6 mice, **p < 0.005, *p < 0.01).

(M) Schematic showing quantification of dynamic velocity. Low dynamic velocity indicates that behavior exists in a stable region of neural state space.

(N) Dynamic velocity for various behaviors in VMHvl (***p < 0.001, n = 6 mice).

(O) Relationship between the time spent attacking and the time constant of the integration dimension of individual mice (r2: 0.77, n = 14 animals). See Figures

S4K–S4P for analysis restricted to GCaMP7f animals.
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log of the ratio of the largest to the second-largest time constants
of the eight rSLDS dimensions (Figure 2C). According to basic
concepts in dynamical systems theory,56 this ratio has a rela-
tively high value in systems containing a single integration
dimension (forming an approximate line attractor) and is other-
wise close to zero. We find that all mice with VMHvl recordings
possess a line attractor score greater than zero, indicating the
presence of a line attractor (Figure 3G, n = 6 mice).

As population activity progressed along the line attractor from
low to high values of PC1, behavior progressed from sniffing to
dominance mounting to attack (Figures 3D–3F and 3L; Video
S1).This reflects the ‘‘rampingup’’ ofactivityseen in the integration
dimension as social behavior progresses through these phases
(Figure 2C), suggesting an encoding of an underlying continuous
variable, as seen in line attractors in other brain regions.46,50,63–65

To visualize the dynamical topology of the rSLDS model, we
represented the 2D flow field as a 3D landscape, by converting
the length of the flow-field vectors at each position in neural state
space into the height (z axis) of the landscape (Figure 3B); the x-y
axes are still represented by PC1 and PC2. In this topographic
representation, a line attractor appears as a region shaped like
a trough or gully, reflecting a slow rate of change (short vectors).
A point attractor would appear as a locus of slow rate of change
at the base of a cone (Figure 3B, left63). We observed a trough-
like structure in the 3D dynamics landscape in each imaged an-
imal (Figures 3H–3K; Figure S4P), along which neural activity
progressed slowly as aggression escalated (Video S2). Consis-
tent with the persistent, slow-decaying activity characteristic of
‘‘leaky’’ neural integrators,59,63 VMHvl activity remained high
following intruder removal and slowly decayed along the trough
of the attractor over tens of seconds (Figures S4H–S4J).

Although the animals’ behavior appears to occur while the sys-
tem is in the line attractor, it could be that other rSLDS dimen-
sions also show a change in their activity during behavior. To
test this possibility, we computed each behavior’s ‘‘dynamic ve-
locity,’’ by calculating the average vector length across all eight
rSLDS dimensions at all time points in which a given behavior
occurred (Figure 3M; see STAR Methods). Time points associ-
ated with initial intruder entry had the highest dynamic velocity
and were present on the walls of the trough (Figures 3H–3K),
whereas aggressive behaviors exhibited low dynamic velocities
and were distributed along the base of the trough (Figure 3N).

Once the system is in the line attractor, input that is not aligned
with the attractor should produce a transient excursion of the
population activity vector out of the trough; however, once that
input decays the vector should move back into the trough close
to where it started46 (Figure S4F). We tested this prediction using
a subset of experiments in which one intruder male was removed
and a second male introduced 30–60 s later. Strikingly, the intro-
duction of a new intruder male drove a rapid rise in neural firing
rates that pushed VMHvl activity away from the trough of the
line attractor (Figures 3C–3E, intruder #2). However, this signal
decayed relatively quickly and the system re-entered the line at-
tractor at nearly the same point (Figures S4F–S4J; Video S1).
Importantly, the system recovered to the point in the attractor
where it had been prior to introduction of the second intruder,
regardless of when in the trial the first intruder was removed
(Figure S4K).

The time constant of the integration dimension in VMHvl
predicts levels of aggressiveness across animals
Although VMHvlEsr1 imaging data from different mice always
revealed a single integration dimension with a long time
constant, the magnitude of this time constant varied across
individuals. Unexpectedly, we observed a trend in which an-
imals that displayed more aggressive behavior (calculated
as the fraction of time spent attacking) also exhibited an
integration dimension with a longer time constant (Figure 3O,
r2 = 0.77, n = 14 animals). This relationship held for imaging
data from different studies29,31,43 using different versions of
GCaMP (6s versus 7f; Figures S4L–S4O). This striking
correlation of integration time constant with time spent
attacking suggests that individual differences in aggressive-
ness may be reflected in the intrinsic dynamics of VMHvlEsr1

neurons.

Mating behaviors are represented using rotational
dynamics in the MPOA
Since rSLDS was able to uncover evidence for integration in
VMHvl, we next examined whether the same analysis would un-
cover population dynamics important for mating in MPOA, by
fitting models to MPOAEsr1 neural data recording during interac-
tions with female intruders.31

Fit models of MPOA required three rSLDS states in every an-
imal, with mounting and intromission mostly occurring in single
but different states (Figures S5A–S5J). Unlike in VMHvl, the
bout length of mating behaviors was similar to that of the corre-
sponding state (Figures S5D and S5E). Strikingly, the eigen-
values of the dynamics matrix for such states did not include di-
mensions with long time constants (Figure 4A). Instead, the first
two PCs of the fit model revealed fast dynamics that were highly
correlated with specific behaviors (Figure 4B). PC1 peaked at the
onset of USV+ mounting bouts, whereas PC2 peaked during
intromission (Figures 4B and 4C, behavior-triggered average,
N = 3 mice).
The 2D flow field in PCA space revealed that neural dynamics

were dominated by a rotational flow, with activity during mating
epochs exhibiting periodic orbits (Figures 4D and 4F). The
phase of the rotations was correlated with progression through
sniffing, mounting, and intromission (Figures 4D and 4F;
Figures S5K–S5M) and corresponded to the sequential activa-
tion of different neurons during these successive behaviors
(Figures 4E and 4G; Figure S5A). Accordingly, the ‘‘sequential-
ity index’’ of the data66 was significantly greater than shuffled
data or random matrices of similar sizes (seq. index = 0.22 ±
0.01, N = 3 mice, shuffle seq. index = 0.10 ± 0.002, N = 3
mice, Figure 4H).
We assessed the relationship between the phase of rotational

trajectories and behavior by calculating the angle of the popula-
tion activity vector relative to its value at the start of sniffing (Fig-
ure 4I). This revealed that sniffing, mounting, and intromission
occurred at characteristic angles of the population vector (sniff-
ing: 18.6! ± 6.2!, mounting: 79.61! ± 13.6!, intromission:
132.2! ± 8.1!, N = 3 mice; Figure 4J). High dynamic velocities
were associated with mounting and intromission, in striking
contrast to the low dynamic velocity during attack behavior in
VMHvl (Figures 3N and 4K).
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To quantitatively assess the presence of line attractor dy-
namics, we computed the Line Attractor Score for MPOA. These
values were close to zero and significantly different from those
for VMHvl during aggression (Figure 4L). Thus, unlike the
slow ramping and persistent dynamics identified in VMHvl,
rSLDS-discovered fast, sequential, and behaviorally time-locked
rotational dynamics in MPOA.

