
1. Introduction

The northern high latitudes (above 45°N) store over 50% of global soil carbon (C) (Hugelius et al., 2013; Turetsky 

et  al., 2007). Uncertainties on the state and evolution of these C stores remain a prominent source of uncer-

tainty in global soil C projections in terrestrial biosphere models (Wieder et al., 2019). On millennial timescales, 

organic C has accumulated in boreal and arctic soils as a result of slow organic C decomposition rates under cold, 

water-saturated, and oxygen-limited conditions (Bridgham et al., 2006). However, with temperatures across high 

latitude ecosystems rising faster than the global average (Box et al., 2019; Hansen et al., 2006; IPCC, 2013), 

present-day warming and permafrost thaw can potentially alter the balance between C gains and losses across 

northern high latitude ecosystems (Koven et al., 2017; Schuur et al., 2015).

Both the rate and form of C released from high latitude soils are important in understanding Earth's carbon cycle. 

While most soil C losses occur in the form of carbon dioxide (CO2), when soils are water-saturated, decomposition 

under oxygen-deprived conditions results in the production of both CO2 and CH4 (Whalen, 2005). Northern high lati-

tudes emissions alone account for 9%–27% of global wetland CH4 emissions (Ma et al., 2022; Saunois et al., 2020). 

Although CH4 emissions are typically orders of magnitude smaller than CO2 (Bloom et al., 2016, 2017; Huntzinger 

et al., 2017; Melton et al., 2013), their global warming potential (GWP) is 28–34 times greater (on a 100 yr time 

horizon) on a mass-per-mass basis (Myhre et al., 2013). Therefore, jointly resolving CO2 and CH4 sensitivities to 

climate changes, on both C mass balance and the GWP scales, is critical for resolving northern high-latitude C-cycle 

feedbacks to climate change (namely the northern high latitude “carbon-climate feedbacks”).

Abstract Boreal-Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse 

gas balance of high-latitude ecosystems. The carbon-climate (C-climate) feedback potential of northern 

high-latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation 

controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2 and methane (CH4) fluxes. 

While CH4 fluxes account for a smaller component of the C balance, the climatic impact of CH4 outweighs 

CO2 (28–34 times larger global warming potential on a 100-year scale), highlighting the need to jointly resolve 

the climatic sensitivities of both CO2 and CH4. Here, we jointly constrain a terrestrial biosphere model with in 

situ CO2 and CH4 flux observations at seven eddy covariance sites using a data-model integration approach to 

resolve the integrated environmental controls on land-atmosphere CO2 and CH4 exchanges in Alaska. Based 

on the combined CO2 and CH4 flux responses to climate variables, we find that 1970-present climate trends 

will induce positive C-climate feedback at all tundra sites, and negative C-climate feedback at the boreal and 

shrub fen sites. The positive C-climate feedback at the tundra sites is predominantly driven by increased CH4 

emissions while the negative C-climate feedback at the boreal site is predominantly driven by increased CO2 

uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study 

demonstrates the need for joint observational constraints on CO2 and CH4 biogeochemical processes—and their 

associated climatic sensitivities—for resolving the sign and magnitude of high-latitude ecosystem C-climate 

feedback in the coming decades.
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Spatial variability of CO2 and CH4 fluxes across the northern high latitudes are determined from a range of phys-

iological and environmental gradients. Specifically, northern high latitudes CO2 and CH4 fluxes are regulated by 

a number of processes, including temperature and soil moisture controls on aerobic and anaerobic decomposi-

tion rates (Bridgham et al., 2013; Exbrayat et al., 2013; Ma et al., 2017; Riley et al., 2011), soil organic matter 

content and associated turnover times (Luo et al., 2017; Schädel et al., 2014; Todd-Brown et al., 2013; Wieder 

et al., 2019), topography and soil texture (Farquharson et al., 2019; Lipson et al., 2012; Olefeldt et al., 2016; Wang 

et al., 2019), landscape heterogeneity (Treat et al., 2018a, 2018b), soil pH, redox potential (Xu et al., 2016) and 

permafrost thaw related hydrologic responses (Lawrence et al., 2015; Rodenhizer et al., 2020).

Over the past decades, the northern high latitude ecosystems have experienced rapid shifts in climate (Box 

et  al.,  2019; Hansen et  al.,  2006). Due to a large number of confounding processes, substantial uncertainties 

preside over mechanistic representations of the temporal evolution of CO2 and CH4 fluxes in response to climate 

variability and change (Bloom et  al., 2017, 2020a, 2020b; Braghiere et  al., 2021; Friedlingstein et  al.,  2014; 

Melton et al., 2013; Quetin et al., 2020). On a process level, while warmer temperatures can potentially increase 

photosynthesis and both aerobic and anaerobic respiration rates (Huntzinger et al., 2020; Jeong et al., 2018; Piao 

et al., 2008; Quan et al., 2019; Reich et al., 2018; Yvon-Durocher et al., 2014), the combined effect of temperature 

and moisture on CO2 and CH4 exchanges remains unclear. Field studies find warming stimulates net CO2 uptake 

under wet conditions, but has a negative effect under dry conditions (Laine et al., 2019; Quan et al., 2019; H. 

Zhang et al., 2020), and also indicate that the temperature response of CH4 emission is highly dependent upon 

the water table status (Granberg et al., 2001; Turetsky et al., 2008; Updegraff et al., 2001; Verville et al., 1998). 

However, these insights alone are insufficient to mechanistically resolve how changes in climate, such as shifts 

in temperature and precipitation, jointly affect the bulk soil moisture, CO2 and CH4 respiration rates, CO2 photo-

synthetic uptake, and ultimately the sign and magnitude of the total warming potential of CO2 and CH4 fluxes.

Jointly resolving the sign and magnitude of the CO2 and CH4 combined carbon-climate (C-climate) feedback 

is critical for quantifying the C-climate potential of wetland ecosystems in the Earth system. A modeling study 

shows that although the amount of CH4 emissions was small relative to CO2 uptake (∼10% of the amount of 

carbon uptakes on a molar basis), the CH4 emission (in CO2 equivalent GWP almost entirely offset the net CO2 

uptake over the 21st century under the no-policy climate change scenario, X. Zhu et al., 2013). In response to 

a future warming climate, both the CH4 source and the CO2 sink strengthened, but the combined CH4 and CO2 

GWP response did not show a significant trend. In a similar investigation, Lawrence et al. (2015) use the Commu-

nity Land Model to show that drier soil conditions accelerate organic matter decomposition with increased CO2 

emissions, but strongly suppress growth in CH4 emissions, and the land-to-atmosphere CO2-equivalent C flux 

(namely the total CO2 and CH4 flux weighed by the radiative forcing of CH4 relative to CO2) decreases by more 

than 50%. While these studies provide invaluable insights on the potential role of CH4 and CO2 fluxes, model 

structures overwhelmingly rely on empirical parametrizations of CH4 and CO2 sensitivities to climate and soil 

states, which are ultimately key for accurately predicting CH4 and CO2 responses to a changing climate. Quanti-

tative knowledge on the sign—and corresponding magnitude—of the C-climate feedback potential is critical for 

understanding the role of high latitude ecosystems in amplifying or dampening the atmospheric greenhouse gas 

burden in the coming decades.

