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Three-dimensional streaming around an obstacle
in a Hele-Shaw cell
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Driving oscillatory flow around an obstacle generates, due to inertial rectification, a
steady ‘streaming’ flow that is useful in a host of microfluidic applications. While theory
has focused largely on two-dimensional flows, streaming in many practical microfluidic
devices is three-dimensional due to confinement. We develop a three-dimensional
streaming theory around an obstacle in a microchannel with a Hele-Shaw-like geometry,
where one dimension (depth) is much shorter than the other two dimensions. Utilizing
inertial lubrication theory, we demonstrate that the time-averaged streaming flow has
a three-dimensional structure. Notably, the flow reverses direction across the depth of
the channel, which is a feature not observed in less confined streaming set-ups. This
feature is confirmed by our experiments of streaming around a cylinder sandwiched
in a microchannel. Our theory also predicts that the streaming velocity decays as the
inverse cube of the distance from the cylinder, faster than that expected from previous
two-dimensional approaches. We verify this velocity decay quantitatively using particle
tracking measurements from experiments of streaming around cylinders with different
aspect ratios at different driving frequencies.

Key words: Hele-Shaw flows, lubrication theory, microfluidics

1. Introduction

Streaming refers to a secondary steady flow driven by the inertia of primary oscillations
of a viscous fluid (Riley 2001; Boluriaan & Morris 2003; Wu 2018). The generation of
streaming requires a spatially varying oscillatory flow, which can be established by the
propagation of acoustic waves, by oscillations of an interface, or by bulk oscillation of
fluid around an obstacle (Eckart 1948; Bolaños-Jiménez et al. 2017; Karlsen et al. 2018).
Streaming flows around obstacles in micro-scale confinement are typically characterized
by vortical structures and have been used widely in microfluidic applications due to their
fast flow speeds, simplicity of generation, and versatility. For instance, eddies of acoustic
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microstreaming can be used to modify the composition of polydisperse suspensions by
trapping smaller microparticles and releasing particles of larger size (Stone & Kim 2001;
Beebe, Mensing & Walker 2002; Lutz, Chen & Schwartz 2003; Thameem, Rallabandi
& Hilgenfeldt 2017), or to control vesicle deformation and lysis for bioengineering
applications (Marmottant & Hilgenfeldt 2003; Marmottant, Biben & Hilgenfeldt 2008;
Tandiono et al. 2012; Bhosale et al. 2022). Acoustic streaming induced by surface acoustic
waves has been utilized widely to enhance mixing in laminar flow in microchannels
(Westerhausen et al. 2016; Ahmed et al. 2019), to precisely control the intercellular
distance and spatial arrangement of cells (Guo et al. 2015; Mutafopulos et al. 2019), and in
the design of ‘acoustic tweezers’ that can trap suspended microparticles (Shi et al. 2009;
Ding et al. 2012; Zhu et al. 2021).

Streaming around cylindrical obstacles (rigid cylinders and bubbles) is well understood
under a two-dimensional framework (Holtsmark et al. 1954; Bertelsen, Svardal & Tjøtta
1973; Hamilton, Ilinskii & Zabolotskaya 2003; Chong et al. 2013; Červenka & Bednařík
2016; Lei et al. 2018) and has been verified experimentally (Andrade 1931; Holtsmark
et al. 1954; Bertelsen et al. 1973; Lutz, Chen & Schwartz 2005; Rallabandi, Wang &
Hilgenfeldt 2014). The flow is organized into four symmetric pairs of vortices around a
rigid cylinder; each vortex pair consists of an inner and an outer vortex whose relative
size depends on the dimensionless Stokes layer thickness (Holtsmark et al. 1954; Lutz
et al. 2005). Vishwanathan & Juarez (2019) recently reported a method to generate and
control the size of these vortices in a microchannel using sub-kilohertz oscillations of a
loudspeaker. Recent work has also elucidated the role of geometry and topology to control
three-dimensional (3-D) streaming flows around isolated curved objects (Chan et al. 2022).

Vertical confinement by walls, for example in microfluidics, can also lead to 3-D
streaming. Lutz et al. (2005) reported 3-D streaming near the ends and the surface of
an axially confined cylinder, which converged to quasi-two-dimensional flow far away
from the cylinder but close to the axially central plane. Marin et al. (2015) showed that
semi-cylindrical bubble oscillations under axial confinement in a microfluidic channel
also produce 3-D streaming. Measuring the trajectories of tracers using astigmatism
particle-tracking velocimetry, they reported toroidal vortex structures separated by two
symmetry planes parallel and perpendicular to the bubble axis. The flow was modelled
by Rallabandi et al. (2015) using a superposition of Stokes solutions to approximate the
effects of lateral confinement, and Volk et al. (2020) showed that such a 3-D streaming
flow can trap particles based on their size. In a much more confined (Hele-Shaw-like)
experimental set-up, Costalonga, Brunet & Peerhossaini (2015) quantified streaming
around vibrating obstacles, concluding that the extent of confinement influenced both the
structure and spatial decay of the streaming.

In this paper, we study theoretically and experimentally the effects of vertical
confinement on streaming flows, focusing on the limit where vertical length scales are
much smaller than lateral scales. We develop a lubrication-like theory describing 3-D
streaming around cylindrical obstacles with radius much greater than the depth of cell.
In the Hele-Shaw limit, our theory predicts that the flow reverses direction across the
depth of the channel, which, to the best of our knowledge, is a feature not observed in
less confined microchannels. We confirm this prediction directly using experiments of
streaming around cylinders sandwiched in a microchannel. In addition, our theory also
predicts that the streaming velocity decays as the inverse cube of the distance from the
cylinder, faster than that expected from previous two-dimensional approaches. We verify
this decay rate quantitatively using particle tracking measurements from experiments of
streaming around cylinders with different aspect ratios at different driving frequencies.
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Three-dimensional streaming in a Hele-Shaw cell
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Figure 1. Model set-up. (a) A cylinder sandwiched in the cell with a radius a larger than the height of the cell
2h. Oscillations of the fluid with angular frequency ω are driven by a piezo buzzer. (b) Side view, showing
Stokes layers with thickness

√
2ν/ω near the walls and cylinder surface.

