
FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices

Jinghui Liao
Wayne State University

United States
jinghui@wayne.edu

Niusen Chen
Michigan Technological University

United States
niusenc@mtu.edu

Lichen Xia
University of Delaware

United States
lxia@udel.edu

Bo Chen
Michigan Technological University

United States
bchen@mtu.edu

Weisong Shi
University of Delaware

United States
weisong@udel.edu

ABSTRACT

In today’s digital landscape, the ubiquity of mobile devices un-
derscores the urgent need for stringent security protocols in both
data transmission and storage. Plausibly deniable encryption (PDE)
stands out as a pivotal solution, particularly in jurisdictions marked
by rigorous regulations or increased vulnerabilities of personal
data. However, the existing PDE systems for mobile platforms have
evident limitations. These include vulnerabilities to multi-snapshot
attacks over RAM and flash memory, an undue dependence on
non-secure operating systems, traceable PDE entry point, and a
conspicuous PDE application prone to reverse engineering.

To address these limitations, we have introduced FSPDE, the
first Full-Stack mobile PDE system design which can mitigate PDE
compromises present at both the execution and the storage layers
of mobile stack as well as the cross-layer communication. Utilizing
the resilient security features of ARM TrustZone and collaborating
multiple storage sub-layers (block device, flash translation layer,
etc.), FSPDE offers a suite of improvements. At the heart of our
design, the MUTE and MIST protocols serve both as fortifications
against emerging threats and as tools to mask sensitive data, in-
cluding the PDE access point. A real-world prototype of FSPDE
was developed using OP-TEE, a leading open-source Trusted Exe-
cution Environment, in tandem with an open-sourced NAND flash
controller. Security analysis and experimental evaluations justify
both the security and the practicality of our design.

CCS CONCEPTS

• Security and privacy→Mobile platform security.

KEYWORDS

Plausibly Deniable Encryption, Mobile Devices, TrustZone, Flash
Translation Layer, Full Stack

ACM Reference Format:

Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi. 2024.
FSPDE: A Full Stack Plausibly Deniable Encryption System for Mobile

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CODASPY ’24, June 19–21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0421-5/24/06
https://doi.org/10.1145/3626232.3653262

Devices. In Proceedings of the Fourteenth ACM Conference on Data and
Application Security and Privacy (CODASPY ’24), June 19–21, 2024, Porto,
Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3626232.3653262

1 INTRODUCTION

Mobile computing devices, such as smartphones and tablets, have
become deeply integrated into modern life for communication,
work, healthcare, finance, and other sensitive tasks [34]. Because
of their mobility and accessibility, mobile devices today emerge as
the optimal tools for individuals to record crucial information, such
as criminal evidence or even life-threatening data. For example, a
human right worker may use his/her smartphone to capture the
brutal activities in a country of conflict or oppression and cross the
borderwhile the evidence is stored encrypted in the phone; however,
a border inspector may notice the encrypted ciphertext and coerce
the victim to disclose the decryption key. Traditional encryption
methods, such as full disk encryption, are insufficient when faced
with coercive attackers. Once encryption keys are revealed, either
voluntarily or involuntarily, traditional encryption schemes do not
provide any residual protections for the confidentiality and privacy
of user data [32].

To address this significant vulnerability, plausibly deniable en-
cryption (PDE) has emerged as a promising approach to improve
security in scenarios that involve coercion attacks, involuntary key
disclosure, or unauthorized access [38]. PDE provides an additional
layer of defense by empowering users to credibly deny the existence
of encrypted sensitive data even when adversaries actively com-
promise encryption keys or passwords using coercion, threats, or
involuntary extraction techniques [9]. This is achieved by enabling
the decryption of ciphertext into plausible, benign decoys using
different keys, preventing adversaries from definitively proving the
presence of any secret encrypted content [36].

PDE systems typically rely on hidden volumes or advanced
steganographic techniques to effectively conceal sensitive encrypted
data (accessible in the hidden mode) seamlessly among benign ran-
dom decoy content (accessible in the public mode). For example,
a 10 GB disk may have a public volume of 10 GB encrypted with
a decoy key, while stealthily embedding a hidden 5 GB volume
starting from a secret offset encrypted with a hidden key [4]. The
entire storage is initially filled with random data, while the hidden
volume resides silently among the random data. If asked coercively

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626232.3653262
https://doi.org/10.1145/3626232.3653262
https://doi.org/10.1145/3626232.3653262


CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

to reveal the key, the user provides the decoy key, allowing access
to only the public volume. With no means to definitively prove
the presence of a hidden volume, the user can plausibly deny its
existence.

Prior PDE systems [12, 13, 15, 16, 20, 26, 29, 36, 38, 43] designed
for mobile platforms have made notable advances, but still suffer
from significant limitations that severely hinder their effectiveness
and mainstream adoption on today’s mobile systems. Such limita-
tions include: (L1) All of them remain vulnerable to side-channel
attacks arising from insufficient isolation between non-sensitive
public data and sensitive hidden data in concealed operation modes,
resulting in inadvertent information leakage that betrays the pres-
ence of hidden data protected by PDE. For example, shared caches
or memory pages accessed during hidden-mode operations can re-
tain artifacts detectable in the public mode through cache timing or
memory inspection attacks. (L2) Naively designed communication
mechanisms between the PDE system and the block device involve
passing through the unsecured OS, which can unintentionally leak
sensitive timing or protocol patterns that betray the existence of
hidden modes or data [32]. (L3) Attackers can often access the
executable binary files that hide the PDE system. This access allows
them to reverse-engineer the executable files, potentially uncover-
ing evidence of the PDE’s existence. (L4) They either 1) simply de-
ploy hidden volumes on the block device [12, 13, 26, 38, 43], remain-
ing intrinsically susceptible to catastrophic deniability compromise
from advanced forensic analysis at the raw NAND flash [19, 29],
or 2) require significant modifications into the firmware staying
inside the flash memory storage [15, 16, 20, 29, 36], rendering it
hard to deploy the proposed systems in real-world devices.

To holistically address the aforementioned limitations, we in-
troduce FSPDE, the first Full-Stack mobile PDE system designed
from the ground up for modern mobile devices and architectures.
FSPDE aims for a full-stack PDE system design, covering not only
the execution and storage layers of the mobile stack, but also the
subsequent cross-layer communication.

At the execution layer, FSPDE uses the hardware isolation pro-
vided by ARM TrustZone to robustly isolate the PDE system in a
small trusted execution environment (TEE), effectively eliminating
side channels and forensic footprints compared to traditional OS-
based isolation techniques [8] (addressing L1). TrustZone provides
isolated secure worlds at the hardware level, perfect for concealing
PDE operations from the untrusted public-mode OSes. However,
simply using TrustZone does not immediately address all the PDE
compromises at the execution layer and extra design considerations
are needed. Firstly, traditionally, a PDE system must maintain an
entry point in the non-secure world, which could potentially leak
the existence of the PDE system during execution. To address this,
our design adopts a multi-layered approach within the TrustZone,
where the entry point is hidden within the TA (Trusted Application
that runs inside the TrustZone) part of a standard application. To
log into the PDE system, users must first log into the standard ap-
plication, which does not contain any PDE logic. Then, they enter
the standard application’s TA to activate the PDE’s entry point
and log into the PDE system. This ensures that the entire PDE lo-
gin process occurs within the TrustZone, avoiding exposure to the
PDE entrance. Secondly, the TrustZone (e.g., OP-TEE [35]) typically

relies on the OS’s filesystem for I/O operations. This dependence
means that reading and writing data within the PDE system could
leave traces in the non-secure system, potentially revealing the
PDE system’s existence. To mitigate this, we have implemented a
flash driver within the TrustZone for direct interaction with the
storage device, allowing data to be read from and written to storage
media without going through the system’s filesystem (addressing
L2). Thirdly, the PDE application binary exists in the non-secure
world, which means that an adversary may reverse-engineer the
binary to identify the existence of PDE. To prevent this attack, the
TA binary for PDE will be stored encrypted, with a secret key gen-
erated and managed solely by the TrustZone (rather than the user).
The encrypted binary cannot be decrypted until it is loaded into
the TrustZone upon launching the hidden mode. In this manner,
the reverse-engineering attack vector over the PDE binary can be
disabled reasonably (addressing L3).

