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Abstract. Mapping in-situ eddy covariance measurements of terrestrial land-atmosphere fluxes to the globe is a key method
for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from a
newly implemented up-scaling framework, FLUXCOM-X. The X-BASE products comprise of estimates of CO2 net ecosys-
tem exchange (N E'E), gross primary productivity (GPP) as well as evapotranspiration (E7") and, for the first time, a novel
fully data-driven global transpiration product (E17), at high spatial (0.05°) and temporal (hourly) resolution. X-BASE es-
timates the global NEE at -5.75 & 0.33 PgC -yr—! for the period 2001-2020, showing a much higher consistency with
independent atmospheric carbon cycle constraints compared to the previous versions of FLUXCOM. The improvement of
global NEE was likely only possible thanks to the international effort to increase the precision and consistency of eddy co-
variance collection and processing pipelines, as well as to the extension of the measurements to more site-years resulting in a
wider coverage of bio-climatic conditions. However, X-BASE global net ecosystem exchange shows a very low inter-annual
variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge. With 125 + 2.1
PgC -yr—1! for the same period, X-BASE G PP is slightly higher than previous FLUXCOM estimates, mostly in temperate
and boreal areas. X-BASE evapotranspiration amounts to 74.7x103 4 0.9x103 km? globally for the years 2001-2020, but ex-
ceeds precipitation in many dry areas likely indicating overestimation in these regions. On average 57% of evapotranspiration
are estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many land
surface models. Despite considerable improvements to the previous up-scaling products, many further opportunities for devel-
opment exist. Pathways of exploration include methodological choices in the selection and processing of eddy-covariance and

satellite observations, their ingestion into the framework, and the configuration of machine learning methods. For this, the new
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FLUXCOM-X framework was specifically designed to have the necessary flexibility to experiment, diagnose, and converge to

more accurate global flux estimates.

1 Introduction

Energy, water, and carbon exchange between terrestrial surfaces and the atmosphere are key components of the Earth system
and impact ecosystems, ecosystem services, weather, climate, and water availability. The exchange (or flux) can be directly
observed using eddy covariance (EC) measurement systems (Baldocchi, 2019) which are installed on towers overlooking the
ecosystem of interest. The EC stations typically represent an area of a few hundred square meters to a square kilometer.
One key advantage of the EC methodology is the ability to provide near continuous measurements with some records now
exceeding 20 years (Pastorello et al., 2020), allowing for examination of flux variations from the order of thirty minutes to
decades. EC systems also provide a unique perspective on the magnitude, temporal variability, and environmental sensitivity
of ecosystem C'O uptake, water use, and local climate regulation (Baldocchi, 2019; Musavi et al., 2017; Bao et al., 2022).
However, while many of the most pressing scientific knowledge gaps surrounding the delicate land carbon balance and the water
cycle require spatially and temporally resolved flux patterns at continental to global scales, EC observations are confined to
individual locations in space and limited periods in time (Kumar et al., 2016; Papale et al., 2015). Methodologies to transcend
the gap between local and global scales are needed to ultimately support societal relevant activities of building greenhouse
gas monitoring systems, taking informed climate and land management actions, and verifying the effectiveness of mitigation
strategies (Baldocchi and Penuelas, 2019; Bonan et al., 2011; Novick et al., 2022).

Coordinated and consolidated data collections from EC networks are invaluable for the mapping of in-situ fluxes to regional
and global scales. For example, EC measurements aid both the parameterization (Huang et al., 2021) and the validation (Turner
et al., 2006; Heinsch et al., 2006) of mechanistic models of ecosystem productivity and land surface processes. The latter
generate widely used reference data sets for terrestrial carbon cycle applications (Zhao and Running, 2010; Ukkola et al.,
2022). A complementary approach to modeling terrestrial fluxes at continental and global scales is of empirical nature and
links observations of explanatory variables at the EC stations, particularly meteorological and remote sensing data, to the EC
fluxes via machine learning models. This up-scaling concept does not prescribe any mechanistic formulations and assumes that
the EC observations cover all complexities of ecosystem functioning. Based on a trained machine learning model and globally
gridded input data of the explanatory variables, EC fluxes can be mapped to the global scale.

First implementations of this flux up-scaling concept emerged in the early 2000s. They focused on net ecosystem exchange
of COy (NEE) and utilized the growing EC networks in Europe (Papale and Valentini, 2003) and North America (Xiao
et al., 2008). The release of the La Thuile Synthesis Dataset of harmonized EC data in 2007, as well as methodological
improvements in the training of the machine learning models (Jung et al., 2009), led to the first global products of terrestrial
CO5 and water fluxes at a monthly time step and in 0.5° grids in 2011 (Jung et al., 2011). While good agreement of flux
estimates derived from complementary process-based models with the up-scaled global gross photosynthetic C'O5 uptake

(gross primary productivity, GPP) and energy fluxes demonstrated the potential of the approach, important inconsistencies



55

60

65

70

75

80

85

https://doi.org/10.5194/egusphere-2024-165
Preprint. Discussion started: 7 February 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

remained, in particular regarding the globally integrated N E'E and its year-to-year variability. (Jung et al., 2020, 2019, 2011;
Zscheischler et al., 2017).

In an effort to better understand the uncertainties associated with mapping of EC fluxes to larger scales, the FLUXCOM inter-
comparison initiative built an ensemble of flux estimates as a type of factorial experiment (Tramontana et al., 2016; Jung et al.,
2019, 2020). The ensemble consisted of multiple machine learning algorithms, meteorological forcing data, and combinations
of predictor variables resulting in 120 individual up-scaled estimates per flux. These were summarized in two overall ensemble
configurations, which differed in the set of predictors and spatial-temporal resolution. Apart from creating a large ensemble,
the FLUXCOM evaluation included a consistent site-level cross-validation analysis as well as cross-consistency checks with
terrestrial flux estimates from independent approaches, such as complementary modeling concepts or observational surrogates.
From a methodological point of view, the key lessons learned from FLUXCOM were that: (1) the overall approach seems
to be primarily limited by the input information given to the machine learning algorithms rather than to the ability of the
algorithm to extract the information; (2) the largest qualitative differences among flux products were related to the set of the
predictor variables rather than to the choice of the machine learning method or meteorological forcing; (3) the cross-consistency
checks with global independent data are essential for supplementing site-level cross-validation; and (4) the largest qualitative
discrepancy with independent data was a very high (strongly negative) tropical N EE' that was shared among all ensemble
members.

By today, the empirical up-scaling concept has been implemented for a series of regional and global scale applications,
each of them adopting disparate and individual methodological choices (e.g. Ichii et al., 2017; Yao et al., 2018; Joiner and
Yoshida, 2020; Virkkala et al., 2021; Dannenberg et al., 2023; Burton et al., 2023). These potentially important choices relate
to data treatment (quality control, gap-filling, processing pathways), ingestion (sampling, as well as matching EC and space-
born observations), and methodological configurations (machine learning methods and their training configuration, choice of
predictor variables, resolution). Hence, flexibility to explore the large methodological space, as well as the ability to diagnose
and evaluate global products in parallel to site-level cross-validation, are required to make progress in empirical up-scaling of
EC fluxes. Learning from key insights in FLUXCOM and other up-scaling exercises further implies striving for enhancing the
information content of the training data with aspects related to coverage and quality of EC measurements as well as quality,
complementarity, and completeness of predictor variables.

We are developing a modeling framework that allows experimenting with and systematically exploring many of these

methodological choices. We coin this extended and flexibly adjustable up-scaling framework FLUXCOM-X. Based on FLUXCOM-

X, the latency with which innovations in the related fields of machine learning and spacebased Earth observations as well as
novel EC data can find their way to empirical flux up-scaling will be considerably reduced. This in turn allows faster progress
towards more accurate and fit-for-the-purpose global biogenic flux estimates. Here, we introduce and evaluate the initial “basic”
set of products from this framework, which we refer to as FLUXCOM-X-BASE products (or X-BASE for short).

X-BASE products were generated based on the same principle as in the original FLUXCOM ensemble using qualitatively
similar predictor variables, i.e. remotely sensed vegetation indices and land surface temperatures from the Moderate Resolution

Imaging Spectroradiometer (MODIS) along with meteorological variables. We made efforts to provide more and improved
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information to the machine learning models by enhancing coverage and quality of the training data in X-BASE, and by further
developing the processing of satellite predictor variables (Walther and Besnard et al., 2022). In this manuscript, we show
results for X-BASE NEFE, GPP, evapotranspiration (ET'), and for the first time transpiration (E77), for the period 2001-
2020 at 0.05° spatial and hourly temporal resolution. X-BASE products are freely available and serve as a baseline for future
FLUXCOM-X developments. We are focusing here on the evaluation and cross-consistency checks of X-BASE with previous

FLUXCOM products and independent data streams. Our specific objectives are:

1. to describe the production of X-BASE products;

2. to evaluate the X-BASE setup using site-level cross-validation;

3. to assess qualitative differences of global patterns compared to previous FLUXCOM products with reference to inde-
pendent flux estimates where possible; and

4. to synthesize lessons learned from this exercise to guide future FLUXCOM-X developments.

