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Abstract Boreal-Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse
gas balance of high-latitude ecosystems. The carbon-climate (C-climate) feedback potential of northern
high-latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation
controls on carbon dioxide (CO,) uptake and the decomposition of soil C into CO, and methane (CH,) fluxes.
While CH, fluxes account for a smaller component of the C balance, the climatic impact of CH, outweighs
CO, (28-34 times larger global warming potential on a 100-year scale), highlighting the need to jointly resolve
the climatic sensitivities of both CO, and CH,. Here, we jointly constrain a terrestrial biosphere model with in
situ CO, and CH, flux observations at seven eddy covariance sites using a data-model integration approach to
resolve the integrated environmental controls on land-atmosphere CO, and CH, exchanges in Alaska. Based

on the combined CO, and CH,, flux responses to climate variables, we find that 1970-present climate trends
will induce positive C-climate feedback at all tundra sites, and negative C-climate feedback at the boreal and
shrub fen sites. The positive C-climate feedback at the tundra sites is predominantly driven by increased CH,
emissions while the negative C-climate feedback at the boreal site is predominantly driven by increased CO,
uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study
demonstrates the need for joint observational constraints on CO, and CH, biogeochemical processes—and their
associated climatic sensitivities—for resolving the sign and magnitude of high-latitude ecosystem C-climate
feedback in the coming decades.

1. Introduction

The northern high latitudes (above 45°N) store over 50% of global soil carbon (C) (Hugelius et al., 2013; Turetsky
et al., 2007). Uncertainties on the state and evolution of these C stores remain a prominent source of uncer-
tainty in global soil C projections in terrestrial biosphere models (Wieder et al., 2019). On millennial timescales,
organic C has accumulated in boreal and arctic soils as a result of slow organic C decomposition rates under cold,
water-saturated, and oxygen-limited conditions (Bridgham et al., 2006). However, with temperatures across high
latitude ecosystems rising faster than the global average (Box et al., 2019; Hansen et al., 2006; IPCC, 2013),
present-day warming and permafrost thaw can potentially alter the balance between C gains and losses across
northern high latitude ecosystems (Koven et al., 2017; Schuur et al., 2015).

Both the rate and form of C released from high latitude soils are important in understanding Earth's carbon cycle.
While most soil C losses occur in the form of carbon dioxide (CO,), when soils are water-saturated, decomposition
under oxygen-deprived conditions results in the production of both CO, and CH, (Whalen, 2005). Northern high lati-
tudes emissions alone account for 9%—27% of global wetland CH, emissions (Ma et al., 2022; Saunois et al., 2020).
Although CH, emissions are typically orders of magnitude smaller than CO, (Bloom et al., 2016, 2017; Huntzinger
et al., 2017; Melton et al., 2013), their global warming potential (GWP) is 28-34 times greater (on a 100 yr time
horizon) on a mass-per-mass basis (Myhre et al., 2013). Therefore, jointly resolving CO, and CH, sensitivities to
climate changes, on both C mass balance and the GWP scales, is critical for resolving northern high-latitude C-cycle
feedbacks to climate change (namely the northern high latitude “carbon-climate feedbacks”).
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Spatial variability of CO, and CH, fluxes across the northern high latitudes are determined from a range of phys-
iological and environmental gradients. Specifically, northern high latitudes CO, and CH, fluxes are regulated by
a number of processes, including temperature and soil moisture controls on aerobic and anaerobic decomposi-
tion rates (Bridgham et al., 2013; Exbrayat et al., 2013; Ma et al., 2017; Riley et al., 2011), soil organic matter
content and associated turnover times (Luo et al., 2017; Schidel et al., 2014; Todd-Brown et al., 2013; Wieder
etal., 2019), topography and soil texture (Farquharson et al., 2019; Lipson et al., 2012; Olefeldt et al., 2016; Wang
et al., 2019), landscape heterogeneity (Treat et al., 2018a, 2018b), soil pH, redox potential (Xu et al., 2016) and
permafrost thaw related hydrologic responses (Lawrence et al., 2015; Rodenhizer et al., 2020).

Over the past decades, the northern high latitude ecosystems have experienced rapid shifts in climate (Box
et al., 2019; Hansen et al., 2006). Due to a large number of confounding processes, substantial uncertainties
preside over mechanistic representations of the temporal evolution of CO, and CH,, fluxes in response to climate
variability and change (Bloom et al., 2017, 2020a, 2020b; Braghiere et al., 2021; Friedlingstein et al., 2014;
Melton et al., 2013; Quetin et al., 2020). On a process level, while warmer temperatures can potentially increase
photosynthesis and both aerobic and anaerobic respiration rates (Huntzinger et al., 2020; Jeong et al., 2018; Piao
etal., 2008; Quan et al., 2019; Reich et al., 2018; Yvon-Durocher et al., 2014), the combined effect of temperature
and moisture on CO, and CH, exchanges remains unclear. Field studies find warming stimulates net CO, uptake
under wet conditions, but has a negative effect under dry conditions (Laine et al., 2019; Quan et al., 2019; H.
Zhang et al., 2020), and also indicate that the temperature response of CH, emission is highly dependent upon
the water table status (Granberg et al., 2001; Turetsky et al., 2008; Updegraff et al., 2001; Verville et al., 1998).
However, these insights alone are insufficient to mechanistically resolve how changes in climate, such as shifts
in temperature and precipitation, jointly affect the bulk soil moisture, CO, and CH, respiration rates, CO, photo-
synthetic uptake, and ultimately the sign and magnitude of the total warming potential of CO, and CH,, fluxes.

Jointly resolving the sign and magnitude of the CO, and CH, combined carbon-climate (C-climate) feedback
is critical for quantifying the C-climate potential of wetland ecosystems in the Earth system. A modeling study
shows that although the amount of CH, emissions was small relative to CO, uptake (~10% of the amount of
carbon uptakes on a molar basis), the CH, emission (in CO, equivalent GWP almost entirely offset the net CO,
uptake over the 21st century under the no-policy climate change scenario, X. Zhu et al., 2013). In response to
a future warming climate, both the CH, source and the CO, sink strengthened, but the combined CH, and CO,
GWP response did not show a significant trend. In a similar investigation, Lawrence et al. (2015) use the Commu-
nity Land Model to show that drier soil conditions accelerate organic matter decomposition with increased CO,
emissions, but strongly suppress growth in CH, emissions, and the land-to-atmosphere CO,-equivalent C flux
(namely the total CO, and CH, flux weighed by the radiative forcing of CH, relative to CO,) decreases by more
than 50%. While these studies provide invaluable insights on the potential role of CH, and CO, fluxes, model
structures overwhelmingly rely on empirical parametrizations of CH, and CO, sensitivities to climate and soil
states, which are ultimately key for accurately predicting CH, and CO, responses to a changing climate. Quanti-
tative knowledge on the sign—and corresponding magnitude—of the C-climate feedback potential is critical for
understanding the role of high latitude ecosystems in amplifying or dampening the atmospheric greenhouse gas
burden in the coming decades.