At the storage layer, we need to eliminate any deniability com-
promises when the adversary can have access to the external stor-
age at different points of time (addressing L4). The access to the
storage mainly results in the adversarial peeking over the file data,
the block device data and the flash memory raw data. Due to the
hardware-level isolation of the hidden mode by the TrustZone, the
adversary will not notice the existence of this mode, and hence will
not gain access to any file data belonging to this sensitive mode.
To prevent deniability compromises from peeking the block device
in the public mode, a random placement together with a “dummy-
write” mechanism [13] is adopted. The sensitive data are encrypted
and stored hidden among the dummy data. Even if the adversary
can obtain multiple snapshots of the block device over time, it can-
not notice the existence of the sensitive data due to the “dynamic
obfucation” brought by the random placements of the public data
and the associated dummy data. Due to the introduction of the
dummy writes on the block device, the encrypted sensitive data are
inherently hidden among the dummy data in the raw flash memory.
However, upon peeking the underlying raw flash memory, the ad-
versary may identify deniability compromises as the log-structured
writing [36] implemented in most flash storage devices essentially
converts the random placements on the block device to sequential
placements on the raw flash. The remediation is to simply intro-
duce a random placement strategy into the flash translation layer
(FTL), a firmware layer staying between the block device and the
raw flash memory in mainstream flash storage devices. This only
requires a minimal modification into the FTL to achieve the desired
deniability as now the random placement and the “dummy-write”
mechanism are both present in the flash memory.

To implement the aforementioned ideas, we have introduced
two key protocols, MIST and MUTE. MIST operates fully within the
TrustZone environment to avoid leaving footprints of hidden data
in the memory of the untrusted system. It cleverly intersperses
hidden data among dummy data blocks, recorded in a mapping
table secured in TrustZone. All data are uniformly encrypted. This
provides an efficient and low overhead mechanism to conceal hid-
den data from being learned by inspecting the external storage.
MUTE (Section 5) protocol obscures the PDE entry point. It bifur-
cates operations between the rich execution environment (REE)
and the trusted execution environment (TEE). The entry point in



FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices CODASPY ’24, June 19–21, 2024, Porto, Portugal

the REE is designed to mimic normal software. After hiding-key
validation in the TEE, the secure PDE core is loaded. The protocol
also uses dummy applications and encrypted loading to prevent
reverse engineering.
Contributions. Our major contributions are summarized below:

• We have identified the limitations of existing PDE systems, such
as their vulnerability to deniability compromises at the lower stor-
age layer, susceptibility to side-channel attacks, and challenges
associated with cross-layer communication (i.e., the communica-
tion between the execution and the storage layer).
• We have proposed FSPDE, a novel multi-layered PDE system that
addresses the limitations of current PDE solutions and provides
robust protection against various threats, including coercion,
side channel attacks, and compromises of deniability due to the
cross-layer communication.
• We have designed a unique storage layer, which eliminates po-
tential sources of deniability compromises at various storage
sub-layers and provides robust protection against multi-snapshot
adversaries.
• We have enhanced execution layer isolation and entry point
concealment through innovative protocols like MUTE and MIST to
prevent leakage between public and hidden modes. In addition to
that, FSPDE leverages the TEE key to encrypt and decrypt PDE
executable files to defend against reverse engineering attacks.
• We have implemented a prototype of FSPDE on real mobile hard-
ware using ARM TrustZone and open-sourced flash memory
controllers, demonstrating its practicality.

2 BACKGROUND

Plausibly Deniable Encryption. Plausibly deniable encryption
(PDE) is a cryptographic technique designed to protect the confi-
dentiality of sensitive data against a coercive attacker who can force
the owner of the data to reveal the decryption key. PDE allows data
owners to decrypt the ciphertext into plausible and benign decoy
plaintext with a different key, enabling the data owner to deny the
existence of the original sensitive data. To provide reasonableness
and plausibility, the PDE system usually requires that the decoy
plaintext appears as normal data commonly found on a computer
and that the entire ciphertext can be taken into account. Throughout
the paper, “hidden data”, “PDE data”, and “sensitive data” are used
interchangeably to represent the original sensitive data. Similarly,
“public data”, “decoy data”, and “non-sensitive data” are also used
interchangeably to represent the decoy plaintext. PDE allows users
to convincingly deny the existence of encrypted data, the ability to
decrypt the given data, or the existence of specific encrypted data.
Such denials may or may not be genuine. PDE can eradicate the
attacker’s confidence that the data are encrypted or that the owner
can decrypt and provide the relevant plaintext.
TrustZone. ARM Holdings, a leading semiconductor manufac-
turer, introduced TrustZone technology as an integral part of the
ARMv6K architecture in 2004 [7], marking a significant step toward
enhancing security in microprocessor design. TrustZone signifies
an architectural solution that provides a system-wide approach to
security. The aim is to create a dedicated, isolated environment
within the system-on-chip (SoC), segregated from the primary op-
erating system. TrustZone operates on the principle of partitioning

system resources into two distinct worlds, a “secure world” and a
“non-secure world”. Each world has its own set of resources, includ-
ing processor modes, memory areas, and peripherals, to name a few.
These worlds are designed in such a way that neither can directly
access the other’s resources, ensuring the integrity of the secure
world even if the non-secure world becomes compromised. The
secure world can provide a trusted execution environment (TEE)
to run sensitive applications while the non-secure world allows
running the non-sensitive applications in a rich execution envi-
ronment (REE). Throughout the paper, “secure world” and “TEE” are
used interchangeably to denote an identical concept, similarly for the
“non-secure world” and “REE”. Open portable trusted execution envi-
ronment (OP-TEE) [35] is an open-source TEE for ARM TrustZone,
in which the programs are divided into two privilege layers: the
user level, where trusted applications (TA) operate, and the kernel
level, which is the domain of pseudo-trusted applications (PTA).

Over the years, TrustZone’s comprehensive system-wide secu-
rity solution has been widely deployed across a variety of devices,
such as smartphones, tablets, IoT devices, and smart televisions. No-
table applications of TrustZone include securing mobile payment
systems, device encryption keys, digital rights management (DRM),
and secure boot mechanisms.
NAND Flash. Mainstream mobile computing devices use NAND
flash as external storage. NAND flash stores information in an array
of memory cells grouped into blocks. Each block contains a few
pages, and every page usually has a small spare out-of-band (OOB)
area. NAND flash exhibits several unique characteristics: (1) NAND
flash has an erase-before-write design, i.e., a flash cell needs to be
erased before it can be overwritten. (2) The unit for a read/program
operation in NAND is a page, but the unit for an erase operation
is a block. (3) Flash memory is update-unfriendly, since updating
a page requires erasing the entire encompassing block. Therefore,
it usually uses out-of-place updates. (4) A flash block has a finite
number of program-erase cycles and will be worn out if the number
of programs/erasures performed on it exceeds a certain threshold.
Flash Translation Layer. The most popular approach to manag-
ing flash memory is to emulate it as a block device using a flash
translation layer (FTL). Traditional file systems (e.g., FAT32, EXT4)
can be directly implemented on top of the FTL. The FTL is respon-
sible for handling several crucial tasks: (1) Wear leveling: As flash
memory cells have a limited endurance for P/E (Program/Erase)
cycles, the FTL implements strategies to evenly distribute write
operations across the physical memory. This is done to extend the
serving life of the flash. (2) Mapping management: Flash memory
does not support in-place updates. Therefore, the FTL maintains
a mapping table to translate logical block addresses (as viewed by
the file system) to physical block addresses in flash memory. (3)
Garbage collection: When the data are rewritten, the FTL writes the
new data to a new location and marks the old location as invalid.
Consequently, numerous invalid pages are generated and dispersed
across different blocks over time. To mitigate this, the FTL peri-
odically reclaims these blocks by relocating any valid data to new
locations and subsequently erasing the entire block. (4) Bad block
management: Over time, certain blocks may become unreliable and
therefore are marked as bad. The FTL handles the management of
these impaired blocks to ensure that data are not written to them.



CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

Since its inception, the FTL has undergone numerous improve-
ments and optimizations, evolving alongside the flash memory
technology itself. Despite this, it continues to provide the same
fundamental services, serving as the vital link that allows flash
memory to be used in a broad range of applications, from tiny USB
drives to enterprise-grade SSDs.