2. Model set-up

We develop a theory for streaming flows in which the characteristic length scale along
one dimension (the height of the channel) is much shorter than those along the other two
dimensions. Here, we adapt ideas from lubrication theory to the perturbation framework
used to analyse streaming flows generated by small-amplitude oscillations with inertia
(Riley 2001). The resulting theory follows closely the ideas set out by Shih (1970),
although we arrive at different results and conclusions, as we discuss later.

The set-up of the theory mirrors the experimental configuration that we discuss in detail
in § 4. We consider a cylindrical obstacle that is located in the centre of a microfluidic
channel with one inlet and one outlet on the top wall (figure 1). While the inlet stays
exposed to the atmosphere, the outlet is connected to a piezo buzzer that oscillates the
fluid in the channel. The speed of the oscillatory flow is determined by the voltage applied
to the buzzer and the angular frequency of oscillation ω = 2πf . We will assume that the
channel’s width and length are much greater than both the radius of the cylinder a and the
height of the channel 2h, so that the lateral walls have little influence on the flow. As a
non-trivial restriction, we also assume that the radius of the cylinder is much greater than
the half-height of the channel (a � h).

We describe the flow around the cylinder by introducing a (dimensional) coordinate
system (X, Y, Z) centred at the geometric centre of the cylinder and oriented as shown
in figure 1: X is along the length of channel, Y is across its width, and Z is across its
height. We also define a cylindrical coordinate system (R, θ, Z) such that X = R cos θ and
Y = R sin θ . The buzzer applies pressure oscillations to drive an oscillatory flow through
the channel. The channel-height-averaged fluid velocity V̄ = (1/(2h))

∫ h

−h
V dz far from

the cylinder is directed along the X axis (unit vector eX) and satisfies

V̄ (R → ∞) ∼ V̄∞ eX eiωT , (2.1)

where V̄∞ is assumed known, and T represents dimensional time. Here and below, it will
be understood that only the real part of any complex equation is physically relevant. Note
that the condition R → ∞ refers to distances far from the cylinder that are not too close to
the buzzer.

2.1. Governing equation and boundary conditions

The flow satisfies the incompressible Navier–Stokes equations

ρ

(

∂V

∂T
+ V · ∇V

)

= −∇P + µ ∇2
V , ∇ · V = 0, (2.2)
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where V (X , T) is the 3-D fluid velocity, and P(X , T) is the pressure. The flow satisfies the
no-slip condition (V = 0) at the cylinder surface and the channel walls.

We non-dimensionalize the equations by choosing a as the characteristic length scale in
the XY plane, and h as the characteristic scale in the Z direction. We define dimensionless
coordinates (lowercase) according to

X = ax, Y = ay, Z = hz, R = ar. (2.3a–d)

For later convenience, we write the velocity as V = V ‖ + VZeZ , where V ‖ represents
velocities in the horizontal (XY) plane, and VZ is the vertical velocity component. The
velocity scale V̄∞ is characteristic of the horizontal velocity V ‖. Continuity then suggests a
vertical velocity scale V̄∞h/a. Substituting these velocity scales into (2.2), and comparing
viscous and pressure terms, suggests a pressure scale µV̄∞a/h2. We therefore define the
dimensionless velocity components v‖ and vz, and pressure p, according to

V ‖ = V̄∞v‖, VZ =
V̄∞h

a
vz, P =

µV̄∞a

h2
p. (2.4a–c)

We also define a rescaled time t = ωT and introduce the dimensionless parameters

δ =
√

2ν

h2ω
, ε =

V̄∞
aω

and η =
h

a
, (2.5a–c)

where ν = µ/ρ is the kinematic viscosity of the fluid. Here, ε is the dimensionless
amplitude of the oscillatory flow, and δ is the ratio of the Stokes layer thickness to the
channel height, which characterizes the frequency of the flow, while η is the aspect ratio
of the cylinder, which characterizes the degree of axial confinement.

The dimensionless 3-D fluid velocity is therefore v = V/V̄∞ = v‖ + ηvzez. Thus (2.2)
rescales (without approximations) as

2

δ2

(

∂v‖
∂t

+ εv · ∇v‖

)

= −∇‖p +
(

η2 ∇2
‖ +

∂2

∂z2

)

v‖, (2.6a)

2

δ2

(

∂vz

∂t
+ εv · ∇vz

)

= −
1

η2

∂p

∂z
+

(

η2 ∇2
‖ +

∂2

∂z2

)

vz, (2.6b)

∇‖ · v‖ +
∂vz

∂z
= 0, (2.6c)

where ∇‖ = ex(∂/∂x) + ey(∂/∂y) is the gradient in the horizontal plane. Using overbars
to indicate the average across the height of the channel (for a dimensionless function f (z),
f̄ ≡ (1/2)

∫ 1
−1 f (z) dz), the height-averaged velocity at infinity satisfies v̄(r → ∞) = ex eit.

The flow also satisfies no-slip conditions on the cylinder surface and channel walls.

3. Streaming theory for narrow channels

We focus on the limit where the channel is narrow (h 
 a), so that η 
 1. In this limit,
the domain of the flow can be split into an outer region where distances from the cylinder
surface are much greater than the channel height (r − 1 � η) and an inner region (Shih
1970; Balsa 1998) of thickness comparable to the channel height surrounding the cylinder
surface (where r − 1 = O(η)). As we show below, the flow in the outer region can only
approximately satisfy the boundary conditions on the cylinder. The role of the inner region
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Three-dimensional streaming in a Hele-Shaw cell

is to compensate for the outer flow and meet the no-slip condition on the cylinder surface.
Here, we consider the limit η 
 1 (so the inner region is asymptotically thin) and focus
mainly on the flow in the outer region, although we discuss some details of the inner region
in Appendix A.