2 Data and Methods

The following section gives an overview on the essential methodological implementations and data choices adopted in the

generation of X-BASE products.
2.1 Eddy Covariance Data

Eddy covariance data consisted of 294 sites from around the world though skewed towards higher representation from temper-
ate forests from North America and Europe. All EC data were collected, processed, analyzed for quality by the station teams,
before being processed using state-of-the-art approaches in the ONEFLUX data processing pipeline (Pastorello et al., 2020).
The data included was collected between 2001-2020 and available with a CC BY 4.0 license. Based on this criterion, data for
each site came from one of five different sources based on most recent availability: FLUXNET 2015 (Pastorello et al., 2020),
ICOS Drought 2018 (Team and Centre, 2020), ICOS Warm Winter 2020 (Team and Centre, 2022), or the most recent Amer-
iflux or ICOS release as of December 2022. Table 1 lists all sites included as well as the associated digital object identifier

specific to the associated release.

Table 1: Citation data for the 294 sites used in the X-BASE products.

AR-SLu(Garcia AR- AR-Vir(Posse AT- AU- AU-Ade(Beringer
et al., 2016) TF1(Kutzbach, etal., 2016) Neu(Wohlfahrt ASM(Cleverly and Hutley,
2021) etal., 2016) and Eamus, 2016¢)
2016b)
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Table 1: Citation data for the 294 sites used in the X-BASE products.

AU-Cpr(Meyer
et al., 2016)

AU-Fog(Beringer
and Hutley,
2016a)

AU-Wac(Beringer
et al., 2016b)
BE-Lcr(RI, 2021)

BR-Sa3(Goulden,
2016d)

CA-LPI1(Black,
2021)

CA-
NS6(Goulden,
2016e)
CA-SF2(Amiro,
2016a)
CA-TPD(Arain,
2022a)

CH-Lae(Team
and Centre, 2022)

CN-Din(Zhou and
Yan, 2016)
CZ-BKI1(Team
and Centre, 2022)

AU-Cum(Pendall
and Griebel,
2016)

AU-
Gin(Macfarlane
et al., 2016)

AU-Whr(Beringer
et al., 2016a)
BE-Lon(Team
and Centre, 2022)
CA-Cbo(Staebler,
2022)

CA-Man(Amiro,
2016b)

CA-
NS7(Goulden,
2016f)
CA-SF3(Amiro,
2016d)

CG-
Tch(Nouvellon,
2016)

CH-
Oel(Ammann,
2016)
CN-Du2(Chen,
2016k)
CZ-BK2(Sigut
etal., 2016)

AU-DaP(Beringer
and Hutley,
2016b)

AU-
RDF(Beringer
and Hutley,
2016d)
AU-Wom(Arndt
etal., 2016)
BE-Maa(Team
and Centre, 2022)
CA-DB2(Knox,
2022)

CA-
NS2(Goulden,
2016a)
CA-Oas(Black,
2016b)

CA-TP1(Arain,
2016b)
CH-Aws(Team
and Centre, 2022)

CH-Oe2(Team
and Centre, 2022)

CN-Du3(Shao,
2016b)
CZ-KrP(Team
and Centre, 2022)

AU-DaS(Beringer
and Hutley,
2016f)
AU-Rob(Liddell,
2016)

AU-Ync(Beringer
and Walker, 2016)
BE-Vie(Team and
Centre, 2022)
CA-
DBB(Christen
and Knox, 2022)
CA-
NS3(Goulden,
2016b)
CA-Obs(Black,
2016a)

CA-TP2(Arain,
2016a)
CH-Cha(Team
and Centre, 2022)

CN-Cha(Zhang
and Han, 2016)

CN-HaM(Tang

et al., 2016)
CZ-Lnz(Team and
Centre, 2022)

AU-Dry(Beringer
and Hutley,
2016e)
AU-TTE(Cleverly
and Eamus,
2016a)

BE-Bra(Team and
Centre, 2022)
BR-Npw(Vourlitis
et al., 2022)
CA-ER1(Wagner-
Riddle, 2021)

CA-
NS4(Goulden,
2016c¢)

CA-
Qfo(Margolis,
2016)
CA-TP3(Arain,
2022b)
CH-Dav(Team
and Centre, 2022)

CN-Cng(Dong,
2016)

CN-Qia(Wang
and Fu, 2016)
CZ-RAJ(Team
and Centre, 2022)

AU-Emr(Schroder
et al., 2016)

AU-
Tum(Woodgate
et al., 2016)

BE-Dor(Team and
Centre, 2022)
BR-Sal(Saleska,
2016)

CA-
Gro(McCaughey,
2016)

CA-
NS5(Goulden,
2016g)
CA-SF1(Amiro,
2016c¢)

CA-TP4(Arain,
2016¢)
CH-Fru(Team and
Centre, 2022)

CN-Dan(Shi
et al., 2016)

CN-Sw2(Shao,
2016a)
CZ-Stn(Team and
Centre, 2022)
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Table 1: Citation data for the 294 sites used in the X-BASE products.

CZ-wet(Team and
Centre, 2022)
DE-Hte(Team and
Centre, 2020)
DE-RuR(RI,
2022)

DE-Tha(Team
and Centre, 2022)

ES-Abr(Team and
Centre, 2022)
ES-LM2(Team
and Centre, 2022)
FI-Let(Team and
Centre, 2022)
FR-Aur(Team and
Centre, 2022)
FR-Hes(Team and
Centre, 2022)

GF-Guy(Team
and Centre, 2022)

IE-Cra(Team and
Centre, 2022)
IT-CA3(Sabbatini
et al., 2016b)
IT-Lav(Team and
Centre, 2022)
IT-Ro1(Valentini
et al., 2016c¢)

DE-Akm(Team
and Centre, 2022)
DE-Hzd(Team
and Centre, 2022)
DE-RuS(Team
and Centre, 2022)

DE-Zrk(Sachs
et al., 2016)

ES-Agu(Team
and Centre, 2022)
ES-LgS(Reverter
et al., 2016b)
FI-Lom(Aurela

et al., 2016a)
FR-Bil(Team and
Centre, 2022)
FR-LBr(Berbigier
and Loustau,
2016)

GH-
Ank(Valentini

et al., 2016b)
IL-Yat(Team and
Centre, 2022)
IT-Col(Matteucci,
2016)

IT-Lsn(RI, 2022)

IT-Ro2(Papale
et al., 2016)

DE-Geb(Team
and Centre, 2022)
DE-Kli(Team and
Centre, 2022)
DE-RuW(Team
and Centre, 2022)

DK-
Eng(Pilegaard and
Ibrom, 2016)
ES-Amo(Poveda
etal., 2016)
ES-Ln2(Reverter
etal., 2016a)
FI-Qvd(Team and
Centre, 2022)
FR-EM2(RI,
2022)

FR-LGt(RI, 2022)

GL-Dsk(RI,
2022)

IT-BCi(Team and
Centre, 2022)
IT-Cp2(Team and
Centre, 2022)
IT-MBo(Team
and Centre, 2022)
IT-SR2(Team and
Centre, 2022)

DE-Gri(Team and
Centre, 2022)
DE-Lkb(Lindauer
etal., 2016)

DE-
Seh(Schneider
and Schmidt,
2016)
DK-Fou(Olesen,
2016)

ES-Cnd(Team and
Centre, 2022)
FI-Hyy(Team and
Centre, 2022)
FI-Sii(Team and
Centre, 2022)
FR-FBn(Team
and Centre, 2022)
FR-Lam(Team
and Centre, 2022)

GL-NuF(Hansen,
2016)

IT-BFt(RI, 2022)

IT-Cpz(Valentini
et al., 2016a)
IT-Noe(Spano
etal., 2016)
IT-SRo(Gruening
et al., 2016a)

DE-Hai(Team and
Centre, 2022)
DE-Lnf(Knohl
etal., 2016)
DE-SfN(Klatt

et al., 2016)

DK-Gds(Rl,
2022)

ES-LJu(Team and
Centre, 2022)
FI-Jok(Lohila
etal., 2016)
FI-Sod(Aurela

et al., 2016b)
FR-Fon(Team and
Centre, 2022)
FR-Pue(Ourcival,
2016)

GL-ZaF(Lund
et al., 2016b)

IT-CA1(Sabbatini
et al., 2016¢)
IT-Isp(Gruening
et al., 2016b)
IT-PT1(Manca
and Goded, 2016)
IT-Tor(Team and
Centre, 2022)

DE-HoH(Team
and Centre, 2022)
DE-Obe(Team
and Centre, 2022)
DE-
Spw(Bernhofer
et al., 2016)

DK-Sor(Team and
Centre, 2022)

ES-LM1(Team
and Centre, 2022)
FI-Ken(Team and
Centre, 2022)
FI-Var(RI, 2022)

FR-Gri(Team and
Centre, 2022)
FR-Tou(RI, 2022)

GL-ZaH(Lund
et al., 2016a)

IT-CA2(Sabbatini
et al., 2016a)
IT-La2(Cescatti
et al., 2016)
IT-Ren(Team and
Centre, 2022)
JP-MBF(Kotani,
2016b)
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JP-SMF(Kotani,
2016a)