A direct comparison of key quantitative dynamics parameters
highlights the key differences between VMHvl andMPOA (Figures
5A–5D, 5G, and 5H). Nevertheless, in both regions, evolving
behavior tracks a single continuous variable: the value of the inte-
gration dimension in VMHvl and the angle of the orbit in MPOA
(Figures 5E and 5F). These variables are instantiated as a line at-
tractor versus rotational flow, respectively (Figures 5I and 5J).

Figure 4. Mating behaviors are represented using rotational dynamics in the MPOA
(A) Time constants of rSLDS dimensions in mating behavior-enriched state in MPOA (n = 3 mice).

(B) Behavior rasters shown with first two principal components of latent factors for example MPOA mouse 2.

(C) Behavior-triggered average of top two principal components aligned to USV+ mount onset (left) and intromission (right) onset (n = 3 mice).

(D) Neural state space with rotational population trajectories from mating episodes shown in (E) of MPOA mouse 1, colored by behaviors performed by resi-

dent mouse.

(E) Sequential activity of MPOA neurons during mating episodes whose rotational population trajectories are shown in (D).

(F and G) Same as (D) and (E) but for MPOA mouse 2.

(H) Sequentiality index for MPOA (n = 3 mice, ***p < 0.001).

(I) Calculation of angle of rotation (q) aligned to the start of sniffing during mating episodes (top). Empirical cumulative distribution of q for various behaviors (n = 3

mice, bottom).

(J) Quantification of q for various mating behaviors (n = 3 mice, ***p < 0.001, **p < 0.005, *p < 0.01, top).

(K) Dynamic velocity for mating behavior in MPOA (n = 3 mice,**p < 0.005, *p < 0.01).

(L) Line attractor score for MPOA activity in mating behaviors toward females (left, pink bar, n = 3 mice) and VMHvl activity in aggressive behavior toward males

(right, gray bar, n = 6 mice, **p < 0.005, data from Figure 3G reproduced for comparative purposes). For additional data, see Figure S5.
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VMHvl exhibits an approximate line attractor encoding
reproductive behavior
The foregoing findings raised the question of whether the con-
trasting dynamics in VMHvl versus MPOA reflect differences
specific to aggression versus mating or rather generic differ-
ences in behavioral coding between these nuclei. To address
this, we fit rSLDS models to VMHvlEsr1 and MPOAEsr1 neuronal
activity during mating versus aggression, respectively.
Models fit to VMHvl activity during male-female encounters

yielded a single integration dimension with a long time constant,
created by neurons that displayed ramping and persistent
activity (Figures 6A red dot, 6B, and 6D; Figure S6L). In
addition, the duration of the rSLDS-discovered mating states in
VMHvl tended to outlast individual bouts of mating actions
(Figures S6D and S6H), similar to the case of aggression in
VMHvl (Figures S1I–S1K).
The cumulative distribution of the value of the integration

dimension during various behaviors revealed that sniffing
occurred at the lowest values, USV+ mounting at intermediate
values, and intromission at the highest values of this dimension
(Figure S6J). Strikingly, pairwise decoders trained on this
dimension performed with high accuracy (intromission versus
sniffing: F1 = 0.92 ± 0.01 N = 4 animals; mounting versus sniff-
ing: F1 = 0.81 ± 0.02 N = 6 animals; Figure 6C). Such decoders
could also distinguish periods of non-interaction between
mounting bouts from those between sniffing bouts (Figure S6I).
Thus, VMHvlEsr1 neuronal dynamics during mating resembled
those exhibited during aggression. However, the integration
dimension seen during mating was biased toward neurons
tuned to female intruders,29 whereas male-tuned neurons
primarily contributed to this dimension during aggression
(7.73% ± 0.8% overlap, n = 6 mice, Figures S3A, S3B,
and S6M).
As for aggression, a single dimension of the rSLDS model for

mating exhibited a long time constant, yielding a high line attrac-
tor score (Figures 6D and 6H). The first two PCs of the fit model
were similar to those seen during aggression, with PC1 exhibit-
ing ramping during the progression from sniffing to mounting
to intromission (Figure 6E). Examination of the underlying
2D vector flow field revealed an approximate line attractor

Figure 5. Distinct neural coding schemes for similar behavior in
VMHvl versus MPOA
(A) Line attractor score for mating behavior in MPOA and aggressive behavior

in VMHvl (n = 3 mice for MPOA, n = 6 mice for VMHvl), reproduced from

Figure 4L.

(B) Scatter plot for line attractor score versus attractor stability score

(magnitude of largest time constant) separates VMHvl and MPOA.

(C and D) Dynamic velocity score in VMHvl during aggression (C) and MPOA

during mating (D), reproduced from Figures 3N and 4K, respectively.

(E) Empirical cumulative distribution of value of integration dimension

(normalized) in VMHvl for various aggressive behaviors, reproduced from

Figure 2F.

(F) Empirical cumulative distribution of angle of rotation (normalized) in MPOA

for various mating behaviors, reproduced from Figure 4I.

(G and H) Sequentiality index in MPOA (n = 3 mice), reproduced from Fig-

ure 4E, and in VMHvl (H) in aggression (n = 3 mice).

(I) Summary of line attractor dynamics in VMHvl. Diagram modified from

Seung.63

(J) Summary of rotational dynamics in MPOA.
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Figure 6. Distinct coding schemes of VMHvl and MPOA are region specific, not intruder specific
(A) (Left) Time constants of rSLDS dimensions of mating enriched state from example VMHvl mouse 1. The red dot highlights the integration dimension.

(B) Projection of integration dimension with overlayed behavior annotations.

(C) F1 score for decoding behavior pairs from integration dimension (**p < 0.005, *p < 0.01, n = 4 mice for comparisons involving intromission as only 4/6 mice

showed this behavior. n = 6 mice for all other comparisons).