Merging in situ measurements of both CO, and CH, with dynamic ecosystem models provides a unique oppor-
tunity for resolving the potential sign and magnitude of the C-climate feedbacks of wetland ecosystems. Eddy
covariance (EC) flux towers provide direct and near-continuous ecosystem-scale CO, and CH, flux measure-
ments without disturbing the soil or vegetation (Aubinet et al., 2012; Knox et al., 2019). The rapidly grow-
ing number of CO, and CH, flux tower measurements presents new opportunities for estimating fluxes at the
ecosystem, regional, and global scale; furthermore, the integration of these measurements into biosphere model
structures and parameters can amount to a critical step toward determining the joint sensitivities of CO, and CH,
fluxes to climate variability. In turn, terrestrial biosphere models provide the necessary means to mechanistically
represent the ecosystem responses to climate variability. Bayesian model-data fusion (MDF) using EC data has
become a valuable tool for optimizing model C states, fluxes and process parameters and provides quantita-
tive insights on terrestrial C cycling (Bloom & Williams, 2015; Famiglietti et al., 2020; Keenan et al., 2013;
Smallman et al., 2017; Stettz et al., 2021; Williams et al., 2005; Yang et al., 2021). Model-data integration efforts
also provide the C cycle mechanistic insights necessary for explicitly resolving the sensitivity of C cycling to
climate and anthropogenic forcings (Bloom et al., 2020a, 2020b; Stettz et al., 2021; Yin et al., 2020).
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A In this study we investigate the potential role and magnitude of wetland CO,
— and CH, flux sensitivities to climate, and the sign (+) of the combined CH,
S CH, dominated positive feedback and CO, climate sensitivity in terms of their combined GWP (henceforth
Fco,ec, which denotes the GWP-weighed sum of CH, and CO, fluxes). To
2, @ e(\\ya&\‘ investigate the CO,, CH, and Fco,cc flux responses to climate variability,
<p Detf; e CO% WL\M’ we assimilate CO, and CH, EC flux tower data into a mechanistic C cycle
LS M o gb, model using the CARDAMOM Bayesian data-model integration framework
. "'ﬂ/ . (Bloom et al., 2016; Quetin et al., 2020) to constrain model parameters and
€O, dominated €0, dominated states at seven EC sites in Alaska. Based on the observation-informed model
negative feedback positive feedback ) I
- analyses at each site, we probabilistically evaluate two hypotheses on the

CH, flux response to climate change (gCH,/m?/yr)
0
1

-
-
-
-
-
CH, dominated negative feedback
-
< AFCOzc = AFcepeccoz + AFcazecais
AFczec-coz = AFCO,
v AFcpec-cy = z X AFCH,
h 1 1 |
-1 0 1

CO, flux response to climate change (gCO,/m?/yr)

Figure 1. Conceptual diagram showing the potential responses of CH,
(ACH, flux, y-axis) and CO, (ACO, flux, x-axis) to climate change,

and their combined responses (A Fco,ec): the Feo,ec corresponds to

the GWP-weighed sum of CH, and CO, flux responses to climate

(A Fcoyec = AFco, + 2 * AFch,), where z = 28 is a scalar to account for the
100-year scale GWP of CH, (Myhre et al., 2013). The slope of the equal
feedback line is 1/28, and the slope of the zero C-climate feedback line is
—1/28. The unit for both gases is gram molecular. The solid purple line
denotes the “zero-feedback” line (A Fco,ec-co, = —A Fco,ec—cH,), Where

the area above and below the solid line represents the CH, and CO, flux
responses to climate as resulting in a positive (hypothesis one; H1) or negative
(hypothesis two; H2) C-climate feedback. The dashed gray line represents an
“equal CH, and CO, feedback line,” where A Fco,ec-co, = A Fco,ec—cH,» that is,
CO, and CH,, contribute equally to the overall Fco,cc response to climate.

combined CO, and CH, responses to changes in climate:

H1: Climate change induces a positive Fco,.c response: the combined response
of CO, and CH, fluxes to a change in climate—weighed by the GWP—is
greater than 0.

H2: Climate change induces a negative Fco,.c response: the combined response
of CO, and CH, fluxes to a change in climate—weighed by the GWP—is less
than 0.

These hypotheses imply that wetland ecosystem responses to climate changes
amount to positive (H1) or negative (H2) C-climate feedback. The two hypoth-
eses are illustrated in Figure 1: positive land-to-atmosphere flux responses
for both CH, and CO, to climate change amount to an overall positive CO,eC
response to climate (positive CC feedback), and negative land-to-atmosphere
flux responses for both CH, and CO, amount to an overall negative response
to climate (negative CC feedback). The combination of a negative CH, flux
response and a positive CO, response, or vice versa, could amount to either
a positive or negative Fo,cc response depending upon the relative contri-
butions of CH, and CO, weighted by their GWP. Ultimately, an increase
or decrease in the combined CO,eC response of CO, and CH, to climate
amounts to positive or negative C-climate feedback.

To probabilistically distinguish between the two proposed hypotheses, we
quantify the EC-constrained CARDAMOM CO, and CH, flux sensitivi-
ties to individual climate variables, namely temperature and precipitation,
and to hypothetical shifts in present-day climate. In Section 2, we introduce
the CARDAMOM MDF approach, associated forcing data and observa-

tional constraints, and the finite difference approach for resolving CH, and CO, flux sensitivities to climate. In

Section 3, we present and discuss our results, and our conclusion is in Section 4.

2. Data Description and Methods

To test the hypotheses presented in Section 1, we use the CARDAMOM MDF framework to constrain terrestrial

C cycle parameters and initial model states based on in situ observations of CH, and CO, fluxes from EC towers.
We introduce the structure of the process-based model used in CARDAMOM in Section 2.1; we describe the site
level forcings and observational constraints in Section 2.2; we describe Bayesian MDF framework in Section 2.3;

we then use the data-constrained model to determine the sensitivity of CH, and CO, fluxes to the climate in

Section 2.4.

2.1. CARDAMOM Model-Data Fusion System and DALEC-JCR Model Structure

CARDAMOM is a model-data fusion (MDF) system that constrains model parameters and initial states in a

process-oriented model—the Data Assimilation Linked Ecosystem Carbon model (DALEC)—and a Bayesian

model-data integration algorithm using adaptive Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC)

(Haario et al., 2001). The DALEC model structure is uniquely suited to model-data integration, where unknown

model parameters and initial states are statistically optimized to ensure minimal mismatches between ecosystem
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Figure 2. Diagram of DALEC-JCR, dashed gray boxes indicate modeled state variables or carbon fluxes constrained by
observation data (net exchange of CO,, and net CH, emission), adapted from Quetin et al. (2020), Bloom et al. (2016). P is
precipitation, ET is evapotranspiration, R is runoff, GPP is gross primary production of CO,, Ra is autotrophic respiration,
and Rh is heterotrophic respiration. Rh CO, is simulated from anaerobic and aerobic soils, while Rh CH, emission is
calculated from anaerobic soil only. The volumetric fraction of anaerobic respiration is determined by soil moisture and
site-specific parameters constrained by observations. The shape of the soil moisture-respiration response curve varies across
sites and is determined by site-specific observations (Figure S2 in Supporting Information S1).

observations and corresponding model states. In contrast to more complex process-based terrestrial biosphere
models, the relatively parsimonious DALEC C cycle model structures employed in MDF analyses (Bloom &
Williams, 2015; Famiglietti et al., 2020; Norton et al., 2023; Quetin et al., 2020; Williams et al., 2005; Yang
et al., 2021) allows for joint optimization of highly uncertain process parameters (such as initial carbon and water
states, photosynthetic parameters, C allocation, turnover rates and their dependencies on soil moisture) based on
the available observations of carbon and water variables. While typically incorporation of complexity in models
is beneficial for process representation, Famiglietti et al. (2020) show that model complexity advantages are
fundamentally limited when insufficient data are available to support parameter inference.