PA-SPs(Wolf

et al., 2016a)
RU-Hal(Belelli
etal., 2016)
SE-Ros(Team and
Centre, 2022)

US-
ARI1(Billesbach
et al., 2016b)
US-
BZB(Euskirchen,
2022b)

US-
Blo(Goldstein,
2016)
US-CS1(Desai,
2022a)

US-
GBT(Massman,
2016)
US-Hn3(Liu

et al., 2022)

US-Jo2(Vivoni
and Perez-Ruiz,
2022)

US-

LWW (Meyers,
2016a)

MX-Tes(Yepez
and Garatuza,
2021)
PE-QFR(Griffis
and Roman, 2021)
SD-Dem(Ardo

et al., 2016)
SE-Svb(Team and
Centre, 2022)

US-
AR2(Billesbach
et al., 2016a)

US-
BZF(Euskirchen,
2022c)
US-CF1(Huggins,
2021)

US-CS2(Desai,
2022c¢)

US-
GLE(Massman,
2022)

US-
Ho2(Hollinger,
2022)

US-
KFS(Brunsell,
2022a)
US-Lin(Fares,
2016)

MY-PSO(Kosugi
and Takanashi,
2016)
RU-Che(Merbold
etal., 2016)
SE-Deg(Team and
Centre, 2022)

SJ-
Adv(Christensen,
2016)
US-ARM(Biraud
etal., 2022)

US-
BZS(Euskirchen,
2022d)
US-CF2(Huggins,
2022c)

US-CS3(Desai,
2022d)
US-Goo(Meyers,
2016b)

US-
IB2(Matamala,
2016)

US-
KLS(Brunsell,
2022b)
US-Los(Desai,
2016¢)

NL-Hor(Dolman
etal., 2016a)

RU-Cok(Dolman
et al., 2016b)
SE-Htm(Team
and Centre, 2022)
SJ-Blv(Boike
etal., 2016)

US-ARb(Torn,
2016b)

US-
BZo(Euskirchen,
2022a)
US-CF3(Huggins,
2022a)

US-CS4(Desai,
2022b)
US-HB1(Forsythe
etal., 2021)

US-
ICs(Euskirchen

et al., 2022a)
US-KS1(Drake
and Hinkle,
2016a)
US-MMS(Novick
and Phillips,
2022)

NL-Loo(Team
and Centre, 2020)

RU-Fy2(Team
and Centre, 2022)
SE-Lnn(Team and
Centre, 2020)
SN-Dhr(Tagesson
etal., 2016)

US-ARc(Torn,
2016a)

US-Bil(Rey-
Sanchez et al.,
2022b)
US-CF4(Huggins,
2022b)

US-Cop(Bowling,
2016)
US-HWB(Goslee,
2022)

US-
ICt(Euskirchen
et al., 2022b)
US-KS2(Drake
and Hinkle,
2016b)
US-MOz(Wood
and Gu, 2022)

PA-SPn(Wolf
et al., 2016b)

RU-Fyo(Team
and Centre, 2022)
SE-Nor(Team and
Centre, 2022)
US-
A32(Billesbach
et al., 2022)
US-Atq(Zona and
Oechel, 2016a)

US-Bi2(Rey-
Sanchez et al.,
2022a)
US-CRT(Chen
and Chu, 2016b)

US-EDN(Oikawa,
2021)
US-Hal(Munger,
2016)

US-Ivo(Zona and
Oechel, 2016b)

US-KS3(Hinkle,
2022)

US-Mel(Law,
2016¢)
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US-Me2(Law, US-Me3(Law, US-Me4(Law, US-Me5(Law, US-Me6(Law, US-Mpij(Litvak,

2022) 2016a) 2016e) 2016d) 2016b) 2021)

US- US-NGB(Torn US-NR1(Blanken = US-Nel(Suyker, US-Ne2(Suyker, US-Ne3(Suyker,

Myb(Sturtevant and Dengel, 2021) et al., 2022) 2022) 2016b) 2016a)

et al., 2016)

US- US-ORv(Bohrer, US-OWC(Bohrer  US-Oho(Chen US-PFa(Desai, US-

ONA(Silveira, 2021) and Kerns, 2022) et al., 2016) 2016d) Prr(Kobayashi

2021) and Suzuki, 2016)

US- US-Rol(Baker US-Ro4(Baker US-Ro5(Baker US-Ro6(Baker US-

Rms(Flerchinger, et al., 2022) and Griffis, and Griffis, 2021)  and Griffis, Rwe(Flerchinger

2022c) 2022a) 2022b) and Reba, 2022)

US- US- US-SRC(Kure, US-SRG(Scott, US-SRM(Scott, US-Sne(Shortt

Rwf(Flerchinger, Rws(Flerchinger, 2022) 2016a) 2016b) et al., 2022)

2022a) 2022b)

US-Snf(Kusak US-Sta(Ewers and ~ US-Syv(Desai, US- US-Tw1(Valach US-

et al., 2022) Pendall, 2016) 2016b) Ton(Baldocchi etal., 2021) Tw2(Sturtevant
and Ma, 2016) et al., 2022)

US- US-Tw4(Sanchez  US-Tw5(Valach US- US-UM3(Bohrer, US-UMB(Gough

Tw3(Chamberlain et al., 2016) et al., 2022) Twt(Baldocchi, 2022) et al., 2016)

et al., 2022) 2016)

US-UMd(Gough US-Var(Baldocchi  US-WCr(Desai, US-WPT(Chen US-Whs(Scott, US-Wi0(Chen,

et al., 2022) et al., 2016) 2016a) and Chu, 2016a) 2016d) 2016g)

US-Wil(Chen, US-Wi2(Chen, US-Wi3(Chen, US-Wi4(Chen, US-Wi5(Chen, US-Wi6(Chen,

2016e) 2016j) 2016b) 2016d) 2016a) 2016h)

US-Wi7(Chen, US-Wi8(Chen, US-Wi9(Chen, US-Wjs(Litvak, US-Wkg(Scott, US-

20161) 2016c¢) 2016f) 2022) 2016c¢) xBR(Network),

2022)

Meteorological data measured at each site consisted of incoming shortwave radiation, air temperature and vapor pressure

deficit, of which all data were gap-filled using the Marginal Distribution Sampling method (Reichstein et al., 2005), as well

as the computed potential shortwave incoming radiation (top of atmosphere theoretical maximum radiation) for every hour.

Carbon dioxide flux data consisted of gap-filled net ecosystem exchange (N E E, variable ustar threshold 50th percentile i.e.,

NEE_VUT_50) and the corresponding gross primary productivity (G PP, nighttime partitioning method (Reichstein et al.,
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2005)). Water flux data consisted of evapotranspiration (E7T, no energy balance correction) which was converted from the
latent energy and transpiration estimates based on the Transpiration Estimation Algorithm (TEA) (Nelson et al., 2018; Nelson,

2021). All data were aggregated to a common hourly time resolution, an overview of which can be found in Table 2.

Table 2: Fluxes to be predicted and predictor variables used in X-BASE. The units of the fluxes correspond to the native

hourly resolution. Upon temporal aggregation as in some analyses in the presented results, the units may change.

predicted fluxes

NEE umolCOq-m=2. 571 net ecosystem exchange
GPP umol COq-m™2. 571 gross primary productivity
ET mm - hr~1 evapotranspiration

ETr mm - hr~1 transpiration

predictor variables

air temperature °C

vapor pressure deficit hPa

incoming shortwave radiation W -m~—2
potential incoming shortwave radiation W -m=2
derivative of daily pot. incoming shortwave radiation W.-m=2.d7!
derivative of hourly pot. incoming shortwave radiation W-m=2.hr—!
daytime land surface temperature from MODIS TERRA kelvin
nighttime land surface temperature from MODIS TERRA kelvin

enhanced vegetation index -
near-infrared reflectance of vegetation -
normalized difference water index -

plant functional type -

Data from the EC dataset that ultimately were used for training the models varied between ~12-14 million site-hours depend-
ing on the target variable (i.e. GPP, NEE, ET, or E'Tr). Training of the machine learning algorithms was only conducted
on hours where all input variables passed quality control. The quality control procedure consisted of two levels, with the first
being each hour must have at least one value of good quality measured or gap-filled with confidence (i.e. at least one half hour
was either O or 1 based on the OneFLUX _QC flags). Second, a set of consistency tests were performed on each used variable
to check the consistency both among variables and across sites. As the consistency flags were based on daily aggregates of

the meteorological and flux data, entire days were removed if the test indicated inconsistencies among related variables. The

11
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consistency flag also checked the relationship between variables across sites, ensuring that the relationships found across the

data are coherent. A detailed explanation of these consistency flags can be found in Jung et al. (2023).
2.2 Global Meteorology

For the generation of global flux maps we used hourly meteorological data from ERAS global reanalysis products at 0.25°
(Hersbach et al., 2020). Variables included air temperature at 2m height, incoming shortwave radiation at the surface, as well
as vapour pressure deficit (computed from relative humidity, air temperature, and surface pressure). Units were converted
to correspond to the site level measurements which were used for training the machine learning model, and the data were

re-gridded to a 0.05° resolution using bilinear interpolation for every hour.
2.3 Satellite Earth Observation

The X-BASE products are based on measurements of the MODerate Imaging Spectroradiometer (MODIS) of surface re-
flectance and land surface temperature from collection v006 at daily resolution. Missing records were gap-filled consistently
in both the average time series per EC station and in the global gridded data following the procedures of the FluxnetEO data
version 2 (Walther and Besnard et al., 2022; Walther, 2023).