(D) Time constant arranged in decreasing order. (p < 0.001, n = 6 mice.)

(E) Behavior rasters shown with PCs of dynamical system for example VMHvl mouse 1.

(F) Neural state space with population trajectories for VMHvl mouse 1 colored by behavior annotations and flow field showing a line attractor.

(G) Quantification of dynamic velocity during mating behavior in VMHvl (***p < 0.001, n = 6 mice).

(H) Line attractor score for MPO (n = 3 mice) and VMHvl (n = 6 mice) during mating behavior with females (**p < 0.005).

(I) Time constants of rSLDS dimensions from MPOA during aggression.

(J) Behavior rasters shown with PCs of dynamical system for example MPOA mouse 1.

(K) Neural state space with population trajectories for MPOA mouse 1 colored by behavior annotations and flow field.

(L) Dynamic velocities during aggressive behaviors in MPOA (**p < 0.005, n = 3 mice).

(legend continued on next page)
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(Figure 6F) and a corresponding trough shape in the 3D dynamic
velocity landscape, with neural activity moving along the trough
as the animal progressed from the appetitive to consummatory
phases of mating (Figure S6K). Transient movements out of the
line attractor occurred only during the introduction of a new
intruder and were aligned with PC2 (Figure 6F, intruder #2).
Accordingly, periods during intruder entrance had high dynamic
velocities, whereasmating behaviors had low dynamic velocities
(Figure 6G).

Thus, rSLDS modeling of VMHvlEsr1 neuronal activity during
mating revealed an approximate line attractor, with many fea-
tures similar to those observed during aggression. However,
the mating and aggression line attractors incorporate primarily
female- versus male-selective neurons, respectively (Fig-
ure S6M). These data suggest that line-attractor dynamics are
a general feature of social behavior coding in VMHvl, rather
than a unique signature of aggression per se.

MPOA does not exhibit line attractor dynamics during
aggression
Finally, we fit rSLDS models to MPOAEsr1 neuronal dynamics
during male-male encounters. Analogous to the case of mating
behaviors, we found a state (state 3) that is closely aligned to
the onset and offset of attack behavior (Figure S6N). No domi-
nant ‘‘slow’’ dimension was apparent in the time constants of
the rSLDS dimensions (Figures 6I and 6M). Reflecting this, PC1
of rSLDS state space exhibited a fast increase in activity at the
onset and offset of attack (Figure 6J; Figure S6O, blue trace),
in contrast to the slow attack-related dynamics in VMHvl (Fig-
ure S6O, red trace).

Visualizing the 2D MPOA flow field in PC space revealed little
change in the population trajectory during investigation (Fig-
ure 6K). During attack bouts, activity showed excursions into
a separate region of state space but quickly returned to the
‘‘sniffing’’ region after fighting (Figure 6K), reflecting the activa-
tion of different neuronal subsets (Figure 1E). Accordingly,
attack and dominance mounting had high dynamic velocities
in MPOA, rather than the low dynamic velocities in VMHvl (Fig-
ure 6L; Figure S6P). Finally, the line attractor score in MPOA
during aggression had a value close to zero and was signifi-
cantly different from that of VMHvl (Figure 6M, n = 3 for
MPOA, n = 6 mice for VMHvl), confirming the absence of line
attractor dynamics.

In MPOA, therefore, we find a representation of male-male en-
counters that alternates between investigatory and aggressive
states, with the latter largely time-locked to the onset and offset
of attack bouts. Strikingly, MPOA activity during aggression
lacks the persistence, ramping, and line attractor dynamics
seen in VMHvl. Together with our analysis of VMHvl activity dur-
ing mating, these results support the conclusion that MPOA and
VMHvl exhibit fundamentally different coding of the same social
behaviors.

DISCUSSION

MPOA and VMHvl control social behaviors using
different population codes
Here, we report that MPOAEsr1 and VMHvlEsr1 neurons utilize
very different schemes for the neural coding of mating and
aggression, despite the fact that optogenetic perturbation
specifically elicits mating in MPOAEsr1 neurons and attack in
VMHvlEsr1 neurons. GCaMP imaging of Esr1+ neurons in
MPOA indicates that specific actions can be decoded accord-
ing to which cells are active,31 consistent with transcriptomic
studies.33 In contrast, most VMHvlEsr1 neurons exhibit mixed
behavioral selectivity in both imaging and transcriptomic
studies.29,36 Thus, MPOA represents behavior via a cell identity
code, whereas VMHvl apparently does so via population
coding.
Our studies suggest a possible mechanism underlying this

population code. rSLDS analysis of VMHvl neural activity during
male-male social interactions revealed one dimension of neural
activity with a long time constant that exhibits progressively
increasing activity during escalating aggressive encounters. In
a topological representation, these dynamics can be visualized
as a progression along a stable ‘‘trough’’ or gully, which has
the characteristics of an approximate line attractor.63 In contrast,
rSLDS analysis of MPOA revealed rotational dynamics, gener-
ated by the sequential activity of behavior-specific cell types
during each bout of mating. Put simply, VMHvl coding of
behavior appears to be analog, whereas MPOA coding of
behavior appears more digital.
In other neural systems, line attractors often encode a contin-

uous, low-dimensional variable.46,50 Here, this variable may
correspond to the intensity of an aggressive internal state. VMHvl
neurons have previously been implicated in the motivation to
engage in fighting, as operationalized using instrumental condi-
tioning assays.23 However, such assays cannot measure
aggressive motivation during attack itself, for technical reasons.
The escalating (scalable) nature of aggression has ethological
relevance as a means of establishing dominance while mini-
mizing the risk of injury.67 Unexpectedly, in comparing data
across multiple animals, we discovered a strong positive corre-
lation between each mouse’s level of aggressiveness and the
magnitude of the time constant of its integration dimension.
This result reveals a neural correlate of individual differences in
aggressiveness within VMHvl.
The different neural codes for social behavior we have uncov-

ered in VMHvl and MPOA may reflect their distinct neurochem-
ical and cytoarchitectonic features. VMH neurons are primarily
glutamatergic. Recurrent connectivity among excitatory neurons
is often invoked as a mechanism to achieve persistent
activity.58,59,63 Indeed, there is evidence that glutamatergic neu-
rons in the dorsomedial subdivision of the ventromedial
hypothalamus (VMHdm) that encode persistent defensive

(M) Line attractor score for MPO (n = 3 mice) and VMHvl (n = 6 mice, reproduced from Figure 3G) during aggressive behavior (**p < 0.005).