3 SECURITY MODELS AND ASSUMPTIONS

System Model. We consider a mobile computing device which
is equipped with an ARM architecture processor with TrustZone
enabled. A flash memory-based storage device is utilized as external
storage. Flash memory is managed by the flash translation layer
(FTL), which transparently handles the unique characteristics of
flash memory hardware, exposing a block device access interface
to the operating system.
Adversarial Model. We consider a computationally bounded ad-
versary. The adversary is capable of capturing a victim user, along
with his/her computing device, at various intervals over the course
of time, i.e., a multi-snapshot adversary. Upon capturing a victim
device, the adversary can have access to both its external storage
and internal memory and may coerce the device owner to reveal
the decryption key for data. The access to the external storage
can cover different storage sub-layers including application, block
device, and raw flash memory. The adversary may play with the
victim device and conduct forensic analysis over the storage and
the memory. The adversary may also perform reverse engineering
over the binary files in the victim device.
Assumptions. Mobile devices are ubiquitously equippedwith ARM
TrustZone and, using TrustZone and the secure OS itself will not
raise any concerns about deniability, as they are widely used for
confidential computing applications [1]. We assume that Trust-
Zone is secure, which is a reasonable assumption in the domain of
TrustZone technologies [21, 28]. We also assume that TrustZone is
capable of protecting trusted application (TA) programs, aligning
with other TEE-assisted proposals [22, 25, 31, 33]. We also assume
that the encryption scheme we use is secure. In addition, we rely
on a few additional assumptions that are common in the designs of
the PDE systems [29, 38, 43]:

• The adversary is rational and will cease to coerce the device
owner upon being convinced that the decryption key is disclosed.
• Upon being captured by the adversary, the victim user will not
process hidden sensitive data. In addition, the user will refrain
from logging into the hidden mode in the presence of the ad-
versary. This assumption is necessary since the adversary will
immediately compromise the deniability if the victim is found
processing the hidden sensitive data or running the hidden mode.
• The mobile device is assumed to use system-on-chip, where the
adversary cannot get physical access to the internal memory by
cracking the chip.
• Themobile OS, kernel, and bootloader are assumed to bemalware-
free. In addition, the victim user does not use malicious applica-
tions controlled by the adversary. In other words, the attacks on
the PDE only happen when the adversary captures the victim
device. This assumption is necessary. Otherwise, by stealthily
monitoring the system, the adversary may immediately compro-
mise the deniability when the user processes the hidden sensitive

data. This assumption is not unreasonable in practice, consider-
ing the PDE user is typically cautious, who will periodically use
anti-virus tools to scan his/her device. In addition, the cautious
user usually will not use unknown/untrusted apps.
• The user will only process the hidden sensitive data in the hidden
mode, as otherwise, the hidden sensitive data may be present in
the public mode which is hard to be denied.

4 OVERVIEW OF FSPDE

4.1 Design Goals

The design goals of FSPDE are elaborated below:

• Goal 1: Resistance to Reverse Engineering Attacks. The
binary files associated with the PDE system must exhibit a robust
defense against reverse engineering attacks, ensuring that even
if the binary files are accessed by the adversaries, the underlying
logic and functionality of the PDE system remain secure and
impenetrable (analyzed in Section 7.1).
• Goal 2: Concealed Entry Point. The entry point of the PDE
system should be concealed effectively so that it cannot be uncov-
ered, even through reverse engineering (analyzed Section 7.2).
• Goal 3: Resistance to Multi-Snapshot Attacks. The PDE sys-
tem should be able to resist against the multi-snapshot adversary,
which can have access to both the volatile memory (RAM) and the
non-volatile external storage multiple times over time (analyzed
in Section 7.3).
• Goal 4: Fast Mode Switching. The design should support rapid
transitions between the hidden mode and the public mode, ac-
commodating the dynamic operational needs of mobile users
(analyzed in Section 7.4).

4.2 Design Overview

The overall design of FSPDE is illustrated in Figure 1. It comprises
two deniability layers: the execution layer, protected by TrustZone,
and the storage layer, protected by the FTL-assisted dummy writes.
The device owner is represented here as P, who possesses two
keys: 1) a secure key K𝑠 , which allows access to the secure OS to
handle hidden data, and 2) a decoy key K𝑑 , which allows access
to the non-secure OS to handle decoy data. A salient feature of
FSPDE is its sophisticated data storage strategy. When the non-
secure OS writes decoy data (m’), it concurrently disperses random
dummy data (m𝑑 ) across various unused storage blocks. On the
contrary, the secure OS embeds hidden data (m) into blocks already
populated with𝑚𝑑 . In other words, the hidden data m is plausibly
denied using the dummy data m𝑑 .
FTL-assisted Dummy Writes. In the public mode, decoy data
is encrypted via a decoy key and randomly placed to the block
device. To confuse the attacker, a dummy write is performed with a
certain probability when a data block is allocated to the decoy data
at the block device. Note that the dummy data can be generated by
encrypting garbled data using the same symmetric encryption algo-
rithm which is used to encrypt the hidden data and, the encryption
key is discarded once the dummy data are generated. This dummy
writes are executed only when Equation 1 [13] is met. Here, 𝑥 repre-
sents a fixed positive integer, while 𝑠𝑡𝑜𝑟𝑒𝑑_𝑟𝑎𝑛𝑑 denotes a random
number periodically refreshed. Furthermore, 𝑟𝑎𝑛𝑑 is an integer



FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices CODASPY ’24, June 19–21, 2024, Porto, Portugal

Non-secure
OS (REE)

Secure
OS (TEE)

Entry
Application

Execution Layer Storage Layer

Decoy Key
(𝒦d)

Secure Key
(𝒦s)

Dummy
write (md)

Non-secure
write (m’)

Secure
write (m)

Synchronize

Non-secure
Application

Secure
Application
(TA/PTA)

Device
Owner

Non-secure

Secure

Figure 1: The design overview of FSPDE. The PDE operations in the TEE are shaded in green, while the operations in the REE

are shaded in blue. On the data storage, the REE manages the decoy data𝑚′ along with the dummy data𝑚𝑑 , while the TEE

handles the hidden data𝑚.

randomly chosen from a uniform distribution ranging between 1
and 2 · 𝑥 for each instance of a dummy write. This methodology is
implemented to ensure that the probability of executing a dummy
write remains consistently below 50%.

𝑟𝑎𝑛𝑑 ≤ 𝑠𝑡𝑜𝑟𝑒𝑑_𝑟𝑎𝑛𝑑 mod 𝑥 (1)
Once the dummy writes are performed, a total of𝑚 blocks are

randomly assigned within the layer of the block device. These
newly allocated blocks are filled with randomized data. The specific
value of𝑚 is determined by Equation 2. Furthermore, 𝑓 represents
a randomly generated number within the range of 0 to 1, and 𝜆

denotes the rate parameter.

𝑚 = ⌊𝑚′⌋, where𝑚′ = −(ln(1 − 𝑓 ))/𝜆 (2)
The random placements with dummy writes on the block de-

vice will not be sufficient if the adversary can peek into the raw
flash memory. This is because, the FTL typically implements a log-
structured writing mechanism [37] by which the data are written
sequentially to the flash memory to accommodate its unique hard-
ware nature (Section 2); even if the data are placed randomly on
the block device, the FTL, staying between the block device and the
flash hardware, will convert the random pattern on the block device
back to a sequential pattern on the raw flash and, such a sequential
pattern may lead to deniability compromises if the adversary gains
access to the raw flash. For example, the user first writes some
decoy data in the pubic mode, and then switches to the hidden
mode to write a hidden file; by peeking into the flash memory, the
adversary will observe some decoy data together with some dummy
data, followed by a large amount of undecryptable ciphertext which
is corresponding to the hidden file. In other words, the sequential
pattern involuntarily places bounds between the decoy and the
hidden data, leaking the existence of the hidden data.

To mitigate this deniability compromise, we modify the log-
structured writing in the FTL so that all the data, including decoy,
dummy, and hidden data, will instead follow a randomwriting strat-
egy. Utilizing the randomwriting is exclusively feasible for the flash

memory as addressing in the flash memory is not based on mechan-
ical rotations which discourage random seeking. In addition, the
random writing may result in a better wear-leveling effectiveness
which is essential for the flash memory. Note that the FTL does not
differentiate decoy, dummy, and hidden data. Therefore, only one
mapping table is needed to be maintained in the FTL.
Handling Mapping Tables. To avoid the potential overwriting of
hidden data by decoy and dummy data, our design maintains three
tables on the block device: the global mapping table, the public map-
ping table, and the hidden mapping table. These tables collectively
serve to effectively manage data allocation and preservation. The
global mapping table keeps track of locations that are occupied by
all types of data. The public mapping table only records the loca-
tions of decoy data. It should be noted that a dedicated mapping
table for dummy data is deliberately omitted, as its existence could
inadvertently allow the attacker to differentiate the hidden data
from the dummy data. Both the global mapping table and the public
mapping table are visible to the adversaries and, FSPDEwill transfer
them to the TrustZone upon switching to the hidden mode. The
hidden mapping table is used to keep track of the hidden data at the
block layer. This table should be invisible to the adversaries.
PDE Binary Protection (Goal 1). To protect the binary files of
the PDE system while concealing its existence, we use symmetric
encryption algorithms to encrypt all TA binary files. These files
are only decrypted after they are loaded into the TEE. Each TA’s
encryption and decryption key is uniquely generated from a root
key built into the TEE system. When a TA is loaded into the TEE
for execution, the TEE recalculates the appropriate sub-key based
on the TA’s identity and uses this key to decrypt the TA. The
encryption and decryption keys originate from the root key within
the TEE and are securely managed there.
Key Protocols: MUTE (Goal 2) and MIST (Goal 3). To ensure full-
stack deniability, FSPDE introduces the MUTE and MIST protocols:

• MUTE Protocol: To protect the PDE system’s entry point, the MUTE
protocol operates across the secure (TEE) and non-secure (REE)



CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

TEE Client API TEE Internal API

Non-secure Write Driver Secure Write Driver

PDE Entry
Application

Secure OS ComponentsNon-secure OS Components

Message

Client Entry
Application

Client
Application

Dummy Write
Driver

REE
Communication

Agent

TEE
Communication

Agent

Hardware

Flash

PDE
Application

TEE Functional
API

Other TEE
Application

TEE
Application

Figure 2: The structure of the MUTE protocol. The shaded in

green are the core components of the MUTE protocol, while the light

green parts are the MUTE components that reside in the non-secure OS.