2.3.1 Spectral vegetation indices

At site level we used surface reflectance in the first seven MODIS spectral bands from the MCD43A4 v006 reflectance data
set (500 m and daily, where each daily value is inverted from all valid observations within a 16-day window (Schaaf and
Wang, 2015b)). The spectral vegetation indices computed from the reflectance data were the enhanced vegetation index (EVI)
(Huete et al., 2002), the spectral reflectance of vegetation in the near-infrared (NIRv) (Badgley et al., 2017), and the normalized
difference water index (NDWI) with MODIS band 7 as reference (Gao, 1996). We followed the procedure of the FluxnetEO
data sets version 2 (Walther and Besnard et al., 2022) for data acquisition from Google Earth Engine for all pixels in a cutout
of 4x4 km? around each EC station, as well as for quality checks in terms of snow cover, land cover, index values outside
the defined ranges, and outliers. An iterative approach then determined both, the strictness of the inversion quality of the
bidirectional reflectance distribution function (BRDF, based on the MCD43A2 data, (Schaaf and Wang, 2015a)) and the set of
pixels in a cutout that shall represent a given EC station. Supporting information section A1 outlines all technical details of the
dynamic procedure.

Global data of BRDF-corrected surface reflectance stem from the MCD43C4 v006 data (Schaaf and Wang, 2015b), available
in a climate modelling grid of 0.05° with the same temporal sampling and subject to the same removal of snow and water pixels
and outlier values like at site level. The BRDF quality control of the global data followed the same dynamic approach (see

supporting information A1), which maximized data availability especially in tropical regions.

12
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2.3.2 Land surface temperature

Satellite observations of land surface temperature (LST) were based on the MODIS v006 TERRA observations which are
available every day at 1 km resolution (Wan et al., 2015). We selected the 1 km? pixel containing a specific tower and treated
the two MODIS LST data streams as independent predictor variables which represent clear-sky LST at a specific time of
the day (namely around 10.30 AM and PM local time). Quality checks and gap-filling followed the procedure described in
FluxnetEO version 2 (Walther and Besnard et al., 2022).

For the global spatialization of the flux estimates we relied on climate modelling grid LST from the MODIS TERRA data

sets (Wan et al., 2015) and apply consistent quality control and imputation of missing values like at site-level.
2.3.3 Land cover

Land cover information used the IGBP global vegetation classification. Site level classification was as reported by the principal
investigators. Global data were based on the yearly-resolved MODIS MCD12Q1 v006 product (Friedl and Sulla-Menashe,
2019). In order to ease the transition between site and global land cover classifications, an intermediate classification scheme
was utilized which translated each classification into characteristics (e.g. trees, crops, needleleaf, deciduous, etc...) based on
whether the classification has (value=1.0), might have (value=0.5), does not have (value=0.0) a specific feature, or is unknown

(value=-1.0). A full description of this intermediate classification system can be found in supplementary section A2.
2.4 Machine Learning Method

All X-BASE products are based on gradient boosted regression trees using the XGBoost library (Chen and Guestrin, 2016).
XGBoost is known as a robust algorithm that is able to handle a variety of variable types (numeric, boolean, categorical).
Training was conducted using a two-thirds training sub-sampling ratio and a 0.05 learning rate. Boosting was stopped when
no model improvement (based on mean squared error of validation data) was observed for ten consecutive rounds, and the best
performing model was stored to generate predictions. In all cases, the model reached the stopping criteria relatively quickly,

with the final number of boosting rounds between 80-230, depending on the flux.
2.5 Cross-validation

All cross-validation was performed using a 10 fold, leave-site-fold-out scheme, where each fold was constructed by randomly
assigning each site to a fold. For each round of cross-validation, eight folds were used for training, one for validation and the
remaining one as the test fold for which the actual predictions were made. The leave-site-fold-out scheme ensures that no data
from the sites in the test fold were ever seen by the algorithm during training, and in turn iterated such that each site was in
the test set once. As eddy covariance sites are sometimes clustered in the same location (e.g. as different treatments) and can
therefore be both physically closely located and not truly independent, sites are assigned to the same fold if they are less than
0.05° apart to reduce over-fitting. We evaluate the accuracy of the cross-validation models by computing the Nash-Sutcliffe

modeling efficiency (NSE, Nash and Sutcliffe (1970)), where a negative NSE indicates a model accuracy that is worse than a

13



185

190

195

200

205

210

215

https://doi.org/10.5194/egusphere-2024-165
Preprint. Discussion started: 7 February 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

mean prediction, while a value close to one indicates high model accuracy. We compute the NSE for each site and for a range

of temporal scales from hourly to inter-annual.
2.6 Up-scaling

The final step to train a model to use in the final global prediction step was identical to the training in the cross-validation,
with the exception that, because no test fold was required, we used nine of the ten folds for the training and validation was
done on the remaining fold. The final trained models (one trained model for each target flux) were then used to predict fluxes
at the global scales using the associated globally gridded input variables that correspond to those used at site level, as outlined
in Table 2.

2.7 Previous FLUXCOM and independent global flux estimates

We compare X-BASE with up-scaling results from FLUXCOM (Jung et al., 2019, 2020). As mentioned earlier, FLUXCOM
comprised an ensemble of up-scaling experiments that differed in the choice of machine learning method, meteorological forc-
ing data, and which were summarized in two groups of set-ups that shared the same predictor variables and spatiotemporal res-
olution: The “remote-sensing-only” set-up (RS) mostly used spaceborne observations of MODIS as explanatory variables and
produced flux estimates every 8 days at 0.083° resolution, while the ‘remote-sensing plus meteorology set-up’ (RS+METEO)
produced daily flux estimates at half degree resolution from meteorological predictor variables and an average seasonal cycle
of satellite observations (Tramontana et al., 2016; Jung et al., 2019, 2020). Comparisons to FLUXCOM RS+METEO datasets
always refer to the ensemble over multiple machine learning methods for all realizations driven by the ERA5 meteorology
(Hersbach et al., 2020). RS+METEO uses average seasonal cycles of MODIS v005 observations. For the FLUXCOM RS set-
up we use the ensemble over all machine learning methods. Please note that both the previous RS runs and the X-BASE runs
presented here are driven by data from MODIS v006, but the processing has changed in some aspects such as quality control
and gap-filling.

For evaluating X-BASE N EE globally, in particular its seasonal cycle and for different regions, we used two different at-
mospheric inversion model products: the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (Byrne
et al., 2023) and the CarboScope inversion (Rodenbeck et al., 2018) version s990c_v2022 (Roedenbeck and Heimann, 2022).
Estimates from the OCO-2 came from the the LNLGIS experiment which combines satellite-based column-averaged C'Os
(XCO?2) retrievals and in-situ C O, measurements as observational constraints in the assimilation, and consists of 13 different
ensemble members covering the period 2015-2020 with a monthly frequency and 1° spatial resolution (https://gml.noaa.gov/
ccgg/OCO2_v10mip/index.php). The CarboScope product consisted of a single inversion output at the same spatial resolution
as OCO-2, but a longer temporal period from 2001 to 2020. In each case, as the inversion products estimate net biome ex-
change, we subtracted from the inversions data fire emissions as estimated by the Global Fire Emissions Database, Version 4.1
(Randerson et al., 2017).

We compared temporal patterns of X-BASE G PP with the patterns in global retrievals of sun-induced chlorophyll fluores-
cence (SIF) from the Sentinel-SP TROPOMI instrument (Kohler et al., 2018), which under most conditions approximate the
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variability in GPP. For the comparison we used estimates of daily mean SIF applying a correction factor to instantaneous
observations (Zhang et al., 2018) and averaged both X-BASE G PP and TROPOMI SIF to a temporal resolution of 16 days
and 0.5° spatial grids for the common period 04/2018-12/2020.

X-BASE ET and ETp were cross-compared with transpiration estimates from the Global Land Evaporation Amsterdam
Model (GLEAM) v3.6a (Martens et al., 2017; Miralles et al., 2011). GLEAM also utilizes satellite and reanalysis data sets
but in a more physically constrained way, relying on semi-empirical models such as the Priestley and Taylor (Priestley and
Taylor, 1972) and Gash models (Gash, 1979). Further comparisons were made to precipitation data from GPCC (Schneider
et al., 2022).