(N) Schematic63 illustrating two approximate line attractors discovered in VMHvl encoding scalable states of aggressiveness and mating.

(O) Schematic illustrating dynamics seen in MPOA showing similarity in stability of behaviors during interactions with males and females. For additional data see

Figure S5.
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behaviors exhibit local connectivity.68 However, slow dynamics
can also be achieved using neuromodulatory signaling, and
there is indirect evidence for peptidergic transmission in
VMHvl36,37

By contrast, MPOA neurons are 85% GABAergic; to our
knowledge, there is no way to achieve similar graded and
persistent signals within a population of inhibitory neurons.
However, GABAergic neurons could provide a substrate for
reciprocal inhibitory connections between action-specific sub-
populations. Such connectivity could produce winner-take-all
dynamics or feedforward dis-inhibitory circuits that control
transitions between sequential action phases of mating, e.g.,
from sniffing to mounting,43 giving rise to the rotational dy-
namics observed in neural data. The existence of such circuits
in MPOA can be investigated using slice physiology or in vivo
imaging once genetic access to the appropriate cell types is
achieved.
Why should MPOA and VMHvl utilize such different strategies

for the coding of closely related social behaviors? It is tempting
to attribute this difference in population dynamics to distinct fea-
tures of reproductive versus aggressive behavior. For example,
aggressive encounters can dynamically escalate or de-escalate
to avoid serious injury or death to the combatants, whereas male
matingmust proceed to completion (ejaculation) to be reproduc-
tively beneficial. These differences are well-suited to control by
ramping and rotational neuronal dynamics, respectively. In this
view, the different properties and coding strategies of VMHvl
and MPOA may have evolved to be optimally adaptive for
fighting and mating, respectively.
However, our analysis also revealed approximate line attractor

dynamics in a subset of VMHvlEsr1 neurons that is female-tuned
and active during mating.29 This suggests that line attractor-like
dynamics are a general property of behavioral coding by VMHvl,
not an aggression-specific feature. Conversely, MPOA contains
specific Esr1+ neurons highly tuned to attack which do not exhibit
line attractor dynamics (although there is no evidence that these
neurons play a causative role in aggression). These data suggest
that MPOA and VMHvl more likely encode different features of a
given social behavior, such as action selection versus motive
state intensity, respectively. If so, then by extension, the hypo-
thalamus may contain GABAergic populations that control action
selection during aggression. Indeed, the anterior hypothalamic
nucleus (AHN), which has a similar neurochemical and cytoarch-
itectonic structure asMPOA, can promote defensive attack69,70; it
will be interesting to see whether rotational dynamics are
observed in this structure. By the same token, PMvwhich controls
aggression and is also primarily glutamatergic,54,71,72 may utilize
population coding like VMHvl.

Potential functions of the VMHvl line attractor
Line attractors have been identified in cortical and hippocampal
regions involved in cognitive functions, such as decision-mak-
ing, spatial mapping, and sensory discrimination.46,50 They
have also recently been shown to encode reward history in the
habenula.65 However, it is unexpected to find such neural dy-
namics in the hypothalamus, which is widely viewed as control-
ling innate behaviors via action-specific cell types (as observed
in MPOA33). What function(s) might such attractor dynamics

serve, in the context of innate behaviors? Two explanations are
possible, which are not mutually exclusive.
As mentioned earlier, progression along the line attractor may

encode the intensity of an internal motive state of aggressive-
ness. This is supported by our finding that the integration dimen-
sion that contributes to this attractor can distinguish periods of
non-social interaction during high- versus low-intensity phases
of aggressive escalation (Figure 2E). In this view, the line attractor
serves to maintain the system in a stable internal motive state
that persists continuously during stochastic expressions of
observable attack.
Previous studies have indicated that the greatest source of

variance in VMHvlEsr1 neural activity is intruder sex.29 Whether
VMHvl encodes intruder sex per se or an internal motive state
tightly correlated with intruder sex has been difficult to distin-
guish because males only attack other males and not females.
In female mice, however, lactating mothers attack intruders of
both sexes. Recently, we identified a subset of VMHvlEsr1 neu-
rons in females that express the GPCR gene Npy2r, called ß
cells, which are both necessary for maternal aggression and
sufficient to promote attack in non-aggressive virgins.41 Bulk
calcium measurements revealed that ß cells are strongly
active during maternal aggression toward both male and fe-
male intruders. However, these cells display low activity in in-
dividual females that are non-aggressive.41 Thus, in females,
the encoding of aggressive state by VMHvlEsr1 neurons can
be decoupled from the encoding of intruder sex. These data
reinforce the idea that in males, the VMHvlEsr1 line attractor
(which reflects a dimension weighted primarily by male-selec-
tive neurons) encodes aggressiveness, rather than simply
intruder sex.
An alternative function for the line attractor is that it may serve

as an integrator that accumulates ‘‘evidence’’ used to make
behavioral decisions, such as the decision to switch from sniff
to dominance mount or from dominance mount to attack. Such
a function would require that different behaviors be triggered at
different threshold values of the integrator. This type of ramp-
to-threshold mechanism has been suggested to control sequen-
tial actions during male courtship behavior in Drosophila73 and
predator escape in mice.74 These two hypotheses are not
incompatible: the attractor could encode both the intensity of
an internal state and (indirectly) the selection of actions at
different state intensities.
Line attractor dynamics could also serve useful functions in

the context of behavioral plasticity and individual variation. For
example, VMHvlEsr1 neurons show increased selective tuning
for male versus female intruders as a function of social experi-
ence29 and exhibit a form of long-term potentiation that under-
lies the increase in aggressiveness that occurs when mice win
a series of fights.75 It will be interesting to determine whether
changes in flow field dynamics or attractor properties are asso-
ciated with these forms of experience-dependent plasticity.
Finally, we note that differences in line attractor properties
were observed among mice which exhibited different and char-
acteristic levels of aggressiveness (Figure 3O). It is possible that
individual differences in aggressiveness may reflect, or be
caused by, individual constraints on population dynamics
in VMHvl.
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Testable predictions of the line-attractor model
Our rSLDS model of VMHvl dynamics makes several testable
predictions and raises several interesting questions for future
investigation. First, it predicts that once in the attractor, the
system will return quickly to it following perturbations that
move it out of this stable trough. This behavior is suggested
by the brief excursion out of the attractor that occurs when a
first intruder is removed and replaced by a second one. How-
ever, it would be ideal to demonstrate this directly by tran-
siently activating neurons that contribute to the attractor and
determining whether the system rapidly returns to it following
stimulus offset, as has been demonstrated for point attractors
underlying working memory in the anterior lateral motor cortex
(ALM).76 Another prediction is that selectively inactivating the
VMHvlEsr1 neurons that exhibit slow dynamics should eliminate
activity along the line attractor. Such experiments will require
combined optogenetic perturbations and calcium imaging in
this deep subcortical structure. Such experiments will also be
critical to confirm whether line attractor properties indeed
play a causative role in controlling levels of aggressiveness.