In the outer region, viscous stresses are dominated by shear across the height of the
channel, and (2.6) are approximately

2

δ2

(

∂v‖
∂t

+ εv · ∇‖v‖

)

= −∇‖p +
∂2

v‖

∂z2
, (3.1a)

∂p

∂z
= 0, (3.1b)

∇‖ · v‖ +
∂vz

∂z
= 0. (3.1c)

We find that the outer flow satisfies the effective boundary condition of zero
channel-height-averaged velocity normal to the cylinder surface, up to corrections of O(η);
see Appendix A. Denoting the unit vector normal to the cylinder surface by n, (3.1) are
therefore subject to the boundary conditions

v̄ → ex eit as r → ∞, (3.2a)

v = 0 at z = ±1 (top and bottom walls), (3.2b)

v̄ · n = 0 at r = 1 (cylinder surface). (3.2c)

We note that the neglected η2 ∇2
‖v viscous terms produce only subdominant corrections

of O(η2) to both oscillatory and steady components of the outer flow.

3.1. Small-amplitude approximation and outer flow

We now solve (3.1) and (3.2) to obtain the outer flow in the practically relevant limit of
ε 
 1, but with arbitrary δ. As is typical in many streaming calculations (Riley 2001), we
assume that the oscillation amplitude is smaller than other geometric scales, so ε 
 δ and
ε 
 η 
 1. For small ε, we develop a solution by applying a perturbation expansion

( p, v) = ( p1, v1) + ε ( p2, v2) + · · · . (3.3)

The subscript 1 identifies the primary flow (oscillatory flow), whereas the subscript 2
corresponds to the secondary steady flow (streaming). The above series expansion, when
substituted into (3.1) and separating orders of ε, yields the governing equations for the
primary and secondary flow.

3.1.1. Primary flow

The primary flow at O(ε0) is governed by

2

δ2

∂v1‖
∂t

= −∇‖p1 +
∂2

v1‖

∂z2
,

∂p1

∂z
= 0, ∇‖ · v1‖ +

∂v1z

∂z
= 0,

with v̄1|r→∞ = ex eit, v1‖|z=±1 = 0, v1z|z=±1 = 0, v̄1‖ · n|r=1 = 0.

⎫

⎬

⎭

(3.4)

The system (3.4) is linear, and the only non-homogeneous condition is the one on velocity
at infinity. We therefore seek separable solutions proportional to eit. Observing that
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pressure is independent of z, the general expression for the primary velocity in the outer
region is

v1 = −
∇p1

α2

(

1 −
cosh αz

cosh α

)

, where α =
1 + i

δ
. (3.5)

The continuity equation, along with the normal velocity condition at r = 1 (see (3.4)),
yields the primary pressure as

p1 = G(α)

(

r +
1

r

)

cos θ eit, where G(α) = −
α3

α − tanh (α)
, (3.6)

which agrees with Shih (1970) up to scaling. Note that the result (3.5) is valid in the outer
region independent of the details of the primary pressure p1. By contrast, the expression
(3.6) explicitly ignores the presence of the inner region. In Appendix A, we will see that
a matching condition with the inner region leads to O(η) corrections of the outer pressure
in (3.4), while leaving (3.5) unchanged. Observe that the primary flow has no vertical
velocity component (v1z = 0), and that the primary pressure varies only in the rθ plane.
The channel-averaged primary (oscillatory) velocity is

v̄1 =
∇p1

G(α)
= ∇

[(

r +
1

r

)

cos θ

]

eit, (3.7)

and is used in the calculation of the streaming flow below.

3.1.2. Secondary flow

The convective acceleration term in (3.1a), which is neglected when solving for the
primary flow, appears as a body force that drives the secondary flow. It will be understood
that all secondary quantities are time-averaged. We assume that ε 
 δ, so that the
inertia of the time-averaged secondary flow is negligible Riley (2001), and the governing
equations at O(ε1) are

2

δ2

〈

v1‖ · ∇v1‖
〉

= −∇‖p2 +
∂2

v2‖

∂z2
,

∂p2

∂z
= 0, ∇‖ · v2‖ +

∂v2z

∂z
= 0, (3.8a)

with p2|r→∞ = 0, v2‖|z=±1 = 0, v2z|z=±1 = 0, v̄2‖ · n|r=1 = 0. (3.8b)

Here, 〈·〉 denotes the time average over an oscillation cycle. We note the useful averaging
rule 〈Re[A eit] Re[B eit]〉 = (1/2) Re[A∗B] for any complex quantities A and B, where the
asterisk denotes the complex conjugate (Longuet-Higgins 1998). We then use (3.5) to
evaluate the advective term 〈v1‖ · ∇v1‖〉 = (1/2)v∗

1‖ · ∇v1‖. As mentioned before, only
the real part is physically relevant. Integrating the horizontal momentum equation in (3.8a)
with respect to z, applying no-slip conditions and noting that α∗ = (1 − i)/δ = −iα, we
obtain

v2‖ = 1
2(z2 − 1)∇p2 + g(z, α)∇|∇p1|2, (3.9a)

where

g(z, α) =
i

8α4

(

(z2 − 1)α2 +
2 cos αz

cos α
−

2 cosh αz

cosh α
+

sin αz sinh αz

cos α cosh α
− tan α tanh α

)

.