Merging in situ measurements of both CO2 and CH4 with dynamic ecosystem models provides a unique oppor-

tunity for resolving the potential sign and magnitude of the C-climate feedbacks of wetland ecosystems. Eddy 

covariance (EC) flux towers provide direct and near-continuous ecosystem-scale CO2 and CH4 flux measure-

ments without disturbing the soil or vegetation (Aubinet et  al.,  2012; Knox et  al.,  2019). The rapidly grow-

ing number of CO2 and CH4 flux tower measurements presents new opportunities for estimating fluxes at the 

ecosystem, regional, and global scale; furthermore, the integration of these measurements into biosphere model 

structures and parameters can amount to a critical step toward determining the joint sensitivities of CO2 and CH4 

fluxes to climate variability. In turn, terrestrial biosphere models provide the necessary means to mechanistically 

represent the ecosystem responses to climate variability. Bayesian model-data fusion (MDF) using EC data has 

become a valuable tool for optimizing model C states, fluxes and process parameters and provides quantita-

tive insights on terrestrial C cycling (Bloom & Williams, 2015; Famiglietti et al., 2020; Keenan et al., 2013; 

Smallman et al., 2017; Stettz et al., 2021; Williams et al., 2005; Yang et al., 2021). Model-data integration efforts 

also provide the C cycle mechanistic insights necessary for explicitly resolving the sensitivity of C cycling to 

climate and anthropogenic forcings (Bloom et al., 2020a, 2020b; Stettz et al., 2021; Yin et al., 2020).
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In this study we investigate the potential role and magnitude of wetland CO2 

and CH4 flux sensitivities to climate, and the sign (±) of the combined CH4 

and CO2 climate sensitivity in terms of their combined GWP (henceforth 

� �CO2eC , which denotes the GWP-weighed sum of CH4 and CO2 fluxes). To 

investigate the CO2, CH4 and � �CO2eC flux responses to climate variability, 

we assimilate CO2 and CH4 EC flux tower data into a mechanistic C cycle 

model using the CARDAMOM Bayesian data-model integration framework 

(Bloom et al., 2016; Quetin et al., 2020) to constrain model parameters and 

states at seven EC sites in Alaska. Based on the observation-informed model 

analyses at each site, we probabilistically evaluate two hypotheses on the 

combined CO2 and CH4 responses to changes in climate:

 H1: Climate change induces a positive � �CO2eC response: the combined response 

of CO2 and CH4 fluxes to a change in climate—weighed by the GWP—is 

greater than 0.

 H2: Climate change induces a negative � �CO2eC response: the combined response 

of CO2 and CH4 fluxes to a change in climate—weighed by the GWP—is less 

than 0.

These hypotheses imply that wetland ecosystem responses to climate changes 

amount to positive (H1) or negative (H2) C-climate feedback. The two hypoth-

eses are illustrated in Figure 1: positive land-to-atmosphere flux responses 

for both CH4 and CO2 to climate change amount to an overall positive CO2eC 

response to climate (positive CC feedback), and negative land-to-atmosphere 

flux responses for both CH4 and CO2 amount to an overall negative response 

to climate (negative CC feedback). The combination of a negative CH4 flux 

response and a positive CO2 response, or vice versa, could amount to either 

a positive or negative � �CO2eC response depending upon the relative contri-

butions of CH4 and CO2 weighted by their GWP.  Ultimately, an increase 

or decrease in the combined CO2eC response of CO2 and CH4 to climate 

amounts to positive or negative C-climate feedback.

To probabilistically distinguish between the two proposed hypotheses, we 

quantify the EC-constrained CARDAMOM CO2 and CH4 flux sensitivi-

ties to individual climate variables, namely temperature and precipitation, 

and to hypothetical shifts in present-day climate. In Section 2, we introduce 

the CARDAMOM MDF approach, associated forcing data and observa-

tional constraints, and the finite difference approach for resolving CH4 and CO2 flux sensitivities to climate. In 

Section 3, we present and discuss our results, and our conclusion is in Section 4.

2. Data Description and Methods

To test the hypotheses presented in Section 1, we use the CARDAMOM MDF framework to constrain terrestrial 

C cycle parameters and initial model states based on in situ observations of CH4 and CO2 fluxes from EC towers. 

We introduce the structure of the process-based model used in CARDAMOM in Section 2.1; we describe the site 

level forcings and observational constraints in Section 2.2; we describe Bayesian MDF framework in Section 2.3; 

we then use the data-constrained model to determine the sensitivity of CH4 and CO2 fluxes to the climate in 

Section 2.4.

2.1. CARDAMOM Model-Data Fusion System and DALEC-JCR Model Structure

CARDAMOM is a model-data fusion (MDF) system that constrains model parameters and initial states in a 

process-oriented model—the Data Assimilation Linked Ecosystem Carbon model (DALEC)—and a Bayesian 

model-data integration algorithm using adaptive Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) 

(Haario et al., 2001). The DALEC model structure is uniquely suited to model-data integration, where unknown 

model parameters and initial states are statistically optimized to ensure minimal mismatches between ecosystem 

Figure 1. Conceptual diagram showing the potential responses of CH4 

(∆CH4 flux, y-axis) and CO2 (∆CO2 flux, x-axis) to climate change, 

and their combined responses (Δ�CO2eC ): the � �CO2eC corresponds to 

the GWP-weighed sum of CH4 and CO2 flux responses to climate 

(Δ�CO2eC  = Δ�CO2
  + z * Δ�CH4

 ), where z = 28 is a scalar to account for the 

100-year scale GWP of CH4 (Myhre et al., 2013). The slope of the equal 

feedback line is 1/28, and the slope of the zero C-climate feedback line is 

−1/28. The unit for both gases is gram molecular. The solid purple line 

denotes the “zero-feedback” line (Δ�CO2eC−CO2
  = −Δ�CO2eC−CH4

 ), where 

the area above and below the solid line represents the CH4 and CO2 flux 

responses to climate as resulting in a positive (hypothesis one; H1) or negative 

(hypothesis two; H2) C-climate feedback. The dashed gray line represents an 

“equal CH4 and CO2 feedback line,” where Δ�CO2eC−CO2
  = Δ�CO2eC−CH4

 , that is, 

CO2 and CH4 contribute equally to the overall � �CO2eC response to climate.
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observations and corresponding model states. In contrast to more complex process-based terrestrial biosphere 

models, the relatively parsimonious DALEC C cycle model structures employed in MDF analyses (Bloom & 

Williams, 2015; Famiglietti et al., 2020; Norton et al., 2023; Quetin et al., 2020; Williams et al., 2005; Yang 

et al., 2021) allows for joint optimization of highly uncertain process parameters (such as initial carbon and water 

states, photosynthetic parameters, C allocation, turnover rates and their dependencies on soil moisture) based on 

the available observations of carbon and water variables. While typically incorporation of complexity in models 

is beneficial for process representation, Famiglietti et  al.  (2020) show that model complexity advantages are 

fundamentally limited when insufficient data are available to support parameter inference.