3 Results
3.1 Cross-validation and data space

One important innovation in FLUXCOM-X compared to the previous FLUXCOM ensemble was the training data base, which
was larger due to an incease in both number of sites and years. Furthermore, the EC methodology has changed considerably
in many aspects ranging from collection and processing to quality filtering in the last 15 years. We show here one illustrative
example of the changes in the environmental space that is represented in the training samples for daily N EE: between daily
VPD and daily incoming shortwave radiation the distribution of training samples was considerably broader in X-BASE com-
pared to the RS+METEO ensemble (Fig. 1). Furthermore, the number of unique sites contributing to a certain VPD-radiation
bin has increased (Fig. B1), i.e. the number of ecosystems sampled in each climatic condition has also increased. The increases
were seen particularly at the margins of the distribution, i.e. for days with high VPD along the full radiation spectrum, and
vice versa for days with high radiation conditions along the full VPD spectrum. Remarkably, the number of sites contributing
training samples for high VPD and high radiation were observed much more frequently (Fig. 1) and at more sites (Fig. B1)
compared to RS+METEO - providing more and more varied information for dry conditions.

The results from the ten-fold cross validation showed an overall high performance with most fluxes and scales of variability
having an NSE above 0.6 (Fig. 2). In terms of scales of variability across all fluxes, the monthly mean diel cycle (“diel”’) and the
daily median seasonal cycle (“seasonal”’) were very regular patterns that the trained models reproduced best. Also, among-site
changes (“spatial”, except for N EE) and monthly aggregated fluxes (“monthly”) were reliably predicted. Deviations from the
median daily seasonality (“anom”) were only moderately reliable with NSE between 0.25 and 0.5. The XGBoost models did not
succeed in accurately reproducing inter-annual changes (“i.a.v.”) of all fluxes and between-site patterns in N E'E. Consistently
across all scales, the net fluxes which are directly calculated (i.e., ET" and even more so N E'F) showed lower performance
than their respective modelled gross fluxes (i.e., GPP and ETr). Note that the cross validation results from Fig. 2 cannot
be quantitatively compared to previous cross validation results in FLUXCOM as the training data are not the same. However,
qualitatively the accuracy gradient among fluxes as well as along scales of variability corresponded to patterns identified in
FLUXCOM and in comparable empirical modeling activities (Jung et al., 2011; Tramontana et al., 2016; Virkkala et al., 2021;
Dannenberg et al., 2023).
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NEE: training samples at daily scale
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Figure 1. Cross-validation sampling in meteorological space: Number of site-days contributing to sampling for N I/ F for the previous
FLUXCOM RS+METEO ensemble (left) compared to the sampling of FLUXCOM-X-BASE (right) in environmental space of daily aggre-
gated incoming shortwave radiation and VPD. Color corresponds to number of site days per bin in log scale. Only bins with at least twenty

site-days are shown.
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Figure 2. FLUXCOM-X-BASE site-level accuracy of predicted fluxes in 10-fold leave-site fold-out cross-validation in terms of NSE
computed per site for a range of scales of variability. Scales of variability include the hourly timescale (“hourly”), daily (“daily™) and
monthly (“monthly”) aggregated fluxes, as well as between-site changes (“spatial”), monthly mean diel cycle (“diel”), daily median seasonal
cycle (“seasonal”), deviations from the median daily seasonality (“anom.”), and inter-annual variability (“i.a.v.””). Boxes denote the range
from the 25th to the 75th percentile of sites, whiskers extend 1.5 times the interquartile range from the 25th and 75th percentile of NSE

across sites.
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Figure 3. Resolution improvements for the X-BASE products compared to RS and RS+METEOQ: Average N EF for an 8-day period
in Europe in 2010 as estimated from the RS, RS+METEO and X-BASE set-ups (top panel), as well as snapshots of temporal trajectories of
NEE in pixels closest to selected EC station locations (A:UK-Tad, B: DE-Hai, C: ES-LM1, D: FR-Pue). Negative values of NEE denote

a C'O3 flux from the atmosphere to the land.

3.2 Global flux estimates

One asset of FLUXCOM-X is flexibility in the spatiotemporal resolution of the flux estimates. We are producing X-BASE
products at 0.05° spatial and hourly temporal resolution globally. Figure 3 illustrates the increase in spatial and temporal detail

in X-BASE compared to RS (0.083°, 8-daily) and RS+METEO (0.5°, daily) using the example of NE FE.
3.2.1 Net Ecosystem Exchange (N EE)

The X-BASE product estimates the global terrestrial NEFE to be -5.75 & 0.33 PgC -y~ ' (2001-2020), with strong COs
uptake hotpots in the tropical regions, and temperate regions of North America and Europe (Fig. 4). In contrast to both RS
and RS+METEO, India and some regions in central Sahel show prominent patterns of a mean C'Oy flux from the ecosys-
tems to the atmosphere in X-BASE, corresponding mostly to crop designated areas (Fig. B2). However, comparing X-BASE
global terrestrial N E'E to the inversion estimates (corrected for fire emissions based on GFED 4.1 (Randerson et al., 2017))
over the common period (2015-2020) shows agreement of X-BASE (-5.63 PgC - yr~ 1) with OCO-2 (-4.12 PgC - yr~') and
CarboScope (-3.46 PgC - yr—1).

Comparison with OCO-2 and CarboScope inversions also indicates a substantial improvement of the global mean seasonal
cycle of NEF (Fig. 5) in X-BASE compared to RS and RS+METEO. The systematic bias present in RS and RS+METEOQO has
essentially disappeared in X-BASE. The shape, and in particular the amplitude, of the global N E'E seasonal cycle of X-BASE
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Figure 4. Comparison of annually integrated NE'E from X-BASE, RS+METEO with ERAS forcing and RS averaged over the period
2001-2020. The difference maps show the difference of the averages over 2001-2020.

is more consistent with the inversions. The larger and more realistic seasonal cycle amplitude of global NEE in X-BASE
originates primarily from improved and increased amplitudes in boreal regions. Interestingly, X-BASE suggests slightly larger
NEE seasonal cycle amplitudes in temperate regions compared to the inversions. In seasonally dry regions, the timing of
maximum uptake is consistent between X-BASE and inversions, while the peak of maximum net release is larger and delayed
in the inversions. In Australia, the peak of C'(s release to the atmosphere at the end of the year present in both inversions is not
evident in X-BASE, which instead shows a relatively consistent C'O5 flux to the atmosphere throughout the year. In tropical
regions, the patterns of seasonal variations are qualitatively consistent between X-BASE and the previous RS and RS+METEO
products. The seasonal patterns in tropical regions are relatively weak overall and seem inconsistent both between the inversions
and X-BASE as well as among the inversions.

As seen in Figure 5, the X-BASE product shows the same large underestimation of globally integrated N F'E' inter-annual
variance as the previous RS and RS+METEO products. In terms of temporal trends, the X-BASE products show almost no
change in annual NEE in time, which is in contrast to the RS+METEO (slight positive trend) and RS (slight negative trend)
and more consistent with the CarboScope inversions (Table B2). However, as inter-annual variability was poorly reproduced
even in the cross validation (Fig. 2), trends in the X-BASE products should be taken with caution and interpreted with careful

scrutiny.
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Figure 5. Seasonal and inter-annual variability of global N E IZ. Comparison of mean seasonal cycles (calculated over the common time
period, 2015-2020) and inter-annual variability (2001-2020) of N EE estimated from CARBOSCOPE and OCO2 inversions as well as
FLUXOM-X-BASE and FLUXCOM RS+METEO and RS outputs. All products were integrated with a common mask that removes sparsely
vegetated arid regions not predicted by RS and RS+METEO.
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Figure 6. Comparison of annually integrated G P P from X-BASE, RS+METEO with ERAS forcing and RS averaged over the period 2001-
2020. The difference maps show the difference of the averages over 2001-2020.

3.2.2 Gross Primary Productivity (GP P)

X-BASE estimates the globally integrated G PP at 124.7 4 2.1 PgC -yr ! on average in the time period 2001-2020. Globally
integrated G PP over vegetated areas (RS and RS+METEO do not have estimates for non-vegetated areas) was approximately
equal for X-BASE (121.9 + 2.1 PgC -yr—1) and RS+METEO (121.6 4 0.4 PgC -yr—!) but considerably higher than RS
(113.2 £ 1.8 PgC -yr— 1) over the same period. In terms of regional patterns, X-BASE G PP consistently exceeds both
RS+METEO and RS in temperate, boreal, and most subtropical ecosystems, but is lower in sparsely vegetated (semi-)arid
regions like southwestern North America as well as southeast Asian croplands (Fig. 6). This qualitatively consistent pattern is
only broken in the humid tropics, where X-BASE GGP P is higher than RS, but lower than RS+METEO.