The mechanistic knowledge gained from observations can then be used to diagnose the climatic sensitivity of
land-atmosphere C fluxes and associated process controls. The DALEC model-embedded CARDAMOM MDF
system has been applied to a range of spatial scales with a suite of EC and satellite data sets to (a) represent C
cycles, (b) optimize critical parameters and states, and (c) infer C cycle-associated climate sensitivities (Bloom
& Williams, 2015; Famiglietti et al., 2020; Norton et al., 2023; Quetin et al., 2020; Williams et al., 2005; Yang
et al., 2021).

The Data-Assimilation linked Ecosystem Carbon model 2a (DALEC2a) consists of a mechanistic representation
of carbon and soil water states and fluxes (Bloom et al., 2020a, 2020b; Williams et al., 2005). The six C pools—C
content of foliage, labile C in plants, woody stem and coarse root, fine roots, litter, and soil organic matter—Ilink
processes such as photosynthesis, autotrophic respiration, phenology, allocation, turnover rates, fire-removed C
(Bloom & Williams, 2015; Famiglietti et al., 2020; Quetin et al., 2020; Williams et al., 2005; Yang et al., 2021).
The hydrological balance is defined as the sum of precipitation inputs (P) and evapotranspiration (ET) and runoff
(R) outputs. In turn, the plant-available H,O limits gross primary productivity through the conservation of the
inherent water-use efficiency (Beer et al., 2009), where ET is calculated as a function of gross primary production
(GPP) and atmospheric vapor pressure deficit (Bloom et al., 2020a, 2020b). Another feature of DALEC is that
parameterizations per pixel/site are not based on plant functional types (PFTs). Rather, each site has its own PFT
characterized by parameters that are constrained by observations. For the sake of brevity, we refer the detailed
descriptions of DALEC2a by Williams et al. (2005), Bloom et al. (2020a, 2020b), Yang et al. (2021), and refer-
ences therein.

Here, we extend the DALEC model structure to include a moisture and temperature-sensitive Joint CH, + CO,
Respiration (JCR) scheme (Figure 2) and henceforth refer to the extended model as DALEC-JCR. We illustrate
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the main features of the JCR module in the main text and explain the details in Supporting Information S1 (Text
S1 and S2).

A particular challenge in Land Surface Models is the vast uncertainty in the representations of soil moisture scalar and
parameterizations used to resolve respiration fluxes (Exbrayat et al., 2013). Evidence from experimental and modeling
studies points to a better performance using unimodal respiration-soil moisture response curve, rather than a linear
relationship (Cox, 2001; Exbrayat et al., 2013; Sitch et al., 2003). A less well-characterized mechanism in models is
how soil properties and vegetation types change the shape of optimum soil moisture response curves, which is found
to be important for predicting the response of soil carbon to future climate scenarios (Moyano et al., 2012).

To address this challenge within a MDF framework, DALEC-JCR resolves site-specific data-constrained parame-
ters to characterize the shape of the soil moisture-respiration curve (Text S2 in Supporting Information S1). While
CH, production occurs as long as anaerobic conditions occur at a microscopic scale, water is not evenly distrib-
uted within the spatial domain of the target site, not least due to topographic heterogeneity, along with variability
in other edaphic and biotic factors. Therefore, we expect anaerobic respiration to increase gradually—rather than
step-wise—with increasing soil moisture. To account for this in DALEC-JCR, we diagnostically determine the
dynamics of the aerobic fraction of the soil column based on an empirical continuous functional relationship
between soil moisture and aerobic soil fraction (Text S1 in Supporting Information S1).

In the DALEC JCR module, CO, is respired both anaerobically and aerobically—from oxic and anoxic soil condi-
tions, respectively—while CH, is only respired anaerobically. The JCR module calculates aerobic and anaerobic
respiration from the soil column separately, both as a function of C turnover rate, soil temperature, soil moisture,
and volumetric fraction of aerobic/anaerobic soil:

Rhye = Ciiverkiitter fv,. fw [T fiizsom + Csomksom fv,, fw fr, @))]

Rhun = Cli\lerkliuer(] - fVuc )chfolilZsom + CSOMkSOM (1 - fVuc )chfT, (2)

where Cy,,.., and Cy,, are the litter and soil organic matter C pool size; k., and kg, are the basal decay rate of C

litter litter

pools, their value are independent of respiration type; f;, is the soil moisture scalar on aerobic respiration rate; f;,,
is the soil moisture scalar when the soil is saturated; the anaerobic soil is saturated (soil moisture always equals
one) and thus the soil moisture scalar is given a constant value of f;,,. in Equation 2, the value of f;,, is determined
at each individual site and constrained by observations in our data-model fusion framework; f; v, is the aerobic
fraction of the vertical soil column; 1 — fy, is the anaerobic fraction of the soil. Equations S1-S4 in Supporting
Information S1 describe how f;, and fy,_ are calculated; f; is the soil temperature scalar on respiration rate:

T-T,

mean

fr=0," , 3)

where O, is the factor by which respiration rate increases with a 10°C increase in temperature. T is the mean air

temperature of the current time step, T, is the multi-year mean air temperature at the region.

ean

The heterotrophic respiration terms in the form of CO, (Rhco,) and CH, (Rhcy,) are then calculated as:
RhC02 = Rhye % 1 + Rhyy * (1 - fCH4)1 (4)
RhCH4 = Rhge * 0+ Rhy, * fCH4’ (5)

where fcy, is the fraction of CH, in anaerobic respiration:

T-T,

mean

Sfen, = rem, * ch:j > ©)
where rcy, is the potential ratio of anaerobically mineralized C released as CH,; Q1ocy, is the factor by which CH,
production rate increases with a 10°C increase in temperature, on top of the temperature sensitivity encountered
in Equations 1 and 2 (f;); The reason we put a Qiocyy, On top of the general respiration temperature sensitivity term
here is that studies have found higher temperature sensitivity in methane production than CO, respiration across
microbial to ecosystem scales (Yvon-Durocher et al., 2014). T'is the mean air temperature of the current time step,
T ... 1s the multi-years mean air temperature at the region.

mean
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ERA-interim precipitation

ERA-interim temperature

Mean and Inter-Annual Variation (IAV) During 2001-2016, and the Trend of Temperature and Precipitation During 1970-2016 at the Eddy Covariance Sites

Table 1

Trend
(1970-2016,

1AV

MAP
(2001-2016,

(2001-2016,

Trend
(1970-2016,

1AV

(2001-2016,

MAT

(2001-2016,

Latitude/Longitude/Wetland

mm) mm/yr)*

mm

°C) °Clyr)*

°C)

Vegetation type

characteristics

AmeriFlux site ID (references)