The mechanistic knowledge gained from observations can then be used to diagnose the climatic sensitivity of 

land-atmosphere C fluxes and associated process controls. The DALEC model-embedded CARDAMOM MDF 

system has been applied to a range of spatial scales with a suite of EC and satellite data sets to (a) represent C 

cycles, (b) optimize critical parameters and states, and (c) infer C cycle-associated climate sensitivities (Bloom 

& Williams, 2015; Famiglietti et al., 2020; Norton et al., 2023; Quetin et al., 2020; Williams et al., 2005; Yang 

et al., 2021).

The Data-Assimilation linked Ecosystem Carbon model 2a (DALEC2a) consists of a mechanistic representation 

of carbon and soil water states and fluxes (Bloom et al., 2020a, 2020b; Williams et al., 2005). The six C pools—C 

content of foliage, labile C in plants, woody stem and coarse root, fine roots, litter, and soil organic matter—link 

processes such as photosynthesis, autotrophic respiration, phenology, allocation, turnover rates, fire-removed C 

(Bloom & Williams, 2015; Famiglietti et al., 2020; Quetin et al., 2020; Williams et al., 2005; Yang et al., 2021). 

The hydrological balance is defined as the sum of precipitation inputs (P) and evapotranspiration (ET) and runoff 

(R) outputs. In turn, the plant-available H2O limits gross primary productivity through the conservation of the 

inherent water-use efficiency (Beer et al., 2009), where ET is calculated as a function of gross primary production 

(GPP) and atmospheric vapor pressure deficit (Bloom et al., 2020a, 2020b). Another feature of DALEC is that 

parameterizations per pixel/site are not based on plant functional types (PFTs). Rather, each site has its own PFT 

characterized by parameters that are constrained by observations. For the sake of brevity, we refer the detailed 

descriptions of DALEC2a by Williams et al. (2005), Bloom et al. (2020a, 2020b), Yang et al. (2021), and refer-

ences therein.

Here, we extend the DALEC model structure to include a moisture and temperature-sensitive Joint CH4 + CO2 

Respiration (JCR) scheme (Figure 2) and henceforth refer to the extended model as DALEC-JCR. We illustrate 

Figure 2. Diagram of DALEC-JCR, dashed gray boxes indicate modeled state variables or carbon fluxes constrained by 

observation data (net exchange of CO2, and net CH4 emission), adapted from Quetin et al. (2020), Bloom et al. (2016). P is 

precipitation, ET is evapotranspiration, R is runoff, GPP is gross primary production of CO2, Ra is autotrophic respiration, 

and Rh is heterotrophic respiration. Rh CO2 is simulated from anaerobic and aerobic soils, while Rh CH4 emission is 

calculated from anaerobic soil only. The volumetric fraction of anaerobic respiration is determined by soil moisture and 

site-specific parameters constrained by observations. The shape of the soil moisture-respiration response curve varies across 

sites and is determined by site-specific observations (Figure S2 in Supporting Information S1).
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the main features of the JCR module in the main text and explain the details in Supporting Information S1 (Text 

S1 and S2).

A particular challenge in Land Surface Models is the vast uncertainty in the representations of soil moisture scalar and 

parameterizations used to resolve respiration fluxes (Exbrayat et al., 2013). Evidence from experimental and modeling 

studies points to a better performance using unimodal respiration-soil moisture response curve, rather than a linear 

relationship (Cox, 2001; Exbrayat et al., 2013; Sitch et al., 2003). A less well-characterized mechanism in models is 

how soil properties and vegetation types change the shape of optimum soil moisture response curves, which is found 

to be important for predicting the response of soil carbon to future climate scenarios (Moyano et al., 2012).

To address this challenge within a MDF framework, DALEC-JCR resolves site-specific data-constrained parame-

ters to characterize the shape of the soil moisture-respiration curve (Text S2 in Supporting Information S1). While 

CH4 production occurs as long as anaerobic conditions occur at a microscopic scale, water is not evenly distrib-

uted within the spatial domain of the target site, not least due to topographic heterogeneity, along with variability 

in other edaphic and biotic factors. Therefore, we expect anaerobic respiration to increase gradually—rather than 

step-wise—with increasing soil moisture. To account for this in DALEC-JCR, we diagnostically determine the 

dynamics of the aerobic fraction of the soil column based on an empirical continuous functional relationship 

between soil moisture and aerobic soil fraction (Text S1 in Supporting Information S1).

In the DALEC JCR module, CO2 is respired both anaerobically and aerobically—from oxic and anoxic soil condi-

tions, respectively—while CH4 is only respired anaerobically. The JCR module calculates aerobic and anaerobic 

respiration from the soil column separately, both as a function of C turnover rate, soil temperature, soil moisture, 

and volumetric fraction of aerobic/anaerobic soil:

�ℎae = �litter�litter��ae
�� ���lit2som + �SOM�SOM��ae

�� �� , (1)

�ℎan = �litter�litter

(

1 − ��ae

)

�� ����lit2som + �SOM�SOM

(

1 − ��ae

)

�� ��� , (2)

where Clitter and CSOM are the litter and soil organic matter C pool size; klitter and kSOM are the basal decay rate of C 

pools, their value are independent of respiration type; fW is the soil moisture scalar on aerobic respiration rate; fWc 

is the soil moisture scalar when the soil is saturated; the anaerobic soil is saturated (soil moisture always equals 

one) and thus the soil moisture scalar is given a constant value of fWc in Equation 2, the value of fWc is determined 

at each individual site and constrained by observations in our data-model fusion framework; � ��
ae
 is the aerobic 

fraction of the vertical soil column; 1 − ��
ae
 is the anaerobic fraction of the soil. Equations S1–S4 in Supporting 

Information S1 describe how fW and � ��
ae
 are calculated; fT is the soil temperature scalar on respiration rate:

�� = �

�−�
mean

10

10
, (3)

where Q10 is the factor by which respiration rate increases with a 10°C increase in temperature. T is the mean air 

temperature of the current time step, Tmean is the multi-year mean air temperature at the region.

