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category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a
choice of Frobenius algebra structure on H∗. We discuss how ordinary G orbifolds for finite groups G are
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explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and Rep(H8), and
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1 Introduction

Recently, there has been a great deal of interest in noninvertible symmetries, see e.g. [1–3] for recent reviews,
and see also e.g. [4–8] for related work in for example three-dimensional TFTs, which give conceptual
insights into gaugeability of noninvertible symmetries in physical theories via the ‘sandwich’ construction,
and also see e.g. [9–12]. The purpose of this paper is to explicitly gauge noninvertible global symmetries
in some examples, to construct concrete expressions for partition functions and discuss applications such as
decomposition, following up pioneering papers such as [13,14] which discuss basics of such gaugings.

As has been discussed elsewhere in the literature, (finite) noninvertible symmetries are described by a
fusion category. We will review later how not every fusion category can be gauged (see e.g. [15–18] for other
recent discussions). Gaugeability imposes constraints on the fusion category, and to satisfy those constraints,
we will restrict to fusion categories of the form Rep(G) (the category of representations of a group G), for
finite G, and to generalizations Rep(H) where H will be a semisimple finite-dimensional Hopf algebra (which
we will define later). (See also [19] for a recent discussion of Rep(H) fusion categories.) This will turn out
to include ordinary orbifolds as special cases, for which the fusion category is Vec(G) = Rep(C[G]∗), the
category of G-graded vector spaces), for G the (finite) orbifold group, as we shall discuss. (We emphasize
that these are not the most general possible fusion categories arising in two-dimensional theories as describing
global symmetries, as has also been remarked by e.g. [14].)

Now, to gauge the noninvertible symmetry, to construct a modular-invariant partition function, we will
see that we need to specify additional structure, namely a (special, symmetric) Frobenius algebra. Many
choices are possible; we will describe pertinent choices in terms of the regular representation of G or H. In
practice, for categories of representations of finite groups G, the Frobenius algebra is defined on the dual
C[G]∗ or H∗ (where we have used the fact that Rep(G) = Rep(C[G]), for C[G] the group algebra of G, to
describe Rep(G) as a special case of Rep(H)).

One can gauge along any number of Frobenius algebras; we emphasize that when we speak of gauging
the (entire) noninvertible symmetry, we mean that we are gauging the Frobenius algebra associated with
the regular representation. Further generalizations may be possible; we do not address the question of
constructing Frobenius algebras from more general fusion categories, or their gauging.

Intuitively, the reader might compare to the case of ordinary group orbifolds, and ask why the additional
step of specifying a Frobenius algebra is required. After all, standard orbifold constructions only require
specifying a group and its action. Our intuition is that in ordinary orbifolds there exists a canonical choice
of Frobenius algebra (as we shall discuss later in section 2.5), which one works with implicitly. Similarly,
when gauging a (gaugeable) noninvertible symmetry, there exists a canonical choice of Frobenius algebra
structure (constructed on the regular representation of the group G or Hopf algebra H).

The construction of partition functions we describe here is closely related to that described in [13], which
formulated rational conformal field theory in terms of a symmetric special Frobenius algebra.

In this paper, we will focus on gauging noninvertible symmetries in multiplicity-free cases, meaning that
spaces of junction operators are one-dimensional, as we shall explain later. We will describe gauging in more
general cases in our subsequent work [20].

We begin in section 2 by describing the basic principles underlying the gauging of noninvertible sym-
metries. We define partial traces for noninvertible symmetry analogues of orbifolds, the building blocks of
partition functions, and observe in an example that not every noninvertible symmetry can be gauged, as
it is not always possible to construct a modular-invariant partition function. We discuss necessary condi-
tions for gauging, and restrict to a class of gaugeable noninvertible symmetries, defined by fusion categories
of the form Rep(H) for H a finite-dimensional semisimple Hopf algebra. (This includes as special cases
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both Rep(G) for G a finite group, as well as ordinary orbifolds, which are described by the fusion category
Vec(G) = Rep(C[G]∗).) For simplicity, in this paper we restrict to ‘multiplicity-free’ cases, which we explain.
In order to perform a gauging, in order to construct a modular invariant partition function, one must specify
a special symmetric Frobenius algebra (constructed from the dual of the Hopf algebra H∗, as we discuss).
We give formal expressions for partition functions (at genus one and higher), and check modular invariance.
We also discuss in detail how ordinary orbifolds arise as special cases.

In section 3 we compute partition functions for Frobenius algebras arising in several examples, namely
Rep(S3), Rep(D4), Rep(Q8), and Rep(H8). For the first three, we give first-principles computations, deriving
the general form of associators and crossing kernels / F-symbols for general intertwiner maps, expressions
for modular transformations of partial traces, and compute partition functions for every relevant choice of
Frobenius algebra, checking modular invariance in each case. For the last example, Rep(H8), we use standard
results for crossing kernels (for fixed intertwiner values), and only compute the partition function for one
Frobenius algebra (corresponding to the regular representation), and not more general cases. We also briefly
outline analogues of discrete torsion that can arise in these theories.

In section 4 we discuss applications. We focus on c = 1 theories which enjoy a rich structure of non-
invertible symmetries. We discuss how to gauge these noninvertible symmetries on certain points of the
orbifold branch. Specifically, we construct noninvertible duality defects arising from gauging noninvertible
symmetries in c = 1 theories.

Finally, in section 5 we discuss decomposition. Recall decomposition is the statement that a d-dimensional
local quantum field theory with a global (d− 1)-form symmetry is equivalent to a disjoint union of theories.
In two dimensions, decomposition often arises in gauge theories in which a subgroup of the gauge group acts
trivially. In this section we discuss what it means for a noninvertible symmetry to act trivially, then make
a proposal for the form of decomposition in gauged noninvertible symmetries, in the special case that the
entire noninvertible symmetry acts trivially. We check this conjecture in details for Rep(S3), Rep(D4), and
Rep(Q8).

As both Hopf and Frobenius algebras play an important role in this paper, and they may be obscure
to the reader, in appendix A we summarize the definitions of both. In appendix B we review modular
transformations in Z2 × Z2 Tambara-Yamagami examples, which include Rep(D4), Rep(Q8), and Rep(H8),
albeit in each case for specific choices of intertwiners. In appendix C we briefly discuss disjoint unions of
spaces as simple playgrounds for both G orbifolds and Rep(G) quantum symmetries.

Note added: While finalizing this work, [21] appeared, which also discusses gauging noninvertible sym-
metries in general as well as the specific example of gauging Rep(H8) for c = 1 CFTs. Our work is comple-
mentary to theirs: we provide a first-principle derivation starting from intertwiners, discuss further examples
such as Rep(S3) and Rep(Q8). We also discuss examples where noninvertible self-duality defects can be built
via half-gauging a Frobenius subalgebra of a categorical symmetry, compared to the case in [21] where a
half-gauging is performed for the full categorical symmetry, and we also discuss decomposition arising in
gauging trivially-acting noninvertible symmetries.

As this paper was nearing publication, we were informed that related results will appear in [22].

To assist the reader, we summarize below the notation we use in this paper:

• A denotes algebra objects and Frobenius algebras.

• H denotes a Hopf algebra.

• µ,∆ denote multiplication, comultiplication, respectively.

• u, uo denote unit, counit, respectively.
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• ϵ, γ denote evaluation, coevaluation, respectively.

• K̃ and F denote associators/crossing kernels

• α denotes an associator.

• L,M,N denote generic lines / simple objects in any fusion category,

• i, j denote junction operators.

• R denotes a generic irreducible representation of a group.

• For all groups, 1 denotes the trivial irreducible representation. (Some references use 0 instead.)

• eRi (for various integers i) denotes elements of a basis of a vector space on which the representation R
acts.

• a, b, c,m denotes irreducible representations of D4, Q8, H8.

• β denotes coefficients in intertwiners.

• ϕ denotes an intertwiner map.

• G denotes a group.

• H denotes a subgroup (not necessarily normal). (Note H ̸= H, the latter of which denotes a Hopf
algebra.)

• K denotes a normal subgroup of a group.

• I denotes an ideal or coideal of a (Hopf) algebra.

• τ denotes either (depending upon context) the modular parameter, or a parameter specifying a
Tambara-Yamagami category.

2 Gauging: general principles

In this section we will discuss general aspects of gauging noninvertible zero-form symmetries. In ordinary
orbifolds, much insight can be gleaned from the study of the genus-one partition function, which for an
orbifold by a group G, has the form

Z =
1

|G|
∑︂
g,h

Zg,h, (2.1)

where we will refer to the Zg,h as partial traces. We begin with a discussion of how partial traces are
defined for noninvertible zero-form symmetries in subsection 2.2, and then discuss modular transformations
of those partial traces in subsection 2.3. Now, in general, for a random fusion category, there may not
exist a modular-invariant combination of partial traces; no partition function may exist, which we discuss in
subsection 2.4. This has been previously discussed in the literature, see e.g. [13]. A solution is to restrict to
fusion categories from which one can derive a Frobenius algebra, and then that Frobenius algebra is used to
construct partition functions, as we shall describe in subsections 2.5, 2.6. Briefly, given a Frobenius algebra
A, the genus-one partition function (2.1) generalizes to an expression

Z = ZA,A =
∑︂

L1,L2,L3

µL3

L1,L2
∆L2,L1

L3
ZL3

L1,L2
. (2.2)
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(The µL3

L1,L2
, ∆L2,L1

L3
are derived from the Frobenius algebra A; the partial traces ZL3

L1,L2
can be constructed

solely from the fusion category.) We demonstrate that the resulting genus one partition functions (2.2)
are modular-invariant in subsection 2.7, and go on to construct higher-genus partition functions in subsec-
tion 2.8. In subsection 2.9 we make some formal observations regarding state spaces, and argue formally in
subsection 2.10 that the partition function encodes a projector, just as happens in ordinary orbifolds. In
subsection 2.11 we verify that all of these formal considerations correctly specialize to ordinary orbifolds by
finite groups.

2.1 Fusion categories, associators, and crossing kernels

Before defining partial traces and orbifold partition functions, we begin with a brief review of some termi-
nology and notation. Our main source for definitions relevant to fusion categories is [23]. Noninvertible
symmetries generalizing finite groups are usually1 expected to be described by mathematical structures
known as fusion categories. Technically, fusion categories are k-linear semisimple rigid tensor categories with
a finite number of isomorphism classes of simple objects. Unpacking this definition, this means these are
categories such that

1. (linear) the morphisms between any two objects form a k-vector space,

2. (semisimple) all objects are isomorphic to a finite direct sum of distinguished objects called simple
objects,

3. (rigid) every object has a corresponding dual object,

4. (tensor) there is a notion of product between any two objects that distributes over direct sums, in
analogy to the tensor product of vector spaces, and this includes an identity simple object 1 = L0, and

5. that the simple objects define a finite number n ∈ N of isomorphism classes.

By definition, simple objects {Li}i∈{0,1,··· ,n−1} (representing distinct isomorphism classes) satisfy the prop-
erty that

dimk(Hom(Li, Lj)) = δi,j . (2.3)

Throughout this article, we will exclusively consider the case k = C.

Physically, these axioms are justified by the interpretation that the objects in the category correspond
to topological operators that can be inserted along codimension 1 submanifolds, thus creating defects in the
theory. In particular, the tensor product is interpreted as the fusion of defects. The morphisms will live at
junctions between lines.

An important piece of the structure that comes with a consistent definition of a tensor product and that
will play an important role in this discussion is the associator [24]. The associator α of the tensor product
⊗ of a fusion category C is a natural collection of isomorphisms

αx,y,z : (x⊗ y)⊗ z
∼=−→ x⊗ (y ⊗ z) (2.4)

for x, y, z ∈ ob(C) objects of the fusion category. In simple terms, the existence of an associator is the
statement that the tensor product ⊗ is associative up to isomorphism. Diagrammatically, the associator is

1For a slight generalization, see e.g. [25] for a discussion on the role of multi-fusion categories as 2d symmetry categories.
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simply a natural isomorphism:

C × C × C C × C

C × C C

⊗×1C

1C×⊗

⊗α
∼=

⊗

(2.5)

Associators are required to satisfy an identity known as the pentagon identity. In components, for arbitrary
objects a, b, c, d ∈ ob(C), this is the commutative diagram:

(a⊗ b)⊗ (c⊗ d)

((a⊗ b)⊗ c)⊗ d a⊗ (b⊗ (c⊗ d))

(a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d)

αa,b,c⊗dαa⊗b,c,d

αa,b,c⊗Idd

αa,b⊗c,d

Ida⊗αb,c,d

(2.6)

Associators are defined for general monoidal categories. However, for fusion categories, this information
can be specified by a generating set called F -symbols. The generating set is obtained by looking at the
hom-spaces of simple objects. Let {Li}i∈I be the simple objects. Then the associator

αi,j,k : (Li ⊗ Lj)⊗ Lk → Li ⊗ (Lj ⊗ Lk) (2.7)

becomes a C-linear map of hom-spaces after applying the Hom(−, Ll) functor:

F l
ijk := Hom(−, Ll)(αi,j,k) : Hom((Li ⊗ Lj)⊗ Lk, Ll)→ Hom(Li ⊗ (Lj ⊗ Lk), Ll) (2.8)

which we call the F -matrices. By fixing a basis {λk α
ij } for Hom(Li ⊗ Lj , Lk), we can obtain the elements of

the F -matrix. To do this, first note

Hom((Li ⊗ Lj)⊗ Lk, Ll) =
⨁︂
p

Hom(Li ⊗ Lj , Lp)⊗Hom(Lp ⊗ Lk, Ll) (2.9)

Hom(Li ⊗ (Lj ⊗ Lk), Ll) =
⨁︂
q

Hom(Lj ⊗ Lk, Lq)⊗Hom(Li ⊗ Lq, Ll). (2.10)

This refines the F -matrices to linear maps of tensors of hom-spaces of simple objects as

(F l
ijk)

q
p : Hom(Li ⊗ Lj , Lp)⊗Hom(Lp ⊗ Lk, Ll)→ Hom(Lj ⊗ Lk, Lq)⊗Hom(Li ⊗ Lq, Ll). (2.11)

We now use the fixed basis to get matrix elements as

(F l
ijk)

q
p(λ

p β
ij ⊗ λl α

pk ) = (F l
ijk)

γqδ
αpβ λq δ

jk ⊗ λl γ
iq (2.12)

for (F l
ijk)

γqδ
αpβ ∈ C. Note that if in particular the fusion category is multiplicity-free, meaning that

dimC(Hom(Li ⊗ Lj , Lk)) ≤ 1, (2.13)

then (F l
ijk)

q
p in the chosen basis is simply a scalar. Then these coefficients (for which the Greek letter indices

are redundant) are often referred to as 6j-symbols.

A consequence of the definitions above and the pentagon identity (2.6) of associators is that the F symbols
obey [26, Lemma 3.4] ∑︂

ϵ

(F p
mkl)

δqϵ
βnχ(F

p
ijq)

δsγ
αmϵ =

∑︂
t,η,ϕκ

(Fn
ijk)

ηtϕ
αmβ(F

p
itl)

κsγ
ϕnχ(F

s
jkl)

δqϕ
ηtκ , (2.14)
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which in the multiplicity-free case reduces to the more familiar identity for 6j-symbols:

(F p
mkl)

q
n(F

p
ijq)

s
m =

∑︂
t

(Fn
ijk)

t
m(F p

itl)
s
n(F

s
jkl)

q
t . (2.15)

In the remainder of this paper, we will focus on multiplicity-free fusion categories. We will return to the
general case in our subsequent work [20].

A fusion category, by virtue of having duals, comes with evaluation maps ϵi ∈ Hom(Li ⊗ Li, L0) and
ϵi ∈ Hom(Li ⊗ Li, L0), and co-evaluation maps γi ∈ Hom(L0, Li ⊗ Li) and γi ∈ Hom(L0, Li ⊗ Li), for each
simple object Li, and L0 the monoidal unit. Here L mathematically denotes the dual of L (which exist in
any fusion category by definition), and physically represents L with the opposite orientation, where

L1 ⊕ L2 = L1 ⊕ L2, L1 ⊗ L2 = L2 ⊗ L1. (2.16)

The evaluation and coevaluation homomorphisms should satisfy relations which ensure that a line can be
“unfolded” (see [14]), specifically

(ϵi ⊗ 1Li
) ◦ α−1

i,i,i
◦ (1Li

⊗ γi(1)) = 1Li
, (1Li

⊗ ϵi) ◦ αi,i,i ◦ (γi(1)⊗ 1Li
) = 1Li

. (2.17)

In many cases (such as when the fusion category comes from representations), as we will see, a choice of the
basis vectors λk

ij induces evaluation maps ϵi and ϵi, and then the relations above determine the forms of γi
and γi.

Now we need to discuss some of our conventions for diagrams, which stand in for correlation functions in
our physical 2D theories. Topological line operators are labeled by objects of the fusion category, and include
an orientation indicated by an arrow on the line. Lines meet at junctions which should have an insertion of
a point operator. For tri-valent junctions of simple lines we’ll include a counter-clockwise blue arrow which
will give an ordering to the three lines, as shown below.

LjLi

Lk

(2.18)

To such a junction, with the lines in the orientations shown, we will associate the vector space

Hom(Li ⊗ Lj , Lk),

and if we have chosen basis vectors λk
ij (since we are restricting to the multiplicity-free case, we can drop the

index α), then unless otherwise noted, that is the vector placed at such a junction in a correlation function.
If any of the lines have their orientation reversed, then we will replace that line by its dual via insertion of
an evaluation or coevaluation map, and then associate the fusion Hom space, so for instance if the Lj line
above was outgoing rather than incoming, we would insert a coevaluation map as shown below, and then
associate the space Hom(Li ⊗ Lj , Lk) to the resulting tri-valent junction.

10



L5

L1 L4

L2 L3

=
∑︁

L6
L6

L1

L2

L4

L3

×K̃L1,L4

L2,L3
(L5, L6)

Figure 1: Defining property of the crossing kernel K̃, taken from [27, figure 13]. The sum is over simple
objects.

LjLk

Li

=

Lj

Lj

Lk

Li γj

(2.19)

Finally, using the evaluation or coevaluation maps we can construct isomorphisms between the fusion
homomorphisms and co-fusion homomorphisms. Explicitly, define an isomorphism ϕijk : Hom(Li⊗Lj , Lk)→
Hom(Li, Lk ⊗ Lj) by its action on v ∈ Hom(Li ⊗ Lj , Lk),

ϕijk(v) = (v ⊗ 1Lj
) ◦ α−1

i,j,j
◦ (1Li ⊗ γj(1)), (2.20)

with inverse
ϕ−1
ijk(u) = (1Lk

⊗ ϵj) ◦ αk,j,j ◦ (u⊗ 1Lj
). (2.21)

In particular, to the junction above we can alternatively map the vector space to Hom(Li, Lk ⊗ Lj). If we

have chosen basis vectors λk
ij for Hom(Li ⊗Lj , Lk), then we get an associated choice of basis vectors δjki for

Hom(Li, Lj ⊗ Lk) by

δjki = ϕikj(λ
j

ik
) = (λj

ik
⊗ 1Lk

) ◦ α−1

i,k,k
◦ (1Li

⊗ γk(1)). (2.22)

Our notation for fusion categories primarily follows [27]. One particular object which will play a crucial
role for us is the crossing kernel K̃, which is another notation for F . In the multiplicity-free case, they are
related by

K̃
i,m

j,k (p, q) = (Fm
ijk)

q
p (2.23)

Graphically, the crossing kernel is defined2 by the relation shown in figure 1.