The results herein show that about 20% of VMHvlEsr1 neurons
exhibit persistent activity and ramping dynamics, raising the
question of whether these cells constitute a genetically deter-
mined subpopulation. Single-cell RNA-seq experiments have
shown that the Esr1+ population in VMHvl can be subdivided
into 6–7 distinct transcriptomic subtypes.36 Whether any of
these subtypes selectively contributes to attractor dynamics
can be addressed once genetic drivers specific for these sub-
types are available. An additional question is whether the slow
dynamics observed for some VMHvlEsr1 neurons reflects recur-
rent connectivity between them, as has been demonstrated for
fear-encoding neurons in VMHdm,68 or the release of slow-
acting neuromodulators such as neuropeptides. Recurrent
connectivity in VMHvl can be investigated by slice electrophysi-
ology37 and ultimately by EM connectomics. VMHvlEsr1 neurons
are known to express multiple neuropeptides, as well as recep-
tors for neuropeptides and other neuromodulators. New sensors
for detecting neuromodulator release,77,78 as well as methods
for dynamically perturbing neuromodulator function in vivo,
should help to address these questions in the future.

Limitations of the study
Our discovery of approximate line attractor dynamics in VMHvl
derives from quantitative analysis of a dynamical system model
fit to neural data. Although this analysis has revealed several con-
ditions required for line attractor dynamics, such as persistence in
the absence of input and robustness to behavioral perturbation, a
definitive test requires experimental perturbation of neural activ-
ity.62 Perturbations are also required to determine the contribu-
tions to line attractor dynamics of region-intrinsic versus extrinsic
(i.e., via other nuclei) recurrent dynamics and feedback, as well as
whether the attractor is truly ‘‘autonomous’’ and not input driven.
The biological line attractor in VMHvl is a leaky approximation of a
mathematically defined line attractor, exhibiting slow decay over
timescales similar to line attractors discovered in other neural sys-
tems.50,63 Further knowledge of the underlying neural mecha-
nisms is required to understand the extent to which the region
of stability identified here approximates a true line attractor.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Requests for resources and reagents should be addressed to lead contact, David J. Anderson (wuwei@caltech.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Source data used in this paper will be shared by the lead contact upon request.
d Code used for analyses in this paper is available in the following repositories: https://github.com/lindermanlab/ssm and https://

github.com/DJALab/VMHvl_MPOA_dynamics
d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Neural imaging data
Weanalyzed data from three sets of previous experiments29,31,43 All experiments were approved by the Institute Animal Care andUse
Committee (IACUC) and the Institute Biosafety Committee (IBC) at the California Institute of Technology (Caltech). All experiments
utilized heterozygous Esr1cre/+ knock-in mice on a C457BL6/N background (B6N.129S6(Cg)-Esr1tm1.1(cre)AndIJ, JAX strain
#017911). Expression of GCaMP6s29,31 or GCaMP7f43 was achieved by stereotaxic injection of Cre-dependent GCaMP-expressing
adeno-associated viruses (AAVs). Briefly, for data obtained from Karigo et al.,31 mice expressing GCaMP6s selectively in Esr1 neu-
rons in either the medial preoptic area (MPOA) or the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl), were al-
lowed to interact with BALB/c male and female intruders in a standard resident intruder assay.31 Male or female intruders were intro-
duced into the home cage in a random order, with a 5–10 min interval between intruder session. Each session typically lasted 10–
20 minutes. Behavior videos of interacting animals were annotated using a custom MATLAB-based interface. A total of 7 behaviors
including sniffing, dominance-mount, attack, mount, intromission, interact (periods where animals were close to each other but other
behaviors were absent) were annotated withmale and female intruders. A head-mountedmicro-endoscope (Inscopix, Inc.) was used
to acquire Ca2+ imaging data at 15Hz from either MPOAEsr1 neurons (total of 583 neurons from 3mice) or VMHvlEsr1 neurons (total of
421 neurons from 3 mice) for neural data analysis described in sections below.

For data obtained from Yang et al.,43 Esr1-Cre mice in which GCaMP7f was expressed selectively in Esr1 neurons in VMHvl, were
allowed to interact with BALB/cmale intruders in a standard resident intruder assay. In addition to the behaviors annotated for above,
male intruders were also ‘‘dangled’’, where the ano-genital region of the dangled intruder is held next to the resident mouse. A head-
mounted micro-endoscope was used to acquire Ca2+ imaging data at 30Hz from VMHvlEsr1 neurons (386 neurons from 3 mice) for
neural data analysis described in sections below.

For data obtained from Remedios et al.,29 Esr1-Cre mice in which GCaMP6s was expressed selectively in Esr1 neurons in VMHvl
were allowed to interact with BALB/c male intruders in a standard resident intruder assay. A head-mounted micro-endoscope was
used to acquire Ca2+ imaging data at 30Hz from VMHvlEsr1 neurons (358 neurons from 3 mice) for neural data analysis described in
sections below. rSLDSmodels were fit to data from n=14mice to extract the time constant of the integration dimension used for cor-
relation with individual differences in aggressiveness in Figure 3O. However 8 of those mice were excluded from decoder analysis of

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

neural imaging data from VMHvl and MPOA Esr1 neurons Karigo et al.31 https://doi.org/10.1038/s41586-020-2995-0

neural imaging data from VMHvl Esr 1 neurons Yang et al.43 https://doi.org/10.1038/s41586-022-05057-6

neural imaging data from VMHvl Esr1 neurons Remedios et al.29 https://doi.org/10.1038/nature23885