(3.9b)
Next, we integrate the continuity equation in (3.8a), and apply boundary conditions at

the top and bottom walls, to find that the horizontal flux is divergence-free: ∇ · v̄2‖ = 0.
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Three-dimensional streaming in a Hele-Shaw cell

We then substitute (3.9) into the above relation to find that the secondary pressure is
governed by

∇2
‖p2 = 3ḡ ∇2

‖ |∇p1|2, (3.10a)

subject to

p2|r→∞ = 0 and ∇( p2 − 3ḡ |∇p1|2) · n|r=1 = 0. (3.10b)

Note that the condition at r = 1 corresponds to no penetration of the depth-averaged flow
into the cylinder surface; see (3.8b). Solving (3.10), we obtain the secondary pressure as

p2 = 3ḡ(|∇p1|2 − |G|2) (3.11a)

= −
i

16α5
(4α3 + 15(tanh α − tan α) + 6α tan α tanh α)(|∇p1|2 − |G|2), (3.11b)

where we note that |G|2 = |∇p1|2|r→∞ is a constant.
Substituting the expression above into (3.9) yields v2‖, and using the continuity equation

yields the vertical component of secondary flow v2z. Observing that the secondary pressure
and velocity both involve |∇p1|2 = |G(α)|2|v̄1|2 (see (3.7)), we obtain the secondary
(time-averaged) velocity

v2 = v2‖ + ηv2z ez = F‖(z, α)∇(|v̄1|2) + η Fz(z, α)∇2(|v̄1|2) ez, (3.12a)

where

F‖(z, α) =
i |G(α)|2

32α5

(

8α cos αz

cos α
−

8α cosh αz

cosh α
+

4α sin αz sinh αz

cos α cosh α

+ 15(z2 − 1)(tan α − tanh α) − 2(3z2 − 1)α tan α tanh α

)

, (3.12b)

Fz(z, α) = −
i |G(α)|2

32α5

(

8 sin αz

cos α
−

8 sinh αz

cosh α
+

2(sin αz cosh αz − cos αz sinh αz)

cos α cosh α

+ 5z(z2 − 3)(tan α − tanh α) − 2z(z2 − 1)α tan α tanh α

)

. (3.12c)

The functions F‖(z, α) and Fz(z, α) describe horizontal and vertical velocity profiles
across the height of the channel, while horizontal variations are captured by |v̄1|2. We
observe that the secondary flow has zero average across the channel everywhere in the
flow, not just at the cylinder surface (F‖ = 0 =⇒ v̄2 = 0).

While v2 describes the Eulerian secondary flow, it is the time-averaged motion of
material fluid elements (the Lagrangian secondary flow) that is practically relevant and
is normally referred to as streaming. The time-averaged Lagrangian velocity is vL =
v2 + vd, where vd is the Stokes drift defined by vd = 〈

∫

v1 dt · ∇v1〉 (Riley 2001). Using
(3.5), the Stokes drift in the outer region has the general form (again using the averaging
rules for products of complex oscillating quantities)

vd =
1

2

∣

∣

∣

∣

1

α2

(

1 −
cosh αz

cosh α

)∣

∣

∣

∣

2

(i ∇‖p∗
1 · ∇‖∇‖p1). (3.13)

For the p1 given in (3.6), the Stokes drift vanishes identically, so the Lagrangian streaming
is given simply by v2. Thus the streaming velocity has zero average across the channel
height (v̄L = 0) up to leading order in η. We show in Appendix A that the leading
contribution to the channel-averaged streaming occurs at O(η) as a result of a correction
to the primary pressure p1 to match the flow in the inner region.
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Figure 2. Analytical description of streaming velocity: (a) horizontal and (b) vertical velocity profiles for
different values of Stokes layer thickness δ. The flow reverses direction multiple times across the height of the
channel depending on the value of δ. (c) The horizontal flow at the central plane z = 0 reverses direction across
δ ≈ 0.13. Dashed curves are asymptotic expansions for small and large δ.

3.2. Flow structure

The variation of the streaming velocity across the height of the channel, characterized by
the functions F‖ and Fz, is shown in figure 2 for different values of δ. The horizontal flow
velocity is characterized by multiple flow reversals across the channel height (changes in
the sign of F‖). Horizontal velocity profiles for δ � 0.1 have qualitatively similar shapes.
Near the top and bottom walls, the horizontal flow increases and decreases rapidly on the
scale of the Stokes layer thickness δ before changing direction (figure 2a). At the outer
edge of the Stokes layers the flow achieves a maximal velocity (the maximal negative
value of F‖), which we identify with the time-averaged slip over walls at the edge of thin
Stokes layers (Longuet-Higgins 1953; Nyborg 1958). The central core outside the Stokes
layers is characterized by a more gradual variation of the flow, which reverses direction
another time as one moves towards the central plane (z = 0) of the channel. For δ � 0.13,
the second flow reversal near z = 0 disappears (see profile for δ = 0.2 in figure 2a). For
δ larger than approximately 0.25, the shape of the flow remains roughly the same and
is characterized by a single flow reversal with a maximum at the central plane where
z = 0. For δ 
 1, the central core (outside Stokes layers) is described by the parabolic
profile with slip, F‖ ∼ (1/16)(1 − 3z2), whereas for δ � 1, the flow profile is described
by F‖ ∼ (3δ−2/560)(z2 − 1)(7z4 − 28z2 + 5).
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Three-dimensional streaming in a Hele-Shaw cell
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Figure 3. Theoretical streamline plots for δ = 1, with oscillations driven along x. (a) Streamlines in the
horizontal plane show a vortex structure that reverses direction across z (blue and red streamlines are at z = 0
and z = 0.7, respectively). The reversal of flow is made clearer by streamlines in the vertical planes (b) and (c).

The vertical velocity, shown in figure 2(b), exhibits odd symmetry about z = 0 but
undergoes similar changes in sign as δ increases. When δ is small, Fz is mostly negative
in the top half of the channel, with a reversal in direction within the Stokes layer. By
contrast, for δ larger than approximately 0.13, the vertical velocity reverses and Fz is
positive throughout the top half of the channel.