The heterotrophic respiration terms in the form of CO2 (�ℎCO2
 ) and CH4 (�ℎCH4

 ) are then calculated as:

�ℎCO2
= �ℎae ∗ 1 +�ℎan ∗

(

1 − �CH4

)

, (4)

�ℎCH4
= �ℎae ∗ 0 +�ℎan ∗ �CH4

, (5)

where � �CH4
 is the fraction of CH4 in anaerobic respiration:

�CH4
= �CH4

∗ �

�−�
mean

10

10CH4

, (6)

where � �CH4
 is the potential ratio of anaerobically mineralized C released as CH4; � �10CH4

 is the factor by which CH4 

production rate increases with a 10°C increase in temperature, on top of the temperature sensitivity encountered 

in Equations 1 and 2 (fT); The reason we put a � �10CH4
 on top of the general respiration temperature sensitivity term 

here is that studies have found higher temperature sensitivity in methane production than CO2 respiration across 

microbial to ecosystem scales (Yvon-Durocher et al., 2014). T is the mean air temperature of the current time step, 

Tmean is the multi-years mean air temperature at the region.
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The parsimonious DALEC-JCR model structure (Figure 2) does not represent a range 

of soil hydrological and physical states, such as soil energy dynamics, permafrost thaw, 

snow cover, snowmelt infiltration, and soil consumption of CH4. To determine if the 

DALEC-JCR model, with data-informed parameters, can simulate realistic observable 

CO2 and CH4 fluxes (i.e., NEE and CH4), we compare their temporal variability to 

fluxes from a more structurally complex and comprehensive ecosystem model (Terres-

trial ECOsystem 2.0, TECO 2.0, Weng & Luo, 2008), at a well-calibrated bog site in 

northern Minnesota (Ma et al., 2017). TECO 2.0 is a process-based ecosystem model 

that has six submodules: canopy, vegetation dynamics, soil water, soil energy (includ-

ing snow cover, thermal dynamics, and frozen depth), soil carbon/nitrogen, and aero-

bic/anaerobic respirations (CO2 and CH4). TECO 2.0 explicitly represents the transient 

and vertical dynamics of soil moisture, soil temperature, liquid fraction, frozen depth, 

CH4 production, oxidation, and major transport pathways (diffusion, ebullition, and 

plant-mediated-transport); a bucket model is used to estimate water table level, deter-

mined by soil moisture change. The aerobic and anaerobic zones are separated at the 

water table (Granberg et al., 1999; Wania et al., 2010; Q. Zhu et al., 2014). A detailed 

description of TECO is available in Weng and Luo (2008) and Ma et al. (2017, 2023). 

The DALEC-JCR emulation of TECO 2.0 is described in the manuscript supplement 

(Text S3 in Supporting Information  S1); We find DALEC-JCR performs favorably 

against the TECO 2.0 variability in CO2 and CH4 fluxes (� �
2

CO2

= 0.92 ; � �
2

CH4

= 0.8 , 

Figure S12 in Supporting Information S1), which corroborates the overall DALEC-

JCR model structure.

2.2. Model Forcings and Observation Constraints

We configure DALEC-JCR forcings and observation constraints at seven high-latitude 

eddy tower sites (Table  1 and Figure S3 in Supporting Information  S1). Five sites 

are low-lying vegetation wet tundra (sedge grasses, moss, lichen, US-Bes, US-Beo, 

US-Brw, US-Atq, US-Ivo), one site is fen covered by shrubs, grasses, and moss 

(US-ICs), and one site is boreal bog covered by trees, shrubs, grasses, and moss 

(US-BZB). Following Bloom and Williams (2015), we provide a continuous monthly 

meteorological forcing data set for DALEC-JCR using 0.5° resolution meteorological 

forcing (namely monthly temperature, precipitation, global incident shortwave radi-

ation, vapor pressure deficit, and burned area) obtained from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim (ERA-interim, 

Berrisford et al., 2011) to drive DALEC-JCR model at each site. The model was run at 

a monthly timestep. Basic information about the EC sites is listed in Table 1. We use 

monthly averaged net CH4 and CO2 fluxes to constrain DALEC-JCR (see Section 2.3); 

months with less than 10 days of observations are excluded from our analysis.

2.3. Bayesian Model-Data Fusion Framework

We optimize JCR module parameters (Table S1 in Supporting Information S1)—along 

with other DALEC time-invariant model parameters and initial C and H2O states (in 

total 33 time-invariant parameters and 8 initial states)—within the CARDAMOM 

(CARbon Data Model fraMework) MDF system. The CARDAMOM model param-

eters are independently optimized at each one of the seven flux tower sites. The 

CARDAMOM framework uses Bayes' theorem to optimize the posterior probability of 

initial states and time-invariant process parameters (y), given observations O, p(y|O), 

as follows:

p(�|�) ∝ p(�)p(�|�) (7)

where p(y) is the prior probability distribution of y, and p(O|y) is proportional to the 

likelihood of y given O, L(y|O). At each tower site, the observation vector O consists A
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of measurements including the NEE, and CH4. Assuming errors are uncorre-

lated, the overall likelihood of y given O can be expressed  as

�(�|�) = �NEE �CH4 (8)

For NEE and CH4 we derive the corresponding likelihood function L* (i.e., 

LNEE, and �CH4
 ) as follows:

�∗ = �
−
1

2

∑

�

(

��(�) − ��

��

)2

 (9)

where oi and mi(y) correspond to the ith observation and the correspond-

ing modeled quantity derived from control vector y, respectively; σi accounts 

for the combined errors from the DALEC model structure, forcing drivers, 

and observations. Following (Bloom et  al., 2020a, 2020b), we retrieve the 

distribution of p(y|O) at each tower site by running four adaptive MHMCMC 

chains for 10 8 iterations. We used the Gelman–Rubin statistic (Gelman & 

Rubin,  1992) to check the convergence of sampling chains. The first half 

of the accepted parameters was discarded as the burn-in period, and the 

second half was used for posterior analysis. We evaluate modeled CO2 and 

CH4 fluxes against observed ones using the RMSE normalize by the standard 

deviation (NRMSE), and coefficient of determination (R2).

2.4. Climate Perturbations

To characterize the potential role of climate variability on CH4 and CO2 

fluxes, we focus on warming and precipitation from a regional perspective to 

diagnostically resolve CO2/CH4 sensitivities and the sign of their combined 

feedback (Figure  1, H1-H2). To estimate the net � �CO2eC response (the 

GWP-weighed sum of CO2 and CH4 fluxes) to climate change, we designed 

five likely climate change scenarios based on the 2001–2016 Inter-annual 

Variation (IAV) (scenarios S1–S4, ERA Interim) and 1970–2016 tempera-

ture and precipitation trends (scenario S5, CRU-NCEP reanalysis) (Figure 

S4 in Supporting Information S1, Table 2). ERA Interim is used due to its 

consistency with model driver data, and is broadly consistent with gap-filled 

FLUXNET CH4 meteorology data (Vuichard & Papale, 2015). We use the 

CRU-NCEP reanalysis data to quantify the scenario S5 climate variable 

trends, the CRU-NCEP data set covers a substantially longer time period 

(1901–2016). The CRU-NCEP centennial temperature variability (shown in 

Figure S4 in Supporting Information S1) reveals a steep increase of tempera-

ture beginning in 1970 (in contrast to the 1901–1970 time period); we there-

fore chose to use 1970–2016 trend to characterize scenario S5 climate trends 

(Table 2).