Comparing the estimated trend over the last two decades, X-BASE G P P has a clear increasing linear trend of 0.34 PgC'-
yr~2 which is slightly higher than the trend in RS (0.25 PgC - yr 2, Table B2). In contrast, the RS+METEOQ product shows
nearly no trend in annual GPP. The increases in both the X-BASE and RS products may be related to increases in surface
greenness coming from variability in the remote sensing forcing data which are inter-annually dynamic in both products,
whereas the remote sensing data were not inter-annually dynamic in the RS+METEQ product which instead used only the
mean seasonal cycle of the remote sensing data. The magnitude of between-year changes in globally integrated X-BASE G PP
is 0.575 PgC -yr~! over the years 2001-2020, which is about twice as large as RS+METEOQ (0.248 PgC'-yr~1), but only half
the magnitude estimates in the RS set-up (1.02 PgC - yr—!, Table B2).
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We further compared the temporal trajectory in G PP estimates against TROPOMI SIF as an independent proxy for GPP
dynamics (Fig. 7) at a temporal resolution of 16 days. The temporal variability of X-BASE G PP strongly agrees with that in
TROPOMI SIF, with Squared Spearman correlation values (denoted as R2) of the time series above 0.85 across most of the
vegetated land surface (Fig. 7 top left). The only exceptions are regions with no or very small variability in both GP P and SIF
such as in either evergreen tropical ecosystems in South America, Africa and southeast Asia, or sparsely to non-vegetated areas
due to aridity (e.g. Mexican, and African deserts) or cold conditions (e.g. Canadian and Siberian subpolar regions). In inner
Australia, despite being sparsely vegetated, variability between years is expected in G PP due to precipitation increases during
La Nina years, which is however not reflected in the squared correlations. R? for the deviations from the average seasonality
(again computed with a temporal resolution of 16 days) show the same qualitative spatial patterns (Fig. 7 top right), but are
overall lower with R? values between 0.55 and 0.8. Anomalies of X-BASE G PP and SIF agree best in eastern European
temperate forests as well as grassy and shrub ecosystems in eastern South America.

Comparison of the level of agreement of SIF and X-BASE with that of SIF and RS and RS+METEO, respectively, illustrates
that X-BASE and RS G PP estimates have comparable consistency both for the time series (global area weighted mean R?
values of 0.72 and 0.73, respectively) and anomalies (global mean R? values of 0.64 and 0.66, respectively). In contrast, the R?
between RS+METEO and SIF is lower in both cases (R? values of 0.66 for the time series and 0.58 for anomalies). X-BASE
G PP shows a higher agreement with SIF than RS both in terms of the actual trajectory and anomalies in evergreen tropical
forests with no or only a very short dry season in the Amazon and Africa, as well as in fully humid parts of southeast Asia (Fig.
7 middle panel). Improvements in X-BASE G PP compared to RS are also consistent in the very continental and polar tundra
areas in eastern Siberia, northern Canada and Alaska. Conversely, in arid steppe climates globally, X-BASE G P P variability
agrees less with SIF than does RS GPP. X-BASE G PP variability is consistently and widespread much more similar to
the variability in TROPOMI SIF than RS-METEO G PP. Increases in R? for X-BASE compared to RS+METEQO are most
pronounced in arid to semi-arid ecosystems (large parts of the Caatinga and Gran Chaco regions on South America, steppe
regions in Mexico, southern and eastern Africa, Australia and central Siberia) as well as in global crop regions, especially for

the deviations from the seasonality (albeit the magnitude of R? change is quite variable between regions, Fig. 7 bottom).
3.2.3 Water Vapor Fluxes

Globally integrated ET amounts to 74.7x103 £ 0.9x10% km? - yr~! for 2001-2020 (Table B1) for X-BASE, with the highest
rates in the tropics (Fig. 8). Comparing global totals for vegetated areas only (where all products give outputs) shows similar
values for X-BASE (68.9x10% & 0.9x10% km3-yr—1), GLEAM (70.9x103 4 0.9x103 km?-yr—!) and RS+METEO (68.3x10?
+0.3x10% km3 - yr—1) ET estimates, while the RS ET is more than 11% higher (78.5x10% & 0.5x103 km? - yr~—!, Table B1).
Particularly in evergreen tropical ecosystems, X-BASE estimates a considerably lower ET" than both GLEAM, RS+METEO,
and RS (Fig. 8). Furthermore, in the temperate and high latitudes of the northern hemisphere, annually integrated X-BASE
ET is consistently lower than the other estimates, though the magnitude of the bias is smaller than in the tropical regions.
The pattern is only reversed with higher X-BASE ET in the semi-arid and arid ecosystems of the lower and middle latitudes,
especially with respect to annual £T" in RS+METEO and GLEAM.
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Figure 7. Similarity of temporal patterns between i P P estimates and TROPOMI SIF observations: /22 (computed as the square of
the Spearman correlation) between X-BASE G P P and TROPOMI SIF (K6hler et al., 2018) for the actual time series at a temporal resolution
of 16 days (top left) and anomalies from the median seasonality in both variables (top right). The middle and the bottom panels relate the
agreement between X-BASE G'P P and TROPOMI SIF to the agreement between FLUXCOM G PP and TROPOMI SIF, where the middle
panel refers to TROPOMI SIF and GP P from the RS+METEO set-up, and the bottom panel to the RS set-up. All comparisons are done for
time series with a resolution of 16 days for the common time period 04/2018 to 12/2020. SIF observations have been applied a correction

factor to estimate daily average SIF before aggregation. Semi-transparent areas mark pixels in which the correlation of at least one of the

data sets is negative.
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Comparison to precipitation estimates shows that X-BASE ET' greatly exceeds precipitation inputs over large areas, indi-
cating a strong overestimation of X-BASE ET in many arid regions with sparse vegetation (e.g. the Sahara region, Fig. B3).
While transport of water both laterally and from deeper groundwater could cause ET to exceed precipitation inputs in some
areas, the extent of area where E'T" exceeds precipitation (e.g. the entire Sahara region) and the magnitude of the excess ET
(over three times precipitation inputs) indicates a major bias in these areas and is likely due to a lack of EC data in similar
ecosystems. As a rough estimate, constraining the X-BASE estimates with precipitation (see supplement section B5) suggests
about 4-6x10% km? - yr—1 of water is overestimated globally.

The globally integrated ET amounts to 42.6x103 £ 1.0x10% km? - yr—! (2001-2020) in X-BASE, resulting in an average
ratio of transpiration to total evaporation of 57.0% =+ 0.6% (Table B1). In contrast to ET’, the E'I estimates from X-BASE do
not commonly exceed precipitation estimates (Fig. B3), which could indicate that because the water vapor flux is more tightly
coupled with vegetation, the model is able to distinguish that no vegetation corresponds with no transpiration, which is not
generally the case for non-transpiration evaporation. The RS and RS+METEO products did not produce E17 estimates, so
the comparison is limited to GLEAM (50.7x10% & 0.6x10® km3 - yr—1), which estimates ET on average 17% higher than
X-BASE, with strong contributions from the evergreen tropics. Only in single semi-arid regions, such as northernmost Sahel
as well as large parts of the South American Caatinga and Chaco regions is this pattern reversed (Fig. 8).

Spatially, X-BASE-estimated ETr/ET exceeds 50% in the majority of areas, with the highest values seen in the higher
latitude regions of Europe and Asia, as well as in subtropical ecosystems (Fig. 8). Arid regions with sparse vegetation show
the lowest ETr/ET overall, with values generally below 20%. With 71.4% + 0.6% over global vegetated surfaces, GLEAM
attributes about 10% more of its ET" to E7T’r than does X-BASE (Table B1). Regionally, this difference can even reach up to
40%, with the only exception being boreal forests and very dry ecosystems in the Sahel, the Arabian Peninsula and central
Asia (Fig. 8).

Trends in ET, ETr and ETr/ET are positive and exceed the trends seen in all other estimates over the years 2001-2020.
Conversely, the magnitude of inter-annual changes in X-BASE ET, ETrp, and ETr/ET is mostly less than half than the
variability in GLEAM (Table B2). Low inter-annual changes are common to the RS and RS+METEO ET as well.

Figure 9 shows the temporal correlation at 16-daily temporal scale using GLEAM as a reference, showing overall high
values of squared correlation between X-BASE and GLEAM ET and ET7 (top and bottom left). Notable exceptions with
low correlations are areas with low variability in E7T" such as the arc of deforestation, very dry areas, and tropical evergreen
ecosystems in Africa. Compared to RS+METEO and RS (middle panels left column in Fig. 9), X-BASE ET temporal patterns
are more similar to GLEAM FET in many areas, and especially so in areas north of the arc of deforestation and parts of
tropical evergreen areas in central Africa and souteast Asia. Conversely, X-BASE ET agrees less well with GLEAM than RS
or RS+METEQO in the arc of deforestation itself, the eastern parts of the Amazon basin, as well as dry areas. The deviations
from the mean annual cycle in ET and E7T7r (right column) show overall lower correlations than the actual time series, with
the highest agreement between GLEAM and X-BASE in large parts of the Amazon forest and central European ecosystems.
X-BASE ET' anomalies are much more strongly correlated with GLEAM ET than either RS or RS+METEO everywhere

except for most (semi-)arid regions.
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Figure 8. Comparison of evaporative flux estimates 7', ETr and ETr/ET from X-BASE and its difference with RS, RS+METEQ,
and GLEAM. E'Tr is compared in the case of GLEAM, but is unavailable in the previous FLUXCOM ensembles.
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Figure 9. R* (computed as the square of the Pearson correlation) between X-BASE ET and GLEAM ET for the actual time series (left
column) and anomalies from the median seasonality (right column). The middle panels compare the agreement between X-BASE ET" and
GLEAM ET to the agreement between FLUXCOM ET" and GLEAM ET'. The bottom panel shows the squared correlations between X-
BASE and GLEAM E'T’r, but no comparisons to FLUXCOM because FLUXCOM did not include ETr. All comparisons are done for time

series with a resolution of 16 days and 0.05 degrees for the years 2001-2020. Semi-transparent areas mark pixels in which the correlation of
at least one of the data sets is negative.
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4 Discussion
4.1 Higher consistency of IN EE with atmospheric carbon cycle constraints

Although FLUXCOM-X follows the same fundamental approach as FLUXCOM, we find a substantial improvement of the
magnitude of the annually integrated N EE of FLUXCOM-X-BASE over previous FLUXCOM products (Jung et al., 2020)
when compared to independent estimates from atmospheric inversions. The mean global X-BASE NEE of -5.75 PgC -
yr~1 is slightly smaller than the inferred NEE of -3.92 PgC - yr—! (corrected for fire emissions based on GFED 4.1) from
CarboScope. The remaining difference could easily be explained by carbon sources such as aquatic evasion and volatile organic
compounds that are included in the atmospherically based estimate but not in eddy-covariance based FLUXCOM (see Jung
et al. (2020) and Zscheischler et al. (2017) for further discussion).