As previously derived in the language of F symbols, the crossing kernels obey the pentagon identity (2.15),
which for later use we rewrite here in the notation of crossing kernels K̃, to explicitly3 match [27, equ’n
(2.9)]:

K̃
i,p

j,q(m, s) K̃
m,p

k,l (n, q) =
∑︂
t

K̃
j,s

k,l(t, q) K̃
i,p

t,l (n, s) K̃
i,n

j,k(m, t), (2.24)

The admissible crossing kernels are precisely those that obey the pentagon identity above.

2The careful reader will observe a slight issue of notation. Ordinarily, a linear map f : a → b might be said to act by
multiplication by a number c as f : a ↦→ b = ac. However, the conventions of [27] instead define c by a = bc, as their analysis is
primarily graphical. In any event, we will follow their conventions in this paper.

3To make the relation completely clear, we include the following table to convert to the indices of [27]:
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L1

L1

L2 L2L3

τ

1

τ + 1

0

Figure 2: Diagrammatic definition of the partial trace ZL3

L1,L2
, the noninvertible analogue of the partial trace

Zg,h appearing in genus one orbifold partition functions [X/G] for G an ordinary group. Our conventions
for partial traces essentially follow [28, appendix A].

2.2 Definition of partial traces for noninvertible symmetries

As reviewed earlier, in an ordinary orbifold by a finite group G, the genus one partition function has the
form

Z([X/G]) =
1

|G|
∑︂

gh=hg

Zg,h, (2.25)

where Zg,h represents the ‘partial trace,’ schematically,

g

h

, (2.26)

the contribution to the T 2 partition function from a worldsheet with a pair of branch cuts defined by g, h ∈ G.

Now, in the noninvertible case, to make sense of the partial traces Zg,h, one must work harder. If we
proceed naively and consider analogues of Zg,h defined by pairs of lines L1, L2, one problem we quickly
encounter is that the 4-point junction at which a pair of lines intersections is not uniquely defined in the
noninvertible theory, because L1⊗L2 can receive contributions from a linear combination of several lines. To
make the contribution well-defined, we must resolve the 4-valent junction into a pair of 3-valent junctions,
and specify the line joining the two three-point junctions. Instead of Zg,h, we have Z

L3

L1,L2
, where L1 and L2

are simple lines, and L3 is a simple line that appears in the fusion L1 ⊗ L2, as is illustrated in Figure 2. In
this paper, we will for the most part restrict to the so-called multiplicity-free case, where each simple line in
the fusion product of two simple lines appears at most once.

In principle, the diagram illustrated in Figure 2 does not yet specify a correlation function, since one must
also specify a choice of junction operators at each of the triple intersections above. For example, the junction
operators at the vertex on the right in Figure 2 are elements of Hom(L1 ⊗ L2, L3). (Later in this paper, we
will specialize to fusion categories of the form Rep(G), and for such, these Hom spaces are (projections of)

Here [27] Here [27] Here [27]
i j1 m j k j4
j j2 n j3 ℓ k4

q k2 p k1 s k3
t j′
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the space of intertwiners.) In any event, in this paper we specialize to multiplicity-free cases, for which those
Hom spaces have dimension either zero or one. If the dimension is zero, the vertex does not exist at all; if
the dimension is one, then up to rescaling there is a single operator that can be placed at the vertex. Thus,
in this paper, the matter of choosing junction operators is moot. We will consider more general cases in our
followup paper [20].

In the special case that the noninvertible symmetry group is an actual group G, in the noninvertible
partial trace ZLk

Lg,Lh
, for g, h, k ∈ G, the value of Lk (the intermediate line) is uniquely determined by (a

commuting pair) g and h, and is given by k = gh = hg. In this case,

Zg,h = Z
Lgh

Lg,Lh
, (2.27)

where the Zg,h on the left is the partial trace of the ordinary orbifold, and the Z
Lgh

Lg,Lh
on the right is its

analogue in the noninvertible orbifold.

Returning to noninvertible cases, it remains to find modular-invariant combinations of the partial traces
ZL3

L1,L2
. In subsection 2.3, we shall discuss modular transformations of these partial traces. Later in section 2.5

we will discuss systematic computational tools for constructing modular-invariant combinations, to form
physical partition functions, which will turn out to correspond to (special symmetric) Frobenius algebras.

2.3 Modular transformations

In this section we will argue that

ZL3

L1,L2
(τ + 1, τ + 1) =

∑︂
L4

K̃
L1,L2

L2,L1
(L3, L4)Z

L2

L1,L4
(τ, τ), (2.28)

ZL3

L1,L2
(−1/τ,−1/τ) =

∑︂
L4

K̃
L1,1

L4,L2
(L2, L1) K̃

L1,L2

L2,L1
(L3, L4)Z

L4

L2,L1
(τ, τ). (2.29)

Note in the above that we are following a variation of the conventions of [28, appendix A], where the modular
transformations of boundary conditions are distinct from those of partial traces. (In the language of the
former, the T transformation above might instead be interpreted as a relation for τ − 1 instead of τ + 1, for
example.)

As a consistency check, let us compare to the group-like case. There, ZL1,L2
(τ) = ZL3

L1,L2
(τ) for L3 =

L1L2, and the associator K̃
L1,L4

L2,L3
(L5, L6) is nonzero (and equal to 1) only for

L4 = (L1L2L3)
−1, L5 = L1L2, and L6 = L2L3. (2.30)

Then, applying the equations above, one finds

ZL1L2

L1,L2
(τ + 1) = ZL2

L1,L
−1
1 L2

(τ), (2.31)

ZL1L2

L1,L2
(−1/τ) = Z

L−1
1 L2

L2,L
−1
1

(τ). (2.32)

The reader should note that in our conventions for the group-like case, L = L−1 (where L denotes the dual
in the fusion category).

The key role in these transformations is played by transforming one figure into another figure, using the
crossing property, shown in figure 1.
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The T transformation is displayed schematically in figure 3. The original ZL3

L1,L2
(τ) is shown in part (a),

and part (b) shows the T transformation. Part (c) of that figure is equivalent to ZL3

L1,L2
(τ + 1), which is

related to another partial trace using K̃, as in equation (2.28) above.

Before working out the modular S transformation, it will be useful to work out a cyclic transformation
identity. Inserting the identity line 1 and using the crossing identity (figure 1),we find

L2L1

L3

=

1

L2L1

L3

L3

= K̃
L11

L2L3
(L3, L1)×

1

L2L1

L1

L3

(2.33)

which yields the cyclic transformation identity

L2L1

L3

= K̃
L1,1

L2,L3
(L3, L1)×

L2L1

L3

(2.34)

The S transformation (2.29) is derived schematically in figure 4.

2.4 Gaugeability

So far, we have outlined noninvertible symmetries (defined by fusion categories, which generalize finite
groups), noninvertible analogues of the partial traces used to construct orbifold partition functions, and
also described modular transformations. Clearly, the next step in constructing a noninvertible analogue of
an orbifold is to construct modular-invariant partition functions, built as linear combinations of the partial
traces constructed in section 2.2.

However, in general, that is not always possible. Only in some cases do modular-invariant partition
functions exist, and as we shall describe later in section 2.5, their construction will involve specifying a (special
symmetric) Frobenius algebra (which we will define in section 2.5). At least morally, such obstructions
correspond to analogues of gauge anomalies, though that description in the noninvertible context may be
more obscure.4

4Generally speaking, there can be two notions of anomalies: The obstruction of gauging a symmetry and the obstruction from
a trivially gapped phase. In the group-like case, these two notions coincide. However, in the case of noninvertible symmetries,
symmetries can be gaugeable even if it is incompatible with a trivially gapped phase. We refer the reader to [17, 76] for more
details.
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L1

L1

L2 L2L3

τ

1

τ + 1

0

(a)

L1

L1

L2 L2L3

τ + 1τ τ + 2

1

(b)

L1

L1

L3

L3

L2

τ

1

=
∑︁

L4

L1

L1

L4 L4L2

τ

1

×K̃L1,L2

L2,L1
(L3, L4)

(c)

Figure 3: The effect of the modular T transformation. Diagram (a) displays the original ZL3

L1,L2
(τ); (b)

displays ZL3

L1,L2
(τ +1), which is equivalent to diagram (c). The left- and right-hand sides of diagram (c) are

related using crossing as in figure 1, with L3 as the internal line before crossing.
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L1

L1

L2 L2L3

−1/τ

−1 0 1

(a)

L3

L2

L2

L1

L1

τ

1

=
L3

L1 L1

L2

L2

τ

1

(b)

∑︁
L4

K̃
L1,L2

L2,L1
(L3, L4)×

L4

L1 L1

L2

L2

τ

1

= (∗)×
L4

L1 L1

L2

L2

τ

1

(c)

Figure 4: Three successive views of ZL3

L1,L2
(−1/τ). Part (a) shows the original modular transformation.

Part (b) rewrites the result of the modular transformation. The right-hand side of (c) is obtained from the
left-hand side of (b) using the cyclic identity (2.34). Part (c) uses the crossing identity (figure 1) to write the

result in terms of other ZL3

L1,L2
(τ), where we use the abbreviation ∗ =

∑︁
L4

K̃
L1,L2

L2,L1
(L3, L4)K̃

L1,1

L4,L2
(L2, L1).

Each part is an equivalent expression for ZL3

L1,L2
(−1/τ).
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The purpose of this section is to demonstrate an example in which a modular-invariant partition function
cannot be constructed.

Non-gaugeable example: Ising CFT. The symmetry category for the Ising CFT includes three simple
objects, identity line 1, Z2 symmetry line η, and Kramers-Wannier noninvertible line N . The fusion rules
are given by

1⊗ η = η ⊗ 1 = η,

1⊗N = N ⊗ 1 = N ,

η ⊗N = N ⊗ η = N ,

η ⊗ η = 1,

N ⊗N = 1⊕ η,

(2.35)

which is also known as the Z2 Tambara-Yamagami fusion category [29]. Based on the above fusion rules,
the set of all possible partial traces ZL3

L1,L2
from various insertions of topological lines L1 and L2 is

Z1
1,1, Z

η
1,η, Z

η
η,1, Z

1
η,η, Z

N
1,N , ZN

N ,1, Z
N
η,N , ZN

N ,η, Z
1
N ,N , Zη

N ,N . (2.36)

The modular transformations of these twisted partition functions follow the rule (2.28) and (2.29), where
the K̃ matrix for the Ising model reads5 [30, appendix D](︄

K̃
N ,N
N ,N (1, 1) K̃

N ,N
N ,N (1, η)

K̃
N ,N
N ,N (η, 1) K̃

N ,N
N ,N (η, η)

)︄
=

(︄
1√
2

1√
2

1√
2
− 1√

2
,

)︄
,

K̃
η,N
N ,η(N ,N ) = K̃

N ,η

η,N (N ,N ) = −1,

(2.37)

with all other elements equal to 1. We compute the modular S transformation for all twisted partition
functions as

Z1
1,1 → Z1

1,1, Z
η
1,η ↔ Zη

η,1, Z
1
η,η → Z1

η,η,

ZN
1,N ↔ ZN

N ,1, Z
N
η,N ↔ −ZN

N ,η,

Z1
N ,N →

1√
2
Z1
N ,N +

1√
2
Zη
N ,N ,

Zη
N ,N →

1√
2
Z1
N ,N −

1√
2
Zη
N ,N .

(2.38)

If the full categorical symmetry is gaugeable, there should exist a set of non-trivial coefficients ΛL3

L1,L2
, each

of which for the twisted partition function ZL3

L1,L2
, so that the

Zgauged =
∑︂

L1,L2,L3

ΛL3

L1,L2
ZL3

L1,L2
(2.39)

is modular invariant partition function for the well-defined CFT after gauging. However, from (2.38) it is easy
to check the coefficients for Z1

N ,N and Zη
N ,N have to be trivial in order to be modular S invariant. Therefore,

there is an obstruction of summing over all twisted sectors with the presence of the Kramers-Wannier line
N , thus the categorical symmetry not gaugeable.

We remark that though one cannot gauge the full categorical symmetry, but the Z2 subgroup generated
by the identity 1 and the Z2 line η is indeed gaugeable. This can be seen by checking Z1

1,1+Z1
1,η+Z1

η,1+Z1
η,η

5The σ, ψ of [30] are denoted N , η in this paper.

17



is indeed modular invariant, which leads to a Z2 orbifold partition function

Z[Ising/Z2] ≡
1

2
(Z1

1,1 + Z1
1,η + Z1

η,1 + Z1
η,η). (2.40)

One can further check that this gauged partition function is equal to that before the gauging, i.e. Z[Ising/Z2] =
Z1
1,1, which shows the self-duality of the Ising CFT under Z2 gauging.

2.5 Formal specification of gauging: algebra objects

Given a fusion category acting as the symmetry category of a two-dimensional theory, we need a systematic
prescription for computing physical partition functions, when they exist – and indeed, as the example in
the previous section illustrates, modular-invariant partition functions will not always exist, not every fusion
category can be gauged.

When a fusion category acting as the symmetry category of a two-dimensional theory can be gauged,
we can gauge by a particular kind of algebra object derived from it, called a special symmetric Frobenius
algebra, which we denote A. Intuitively, we think of A as an identity operator in the gauged theory, and
the operation of gauging involves inserting a sufficiently fine mesh of lines of A. For example, the one-loop
partition function can then, at least formally, be written

Z = ZA
A,A. (2.41)

We shall elaborate on the precise meaning of this expression later. (See also e.g. [13].)

In the special case of gauging an ordinary (non-anomalous) group G, for example, the corresponding
symmetry category before gauging is the fusion category Vec(G), the category of G-graded vector spaces. In
this category, there is a distinguished collection of objects {Lg}g∈G, called simple objects, which correspond
to one-dimensional vector spaces labeled by g ∈ G. These have the special property that any other object
in Vec(G) is isomorphic to a direct sum involving only such simple objects. In this category, a distinguished
symmetric special Frobenius object A is the direct sum of the simple objects Lg, which in the two-dimensional
system act as line defects:

A =
⨁︂
g∈G

Lg, (2.42)

The corresponding one-loop partition function becomes the familiar orbifold partition function

ZA
A,A =

1

|G|
∑︂

gh=hg

Zg,h. (2.43)

For more general noninvertible symmetry groups, the Zg,h of ordinary orbifolds will be replaced by ZN
L,M ’s,

in which the four-point junction at which the g, h lines intersect is resolves into a pair of three-point junctions
joined by a choice of intermediate state c, which is no longer uniquely determined by the lines L, M .

Now, not all fusion categories are gaugeable; for example, as we saw in the previous section, one cannot
always construct modular-invariant partition functions from the entire fusion category. At least in general
terms, this issue has been addressed in the language of SymTFTs. Specifically, in [31, Theorem 1], [32], it
was argued that the Turaev-Viro 3d TQFT defined by the symmetry fusion category C admits a gapped,
non-degenerate C-symmetric boundary condition, as needed to describe a Neumann boundary condition6

and hence gauge all of C, if and only if C admits an exact, faithful tensor functor

F : C → Vec, (2.44)

6See [34] for a more general discussion of this fact.

18



whose target category in this case is Vec, the category of vector spaces. This functor is known as a fiber
functor. (However, later in this paper we will sometimes only gauge subalgebras, and for those, a fiber
functor is not required. See also [14, section 5.2], [32,33] for other examples of this form.) Also, in general, a
fusion category can have multiple fiber functors; however, in this paper, we will specialize to fusion categories
of the form Rep(H), for which there is a canonical fiber functor, namely the forgetful functor mapping to
the vector spaces underlying any given representation. Technically, a choice of semisimple Hopf algebra H
is equivalent, by the Tannaka reconstruction theorem, to a fusion category Rep(H) together with a fiber
functor. (For example, H is given by the endomorphisms of the fiber functor.) In particular, there exist
examples of groups G1 ̸= G2 such that Rep(G1) = Rep(G2) as fusion categories, but which have different
fiber functors [35].

It is known (see e.g. [36, Corollary 2.22]) that any fusion category equipped with a fiber functor is
equivalent to the category of representations of a connected semisimple weak Hopf algebra. (A Hopf algebra
H is a generalization of a group algebra, defined by both a multiplication µ : H ⊗ H → H as well as a
comultiplication ∆ : H → H⊗H, plus additional structures, satisfying some conditions. We give a technical
definition in appendix A.1.) For this reason, in this paper we will specialize to fusion categories of the
form Rep(H), for H a connected semisimple finite-dimensional weak Hopf algebra. (In fact, to satisfy an
additional constraint, we will further specialize to semisimple finite-dimensional Hopf algebras, which are
special cases, as we describe momentarily.)

We can use this general principle to give a simple characterization of gaugeability of an entire fusion
category. A fiber functor sends every object X to a vector space F (X) whose dimension is the quantum
dimension of X, meaning that, as observed in Theorem 2 in [31], a necessary condition for a fusion category
to admit a fiber functor (and hence be gaugeable) is that all objects have a non-negative integer quantum
dimension. This already characterizes familiar categories, such as the Ising category, as non-gaugeable, and
is a simple way to understand the obstruction we discovered in subsection 2.4. There, the Kramers-Wannier
line in the Ising model has quantum dimension

√
2, which by the arguments here, excludes the existence

of a suitable Frobenius algebra. We repeat that if one is not gauging the entire fusion category (as we will
sometimes do), a fiber functor on the entire category is not required.

We can also obtain a second necessary condition for gaugeability from these considerations. Gauging a
fusion category equiped with a fiber functor is then understood as taking the regular object R defined as

R =

n⨁︂
i=1

dim(Ni)Ni (2.45)

for Ni and gauging by it. However, this is possible only as long as R is a symmetric special Frobenius
algebra (which we will define shortly). It is known that not all7 weak Hopf algebras admit a Frobenius
algebra structure [37]. Although this situation is somewhat ameliorated for connected semisimple ones,
(see e.g. Prop. 3.1.5 in [38]), for concreteness in the present paper we restrict to working with categories
of representations of finite-dimensional semisimple Hopf algebras, where it was already shown that the
regular object admits a symmetric special Frobenius algebra structure [39]. This class of representation
categories is already quite general and includes many familiar examples, such as Vec(G) ∼= Rep((C[G])∗),
and Rep(G) ∼= Rep(C[G]). The process we describe allows not only to gauge the whole fusion category but
also subcategories of it determined by Hopf ideals.

Shortly we will explicitly construct modular-invariant partition functions using a special symmetric Frobe-
nius algebra. Thus, this allows us to see the gaugeability directly at the level of partition function compu-
tations.

Next, we will construct a symmetric special Frobenius algebra in Rep(H). (To be clear, we begin by

7See p. 6 in [37] for an example.
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picking a finite-dimensional semisimple Hopf algebra H, which is equivalent to8 a fusion category Rep(H)
together with a fiber functor.) Before proceeding, we define the latter9. We start with an algebra A, in our
case over k = C, with unit u : A → C and multiplication µ : A ⊗ A → A. We then endow the algebra A
with a coalgebra structure, with counit uo

F : A → C and comultiplication ∆F : A → A ⊗ A. For A to be
a Frobenius algebra, the algebra and coalgebra structures are required to satisfy the following commutative
diagrams, called the Frobenius identities:

A⊗A ∆F⊗IdA →→

µ

↓↓

A⊗A⊗A

IdA⊗µ

↓↓
A ∆F →→ A⊗A

, A⊗A IdA⊗∆F →→

µ

↓↓

A⊗A⊗A

µ⊗IdA

↓↓
A ∆F →→ A⊗A

(2.46)

Next, we recall the definition of symmetric special Frobenius algebras below [13].