0.83 0.039 426 75 1.47
413 1.55

0.94

-9.4

Wet sedge and dwarf shrubs

68.6/—149.3/wet tundra fen (alkaline)
64.7/—148.3/thermalkarst bog (acidic)

US-ICs (Euskirchen et al., 2017)

US-BZB (Euskirchen

-1.5 0.039 49

Lowland boreal forests

et al., 2014)
US-Bes (Davidson et al., 2016)

1.47
1.47
1.47
1.54
1.40

34
34
34
42
53

244
244
244
263
462

0.038

0.96
0.96
0.96
1.00
0.93

-9.5

9.5
-9.5
-9.6
-9.4

Sedges, grasses, moss, lichens

71.3/—156.6/wet tundra (acidic)
71.3/—156.6/wet tundra (acidic)
71.3/—156.6/wet tundra (acidic)
70.5/—157.4/wet tundra (acidic)
68.49/—155.8/wet tundra (acidic)

0.038

Sedges, grasses, moss, lichens

US-Beo (Davidson et al., 2016)

0.038

Sedges, grasses, moss, lichens

US-Brw (Davidson et al., 2016)

0.038

Moist sedge, tussock

US-Atq (Davidson et al., 2016)

0.038

Tussock sedge, moss

US-Ivo (Davidson et al., 2016)

Note. Mean and IAV during 2001-2016 are directly calculated from ERA-interim data.

(1970-2016) * ERA—IAV(ZOOI—ZO 1 6)/NCEP—IAV( 1970-2016)"

= NCEP_trend,

‘ERA-interim trend during 1970-2016 is converted from NCEP data: ERA_trend, ;47 916

The parsimonious DALEC-JCR model structure (Figure 2) does not represent a range
of soil hydrological and physical states, such as soil energy dynamics, permafrost thaw,
snow cover, snowmelt infiltration, and soil consumption of CH,. To determine if the
DALEC-JCR model, with data-informed parameters, can simulate realistic observable
CO, and CH, fluxes (i.e., NEE and CH,), we compare their temporal variability to
fluxes from a more structurally complex and comprehensive ecosystem model (Terres-
trial ECOsystem 2.0, TECO 2.0, Weng & Luo, 2008), at a well-calibrated bog site in
northern Minnesota (Ma et al., 2017). TECO 2.0 is a process-based ecosystem model
that has six submodules: canopy, vegetation dynamics, soil water, soil energy (includ-
ing snow cover, thermal dynamics, and frozen depth), soil carbon/nitrogen, and aero-
bic/anaerobic respirations (CO, and CH,). TECO 2.0 explicitly represents the transient
and vertical dynamics of soil moisture, soil temperature, liquid fraction, frozen depth,
CH, production, oxidation, and major transport pathways (diffusion, ebullition, and
plant-mediated-transport); a bucket model is used to estimate water table level, deter-
mined by soil moisture change. The aerobic and anaerobic zones are separated at the
water table (Granberg et al., 1999; Wania et al., 2010; Q. Zhu et al., 2014). A detailed
description of TECO is available in Weng and Luo (2008) and Ma et al. (2017, 2023).
The DALEC-JCR emulation of TECO 2.0 is described in the manuscript supplement
(Text S3 in Supporting Information S1); We find DALEC-JCR performs favorably
against the TECO 2.0 variability in CO, and CH, fluxes (Ré02 =0.92; Rém =0.3,
Figure S12 in Supporting Information S1), which corroborates the overall DALEC-
JCR model structure.

2.2. Model Forcings and Observation Constraints

We configure DALEC-JCR forcings and observation constraints at seven high-latitude
eddy tower sites (Table 1 and Figure S3 in Supporting Information S1). Five sites
are low-lying vegetation wet tundra (sedge grasses, moss, lichen, US-Bes, US-Beo,
US-Brw, US-Atq, US-Ivo), one site is fen covered by shrubs, grasses, and moss
(US-ICs), and one site is boreal bog covered by trees, shrubs, grasses, and moss
(US-BZB). Following Bloom and Williams (2015), we provide a continuous monthly
meteorological forcing data set for DALEC-JCR using 0.5° resolution meteorological
forcing (namely monthly temperature, precipitation, global incident shortwave radi-
ation, vapor pressure deficit, and burned area) obtained from the European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim (ERA-interim,
Berrisford et al., 2011) to drive DALEC-JCR model at each site. The model was run at
a monthly timestep. Basic information about the EC sites is listed in Table 1. We use
monthly averaged net CH, and CO, fluxes to constrain DALEC-JCR (see Section 2.3);
months with less than 10 days of observations are excluded from our analysis.

2.3. Bayesian Model-Data Fusion Framework

We optimize JCR module parameters (Table S1 in Supporting Information S1)—along
with other DALEC time-invariant model parameters and initial C and H,O states (in
total 33 time-invariant parameters and 8 initial states)—within the CARDAMOM
(CARbon Data Model fraMework) MDF system. The CARDAMOM model param-
eters are independently optimized at each one of the seven flux tower sites. The
CARDAMOM framework uses Bayes' theorem to optimize the posterior probability of
initial states and time-invariant process parameters (y), given observations O, p(ylO),
as follows:

p(¥|0) « p(y)p(Oly) @)

where p(y) is the prior probability distribution of y, and p(Oly) is proportional to the
likelihood of y given O, L(ylO). At each tower site, the observation vector O consists
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Standard deviation of mean

A hypothetical increase/decrease in temperatures relative to

Reflect year-to-year changes, based on

‘Warmer

S1

annual temperature (MAT)

nominal IAV

the historical Inter Annual Variation

(40 p> Uit °Clyr)

(IAV) of 20012016

Standard deviation of mean

A hypothetical increase/decrease in precipitation relative to

Wetter

S2

annual precipitation (MAP)

nominal AV

(46 e Uit mm/yr)

Standard deviation of MAT and

A hypothetical increase in temperatures and precipitation relative

Warmer + Wetter

S3

MAP (6,¢,p + Oprec)

to nominal TAV. To test sensitivity of CO, and CH, to

warming and wetting

Standard deviation of MAT and

A hypothetical increase in temperatures and decrease in

Warmer + Drier

S4

MAP (o-(emp - Gprec)

precipitation relative to nominal IAV. To test sensitivity of

CO, and CH, to warming and drying

50 years trend, slope of linear

A hypothetical increase in temperatures and precipitation

General trend

1971-2016 trend (warmer and

S52

1egression (T, + T,.) (units

following the 50 years trend. To test sensitivity of CO, and

wetter at all sites)

R °Clyr, Torec mm/yr)

CH, to continuation of 50 years climate change trend

Sensitivities of CO, and CH, to continuation of 50 years climate change trend in the growing (June-August) and nongrowing (September-May) seasons are also tested; results are shown in Figure S15

in Supporting Information S1.

of measurements including the NEE, and CH,. Assuming errors are uncorre-
lated, the overall likelihood of y given O can be expressed as

L(y|0) = Lxgk Lcn, ®)

For NEE and CH, we derive the corresponding likelihood function L, (i.e.,
Lnee, and Lcn,) as follows:

L5 (m») -0\
L= Y (M) ©
Oi

i

where o; and m|y) correspond to the ith observation and the correspond-
ing modeled quantity derived from control vector y, respectively; o; accounts
for the combined errors from the DALEC model structure, forcing drivers,
and observations. Following (Bloom et al., 2020a, 2020b), we retrieve the
distribution of p(ylO) at each tower site by running four adaptive MHMCMC
chains for 108 iterations. We used the Gelman—Rubin statistic (Gelman &
Rubin, 1992) to check the convergence of sampling chains. The first half
of the accepted parameters was discarded as the burn-in period, and the
second half was used for posterior analysis. We evaluate modeled CO, and
CH, fluxes against observed ones using the RMSE normalize by the standard
deviation (NRMSE), and coefficient of determination (R,).