Software and algorithms

Matlab 2020a Mathworks N/A

Python Python Software Foundation N/A
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sniffing, mounting and attack, either because they were highly aggressive and attacked without any prior sniffing or dominance
mounting (5 mice), or because they were non-aggressive and failed to attack (3 mice). Typically 20%–25% of male mice from the
C57BL6 background fail to show aggression in resident-intruder assays.75

METHOD DETAILS

Tuning rasters for single neurons
We examined the tuning properties of single neurons in VMHvlEsr1 or MPOAEsr1 by creating behavior tuning rasters (Figures 1C and
1D). We first computed themean activity of each neuron for each of the 14manually annotated behavioral actions. To group neurons,
we created a set of 40 regressors representing combinations of behavioral actions, and grouped neurons by which single regressor
captured the most variance in each cell’s activity. In addition to regressors for individual behaviors, example regressors include sig-
nals such as all male-directed actions, all female-directed actions, all male-directed/female-directed/sex-invariant investigative be-
haviors, and all male-directed/female-directed/sex-invariant consummatory behaviors. Neurons for which no single regressor
captured at least 50% of variance in behavior-averaged activity were omitted from the visualization (approximately 5% of cells.)

Computation of pose features for input to dynamical model
As external input to the dynamical model (see next section), we selected two features of animal pose estimates produced by the
Mouse Action Recognition System (MARS,55 The first of these is the distance between animals, computed as the distance between
centroids of ellipses fit to the poses of the twomice. The second is the facing angle of the resident toward intruder mouse, defined as
the angle between a vector connecting the centroids of the twomice and a vector from the centroid to the nose of the residentmouse.
In addition we also fit dynamical models with either no input or with additional inputs in the form of the speed of the resident
(computed as the mean change in position of centroids of the head and hips, computed across two consecutive frames) and
area of ellipse fit to the resident mouse’s pose.

Dynamical system models of neural data
We model neural activity using a recurrent switching linear dynamical systems (rSLDS) according to previous methods.52,79 Briefly,
rSLDS is a generative model that breaks down non-linear time series data into sequences of linear dynamical modes. The model re-
lates three sets of variables: a set of discrete states (z), a set of continuous latent factors (x) that captures the low-dimensional nature
of neural activity, and the activity of recorded neurons (y). The model also allows for external inputs (u) which consists of extracted
pose features including the distance between animals and the facing angle between the resident and intruder mouse.
The model is formulated as follows: At each time t = 1,2,.Tn, there is a discrete state zt ˛ f1;2;.;Kg: In a standard SLDS, these

states followMarkovian dynamics, however rSLDS allows for the transitions between states to depend recurrently on the continuous
latent factors (x) and external inputs (u) as follows:

pðzt + 1 = k; zt = j; xtÞfexpfRxt + Wut + rg (Equation 1)

where R, W and r parameterizes a map from the previous discrete state, continuous state and external inputs using a softmax link
function to a distribution over the next discrete states.
The discrete state zt determines the linear dynamical system used to generate the continuous latent factors at any time t:

xt = Azt xt$ 1 +Vztut +bzt (Equation 2)

where Ak ˛Rd3d is a dynamics matrix, Vzt ˛Rd3m is a matrix that describes the contribution of external inputs (ut) to each dimen-
sion of the latent space and bk ˛Rd is a bias vector, where d is the dimensionality of the latent space andm is the dimensionality of the
external inputs. Thus, the discrete state specifies a set of linear dynamical system parameters and specify which dynamics to use
when updating the continuous latent factors.
Lastly, we can recover the activity of recorded neurons by modelling activity as a linear noisy Gaussian observation yt ˛ RN where

N is the number of recorded neurons:

yt = Cxt +d (Equation 3)

For C˛RN3D and d % Nð0;SÞ, a gaussian random variable. Overall, the system parameters that rSLDS needs to learn consists of
the state transition dynamics, library of linear dynamical system matrices and neuron-specific emission parameters, which we
write as:

q = fAk ;Vk ;bk ;C;d;R;W; rg

These parameters are estimated usingmaximum likelihood using approximate variational inferencemethods as described in detail
in Linderman et al.52 and Linderman et al.79

Model performance is reported as the evidence lower bound (ELBO) which is equivalent to the Kullback-Leibler divergence be-
tween the approximate and true posterior, KLðqðx; z;4Þ k pðx; z jy; qÞÞ using 5-fold cross validation.
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Since the ELBO is sensitive to the inclusion of regularizers and the amount of data used during fitting, we also provide an additional
‘‘forward simulation error (FSE)’’ model evaluation metric calculated as follows: given observed neural activity in state space at time t,
we predict the trajectory of the population activity vector over an ensuing small time interval Dt using the model, then compute the
mean squared error (MSE) between that trajectory and the observed data at time t+Dt (Figure S1F). This MSE is computed across all
dimensions of the latent space and repeated for all times t. This error metric is normalized to a 0-1 range in each animal across the
whole recording to obtain a bounded measure of model performance (Figure S1F). This metric is computed across cross-validation
folds and can provide intuition about time segments where model performance drops

Code used to fit rSLDS on neural data is available in the SSM package: (https://github.com/lindermanlab/ssm)
Code to generate flow fields and energy landscapes from fit dynamical systems is available in (https://github.com/DJALab/

VMHvl_MPOA_dynamics)

Estimation of time constants
We estimated the time constant of each mode of linear dynamical systems using eigenvalues la of the dynamics matrix of that sys-
tem, derived by Maheswaranathan et al.57 as:

ta =

!!!!
1

logðjlajÞ

!!!!

Calculation of line attractor score
To provide a quantitative measure of the presence of line attractor dynamics, we devised a line attractor score defined as:

line attractor score = log2

tn
tn$ 1

where tn is the largest time constant of the dynamics matrix of a dynamical system and tn$ 1 is the second largest time constant.
This measure would be zero in a system without line attractor dynamics due to the similar magnitudes of the first two largest time
constants and would be greater than one for systems that possess a line attractor.