Given a Frobenius algebra (A, µ,∆F , u, u
o
F ), we say it is a special Frobenius algebra if

uo ◦ u = β1Id1; µ ◦∆F = βAIdA (2.47)

for β1, βA ∈ C×. We normalize ∆F by taking βA = 1.

A Frobenius algebra is called symmetric if the following equality of morphisms A → A∗ holds

((uo
F ◦ µ)⊗ IdA∗) ◦ (IdA ⊗ γA) = (IdA∗ ⊗ (uo

F ◦ µ)) ◦ (γA ⊗ IdA) (2.48)

with coevaluation maps γA : C → A⊗A∗, γA : C → A∗ ⊗A, which exist by definition of A∗ being a dual
of A.

We are interested in realizing the regular representation of H as a symmetric special Frobenius algebra.
(Later we will also consider quotient algebras.) Realizing the regular representation in this fashion is equiv-
alent to endowing the dual Hopf algebra H∗ with a symmetric special Frobenius algebra structure [39]. It
is a theorem [40] that any finite-dimensional Hopf algebra can be endowed with a Frobenius algebra struc-
ture. Moreover, H∗ as a Frobenius algebra is symmetric, special, and has trivial twist if and only if H is
(finite-dimensional) semisimple (see Section 4 of [39]). It is for this reason that we are mainly interested in
(finite-dimensional) semisimple Hopf algebras. We now walk through how this works, since this process is
leveraged explicitly in computations.

Let us take a moment to review the construction [41, chapter VI] of the dual Hopf algebra H∗. Since we
will only be interested in finite-dimensional Hopf algebras, let V,W be a finite-dimensional vector spaces, and
V ∗ = Hom(V,C),W ∗ = Hom(W,C) their corresponding duals. Then any linear map f : V → W induces a
map f∗ : W ∗ → V ∗ by precomposition. If V furthermore has the structure of a bialgebra (V, µV ,∆V , uV , u

o
V ),

then one can show that the dual morphisms

µ∗ := ∆∗
V : V ∗ ⊗ V ∗ → V ∗, (2.49)

u∗ := (uo
V )

∗ : C → V ∗, (2.50)

∆∗ := µ∗
V : V ∗ → V ∗ ⊗ V ∗, (2.51)

uo
∗ := u∗

V : V ∗ → C, (2.52)

endow V ∗ with the structure of a bialgebra. For finite-dimensional vector spaces, there is an isomorphism
(V ⊗W )∗ ∼= V ∗ ⊗W ∗, so that there are no issues with respect to the domain and images of these maps.

8By the Tannaka reconstruction theorem.
9A more classical definition of a Frobenius algebra is phrased in terms of a non-degenerate bilinear form on A. These

definitions are equivalent.
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Furthermore, if V is a Hopf algebra, so that it is also equipped with an antipode map S : V → V , then the
corresponding dual

S∗ : V ∗ → V ∗, (2.53)

then (V ∗, µ∗, u∗,∆∗, u
o
∗, S∗) is also a Hopf algebra.

Knowing H∗ as a finite-dimensional Hopf algebra, one can then apply the integral construction of Larson
and Sweedler [40] to produce a Frobenius algebra. In this prescription, adapted in [39] for the present
purposes, one retains the algebra structure (H∗, µ∗, u∗) and changes coalgebra structure (∆, uo). The key
object in this construction is that of (left-)integrals and cointegrals. Given any Hopf algebra H with counit
uo : H → C, a left-integral is an element Λ ∈ H such that for all h ∈ H it holds that µ(h,Λ) is given by
scalar multiplication:

µ(h,Λ) = uo(h) Λ. (2.54)

On the other hand, a right-cointegral is an element λ ∈ H∗ such that

(λ⊗ IdH)(∆(h)) = λ(h)⊗ 1H, (2.55)

where 1H = u(1) is the unit element of H.

The main result of [40] is that for finite-dimensional Hopf algebras, left-integrals always exist and span a
one-dimensional vector space. The same applies to cointegrals, since in the finite-dimensional setting these
are identified with the integrals of the dual Hopf algebra. We use this to endow H∗ with the structure of a
Frobenius algebra. Let λ be a cointegral of H, that is, an integral of H∗, and Λ an integral of H, with the
normalization condition

λ ◦ Λ = 1 (2.56)

as a morphism in Hom(C,C). It is shown in [39] that the tuple (H∗, µ∗, u∗,∆F , u
o
F ) with µ∗, u∗ as above,

∆F := k(IdH ⊗ (λ ◦ µ)) ◦ (IdH ⊗ S ⊗ IdH) ◦ (∆⊗ IdH))∗, (2.57)

uo
F := Λ∗, (2.58)

for k ∈ C× is a symmetric special Frobenius algebra in Rep(H)10 iff H is semisimple. Thus, H∗ can be used
to gauge. Throughout this paper we choose k to get the normalization

µ∗ ◦∆F = IdH∗ . (2.59)

An important consequence of this process is that it also allows us to identify other suitable objects, or
subcategories, by which we can gauge. It suffices to find a Hopf ideal. It is a well-known fact that Hopf ideal
I ↪→ H, that is, a subset I that is both an ideal and coideal closed under the antipode map on H. Since I
is a Hopf ideal, this defines a quotient Hopf algebra H/I, so that we have a Hopf subalgebra (H/I)∗ ↪→ H∗.
This in fact induces a functor

ı : Rep(H/I) ↪→ Rep(H) (2.60)

such that ı((H/I)∗) is a symmetric special Frobenius algebra, with H-action that factors through H/I. Of
course, we do not obtain all possible Frobenius objects in this way, yet it is a useful criterion.

Now, let us describe some concrete examples. The case of ordinary orbifolds, where the fusion category
is Vec(G) = Rep(C[G]∗), will be discussed in detail in section 2.11, and we will demonstrate there that this
technology does indeed correctly reproduce ordinary orbifolds.

For the rest of this section, we specialize to the case that the fusion category is

Rep(G) = Rep(C[G]) = Rep(H), (2.61)

10In fact, it is a Frobenius algebra in the category of (H,H)-bimodules.
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so that H = C[G], for some finite group G. We are then going to build a Frobenius algebra structure on
A = H∗ = C[G]∗. This will correspond to the regular representation of G, and Frobenius structures on
subalgebras of A = H∗ will correspond to certain other representations of G, as we shall see.

The algebra structure (H, µ, u) is a linear extension of the group product,

µ : g ⊗ h ↦→ gh, (2.62)

u : 1 ↦→ 1. (2.63)

The coalgebra structure is

∆ : g ↦→ g ⊗ g (2.64)

uo : g ↦→ 1 (2.65)

The antipode map corresponds on the basis elements to the inverse operation

S : g ↦→ g−1 (2.66)

In this case, H∗ has underlying vector space C[G]∗. We will use the dual basis characterized by the equation

vg(h) = δg,h (2.67)

We can construct a Frobenius algebra on H∗ = C[G]∗, as follows. Some of the structure is inherited from
the dual Hopf algebra, specifically, the multiplication µ∗ : H∗ ⊗H∗ → H∗

µ∗(vg ⊗ vh) = δg,h vg, (2.68)

and unit u∗ : C→ H∗

u∗(1) =
∑︂
g

vg, (2.69)

where in each case we have given an action on basis elements, which are extended linearly over C. We now
choose integrals and cointegrals to construct the coalgebra structure. The integral element of C[G] in this
case is

Λ =
∑︂
g∈G

g (2.70)

regarded as a linear function on H∗. A cointegral of C[G] is

λ = v1. (2.71)

On the basis elements, the counit uo
F := Λ∗ : H∗ → C (where we regard Λ ∈ H as a morphism Λ : C→ H) is

uo
F (vg) = vg

(︄∑︂
h∈G

h

)︄
= vg(g) = 1. (2.72)

The comultiplication is the dual of the composition

g ⊗ h ↦→ g ⊗ g ⊗ h ↦→ g ⊗ g−1 ⊗ h ↦→ g ⊗ δg−1h,1 (2.73)

so that

∆F := vg ↦→ vg ⊗ vg. (2.74)

It is straightforward to check that µ∗ ◦ ∆F = IdH∗ , hence it is correctly normalized (following the
discussion after (2.47)).
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The algebra structures (µ∗, u∗,∆F , u
0
F ) define the Frobenius algebra identified for Rep(G) in [14]. It is

straightforward to check that the (µ∗, u∗,∆F , u
0
F ) defined above satisfy all of the axioms of a symmetric

special Frobenius algebra, as outlined in appendix A.2. We illustrate below the key steps in the verification,
as specialized to (µ∗, u∗,∆F , u

o
F ):

• associativity:
µ∗(µ∗(vg ⊗ vh)⊗ vk)) = µ∗(vg ⊗ µ∗(vh ⊗ vk)), (2.75)

• unit axiom:
µ∗(vg ⊗ u∗(1)) = vg = µ∗(u∗(1)⊗ vg), (2.76)

• coassociativity:
((IdA ⊗∆F ) ◦∆F )(vg) = ((∆F ⊗ IdA) ◦∆F )(vg), (2.77)

• counit axiom:
((IdA ⊗ uo

F ) ◦∆F )(vg) = vg = ((uo
F ⊗ IdA) ◦∆F )(vg), (2.78)

• Frobenius identities (2.46):

vg ⊗ vh vg ⊗ vg ⊗ vh vg ⊗ vh vg ⊗ vh ⊗ vh

δg,hvg δg,h vg ⊗ vg δg,hvh δg,h vh ⊗ vh

∆F⊗IdA

µ∗ IdA⊗µ∗ µ∗

IdA⊗∆F

µ∗⊗IdA

∆F ∆F

(2.79)

• special (2.47):

(uo
F ◦ u∗)(1) = Λ (u∗(1)) =

⎛⎝∑︂
g∈G

vg

⎞⎠(︄∑︂
h∈G

h

)︄
= dim(H∗) = |G|, (2.80)

µ∗ (∆F (vg)) = µ∗(vg ⊗ vg) = vg, (2.81)

• symmetric (2.48):

vg
(︁∑︁

h∈G h⊗ vh
)︁
⊗ vg

vg ⊗
(︁∑︁

h∈G vh ⊗ h
)︁

g

IdA⊗γA

γA⊗IdA

IdA∗⊗(uo
F ◦µ∗)

(uo
F ◦µ∗)⊗IdA∗

(2.82)

using (2.68), (2.72), and where

γA(1) =
∑︂
h∈G

vh ⊗ h, γA(1) =
∑︂
h∈G

h⊗ vh, (2.83)

as follows from the fact that evA ◦ γA = dim(A) = |G|, and that in this basis evA(vg ⊗ h) = δg,h.
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See e.g. appendix A.2 for a general discussion of the key axioms for a special symmetric Frobenius algebra.

Let us now use this explicit formulation to construct Frobenius algebras other than that corresponding
to the regular representation. As explained previously (c.f. Equation (2.60)), Hopf ideals of the Hopf algebra
H give other Frobenius algebras by which we can gauge. In the special case of H = C[G], the Hopf
ideals correspond precisely to the normal subgroups K ⊴ G of G. Concretely, this correspondence is
realized by the fact that the Hopf ideals of C[G] are all of the form of augmentation ideals C[G](C[K])+

of Hopf subalgebras C[K] of normal subgroups, where (C[K])+ := ker(uo|C[K] : C[K] → C). Moreover,
C[G]/(C[G](C[K])+) ∼= C[G/K] as Hopf algebras.

In the usual orbifold case, for which the symmetry category is Vec(G), one can actually gauge any
subgroup H ≤ G, not necessarily normal. Since Rep(G) is the corresponding quantum symmetry fusion
category, one would expect that any subgroup H should give a gaugeable Frobenius object in Rep(G) as
well. We now show that this is indeed the case.

Let us start with a Hopf subalgebra of C[G]. It is known that all Hopf subalgebras in this case are of
the form C[H] for H ≤ G a subgroup, not necessarily normal. We again construct the augmentation ideal
C[G](C[H])+ of the Hopf subalgebra C[H]. This is a left ideal and a coideal of C[H]. Although this is not
a Hopf ideal, such that the coset space does not admit a well-defined Hopf algebra structure, it is still a
coideal, so that at least it gives rise to a coalgebra structure on the quotient. That is, we have a sequence of
coalgebras

C[G](C[H])+ ↪→ C[G]
π−→ C[G/H] (2.84)

This means that the dual vector space (C[G/H])∗ is endowed with an algebra structure as

µ∗ : vgH ⊗ vg′H ↦→ δgH,g′H vgH , u∗ : 1 ↦→
∑︂

gH∈G/H

vgH , (2.85)

for {vgH}gH∈G/H the dual basis of the vector space C[G/H]. Moreover, this algebra also carries a C[G]-
action, given on the generators by

ρH : g · vg′H ↦→ vπ(g)g′H (2.86)

This means that (C[G/H])∗ is an algebra object in Rep(C[G]).

Let us pause to give a more elementary way to understand how one associates a representation. Given a
subgroup H, build a vector space by associating basis vectors to elements of the coset G/H, and then letting
G act on those basis elements by their action on cosets. In this fashion, given a subgroup H ⊂ G, we can
associate a representation of G.

In the table below, we illustrate this in the case of G = S3:

Coset Subalgebra Representation
G/⟨b⟩ Span[vK , vaK ], K = ⟨b⟩ 1 +X
G/⟨a⟩ Span[vH , vbH , vb2H ], H = ⟨a⟩ 1 + Y
G/1 C[G]∗ 1 +X + 2Y

(the regular representation)

We will return to this classification in the example of Rep(S3) in section 3.1.4.

We can finally realize (C[G/H])∗ as a symmetric special Frobenius object by endowing it with the obvious
Frobenius coalgebra structure analogous to that of (C[G])∗:

∆F : vgH ↦→ vgH ⊗ vgH , uo
F : vgH ↦→ 1. (2.87)
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All in all, this allows us to produce a gaugeable object in Rep(G) for any subgroup H ≤ G, just as for the
Vec(G) case. This seems to hint at a correspondence between the gaugeable objects in Rep(H) and those in
Rep(H∗), though it is not obvious how this would work in these more general cases.

To summarize, given a subgroup H ≤ G, we have constructed a special symmetric Frobenius algebra on
(C[G/H])∗.

2.6 Genus one partition functions

First, recall that in an ordinary orbifold by a finite group G, the genus one partition function has the form

Z([X/G]) =
1

|G|
∑︂

gh=hg

Zg,h, (2.88)

where Zg,h represents the ‘partial trace,’ schematically,

g

h

, (2.89)

the contribution to the T 2 partition function from a worldsheet with a pair of branch cuts defined by g, h ∈ G.

Given an algebra object A, morally the genus one partition function for a gauged noninvertible 0-form
symmetry has the form

Z = ZA
A,A, (2.90)

which (at least formally) closely mirrors the form above.

Given a Frobenius algebra structure, we can now define a modular-invariant combination of partial traces
ZL3

L1,L2
. The genus-one partition function is

Z =
∑︂

L1,L2,L3

µL3

L1,L2
∆L2,L1

L3
ZL3

L1,L2
, (2.91)

where µL3

L1,L2
indicates components of µ∗, and ∆L2,L1

L3
above indicates components of ∆F , the comultiplication

in the Frobenius algebra. (Higher-genus partition functions are similar; we shall discuss them later in
subsection 2.8).

The components are defined formally as follows. Given µ∗ : A⊗A → A, the components are defined by
corresponding maps

µL3

L1,L2
: HomRep(H)(L1,A)⊗HomRep(H)(L2,A) −→ HomRep(H)(A, L3). (2.92)

From Schur’s lemma, each Hom will only receive contributions from portions of A in isomorphic repre-
sentations. We can compute these components explicitly from µ∗ by normalizing by the intertwiners in
Hom(L1 ⊗ L2, L3), as we will discuss later in examples. Similarly, given ∆F : A → A⊗A, the components
are defined by corresponding maps

∆L2,L3

L1
: HomRep(H)(L1,A) −→ HomRep(H)(A, L2)⊗HomRep(H)(A, L3). (2.93)

These can be obtained from ∆F by normalizing by a basis for Hom(L1, L2 ⊗ L3), which can be obtained
from intertwiners using (co)evaluation maps in several possible ways, as we will discuss later in examples.

We can understand expression (2.91) diagramatically as arising naturally from the description of resolving
four-point junctions of lines in the Frobenius algebra A. Schematically, if we write the resolution in the form
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of figure 5, where we denote the components µLk

Li,Lj
of µ∗ by

LjLi

Lk

µ∗

(2.94)

and the components ∆
Lj ,Lk

Li
of ∆F by

Li

Lj Lk

∆F

(2.95)

then we read off from Figure 5 the
µL3

L1,L2
∆L2,L1

L3
(2.96)

factor, and then after removing the Frobenius algebra structures, we are left with the partial trace of figure 2,
which defines ZL3

L1,L2
.

L1

L1

L2 L2L3 µ∗

∆F

τ

1

τ + 1

0

Figure 5: Resolution of four-point vertex in the Frobenius algebra A into a pair of three-point vertices.

In passing, we note that equation (2.91) omits the possibility of the junction vector spaces having dimen-
sion greater than one. However, in this paper we are specializing to multiplicity-free fusion categories, and
will return to more general cases in our followup work [20].
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∆F

µ∗

(a)

∆F µ∗

(b)

µ∗ ∆F

(c)

Figure 6: Three ways to resolve a four-way junction into a multiplication and a comultiplication. All of the
lines pictured are the algebra object A.

In passing, implicit here is a choice of normalization of ∆F , which is defined by the ‘special’ part of the
special symmetric Frobenius algebra axioms. This also informs the implicit normalization of the coevaluation
map.

In section 2.7, we will check that this partition function is always modular invariant.

It is natural to ask whether there exists an analogue of discrete torsion [42,43] in noninvertible symmetry
gaugings. Recall that in ordinary orbifolds, discrete torsion is a set of modular-invariant phases that can be
added to weight the various partial traces. For ordinary group orbifolds, realized as Vec(G) = Rep(C[G]∗)
gaugings forG a finite group, we will discuss how discrete torsion arises later in section 2.11. For noninvertible
symmetries, discrete torsion will arise when there are multiple nonequivalent Frobenius algebra structures
we could choose for a given algebra object. In this case we do not have a first-principles classification (as
we do with second cohomology in the grouplike case), but we will see in examples later in this paper that
there certainly seem to exist modular-invariant phases that can be added to partition functions, forming an
analogue of discrete torsion. (That said, we have not checked e.g. multiloop factorization, so it is possible that
some choices are not physically sensible.) Also, the reference [33, theorem 2] suggests that discrete torsion in
a Rep(G) quotient should match discrete torsion in a G orbifold, which we will find to be consistent with our
examples. We hope to return to questions of discrete torsion in noninvertible symmetry gaugings in future
work.

2.7 Modular invariance

In this section we shall demonstrate that the general expression for partition functions given earlier in
equation (2.91) is modular-invariant. In order to do this we will need to write out the associativity condition
satisfied by the Frobenius algebra in components. Diagramatically, associativity of the Frobenius algebra
can be expressed as the requirement that Figure 6a, Figure 6b and Figure 6c are equivalent [13, (3.29)] (more
generally it is the statement that any such resolution of a four-way junction is equivalent).