Figure 2(c) shows the behaviour of the horizontal velocity at the central plane z = 0.
As δ increases, the horizontal velocity decreases and then increases rapidly to reach a
maximum (negative) value at approximately δ = 0.35, with a direction change occurring at
δ ≈ 0.13. The orange dashed curve represents asymptotic expansions of horizontal central
plane velocity function F‖(z = 0) ∼ (2 − 15δ)/32 for small δ, whereas the blue dashed
curve shows the behaviour of F‖(z = 0) ∼ −3/(112δ2) for large δ.

In addition to showing velocity distributions, we visualize the 3-D flow using streamline
portraits in two-dimensional sections. Streamline plots in different planes – ‘length–width’
(xy), ‘length–depth’ (xz) and ‘width–depth’ (yz) – are shown in figure 3, with the oscillation
direction and coordinates marked.

Figure 3(a) shows streamlines around a cylinder (shaded grey) on the horizontal plane
but at different depths for δ = 1. Blue streamlines represent the flow at the axial mid-plane
(z = 0), showing a structure qualitatively similar to two-dimensional streaming. However,
streamlines at a depths z = 0.7, shown in red, indicate flow in the opposite direction. This
reversal of flow direction (associated with changes in the sign of F‖) is a feature that
is absent not only from two-dimensional theory (which ignores variations along z), but
also from previous theory (Shih 1970) and experiments (Costalonga et al. 2015) in the
Hele-Shaw limit. It is interesting to note that previous descriptions of 3-D streaming flows
under less extreme vertical confinement (of rigid cylinders and semi-cylindrical bubbles)
do not report such a flow reversal either (Lutz et al. 2005; Marin et al. 2015). In § 4, we
confirm that such a flow reversal with z does indeed occur in experiments in Hele-Shaw
geometries.

Figures 3(b) and 3(c) indicate flows in vertical planes and also show that the direction
of secondary flow reverses across the depth of the channel. Unlike figure 3(b), we see
in figure 3(c) that the flow appears to locally penetrate the cylinder surface, even though
the depth-averaged velocity normal to the cylinder surface remains identically zero by
construction. This is understood by recalling that the present theory is restricted to the
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X. Zhang and B. Rallabandi

‘outer region’ where r − 1 � η. To accommodate the local velocity normal to the cylinder
at r = 1, it is necessary to acknowledge the presence of an inner region of width η around
the cylinder that ensures that the streaming velocity vanishes everywhere on the cylinder
surface. Though we do not resolve the details of this inner region here, we provide some
estimates of its effects in Appendix A.

4. Experiments

We now show that experiments for streaming around a cylinder sandwiched in a
Hele-Shaw channel support our theoretical prediction that the direction of flow reverses
across the height of cell. We fabricate devices (see figure 1) out of polydimethylsiloxane
(PDMS, Dow Sylgard 184) to obtain transparent microchannels with height 2h at 160 µm
or 480 µm, containing cylinders with radius a = 600 µm or 750 µm inside. The PDMS
mixture is poured onto moulds (made from layers of backing tape) and peeled after curing
on a hot plate. Deionized water (ν = 10−6 m2 s−1, density 1.00 g cm−3) with polystyrene
microparticles (Magsphere, diameter 2ap = 5.0 µm, density 1.05 g cm−3) is injected into
the microchannel using a syringe, which is disconnected once the microchannel is full,
exposing the inlet to the atmosphere (see figure 1). The piezo buzzer connected to the
other end (outlet) is then driven by applying sinusoidal signals of various frequencies from
a function generator (Rigol DG4062) amplified through a power amplifier (Krohn-hite
7500). The buzzer produces pressure oscillations to drive oscillatory flow in the channel,
which in turn results in streaming. A high-speed camera (Photron, Fastcam Nova S6)
records images through an inverted microscope (Leica DMi8). The frame rate of the
camera is chosen to be a integer divisor of the driving frequency so as to isolate the steady
component of the particle motion.

4.1. Visualization

Matlab and ImageJ are used to process the recorded images of the microparticles as
they are transported by the flow. The microparticles are expected to behave as passive
tracers of the flow due to their small size (ap/a � 0.005, ap/h � 0.016) and inertia
(Stokes number a2

pω/ν � 0.01). We extract particle traces from the experimental images
by using an in-house implementation of the Flowtrace algorithm (Gilpin, Prakash &
Prakash 2017). Figure 4, with the oscillation direction represented by pink arrows,
indicates steady pathlines of tracers around a cylinder of radius a = 600 µm, but with
different values of h and driving frequency f . The flow structure is robust across our
experiments: four steady vortices are created adjacent to the cylinder. Figure 4 shows these
vortices for two representative experiments (one pair of vortices per experiment). The flow
structure projected in the imaging xy plane resembles two-dimensional streaming around
a cylinder in an unbounded or concentrically bounded fluid (Bertelsen et al. 1973), and is
qualitatively similar to the theoretical streamline portrait of figure 3(a).

A closer look at the trajectories for small η, however, reveals a striking difference
from two-dimensional streaming. Figure 5(a) shows trajectories of particles in an
experiment with η ≈ 0.13 and δ ≈ 0.41 (cf. figure 4b), digitally processed such that
the brighter part of each trace represents the current position of a particle (head of
the trace), and the darker part represents the past position of the same particle (tail of
the trace); see Gilpin et al. (2017). This leads to the appearance of thicker heads and
thinner tails of the particle tracers (note that this is not an optical effect but a digital
one that accounts for temporal information). We observe pairs of apparently nearby
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Three-dimensional streaming in a Hele-Shaw cell

500 µm

(b)(a)

Figure 4. Pathlines of tracer particles around cylinders of radius a = 600 µm for different experimental
conditions; double arrows indicate the oscillation direction. Steady pathlines for two experiments with different
values of channel height h and frequency f . The qualitative flow pattern is robust across our experiments.
(a) h = 240 µm, f = 100 Hz (η = 0.4, δ = 0.23); (b) h = 80 µm, f = 300 Hz (η = 0.13, δ = 0.41).

tracers that are clearly travelling in opposite directions. We note that this feature is not
localized and can be observed everywhere in the flow; see the supplementary movie
available at https://doi.org/10.1017/jfm.2023.276. Zooming into one of the marked regions
(insets in figure 5(a)) makes the counter-motion of nearby particles clearer. The theory
rationalizes this observation as the consequence of the particles being at different z

locations in the channel with a reversed flow direction, as shown in figure 5(b); see
also figure 3.