Decoding behavior from integration dimension
We trained a frame-wise decoder to discriminate pairs of behavior (such as sniffing vs attack) from the activity of the integration
dimension on individual frames of a behavior (sampled at 15Hz) as described previously.31We first created ‘trials’ from bouts of social
behavior by merging all bouts that were separated by less than five seconds. We then trained a linear support vector machine (SVM)
to identify a decoding threshold that maximally separates the values of our normalized ‘‘integration dimension’’ signal on frames dur-
ing which behavior A occurred from values on frames during which behavior B occurred, for the pair-wise behavioral comparison.
‘Shuffled’ decoder data was generated by setting the decoding threshold on the same ‘‘trial’’, but with the behavior annotations
randomly assigned to each behavior bout. We repeated shuffling 20 times for each intruder and each imaged mouse. We report per-
formances of actual and shuffled 1D-threshold ‘‘decoders’’ as the average F1 score of the fit decoder, on data from all other ‘‘trials’’
for eachmouse. For significance testing, themean accuracy of the decoder trained on shuffled data was computed acrossmice, with
shuffling repeated 1000 times for each mouse. Significance is determined by bootstrapping; we considered observed F1 scores sig-
nificant if they fell above the 97.5th percentile of the distribution of chance F1 scores as done previously.29

As a stringent test for spurious correlations due to the slow decay seen in the integration, we performed a variation of session per-
mutation61 as follows. Consider a neural signal that displays a slow ramp in activity, which can be used to decode attack from sniffing
(Figure S2E). If this correlation was spurious and occurred due to slow drift in activity, that decoding threshold would perform poorly if
used on the integration dimension from another mouse (Figure S2F). On the other hand, that same threshold would produce a high F1
score if the correlation was not spurious as shown in Figure S2G. To implement this paradigm, we used the decoding threshold ob-
tained in a given mouse on the integration dimension from all other mice and averaged the final performance.

Low dimensional (PCA) representation of dynamical system
Since the latent states are invariant to linear transformations, it is possible to apply a suitable transformation to obtain an equivalent
model using rSLDS. We use PCA for this transformation as it allows us to describe our high dimensional rSLDS latent space in a
concise manner with few dimensions while capturing the overall dynamics. To perform this the following steps are applied:

1 Given latent factors: x1; x2; :::; xt of the raw neural data yt
2 Compute a whitening transformation W such that Wx is the identity
3 Compute the transformed linear dynamical system x0t = Wxt with new emission matrix C0 = CW$ 1.
4 Compute the singular value decomposition (SVD) of the new emission matrix C0 = USVT . Let P = SVT , such thatP$ 1 = V

S

5 Compute the final transformed latent states (i.e principal components) x00t = P$ 1xt 0 = P$ 1Wxt
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In this final transformation, since the singular values are ordered, the first two components of x00t accounts for the most variance in
the raw neural data yt. This method of applying PCA also accounts for the emission matrix C of the fit dynamical system.

Dynamic velocity as a measure of stability in a dynamical system and visualization as 3D landscape
We devised a metric termed the ‘‘dynamic velocity’’ to quantify the average intrinsically generated rate of change of the fit dynamical
system during a given behavior of interest. We first calculated the average norm of Azt xt for every value of xt associated with a given

behavior, for a given state z. We then averaged this value across states, giving a definition of Vb = 1
nðZÞ

P
z˛Z

"
1

nðTbÞ
P
t˛ Tb

Azt xt
#
, where Z is

the set of states, Tb is the set of all timepoints during which behavior b occurred, k$k is the Euclidean norm, and n($) is the number of
elements in a set. Finally, to facilitate comparison across animals, we normalized this value to a 0-1 range, with respect to its
maximum across behaviors in each animal. Low values of this measure close to zero indicate regions with high stability while large
values indicate unstable regions of neural state space.
We also converted the flow-fields obtained from rSLDS into a 3D landscape for visualization by calculating the dynamic velocity at

each point in neural state space and using it as the height of a 3D landscape.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were processed and analyzed using Python, MATLAB, and GraphPad (GraphPad PRISM 9). All data were analyzed using two-
tailed non-parametric tests. Mann-Whitney test were used for binary paired samples. Friedman test was used for non-binary paired
samples. Kolmogorov-Smirnov test was used for non-paired samples. Multiple comparisons were corrected with Dunn’s multiple
comparisons correction. Not significant (NS), P > 0.01; *P < 0.01; **P < 0.005; ***P < 0.001; ****P < 0.0001.
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Supplemental figures

(legend on next page)
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Figure S1. Unsupervised discovery of aggression-enriched states in VMHvl, related to Figure 2
(A) Types of neural states identified by rSLDS. B1, B2: behaviors; Q0, Q1: periods of quiescence between behavior bouts; S0, S1, S2: rSLDS states. Case 1:

rSLDS states cannot distinguish behavior versus internal states. Case 2: rSLDS reflects internal state-encoding due to persistence during behavioral quiescence.

(B) Optimization of number of rSLDS states in example VMHvl mouse 1. Model performance is measured as ELBO (see STAR Methods).

(C) Same as (B), but for dimensionality.

(D) Variance explained by dimension chosen in (C).

(E) Convergence of model performance.

(F) Creation of a bounded model performance metric (forward simulation error [FSE]; see STAR Methods).

(G) FSE for VMHvl mouse 1 & 2.

(H) Average model performance (FSE) before and after training (n = 6 mice,***p < 0.001)

(I) (I1) rSLDS states in VMHvl mouse 1. (I2) Comparison of rSLDS states with behaviors. (I3) Behavioral composition of rSLDS states. State 3 possesses the highest

amount of attack behavior across mice (see J and K). (I4) Probability of attack aligned to the onset of state 3 (n = 6 mice). (I5) Timescale of behavior bouts and

discovered states epochs. (I6) State transition diagram from empirical transition probabilities.

(J) Same as F2, F3, F5 but for VMHvl mouse 2.

(K) Same as F2, F3, F5 but for VMHvl mouse 3.
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Figure S2. Characterization of aggression-integration dimension, related to Figure 2
(A) Variance explained by a generalized linear model trained to predict integration dimension from pose features including distance between mice, facing angle,

speed, acceleration, and velocity of resident mouse (mean: 0.28 ± 0.04 R2, n = 6 mice).

(legend continued on next page)
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(B) Fraction of overall variance explained by integration dimension (purple) compared to variance explained by decoder dimension trained to distinguish attack

from sniff bouts (integration dimension mean: 19.5% ± 1.9%, attack decoder mean: 0.3% ± 0.1%, n = 6 mice, ***p < 0.001).

(C) Decoding behaviors from non-integration dimensions (average across dimensions, n = 6 mice).

(D) Absolute rSLDSweight on integration dimension of VMHvl mouse 1 (cell number on x axis), sorted by choice probability values for male versus female intruder

encounter.