To quantitatively resolve H1 and H2, we denote the modeled C fluxes, F, as 

a function of time-dependent meteorological drivers (M) and time-invariant 

model parameters and initial states (y):

� = DALEC − JCR(� , �) (10)

where the DALEC-JCR() operator denotes the DALEC-JCR model simulation 

driven by forcing M and parameters y.C
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We take two steps to evaluate the responses of CO2 and CH4 fluxes to decadal-scale climate change:

2.4.1. STEP 1: Deriving Flux Sensitivity to Climate Changes

We calculate the local gradient of F response curve against environment variables (M) by perturbing M with an 

arbitrarily small change to M, ∆m (e.g., ∆m = 1e −5°C for temperature dimension, ∆m = 1e −8 mm/day for precip-

itation dimension), where:

��∕�� ≈ ∆�∕∆� = (DALEC (� + ∆�→0, �) − DALEC (� , �)∕(∆�→0)) (11)

To calculate the uncertainty of dF/dM, we use 4,000 samples of y accepted from the CARDAMOM Bayesian 

inversion (Section 2.3) and for each one we derive the corresponding dF/dM values from Equation 11. We derive 

��∕���  (temperature) and ��∕���  (precipitation) using Equation 11. The combined effects of temperature 

and precipitation, ��∕����  can be expressed as:

��

����

=
��

���

+
��

���

+ � (12)

where I represents the interactions between P and T anomalies on C fluxes. We tested the interactions between 

temperature and precipitation effects (shown in supplementary Text S4 in Supporting Information S1) and found 

it is more than an order of magnitude smaller than the individual effects; we therefore approximate combined 

temperature and precipitation effects as

��

����

∼
��

���

+
��

���

 (13)

2.4.2. STEP 2: C Flux Responses to Change in Climate

We estimate the C flux response (ΔF) to a change in climate using the following equation:

�� =

��

��
�� (14)

where ΔM represents a climate anomaly (Table 2, either the 2001–2016 inter-annual variability (IAV) or the 

1970-present trends of temperature and precipitation). The flux sensitivity to climate derived here represent the 

contemporary integrated sensitivity to climate variability, with the assumption that the integrated responses of C 

fluxes ∆F to climate changes ∆m can be linearly approximated as ∆� = ∆���∕�� . We discuss this assump-

tion and its limitations in Section 3.3.

Using Equation 14, we calculate individual C flux responses to individual climate variables. We then estimate the 

joint � �CO2eC effect of CO2 and CH4 to temperature changes, ΔT, as follows:

�� CO��� (� ) =
�� CO���

���

�� =

(

�� CO�

���

+ �
�� CH�

���

)

�� (15)

where Δ� CO��� (� ) denotes the CO2 equivalent C flux response, and z is the GWP of CH4

Similarly, we derive the joint � �CO2eC CO2 and CH4 response to precipitation changes as follows:

�� CO��� (� ) =
�� CO���

���

�� =

(

�� CO�

���

+ �
�� CH�

���

)

�� (16)

For Scenarios 1–4 (S1–S4), we derive ΔP and ΔT as a 1� perturbation to mean 2001–2016 precipitation, where

1-� represents the 2001–2016 IAV of annually averaged P and T, respectively. For Scenario 5 ΔP and ΔT are the 

1970-present trend (τ) of temperature and precipitation. The joint effects of CO2 and CH4 in a warmer and wetter 

scenario is then equal to:

�� CO���
= �� CO��� (� ) + �� CO��� (� ) (17)

and a warmer and drier scenario is

�� CO���
= �� CO��� (� ) − �� CO��� (� ) (18)
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In subsequent sections, we denote the CH4 and CO2 components of � CO���
 as � CO���−���

 and � CO���−���
 respec-

tively, where

� CO���
= � CO���−���

+ � CO���−���
, (19)

and use �� CO���−���
 and �� CO���−���

 to denote associated changes. The sign and magnitude of CO2eC response to 

climate (�� CO���
 ) can be used to quantitatively evaluate the C-climate feedback potential of wetland ecosystems.

3. Results and Discussion

3.1. Evaluation of Model Performance and Parameters

The seasonal variability and IAV of EC net CO2 and CH4 at all sites are captured by DALEC-JCR: the normalized 

RMSE (NRMSE) ranges are 0.15–0.0.37 (CO2) and 0.33–0.9 (CH4), R 2 ranges 0.90–0.97 (CO2) and 0.30–0.90 

(CH4) (Figure 3, Figures S5–S11 in Supporting Information S1). R 2 of modeled CO2 and CH4 fluxes are higher 

at sites with over 1 year of observations. The model captures cold season (September to May) CH4 emissions, 

which is found to dominate the Arctic tundra CH4 budget but is not currently well simulated in most terrestrial 

biosphere models (Zona et al., 2016). Modeled cold season CH4 emissions account for 32%–66% of the annual 

budget across seven Alaskan sites, comparable to the estimations based on in situ observations from the same 

time periods (37%–64%, US-Bes, US-Beo, US-Brw, US-Atq, and US-Ivo, Zona et al., 2016): Notably, the model 

captures the sudden decrease of CH4 at the end of the growing season and autumn (August and September) due 

to a decrease in soil moisture and thus lower anaerobic soil fraction at US-Beo, US-Bes, US-Brw (Figures S7–S9 

in Supporting Information S1). In situ observations at those sites indicate lowest water table depth in the same 

period (Zona et al., 2016). Both the model and in situ measurements show a 1-month-delayed drop in soil mois-

ture (August) in response to decreased precipitation (June-July), which could be due to the replenishment from 

thawing permafrost (Figures S7–S9 in Supporting Information S1).

The temperature sensitivity of heterotrophic CO2 respiration (Q10Rh) ranges from 1.3 to 1.8 (mean of posterior 

distribution from the seven sites), and Q10CH4 ranges from 1.1 to 2.2, and the range of CH4/CO2 potential (rCH4) 

is 0.1–0.3. These posterior parameter estimates generally fall within the empirical ranges we found in the liter-

ature (Riley et al., 2011) and are consistent across sites in similar latitudes and vegetation communities (Figure 

S13 in Supporting Information S1).