Note that all TAs are encrypted before being loaded into Trustzone.

environments. In the secure environment, it includes special-
ized applications within TrustZone, while appearing as conven-
tional software in the non-secure environment, devoid of any
PDE-related indications. This design effectively shields against
memory attack strategies and reverse engineering, ensuring that
PDE entry remains undetected and secure. The MUTE protocol is
elaborated in Section 5.
• MIST Protocol: Designed for managing hidden data in the mo-
bile devices, the MIST protocol leverages both theTrustZone and
the FTL technologies. It segregates the hidden data operations
from non-secure systems, ensuring that no residual traces in
the insecure memory. The protocol classifies data into public,
dummy, and hidden categories, ingeniously blending hidden data
within dummy data blocks for concealment. In addition, the MIST
protocol incorporates a PDE Mapping Table to link hidden data
to dummy data, and an FTL Mapping Table to manage physical
and virtual flash addresses. The MIST protocol is elaborated in
Section 6.

5 HIDING THE PDE SYSTEM VIA MUTE
The obfuscation of the PDE entry point serves as an imperative
shield against the coercive adversaries. In this light, the MUTE proto-
col, as depicted in Figure 2, is presented as an integral component
of FSPDE. Its primary objective is to obscure the entrance of the
PDE system, rendering potential reverse engineering efforts futile.
The MUTE Protocol Paradigm. The MUTE protocol bifurcates its
operations into two realms: the secure world, executed within Trust-
Zone or TEE, and the non-secure world, operating within the REE.
• Secure World (TEE):

– PDE Entry Application (TA): Resides and functions within the
TrustZone user stratum.

– PDE Core Program (PTA): Manifests within the TrustZone sys-
tem layer.

– Other Dummy Application (PTA): Ensures the holistic operation
of the system.

• Non-secure World (REE):

– Entry Application: Externally, it appears as standard software
devoid of any PDE-specific code or data.

Protocol Description. Algorithm 1 shows the MUTE protocol detail.
In the context of FSPDE, the user initiates access by launching an

entry program in REE and entering a specific secret key. Externally,
this program appears as standard software devoid of any overt
PDE-related information. Upon key entry, the system initiates a
transition that leads to the secure TrustZone execution environment.
Here, the PDE entry program takes over the task of verifying keys.
If the key is verified and matches the key designed for the PDE
system, the system invokes the OP-TEE environment to activate
and run the PDE’s PTA, thereby initiating the core functionalities
of the PDE system. Conversely, if the key is recognized as a dummy
(decoy), the system opts to load the dummy PTA, providing a non-
PDE response as a decoy to mislead potential attackers. Crucially,
all operations within the TrustZone are performed under strict
encryption, ensuring that TA and PTA are decrypted and executed
exclusively within this secure space, adding a layer of protection
against reverse engineering. Simultaneously, the absence of PDE-
related code in the REE entry program further ensures the system’s
resilience against reverse detection. This sequential and integrated
operation flow guarantees the integrity and security of FSPDE.

Algorithm 1 MUTE protocol for PDE loading
1: Initialization:
2: Encrypt both the Trusted Application (TA) and the Pseudo-Trusted Application

(PTA) securely.
3: Launch the Entry Application within the REE.
4: Prompt the user to enter the privileged key.
5: if the provided key is valid then

6: Transition the environment to TEE.
7: Decrypt the TA and PTA.
8: Verify the privileged key through the PDE Entry Application.
9: if the key corresponds to the PDE then

10: Engage the PDE Core Program as a PTA for execution.
11: else if the key is associated with a dummy request then
12: Activate Dummy Application as a PTA.
13: end if

14: Upon task completion, transition back to REE.
15: else
16: Remain within the confines of the Entry Application and notify the user.
17: end if

6 SECURING DATA VIA MIST
Previous PDE systems [9, 13, 14, 30] that utilized dummy write
operations segmented data into different partitions. Then these PDE
partitions were concealed within partitions dedicated to dummy
writes. However, such obfuscation methods heavily relied on full-
disk encryption techniques, leading to significant system overhead.
Furthermore, performing these complex operations directly in a
non-secure environment inevitably generated numerous memory
traces that were susceptible to analysis, increasing the risk of PDE
system files being detected. To address these challenges, we propose
the “MIST Protocol”, denoted as ΠMIST, which uses TrustZone and
FTL to provide an efficient and low overhead mechanism to handle
hidden data. The protocol ensures complete decoupling of hidden
data operations from non-secure systems, guaranteeing that no
footprints or traces of hidden data operations remain in insecure
systems or memory. Figure 3 illustrates the architecture of the MIST
protocol. In this section, we will dive into the details of our MIST
protocol.

Due to the prevalence of mobile devices based on the ARM
architecture and that utilize flash storage embedded with the FTL,
an innovative approach to PDE is needed that ensures optimal



FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices CODASPY ’24, June 19–21, 2024, Porto, Portugal

Public Data
(m’)

Dummy Data
(md)

PDE Data

PDE Mapping
Table

Public&Dummy
Data

FTL Mapping
Table

Flash

Data block

Mapping record

Write Operation

PDE Data
(m)

PDE Mapping Table
(TPDE)

FTL Mapping Table
(TFTL)

Figure 3: The MIST protocol’s storage layout is structured such that solid blocks indicate data storage, and dashed blocks are

for data block address mapping records. Arrows in the diagram represent the write operation processes, showing data flow

direction. The data is categorized into: public data (blue,𝑚′), dummy data (orange,𝑚𝑑 ), and hidden data (green,𝑚). It features

two mapping tables: PDE (𝑇𝑃𝐷𝐸 ) for mapping hidden data to dummy data, and FTL (𝑇𝐹𝑇𝐿) for mapping virtual to physical flash

block addresses. The color of the mapping records matches the data types: blue for public, orange for dummy, and green for

hidden data writing. The hidden data in MIST is not stored separately but hidden within dummy data, making the PDE Mapping

Table crucial for identifying hidden data in dummy blocks. Some mapping arrows are omitted in the figure for simplicity.

security. Thus, we introduce the MIST protocol, which is designed
to operate within ARM’s TrustZone. This design choice minimizes
interaction with the Android system, thus mitigating the risk of
leaving unintended forensic footprints in the system memory.
The MIST Protocol Paradigm. The figure provided illustrates the
intricate storage layout intrinsic to the MIST protocol. Solid blocks
represent the actual data storage units, while dashed blocks visually
depict the address mapping records associated with these data
blocks. The arrows illustrate the dynamic nature of write operations,
showing the directionality and flow of data transmission.

The data architecture within the MIST protocol can be classified
into three main categories: (1) Public Data (𝑚′): Represented by
blue, this category encompasses data that are openly accessible and
do not require special protection considerations. (2) Dummy Data

(𝑚𝑑 ): Illustrated in orange, this category of data is essential for
the MIST framework. Acting as a smokescreen, it emulates genuine
data patterns and serves as a protective veil for genuine encrypted
content. (3) Hidden Data (𝑚): Described by green blocks and
arrows, this category houses the data that require PDE protection.
It is cleverly interspersed among the dummy data blocks, ensuring
its protection by blending in with their indistinctness.