Figures 5(c) and 5(d) provide direct experimental confirmation of this reversal of
flow with z. These figures correspond to a single experiment conducted with the same
parameters as in figure 5(a) but observed under a higher magnification to obtain a
shallower depth of focus, which enables the isolation of particles at different z locations.
We also utilize somewhat larger tracer particles (2ap = 10.0 µm, density 1.05 g cm−3)
to aid visualization. The two particles in figures 5(c) and 5(d) are captured at positions
r ≈ 1.6, θ ≈ 30◦ but at different locations along the channel height, z = 0.19 and 0.95,
respectively. The direction of flow is clearly different at the two z locations, and is
consistent with the directions predicted theoretically in figure 5(b) at those z locations.
Furthermore, we see experimentally that the flow is faster at z = 0.19 (near the channel
centre) than at z = 0.95 (near the channel wall) by a factor ≈2.8, which is also consistent
with the theory, which predicts a factor ≈2.4. Thus both the vortex structure and direction
of flow are consistent between experiments and theory for narrow channels.
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0

0.5
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r ≈ 1.6, θ ≈ 30°, z = 0.95r ≈ 1.6, θ ≈ 30°, z = 0.19
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1.0

1.5

2.0(b)(a)

(d)(c)

z = 0.19 z = 0.95

0.5 1.0 1.5 2.0

Figure 5. Streaming in a Hele-Shaw cell with a = 600 µm, 2h = 160µm at f = 300 Hz (η = 0.13, δ = 0.41).
(a) Particle traces, now including temporal information: for each trace, the brighter ‘head’ shows the particle’s
present position, whereas the darker ‘tail’ represents the particle’s past position. The insets detail different
parts of the flow where pairs of tracer particles are travelling in opposite directions, but at different depths
(yellow arrows indicate the direction of motion to guide the eye). (b) Theoretically predicted streamlines near
the central plane (z = 0.19, blue dashed) and near the boundary wall (z = 0.95, red solid). (c,d) Experiments
with the same parameters as (a) but isolating particles at specific z depths (see main text). Particles at r ≈ 1.6,
θ ≈ 30◦ but at different depths, (c) z = 0.19 and (d) z = 0.95, move in opposite directions, consistent with the
theoretical streamline portraits in (b).

4.2. Velocity decay

Our streaming theory predicts a 3-D velocity field v2 = v2‖ + ηv2z ez. Substituting
|v̄1|2 = 1 + 1/r4 − 2 cos (2θ)/r2 from (3.5) into (3.12), we obtain

v2 = (vr2, vθ2, ηv2z) =
(

4F‖

r5
(r2 cos 2θ − 1),

4F‖

r3
sin 2θ,

16ηFz

r6

)

. (4.1)

As is typical for streaming flows, the flow speed decays with the distance from the obstacle.
Two-dimensional theory predicts that the velocity decays with the square of the distance
to the centre of the cylinder: |v2| ∝ r−2 (Bertelsen et al. 1973). However, observe from the
above solution that horizontal velocities are predicted to have a dominant far-field decay
of |v2| ∝ r−3.

We analyse experimental streaming velocities using (an adaptation by Blair & Dufresne
(2008) of) the particle-tracking algorithms of Crocker & Grier (1996). From the
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Three-dimensional streaming in a Hele-Shaw cell
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Figure 6. Decay of normalized horizontal speed v/vm with dimensionless distance from the centre of the
cylinder r = R/a, showing experiments (symbols) and the theoretical prediction (dashed line). The maximal
speed for each experiment is vm. Light grey symbols are velocity data from individual particles at θ = π/4 ±
0.1, whereas coloured symbols are data after a local averaging. (a) Data for v/vm from different experiments
decay approximately as r−3 but do not overlap due to different aspect ratio η and Stokes layer thickness δ.
(b) Rescaling velocities as suggested by the present theory causes data from different experiments to collapse
onto a universal curve v/(vmr3

m) ≈ 1.1r−3. The inset shows the same data on a linear scale.

experimental videos, we calculate the speeds of microparticles, which we approximate by
the magnitude of the horizontal velocity, as the vertical velocity is smaller. The results of
our analysis are shown in figure 6. We first identify particles in a narrow sector, concentric
with the cylinder, of angular width 2δθ about a mean angle θ (we pick θ = π/4, δθ = 0.1).
We subdivide this sector into multiple radial sections (typically 30) starting from the
cylinder surface. We collect hundreds of particle trajectories in the sector of interest, and
calculate their positions and speeds as they pass through the angle θ (light grey markers in
figure 6). We then average the particle positions and speeds within each radial section of
the sector, which we identify with the mean speed at the projected averaged locations of the
particles v(r, θ) (coloured markers in figure 6). Deviations from the average thus represent
the spread of the individual particle positions and speeds. The maximum (bin-averaged)
speed for each experiment is denoted vm, and its radial location is denoted rm.