In order to write these conditions in a computationally useful form, we break each line (labeled by A) into
components. This gives a sum over diagrams labeled by simple objects with µ and ∆ as coefficients. In order
to relate any of the two resulting expressions we need to apply a swap move, then equate the coefficients of
matching diagrams. Applying the swap shown in Figure 1 to Figure 6a and equating coefficients with those
of Figure 6c produces ∑︂

L3

µL3

L1,L2
∆L2,L1

L3
K̃

L1,L2

L2,L1
(L3, L4) = µL2

L1,L4
∆L4,L1

L2
. (2.97)
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A A

AA

(a) L1 L2

L5

L4 L3∆

µ

(b)

ϵ
L1

L1

L2

L6

L4
Γ

L3

L3

µ

∆

(c)

Figure 7: Two ways of resolving a four-way junction of algebra object lines.

We will need one additional relation. Figure 7a shows a four-way junction of algebra objects, which can
be broken up into two three-way junctions of simple lines in multiple ways. Two of these ways are shown in
Figures 7b and 7c. As before, breaking the A lines into components yields a sum over diagrams with one
µ and one ∆ as components. In order to match up the diagrams in each sum, we need to apply the cyclic
transformation (2.34) to the lower junction in Figure 7b. Doing so and equating the coefficients of identical
diagrams produces the identity

µL5

L1,L2
∆L4,L3

L5
K̃

L1,1

L2,L5
(L5, L1) = µL4

L5,L3
∆L1,L5

L2
ϵL1γL3 . (2.98)

This expression includes coefficients arising from applying the evaluation map ϵ and coevaluation map γ.
Below when we use this equation we will take L1 = L3 and these coefficients will cancel each other.

Now we can apply these relations to modular transformations. The general form of the modular T
transformation of the partition function (2.91) is

ZT 2(τ + 1, τ + 1) =
∑︂

L1,L2,L3

µL3

L1,L2
∆L2,L1

L3

∑︂
L4

K̃
L1,L2

L2,L1
(L3, L4)Z

L2

L1,L4
(τ, τ), (2.99)

=
∑︂

L1,L2,L4

µL2

L1,L4
∆L4,L1

L2
ZL2

L1,L4
(τ, τ), (2.100)

= ZT 2(τ, τ), (2.101)

where we have used (2.97). Thus, the partition function (2.91) is invariant under modular T transformations.

We can check invariance under modular S transformations similarly. The partition function (2.91) trans-
forms as

ZT 2(−1/τ,−1/τ) =
∑︂

L1,L2,L3

µL3

L1,L2
∆L2,L1

L3
ZL3

L1,L2
(−1/τ,−1/τ), (2.102)

=
∑︂

L1,L2,L3

µL3

L1,L2
∆L2,L1

L3

∑︂
L4

K̃
L1,1

L4,L2
(L2, L1)K̃

L1,L2

L2,L1
(L3, L4)Z

L4

L2,L1
(τ, τ), (2.103)

=
∑︂

L1,L2,L4

µL2

L1,L4
∆L4,L1

L2
K̃

L1,1

L4,L2
(L2, L1)Z

L4

L2,L1
(τ, τ), (2.104)

=
∑︂

L1,L2,L4

µL4

L2,L1
∆L1,L2

L4
ZL4

L2,L1
(τ, τ), (2.105)

= ZT 2(τ, τ), (2.106)

using (2.97) and (2.98).
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a1

b1

a1

b1

a2

b2

a2

b2

Figure 8: Triangulation of a genus 2 surface [44].

2.8 Higher genus partition functions and change of triangulation

So far we have concentrated on computations pertaining to a genus 1 worldsheet. The formalism used
presently is not exclusive to this but also extends to more general worldsheets. In the present section, we
briefly discuss these computations for a genus 2 worldsheet, and observe how the familiar discrete torsion
factors naturally arise in the special case of a group-like symmetry.

In our language, to compute a partition function, we first need to pick a triangulation of the worldsheet.
(Then, later, we will review how the results are independent of the choice of triangulation.) First, to set the
stage, we briefly recall genus two computations in ordinary orbifolds. One particular choice of triangulation
for a g = 2 surface is given in Figure 2 of [44, figure 2], redrawn here as Figure 8. It consists of an octagon
whose edges are labeled by group elements of the group that is being gauged. This gives rise to the (trivalent)
dual graph shown in Figure 9, where the multiplication and comultiplication morphisms are labeled by red
and blue circles, respectively.

One of the important consistency checks that are satisfied in this perspective is that for the top part of
the graph in Figure 9, which we can regard as a torus, to connect to the bottom part, another torus, it must
hold that

b−1
1 a−1

1 b1a1 = a−1
2 b−1

2 a2b2, (2.107)

which is the familiar commutativity condition of a flat G-bundle on a genus 2 surface. In particular, this
means that the partition function will only sum over those simple objects La1

, Lb1 , La2
, Lb2 ∈ ob(Vec(G))

whose group labels a1, b1, a2, b2 ∈ G satisfy Eq.(2.107).

More generally, such a graph can be used to represent the A-morphism that gives the coefficients the
partition function of the g = 2 surface. Given a Frobenius object A, one such graph is Figure 10. As in the
genus 1 case, it is often convenient to decompose this diagram into a sum of diagrams involving only simple
lines, as in Figure 11. From this diagram, we can read off the partition function in the multiplicity-free case
for a genus 2 surface as:

Zg=2 =
∑︂

L1,··· ,L9

µL5

L1,L2
∆L6,L7

L5
∆L2,L1

L6
µL8

L3,L4
µL9

L7,L8
∆L4,L3

L9
ZL5,L6,L7,L8,L9

L1,L2,L3,L4
, (2.108)

where ZL5,L6,L7,L8,L9

L1,L2,L3,L4
is the partial trace involving (L1, · · · , L4) as external simple lines and (L5, · · · , L9) as

internal simple lines, in the order specified in Figure 11.

As discussed in [13, section 5.1], even though the gauging process of a Frobenius object uses a choice of
worldsheet triangulation, the end result is independent of such a choice. We outline this result below. First,
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a1 b1

b1a1 a1

b1

a1b1

b−1
1 a−1

1 b1a1

=

a−1
2 b−1

2 a2b2

a2

b2

b2a2

b2

a2

a2b2

Figure 9: Trivalent resolution of genus 2 surface triangulation from Figure 8.

A A

A A

A

A

A

A

A

A

A
A

Figure 10: Trivalent resolution of genus 2 surface with Frobenius algebra object A defects. Red vertices
indicate multiplications, and blue vertices indicate comultiplications.
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Figure 11: Trivalent resolution of genus 2 surface triangulation from Figure 8 in terms of simple lines. This
diagram defines a genus 2 partial trace.
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it is known that all triangulations of a given manifold can be related by a series of moves [45], all of which
are generated by two basic moves [46, fig. 6]: the fusion (F-) or (2, 2)-move, and the bubble move.

Next, we outline these two moves and how both are realized by the axioms of a special symmetric
Frobenius algebra11.

• Fusion move = Frobenius: In the dual graph, the fusion move is shown in figure 12. This corresponds
to the Frobenius identities (2.46) for a special symmetric Frobenius algebra, namely

A⊗A ∆F⊗IdA →→

µ∗

↓↓

A⊗A⊗A

IdA⊗µ∗

↓↓
A ∆F →→ A⊗A

(2.109)

as discussed in appendix A.2. We have sketched the relation in figure 13. Briefly, the diagram on the
left in figure 13 corresponds to the map

A⊗A µ∗−→ A ∆F−→ A⊗A, (2.110)

and the diagram on the right in figure 13 corresponds to the map

A⊗A ∆F⊗IdA−→ A⊗A⊗ ⊣ IdA⊗µ∗−→ A⊗A. (2.111)

Equality of these two compositions is precisely the Frobenius identity above.

• Bubble move = special: The bubble move is shown in figure 14. Invariance under the bubble move is
a consequence of the ‘special’ condition (2.47) in the special symmetric Frobenius algebra, namely

µ∗ ◦∆F = IdA, (2.112)

as discussed in appendix A.2. The relation between the diagram 14 and the identity above should be
clear from the labelling.

In this fashion we see that the partition function should be well-defined with respect to different choices of
triangulation, and hence different descriptions as compositions of µ∗ and ∆F . An example is illustrated in
figure 15.

=

Figure 12: Shown is a fusion move.

11So long as we draw diagrams with the Frobenius algebra A on legs, we can express everything in terms of axioms of the
Frobenius algebra. If we were to write the diagrams in components, then, we would also need to take into account F symbols
/ crossing kernels K̃.
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A A
µ∗

A A
∆F

=

A

A

∆F

A

A

µ∗

Figure 13: Fusion move reinterpreted as Frobenius identity. The other Frobenius identity gives a very similar
diagram with some arrows reversed.

A A∆F µ∗ = A A

Figure 14: Shown is a bubble move, with multiplication µ∗ and comultiplication ∆F inserted.

2.9 Structure of state spaces for Rep(G)

In this section we will utilize the existence of a noninvertible Rep(G) symmetry in a G orbifold, and the fact
that orbifolding by the quantum symmetry returns the original theory, to compare the organization of the
state spaces arising in orbifolds by a group G and by a noninvertible symmetry Rep(G).

Let us review the structure of the state space of local operators in a 2d theory T with an invertible global
symmetry given by an abelian group G. At the broadest level, there will be genuine local operators which can
appear freestanding in correlation functions and twisted local operators which have support only on the end
of TDLs. That is, for each g in G, there is a Hilbert space Hg of g-twisted operators living at the endpoint
of a line labeled by g. We can refine this description by noting that the symmetry G naturally acts on the
twist fields, which means that the states in Hg further break up into representations of G. Accordingly, we

will write Hg,ĝ for the Hilbert space of g-twisted states which transform in the ĝ ∈ Ĝ representation.

What happens to these states when we gauge G? The resulting theory has a global quantum Rep(G) = Ĝ
symmetry, which we can use to organize the result. Those states that transform in the trivial representation
of G are gauge invariant, and become the genuine local (untwisted) states of the gauged theory. More
geometrically, if we think of gauging as flooding the worldsheet with a network of G lines, the gauge-invariant
operators that were previously bound to the end of those lines can move freely along that background network,
making them genuinely local. The states transforming in non-trivial representations of G can be made gauge
invariant by placing them at the end of Ĝ lines, so these form the twisted sectors of the gauged theory. Thus
gauging has the effect of taking Hg,ĝ to Hĝ,g. The actions of γ ∈ G and γ̂ ∈ Ĝ on a state Og,ĝ in Hg,ĝ are
given by

γ · Og,ĝ = χĝ(γ)Og,ĝ γ̂ · Og,ĝ = χγ̂(g)Og,ĝ. (2.113)

When we allow G to be non-abelian, some subtleties creep into the above story. Consider the action of
G on an arbitrary twisted sector state. This is given by the action of G on itself, and the orbits for such
an action are the conjugacy classes of G. Twist fields in this case are thus labeled by conjugacy classes [g]
rather than individual group elements, as conjugate group elements give isomorphic Hilbert spaces. For a
given representative g of [g], the subgroup of G that fixes g is its stabilizer Stab(g).12 Any other member
of the conjugacy class has a stabilizer which is conjugate to Stab(g), so if we only care about subgroups of
G up to conjugation (and conjugate subgroups do give equivalent symmetries), we can sensibly talk about

12One sometimes sees this phrased in terms of centralizers, but for a group acting on itself by conjugation these are equivalent.
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A

A
∆F

µ∗

µ∗
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A
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=
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µ∗

∆F

µ∗
∆F

A

A
=

A

A
µ∗

∆F
A

A

Figure 15: Shown is an example of simplifying a diagram, using, from the left, a fusion move followed by a
bubble move, resulting finally in a diagram given by ∆F ◦ µ∗.

Stab([g]) as the conjugacy class of subgroups which fixes [g]. Thus, twist fields in this theory live in Hilbert
spaces H[g],R labeled by conjugacy classes of G and representations R of Stab([g]).

Let us proceed with an explicit example, with a global S3 symmetry, where S3 is the symmetric group
on three objects. We will use the same notation as in section 3.1. Here we have three conjugacy classes [1],
[a] and [b] with stabilizers S3, Z2 and Z3. Denoting respectively the trivial and non-trivial representations
of Z2 by + and −, and the representations of Z3 by ωi, the local operators in an S3-symmetric theory break
into

H[1],1 H[a],+ H[b],ω0

H[1],X H[a],− H[b],ω1

H[1],Y H[b],ω2

(2.114)

where each column is a twisted sector. We can still leverage (2.113) to help us determine the fate of the
genuine local operators under gauging S3 or any of its subgroups. S3 has (up to conjugation) three non-trivial
gaugeable subgroups: Z2, Z3 and all of S3. The algebra objects for gauging these can be written as [1] + [a]
for Z2, [1] + 2[b] for Z3 and [1] + 3[a] + 2[b] for S3. Using (2.113), the genuine local operators are acted upon
as

1

2
([1] + [a]) · O[1],1 =

1

2
[χ1([1]) + χ1([a])]O[1],1 = O[1],1 (2.115)

1

2
([1] + [a]) · O[1],X =

1

2
[χX([1]) + χX([a])]O[1],X = 0 (2.116)

1

2
([1] + [a]) · O[1],Y =

1

2
[χY ([1]) + χY ([a])]O[1],Y = O[1],Y (2.117)

(2.118)

by Z2,

1

3
([1] + 2[b]) · O[1],1 =

1

3
[χ1([1]) + 2χ1([b])]O[1],1 = O[1],1 (2.119)

1

3
([1] + 2[b]) · O[1],X =

1

3
[χX([1]) + 2χX([b])]O[1],X = O[1],X (2.120)

1

3
([1] + 2[b]) · O[1],Y =

1

3
[χY ([1]) + 2χY ([b])]O[1],Y = 0 (2.121)

(2.122)
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by Z3 and

1

6
([1] + 3[a] + 2[b]) · O[1],1 =

1

6
[χ1([1]) + 3χ1([a]) + 2χ1([b])]O[1],1 = O[1],1 (2.123)

1

6
([1] + 3[a] + 2[b]) · O[1],X =

1

6
[χX([1]) + 3χX([a]) + 2χX([b])]O[1],X = 0 (2.124)

1

6
([1] + 3[a] + 2[b]) · O[1],Y =

1

6
[χY ([1]) + 3χY ([a]) + 2χY ([b])]O[1],Y = 0 (2.125)

(2.126)

by S3. This gives us an idea of which genuine local operators are gauge-invariant and therefore will appear
in the untwisted sector in an orbifold by any subgroup of S3 above.

Let us focus on the orbifold by the full S3, [T /S3], which will yield a theory with a global Rep(S3)
quantum symmetry. The untwisted states in (2.114) are already labeled by representations of S3, so it is
clear how they transform. What about the twisted states, which are labeled by representations of subgroups?
These turn out to in general be S3 multiplets, instead of singlets – they transform under the S3 representation
induced by the representation of the stabilizier subgroup which labels them, which need not be irreducible.
In the example at hand, rewriting (2.114) in terms of induced representations gives

H[1],1 H[a],1+Y H[b],1+X

H[1],X H[a],X+Y H[b],Y

H[1],Y H[b],Y

. (2.127)

Concretely, then, we see that both H[a],+ and H[b],ω0 contain states which are S3-invariant and therefore will
end up in the untwisted sector of the S3 orbifold. The genuine local operators in [T /S3], then, are made
up of states O[1],1 arising from H[1],1, states O[a],1 arising from H[a],+ and states O[b],1 arising from H[b],ω0 .
(2.113) gives us the action of Rep(S3) on these states:

1 · O[1],1 = χ1([1])O[1],1 = O[1],1 (2.128)

1 · O[b],1 = χ1([b])O[b],1 = O[b],1 (2.129)

1 · O[a],1 = χ1([a])O[a],1 = O[a],1 (2.130)

X · O[1],1 = χX([1])O[1],1 = O[1],1 (2.131)

X · O[b],1 = χX([b])O[b],1 = O[b],1 (2.132)

X · O[a],1 = χX([a])O[a],1 = −O[a],1 (2.133)

Y · O[1],1 = χY ([1])O[1],1 = 2O[1],1 (2.134)

Y · O[b],1 = χY ([b])O[b],1 = −O[b],1 (2.135)

Y · O[a],1 = χY ([a])O[a],1 = 0, (2.136)

which agrees with the action given in [47, section 5.2]. The twisted sectors, in general, receive contributions
from multiple ungauged sectors. If we further gauge the regular representation of the Rep(S3) symmetry to
recover the original S3-symmetric theory, the resulting local operators should once again organize themselves
by (2.114).

2.10 Formal argument for algebra object as projector

Next, we consider gauging a noninvertible symmetry, and discuss how the algebra objectA acts as a projector.

As with invertible symmetries, the partition function obtained when gauging noninvertible symmetries
will break into a sum of terms which describe the action of the algebra object on twist fields. The properties
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(a) (b)

(c) (d)

(e)
(f)

Figure 16: The algebra object A acts projectively on local states.

of the Frobenius algebra, in particular the fact that the multiplication gives a map A ⊗ A → A, ensure
that A acts projectively on states. Using the diagrammatic properties of the algebra object as given in
e.g. [13, section 3], we can follow [48] in showing that A acts projectively on (twisted) local states – this is
shown in Figure 16.

All of the lines drawn there are the algebra object A, and in the middle we project A onto one of
its constituent simple lines which then ends on a twist field. The junctions contain multiplication or co-
multiplication as necessary. Arrows on lines are omitted for readability. Moving from Figure 16a to Fig-
ure 16b we break up the two four-way junctions. Using the equivalence of the configurations shown in Figure 6
allows us to deform Figure 16b to Figure 16c. Applying two swap relations produces Figure 16d, which we
can deform to Figure 16e. Finally, the condition on composition of multiplication and co-mutiplication given
in (2.47) allows us to ‘pop’ the bubble, leading to Figure 16f. In total, we find that the action of A⊗A on
any local operator is equivalent to that of A, as expected.

2.11 Specialization to ordinary orbifolds

Previously in section 2.5 we introduced some abstract machinery to discuss gauging noninvertible symmetries,
e.g. Frobenius structures, Hopf algebras, and so forth. In this section, we will demonstrate that that abstract
machinery correctly reproduces standard results for ordinary orbifolds by (ordinary) groups.

Here, the fusion algebra is Vec(G) = Rep(C[G]∗). As this may be a bit obscure, let us take a moment to
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elaborate. First, we describe C[G]∗ as a vector space with basis elements vg for all g ∈ G, with multiplication

vgvh = δg,hvg. (2.137)

The irreducible representations of C[G]∗ are one-dimensional, and in one-to-one correspondence with elements
of G. Let such an irreducible representation be denoted Ug, with basis {eUg}, and G-action defined linearly
over

vh · eUg = δg,heUg. (2.138)

The tensor product follows naturally from the group law:

Ug ⊗ Uh = Ugh. (2.139)

General representations, sums of irreducible representations, are G-graded vector spaces. See also e.g. [49]
for a (dual) description of G-graded vector spaces as comodules over C[G].

Now, in this case, we do not need to consider nontrivial junction defects, simply because

Hom(Ug ⊗ Uh, Uk) =

{︃
C gh = k,
0 else.

(2.140)

This is certainly in agreement with standard orbifold constructions, which do not involve junction defects.