Central to the MIST protocol are two pivotal mapping tables: (1)
PDE Mapping Table (𝑇𝑃𝐷𝐸 ): This table establishes a relationship
between hidden data and dummy data, facilitating the identification
of hidden data concealed within dummy blocks. This table is the
hidden mapping table mentioned in Section 4.2. (2) FTL Mapping
Table (𝑇𝐹𝑇𝐿): This table serves to bridge the virtual and physical
addresses of the blocks, a necessity for streamlined flash storage
management.
Protocol Description. Algorithm 2 shows the MIST protocol detail.
Within the non-secure system, public data is directly committed to
storage, denoted as𝑚′. To enhance the deniability of the system, the
non-secure system sporadically executes dummy write operations,

labeling the resulting data as𝑚𝑑 . The metadata from these dummy
write operations is then securely transmitted to the TrustZone,
ensuring its immunity from external access or tampering.

However, within the secure world, all sensitive data writing
operations occur under the protective umbrella of the TrustZone,
with such data designated as𝑚. When the system needs to write
sensitive data, it consults 𝑇𝑃𝐷𝐸 , a meticulously maintained table
within the TrustZone that chronicles the dummy write operations.
The system searches 𝑇𝑃𝐷𝐸 for an unoccupied dummy write block.
Once identified,𝑚 is securely written on this block, and the block
is marked as occupied within 𝑇𝑃𝐷𝐸 . This strategy ensures that sen-
sitive data are indistinguishable from dummy data at the physical
storage level, thus achieving data deniability.

A notable characteristic of the MIST protocol is its unconven-
tional approach to deny the existence of hidden data. Instead of
creating a separate storage volume for hidden data, the protocol
cleverly integrates it into the dummy data, resulting in a higher
level of obfuscation. This strategic amalgamation poses significant
challenges for potential adversaries, making it difficult for them to
distinguish genuine encrypted data from decoys.

7 SECURITY ANALYSIS

7.1 Reverse Engineering Defense (Goal 1)

The FSPDE’s security architecture intricately combines encrypted
TAs with the exclusive decryption capabilities of the TrustZone
system [35]. This setup ensures that only the TrustZone can de-
crypt the TAs, thus maintaining strict control over access to these
sensitive applications. Moreover, users are not in possession of
the decryption keys, a deliberate design choice that mitigates the
risk of key compromise, even in scenarios where users might be
coerced by attackers. This lack of user access to the decryption
keys, paired with the TrustZone’s exclusive decryption authority,
forms a comprehensive barrier against reverse engineering attacks.



CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

Algorithm 2 MIST Protocol Data Handling
1: function Encrypt(𝑑𝑎𝑡𝑎, 𝑘𝑒𝑦)
2: return encrypted_data
3: end function

4: function Decrypt(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑘𝑒𝑦)
5: return data
6: end function

7: procedureWriteData(𝑑𝑎𝑡𝑎, 𝑡𝑦𝑝𝑒, 𝑘𝑒𝑦)
8: if 𝑡𝑦𝑝𝑒 == Public then
9: Write 𝑑𝑎𝑡𝑎 to the non-secure system as𝑚′
10: else if 𝑡𝑦𝑝𝑒 == Dummy then

11: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 ← Encrypt(𝑑𝑎𝑡𝑎, 𝑘𝑒𝑦)
12: Write 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 to the non-secure system as𝑚𝑑

13: Update𝑇𝑃𝐷𝐸 with dummy block information
14: else

15: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 ← Encrypt(𝑑𝑎𝑡𝑎, 𝑘𝑒𝑦)
16: Retrieve an unoccupied dummy block from𝑇𝑃𝐷𝐸

17: Write 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 to the retrieved block as𝑚
18: Mark the block as occupied in𝑇𝑃𝐷𝐸

19: end if

20: end procedure

21: procedure ReadData(𝑏𝑙𝑜𝑐𝑘, 𝑘𝑒𝑦)
22: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 ← Retrieve data from the block
23: if the block is in𝑇𝑃𝐷𝐸 then

24: return Decrypt(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑘𝑒𝑦)
25: else

26: return 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 ⊲ Assuming dummy data is decrypted
elsewhere if needed

27: end if

28: end procedure

7.2 Entry Point Protection (Goal 2)

FSPDE utilizes the MUTE protocol for PDE entry point protection. By
strictly separating REE and TEE, it can effectively isolate sensitive
operations. The REE entry program serves as a decoy, meticulously
designed to mimic typical software and shield any clues about
the concealed PDE system. Upon key validation, a seamless and
encrypted transition is initiated into the TrustZone, where the key
verification logic is exclusively executed, further reinforcing the
system’s security. The MUTE protocol improves its defenses with a
dummy PTA, acting as a deceptive mechanism against unauthorized
TrustZone activations. Additionally, TA and PTA operations within
the TrustZone are encrypted, providing a formidable shield against
reverse engineering. The communication modules that cross REE
and TEE have been engineered to resist data manipulation and
interceptions. Collectively, these security mechanisms ensure the
effectiveness of the MUTE protocol, allowing securely concealing
the entry point of the PDE hidden mode.

7.3 Mitigating Multi-Snapshot Attacks (Goal 3)

7.3.1 Definitions. In this analysis, we use several key symbols and
functions: Sflash represents the state of the storage medium; SRAM
represents the state of the memory; A represents a probabilistic
polynomial-time adversary; Δflash𝑡𝑖 ,𝑡 𝑗 indicates the difference be-
tween storage snapshots at two different times 𝑡𝑖 and 𝑡 𝑗 ; and Δ

𝑡𝑖 ,𝑡 𝑗
RAM

indicates the difference between memory snapshots at two different
times 𝑡𝑖 and 𝑡 𝑗 .

7.3.2 Plausibility Analysis. Plausibility refers to the concept that
when accessing a system using particular credentials, the accessed
dataset could be either genuine or fabricated. From an external
evaluator’s perspective, the authenticity of both datasets remains
ambiguous. By using specific credentials to access a system, access

is granted to a dataset that can be either genuine or manufactured,
depending on the credentials used.

The fundamental basis for the plausibility of the FSPDE system
lies in the indistinguishability of the datasets. It is computationally
challenging for an adversary to determine the authenticity of the
datasets.

A PDE system satisfies plausibility if all probabilistic polynomial-
time (PPT) adversaries have a negligible advantage in distinguishing
between the genuine and fabricated datasets, given access to the
storage and memory states, and the credentials used to access the
datasets.

The design of FSPDE inherently supports plausibility by gen-
erating multiple datasets that appear authentic regardless of the
credentials used, making it difficult for an external evaluator to
definitively determine the validity of the data. If an adversary could
distinguish between the genuine and fabricated datasets with a
non-negligible probability, it would imply that the adversary could
break the security of the underlying encryption scheme. However,
since the encryption scheme is assumed to be secure, the existence
of such an adversary would lead to a contradiction.

Therefore, FSPDE achieves plausibility if the underlying encryp-
tion scheme is secure.

7.3.3 Deniability Analysis. Deniability guarantees that users can
present a decoy dataset while denying the authenticity of the origi-
nal dataset, upon being coerced.

In other words, deniability ensures that users have the ability
to plausibly deny the existence of sensitive or genuine data by
presenting a convincing decoy dataset. The decoy dataset is crafted
in such a way that it is indistinguishable from the genuine dataset,
making it extremely difficult for an adversary to determine the true
nature of the disclosed information.

A PDE system satisfies deniability if all PPT adversaries have a
negligible probability of guessing the genuine datasets and genuine
credentials, given access to the fabricated datasets.

The deniability of FSPDE is based on three key defensive mech-
anisms:

1. Dummy Write Mechanism: This mechanism introduces in-
tentional obfuscation by concealing hidden write operations within
dummy writes. As a result, it becomes computationally challenging
for an adversary to distinguish them. Note that performing dummy
writes itself does not imply PDE existence, as it is also used for other
purposes, such as access pattern protection and erase operations in
storage.

2. Isolated Execution Environment: The decision logic and
metadata essential to PDE executions are housed within an isolated
execution environment. This ensures that the traces of hidden mode
will not appear in the memory region accessible to the adversaries.

3. Ambiguity of The Encryption Outputs: The system’s abil-
ity to generate multiple authenticated datasets ensures that the
concealed datasets remain hidden, even when a user exposes one
using the genuine credentials.

If an adversary could guess the genuine datasets and genuine
credentials with a non-negligible probability, given access to the
fabricated datasets, it would imply that the adversary could either
break the security of the encryption scheme or compromise the
isolated execution environment. However, since the encryption



FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices CODASPY ’24, June 19–21, 2024, Porto, Portugal

scheme and the isolated execution environment are assumed to be
secure, the existence of such an adversary would lead to a contra-
diction.

Therefore, FSPDE achieves deniability if the underlying encryp-
tion scheme is secure and the decision logic and metadata are
securely isolated in the TrustZone.