The regression between aerobic respiration and soil moisture follows a unimodal curve (the C2 response curve 

in Figure S2 in Supporting Information S1) at US-ICs, and a logarithmic curve (Figure S2 C1 in Supporting 

Information S1) at all the other sites. As shown in Figure S2 in Supporting Information S1, a unimodal response 

curve indicates that soil saturation suppresses aerobic CO2 respiration, a logarithmic curve indicates no suppres-

sion on aerobic CO2 respiration in saturated soils. At US-ICs, we find that aerobic CO2 respiration peaks when 

soil moisture is at 70%, and saturated soils suppress the heterotrophic respiration rates by 60%. Notably, US-ICs 

is a fen ecosystem, characterized as a peat-forming wetland relying on groundwater input, with low to moderate 

soil alkalinity (pH = 5.5–6.9), while all the other sites (bog and wet tundra) have acidic soil (pH = 3.3–5.5) 

(Bourbonniere, 2009; Clymo et al., 1984). Our finding potentially indicates that redox potential (as a result of 

different pH) is a key determinant of how soil moisture controls aerobic respiration, as found in numerous studies 

(Bhanja & Wang, 2020; Brewer et al., 2018; Fiedler et al., 2007; Porter et al., 2004).

3.2. Combined Climatic Responses of CH4 and CO2 Fluxes

We find that warming and wetting alone increase CH4 emissions across all sites. Temperature induces a +0.07 to 

+0.36 gCH4/m 2/yr/σ
T
 and precipitation induces a +0.45 to +1.69 g CH4/m 2/yr/σ

P
 response across all sites, where 

σ
T
 and σ

P
 represent a 1� climate perturbation in temperature and precipitation, respectively (the ranges encom-

pass median values from the seven sites). Warming accelerates net CO2 loss at all sites (+1.7 to +27.6 gCO2/m 2/

yr/σ
T
), while precipitation can change net CO2 in both directions (−203.2 to +18.3 gCO2/m 2/yr/σ

P
). We find 

warming alone increased � �CO2eC at all seven high-latitude sites: CH4 component of � �CO2eC (� �CO2eC−CH4
 ) plays a 

larger role than the CO2 component of � �CO2eC (� �CO2eC−CO2
 ) at two of the sites (US-BZB, a boreal wetland site near 

Fairbanks, Alaska, and US-BES, a tundra site near Utqiagvik), and CH4 component of � �CO2eC players a smaller 

role than the CO2 component at the other sites (Figure 4a, Figure S14a in Supporting Information S1). We find 
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that the impacts of a 1� change in precipitation are on average five-fold larger than 1� change in temperature for

CH4 (Figures 4a and 4b).

In terms of the combined CH4 + CO2 responses (� �CO2e−C
 ), a 1� change in precipitation induces a larger response

than a 1� change in temperature (CO2 equivalent responses are −168.3 to +65.6 gCO2 eC/m 2/yr/σ
T
 and +8.3 to 

+31.4 gCO2 eC/m 2/yr/σ
P
, respectively) at all sites. Although net CH4 fluxes are at least 10 times smaller than 

CO2, the impact of a 1� increase in temperature and precipitation (Scenario 3) on Δ�CO2eC−CH4
 is larger than 

Δ�CO2eC−CO2
 at four sites (Δ�CO2eC−CH4

 /Δ�CO2eC−CO2
 = 1.2–2.8 fold, range of medians). However, at US-BZB, 

US-ICs, and US-Brw, we find Δ�CO2eC−CH4
  < Δ�CO2eC−CO2

 (Δ�CO2eC−CH4 /Δ�CO2eC−CO2
 = 0.22–0.38 fold, range of 

medians) (Figure 5a).

Figure 3. DALEC-JCR modeled CO2 and CH4 at seven Alaska sites, jointly constrained by Eddy covariance (EC) CH4 and CO2 flux measurements. Red squares are 

monthly aggregated eddy flux observations. Black lines are the modeled median of 4,000 random samples from posterior estimates constrained by EC NEE and CH4 

data, gray shades are the 5–95 percentile interval. Vertical gray lines represent March (dotted), June (dashed), September (dotted), and December (solid). Location of 

these sites on a map is shown in Figure S3 in Supporting Information S1.
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3.3. Biogeochemical Controls on CO2 and CH4 Flux Climate Sensitivities

We found that a warmer and wetter climate induces a positive � �CO2eC response (Δ�CO2eC = 17.7–88.2 gCO2 eC/

m2/yr) in wet tundra sites but a negative � �CO2eC in the fen and bog sites (Δ�CO2eC = 15.8–159.7 gCO2 eC/m 2/yr), 

where heterotrophic respiration dramatically decreases due to increased soil moisture and is accompanied by 

increased photosynthesis (Figure S14 in Supporting Information S1). The bog site (US-BZB) is the only site 

with boreal forest, thus the ecosystem has a larger leaf biomass and litter pool to facilitate a quick response of C 

decomposition and uptake. The fen site (US-ICs) is also unique from the other wet tundra sites due to the presence 

of shrub species (larger plant biomass) and alkaline soil (resulting a different redox potential), which may drive 

a stronger response in both heterotrophic respiration and photosynthesis. de Vrese et al. (2021) predicted weak 

soil CO2 respiration in the wet months of the year, which led to low soil CH4 fluxes in permafrost regions under 

Shared Socioeconomic Pathway 5 and the Representative Concentration Pathway 8.5. We predict the same direc-

tional changes in soil CO2 respiration due to increased soil moisture, but increased CH4 due to warmer tempera-

ture and larger anaerobic fraction in the soil column. Shu et al. (2020) predict CH4 increase by 30% and 64% at  the 

Figure 4. Responses of net CO2 and CH4 fluxes to 1� changes in temperature or precipitation: (a) Scenario 1, warmer (+�temp); and (b) Scenario 2, wetter (+�prec). 

See Table 2 for reference to Scenario 1 and Scenario 2. Each color represents one single site and the contour lines are two-dimensional kernel density derived from 

4,000 random samples from posterior estimate constrained by eddy covariance net CO2 and CH4 data (50%, 75%, and 95% distributions) derived from CARDAMOM 

posterior states and parameters. Refer to Figure 1 for descriptions of lines and intersections.

Figure 5. Responses of wetland CO2 and CH4 fluxes to 1� changes in temperature and precipitation at high-latitude sites: (a) Scenario 3, warmer and wetter (+�temp, 

+�prec); and (b) Scenario 4, warmer and drier (+�temp, −�prec). See Table 2 for reference to Scenario 3 and Scenario 4. Each color represents one single site and the 

contour lines are two-dimensional kernel density derived from 4,000 random samples from posterior estimate constrained by eddy covariance net CO2 and CH4 data 

(50%, 75%, and 95% distributions) derived from CARDAMOM posterior states and parameters. Refer to Figure 1 for descriptions of lines and intersections.
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end of century under RCP4.5 and RCP8.5 in CONUS wetlands, which  are the 

same directional changes of CH4 emission as predicted in our study.