We next construct a special symmetric Frobenius algebra on C[G] = C[G]∗∗. Proceeding as before, we
inherit the product and unit structure from Vec(G), namely

µ∗(g, h) = gh, u∗(1) = 1. (2.141)

We then define a new coproduct ∆F and counit uo
F . The integral element Λ ∈ C[G]∗ given by

Λ = v1, (2.142)

and the cointegral is

λ =
1

|G|
∑︂
g∈G

g. (2.143)

We take uo
F : C[G]→ C to be given by Λ∗ : C[G]→ C, that is,

uo
F (g) = |G| δ1,g. (2.144)

Next we work out the comultiplication. It corresponds to the dual of the map

vg ⊗ vh ↦→
∑︂
k∈G

vgk ⊗ vk−1 ⊗ vh ↦→
∑︂
k∈G

vgk ⊗ vk ⊗ vh ↦→ vgh ⊗ 1 (2.145)

so that on the basis elements and normalizing this is

∆F := g ↦→ 1

|G|
∑︂
h∈G

gh⊗ h−1 (2.146)

It is straightforward to check that this has the desired normalization, µ∗ ◦∆F = IdH∗ , using the fact that
µ∗ = ∆∗ (from (2.49)), and in the present case, ∆ = µ∗ (using the relation between dual bialgebras, as
discussed in section 2.5), hence µ∗ = ∆∗ = µ∗∗ = µ. Similarly, the coevaluation maps are dualized relative
to Rep(G):

γA(1) =
∑︂
h∈G

h⊗ vh, γA(1) =
∑︂
h∈G

vh ⊗ h. (2.147)
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(Compare their expressions (2.83) for Rep(G).) Altogether, it is also straightforward to check that

(A = H∗, µ∗, u∗,∆F , u
o
F ) (2.148)

satisfy the axioms to be a special symmetric Frobenius algebra.

Now, let us compute the genus one partition function (2.91), namely

Z(τ) =
∑︂
g,h,k

µk
g,h∆

h,g
k Zk

g,h(τ), (2.149)

where ∆ indicates ∆F , the comultiplication in the Frobenius algebra. (Since the lines are associated to group
elements, we use g, h, k in the remainder of this section instead of L to denote them.) Expressing (2.141) in
components, we have13

µk
g,h =

{︃
1 k = gh,
0 else,

(2.150)

so we see that the only contributions to the sum are from g, h ∈ G such that gh = hg (otherwise one of

the two factors µk
g,h, ∆

h,g
k vanishes). As a result, we can simplify the expression for the genus-one partition

function and write

Z =
1

|G|
∑︂

gh=hg

Zgh
g,h, (2.151)

which precisely matches the standard expression for genus one orbifold partition functions.

In the special case H = (C[G])∗, the Hopf subalgebras of H∗ ∼= C[G] are all of the form C[H] ⊂ C[G] for
H ⊂ G a subgroup (see e.g. [50, Prop. 2.1], [51]). This recovers the familiar statement that the subcategories
of Vec(G) which we can gauge are precisely those of the form Vec(H) for H any subgroup of G.

So far we have discussed ordinary orbifolds, as special cases of the technology we have reviewed. Next,
we will describe how one can also describe orbifolds with discrete torsion, in the same language.

Briefly, discrete torsion is encoded in a modification of the multiplication in the Frobenius algebra. (The
starting Hopf algebra is unchanged.) We modify the components of the multiplication µ∗ in the Frobenius
algebra to be given by

µk
g,h =

{︃
mg,h k = gh,
0 else,

(2.152)

for some nonzero complex numbers mg,h. For now we will assume that the G symmetry is non-anomalous,
which means that we can take the associator to be trivial.14 The associativity constraint (A.7), namely

µ∗(µ∗ ⊗ IdA) = µ∗(IdA ⊗ µ∗), (2.153)

reduces, in this basis, to
mg,h mgh,k = mg,hk mh,k (2.154)

which we recognize as the 2-cocycle condition15 (and the normalization condition is indeed the usual cocycle
normalization). The unit axiom (A.8) requires

m1,g = mg,1 = 1, (2.155)

13In comparison to later computations, in which we will explicitly track intertwiners, here we take all intertwiners to be
trivial.

14In the case of an anomalous group-like symmetry, the associator becomes a non-trivial 3-cocycle ω, as described in the
following section. The condition on the discrete torsion 2-cochain m is then that dm = ω, rather than closure.

15Changing the 2-cocycles by 2-coboundaries changes the Frobenius algebra, but leaves the partition function invariant.
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which is a normalization condition that can always be imposed, without loss of generality, on a group
2-cocycle.

The unit u∗ and co-unit u◦
F in the Frobenius algebra take the form

u∗ : 1→
⨁︂
g∈G

δ1,gg u◦
F : g → |G|δ1,g1. (2.156)

The comultiplication ∆F is given by

∆F := g ↦→ 1

|G|
∑︂
h∈G

1

mgh,h−1

gh⊗ h−1 (2.157)

which has components

∆h,g
k =

{︄
1
|G| (mh,g)

−1
k = hg,

0 else.
(2.158)

The coevaluation maps are the same as (2.147). It is straightforward to check that with these definitions,
(µ∗, u∗,∆F , u

◦
F ) satisfy the axioms to be a special symmetric Frobenius algebra.

Then, the resulting genus-one partition function is, from (2.91),

Z =
∑︂
g,h,k

µk
g,h∆

h,g
k Zg,h, (2.159)

=
1

|G|
∑︂

gh=hg

mg,h

mh,g
Zg,h, (2.160)

which is the standard result for genus-one partition functions of ordinary orbifolds with discrete torsion.

As a solid consistency check, let us also check the genus 2 partition function, using our general technology,
in the case of Vec(G) with discrete torsion, to compare to existing results for discrete torsion on genus 2
surfaces. As discussed in subsection 2.8, the genus 2 partition function is the sum over partial traces (2.108),
namely

Zg=2 =
∑︂

L1,··· ,L9

µL5

L1,L2
∆L6,L7

L5
∆L2,L1

L6
µL8

L3,L4
µL9

L7,L8
∆L4,L3

L9
ZL5,L6,L7,L8,L9

L1,L2,L3,L4
,

In the present case, all the internal simple lines are determined by the external lines, as in Figure 9. Since
this renders the labels by internal lines on the partial traces redundant, we simply denote these as Zb1,a1,b2,a2

,
much as the familiar Zg,h expression for genus 1 partial traces in group-like cases. Let γ = b−1

1 a−1
1 b1a1, for

a1,2, b1,2 ∈ G, then the partition function is

Zg=2 =
∑︂

a1,b1,a2,b2

mb1,a1

ma1b1,γ

mb2,a2

ma1,b1

mγ,b2a2

ma2,b2

Zb1,a1,b2,a2
. (2.161)

We note that
mb1,a1

ma1b1,γ

mb2,a2

ma1,b1

mγ,b2a2

ma2,b2

(2.162)

is precisely the discrete torsion phase for a partial trace of a genus 2 surface [44, 52]. Moreover, from the
diagram we observe that for the partial trace coefficients to not vanish, the external lines need to satisfy the
equation

b−1
1 a−1

1 b1a1 = a−1
2 b−1

2 a2b2, (2.163)

which is the standard condition on genus-two orbifold contributions.
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3 Examples of partition function computations

In this section we will compute genus-one partition functions explicitly in some examples of (multiplicity-
free) fusion categories of the form Rep(H), for H a Hopf algebra. In most of the examples, we will derive
results expressed in terms of a general basis of fusion intertwiners. To compute a partition function, one
must specify a special symmetric Frobenius algebra, as already discussed, and for each fusion category, we
will list all choices and compute partition functions for each choice. In every case, we will see that our general
expression procedure yields a partition function that is a modular-invariant sum of partial traces, which is
a strong check that the procedure is self-consistent.

3.1 Rep(S3)

First, we will consider Rep(S3), where S3 is the symmetric group on three elements, which can be presented
as

S3 = ⟨a, b | a2 = 1 = b3, aba = b2⟩. (3.1)

3.1.1 Representation theory

The group S3 has three irreducible representations which we will label 1, X, and Y . The character table is:

[1] [a] [b]
χ1 1 1 1
χX 1 −1 1
χY 2 0 −1

Specific realizations of these irreps are given by

ρ1(a) = ρ1(b) = 1, (3.2)

ρX(a) = −1, ρX(b) = 1, (3.3)

ρY (a) =

(︃
−1 0
0 1

)︃
, ρY (b) =

(︄
− 1

2 −
√
3
2√

3
2 − 1

2

)︄
. (3.4)

The representations form a fusion algebra under tensor products, with

X ⊗X ∼= 1, X ⊗ Y ∼= Y, Y ⊗ Y ∼= 1⊕X ⊕ Y. (3.5)

Additionally, all three of these irreducible representations are self-dual, meaning 1∗ ∼= 1, X∗ ∼= X, and
Y ∗ ∼= Y .

In our fusion category Rep(S3) the objects will be labeled by representations of S3, with the irreducible
representations 1, X, and Y being the simple objects. The spaces Hom(R1, R2) will consist of intertwin-
ers between the representations R1 and R2. Explicitly, if Ri consists of a vector space Vi and a group
homomorphism ρi : S3 → GL(Vi), then each element of Hom(R1, R2) is a linear map ϕ : V1 → V2 satisfying

ϕ ◦ ρ1(g) = ρ2(g) ◦ ϕ, ∀g ∈ S3. (3.6)
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3.1.2 Computing the associator

To do this computation, we first need to pick a basis of Hom(Ri ⊗ Rj , Rk) for each fusion of irreducible
representations Ri, Rj , Rk. For Rep(S3), these spaces fortunately all have dimension zero or one, so the
freedom is just a set of C∗ parameters (corresponding to intertwiners) which we will leave arbitrary (except
for fusions involving the trivial representation, for which there is a canonical choice). We’ll use e as the
basis vector16 for the trivial representation, eX as the basis vector for X, and eY 1 and eY 2 to be the basis
vectors for Y which are odd and even respectively under the action of a (i.e. so that ρY takes the form (3.4)).
Letting β1, · · · , β6 be the arbitrary parameters, we have the most general possible intertwiners

e⊗ e ↦→ e, (3.7)

e⊗ eX ↦→ eX , (3.8)

e⊗ eY 1 ↦→ eY 1, (3.9)

e⊗ eY 2 ↦→ eY 2, (3.10)

eX ⊗ e ↦→ eX , (3.11)

eX ⊗ eX ↦→ β1 e, (3.12)

eX ⊗ eY 1 ↦→ β2 eY 2, (3.13)

eX ⊗ eY 2 ↦→ − β2 eY 1, (3.14)

eY 1 ⊗ e ↦→ eY 1, (3.15)

eY 1 ⊗ eX ↦→ β3 eY 2, (3.16)

eY 1 ⊗ eY 1 ↦→ β4 e+ β5 eY 2, (3.17)

eY 1 ⊗ eY 2 ↦→ β6 eX + β5 eY 1, (3.18)

eY 2 ⊗ e ↦→ eY 2, (3.19)

eY 2 ⊗ eX ↦→ − β3 eY 1, (3.20)

eY 2 ⊗ eY 1 ↦→ − β6 eX + β5 eY 1, (3.21)

eY 2 ⊗ eY 2 ↦→ β4 e− β5 eY 2. (3.22)

16In doing so, we are using the fact that we have a fiber functor to define a basis on the underlying vector spaces. However,
the maps herein described do exist in the fusion category as they are all equivariant.
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Alternatively, in terms of explicit basis vectors λk
i,j for Hom(Ri ⊗Rj , Rk),

λ1
1,1(e⊗ e) = e, (3.23)

λX
1,X(e⊗ eX) = eX , (3.24)

λY
1,Y (e⊗ eY 1) = eY 1, λY

1,Y (e⊗ eY 2) = eY 2, (3.25)

λX
X,1(eX ⊗ e) = eX , (3.26)

λ1
X,X(eX ⊗ eX) = β1e, (3.27)

λY
X,Y (eX ⊗ eY 1) = β2eY 2, λY

X,Y (eX ⊗ eY 2) = −β2eY 1, (3.28)

λY
Y,1(eY 1 ⊗ e) = eY 1, λY

Y,1(eY 2 ⊗ e) = eY 2, (3.29)

λY
Y,X(eY 1 ⊗ eX = β3eY 2, λY

Y,X(eY 2 ⊗ eX) = −β3eY 1, (3.30)

λ1
Y,Y (eY 1 ⊗ eY 1) = β4e, λ1

Y,Y (eY 2 ⊗ eY 2) = β4e,

λ1
Y,Y (eY 1 ⊗ eY 2) =λ1

Y,Y (eY 2 ⊗ eY 2) = 0, (3.31)

λX
Y,Y (eY 1 ⊗ eY 2) = β6eX , λX

Y,Y (eY 2 ⊗ eY 1) = −β6eX ,

λX
Y,Y (eY 1 ⊗ eY 1) =λX

Y,Y (eY 2 ⊗ eY 2) = 0, (3.32)

λY
Y,Y (eY 1 ⊗ eY 1) = β5eY 2, λY

Y,Y (eY 1 ⊗ eY 2) = β5eY 1,

λY
Y,Y (eY 2 ⊗ eY 1) = β5eY 1, λY

Y,Y (eY 2 ⊗ eY 2) = −β5eY 2. (3.33)

Factors such as signs are determined by consistency with the group law. To make this more explicit,
consider the following example. First, from the form of the representation ρY ,

a · eY 1 = −eY 1, a · eY 2 = +eY 2, (3.34)

while
a · (eX ⊗ eY 1) = eX ⊗ eY 1, a · (eX ⊗ eY 2) = −eX ⊗ eY 2. (3.35)

Let λY
X,Y explicitly denote the intertwiner for the fusion X ⊗ Y ∼= Y . Based on the action of a above, the

most general form of λY
X,Y is

λY
X,Y (eX ⊗ eY 1) = β2 eY 2, λY

X,Y (eX ⊗ eY 2) = c2 eY 1, (3.36)

where β2 is as above and c2 is another constant. We then require

b · λY
X,Y (eX ⊗ eY 1) = λY

X,Y (eX ⊗ (b · eY 1)) , (3.37)

and this fixes the value of c2. Explicitly, we are given

b · eY 1 = −1

2
eY 1 −

√
3

2
eY 2, (3.38)

b · eY 2 = +

√
3

2
eY 1 −

1

2
eY 2, (3.39)

and we compute

b · λY
X,Y (eX ⊗ eY 1) =

√
3

2
β2 eY 1 −

1

2
β2 eY 2, (3.40)

λY
X,Y (eX ⊗ (b · eY 1)) = −1

2
β2 eY 2 −

√
3

2
c2 eY 1, (3.41)
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hence
c2 = −β2. (3.42)

Signs in other cases are determined similarly.

Next we compute the associators, which are elements αR1,R2,R3
∈ Hom((R1⊗R2)⊗R3, R1⊗ (R2⊗R3)).

It turns out that as intertwiners, the associators in a representation category like this are canonical, acting
simply as

αR1,R2,R3((v1 ⊗ v2)⊗ v3) = v1 ⊗ (v2 ⊗ v3), (3.43)

for all vi ∈ Ri. However, we would like to expand this simple map in terms of components related to the
chosen bases for fusion intertwiners. By taking fusions we can map a vector in (R1 ⊗R2)⊗R3 to R4, using
some R5 as an intermediate channel, by acting with the map λR4

R5,R3
◦ (λR5

R1,R2
⊗1R3

). On the other hand, we

can similarly apply λR4

R1,R6
◦ (1R1

⊗λR6

R2,R3
) to a vector in R1⊗ (R2⊗R3). The sources of these two maps can

be identified using the canonical associator map αR1,R2,R3
, so what we are looking for are the coefficients

K̃
R1,R4

R2,R3
(R5, R6) relating these two, i.e.17

λR4

R5,R3
◦ (λR5

R1,R2
⊗ 1R3) = K̃

R∗
1 ,R4

R∗
2 ,R

∗
3
(R∗

5, R
∗
6)λ

R4

R1,R6
◦ (1R1

⊗ λR6

R2,R3
) ◦ αR1,R2,R3

, (3.44)

as intertwiners in Hom((R1⊗R2)⊗R3, R4). The quantities K̃
R1,R4

R2,R3
(R5, R6) here are just complex numbers18,

since we are restricting in this paper to the case where all the fusion and co-fusion Hom spaces have dimension
at most one.

Since fusion involving the trivial representation was canonical (i.e. λR
1,R(e ⊗ v) = v and λR

R,1(v ⊗ e) = v
for all v ∈ R), we have

K̃
1,R3

R1,R2
(R1, R3) = 1, K̃

R1,R3

1,R2
(R1, R2) = 1, K̃

R1,R3

R2,1 (R3, R2) = 1. (3.47)

So focusing now on the case with only non-trivial representations, we compute

(eX ⊗ eX)⊗ eX ↦→ β1 e⊗ eX ↦→ β1 eX ,

eX ⊗ (eX ⊗ eX) ↦→ β1 eX ⊗ e ↦→ β1 eX ,

⇒ K̃
X,X

X,X(1, 1) = 1. (3.48)

Here in the associator component K̃
R1,R4

R2,R3
(R5, R6), the representationsR1, R2, andR3 are the three appearing

in the triple product, and R4 is the representation for the final result. The intermediate step when fusing
the first and second vectors appears as R5, while the intermediate step when fusing the second and third
vectors appears as R6.

17The reason that dual representations appear in several of the indices is to match with [27], see footnote 18. Since in our
examples we have R ∼= R∗ for all irreducible representations R, we won’t be bothered by taking the duals.

18 This is a different perspective than in [27], where the K̃
R1,R4
R2,R3

(R5, R6) are viewed as maps, explicitly

K̃
R1,R4
R2,R3

(R5, R6) : Hom(R∗
1 ⊗R∗

2 , R
∗
5)⊗Hom(R∗

5 ⊗R∗
3 , R4) → Hom(R∗

2 ⊗R∗
3 , R

∗
6)⊗Hom(R∗

1 ⊗R∗
6 , R4). (3.45)

The quantities here are related by[︂
K̃

R1,R4
R2,R3

(R5, R6)there

]︂
(λ

R∗
5

R∗
1 ,R

∗
2
⊗ λR4

R∗
5 ,R

∗
3
) = K̃

R1,R4
R2,R3

(R5, R6)here λ
R∗

6
R∗

2 ,R
∗
3
⊗ λR4

R∗
1 ,R

∗
6
. (3.46)

42



Proceeding to other cases,

(eX ⊗ eX)⊗ eY 1 ↦→ β1 e⊗ eY 1 ↦→ β1 eY 1,

eX ⊗ (eX ⊗ eY 1) ↦→ β2 eX ⊗ eY 2 ↦→ −β2
2 eY 1,

⇒ K̃
X,Y

X,Y (1, Y ) = −β1

β2
2

. (3.49)

(eX ⊗ eX)⊗ eY 2 ↦→ β1 e⊗ eY 2 ↦→ β1 eY 2,

eX ⊗ (eX ⊗ eY 2) ↦→ − β2 eX ⊗ eY 1 ↦→ −β2
2 eY 2,

⇒ K̃
X,Y

X,Y (1, Y ) = −β1

β2
2

. (3.50)

Note that we didn’t really need to compute both of these; the second one didn’t provide us with any new
information. Going forward we won’t compute more than we need.