2.4. Climate Perturbations

To characterize the potential role of climate variability on CH, and CO,
fluxes, we focus on warming and precipitation from a regional perspective to
diagnostically resolve CO,/CH, sensitivities and the sign of their combined
feedback (Figure 1, H1-H2). To estimate the net Fco,.c response (the
GWP-weighed sum of CO, and CH, fluxes) to climate change, we designed
five likely climate change scenarios based on the 2001-2016 Inter-annual
Variation (IAV) (scenarios S1-S4, ERA Interim) and 1970-2016 tempera-
ture and precipitation trends (scenario S5, CRU-NCEP reanalysis) (Figure
S4 in Supporting Information S1, Table 2). ERA Interim is used due to its
consistency with model driver data, and is broadly consistent with gap-filled
FLUXNET CH, meteorology data (Vuichard & Papale, 2015). We use the
CRU-NCEP reanalysis data to quantify the scenario S5 climate variable
trends, the CRU-NCEP data set covers a substantially longer time period
(1901-2016). The CRU-NCEP centennial temperature variability (shown in
Figure S4 in Supporting Information S1) reveals a steep increase of tempera-
ture beginning in 1970 (in contrast to the 1901-1970 time period); we there-
fore chose to use 1970-2016 trend to characterize scenario S5 climate trends
(Table 2).

To quantitatively resolve H1 and H2, we denote the modeled C fluxes, F, as
a function of time-dependent meteorological drivers (M) and time-invariant
model parameters and initial states (y):

F =DALEC —JCR(M, y) (10)

where the DALEC-JCR() operator denotes the DALEC-JCR model simulation
driven by forcing M and parameters y.
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We take two steps to evaluate the responses of CO, and CH, fluxes to decadal-scale climate change:
2.4.1. STEP 1: Deriving Flux Sensitivity to Climate Changes

We calculate the local gradient of F response curve against environment variables (M) by perturbing M with an
arbitrarily small change to M, Am (e.g., Am = 1e>°C for temperature dimension, Am = 1e~® mm/day for precip-
itation dimension), where:

dF /dM ~ AF/Am = (DALEC (M + Am_q, y) — DALEC (M, y)/(Am_y)) (11)

To calculate the uncertainty of dF/dM, we use 4,000 samples of y accepted from the CARDAMOM Bayesian
inversion (Section 2.3) and for each one we derive the corresponding dF/dM values from Equation 11. We derive
dF /dM7y (temperature) and dF /dMp (precipitation) using Equation 11. The combined effects of temperature
and precipitation, dF /dM rp can be expressed as:

dF dF dF

= + +
dMrp dMr dMp

I 12)

where I represents the interactions between P and T anomalies on C fluxes. We tested the interactions between
temperature and precipitation effects (shown in supplementary Text S4 in Supporting Information S1) and found
it is more than an order of magnitude smaller than the individual effects; we therefore approximate combined
temperature and precipitation effects as

dF - dF + dF
dMrp dMr dMp

13)

2.4.2. STEP 2: C Flux Responses to Change in Climate
We estimate the C flux response (AF) to a change in climate using the following equation:

dF
AF = d—MAM a4
where AM represents a climate anomaly (Table 2, either the 2001-2016 inter-annual variability (IAV) or the
1970-present trends of temperature and precipitation). The flux sensitivity to climate derived here represent the
contemporary integrated sensitivity to climate variability, with the assumption that the integrated responses of C
fluxes AF to climate changes Am can be linearly approximated as AF = AmdF /dM . We discuss this assump-
tion and its limitations in Section 3.3.

Using Equation 14, we calculate individual C flux responses to individual climate variables. We then estimate the
joint Feo,ec effect of CO, and CH, to temperature changes, AT, as follows:

dF co,ec

AF coyecr) = M AT = (
T

dF dF
02 | g ) AT (15)

am; % amy
where A F co,ec ) denotes the CO, equivalent C flux response, and z is the GWP of CH,

Similarly, we derive the joint Fco,.c CO, and CH, response to precipitation changes as follows:

dF co,ec dF dF
cochP < C02+ CH4)AP

“\am, T am, (16)

AFcoecp) = M =
P

For Scenarios 1-4 (S1-S4), we derive AP and AT as a 1o perturbation to mean 2001-2016 precipitation, where
1-0 represents the 2001-2016 IAV of annually averaged P and 7, respectively. For Scenario 5 AP and AT are the
1970-present trend (7) of temperature and precipitation. The joint effects of CO, and CH, in a warmer and wetter
scenario is then equal to:

AFco,ec = AFco,ec(r) + AFcoyecp) a7
and a warmer and drier scenario is

AFco,ec = AFco,ec(r) — AFcogec(p) (18)
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In subsequent sections, we denote the CH, and CO, components of Fco,ec @S Fco,ec-ch, and Fco,ec-co, respec-
tively, where

Fco,ec = Fcoyec-co, + Fco,ec-cny, (19)

and use A F co,ec—cn, and A F co,ec-co, o denote associated changes. The sign and magnitude of CO,eC response to
climate (A F co,ec) can be used to quantitatively evaluate the C-climate feedback potential of wetland ecosystems.

3. Results and Discussion
3.1. Evaluation of Model Performance and Parameters

The seasonal variability and IAV of EC net CO, and CH, at all sites are captured by DALEC-JCR: the normalized
RMSE (NRMSE) ranges are 0.15-0.0.37 (CO,) and 0.33-0.9 (CH,), R? ranges 0.90-0.97 (CO,) and 0.30-0.90
(CH,) (Figure 3, Figures S5-S11 in Supporting Information S1). R? of modeled CO, and CH, fluxes are higher
at sites with over 1 year of observations. The model captures cold season (September to May) CH, emissions,
which is found to dominate the Arctic tundra CH, budget but is not currently well simulated in most terrestrial
biosphere models (Zona et al., 2016). Modeled cold season CH, emissions account for 32%-66% of the annual
budget across seven Alaskan sites, comparable to the estimations based on in situ observations from the same
time periods (37%—64%, US-Bes, US-Beo, US-Brw, US-Atq, and US-Ivo, Zona et al., 2016): Notably, the model
captures the sudden decrease of CH, at the end of the growing season and autumn (August and September) due
to a decrease in soil moisture and thus lower anaerobic soil fraction at US-Beo, US-Bes, US-Brw (Figures S7-S9
in Supporting Information S1). In situ observations at those sites indicate lowest water table depth in the same
period (Zona et al., 2016). Both the model and in situ measurements show a 1-month-delayed drop in soil mois-
ture (August) in response to decreased precipitation (June-July), which could be due to the replenishment from
thawing permafrost (Figures S7-S9 in Supporting Information S1).