In figure 6, we plot the ratio of (bin-averaged) speed in each segment and maximal
speed among all particles, as a function of the dimensionless distance to the cylinder
axis. The experimental data are collected from three characteristic experiments with
cylinders confined axially in microchannels: (i) with height 2h = 480 µm and cylinder
radius a = 600 µm, operating at frequency f = 100 Hz (η = 0.4, δ = 0.23; see panel (a)
of figure 4); (ii) 2h = 480 µm, a = 750 µm, driven at f = 50 Hz (η = 0.32, δ = 0.33);
(iii) 2h = 160 µm, a = 600 µm, operating at f = 300 Hz (η = 0.13, δ = 0.4; see panel (b)
of figure 4 and figure 5a). As shown in figure 5(a) and discussed earlier, the large depth of
field picks up particles at different depths, encompassing a wide range of speeds (including
speeds close to zero at depths where flow reverses); our data set includes all of these
trajectories.

Figure 6(a) shows the experimental data for v/vm versus r. As our theory predicts, the
streaming velocity is found to decay as the inverse cube of the distance from the cylinder
(|v2| ∝ r−3). Parameters ε, η and δ vary from experiment to experiment, resulting in
different vm and rm. We observe that the theory predicts vm = rm = 1 at η → 0, which
is consistent with the experiment for the smallest η.
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X. Zhang and B. Rallabandi

Although the theory is formally accurate only for small η, we find that it nonetheless
provides a useful way to organize all of the data onto a universal curve; see figure 6(b). We
assume that the maximum binned mean speed from experimental data exists in the outer
region, even for moderate η. The theory predicts a velocity decay behaviour v ∝ r−3 (with
a prefactor that generally depends on δ and η), so we anticipate that the maximal velocity
satisfies vm ∝ r−3

m , with the same prefactor. Rearranging the equation yields a universal
curve v/(vmr3

m) = 1/r3. Applying this relationship, we find that the rescaled experimental
data in figure 6(b) closely follow this universal curve across two orders of magnitude,
though the agreement is better with an additional prefactor 1.1.

5. Discussion and conclusions

In this paper, we have developed a 3-D streaming theory around cylindrical obstacles
confined axially in Hele-Shaw-like microchannels. We exploited the separation between
vertical and horizontal length scales, and utilized lubrication theory under the conditions
of small oscillation amplitudes but retaining the inertia of the flow. After resolving the
primary (oscillatory) and secondary (steady) flow, we investigated the 3-D streaming
structure around the cylinder, which has two unique characteristics compared with
previous work in less confined set-ups: (i) the flow direction varies across the depth
of the channel; and (ii) the streaming velocity decays with the inverse cube of the
distance from the cylinder centre. These findings were validated experimentally by driving
oscillations around cylinders of different radii sandwiched inside PDMS microchannels of
various aspect ratios. We verified the vertical reversal of the horizontal flow by analysing
the trajectories of suspended tracer microparticles and the decay of flow velocity by
particle-trackingvelocimetry.

As noted in § 3, the theory developed here focuses on flow in an ‘outer region’ wherein
distances from the cylinder surface are much greater than the channel height. This is only
part of the picture, as a separate ‘inner region’ surrounding the cylinder surface (and with
radial width comparable to the channel height) must also exist for the flow to satisfy the
no-slip conditions at the cylinder surface (Balsa 1998). Within the inner region where
r − 1 = O(η), radial variations of the flow are as important as axial ones. In Appendix A,
we analyse the variation of velocity within this inner region, which in turn produces a
small O(η) normal velocity that must be met by the outer flow as a matching condition at
r = 1. We anticipate that the correction to the secondary flow is of similar size and can
be computed similarly, though the details are significantly more complex and are left to
future work. We find (Appendix A) that one important qualitative feature of accounting
for the inner region is the introduction of steady flow components of O(η) with non-zero
channel-averaged velocity (recall that the steady flow at O(η0) has zero channel average).
Such a channel-averaged flow is likely to be important for transport, in particular when
h/a is moderately large, but is beyond the focus of this work.

Although our experiments confirm that the flow does change direction across the
channel height, we do not resolve the details of the flow reversal here. Future work may
aim to quantify the associated flow structures using 3-D particle tracking, with either
defocusing methods (Cierpka et al. 2010; Barnkob, Kähler & Rossi 2015; Marin et al.

2015) or multi-camera set-ups (Klank et al. 2002; Lindken, Westerweel & Wieneke 2006).
Previous work on 3-D streaming focused on relatively deep channels (Marin et al. 2015;

Rallabandi et al. 2015; Volk et al. 2020) and reported systematic small axial displacements
following quasi-planar orbits on a toroidal surface. By contrast, the streaming that we

961 A35-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Three-dimensional streaming in a Hele-Shaw cell

have studied in relatively shallow channels exhibits a qualitatively different structure
involving an additional axial recirculation that is necessary to maintain the near-zero
depth-averaged flow predicted by the theory. The ability to generate such recirculating 3-D
flows in microconfined geometries is promising for particle manipulation and micromixing
applications. For a much wider range of microstreaming set-ups, the tools developed here
will be helpful to assess, model, and either minimize or enhance 3-D flow effects in
practical applications.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.276.
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Appendix A. Inner region

We resolve some details of the inner region where r − 1 = O(η), which also
determines the effective boundary conditions for the outer flow at r = 1 (Balsa
1998). We define a rescaled inner coordinate s = (r − 1)/η that is O(1) in
the inner region. The continuity equation written in cylindrical coordinates is
r−1 ∂(rvtot

r )/∂r + r−1 ∂vtot
θ /∂θ + ∂vtot

z /∂z = 0, where the superscript ‘tot’ refers to the
total or exact solution to the flow comprising both outer and inner contributions. (For
consistency with the main text, outer flow quantities have no superscripts.) Integrating the
continuity equation across the inner region and through the channel depth (and changing
integration variables from r to s), we obtain the exact relation

r vtot
r |∞s=0 = −η

∫ ∞

0

∂vtot
θ

∂θ
ds. (A1)

An analogous result applies to the outer solution. Combining (A1) with its outer analogue,
noting that v

tot vanishes at the cylinder surface (s = 0) and that v
tot = v vanishes at s =

∞, we obtain the effective condition for the outer flow at the surface of the cylinder,

v̄ · n = −
η

r

∂

∂θ

∫ ∞

0
(vtot

θ − vθ ) ds at r = 1, (A2)

which reduces to (3.2c) at leading order for η 
 1. The right-hand side represents the flux
from the inner region that leaks into the outer flow and produces an O(η) correction to
(3.2c).