(eX ⊗ eY 1)⊗ eX ↦→ β2 eY 2 ⊗ eX ↦→ −β2β3 eY 1,

eX ⊗ (eY 1 ⊗ eX) ↦→ β3 eX ⊗ eY 2 ↦→ −β2β3 eY 1,

⇒ K̃
X,Y

Y,X (Y, Y ) = 1. (3.51)

(eX ⊗ eY 1)⊗ eY 1 ↦→ β2 eY 2 ⊗ eY 1 ↦→ −β2β6 eX + β2β5 eY 1,

eX ⊗ (eY 1 ⊗ eY 1) ↦→ β4eX ⊗ e+ β5eX ⊗ eY 2 ↦→ β4 eX − β2β5 eY 1,

⇒ K̃
X,X

Y,Y (Y, 1) = −β2β6

β4
, K̃

X,Y

Y,Y (Y, Y ) = −1. (3.52)

(eX ⊗ eY 1)⊗ eY 2 ↦→ β2 eY 2 ⊗ eY 2 ↦→ β2β4 e− β2β5 eY 2,

eX ⊗ (eY 1 ⊗ eY 2) ↦→ β6 eX ⊗ eX + β5 eX ⊗ eY 1 ↦→ β1β6 e+ β2β5 eY 2,

⇒ K̃
X,1

Y,Y (Y,X) =
β2β4

β1β6
, K̃

X,Y

Y,Y (Y, Y ) = −1. (3.53)

(eY 1 ⊗ eX)⊗ eX ↦→ β3 eY 2 ⊗ eX ↦→ −β2
3 eY 1,

eY 1 ⊗ (eX ⊗ eX) ↦→ β1 eY 1 ⊗ e ↦→ β1 eY 1,

⇒ K̃
Y,Y

X,X(Y, 1) = −β2
3

β1
. (3.54)

(eY 1 ⊗ eX)⊗ eY 1 ↦→ β3 eY 2 ⊗ eY 1 ↦→ −β3β6 eX + β3β5 eY 1,

eY 1 ⊗ (eX ⊗ eY 1) ↦→ β2 eY 1 ⊗ eY 2 ↦→ β2β6 eX + β2β5 eY 1,

⇒ K̃
Y,X

X,Y (Y, Y ) = −β3

β2
, K̃

Y,Y

X,Y (Y, Y ) =
β3

β2
. (3.55)

(eY 1 ⊗ eX)⊗ eY 2 ↦→ β3 eY 2 ⊗ eY 2 ↦→ β3β4 e− β3β5 eY 2,

eY 1 ⊗ (eX ⊗ eY 2) ↦→ − β2 eY 1 ⊗ eY 1 ↦→ −β2β4 e− β2β5 eY 2,

⇒ K̃
Y,1

X,Y (Y, Y ) = −β3

β2
, K̃

Y,Y

X,Y (Y, Y ) =
β3

β2
. (3.56)
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(eY 1 ⊗ eY 1)⊗ eX ↦→ β4 e⊗ eX + β5 eY 2 ⊗ eX ↦→ β4 eX − β3β5 eY 1,

eY 1 ⊗ (eY 1 ⊗ eX) ↦→ β3 eY 1 ⊗ eY 2 ↦→ β3β6 eX + β3β5 eY 1,

⇒ K̃
Y,X

Y,X(1, Y ) =
β4

β3β6
, K̃

Y,Y

Y,X(Y, Y ) = −1. (3.57)

(eY 1 ⊗ eY 2)⊗ eX ↦→ β6 eX ⊗ eX + β5 eY 1 ⊗ eX ↦→ β1β6 e+ β3β5eY 2,

eY 1 ⊗ (eY 2 ⊗ eX) ↦→ − β3 eY 1 ⊗ eY 1 ↦→ −β3β4 e− β3β5 eY 2,

⇒ K̃
Y,1

Y,X(X,Y ) = −β1β6

β3β4
, K̃

Y,Y

Y,X(Y, Y ) = −1. (3.58)

Finally, we have the Y ⊗3 triple products. Three of them are enough to determine the matrix

K̃
Y,Y

Y,Y =

⎛⎜⎝ K̃
Y,Y

Y,Y (1, 1) K̃
Y,Y

Y,Y (1, X) K̃
Y,Y

Y,Y (1, Y )

K̃
Y,Y

Y,Y (X, 1) K̃
Y,Y

Y,Y (X,X) K̃
Y,Y

Y,Y (X,Y )

K̃
Y,Y

Y,Y (Y, 1) K̃
Y,Y

Y,Y (Y,X) K̃
Y,Y

Y,Y (Y, Y )

⎞⎟⎠ . (3.59)

To be systematic, let us choose bases for (Y ⊗ Y )⊗ Y and Y ⊗ (Y ⊗ Y ). (Moving forward, we will start
to leave the ⊗ symbol implicit.)

EY
L =

1

4β4β5
((eY 1eY 1) eY 2 + (eY 1eY 2) eY 1 + (eY 2eY 1) eY 1 − (eY 2eY 2) eY 2) (3.60)

↦→ 1

2β4
(eY 1eY 1 + eY 2eY 2) ↦→ e, (3.61)

XY
L = − 1

4β5β6
((eY 1eY 1) eY 1 − (eY 1eY 2) eY 2 − (eY 2eY 1) eY 2 − (eY 2eY 2) eY 1) (3.62)

↦→ 1

2β6
(eY eY 2 − eY 2eY 1) ↦→ eX , (3.63)

U1
L =

1

2β4
((eY 1eY 1) eY 1 + (eY 2eY 2) eY 1) ↦→ eeY 1 ↦→ eY 1, (3.64)

V 1
L =

1

2β4
((eY 1eY 1) eY 2 + (eY 2eY 2) eY 2) ↦→ eeY 2 ↦→ eY 2, (3.65)

UX
L = − 1

2β2β6
((eY 1eY 2) eY 2 − (eY 2eY 1) eY 2) ↦→ −

1

2β2
(eXeY 2) ↦→ eY 1, (3.66)

V X
L =

1

2β2β6
((eY 1eY 2) eY 1 − (eY 2eY 1) eY 1) ↦→

1

2β2
(eXeY 1) ↦→ eY 2, (3.67)

UY
L =

1

4β2
5

((eY 1eY 1) eY 1 + (eY 1eY 2) eY 2 + (eY 2eY 1) eY 2 − (eY 2eY 2) eY 1) (3.68)

↦→ 1

2β5
(eY 1eY 2 + eY 2eY 1) ↦→ eY 1, (3.69)

V Y
L = − 1

4β2
5

((eY 1eY 1) eY 2 − (eY 1eY 2) eY 1 − (eY 2eY 1) eY 1 − (eY 2eY 2) eY 2) (3.70)

↦→ 1

2β5
(eY 1eY 1 − eY 2eY 2) ↦→ eY 2. (3.71)
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EY
R =

1

β4β5
(eY 1 (eY 1eY 2) + eY 1 (eY 2eY 1) + eY 2 (eY 1eY 1)− eY 2 (eY 2eY 2)) (3.72)

↦→ 1

2β4
(eY 1eY 1 + eY 2eY 2) ↦→ e, (3.73)

XY
R =

1

4β5β6
(eY 1 (eY 1eY 1)− eY 1 (eY 2eY 2)− eY 2 (eY 1eY 2)− eY 2 (eY 2eY 1)) (3.74)

↦→ 1

2β6
(eY 1eY 2 − eY 2eY 1) ↦→ eX , (3.75)

U1
R =

1

2β4
(eY 1 (eY 1eY 1) + eY 1 (eY 2eY 2)) ↦→ eY 1e ↦→ eY 1, (3.76)

V 1
R =

1

2β4
(eY 2 (eY 1eY 1) + eY 2 (eY 2eY 2)) ↦→ eY 2e ↦→ eY 2, (3.77)

UX
R = − 1

2β3β6
(eY 2 (eY 1eY 2)− eY 2 (eY 2eY 1)) ↦→ −

1

2β3
eY 2eX ↦→ eY 1, (3.78)

V X
R =

1

2β3β6
(eY 1 (eY 1eY 2)− eY 1 (eY 2eY 1)) ↦→

1

2β3
eY 1eX ↦→ eY 2, (3.79)

UY
R =

1

4β2
5

(eY 1 (eY 1eY 1)− eY 1 (eY 2eY 2) + eY 2 (eY 1eY 2) + eY 2 (eY 2eY 1)) (3.80)

↦→ 1

2β5
(eY 1eY 2 + eY 2eY 1) ↦→ eY 1, (3.81)

V Y
R =

1

4β2
5

(eY 1 (eY 1eY 2) + eY 1 (eY 2eY 1)− eY 2 (eY 1eY 1) + eY 2 (eY 2eY 2)) (3.82)

↦→ 1

2β5
(eY 1eY 1 − eY 2eY 2) ↦→ eY 2. (3.83)

These combinations have been chosen so that both the final vector is one of our basis vectors, and the
intermediate channel is through a single representation, indicated by the superscript.

Then to expand any triple product in this basis, we can compare with the fusions, for example

(eY 1eY 1) eY 1 ↦→ β4eeY 1 + β5eY 2eY 1 ↦→ −β5β6 eX +
(︁
β4 + β2

5

)︁
eY 1, (3.84)

tells us that
(eY 1eY 1) eY 1 = −β5β6 X

Y
L + β4U

1
L + β2

5U
Y
L . (3.85)

Similarly,
eY 1 (eY 1eY 1) = β5β6X

Y
R + β4U

1
R + β2

5U
Y
R . (3.86)

The αY,Y,Y associator should map these into each other. Comparing the XY
L and XY

R terms, we conclude
that

K̃
Y,X

Y,Y (Y, Y ) = −1. (3.87)

Looking next at the UL and UR terms, we get a vector equation

K̃
Y,Y

Y,Y ·

⎛⎝β4

0
β2
5

⎞⎠ =

⎛⎝β4

0
β2
5

⎞⎠ , (3.88)

where K̃
Y,X

Y,Y denotes a matrix with components K̃
Y,X

Y,Y (R,S) for various irreducible representations R, S.

45



This isn’t enough to determine the matrix K̃
Y,Y

Y,Y , but we can continue. We have

(eY 1eY 1) eY 2 ↦→ β4eeY 2 + β5eY 2eY 2 ↦→ β4β5 e+
(︁
β4 − β2

5

)︁
eY 2

⇒ (eY 1eY 1) eY 2 = β4β5E
Y
L + β4V

1
L − β2

5V
Y
L , (3.89)

eY 1 (eY 1eY 2) ↦→ β6eY 1eX + β5eY 1eY 1 ↦→ β4β5 e+
(︁
β3β6 + β2

5

)︁
eY 2

⇒ eY 1 (eY 1eY 2) = β4β5E
Y
R + β3β6V

X
R + β2

5V
Y
R , (3.90)

translating to

K̃
Y,1

Y,Y (Y, Y ) = 1, K̃
Y,Y

Y,Y ·

⎛⎝ 0
β3β6

β2
5

⎞⎠ =

⎛⎝ β4

0
−β2

5

⎞⎠ . (3.91)

Finally, also considering

(eY 1eY 2) eY 1 ↦→ β6eXeY 1 + β5eY 1eY 1 ↦→ β4β5 e+
(︁
β2β6 + β2

5

)︁
eY 2

⇒ (eY 1eY 2) eY 1 = β4β5E
Y
L + β2β6V

X
L + β2

5V
Y
L , (3.92)

eY 1 (eY 2eY 1) ↦→ −β6eY 1eX + β5eY 1eY 1 ↦→ β4β5 e+
(︁
−β3β6 + β2

5

)︁
⇒ eY 1 (eY 2eY 1) = β4β5E

Y
R − β3β6V

X
R + β2

5V
Y
R , (3.93)

leading to

K̃
Y,1

Y,Y (Y, Y ) = 1, K̃
Y,Y

Y,Y ·

⎛⎝ 0
−β3β6

β2
5

⎞⎠ =

⎛⎝ 0
β2β6

β2
5

⎞⎠ . (3.94)

These three vector equations uniquely determine the matrix K̃
Y,Y

Y,Y to be

K̃
Y,Y

Y,Y =

⎛⎜⎝
1
2

β4

2β3β6

β4

2β2
5

−β2β6

2β4
− β2

2β3

β2β6

2β2
5

β2
5

β4
− β2

5

β3β6
0

⎞⎟⎠ . (3.95)

We can verify this result by checking the other triple products,

(eY 1eY 2) eY 2 ↦→ β5β6X
Y
L − β2β6U

X
L + β2

5U
Y
L , eY 1 (eY 2eY 2) ↦→ −β5β6X

Y
R + β4U

1
R − β2

5U
Y
R , (3.96)

(eY 2eY 1) eY 1 ↦→ β4β5E
Y
L − β2β6V

X
L + β2

5V
Y
L , eY 2 (eY 1eY 1) ↦→ β4β5E

Y
R + β4V

1
R − β2

5V
Y
R , (3.97)

(eY 2eY 1) eY 2 ↦→ β5β6X
Y
L + β2β6U

X
L + β2

5U
Y
L , eY 2 (eY 1eY 2) ↦→ −β5β6X

Y
R − β3β6U

X
R + β2

5U
Y
R , (3.98)

(eY 2eY 2) eY 1 ↦→ β5β6X
Y
L + β4U

1
L − β2

5U
Y
L , eY 2 (eY 2eY 1) ↦→ −β5β6X

Y
R + β3β6U

X
R + β2

5U
Y
R , (3.99)

(eY 2eY 2) eY 2 ↦→ −β4β5E
Y
L + β4V

1
L + β2

5V
Y
L , eY 2 (eY 2eY 2) ↦→ −β4β5E

Y
R + β4V

1
R + β2

5V
Y
R . (3.100)

There are some other structures we can define on this fusion category, that will be useful once we start
looking at Frobenius algebras. Having established a standard basis for fusion, we then also have a set of
associated evaluation morphisms ϵL : L⊗ L∗ → C and ϵL : L∗ ⊗ L→ C, by projecting the fusion on to the
identity, e.g. if we define π : 1→ C by π(e) = 1, then we have ϵL = π ◦ λ1

L,L∗ , ϵL = π ◦ λ1
L∗,L. Thus,

ϵ1(ee) = ϵ1(ee) = 1, ϵX (eXeX) = ϵX (eXeX) = β1, (3.101)

ϵY (eY 1eY 1) = ϵY (eY 2eY 2) = ϵY (eY 1eY 1) = ϵY (eY 2eY 2) = β4, (3.102)

ϵY (eY 1eY 2) = ϵY (eY 2eY 1) = ϵY (eY 1eY 2) = ϵY (eY 2eY 1) = 0. (3.103)
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Along with these we have canonically trivial pivotal structures [14] p1, pX , and pY which act as the identity
intertwiner on 1, X, and Y respectively.

Next, we also have coevaluation morphisms γL : C→ L∗⊗L and γL : C→ L⊗L∗ which satisfy [14, equ’n
(3.14)]

(ϵL ⊗ 1) ◦ α−1
L,L∗,L ◦ (1⊗ γL) = 1, (1⊗ ϵL) ◦ αL,L∗,L ◦ (γL ⊗ 1) = 1. (3.104)

These fix the coevaluation morphisms to be

γ1(1) = γ1(1) = ee, γX(1) = γX(1) =
1

β1
eXeX , (3.105)

and

γY (1) = γY (1) =
1

β4
(eY 1eY 1 + eY 2eY 2) . (3.106)

Finally, by combining coevaluation and fusion, we can establish a basis for the co-fusion intertwiners
δR2,R3

R1
∈ Hom(R1, R2 ⊗R3). Explicitly, we’ll construct these as19

δR2,R3

R1
(v1) =

[︂(︂
λR2

R1,R∗
3
⊗ 1R3

)︂
◦ α−1

R1,R∗
3 ,R3

]︂
(v1 ⊗ γR3

(1)). (3.108)

If either of the outputs is the trivial representation, then we simply have δ1,RR (v) = e⊗ v or δR,1
R (v) = v ⊗ e.

For the others, we find (keeping ⊗ symbols implicit)

δX,X
1 (e) = β−1

1 eXeX , δY,Y1 (e) = β−1
4 (eY 1eY 1 + eY 2eY 2), δY,YX (eX) = −β2β

−1
4 (eY 1eY 2 − eY 2eY 1),

δX,Y
Y (eY 1) = β6β

−1
4 eXeY 2, δX,Y

Y (eY 2) = −β6β
−1
4 eXeY 1,

δY,XY (eY 1) = β3β
−1
1 eY 2eX , δY,XY (eY 2) = −β3β

−1
1 eY 1eX , (3.109)

δY,YY (eY 1) = β5β
−1
4 (eY 1eY 2 + eY 2eY 1), δY,YY (eY 2) = β5β

−1
4 (eY 1eY 1 − eY 2eY 2).

In all of the expressions above, we left the parameters β1, · · · , β6 arbitrary. In the group-like case, this
corresponds to the freedom to choose a representative three-cocycle for our anomaly class in H3(G,U(1)) by
shifting by a coboundary.

In the next several subsections we will apply the computations above to compute partition functions for
various Frobenius algebras, following the procedure described earlier in section 2.5.

3.1.3 Modular transformations

Before computing the partition functions, let us take a moment to work out the modular transformations,
following section 2.3, so that we can check that the partition functions we will derive momentarily, are
modular invariant.

19Alternatively, we could use

δR2,R3
R1

(v1) =
[︂(︂

1R2
⊗mR3

R∗
2 ,R1

)︂
◦ αR2,R

∗
2 ,R1

]︂
(γR2

(1)⊗ v1), v1 ∈ R1, (3.107)

resulting in a different basis.