The temperature sensitivity of heterotrophic CO, respiration (Q,,Rh) ranges from 1.3 to 1.8 (mean of posterior
distribution from the seven sites), and Q,,CH, ranges from 1.1 to 2.2, and the range of CH,/CO, potential (xCH,)
is 0.1-0.3. These posterior parameter estimates generally fall within the empirical ranges we found in the liter-
ature (Riley et al., 2011) and are consistent across sites in similar latitudes and vegetation communities (Figure
S13 in Supporting Information S1).

The regression between aerobic respiration and soil moisture follows a unimodal curve (the C2 response curve
in Figure S2 in Supporting Information S1) at US-ICs, and a logarithmic curve (Figure S2 C1 in Supporting
Information S1) at all the other sites. As shown in Figure S2 in Supporting Information S1, a unimodal response
curve indicates that soil saturation suppresses aerobic CO, respiration, a logarithmic curve indicates no suppres-
sion on aerobic CO, respiration in saturated soils. At US-ICs, we find that aerobic CO, respiration peaks when
soil moisture is at 70%, and saturated soils suppress the heterotrophic respiration rates by 60%. Notably, US-ICs
is a fen ecosystem, characterized as a peat-forming wetland relying on groundwater input, with low to moderate
soil alkalinity (pH = 5.5-6.9), while all the other sites (bog and wet tundra) have acidic soil (pH = 3.3-5.5)
(Bourbonniere, 2009; Clymo et al., 1984). Our finding potentially indicates that redox potential (as a result of
different pH) is a key determinant of how soil moisture controls aerobic respiration, as found in numerous studies
(Bhanja & Wang, 2020; Brewer et al., 2018; Fiedler et al., 2007; Porter et al., 2004).

3.2. Combined Climatic Responses of CH, and CO, Fluxes

We find that warming and wetting alone increase CH, emissions across all sites. Temperature induces a +0.07 to
+0.36 gCH,/m?*/yr/o, and precipitation induces a +0.45 to +1.69 g CH,/m?/yr/c,, response across all sites, where
o, and o, represent a 1o climate perturbation in temperature and precipitation, respectively (the ranges encom-
pass median values from the seven sites). Warming accelerates net CO, loss at all sites (+1.7 to +27.6 gCO,/m?/
yr/o;), while precipitation can change net CO, in both directions (—=203.2 to +18.3 gCO,/m*/yr/s,,). We find
warming alone increased Fco,ec at all seven high-latitude sites: CH, component of Fco,ec (Fco,ec-ch,) Plays a
larger role than the CO, component of Fco,ec (Fco,ec-co,) at two of the sites (US-BZB, a boreal wetland site near
Fairbanks, Alaska, and US-BES, a tundra site near Utgiagvik), and CH, component of Fco,cc players a smaller
role than the CO, component at the other sites (Figure 4a, Figure S14a in Supporting Information S1). We find
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Figure 3. DALEC-JCR modeled CO, and CH, at seven Alaska sites, jointly constrained by Eddy covariance (EC) CH, and CO, flux measurements. Red squares are
monthly aggregated eddy flux observations. Black lines are the modeled median of 4,000 random samples from posterior estimates constrained by EC NEE and CH,
data, gray shades are the 5-95 percentile interval. Vertical gray lines represent March (dotted), June (dashed), September (dotted), and December (solid). Location of
these sites on a map is shown in Figure S3 in Supporting Information S1.

that the impacts of a 16 change in precipitation are on average five-fold larger than 1o change in temperature for
CH, (Figures 4a and 4b).

In terms of the combined CH, + CO, responses (Fco,.-c), a 16 change in precipitation induces a larger response
than a 16 change in temperature (CO, equivalent responses are —168.3 to +65.6 gCO, eC/m?*/yr/c, and +8.3 to
+31.4 gCO, eC/m?/yr/o,, respectively) at all sites. Although net CH, fluxes are at least 10 times smaller than
CO,, the impact of a 1o increase in temperature and precipitation (Scenario 3) on A Fco,ec-cw, 1S larger than
A Fco,ec—co, at four sites (A Fco,ec—ch,/A Fco,ec-co, = 1.2-2.8 fold, range of medians). However, at US-BZB,
US-ICS, and US-BI’W, we find AFCOgeC—CH4 < AFCOQeC—COZ (A FCOZeC—CH4/A FCOZeC—COZ =0.22-0.38 fOld, range of
medians) (Figure 5a).
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Figure 4. Responses of net CO, and CH, fluxes to 1o changes in temperature or precipitation: (a) Scenario 1, warmer (4o,

ACO, response to warming
(9COx/m2Hyr,[+o+])

ACO, response to wetting
(gCOL/m2iyr,[+op]) ,

emp)> and (b) Scenario 2, wetter (+61c0)-

See Table 2 for reference to Scenario 1 and Scenario 2. Each color represents one single site and the contour lines are two-dimensional kernel density derived from
4,000 random samples from posterior estimate constrained by eddy covariance net CO, and CH, data (50%, 75%, and 95% distributions) derived from CARDAMOM
posterior states and parameters. Refer to Figure 1 for descriptions of lines and intersections.

ACH,4 response to warming and wetting

Figure 5. Responses of wetland CO, and CH, fluxes to 16 changes in temperature and precipitation at high-latitude sites: (a) Scenario 3, warmer and wetter (+o,
+6,e0); and (b) Scenario 4, warmer and drier (+o,

(gCH4/m2lyr,[+07,+0p))

3.3. Biogeochemical Controls on CO, and CH, Flux Climate Sensitivities

We found that a warmer and wetter climate induces a positive Fco,ec Tesponse (A Feo,ec = 17.7-88.2 gCO, eC/
m2/yr) in wet tundra sites but a negative Fco,cc in the fen and bog sites (A Fco,.c = 15.8-159.7 gCO, eC/m?/yr),
where heterotrophic respiration dramatically decreases due to increased soil moisture and is accompanied by

increased photosynthesis (Figure S14 in Supporting Information S1). The bog site (US-BZB) is the only site

with boreal forest, thus the ecosystem has a larger leaf biomass and litter pool to facilitate a quick response of C

decomposition and uptake. The fen site (US-ICs) is also unique from the other wet tundra sites due to the presence

of shrub species (larger plant biomass) and alkaline soil (resulting a different redox potential), which may drive

a stronger response in both heterotrophic respiration and photosynthesis. de Vrese et al. (2021) predicted weak

soil CO, respiration in the wet months of the year, which led to low soil CH, fluxes in permafrost regions under

Shared Socioeconomic Pathway 5 and the Representative Concentration Pathway 8.5. We predict the same direc-

tional changes in soil CO, respiration due to increased soil moisture, but increased CH, due to warmer tempera-

ture and larger anaerobic fraction in the soil column. Shu et al. (2020) predict CH, increase by 30% and 64% at the

6 o =US-ICs (Shrub fen) . 1
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= US-Beo (Wet tundra) climate I
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). See Table 2 for reference to Scenario 3 and Scenario 4. Each color represents one single site and the

contour lines are two-dimensional kernel density derived from 4,000 random samples from posterior estimate constrained by eddy covariance net CO, and CH, data
(50%, 75%, and 95% distributions) derived from CARDAMOM posterior states and parameters. Refer to Figure 1 for descriptions of lines and intersections.
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Figure 6. Responses of wetland CO, and CH, fluxes to continuation of
1970-2016 trends in temperature and precipitation (+7,.,,, +7,.; Scenario
5). See Table 2 for reference to Scenario 5. Each color represents one

single site and the contour lines are two-dimensional kernel density derived
from 4,000 random samples from posterior estimate constrained by eddy
covariance net CO, and CH, data (50%, 75%, and 95% distributions) derived
from CARDAMOM posterior states and parameters. Refer to Figure 1 for
descriptions of lines and intersections.

end of century under RCP4.5 and RCP8.5 in CONUS wetlands, which are the
same directional changes of CH, emission as predicted in our study.