7.3.4 Multi-Snapshot Resistance. In real-world scenarios, adver-
saries may have the ability to collect multiple snapshots of the stor-
age medium over time. If not designed properly, this multi-snapshot
capability can compromise the deniability aspect of encrypted sys-
tems. Analyzing these snapshots could reveal patterns or metadata
that hint at the presence of hidden data or the use of deniability
techniques. Therefore, it is crucial for the PDE system to main-
tain its deniability properties even in the face of multi-snapshot
adversaries.

Let S𝑡1B ,S
𝑡2
B , . . . ,S

𝑡𝑛
B denote the series of snapshots taken at dif-

ferent instances 𝑡1, 𝑡2, . . . , 𝑡𝑛 , where B ∈ {𝑅𝐴𝑀, 𝑓 𝑙𝑎𝑠ℎ}.
Deniability Across Snapshots. For an adversary A which has
access to a series of snapshots, we want to ensure that for all snap-
shots at any time instance (𝑡_𝑖), the adversary remains unable to
determine the presence or absence of the authentic dataset, even
if they have prior knowledge of earlier snapshots. The probability
of the adversary distinguishing between the genuine and fabri-
cated datasets should be approximately equal, regardless of the
credentials used to access the system.
Consistency Across Snapshots. Consistency of concealed data
is a critical aspect to consider for multi-snapshot deniability. The
system must ensure that the hidden data remain consistent across
different time instances or that any patterns align with standard
data operations. Any sudden changes or patterns that deviate from
standard operations could raise suspicion.

Formally, let Δ𝑡𝑖 ,𝑡 𝑗B be the difference between two snapshots
S𝑡𝑖B and S𝑡 𝑗B . For genuine operations between times 𝑡𝑖 and 𝑡 𝑗 , the
difference Δ𝑡𝑖 ,𝑡 𝑗B should be indistinguishable from the difference for
contrived operations using the decoy key:

Δ
𝑡𝑖 ,𝑡 𝑗
B (K𝑠 ) ≈ Δ

𝑡𝑖 ,𝑡 𝑗
B (K𝑑 ) (3)

where B ∈ {𝑅𝐴𝑀, 𝑓 𝑙𝑎𝑠ℎ}.
Memory Multi-Snapshot.Memory multi-snapshot attacks aim
to capture the state of a system’s RAM at various moments, with
the intent to uncover patterns, secrets, or operations that suggest
existence of hidden data. The PDE system uses TrustZone to counter
such threats. TrustZone provides a secure execution environment
that isolates critical operations and data from standard memory
regions. It offers several key features:
• Isolation from Main Memory: Operations associated with the PDE
mechanism occur within the secure confines of the TrustZone. Even
if A captures the state of the main memory, the contents and oper-
ations within the TrustZone remain undisturbed and undisclosed.
This isolation ensures that RAM snapshots do not provide any
indication of PDE activities.
• Secure Metadata Storage: Metadata linked to PDE operations are
securely stored within the TrustZone, making it difficult for A to
discern patterns or behaviors from successive RAM snapshots.

• Integrity of Operations: TrustZone ensures not only confidentiality
but also the integrity of operations. Even if other parts of the system
are compromised, PDE-related operations remain untampered with.

By ensuring consistency of operations within the TrustZone
over time, regardless of the unlocking key in use, it becomes com-
putationally infeasible for adversaries to differentiate between gen-
uine and decoy operations, even with multiple snapshots. Once
an unlock operation is performed, whether using the secure key
K𝑠 or the decoy key K𝑑 , the resulting dataset undergoes process-
ing within the secure environment of TrustZone. This approach
guarantees heightened ambiguity; even ifA seizes the RAM’s state
post-decryption, the TrustZone operations reveal no hint about the
possible existence or absence of another dataset. That is

Δ
𝑡𝑖 ,𝑡 𝑗
RAM (K𝑠 ) ≈ Δ

𝑡𝑖 ,𝑡 𝑗
RAM (K𝑑 ) (4)

. Therefore, FSPDE achieves execution layer deniability against
multi-snapshot.
Storage Multi-snapshot. The adversary cannot detect the exis-
tence of hidden data by performing a multi-snapshot attack on
the flash storage. When analyzing the storage, two types of data
can be observed: 1) data that can be decrypted by the public key;
and 2) random data encompassing both dummy data and hidden
data. Although the attacker can successfully decrypt the encrypted
public data using the corresponding public key after coercing the
device owner, he/she cannot differentiate hidden sensitive data
from random data. Furthermore, any observations of alterations
within the random data can be denied as stemming from dummy
write operations. That is

Δ
𝑡𝑖 ,𝑡 𝑗

flash (K𝑠 ) ≈ Δ
𝑡𝑖 ,𝑡 𝑗

flash (K𝑑 ) (5)

, and makes FSPDE achieving storage layer deniability against
multi-snapshot.

7.4 Extended Analysis

Fast Mode Switching (Goal 4). FSPDE’s transitions between its
hidden and public modes efficiently utilize ARM TrustZone’s capa-
bility to rapidly switch between the secure and non-secure worlds.
This process is initiated when the ARM CPU shifts to the Secure
World upon PDE activation and returns to the non-secure world
when exiting PDE. The seamless transition is primarily due to
TrustZone’s hardware-level integration and tailored design, which
notably reduces the processing overhead for state transitions. These
strategic design choices allow TrustZone to uphold robust security
while ensuring efficient performance, thus facilitating FSPDE in
achieving a fast mode switching.
Secure Cross-layer Communication. In the MUTE protocol, a
secure storage driver is implemented within TrustZone, allowing
FSPDE to interact directly with the underlying storage without
passing through the non-secure world. This design ensures that
no traces or logs are left in the non-secure world’s memory, cache,
file system, or OS. Consequently, it establishes secure communica-
tion between the execution layer and the storage layer, effectively
preventing potential security breaches that could occur if sensitive
operations were exposed to non-secure world.
Resisting against Side-channel Attacks. Side-channel attacks
present a significant challenge in cybersecurity due to their wide
range of attack vectors, spanning both software and hardware



CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

layers. These attacks exploit inherent vulnerabilities [10]. Conse-
quently, it’s nearly impossible to defend against all side-channel
attacks. However, in the context of FSPDE, all execution operations
are confined within TrustZone, significantly mitigating the risk
of side-channel attacks at the memory and cache levels. This con-
finement within TrustZone effectively shields FSPDE from many
common side-channel vulnerabilities, thereby improving its overall
security posture against these sophisticated attack methods.

8 IMPLEMENTATION AND EVALUATION

8.1 Implementation

To support TrustZone, we utilized OP-TEE. To support FTL, we
relied on an open-source NAND flash controller OpenNFM [23].
We chose OpenNFM due to its modular and layered architecture,
which lends itself well for customization and integration of ad-
vanced mechanisms. Our implementation comprises three major
components: (1) modifying the OP-TEE OS to support the PDE
execution layer, and (2) modifying the OpenNFM to support the
FTL sub-layer, and (3) developing a PDE-enabled application within
the REE. We encrypted the PDE TAs by enabling the build flag
CFG_ENCRYPT_TA=y [5]. In addition, a dummy write operation is
performed on the block device when operating in the public mode.
Random numbers from /dev/urandom are used to determine the
probability of a dummy write. A variable 𝑟𝑎𝑛𝑑 , generated from /de-
v/urandom, is generated between 0 and 100. To perform a dummy
write, random data is encrypted using the same algorithm as that
for public data. A free location is then selected using random allo-
cation, and the encrypted random data is written to that location.
The corresponding location in the global mapping table is marked
as “allocated”.