47



Using equations (2.28), (2.29), it is straightforward to compute that

Z1
1,1(τ + 1) = Z1

1,1(τ), (3.110)

ZX
1,X(τ + 1) = ZX

1,X(τ), (3.111)

ZY
1,Y (τ + 1) = ZY

1,Y (τ), (3.112)

ZX
X,1(τ + 1) = Z1

X,X(τ), (3.113)

Z1
X,X(τ + 1) = ZX

X,1(τ), (3.114)

ZY
X,Y (τ + 1) = ZY

X,Y (τ), (3.115)

ZY
Y,1(τ + 1) = Z1

Y,Y (τ), (3.116)

ZY
Y,X(τ + 1) = − β3

β2
ZX
Y,Y (τ), (3.117)

Z1
Y,Y (τ + 1) =

1

2
ZY
Y,1(τ) +

β4

2β3β6
ZY
Y,X(τ) +

β4

2β2
5

ZY
Y,Y (τ), (3.118)

ZX
Y,Y (τ + 1) = − β2β6

2β4
ZY
Y,1(τ)−

β2

2β3
ZY
Y,X(τ) +

β2β6

2β2
5

ZY
Y,Y (τ), (3.119)

ZY
Y,Y (τ + 1) =

β2
5

β4
ZY
Y,1(τ)−

β2
5

β3β6
ZY
Y,X(τ). (3.120)

Z1
1,1(−1/τ) = Z1

1,1(τ), (3.121)

ZX
1,X(−1/τ) = ZX

X,1(τ), (3.122)

ZY
1,Y (−1/τ) = ZY

Y,1(τ), (3.123)

ZX
X,1(−1/τ) = ZX

1,X(τ), (3.124)

Z1
X,X(−1/τ) = Z1

X,X(τ), (3.125)

ZY
X,Y (−1/τ) =

β2β4

β1β6
ZY
Y,X(τ), (3.126)

ZY
Y,1(−1/τ) = ZY

1,Y (τ), (3.127)

ZY
Y,X(−1/τ) = β1β6

β2β4
ZY
X,Y (τ), (3.128)

Z1
Y,Y (−1/τ) =

1

2
Z1
Y,Y (τ)−

β4

2β2β6
ZX
Y,Y (τ) +

β4

2β2
5

ZY
Y,Y (τ), (3.129)

ZX
Y,Y (−1/τ) = −

β2β6

2β4
Z1
Y,Y (τ) +

1

2
ZX
Y,Y (τ) +

β2β6

2β2
5

ZY
Y,Y (τ), (3.130)

ZY
Y,Y (−1/τ) =

β2
5

β4
Z1
Y,Y (τ) +

β2
5

β2β6
ZX
Y,Y (τ). (3.131)

Modular-invariant combinations of partial traces are

Z1
1,1, ZX

1,X + ZX
X,1 + Z1

X,X , (3.132)

ZY
1,Y + ZY

Y,1 + Z1
Y,Y +

β4

2β2
5

ZY
Y,Y , ZY

X,Y +
β2β4

β1β6
ZY
Y,X −

β3β4

β1β6
ZX
Y,Y −

β2β3β4

2β1β2
5

ZY
Y,Y . (3.133)

We will see these combinations reappear later when we compute partition functions corresponding to
various Frobenius algebras.
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3.1.4 Subalgebras

We will study Frobenius algebra structures indexed by Hopf subalgebras C[H] ⊂ C[S3], corresponding to
(not necessarily normal) subgroups H ⊂ S3, so let us take a moment to enumerate possible subgroups. Recall
that S3 can be described as

S3 = ⟨a, b | a2 = 1 = b3, aba = b2⟩. (3.134)

In terms of the generators above, the subgroups of S3 are

{1}, ⟨a⟩ = Z2, ⟨ab⟩ = Z2, ⟨ab2⟩ = Z2, ⟨b⟩ = Z3 (3.135)

Now, a is conjugate to ab and ab2, so there are really only three distinct nontrivial subgroups for which we
should compute corresponding Frobenius algebras and partition functions:

⟨b⟩, ⟨a⟩, S3. (3.136)

Indeed, in general, we will find that any two subgroups related by an automorphism will give rise to iso-
morphic Frobenius algebras. For an inner automorphism the representation is the same, while for an outer
automorphism representations may be exchanged (we’ll see this latter possibility in the D4 and Q8 cases
below).

Each of these subgroups will correspond to a Frobenius algebra. In addition, since S3 acts on S3/H, if
we construct a vector space with a basis labelled by the distinct cosets of S3/H, that vector space with that
S3 action defines a representation of S3.

We summarize the results in the table below:

Coset Subalgebra Representation Details in subsection
G/⟨b⟩ Span[vK , vaK ], K = ⟨b⟩ 1 +X 3.1.5
G/⟨a⟩ Span[vH , vbH , vb2H ], H = ⟨a⟩ 1 + Y 3.1.6
G/1 C[G]∗ 1 +X + 2Y 3.1.7

(the regular representation)

3.1.5 1 +X orbifold

In this subsection, we consider the Frobenius algebra corresponding to the subalgebra C[K] for K = ⟨b⟩. To
proceed further, we need to pick a basis for each case that makes the decomposition into irreps manifest.
We’ll start with 1 +X. The full representation has basis vectors vK and vaK , and we can take a new basis

e = u(1) = vK + vaK , eX =
c√
2
(vK − vaK) , (3.137)

where the notation reflects the fact that the first element is a basis for the vector space associated to 1, and
the second element is a basis for the vector space associated to X. Both vectors are invariant under the
action of b and are eigenvectors of the action of a, with e having eigenvalue +1 and x having eigenvalue −1.
Hence e spans the 1 sub-representation of 1 +X, while x spans the X sub-representation. The constant c
can be any element of C∗.

We also need to specify the multiplication and co-multiplication in this Frobenius algebra (as discussed
in section 2.5), which acts on the underlying basis vectors of the representation as

µ∗(vgK ⊗ vhK) = δgK,hK vgK , ∆F (vgK) = vgK ⊗ vgK . (3.138)
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(This uses the fact that ∆F is diagonal on the v basis.) Translating this to an action on our new basis, one
easily obtains

µ∗(e⊗ e) = e, (3.139)

µ∗ (e⊗ eX) = µ∗ (eX ⊗ e) = eX , (3.140)

µ∗ (eX ⊗ eX) =
c2

2
e, (3.141)

and

∆F (e) =
1

2
e⊗ e+ c−2eX ⊗ eX , (3.142)

∆F (eX) =
1

2
(e⊗ eX + eX ⊗ e) . (3.143)

Comparing with our standard bases (the λR3

R1,R2
’s (3.7-3.22) and δR2,R3

R1
’s (3.109)), we can represent the

components of µ∗, ∆F as coefficients,

µ1
1,1 = µX

1,X = µX
X,1 = 1, µ1

X,X =
c2

2β1
, (3.144)

∆1,1
1 = ∆1,X

X = ∆X,1
X =

1

2
, ∆X,X

1 = c−2β1. (3.145)

Here for instance we used

µ∗(eX ⊗ eX) =
c2

2
e =

(︃
c2

2β1

)︃
λ1
X,X(eX ⊗ eX), (3.146)

giving µ1
X,X = c2

2β1
, and

∆F (e) =
1

2
e⊗ e+

1

c2
eX ⊗ eX =

1

2
δ1,11 (e) +

β1

c2
δX,X
1 (e), (3.147)

giving us ∆1,1
1 = 1

2 and ∆X,X
1 = β1

c2 .

So now the recipe to compute the coefficients of partial traces is simply to assign to each ZR3

R1,R2
the

coefficient µR3

R1,R2
∆R2,R1

R3
.

Z1
1,1 : µ1

1,1∆
1,1
1 = 1 · 1

2
=

1

2
, (3.148)

ZX
1,X : µX

1,X∆X,1
X = 1 · 1

2
=

1

2
, (3.149)

ZX
X,1 : µX

X,1∆
1,X
X = 1 · 1

2
=

1

2
, (3.150)

Z1
X,X : µ1

X,X∆X,X
1 =

c2

2β1
· β1

c2
=

1

2
. (3.151)

The full partition function is then simply

Z1+X =
1

2

[︁
Z1
1,1 + ZX

1,X + ZX
X,1 + Z1

X,X

]︁
, (3.152)

which is a sum of modular invariants in (3.132), and also matches the standard form of a Z2 orbifold.
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3.1.6 1 + Y orbifold

In this section we consider the Frobenius algebra and partition function corresponding to the subalgebra
C[H] for H = ⟨a⟩. Here we have a basis {vH , vbH , vb2H} the complex vector space over S3/H and we identify

e = vH + vbH + vb2H , eY 1 =
c√
2
(vbH − vb2H) , eY 2 =

c√
6
(−2vH + vbH + vb2H) . (3.153)

Then

µ∗(e⊗ e) = e, (3.154)

µ∗ (e⊗ eY 1) = µ∗ (eY 1 ⊗ e) = eY 1, (3.155)

µ∗ (e⊗ eY 2) = µ∗ (eY 2 ⊗ e) = eY 2, (3.156)

µ∗ (eY 1 ⊗ eY 1) =
c2

3
e+

c√
6
eY 2, (3.157)

µ∗ (eY 1 ⊗ eY 2) = µ∗ (eY 2 ⊗ eY 1) =
c√
6
eY 1, (3.158)

µ∗ (eY 2 ⊗ eY 2) =
c2

3
e− c√

6
eY 2, (3.159)

and (using the fact that ∆F is diagonal on the v basis)

∆F (e) =
1

3
e⊗ e+ c−2 (eY 1 ⊗ eY 1 + eY 2 ⊗ eY 2) , (3.160)

∆F (eY 1) =
1

3
(e⊗ eY 1 + eY 1 ⊗ e) +

1√
6 c

(eY 1 ⊗ eY 2 + eY 2 ⊗ eY 1) , (3.161)

∆F (eY 2) =
1

3
(e⊗ eY 2 + eY 2 ⊗ e) +

1√
6 c

(eY 1 ⊗ eY 1 − eY 2 ⊗ eY 2) . (3.162)

So we have

µ1
1,1 = µY

1,Y = µY
Y,1 = 1, µ1

Y,Y =
c2

3β4
, µY

Y,Y =
c√
6β5

, (3.163)

∆1,1
1 = ∆1,Y

Y = ∆Y,1
Y =

1

3
, ∆Y,Y

1 =
β4

c2
, ∆Y,Y

Y =
β4√
6 cβ5

. (3.164)

Then for coefficients, we get

Z1
1,1 : µ1

1,1∆
1,1
1 =

1

3
, (3.165)

ZY
1,Y : µY

1,Y ∆
Y,1
Y =

1

3
, (3.166)

ZY
Y,1 : µY

Y,1∆
1,Y
Y =

1

3
, (3.167)

Z1
Y,Y : µ1

Y,Y ∆
Y,Y
1 =

1

3
, (3.168)

ZY
Y,Y : µY

Y,Y ∆
Y,Y
Y =

β4

6β2
5

, (3.169)

and the partition function is

Z1+Y =
1

3

[︃
Z1
1,1 + ZY

1,Y + ZY
Y,1 + Z1

Y,Y +
β4

2β2
5

ZY
Y,Y

]︃
, (3.170)

which is a sum of modular invariants given in (3.132), (3.133).
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3.1.7 1 +X + 2Y orbifold

In this section, we consider the Frobenius algebra and partition function corresponding to C[S3]. Here, we
have A = 1 +X + 2Y , corresponding to the regular representation of S3.

This is slightly different since we have two copies of the Y representation occurring in our algebra object,
which we will denote Y1 and Y2 and keep separate until the end. We start by picking a basis for the regular
representation,

e = v1 + vb + vb2 + va + vab + vab2 , (3.171)

eX =
cx√
6
(v1 + vb + vb2 − va − vab − vab2) , (3.172)

eY11 =
c1
2
(vb − vb2 − vab + vab2) , (3.173)

eY12 =
c1

2
√
3
(−2v1 + vb + vb2 − 2va + vab + vab2) , (3.174)

eY21 =
c2

2
√
3
(−2v1 + vb + vb2 + 2va − vab − vab2) , (3.175)

eY22 =
c2
2
(−vb + vb2 − vab + vab2) . (3.176)

Multiplication here is given by µ∗(vg ⊗ vh) = δg,hvg. Note that µ∗ is symmetric by construction, so we do
not have to compute both µ∗(w1⊗w2) and µ∗(w2⊗w1) separately. Also, µ∗(e⊗w) = µ∗(w⊗ e) = w for all
vectors w, so we omit those as well. For the remaining ones, we have

µ∗ (eX ⊗ eX) =
c2x
6
e, (3.177)

µ∗ (eX ⊗ eY11) = −
cxc1√
6c2

eY22, (3.178)

µ∗ (eX ⊗ eY12) =
cxc1√
6c2

eY21, (3.179)

µ∗ (eX ⊗ eY21) =
cxc2√
6c1

eY12, (3.180)

µ∗ (eX ⊗ eY22) = −
cxc2√
6c1

eY11, (3.181)

µ∗ (eY11 ⊗ eY11) =
c21
6
e+

c1

2
√
3
eY12, (3.182)

µ∗ (eY11 ⊗ eY12) =
c1

2
√
3
eY11, (3.183)

µ∗ (eY12 ⊗ eY12) =
c21
6
e− c1

2
√
3
eY12, (3.184)

µ∗ (eY11 ⊗ eY21) = −
c1

2
√
3
eY22, (3.185)

µ∗ (eY11 ⊗ eY22) = −
c1c2√
6cx

eX −
c1

2
√
3
eY21, (3.186)

µ∗ (eY12 ⊗ eY21) =
c1c2√
6cx

eX −
c1

2
√
3
eY21, (3.187)

µ∗ (eY12 ⊗ eY22) =
c1

2
√
3
eY22, (3.188)
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µ∗ (eY21 ⊗ eY21) =
c22
6
e− c22

2
√
3c1

eY12, (3.189)

µ∗ (eY21 ⊗ eY22) = −
c22

2
√
3c1

eY11, (3.190)

µ∗ (eY22 ⊗ eY22) =
c22
6
e+

c22
2
√
3c1

eY12. (3.191)

Using the fact that ∆F is diagonal on the v basis, we find

∆F (e) =
1

6
e⊗ e+

1

c2x
eX ⊗ eX +

1

c21
(eY11 ⊗ eY11 + eY12 ⊗ eY12) +

1

c22
(eY21 ⊗ eY21 + eY22 ⊗ eY22) ,

(3.192)

∆F (eX) =
1

6
(e⊗ eX + eX ⊗ e) +

cx√
6 c1c2

(−eY11 ⊗ eY22 + eY12 ⊗ eY21 + eY21 ⊗ eY12 − eY22 ⊗ eY11) ,

(3.193)

∆F (eY11) =
1

6
(e⊗ eY11 + eY11 ⊗ e)− c1√

6 cxc2
(eX ⊗ eY22 + eY22 ⊗ eX)

+
1

2
√
3 c1

(eY11 ⊗ eY12 + eY12 ⊗ eY11)−
c1

2
√
3 c22

(eY21 ⊗ eY22 + eY22 ⊗ eY21) , (3.194)

∆F (eY12) =
1

6
(e⊗ eY12 + eY12 ⊗ e) +

c1√
6 cxc2

(eX ⊗ eY21 + eY21 ⊗ eX)

+
1

2
√
3 c1

(eY11 ⊗ eY11 − eY12 ⊗ eY12)−
c1

2
√
3 c22

(eY21 ⊗ eY21 − eY22 ⊗ eY22) , (3.195)

∆F (eY21) =
1

6
(e⊗ eY21 + eY21 ⊗ e) +

c2√
6 cxc1

(eX ⊗ eY12 + eY12 ⊗ eX)

− 1

2
√
3 c1

(eY11 ⊗ eY22 + eY12 ⊗ eY21 + eY21 ⊗ eY12 + eY22 ⊗ eY11) , (3.196)

∆F (eY22) =
1

6
(e⊗ eY22 + eY22 ⊗ e)− c2√

6 cxc1
(eX ⊗ eY11 + eY11 ⊗ eX)

− 1

2
√
3 c1

(eY11 ⊗ eY21 − eY12 ⊗ eY22 + eY21 ⊗ eY11 − eY22 ⊗ eY12) . (3.197)

This gives non-vanishing coefficients (apart from µR
1,R = µR

R,1 = 1, ∆1,R
R = ∆R,1

R = 1
6 )

µ1
X,X =

c2x
6β1

, µY2

X,Y1
= − cxc1√

6c2β2

, µY1

X,Y2
=

cxc2√
6c1β2

, µY2

Y1,X
= − cxc1√

6c2β3

, µY1

Y2,X
=

cxc2√
6c1β3

,

µ1
Y1,Y1

=
c21
6β4

, µ1
Y2,Y2

=
c22
6β4

, µX
Y1,Y2

= − c1c2√
6cxβ6

, µX
Y2,Y1

=
c1c2√
6cxβ6

,

µY1

Y1,Y1
=

c1

2
√
3β5

, µY2

Y1,Y2
= − c1

2
√
3β5

, µY2

Y2,Y1
= − c1

2
√
3β5

, µY1

Y2,Y2
= − c22

2
√
3c1β5

, (3.198)

∆X,X
1 =

β1

c2x
, ∆Y1,Y1

1 =
β4

c21
, ∆Y2,Y2

1 =
β4

c22
, ∆Y1,Y2

X =
cxβ4√
6 c1c2β2

, ∆Y2,Y1

X = − cxβ4√
6 c1c2β2

,

∆X,Y2

Y1
= − c1β4√

6 cxc2β6

, ∆Y1,Y1

Y1
=

β4

2
√
3 c1β5

, ∆Y2,X
Y1

= − c1β1√
6 cxc2β3

, ∆Y2,Y2

Y1
= − c1β4

2
√
3 c22β5

, (3.199)

∆X,Y1

Y2
=

c2β4√
6 cxc1β6

, ∆Y1,X
Y2

=
c2β1√
6 cxc1β3

, ∆Y1,Y2

Y2
= − β4

2
√
3 c1β5

, ∆Y2,Y1

Y2
= − β4

2
√
3 c1β5

.
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Now we put it together, keeping in mind that Y1 and Y2 both just become the simple line Y when we
talk about partial traces.

Z1
1,1 : µ1

1,1∆
1,1
1 =

1

6
, (3.200)

ZX
1,X : µX

1,X∆X,1
X =

1

6
, (3.201)

ZY
1,Y : µY1

1,Y1
∆Y1,1

Y1
+ µY2

1,Y2
∆Y2,1

Y2
=

1

3
, (3.202)

ZX
X,1 : µX

X,1∆
1,X
X =

1

6
, (3.203)

Z1
X,X : µ1

X,X∆X,X
1 =

1

6
, (3.204)

ZY
X,Y : µY2

X,Y1
∆Y1,X

Y2
+ µY1

X,Y2
∆Y2,X

Y1
= − β1

3β2β3
, (3.205)

ZY
Y,1 : µY1

Y1,1
∆1,Y1

Y1
+ µY2

Y2,1
∆1,Y2

Y2
=

1

3
, (3.206)

ZY
Y,X : µY2

Y1,X
∆X,Y1

Y2
+ µY1

Y2,X
∆X,Y2

Y1
= − β4

3β3β6
, (3.207)

Z1
Y,Y : µ1

Y1,Y1
∆Y1,Y1

1 + µ1
Y2,Y2

∆Y2,Y2

1 =
1

3
, (3.208)

ZX
Y,Y : µX

Y1,Y2
∆Y2,Y1

X + µX
Y2,Y1

∆Y1,Y2

X =
β4

3β2β6
, (3.209)

ZY
Y,Y : µY1

Y1,Y1
∆Y1,Y1

Y1
+ µY2

Y1,Y2
∆Y2,Y1

Y2
+ µY2

Y2,Y1
∆Y1,Y2

Y2
+ µY1

Y2,Y2
∆Y2,Y2

Y1
=

β4

3β2
5

. (3.210)

This gives the partition function

Z1+X+2Y =
1

6

[︃
Z1
1,1 + ZX

1,X + 2ZY
1,Y + ZX

X,1 + Z1
X,X −

2β1

β2β3
ZY
X,Y

+2ZY
Y,1 −

2β4

β3β6
ZY
Y,X + 2Z1

Y,Y +
2β4

β2β6
ZX
Y,Y +

2β4

β2
5

ZY
Y,Y

]︃
.

This can also be written as

Z1+X+2Y =
1

6

[︃
Z1
1,1 +

(︁
ZX
1,X + ZX

X,1 + Z1
X,X

)︁
+ 2

(︃
ZY
1,Y + ZY

Y,1 + Z1
Y,Y +

β4

2β2
5

ZY
Y,Y

)︃
− 2β1

β2β3

(︃
ZY
X,Y +

β2β4

β1β6
ZY
Y,X −

β3β4

β1β6
ZX
Y,Y −

β2β3β4

2β1β2
5

ZY
Y,Y

)︃]︃
(3.211)

in which form it is explicitly a sum of the modular invariants listed in equations (3.132), (3.133).