(E–G) Paradigm to account for spurious correlations: decoding threshold obtained using integration dimension of mouse 1 (E, purple line) is used on integration

dimension from mouse 2 (F). Spurious correlations lead to low F1 scores (F) while true correlations retain high F1 scores (G).

(H) Decoding behaviors using paradigm described above (**p < 0.005, n = 6 mice).

(I) Normalized activity of neurons times rSLDS weight for cells with significant weights for integration dimension of VMHvl mouse 1.

(J) Example cells from (I).

(K) Integration dimension in VMHvl mouse 2.

(L) Same as (I) for VMHvl mouse 2.

(M and N) Same as (K) and (L) for VMHvl mouse 3.
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Figure S3. Characterization of aggression-integration dimension and dependence on tracking feature based external inputs, related to
Figure 2
(A) Aggression-integration dimension in female and male trials in VMHvl mouse 1.

(B) Mean projection of neural activity from female versus male trials onto the aggression-integration dimension (n = 6 mice, **p < 0.005).

(C) Low dimensional dynamics and flow field from model with no behavioral inputs included with line attractor highlighted.

(D) Time constants from the fit dynamical system (n = 6 mice).

(E) Line attractor score for VMHvl models without input.

(F) Tracking features used in rSLDS shown alongside discovered states and integration dimension in VMHvl mouse 1.

(G) Performance of decoder used to separate attack frames from sniff-alone frames using the distance between mice and facing angle of the resident.

(H) Scatter plot of distance between mice and facing angle of resident.

(I) Model performance (1-FSE) for different types of external inputs (n = 6 mice); current inputs = distance between animals, facing angle of resident (***p < 0.1).
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(legend on next page)
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Figure S4. Properties of line attractor dynamics in VMHvl, related to Figure 3
(A and B) Absolute PCA weights of PC1 (A) and PC2 (B) on dimensions of dynamical system sorted by decreasing time constant in VMHvl mouse 1.

(C) Behavior-triggered average of top two principal components aligned to introduction of first intruder or first attack onset (n = 6 mice).

(D and E) Low dimensional dynamics and flow field showing line attractor dynamics for VMHvl mouse 2 and mouse 3 with line attractor highlighted.

(F) Schematic showing how perturbations orthogonal to a line attractor do not alter the position of the system.

(G) Integration dimension in VMHvl mouse 1 (reproduced from Figure 2B) with attack bout (1) and inter-trial interval (2) highlighted.

(H) Neural state space with line attractor highlighted in VMHvl mouse 1, showing the persistence of activity during the inter-trial interval shown in (G). The

introduction of intruder #2 acts as an orthogonal perturbation and activity returns to the same point along the attractor.

(I and J) Same as (G) and (H) for VMHvl mouse 2.

(K) Neural state space with line attractor highlighted in VMHvl mouse 4. The introduction of intruder #2 occurs earlier in the trial when the animal displays sniffing

behavior but results in a similar perturbation as above.

(L) Relationship between fraction of time spent attack versus time constant of integration for animals with GCaMP7f recordings (n = 8 mice).

(M) Integration dimension in VMHvl mouse 5 (GCaMP 7f) shows the same persistence and slow decay of activity.

(N) Same as (M) for VMHvl mouse 4 (GCaMP 7f).

(O) Line attractor score for mice with GCaMP7f recordings (***p < 0.001).

(P) Dynamics landscape for VMHvl mouse 4 (GCaMP 7f) showing a trough shaped landscape.
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Figure S5. Mating enriched states and rotational dynamics in MPOA, related to Figure 4
(A) rSLDS states in MPOA mouse 1.

(B) Comparison of rSLDS states with behavior in MPOA mouse 1 for period from t = 600 s to t = 700 s.

(C) Behavioral composition of rSLDS states.

(D) Probability of intromission and USV+ mounting aligned to the onset of state 2 and state 3 (also see I and J, n = 3 mice).

(E) Timescale of behavioral bouts and states epochs.

(F) Reproduced from Figure 4D but with state-specific inferred flow-field colors.

(G) State transition diagram from empirically calculated transition probabilities.

(H) State and behavior raster for MPOA mouse 1 for entire recording.

(I) (I1) Same as (H) for MPOAmouse 2, selected mating bouts highlighted. (I2) Behavioral composition of rSLDS states (bottom). (I3) Timescale of behavioral bouts

and states epochs.

(J) (J1–3) Same as (I1–3) for MPOA mouse 3, selected mating bouts highlighted.

(K) Rotational trajectories for 3 mating episodes in MPOA mouse 1.

(L) Same as (K), for mating bouts highlighted in highlighted in (I1) for MPOA mouse 2.

(M) Same as (K), for mating bouts highlighted in highlighted in (J1) for MPOA mouse 3.
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Figure S6. Dynamical analysis of VMHvl activity in mating behavior and MPOA activity in aggression, related to Figure 6
(A) rSLDS states in VMHvl mouse 1 during interactions with female intruders.

(B) Comparison of rSLDS states with behaviors.

(C) Behavioral composition of rSLDS states. State 3 possesses the highest amount of mating behavior across mice (see H).

(D) Timescale of behavior bouts and state epochs.

(E) State transition diagram from empirical transition probabilities.

(F–H) Same as (B)–(D) for VMHvl mouse 2. This mouse did not achieve intromission.

(I) Decoding behaviors from integration dimension (**p < 0.005).

(J) Empirical cumulative distribution of value of integration dimension (normalized) for various behaviors.

(K) Dynamics velocity landscape showing a progression of mating behavior along the trough for VMHvl mouse 1.

(L) Normalized activity times rSLDS weight for cells contributing significantly to integration dimension of VMHvl mouse 1.

(M) Absolute rSLDS weight on integration dimension of VMHvl mouse 1 during mating behavior (top, yellow dots) and aggression (bottom, black dots) sorted by

choice probability values for male versus female intruder encounter.

(N) Top: state and behavior raster for MPOA mouse 1 during aggressive behavior. State 3 is aligned closely to the onset of attack bouts, bottom: behavioral

composition of discovered states.

(O) Behavior-triggered average of principal component 1 in VMHvl (red line) and MPO (blue line) (n = 3 mice for MPOA, n = 6 mice for VMHvl).

(P) Comparison of dynamic velocity for similar behavior between VMHvl and MPOA (reproduced from Figures 6F and 6K) (**p < 0.005,***p < 0.001) (n = 3 mice for

MPOA, n = 6 mice for VMHvl).
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