A.1. Primary flow

We calculate these O(η) corrections for the primary flow and then discuss some
implications for the streaming. The primary flow in the outer region (where r − 1 � η)
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Figure 7. Primary pressure correction A versus the Stokes layer thickness δ.

continues to be governed by (3.4), except for the boundary condition at r = 1, which we
will refine using (A2). The relation (3.5) between and v1 and p1 remains unchanged as
(3.4) is accurate to O(η2). However, the outer pressure p1 itself is now modified from (3.6)
to account for the presence of the inner flow. The general solution to the primary outer
pressure (ignoring the boundary condition at r = 1 for now) is

p1 = G(α)

(

r +
1 + A

r

)

cos θ eit, (A3)

where A is a constant of integration.
To find A up to O(η), we first calculate the inner solution for the primary azimuthal

velocity. Using standard analysis techniques in the inner region (where s = (r − 1)/η =
O(1)), we find that the pressure remains independent of z and does not vary significantly
across the inner region. Then to leading order in η, the primary azimuthal velocity vtot

θ1
(accounting for both inner and outer contributions) is governed by

α2 vtot
θ1 = −

1

r

∂p1

∂θ
+

(

∂2

∂s2
+

∂2

∂z2

)

vtot
θ1 . (A4)

Solving (A4) subject to no-slip conditions at the walls at z = ±1 yields

vtot
θ1 =

[

−
1

α2

(

1 −
cosh αz

cosh α

)

+
∞
∑

n=1

cn cos knz e−s
√

k2
n+α2

]

1

r

∂p1

∂θ
, (A5)

where kn = (2n − 1)π/2, and the coefficients cn are to be determined. Observe that vtot
θ

comprises the outer solution (first term) plus an inner correction that decays exponentially
with s (second term). The no-slip condition at r = 1 (s = 0) yields the coefficients
cn = −2 cos(πn)/(kn(k

2
n + α2)). Substituting cn and (A5) back into (A2), we obtain the

condition v̄1 · n = −η(L/2) ∂2p1/∂θ2 at r = 1, whereL(α) =
∑∞

n=1 4k−2
n (k2

n + α2)−3/2.
Using the outer solution (A3) along with v̄1 = ∇p1/G to evaluate both sides of the above
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Three-dimensional streaming in a Hele-Shaw cell

boundary condition, we find

A =
ηα3 L(a)

α − tanh (α)
+ O(η2), (A6)

which provides the leading correction to the outer pressure (A3) due to the inner flow. The
relationship between the correction A and δ is shown in figure 7.

A.2. Stokes drift

Using (3.13) – which remains applicable since (3.5) is still valid – and applying the revised
primary pressure (A3), we obtain the Stokes drift in the outer region as

vd = (vdr, vdθ , ηvdz) = −Im(A)|G|2
∣

∣

∣

∣

1

α2

(

1 −
cosh αz

cosh α

)∣

∣

∣

∣

2 (

cos 2θ

r3
,

sin 2θ

r3
, 0

)

. (A7)

The Stokes drift is O(η) and is thus weaker than the streaming of the main text, but
has non-zero average across the channel. Furthermore, the Stokes drift also decays as
the inverse cube of the distance from the cylinder, the same as that of the leading-order
streaming flow.

REFERENCES

AHMED, H., PARK, J., DESTGEER, G., AFZAL, M. & SUNG, H.J. 2019 Surface acoustic wave-based
micromixing enhancement using a single interdigital transducer. Appl. Phys. Lett. 114 (4), 043702.

ANDRADE, E.N.D.C. 1931 On the circulations caused by the vibration of air in a tube. Proc. R. Soc. Lond.

Ser. A, Contain. Papers Math. Phys. Character 134 (824), 445–470.
BALSA, T.F. 1998 Secondary flow in a Hele-Shaw cell. J. Fluid Mech. 372, 25–44.
BARNKOB, R., KÄHLER, C.J. & ROSSI, M. 2015 General defocusing particle tracking. Lab on a Chip 15

(17), 3556–3560.
BEEBE, D.J., MENSING, G.A. & WALKER, G.M. 2002 Physics and applications of microfluidics in biology.

Annu. Rev. Biomed. Engng 4 (1), 261–286.
BERTELSEN, A., SVARDAL, A. & TJØTTA, S. 1973 Nonlinear streaming effects associated with oscillating

cylinders. J. Fluid Mech. 59 (3), 493–511.
BHOSALE, Y., VISHWANATHAN, G., UPADHYAY, G., PARTHASARATHY, T., JUAREZ, G. & GAZZOLA, M.

2022 Multicurvature viscous streaming: flow topology and particle manipulation. Proc. Natl Acad. Sci. 119

(36), e2120538119.
BLAIR, D. & DUFRESNE, E. 2008 The Matlab particle tracking code repository. Particle-tracking code

available at http://physics.georgetown.edu/matlab.
BOLAÑOS-JIMÉNEZ, R., ROSSI, M., RIVAS, D.F., KÄHLER, C.J. & MARIN, A. 2017 Streaming flow by

oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. J. Fluid Mech. 820, 529–548.
BOLURIAAN, S. & MORRIS, P.J. 2003 Acoustic streaming: from Rayleigh to today. Intl J. Aeroacoust. 2 (3),

255–292.
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