8.2 Evaluation

We evaluated FSPDE using a Raspberry Pi 3 Model B development
board. This board boasts a Broadcom BCM2837 System-on-Chip
(SoC) that features a 64-bit CPU architecture, complemented with
1 GB of Random Access Memory (RAM). There resides a 1.2 GHz
quad-core ARM Cortex A53 processor in the SoC, adeptly paired
with the DesignWare USB 2.0 controller [40]. This SoC has built-
in support for TrustZone technology. On the software front, we
have implemented OP-TEE, version 3.19, as the foundation of our
secure software platform, as documented by OP-TEE, 2019 [35]. In
addition, the non-secure software realm was anchored in the Linux
kernel with version rpi3-optee-5.17 [24]. For external flash memory
storage, we used another electronic board LPC-H3131. This board
is equipped with an ARM9 32-bit ARM926EJ-S processor, clocked
at 180MHz, 32MB RAM and 512MB NAND flash. OpenNFM was
modified and ported to the LPC-H3131 [41], converting it to a
regular flash storage device.
Secure Read/Write. The performance of secure read/write can be
found in Table 1 and 2. To write the hidden sensitive data, FSPDE
needs to encrypt them in the TEE, invoking the disk driver1, and

1To confirm the feasibility of allowing TrustZone to directly access the flash storage,
we modified an SD driver from an open-source bare-metal project for Raspberry Pi
3 [2]. We maintained the driver’s design and integrated it into the TrustZone hardware
by specifying the correct translation between the virtual and physical addresses of the
involved registers.

writing them to the external flash storage (managed by the FTL).
Similarly, to read the hidden data, the TEE needs to invoke the disk
driver, retrieving them from the external flash storage, which will
then be decrypted in the TEE. The FTL needs to randomize the
data placements and we measured how this randomization may
affect the performance (Table 2). This was measured indirectly by
comparing the throughput with/without the FTL randomization.
The throughput degradation indicates the extra overhead caused
by the FTL randomization. From Table 1, we can observe that the
time delay caused by the encryption/decryption increases linearly
when the data size is increased. In addition, the time delay caused
by the TEE for both read and write operations increases when the
data size is increased (but not linearly). We also observe that the
time delay caused by the TEE is not insignificant. The reason is
that Raspberry Pi-3B does not support general interrupt controller
(GIC), making it hard to implement an efficient storage driver within
the TrustZone. This could be optimized if the implementation is
migrated to platforms supporting GIC which will be studied in our
future work. From Table 2, we can observe that the randomization
in the FTL has little impact on the read operations, but does have
some impacts on the write operations. Using Raspberry Pi-3B, the
performance degradation on the write operations is around 70%
(this varies for different types of hosting computing devices, e.g.,
we observed around 50% degradation in a personal computer and
around 60% in another embedded board Firefly AIO-3399J [3]). In
addition, writing the LPC-H3131 in Raspberry Pi-3B is slow in
general.
Non-secure Write/Read. The performance for the non-secure
read/write is shown in Table 3. We can observe that the time needed
for both the non-secure read and write operations grows linearly
when the data size is increased. In addition, the non-secure write is
significantly slower than the non-secure read, due to two potential
reasons: 1) The write operation incurs extra dummy writes and
random placements on the block device. 2) The raspberry Pi-3B
itself is significant slow in writing the LPC-H3131 compared to the
read operations.
Mode Switching. The transition time between the hidden mode
and the public mode is dominated by the time needed to switch be-
tween the secure and the non-secure worlds. It takes approximately
110 𝜇s when switching from the non-secure world to the secure
world, and around 47 𝜇s in the opposite operation, as documented
by Amacher et al. [6].

9 RELATEDWORK

The Block Device-based Mobile PDE Systems. Skillen et al.
proposed Mobiflage [38, 39], the first mobile PDE system by in-
tegrating the hidden-volume-based TrueCrypt [42] with Android
platform. Yu et al. [43] improved Mobiflage by mitigating a new
booting-time attack, supporting multi-level deniability and fast data
transfer to the hidden mode without rebooting. Mobiflage and Mo-
biHydra both assumed the existence of a physical or an emulated
FAT32 external storage partition, which limits their usage. Chang
et al. [11, 12] removed this impractical assumption, by proposing a
filesystem friendly PDE design that is compatible with any block
file systems. Another design by Chang et al. [13], MobiCeal, tried
to defend against a strong multi-snapshot adversary which was not



FSPDE: A Full Stack Plausibly Deniable Encryption System for
Mobile Devices CODASPY ’24, June 19–21, 2024, Porto, Portugal

data size (KB) 1 4 8 16 32 64 128 256 512
Encryption/Decryption (𝜇s) 160 781 2,019 4494 9945 19347 39,150 78,753 157,965
Inside TrustZone write (𝜇s) 10,294 11,251 14,680 18,993 19,345 29,063 48,077 79,815 146,797
Inside TrustZone read (𝜇s) 17,378 17,828 19,762 22,877 27,214 37,978 56,455 99,476 177,503

Table 1: Performance of secure read/write in the TrustZone secure world of Raspberry Pi-3B. “Encryption/Decryption” captures

the time needed for encrypting/decrypting the hidden data in the secure world. “Inside TrustZone Read/Write” captures the

other time in the secure world when reading/writing hidden data. Note that both do not capture the performance impact by the

modified FTL, which will be evaluated in Table 2.

SR RR SW RW
Throughput of original OpenNFM (KB/s) 1138 978 55 43
Throughput of modified OpenNFM with random writes (KB/s) 1086 966 14 12
Estimated overhead caused by the FTL randomization 4.6% 1.2% 74.5% 72.1%

Table 2: Performance impact caused by FTL randomization. The throughput was obtained by running the fio [27] benchmark

in Raspberry Pi-3B, performing different read/write patterns on top of LPC-H3131. SR: sequential read; RR: random read; SW:

sequential write; RW: random write.

data size (KB) 32 64 128 512
non-secure read (s) 0.045 0.089 0.177 0.711
non-secure write (s) 1.423 2.961 5.603 23.474

Table 3: Performance of non-secure read/write in the non-

secure world of Raspberry Pi-3B with LPC-H3131 as external

storage. The time for the non-secure read was measured by

reading the decoy data from the block device and decrypting

them. The time for the non-secure write was measured by

encrypting the decoy data, placing the resulted ciphertext to

a random location of the block device, and performing the

dummy writes (conditionally based on Equation 1).

considered in prior mobile PDE systems. Feng et al. [26] proposed
MobiGyges which can improve storage usage, avoid rebooting the
device to enter the hidden volume, and mitigate the capacity com-
parison attack and the fill-to-full attack.
The Flash Memory-based Mobile PDE Systems. Jia et al. [29]
identified the deniability compromises when deploying hidden vol-
umes at the block device. They instead designed DEFTL which
integrates the hidden volumes into the flash translation layer. Hav-
ing observed that the DEFTL can only mitigate the single-snapshot
adversaries, Chen et al. [16] designed a new PDE system that can
defend against multi-snapshot adversaries on NAND flash using
write-once memory (WOM) codes. DEFY [36] was another PDE
system which can mitigate multi-snapshot attackers by integrating
steganography with a special flash file system YAFFS. INFUSE [15]
also integrated a hiding scheme into YAFFS, by hiding sensitive
data through the flash memory hardware side channels.
OtherMobile PDE Systems. Chen et al. have designed CrossPDE [20],
which spreads the PDE functionality across multiple sub-layers
(flash memory, block device, and file system) of the storage sys-
tem to achieve a secure yet efficient mobile PDE system design.
Another PDE system [18] by Chen et al. is hiding sensitive data
in the non-sensitive images leveraging image steganography and
watermarking. This however, can only hide a small amount of data
due to the limited hidden space of the watermark images.

All the aforementioned mobile PDE systems can only partially
achieve deniability, as they exclusively focus on concealing sensi-
tive data within the storage layer. We have previously proposed a
preliminary mobile PDE system [30] aiming for a full-stack design.
However, [30] performs dummy writes on the FTL, resulting in
both security and performance issues: 1) Performing dummy writes
on the FTL cannot defend against the adversary which can access
the block device. 2) Having the low-power flash device to handle
the entire PDE will be very inefficient. On the contrary, FSPDE can
address both concerns by performing dummy writes on the block
layer, minimizing operations imposed to the FTL. In addition, [30]
does not protect PDE binaries, leaving the design vulnerable to
reverse engineering attacks. On the contrary, FSPDE can mitigate
such attacks, and conceal entry points. Note that HiPDS [17] de-
signed by Chen et al. does not work for the mobile systems as it
relies on the Intel SGX to isolate the sensitive data in the memory.

10 CONCLUSION

In this work, we have designed FSPDE, a full-stack PDE system
framework unique for mobile platforms. Leveraging the robust
security attributes of ARM TrustZone and coordinating multiple
storage sub-layers, FSPDE introduces a series of enhancements
spearheaded by the MUTE and MIST protocols. For the first time,
FSPDE works towards mitigating the deniability compromises at
both the execution and the storage layers as well as the cross-
layer communication for mobile systems. Security analysis and
experimental evaluations on real-world mobile hardware confirm
that FSPDE can meet the desired security goals with acceptable
overheads.

ACKNOWLEDGMENTS

This work was supported by US National Science Foundation un-
der grant number CNS-2313139, CNS-1928331 and CNS-1928349.
Niusen Chen and Bo Chen were also supported by US National
Science Foundation under grant number CNS-2225424.

REFERENCES

[1] [n. d.]. https://www.arm.com/products/silicon-ip-security.

https://www.arm.com/products/silicon-ip-security


CODASPY ’24, June 19–21, 2024, Porto, Portugal Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi

[2] [n. d.]. Bare Metal Programming on Raspberry Pi 3. https://github.com/bztsrc/
raspi3-tutorial.