Lawrence et  al.  (2015) predicted that 10%-drier soil conditions across 

high-latitude regions will accelerate net CO2 emissions but strongly suppress 

growth in CH4 emissions, resulting in a negative C-climate feedback and a 

50% lower � �CO2eC . While our results agree that drier soil (1� decrease in

precipitation) decreases CH4 emission (with 95% confidence), it affects 

CO2 exchange in two directions depending on ecosystem types (Figures 4b 

and 5b). Specifically, we find that the drier soil conditions result in a negative 

C-climate feedback across wet tundra sites with a weakening of the gross 

� �CO2eC by 15%∼52% (median of posterior estimations); however, due to the 

substantial increase in heterotrophic respiration under drier conditions, the 

boreal forest site exerts a positive C-climate feedback with a 236% increase 

in the gross � �CO2eC (Figure S14 in Supporting Information S1). Our insights 

on the control of soil moisture on CH4 emissions are broadly consistent with 

Watts et al. (2014), where annual summer CH4 emission budgets were found 

to fluctuate by ±4% due to the wet/dry cycles; our 1� change in annual

precipitation swings annual CH4 emission by ±7% to ±27% (median of 

posterior estimations) across the seven Alaskan sites.

If the 1970-present warming and wetting trend continues, our results indicate 

all tundra sites will exhibit a positive gross � �CO2eC response to climate (�

� �CO2eC  = +0.7 to +3.4 gCO2 eC/m 2/yr per year of continuing climate trend), 

while the forest (bog) and wet tundra with shrub (fen) sites will have a nega-

tive CO2eC flux response (�� �CO2eC  = −0.5 to −2.9 gCO2 eC/m 2/yr per year 

of continuing climate trend) due to reduced heterotrophic respiration and 

increased photosynthesis (Figure 6 and Figure S14 in Supporting Informa-

tion S1). The change of � �CO2eC−CO2
 in response to 1970-present climate change 

is on average 1.5-fold greater than � �CO2eC−CO2
 at wet tundra sites but 30% less at the forest and shrub site. Based 

on 1970-present trends, integrated CH4 and CO2 flux sensitivities indicate that high-latitude wetland ecosys-

tems will  amplify high-latitude C-climate feedback in wet tundra sites (positive � �CO2eC response) but dampen in 

boreal forests and lower boundaries of wet tundra sites where shrubs exist 

(negative CO2eC response, Figure 7). Both GPP and CH4 respond positively 

to the 1970-present climate trends across all seven sites. However, a notable 

difference between the forest/shrub sites and the tundra sites is their contrast-

ing responses of ERCO2
 to climate change. Specifically, in the boreal forest 

and shrub sites, the ERCO2
 response is much larger than the GPP and CH4 

responses (Figure S14 in Supporting Information S1). The negative ERCO2
 

responses in shrub and forest indicate that the integrated effects of increased 

precipitation outweigh the effects of rising temperatures, and vice versa for 

the positive ERCO2
 responses in wet tundra ecosystems. We also find that 

ERCO2
 is predominantly driven by heterotrophic respiration flux response: 

the difference in ERCO2
 sensitivities is consistent with differences in under-

lying heterotrophic sensitivities to precipitation and temperature. We spec-

ulate that under current climate conditions, wet tundra respiration increases 

with increasing soil moisture (moisture response between A and B in Figure 

S2 in Supporting Information S1), while bog and fen respiration decrease 

with increasing soil moisture (moisture response between B and C2 in Figure 

S2 in Supporting Information  S1). These contrasting moisture-respiration 

responses could be due to different soil inundation conditions, subsidence, 

soil pH, soil redox potential, vegetation types, microbial structures, diurnal or 

seasonal cycles of fluctuating water table in hummocks and hollows.

To determine if there are substantial differences in climatic sensitivity during 

the growing/non-growing season, we compared CH4/CO2 responses to 

Figure 6. Responses of wetland CO2 and CH4 fluxes to continuation of 

1970–2016 trends in temperature and precipitation (+�temp, +�prec; Scenario 

5). See Table 2 for reference to Scenario 5. Each color represents one 

single site and the contour lines are two-dimensional kernel density derived 

from 4,000 random samples from posterior estimate constrained by eddy 

covariance net CO2 and CH4 data (50%, 75%, and 95% distributions) derived 

from CARDAMOM posterior states and parameters. Refer to Figure 1 for 

descriptions of lines and intersections.

Figure 7. Biogeochemical insight of carbon fluxes responses to continuation 

of 1970–2016 trends in temperature and precipitation, comparing three 

different wetland types investigated in this study. GPP is gross primary 

production. ERCO2
 is ecosystem respired CO2. ERCH4

 is ecosystem 

respired CH4. Individual site GPP, ERCO2
 and ERCH4

 flux response values 

and uncertainties are shown in Figure S14 and Table S2 in Supporting 

Information S1.
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climate changes in growing season (June-August) against non-growing seasons (September-May), with similar 

method we used to quantify averaged annual CH4/CO2 response to climate change (see details in supplementary 

Text S5 in Supporting Information S1). With the continuation of 1970-present climate change trend, US-ICs site 

(shrub fen) will be a stronger source of CO2 in the non-growing season and stronger sink of CO2 in the growing 

season (Figure S15 in Supporting Information S1). At US-Beo, US-Brw, US-Atq, the directions and magnitudes 

of CO2 and CH4 fluxes in response to climate change are consistent between growing/non-growing seasons. At 

US-ICs, US-BZB, US-Bes, we find stronger increase of CH4 in growing seasons than non-growing seasons. We 

find bigger increase of non-growing season CH4 than growing season at the US-Ivo site, due to its large shoulder 

season fluxes (September to December).

The CH4 GWP metric (Myhre et al., 2013) has been extensively used across investigations to quantify the impact 

of CH4 fluxes on the evolution of the Earth System. However, Neubauer and Megonigal (2015) have refined the 

characterization of the CH4 radiative forcing impact relative to CO2, and advocate for a “sustained-flux GWP” 

(SGWP) metric—to account for the impact of sustained shift in fluxes over time; this amounts to a considerably 

higher greenhouse gas impact of CH4 relative to CO2 (CH4 SGWP = 45), relative to the GWP assumed in our 

analysis (CH4 GWP = 28). To test whether SGWP and GWP metrics lead to consistent or conflicting conclu-

sions on the sign of the inferred C-climate feedback responses in our study, we re-derived the results presented 

in Figure 7 using a value of z = 45 in Equations 15 and 16. The fluxes summarized in Figure 7 (� �CO2eC and 

component fluxes, namely ERCH4
 , ERCO2

 and GPP) derived using both SGWP and GWP are presented quantified 

in Table S2 in Supporting Information S1. While we find that the choice of SGWP and GWP has a substantial 

impact on both ERCH4
 and the overall � �CO2eC fluxes, we find that the sign of the � �CO2eC sensitivity to climate 

remains unchanged, and therefore our conclusions are not dependent on which CH4 GWP metric is assumed. 