The improved global N E'E of FLUXCOM-X-BASE originates most likely from enhanced quality of eddy covariance mea-
surements in the training. Previous up-scaling-based N E'E products of (Jung et al., 2011, 2020; Bodesheim et al., 2018) -
all based on the La Thuile FLUXNET dataset but varying with respect to machine learning methods, predictor variables, and
temporal resolution - consistently estimated a nearly three-fold larger global terrestrial carbon uptake compared to X-BASE.
As discussed and speculated in Jung et al. (2020), La Thuile likely contained biased N E'E measurements, in particular for
some tropical sites (Fu et al., 2018), and together with the sparsity of data in the tropics, these biases were propagated to
unrealistic tropical and global N E'E estimates. The fact that we can now reconcile bottom-up global eddy-covariance-based
N EFE and estimates from top-down atmospheric inversions is a major achievement of the FLUXNET community. For context:
1 PgC -yr—" over the global vegetated area (145 x 106km?) corresponds to ~7 gC - m? - yr—!, which marks a challenge for
achieving such accuracy of mean N EE at any one flux tower site. The lesson learned here emphasizes once more that it is
crucial to control for and minimize systematic biases of in-situ eddy covariance measurements (Moncrieff et al., 1996).

The improved seasonality of X-BASE N E'FE, in particular for boreal regions, likely also results from enhanced information
in the training data due to the hourly resolution. Similar improvements were observed in Bodesheim et al. (2018) who extended
RS+METEO by training on half-hourly flux observations. The hourly resolution improves the seasonal high-latitude NEE
likely due to better capturing the responses to light when daylength varies strongly.

4.2 New opportunities by X-BASE products

The improvements of N E'E make X-BASE attractive as a data-driven biogenic prior for atmospheric inversions (Munassar
et al., 2022). Moreover, its hourly resolution facilitates better integration in inversion systems due to the accounting of diurnal
flux and atmospheric transport variations, while its high spatial variations can provide patterns of flux variations that cannot be
resolved by atmospheric constraints alone.

For the first time, X-BASE includes a global data-driven product of ecosystem transpiration. The estimated global ETr/ET
ratio of 57% is consistent with independent top-down assessments from isotope base methods (Good et al., 2015; Coenders-
Gerrits et al., 2014) and past up-scaling estimates (Wei et al., 2017; Schlesinger and Jasechko, 2014). The spatially and tem-

porally high resolution data-driven X-BASE ET7 product provides a valuable complementary perspective to simulations from
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process-based land surface models, which show large disagreements and often indicate global ETr/ET below 50% (Berg
and Sheffield, 2019; Miralles et al., 2016). This advancement opens new opportunities for large scale studies of carbon- water
relations on a diurnal time scale. The generation of the X-BASE E7T7 product was facilitated by the development of site-level
evapotranspiration partitioning methods (Nelson et al., 2018, 2020) underlining once more the importance of advances by the

FLUXNET community for Earth system science.

5 Tackling persistent challenges

Next to these improvements and opportunities, we find that some key issues previously identified in FLUXCOM (Tramontana
et al., 2016; Jung et al., 2020; Bodesheim et al., 2018) persist in X-BASE. These include the insufficient representation of
water-related effects, the limited predictability of the spatial patterns of mean N E'E, as well as severe limitations with respect
to the variability between years and over decades. The overestimation of mean ET in very dry, sparsely vegetated areas (Fig.
B3), as well as the poorer consistency of NEE seasonality with inversions in water limited regions (Fig. 5) illustrate the
persistent challenge and importance of capturing water effects on land-atmosphere flux variations. For G P P temporal patterns
we find that X-BASE shows improved agreement with SIF in water limited regions compared to RS+METEO (Fig. 7), which
is likely because X-BASE uses concomitantly changing remote sensing observations opposed to a mean seasonal cycle only
in RS+METEO. However, X-BASE shows deteriorated agreement with SIF when compared to RS, even though X-BASE was
trained on hourly flux observations with improved coverage of dry conditions (Fig. 1). This decrease in performance indicates
clearly the importance and uncertainty related to the predictor variable set for capturing water related effects. Thus, there is
considerable potential for advancements by including remote sensing based predictors on soil moisture, sub-daily varying land
surface temperature from geostationary satellites, SIF, and vegetation optical depth. Here, a key challenge resides in achieving
a sensible integration of flux observations with footprints that are much smaller than corresponding Earth observation products.

Missing predictor variables is likely also a main reason for the limited skill of predicting between site variability of mean
NEF (Fig. 2), which can depend on legacy effects of disturbances and management that are not accounted for. Novel and
complementary Earth observation products that characterise ecosystem structure and states related to biomass and canopy
heights from SAR and LIDAR should help raise the accuracy of FLUXCOM-X based mean N E'E in future efforts. X-BASE
shows a prominent pattern of carbon flux to the atmosphere in sub-tropical and crop dominated regions of India and the Sahel,
which emphasizes the need to improve in-situ data coverage for agricultural systems, especially outside the temperate zone,
and including important meta-data to better characterize these ecosystems and their site history. Despite the greatly reduced
overall bias of mean NEE, we emphasize that X-BASE products are pre-mature for diagnosing spatial variations of mean
NEE.

The representation of longer term dynamics remains an area with opportunity for improvements in X-BASE. Inter-annual
variability is still poorly reproduced in cross validation (Fig. 2), particularly for N E'E, which is likely not only due to the
complexity of processes shaping inter-annual variations but also due to temporal discontinuities in flux tower time series related

to changes in instrumentation and factors like management (Jung et al., 2023) that are not accounted for. The complexities of
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relying on field deployed instrumentation, together with the uncertainties related to linking satellite and flux data, causes poor
signal to noise ratios and may impede good cross-validation results for i.a.v.. Globally, comparisons of X-BASE with inversions
reveal an underestimated inter-annual variance and a poor correlation for global N E'E i.a.v. (Fig. 5 and Table B2). Interestingly,
X-BASE G PP shows improved correspondence with SIF anomalies compared to RS+METEO, especially in water limited
regions (Fig. 7), while no such improvement is evident for global N E'E, which is likely due to the compensatory water effects
in the global N FEFE signal (Jung et al., 2017). That a comparison of RS+METEO runs with different meteorological forcing
data showed the weakest correspondence with inversion i.a.v. when using ERAS (Jung et al., 2020) explains the substantially
better correlations of RS+METEO with inversions for N EFE i.a.v. in earlier studies (Jung et al., 2017, 2020), and may also
explain the poor correlation of X-BASE. Thus, testing if alternative meteorological forcing data can improve global NEE
i.a.v. for X-BASE is an important next step. It remains unclear at this point if accurate inter-annual variations at site-level and
globally can be achieved by the FLUXCOM approach in the near future. Additional constraints beyond FLUXNET such as
atmospheric CO, measurements (Upton et al., 2023) or theoretical considerations in the form of hybrid (Reichstein et al.,

2019) or deep learning models (Camps-Valls et al., 2021) are promising and such endeavours should be fostered.