Lawrence et al. (2015) predicted that 10%-drier soil conditions across
high-latitude regions will accelerate net CO, emissions but strongly suppress
growth in CH, emissions, resulting in a negative C-climate feedback and a
50% lower Fco,ec. While our results agree that drier soil (1o decrease in
precipitation) decreases CH, emission (with 95% confidence), it affects
CO, exchange in two directions depending on ecosystem types (Figures 4b
and 5b). Specifically, we find that the drier soil conditions result in a negative
C-climate feedback across wet tundra sites with a weakening of the gross
Fco,ec by 15%~52% (median of posterior estimations); however, due to the
substantial increase in heterotrophic respiration under drier conditions, the
boreal forest site exerts a positive C-climate feedback with a 236% increase
in the gross Fco,cc (Figure S14 in Supporting Information S1). Our insights
on the control of soil moisture on CH, emissions are broadly consistent with
Watts et al. (2014), where annual summer CH, emission budgets were found
to fluctuate by +4% due to the wet/dry cycles; our 1o change in annual
precipitation swings annual CH, emission by +7% to +27% (median of
posterior estimations) across the seven Alaskan sites.

If the 1970-present warming and wetting trend continues, our results indicate
all tundra sites will exhibit a positive gross Fco,.c response to climate (A
Feoyec = +0.7 to +3.4 gCO, eC/m?/yr per year of continuing climate trend),
while the forest (bog) and wet tundra with shrub (fen) sites will have a nega-
tive CO,eC flux response (A Fco,ec = —0.5 to —2.9 gCO, eC/m?yr per year
of continuing climate trend) due to reduced heterotrophic respiration and
increased photosynthesis (Figure 6 and Figure S14 in Supporting Informa-
tion S1). The change of Fco,ec-co, in response to 1970-present climate change

is on average 1.5-fold greater than Fo,cc-co, at wet tundra sites but 30% less at the forest and shrub site. Based

on 1970-present trends, integrated CH, and CO, flux sensitivities indicate that high-latitude wetland ecosys-

tems will amplify high-latitude C-climate feedback in wet tundra sites (positive Fco,cc response) but dampen in

Responses to 1970-2016 temperature and precipitation trends
Negative feedback (Fcozecd)  Positive feedback (Fcozect)

Boreal forest bog

usszs GPP 1 Gpp t
ERCOZ‘ ERCOZt
ERchat ERcha 1 Wet tundra
US-Bes
Shrub fen 5 US-Beo
Us-ICs g3E3e805,, US-Brw
g 0 US-Atg
Si007 S i/
\Wl/ US-Ivo

Fcozec = ERcoz + ERcus*z - GPP

Blue = Negative feedback
Red = Positive feedback

4 - Positive flux response
¥ = Negative flux response

Figure 7. Biogeochemical insight of carbon fluxes responses to continuation
of 1970-2016 trends in temperature and precipitation, comparing three
different wetland types investigated in this study. GPP is gross primary
production. ERco, is ecosystem respired CO,. ERcy, is ecosystem

respired CH,. Individual site GPP, ERco, and ERcy, flux response values

and uncertainties are shown in Figure S14 and Table S2 in Supporting
Information S1.

boreal forests and lower boundaries of wet tundra sites where shrubs exist
(negative CO,eC response, Figure 7). Both GPP and CH, respond positively
to the 1970-present climate trends across all seven sites. However, a notable
difference between the forest/shrub sites and the tundra sites is their contrast-
ing responses of ERco, to climate change. Specifically, in the boreal forest
and shrub sites, the ERco, response is much larger than the GPP and CH,
responses (Figure S14 in Supporting Information S1). The negative ERco,
responses in shrub and forest indicate that the integrated effects of increased
precipitation outweigh the effects of rising temperatures, and vice versa for
the positive ERco, responses in wet tundra ecosystems. We also find that
ERco, is predominantly driven by heterotrophic respiration flux response:
the difference in ERco, sensitivities is consistent with differences in under-
lying heterotrophic sensitivities to precipitation and temperature. We spec-
ulate that under current climate conditions, wet tundra respiration increases
with increasing soil moisture (moisture response between A and B in Figure
S2 in Supporting Information S1), while bog and fen respiration decrease
with increasing soil moisture (moisture response between B and C2 in Figure
S2 in Supporting Information S1). These contrasting moisture-respiration
responses could be due to different soil inundation conditions, subsidence,
soil pH, soil redox potential, vegetation types, microbial structures, diurnal or
seasonal cycles of fluctuating water table in hummocks and hollows.

To determine if there are substantial differences in climatic sensitivity during
the growing/non-growing season, we compared CH,/CO, responses to

MA ET AL.

12 of 18

ASURDIT suowwo)) aanear) a[qedrjdde oY) Aq pauIdA0S aIe SAONIR Y (SN JO SI[NI 10] AIRIGIT AUIUQ A[IAY UO (SUONIPUOI-PUB-SULIAY/ WO AI[1m KIRIqI[aul[uoy/:sdny) suonipuo) pue swa [, 3yl 39S “[$707/90/01] uo Areiq auruQ A[IM ‘$7SL009DTT0T/6201 0 1/10p/wod Ka[im  Kreiqiaurjuosqndnde//:sdiy woiy papeojumo( ‘6 ‘€20 ‘+TT6VH61



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2022GB007524

climate changes in growing season (June-August) against non-growing seasons (September-May), with similar
method we used to quantify averaged annual CH,/CO, response to climate change (see details in supplementary
Text S5 in Supporting Information S1). With the continuation of 1970-present climate change trend, US-ICs site
(shrub fen) will be a stronger source of CO, in the non-growing season and stronger sink of CO, in the growing
season (Figure S15 in Supporting Information S1). At US-Beo, US-Brw, US-Atq, the directions and magnitudes
of CO, and CH, fluxes in response to climate change are consistent between growing/non-growing seasons. At
US-ICs, US-BZB, US-Bes, we find stronger increase of CH, in growing seasons than non-growing seasons. We
find bigger increase of non-growing season CH, than growing season at the US-Ivo site, due to its large shoulder
season fluxes (September to December).