[3] [n. d.]. Firefly AIO-3399J. https://en.t-firefly.com/product/industry/aio_3399.
[4] 2004. TrueCrypt: Free open-source disk encryption software. https://

www.truecrypt.org
[5] 2023. OP-TEE Trusted Applications. https://optee.readthedocs.io/en/latest/

architecture/trusted_applications.html. Accessed: 2023-12-28.
[6] Julien Amacher and Valerio Schiavoni. 2019. On the Performance of ARM Trust-

Zone: (Practical Experience Report). In Distributed Applications and Interoperable
Systems: 19th IFIP WG 6.1 International Conference, DAIS 2019. Springer, 133–151.

[7] ARM. 2021. Arm Confidential Compute Architecture. https://developer.arm.com/
architectures/architecture-security-features. accessed: 2021-03-31.

[8] AmrMAzab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Ganesh Ganesh,
Jia Ma, and Wenbo Shen. 2016. SICE: A hardware-level strongly isolated comput-
ing environment for x86 multi-core platforms. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 375–388.

[9] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. 2014.
Toward robust hidden volumes using write-only oblivious ram. In Proceedings of
the 2014 ACM CCS. 203–214.

[10] Sebanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder, Jean-Louis Lanet,
and Axel Legay. 2018. How TrustZone could be bypassed: Side-channel attacks
on a modern system-on-chip. In Information Security Theory and Practice: 11th
IFIP WG 11.2 International Conference, WISTP 2017. Springer, 93–109.

[11] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li, and
Zhan Wang. 2018. User-friendly deniable storage for mobile devices. computers
& security 72 (2018), 163–174.

[12] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. Mobipluto: File
system friendly deniable storage for mobile devices. In Proceedings of the 31st
Annual Computer Security Applications Conference. ACM, 381–390.

[13] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang
Tian, Zhan Wang, and Albert Ching. 2018. Mobiceal: Towards secure and prac-
tical plausibly deniable encryption on mobile devices. In 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE, 454–465.

[14] Bo Chen and Niusen Chen. 2020. Poster: a secure plausibly deniable system for
mobile devices against multi-snapshot adversaries. In 2020 IEEE Symposium on
Security and Privacy Poster Session.

[15] Chen Chen, Anrin Chakraborti, and Radu Sion. 2020. INFUSE: Invisible plausibly-
deniable file system for NAND flash. Proc. of PET 2020, 4 (2020), 239–254.

[16] Chen Chen, Anrin Chakraborti, and Radu Sion. 2021. PEARL: Plausibly Deni-
able Flash Translation Layer using WOM coding. In The 30th Usenix Security
Symposium.

[17] Niusen Chen and Bo Chen. 2023. HiPDS: A Storage Hardware-independent
Plausibly Deniable Storage System. IEEE Transactions on Information Forensics
and Security (2023).

[18] Niusen Chen, Bo Chen, and Weisong Shi. 2021. MobiWear: A Plausibly Deniable
Encryption System for Wearable Mobile Devices. In EAI International Conference
on Applied Cryptography in Computer and Communications. Springer, 138–154.

[19] Niusen Chen, Bo Chen, and Weisong Shi. 2022. The block-based mobile pde
systems are not secure-experimental attacks. In EAI International Conference on
Applied Cryptography in Computer and Communications. Springer, 139–152.

[20] Niusen Chen, Bo Chen, and Weisong Shi. 2022. A Cross-layer Plausibly Deniable
Encryption System for Mobile Devices. In International Conference on Security
and Privacy in Communication Systems. Springer, 150–169.

[21] Niusen Chen, Wen Xie, and Bo Chen. 2021. Combating the OS-Level Malware
in Mobile Devices by Leveraging Isolation and Steganography. In International
Conference on Applied Cryptography and Network Security. Springer, 397–413.

[22] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In 2019

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 185–200.
[23] Google Code. 2011. OpenNFM. https://code.google.com/p/opennfm/.
[24] OP-TEE Contributors. 2021. OP-TEE/manifest. https://github.com/OP-TEE/

manifest GitHub repository.
[25] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:
practical smart contracts on bitcoin. In 28th USENIX Security Symposium (USENIX
Security 19). 801–818.

[26] Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang, Meng Wang,
Bo Cheng, and Junliang Chen. 2020. MobiGyges: A mobile hidden volume for
preventing data loss, improving storage utilization, and avoiding device reboot.
Future Generation Computer Systems (2020).

[27] Freecode. 2014. fio. http://freecode.com/projects/fio.
[28] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,

Xinyu Xing, and Luning Xia. 2017. Supporting transparent snapshot for bare-
metal malware analysis on mobile devices. In Proceedings of the ACSAC. 339–349.

[29] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2217–2229.

[30] Jinghui Liao, Bo Chen, and Weisong Shi. 2021. TrustZone enhanced plausibly
deniable encryption system for mobile devices. In 2021 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 441–447.

[31] Jinghui Liao, Fengwei Zhang, Wenhai Sun, and Weisong Shi. 2022. Speedster:
An Efficient Multi-party State Channel via Enclaves. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security. 637–651.

[32] Johannes Lind, Henry Grahn, Thomas Johansson, and Markus Karlsson. 2014.
Tee based mobile plausible deniability. In Proceedings of the 30th Annual Computer
Security Applications Conference. 346–355.

[33] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Pe-
ter Pietzuch. 2019. Teechain: a secure payment network with asynchronous
blockchain access. In Proceedings of the 27th ACM SOSP. 63–79.

[34] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and Konstantin
Beznosov. 2019. Know your enemy: Leveraging data analysis to expose potential
attackers in mobile encrypted communication. ACM Transactions on Privacy and
Security (TOPS) 22, 1 (2019), 3.

[35] OP-TEE. 2019. Open Portable Trusted Execution Environment. https://www.op-
tee.org/ (2019).

[36] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. 2015. DEFY: A
deniable, encrypted file system for log-structured storage. (2015).

[37] Mendel Rosenblum and John K Ousterhout. 1991. The design and implementation
of a log-structured file system. In Proceedings of the thirteenth ACM symposium
on Operating systems principles. 1–15.

[38] Adam Skillen and MohammadMannan. 2013. On Implementing Deniable Storage
Encryption for Mobile Devices. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27.

[39] Adam Skillen and Mohammad Mannan. 2014. Mobiflage: Deniable Storage
Encryptionfor Mobile Devices. IEEE Transactions on Dependable and Secure
Computing 11, 3 (2014), 224–237.

[40] Synopsys. 2023. DesignWare USB 2.0 Digital Controllers. Available at: https:
//www.synopsys.com/dw/ipdir.php?ds=dwc_usb_2_0_digital_controllers.

[41] Deepthi Tankasala, Niusen Chen, and Bo Chen. 2022. Creating a testbed for flash
memory research via lpc-h3131 and opennfm-linux version. Technical Report.
Technical report, Department of Computer Science, Michigan Tech.

[42] TrueCrypt. [n. d.]. Free open source on-the-fly disk encryption software.version
7.1a. http://www.truecrypt.org/. Accessed: 2021-08-23.

[43] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. 2014.
Mobihydra: Pragmatic and multi-level plausibly deniable encryption storage
for mobile devices. In International conference on information security. Springer,
555–567.

https://github.com/bztsrc/raspi3-tutorial
https://github.com/bztsrc/raspi3-tutorial
https://en.t-firefly.com/product/industry/aio_3399
https://www.truecrypt.org
https://www.truecrypt.org
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://developer.arm.com/architectures/architecture-security-features
https://developer.arm.com/architectures/architecture-security-features
https://code.google.com/p/opennfm/
https://github.com/OP-TEE/manifest
https://github.com/OP-TEE/manifest
https://www.op-tee.org/
https://www.op-tee.org/
https://www.synopsys.com/dw/ipdir.php?ds=dwc_usb_2_0_digital_controllers
https://www.synopsys.com/dw/ipdir.php?ds=dwc_usb_2_0_digital_controllers
http://www.truecrypt.org/

	Abstract
	1 Introduction
	2 Background
	3 Security Models and Assumptions
	4 Overview of FSPDE
	4.1 Design Goals
	4.2 Design Overview

	5 Hiding the PDE System via MUTE
	6 Securing Data via MIST
	7 Security Analysis
	7.1 Reverse Engineering Defense (Goal 1)
	7.2 Entry Point Protection (Goal 2)
	7.3 Mitigating Multi-Snapshot Attacks (Goal 3)
	7.4 Extended Analysis

	8 Implementation and Evaluation
	8.1 Implementation
	8.2 Evaluation

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