We use 100-yr scale GWP value throughout the main text and figures to be consistent with recent wetland CH4 

investigations (Jackson et al., 2020; Lawrence et al., 2015; Peltola et al., 2019; Saunois et al., 2016, 2020; Tian 

et al., 2016; Webster et al., 2018).

3.4. Future Directions

Overall, our results indicate that accurately resolving both (a) mean CH4 and CO2 flux rates across both tundra 

and boreal ecosystems and (b) their associated climate sensitivity will be critical for determining the sign and 

magnitude of the northern high latitude ecosystem C-climate feedbacks in the coming decades. Our data-model 

fusion approach demonstrates joint observational constraints on CO2 and CH4, which is the key to understand-

ing ecosystem C cycle responses to the climate in the coming decades. Future studies could use this approach 

to jointly constrain CO2 and CH4 fluxes at a larger number of EC sites with longer records of observations. We 

emphasize the importance of adding long-term ground and spaceborne observations with better spatial cover-

age in northern high latitude to constrain terrestrial-atmosphere C balance and the C-climate feedback. While 

DALEC-JCR does broadly capture the seasonal and IAV of both CH4 and CO2 fluxes at all sites, the model does 

not explicitly represent soil energy dynamics, permafrost thaw, snow cover, snowmelt infiltration, soil consump-

tion of CH4, soil texture, soil pH, and soil redox potential, which are potentially key for accurately resolving 

C-H2O cycle sensitivities to climate. We anticipate that the addition of these processes, along with integrat-

ing higher temporal/spatial resolution observations will improve modeled seasonal/inter-annual variations of 

combined CO2-CH4 fluxes and their climate sensitivity.

We infer CH4 and CO2 flux sensitivities to climate from the contemporary meteorological forcing and flux and 

state observations. This derivation assumes linear responses of carbon cycling to climate (Equations 14–16). 

While the linear sensitivities presented here provide a first-order estimate of flux sensitivity to contemporary 

climate variability, larger and/or sustained climate perturbations can potentially induce non-linear responses such 

as (a) non-linear functional responses to climate, for example, heterotrophic temperature and moisture sensitivi-

ties or vegetation functional responses (Norton et al., 2023), (b) cumulative legacy effects, and their propagation 

across the terrestrial carbon cycle states (e.g., productivity increases and subsequently lagged growth of soil 

organic C states), and (c) long-term processes unrepresented in the model-data integration analysis, for example, 

shrub expansion, permafrost thaw or nutrient cycling, and/or (d) a shift of ecosystem states beyond a climate 

threshold or tipping point (Au et  al.,  2023; Luo et  al.,  2011). Characterizing the longer-term sensitivities of 

cumulative CH4 and CO2 fluxes to sustained climate change is therefore a key step toward establishing whether 

(a) contemporary linear responses are the predominant contribution to CH4 and CO2 fluxes to climate sensitivity, 
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or (ii) lagged and/or non-linear process responses to climate change will amount to prominent climate sensitivity 

terms. Extending the FLUXNET CO2 and CH4 data record—along with augmentations in the processes repre-

sented in CARDAMOM framework—are key steps toward resolving the integrated CH4 and CO2 flux responses 

to climate change on decadal to centennial timescales.

We highlight that machine learning methods have been used to upscale site-level CO2/CH4 emission to 

regional/global budgets (Peltola et al., 2019; Tramontana et al., 2016); in this context, our MDF approach can 

potentially be used to investigate the possibility of propagating parameter knowledge from one site to another, 

supervised by Bayesian probabilities, observations, and physical/biochemical laws from process-based 

models; this approach could be key to constrain regional/global CH4 and CO2 fluxes—and their associated 

climate sensitivities. We also note that further investigations on the seasonal sensitivities of CO2-CH4 fluxes 

are also needed, given that climate changes may be unique to each season, and that the mechanisms affect-

ing growing/non-growing season fluxes may differ (Natali et  al.,  2015; Treat et  al., 2018a, 2018b; Watts 

et al., 2014; Zona et al., 2016).

Finally, we highlight that a growing number of satellite greenhouse gas observations can help constrain regional/

global CO2-CH4 budget and climate sensitivity estimations using our approach, such as wetland CH4 emissions 

from inversions of GOSAT data (Ma et al., 2022a; Lu et al., 2021; J. D. Maasakkers et al., 2019; J. Maasakkers 

et al., 2020; Turner et al., 2015; Y. Zhang et al., 2021) and the GOSAT-derived net biosphere C exchange (NBE) 

data set (CMS-Flux; Liu et  al., 2014, 2018). Furthermore, integration of top-down greenhouse gas flux esti-

mates into land biosphere data-model fusion analyses (e.g., Bloom et al., 2020a, 2020b; Quetin et al., 2020; Yin 

et al., 2020) can be potentially extend the quantification of CH4 and CO2 flux climate sensitivities to regional or 

global scales.

4. Summary and Conclusions

We find that the CH4 (in CO2 equivalent GWP) response to 1970-present climate change is 50% greater than 

CO2 at tundra sites but 30% less at the boreal site. Contemporary CH4 and CO2 flux sensitivities indicate that 

high-latitude wetland ecosystems will amplify C-climate feedbacks in tundra but dampen them in boreal forests 

if the 1970-present climate change trend continues. Precipitation dominates CH4 sensitivities to climate through 

changes in the soil moisture. The CO2 sensitivities are predominantly temperature driven at the tundra sites but 

are dominated by precipitation (through Rh suppression) at the boreal site.

Our results agree with previous studies that although the amount of CH4 emissions is about one magnitude 

smaller than CO2 on a molar basis, their responses to climate change play an important role in C-climate feed-

back (X. Zhu et al., 2013; Zhuang et al., 2007). Over the permafrost region, Lawrence et al. (2015) predicted 

that 10%-drier soil conditions will accelerate net CO2 emissions but strongly suppress growth in CH4 emissions, 

resulting in a negative C-climate feedback and a 50% lower GWP. We find distinct responses of CO2 emissions 

to soil moisture changes between wet tundra and forest bog sites, which requires further investigation across 

individual ecosystem types. Our results highlight the relative importance of both CO2 and CH4 biogeochemical 

sensitivities to climate, which ultimately need to be jointly quantified to accurately resolve the sign and magni-

tude of high-latitude ecosystem C-climate feedback in the coming decades.
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Erratum

The supporting information file in the originally published version of this article displayed edits made with 

tracked changes. The file has been replaced, and this version may be considered the authoritative version of 

record.
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