The CH, GWP metric (Myhre et al., 2013) has been extensively used across investigations to quantify the impact
of CH, fluxes on the evolution of the Earth System. However, Neubauer and Megonigal (2015) have refined the
characterization of the CH, radiative forcing impact relative to CO,, and advocate for a “sustained-flux GWP”
(SGWP) metric—to account for the impact of sustained shift in fluxes over time; this amounts to a considerably
higher greenhouse gas impact of CH, relative to CO, (CH, SGWP = 45), relative to the GWP assumed in our
analysis (CH, GWP = 28). To test whether SGWP and GWP metrics lead to consistent or conflicting conclu-
sions on the sign of the inferred C-climate feedback responses in our study, we re-derived the results presented
in Figure 7 using a value of z = 45 in Equations 15 and 16. The fluxes summarized in Figure 7 (Fco,.c and
component fluxes, namely ERcy,, ERco, and GPP) derived using both SGWP and GWP are presented quantified
in Table S2 in Supporting Information S1. While we find that the choice of SGWP and GWP has a substantial
impact on both ERcy, and the overall Fco,cc fluxes, we find that the sign of the Fco,cc sensitivity to climate
remains unchanged, and therefore our conclusions are not dependent on which CH, GWP metric is assumed.
We use 100-yr scale GWP value throughout the main text and figures to be consistent with recent wetland CH,
investigations (Jackson et al., 2020; Lawrence et al., 2015; Peltola et al., 2019; Saunois et al., 2016, 2020; Tian
et al., 2016; Webster et al., 2018).

3.4. Future Directions

Overall, our results indicate that accurately resolving both (a) mean CH, and CO, flux rates across both tundra
and boreal ecosystems and (b) their associated climate sensitivity will be critical for determining the sign and
magnitude of the northern high latitude ecosystem C-climate feedbacks in the coming decades. Our data-model
fusion approach demonstrates joint observational constraints on CO, and CH,, which is the key to understand-
ing ecosystem C cycle responses to the climate in the coming decades. Future studies could use this approach
to jointly constrain CO, and CH, fluxes at a larger number of EC sites with longer records of observations. We
emphasize the importance of adding long-term ground and spaceborne observations with better spatial cover-
age in northern high latitude to constrain terrestrial-atmosphere C balance and the C-climate feedback. While
DALEC-JCR does broadly capture the seasonal and IAV of both CH, and CO, fluxes at all sites, the model does
not explicitly represent soil energy dynamics, permafrost thaw, snow cover, snowmelt infiltration, soil consump-
tion of CH,, soil texture, soil pH, and soil redox potential, which are potentially key for accurately resolving
C-H,O cycle sensitivities to climate. We anticipate that the addition of these processes, along with integrat-
ing higher temporal/spatial resolution observations will improve modeled seasonal/inter-annual variations of
combined CO,-CH, fluxes and their climate sensitivity.

We infer CH, and CO, flux sensitivities to climate from the contemporary meteorological forcing and flux and
state observations. This derivation assumes linear responses of carbon cycling to climate (Equations 14-16).
While the linear sensitivities presented here provide a first-order estimate of flux sensitivity to contemporary
climate variability, larger and/or sustained climate perturbations can potentially induce non-linear responses such
as (a) non-linear functional responses to climate, for example, heterotrophic temperature and moisture sensitivi-
ties or vegetation functional responses (Norton et al., 2023), (b) cumulative legacy effects, and their propagation
across the terrestrial carbon cycle states (e.g., productivity increases and subsequently lagged growth of soil
organic C states), and (c) long-term processes unrepresented in the model-data integration analysis, for example,
shrub expansion, permafrost thaw or nutrient cycling, and/or (d) a shift of ecosystem states beyond a climate
threshold or tipping point (Au et al., 2023; Luo et al., 2011). Characterizing the longer-term sensitivities of
cumulative CH, and CO, fluxes to sustained climate change is therefore a key step toward establishing whether
(a) contemporary linear responses are the predominant contribution to CH, and CO, fluxes to climate sensitivity,
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or (ii) lagged and/or non-linear process responses to climate change will amount to prominent climate sensitivity
terms. Extending the FLUXNET CO, and CH, data record—along with augmentations in the processes repre-
sented in CARDAMOM framework—are key steps toward resolving the integrated CH, and CO, flux responses
to climate change on decadal to centennial timescales.

We highlight that machine learning methods have been used to upscale site-level CO,/CH, emission to
regional/global budgets (Peltola et al., 2019; Tramontana et al., 2016); in this context, our MDF approach can
potentially be used to investigate the possibility of propagating parameter knowledge from one site to another,
supervised by Bayesian probabilities, observations, and physical/biochemical laws from process-based
models; this approach could be key to constrain regional/global CH, and CO, fluxes—and their associated
climate sensitivities. We also note that further investigations on the seasonal sensitivities of CO,-CH, fluxes
are also needed, given that climate changes may be unique to each season, and that the mechanisms affect-
ing growing/non-growing season fluxes may differ (Natali et al., 2015; Treat et al., 2018a, 2018b; Watts
et al., 2014; Zona et al., 2016).

Finally, we highlight that a growing number of satellite greenhouse gas observations can help constrain regional/
global CO,-CH, budget and climate sensitivity estimations using our approach, such as wetland CH, emissions
from inversions of GOSAT data (Ma et al., 2022a; Lu et al., 2021; J. D. Maasakkers et al., 2019; J. Maasakkers
et al., 2020; Turner et al., 2015; Y. Zhang et al., 2021) and the GOSAT-derived net biosphere C exchange (NBE)
data set (CMS-Flux; Liu et al., 2014, 2018). Furthermore, integration of top-down greenhouse gas flux esti-
mates into land biosphere data-model fusion analyses (e.g., Bloom et al., 2020a, 2020b; Quetin et al., 2020; Yin
et al., 2020) can be potentially extend the quantification of CH, and CO, flux climate sensitivities to regional or
global scales.

4. Summary and Conclusions

We find that the CH, (in CO, equivalent GWP) response to 1970-present climate change is 50% greater than
CO, at tundra sites but 30% less at the boreal site. Contemporary CH, and CO, flux sensitivities indicate that
high-latitude wetland ecosystems will amplify C-climate feedbacks in tundra but dampen them in boreal forests
if the 1970-present climate change trend continues. Precipitation dominates CH, sensitivities to climate through
changes in the soil moisture. The CO, sensitivities are predominantly temperature driven at the tundra sites but
are dominated by precipitation (through Rh suppression) at the boreal site.

Our results agree with previous studies that although the amount of CH, emissions is about one magnitude
smaller than CO, on a molar basis, their responses to climate change play an important role in C-climate feed-
back (X. Zhu et al., 2013; Zhuang et al., 2007). Over the permafrost region, Lawrence et al. (2015) predicted
that 10%-drier soil conditions will accelerate net CO, emissions but strongly suppress growth in CH, emissions,
resulting in a negative C-climate feedback and a 50% lower GWP. We find distinct responses of CO, emissions
to soil moisture changes between wet tundra and forest bog sites, which requires further investigation across
individual ecosystem types. Our results highlight the relative importance of both CO, and CH, biogeochemical
sensitivities to climate, which ultimately need to be jointly quantified to accurately resolve the sign and magni-
tude of high-latitude ecosystem C-climate feedback in the coming decades.
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Erratum

The supporting information file in the originally published version of this article displayed edits made with
tracked changes. The file has been replaced, and this version may be considered the authoritative version of
record.
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