6 Conclusions

We presented X-BASE, a new set of global high-resolution data-driven products of land-atmosphere fluxes from the FLUX-
COM approach. This represents a cornerstone of our developments of the FLUXCOM-X framework designed to explore and
mitigate current limitations to up-scaling from site to global scale. Improvements of the eddy covariance data facilitated rec-
onciling estimates of global terrestrial net carbon exchange from X-BASE with top-down atmospheric inversions, and allowed
for the first time the generation of a global data-driven estimate of ecosystem transpiration. Beyond fostering all activities to
enhance quality and coverage of available flux tower observations, most promise for future advancements by FLUXCOM-X
relates to the synergistic exploitation of complementary satellite data streams to better capture water-related, site-history, and
management effects. This will be challenging as it requires developing strategies and methodologies to better integrate in-situ
flux observations and spaceborne Earth observations with very heterogeneous acquisition properties and with spatial resolu-
tions that are often very coarse compared to flux tower footprints. The recent de-orbiting of the TERRA spacecraft requires
employing alternative satellite missions where practical issues of data acquisition and conceptual issues related to temporal
consistency and reduced overlap with FLUXNET records pose imminent challenges. With FLUXCOM-X we have prepared
the ground for tackling these challenges which can facilitate up-to-date and accurate flux estimates and thereby contribute to

increased understanding of the Earth system in the future.
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Appendix A: Details on processing of Earth Observation Data
Al Dynamic quality control and cutout size

The conditions in the pixels around a given EC station should best represent the conditions of the land surface in the area
where the actual fluxes originate from. Given that the actual flux footprints are not generally available or computable for lack
of critical information, we assume that the pixel containing the actual EC station (the ‘tower pixel’) is most representative
for the dynamics of the area of influence on a tower. However, data availability and quality in the tower pixel is often in-
sufficient. An iterative approach therefore selects both the cutout size and the strictness of the BRDF inversion quality from
within defined bounds in a way that maximizes data availability and that ensures representativeness of the spatially averaged
time series for the given site at the same time. In more detail, we start with a strict criterion for BRDF inversion quality
(BRDF_Albedo_Band_Quality_Bandx flag in MCD43A2 <= 2, meaning only full inversions). Then three options regarding

the cutout size are considered:

A) only the tower pixel,

B) those 20% of pixels within 4x4 km? around a tower that are best correlated with the tower pixel are linearly regressed
against the tower pixel and subsequently spatially averaged,

C) the 25% of pixels within a 4x4 km? area that are closest to the tower are averaged with the inverse of the distance to the

tower as weight.

The criteria for selection between options A-C is based on the number of available good quality observations n in the

resulting spatial average time series per site as follows:

if (n_A >= 60 %) & (n_B <= 70 %):
select A

elif (n_A >= 60 %) & (n_B >= 70 %):
select B

elif (n_A < 60 %) & (n_A > 15 %):
select B

else:

select C

If after the previous steps still less than 40% of good quality observations outside of snow covered times are available in the
resulting average time series for a given site and index, the BRDF inversion quality threshold is relaxed to also allow magnitude
inversions (MCD43A2 BRDF inversion quality flag <= 3), and the procedure to select the pixels contributing to the average
described above is repeated. Consequently, the size of the area that a MODIS reflectance time series represents varies between

sites, and so does the BRDF inversion quality.
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For the global gridded MODIS data, the BRDF inversion quality is consistently selected as <=2 or <=3 based on the number

of available good quality observations in a pixel.
A2 Details on the treatment of land cover information

Land cover information was passed through an intermediary classification system to both act as an encoding mechanism and to
allow for arbitrary links between classification schemes. Rather than simple true/false classification for each category, different
attributes are classified based on whether the classification has (value=1.0), might have (value=0.5), does not have (value=0.0)
a specific feature, or is unknown (value=-1.0). In the specific case of the MCD12Q1 classificaiton scheme, the conversion is as

seen in Table Al.

Table Al: Land cover intermediary classification encoding for MCD12Q1 classifications.

Trees  Shrubs Grasses Crops Unveg Water Wetland C4_photdManagedNeedleleBroadleaDeciduousvergreen

ENF 1 0 0 0 0 0 0 0 -1 1 0 0 1
EBF 1 0 0 0 0 0 0 0 -1 0 1 0 1
DNF 1 0 0 0 0 0 0 0 -1 1 0 1

DBF 1 0 0 0 0 0 0 0 -1 0 1 1

MF 1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1
CSH 05 1 0 0 0 0 0 -1 -1 -1 -1 -1 -1
OSH O 1 0.5 0 0.5 0 0 -1 -1 -1 -1 -1 -1
WSA 1 0.5 0.5 0 0 0 0 -1 -1 -1 -1 -1 -1
SAV 0.5 0.5 1 0 0 0 0 -1 -1 -1 -1 -1 -1
GRA O 0 1 0 0 0 0 -1 -1 0 0 0 0
SNO -1 -1 -1 -1 0 0.5 1 0 0 -1 -1 -1 -1
CRO O 0 1 0 0 0 -1 1

WET 0 0 0 0 0 1 0 0 0
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Appendix B: Additional results

500 B1 Additional cross-validation results

NEE: training samples at daily scale
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Figure B1. Cross-validation sampling in meteorological space: Number of unique sites contributing to sampling for N E'E for FLUXCOM
RS+METEO (left) compared to the sampling in the X-BASE set-up (right). Color corresponds to number of unique sites per bin in log scale.
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B2 Large carbon uptake in tropical croplands

NEE: X-BASE

Figure B2. Large carbon uptake in tropical croplands
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B3 Global magnitude of all fluxes

EGUsphere\

Table B1: Global magnitude of all fluxes. Column Global Total is the globally integrated flux for all areas including sparsely

vegetated dry areas from 2001-2020. The column Veg. Areas includes a common mask which removes sparsely vegetated areas

which are not computed for the RS and RS+METEO products. Values reported after the & correspond to the standard deviation

across years.

Global Total Veg. Areas
NEE

PgC -yr—1 PgC -yr—1
X-BASE -5.75£0.33 -7.12 £0.32
RS+METEO - -21.27 £ 0.59
RS - -19.08 + 0.93
CarboScope -3.88 £0.84 -3.92+0.84
GPP

PgC -yr—1 PgC -yr—1
X-BASE 1247 £ 2.1 121.9 £ 2.0
RS+METEO - 121.6 £ 0.4
RS - 1132 £ 1.8
ET

km3 . yr—1 km3 - yr—!
X-BASE 74.7x10% £ 0.9x10%  68.9x10% £ 0.9x103
RS+METEO - 68.3x10% + 0.3x10°
RS - 78.5x10% £ 0.5x103
GLEAM 72.5x10% £ 1.0x10%  70.9x103 + 0.9x103
ETr

Em3 - yr—! km3 - yr—!
X-BASE 42.6x10% £ 1.0x10%  41.8x103 £ 0.9x103
GLEAM 50.7x10% 4+ 0.6x10%  50.7x10% 4 0.6x103
ETr/ET
X-BASE 57.0% + 0.6% 60.7% =+ 0.6%
GLEAM 70.0% + 0.6% 71.4% + 0.6%
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B4 Linear trends and inter-annual variability for all fluxes

Table B2: Long-term variability of fluxes. Column linear trend is the linear slope of annually integrated fluxes over the years

2001-2020. The column inter-annual variability is computed as the standard deviation of annually integrated fluxes after the

trend is removed.

Linear Trend

Inter-annual Variability

NEE

X-BASE
RS+METEO
RS
CarboScope
GPP

X-BASE
RS+METEO
RS

ET

X-BASE
RS+METEO
RS

GLEAM
ETt

X-BASE
GLEAM
ET1/ET

X-BASE
GLEAM

PgC -yr—2
0.017
0.095
-0.129
0.006

PgC -yr—2
0.340
-0.053
0.248

Em3 - yr—2

0.144x103

-0.010x103

0.053x103

0.102x10?
km3 - yr—2
0.158x103
0.035x103
% -yr—1
0.102%
-0.054%

PgC -yr—1
0.306
0.229
0.557
0.837

PgC - yr—1
0.575
0.246
1.023

Em3 - yr—1

0.331x103

0.301x103
0.392x103
0.730x103
km3 . yr—1
0.277x103
0.596x103

%
0.157%
0.452%
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BS Potential overestimation of ET in dryland areas

Maps in Fig. B3 show the extend where ET" and E’I7 exceed precipitation as the ratio between the total of each flux to total
precipitation (from GPCC Schneider et al. (2022)). Overall, X-BASE ET largely exceeds precipitation in most dry, sparsely
vegetated areas, indicating overestimation. In contrast, ET does not show such extensive overestimation, limited instead to
only smaller regions of the Sahara.

The amount of overestimation of X-BASE ET' can be roughly estimated by replacing areas where annual E'T" exceeds pre-
cipitation inputs with the corresponding annual precipitation inputs for each grid cell, i.e. replacing areas where the ET'/precip
ratio is more than a threshold with the precipitation rather than the estimated E7T". Using thresholds from 1.25 to 2.5 gives an

excess of ET (i.e. original ET minus precipitation corrected) from 3.9x103 to 6.1x103 km? - yr—1.
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X-BASE ET ratio to Precip.

L3

3

Figure B3. Potential /'I" overestimation based on the ratio of estimated 7" to precipitation from the Global Precipitation Climatology

Centre (GPCC Schneider et al. (2022)).
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Data availability. All data is available as aggregated NetCDF file formats, to ease data handling for common use cases, from the ICOS
Carbon Portal (https://doi.org/10.18160/SNZG-JMIJE). Furthermore, the full resolution data is accessible in the zarr format and in a publicly
available object store provided by German Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ). Instructions on how to all

data, as well as the full dataset, can be found at the associated repository (https://gitlab.gwdg.de/fluxcom/fluxcomxdata).
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