3.2 Rep(D4)

3.2.1 Overview of D4, Q8, H8

In Sections 3.2-3.4 we describe the gauging of Rep(D4), Rep(Q8), and Rep(H8), respectively, where D4

is20 the eight-element dihedral group, Q8 is the eight-element group of unit quaternions, and H8 is a Hopf

20The eight-element dihedral group is also often denoted D8. Our notation was chosen to be consistent with previous works
on decomposition, see e.g. [54,55].
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algebra. These correspond to the three Z2×Z2 Tambara-Yamagami categories that admit a fiber functor21.
Given that they are closely related, we first describe the general aspects of such categories and specialize
afterwards.

A G Tambara-Yamagami category [29] for G a finite group can be thought of as a categorical extension of
the fusion category Vec(G) by Z2. For any such category TY (G), the simple objects are labeled by elements
g ∈ G, with an additional element m. The fusion rules are

g ⊗ h ∼= gh, g ⊗m ∼= m⊗ g ∼= m, m⊗m ∼=
⨁︂
g∈G

g (3.212)

The fusion rules do not uniquely characterize a fusion category, one also needs to provide associators, or
F -symbols. For a fixed G, there may exist different choices of F -symbols that lead to inequivalent fusion
categories. The equivalence classes of TY (G) categories are characterized by two pieces of information: a
square root, conventionally denoted τ (not to be confused with the modular parameter), of the reciprocal of
the order of the group,

τ2 =
1

|G|
, (3.213)

and a class of bicharacter χ : G×G→ k× (here k = C). These two are used to compute the F -symbols.

We are interested in the case G = Z2 × Z2 = {1, a, b, c}, where ab = c (cyclically). (See appendix B
for a summary of F symbols and modular transformations in these fusion categories.) Here, there are two
choices of square roots τ = ±1/2, and two choices of classes of characters: the trivial one, whose only
nontrivial values are χ1(a, b) = χ1(a, c) = χ1(b, c) = −1 (symmetrically), and the nontrivial class generated
by χc(a, a) = χc(b, b) = −1, for which in particular χc(a, b) = 1. This gives rise to four inequivalent classes of
fusion categories TY (Z2 × Z2). If we let n = 2τ , the different choices lead to the following fusion categories

χ1 χc

n = 1 Rep(D4) Rep(H8)
n = −1 Rep(Q8) -

where the fourth category is omitted as it is not a representation category.

These TY (Z2 × Z2) categories have the following associators22

F q,p,pq
pqr,r,qr = F q,p,pq

m,m,m = F p,m,m
m,q,pq = Fm,p,m

pq,m,q = Fm,m,q
pq,p,m = 1; (3.214)

Fm,p,m
m,q,m = F p,m,m

q,m,m = χ(p, q); (3.215)

Fm,m,p
m,m,q = 1

2nχ(p, q). (3.216)

for p, q, r ∈ {1, a, b, c}. The reader should note that for all simple objects L in these categories, L = L, so
we will often omit the duals in computations.

Over the next several sections, we will discuss Frobenius algebras constructed in each of the fusion
categories Rep(D4), Rep(Q8), and Rep(H8). For the first two, we will compute F symbols (crossing kernels)
for more general intertwiner maps than described above. For Rep(H8), we will use only the F symbols above.

In this section we will focus on Rep(D4), where D4 can be presented as⟨︁
x, y|x4 = y2 = (xy)2 = 1

⟩︁
. (3.217)

In D4 there are five conjugacy classes, [1] = {1}, [x] = {x, x3}, [x2] = {x2}, [y] = {y, x2y}, and [xy] =
{xy, x3y}.

21For a 3D TFT approach to the Z2 × Z2 Tambara-Yamagami fusion category, see, e.g., [15, 56].
22For certain choices of associator maps. Later in this section we will compute F symbols (crossing kernels) for more general

intertwiners.
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3.2.2 Representation theory

The group D4 has five irreducible representations which we’ll label 1, a, b, c, and m, and character table

[1] [x2] [x] [y] [xy]
χ1 1 1 1 1 1
χa 1 1 1 −1 −1
χb 1 1 −1 1 −1
χc 1 1 −1 −1 1
χm 2 −2 0 0 0

From the character table we can determine the fusion rules as

a⊗ a ∼= b⊗ b ∼= c⊗ c ∼= 1, a⊗ b ∼= c, a⊗ c ∼= b, b⊗ c ∼= a,

a⊗m ∼= b⊗m ∼= c⊗m ∼= m, m⊗m ∼= 1⊕ a⊕ b⊕ c. (3.218)

The one-dimensional irreps 1, a, b, c are given explicitly by their characters as,

ρ1(x) = ρ1(y) = 1, ρa(x) = 1, ρa(y) = −1,

ρb(x) = −1, ρb(y) = 1, ρc(x) = −1, ρc(y) = −1, (3.219)

and the two-dimensional irrep m is given by

ρm(x) =

(︃
i 0
0 −i

)︃
, ρm(y) =

(︃
0 1
1 0

)︃
, (3.220)

3.2.3 Cosets

We have the following subgroups, and the corresponding coset representations:

• H = D4, D4/H = {H}, which transforms simply as the trivial irrep 1.

• H = ⟨x⟩ ∼= Z4, D4/H = {H, yH}. The corresponding representation has

ρ(x) =

(︃
1 0
0 1

)︃
, ρ(y) =

(︃
0 1
1 0

)︃
, (3.221)

and this decomposes into 1 + a.

• H = ⟨x2, y⟩ ∼= (Z2)
2, D4/H = {H,xH}. The representation is

ρ(x) =

(︃
0 1
1 0

)︃
, ρ(y) =

(︃
1 0
0 1

)︃
, (3.222)

corresponding to 1 + b.

• H = ⟨x2, xy⟩ ∼= (Z2)
2, D4/H = {H,xH}. The representation is

ρ(x) =

(︃
0 1
1 0

)︃
, ρ(y) =

(︃
0 1
1 0

)︃
, (3.223)

corresponding to 1 + c. Note that the two (Z2)
2 subgroups (and their cosets) are exchanged under an

outer automorphism of D4.
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• H = ⟨x2⟩ ∼= Z2, D4/H = {H,xH, yH, xyH}. We have

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , (3.224)

for 1 + a+ b+ c.

• H = ⟨y⟩ ∼= Z2, D4/H = {H,xH, x2H,x3H}.

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ , (3.225)

giving 1 + b+m.

• H = ⟨xy⟩ ∼= Z2, D4/H = {H,xH, x2H,x3H}.

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , (3.226)

resulting in 1 + c+m.

• H = ⟨x2y⟩ ∼= Z2, D4/H = {H,xH, x2H,x3H}.

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎠ , (3.227)

so 1 + b+m.

• H = ⟨x3y⟩ ∼= Z2, D4/H = {H,xH, x2H,x3H}.

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , (3.228)

resulting in 1 + c+m.

• Finally, H = {1}, D4/H ∼= D4 = {1, x, x2, x3, y, xy, x2y, x3y} corresponding to the regular representa-
tion 1 + a+ b+ c+ 2m.

The two cases corresponding to 1 + b + m are conjugate subgroups, as are the pair corresponding to
1 + c + m. Furthermore, an outer automorphism exchanges these two cases. So there are six physically
distinct options for D4: 1, 1 + a, 1 + b, 1 + a+ b+ c, 1 + b+m, and 1 + a+ b+ c+ 2m.

Next, we will compute associators, crossing kernels, and modular transformations, and compute modular-
invariant partition functions for each of the six options above.
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3.2.4 Computing the associator

In this section we will describe the computation of the associator and crossing kernels with general coefficients
in D4.

Taking basis vectors e, ea, eb, ec, and em1, em2 for 1, a, b, c, and m respectively (such that the irreps
take the form from the previous subsection), we parameterize the most general basis for fusion intertwiners.
In the expressions below, we omit the tensor product symbol ⊗ to make expressions more compact, and we
also omit trivial cases such as e⊗ ea ↦→ ea.

eaea ↦→ β1 e, (3.229)

eaeb ↦→ β2 ec, (3.230)

eaec ↦→ β3 eb, (3.231)

eaem1 ↦→ β4 em1, (3.232)

eaem2 ↦→ − β4 em2, (3.233)

ebea ↦→ β5 ec, (3.234)

ebeb ↦→ β6 e, (3.235)

ebec ↦→ β7 ea, (3.236)

ebem1 ↦→ β8 em2, (3.237)

ebem2 ↦→ β8 em1, (3.238)

ecea ↦→ β9 eb, (3.239)

eceb ↦→ β10 ea, (3.240)

ecec ↦→ β11 e, (3.241)

ecem1 ↦→ β12 em2, (3.242)

ecem2 ↦→ − β12 em1, (3.243)

em1ea ↦→ β13 em1, (3.244)

em1eb ↦→ β14 em2, (3.245)

em1ec ↦→ β15em2, (3.246)

em1em1 ↦→ β16 eb + β17 ec, (3.247)

em1em2 ↦→ β18 e+ β19 ea, (3.248)

em2ea ↦→ − β13 em2, (3.249)

em2eb ↦→ β14 em1, (3.250)

em2ec ↦→ − β15 em1, (3.251)

em2em1 ↦→ β18 e− β19 ea, (3.252)

em2em2 ↦→ β16 eb − β17 ec. (3.253)

This also gives rise to associated evaluation and coevaluation maps ϵR, ϵR, γR, and γR, and then to an
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associated basis for co-fusion homomorphisms which can be read off from

e ↦→ ee+ β−1
1 eaea + β−1

6 ebeb + β−1
11 ecec + β−1

18 (em1em2 + em2em1) , (3.254)

ea ↦→ eea + eae+ β3β
−1
11 ebec + β2β

−1
6 eceb + β4β

−1
18 (em1em2 − em2em1) , (3.255)

eb ↦→ eeb + ebe+ β7β
−1
11 eaec + β5β

−1
1 ecea + β8β

−1
18 (em1em1 + em2em2) , (3.256)

ec ↦→ eec + ece+ β10β
−1
6 eaeb + β9β

−1
1 ebea − β12β

−1
18 (em1em1 − em2em2) , (3.257)

em1 ↦→ eem1 + em1e+ β19β
−1
18 eaem1 + β13β

−1
1 em1ea

+ β16β
−1
18 ebem2 + β14β

−1
6 em2eb + β17β

−1
18 ecem2 + β15β

−1
11 em2ec, (3.258)

em2 ↦→ eem2 + em2e− β19β
−1
18 eaem2 − β13β

−1
1 em2ea

+ β16β
−1
18 ebem1 + β14β

−1
6 em1eb − β17β

−1
18 ecem1 − β15β

−1
11 em1ec. (3.259)

Now we compute the crossing kernels.

(eaea) ea = β1eea = β1 ea, ea (eaea) = β1 eae = β1 ea, ⇒ K̃
a,a

a,a(1, 1) = 1, (3.260)

(eaea) eb = β1 eeb = β1 eb, ea (eaeb) = β2 eaec = β2β3 eb, ⇒ K̃
a,b

a,b(1, c) =
β1

β2β3
, (3.261)

(eaea) ec = β1 eec = β1 ec, ea (eaec) = β3 eaeb = β2β3 ec, ⇒ K̃
a,c

a,c(1, b) =
β1

β2β3
, (3.262)

(eaea) em1 = β1 eem1 = β1 em1, ea (eaem1) = β4eaem1 = β2
4 em1, ⇒ K̃

a,m

a,m(1,m) =
β1

β2
4

, (3.263)

(eaeb) ea = β2 ecea = β2β9 eb, ea (ebea) = β5 eaec = β3β5 eb, ⇒ K̃
a,b

b,a(c, c) =
β2β9

β3β5
, (3.264)

(eaeb) eb = β2 eceb = β2β10 ea, ea (ebeb) = β6 eae = β6ea, ⇒ K̃
a,a

b,b (c, 1) =
β2β10

β6
, (3.265)

(eaeb) ec = β2 ecec = β2β11 e, ea (ebec) = β7 eaea = β1β7 e, ⇒ K̃
a,1

b,c (c, a) =
β2β11

β1β7
,

(3.266)

(eaeb) em1 = β2 ecem1 = β2β12 em2, ea (ebem1) = β8 eaem2 = −β4β8 em2, ⇒ K̃
a,m

b,m (c,m) = −β2β12

β4β8
,

(3.267)

(eaec) ea = β3 ebea = β3β5 ec, ea (ecea) = β9 eaeb = β2β9 ec, ⇒ K̃
a,c

c,a(b, b) =
β3β5

β2β9
, (3.268)

(eaec) eb = β3 ebeb = β3β6 e, ea (eceb) = β10 eaea = β1β10 e, ⇒ K̃
a,1

c,b (b, a) =
β3β6

β1β10
, (3.269)

(eaec) ec = β3 ebec = β3β7 ea, ea (ecec) = β11 eae = β11 ea, ⇒ K̃
a,a

c,c (b, 1) =
β3β7

β11
, (3.270)
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(eaec) em1 = β3 ebem1 = β3β8 em2, ea (ecem1) = β12 eaem2 = −β4β12 em2, ⇒ K̃
a,m

c,m (b,m) = − β3β8

β4β12
,

(3.271)

(eaem1) ea = β4 em1ea = β4β13em1, ea (em1ea) = β13 eaem1 = β4β13em1, ⇒ K̃
a,m

m,a(m,m) = 1,

(3.272)

(eaem1) eb = β4 em1eb = β4β14 em2, ea (em1eb) = β14 eaem2 = −β4β14 em2, ⇒ K̃
a,m

m,b (m,m) = −1,
(3.273)

(eaem1) ec = β4 em1ec = β4β15 em2, ea (em1ec) = β15 eaem2 = −β4β15 em2, ⇒ K̃
a,m

m,c (m,m) = −1,
(3.274)

(eaem1) em1 = β4 em1em1 = β4β16 eb + β4β17 ec, ea (em1em1) = β16eaeb + β17 eaec = β3β17 eb + β2β16 ec,

⇒ K̃
a,b

m,m(m, c) =
β4β16

β3β17
, K̃

a,c

m,m(m, b) =
β4β17

β2β16
,

(eaem1) em2 = β4 em1em2 = β4β18 e+ β4β19 ea, ea (em1em2) = β18 eae+ β19 eaea = β1β19 e+ β18 ea,

⇒ K̃
a,1

m,m(m, a) =
β4β18

β1β19
, K̃

a,a

m,m(m, 1) =
β4β19

β18
,

(ebea) ea = β5 ecea = β5β9 eb, eb (eaea) = β1 ebe = β1 eb, ⇒ K̃
b,b

a,a(c, 1) =
β5β9

β1
, (3.275)

(ebea) eb = β5 eceb = β5β10 ea, eb (eaeb) = β2 ebec = β2β7 ea, ⇒ K̃
b,a

a,b(c, c) =
β5β10

β2β7
, (3.276)

(ebea) ec = β5 ecec = β5β11 e, eb (eaec) = β3 ebeb = β3β6 e, ⇒ K̃
b,1

a,c(c, b) =
β5β11

β3β6
, (3.277)

(ebea) em1 = β5 ecem1 = β5β12 em2, eb (eaem1) = β4 ebem1 = β4β8 em2, ⇒ K̃
b,m

a,y (c, y) =
β5β12

β4β8
, (3.278)

(ebeb) ea = β6 eea = β6 ea, eb (ebea) = β5 ebec = β5β7 ea, ⇒ K̃
b,a

b,a(1, c) =
β6

β5β7
, (3.279)

(ebeb) eb = β6 eeb = β6 eb, eb (ebeb) = β6 ebe = β6 eb, ⇒ K̃
b,b

b,b(1, 1) = 1, (3.280)

(ebeb) ec = β6 eec = β6 ec, eb (ebec) = β7 ebea = β5β7 ec, ⇒ K̃
b,c

b,c(1, a) =
β6

β5β7
, (3.281)

(ebeb) em1 = β6 eem1 = β6 em1, eb (ebem1) = β8 ebem2 = β2
8 em1, ⇒ K̃

b,m

b,m(1,m) =
β6

β2
8

, (3.282)

(ebec) ea = β7 eaea = β1β7 e, eb (ecea) = β9 ebeb = β6β9 e, ⇒ K̃
b,1

c,a(a, b) =
β1β7

β6β9
, (3.283)

(ebec) eb = β7 eaeb = β2β7 ec, eb (eceb) = β10 ebea = β5β10 ec, ⇒ K̃
b,c

c,b(a, a) =
β2β7

β5β10
,

(3.284)

(ebec) em1 = β7 eaem1 = β4β7 em1, eb (ecem1) = β12 ebem2 = β8β12 em1, ⇒ K̃
b,m

c,m(a,m) =
β4β7

β8β12
,

(3.285)

(ebem1) ea = β8 em2ea = −β8β13em2, eb (em1ea) = β13 ebem1 = β8β13 em2, ⇒ K̃
b,m

m,a(m,m) = −1,
(3.286)
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(ebem1) eb = β8 em2eb = β8β14 em1, eb (em1eb) = β14 ebem2 = β8β14 em1, ⇒ K̃
b,m

m,b(m,m) = 1, (3.287)

(ebem1) ec = β8 em2ec = −β8β15 em1, eb (em1ec) = β15 ebem2 = β8β15em1, ⇒ K̃
b,m

m,c(m,m) = −1, (3.288)

(ebem1) em1 = β8 em2em1 = β8β18 e− β8β19 ea, eb (em1em1) = β16 ebeb + β17 ebec = β6β16 e+ β9β17 ea,

⇒ K̃
b,1

m,m(m, b) =
β8β18

β6β16
, K̃

b,a

m,m(m, c) = −β8β19

β9β17
,

(ebem1) em2 = β8 em2em2 = β8β16 eb − β8β17 ec, eb (em1em2) = β18 ebe+ β19 ebea = β18 b+ β5β19 c,

⇒ K̃
b,b

m,m(m, 1) =
β18

β8β16
, K̃

b,c

m,m(m, a) = −β8β17

β5β19
,

(ecea) ea = β9 ebea = β5β9 ec, ec (eaea) = β1 ece = β1 ec, ⇒ K̃
c,c

a,a(b, 1) =
β5β9

β1
, (3.289)

(ecea) eb = β9 ebeb = β6β9 e, ec (eaeb) = β2 ecec = β2β11 e, ⇒ K̃
c,1

a,b(b, c) =
β6β9

β2β11
, (3.290)

(ecea) ec = β9 ebec = β7β9 ea, ec (eaec) = β3 eceb = β3β10 ea, ⇒ K̃
c,a

a,c(b, b) =
β7β9

β3β10
, (3.291)

(ecea) em1 = β9 ebem1 = β8β9 em2, ec (eaem1) = β4 ecem1 = β4β12 em2, ⇒ K̃
c,m

a,m(b,m) =
β8β9

β4β12
, (3.292)

(eceb) ea = β10 eaea = β1β10 e, ec (ebea) = β5 ecec = β5β11 e, ⇒ K̃
c,1

b,a(a, c) =
β1β10

β5β11
, (3.293)

(eceb) eb = β10 eaeb = β2β10 ec, ec (ebeb) = β6 ece = β6 ec, ⇒ K̃
c,c

b,b(a, 1) =
β2β10

β6
, (3.294)

(eceb) ec = β10 eaec = β3β10 eb, ec (ebec) = β7 ecea = β7β9 eb, ⇒ K̃
c,b

b,c(a, a) =
β3β10

β7β9
,

(3.295)

(eceb) em1 = β10 eaem1 = β4β10 em1 ec (ebem1) = β8 ecem2 = −β8β12 em1, ⇒ K̃
c,m

b,m(a,m) = −β4β10

β8β12
,

(3.296)

(ecec) ea = β11 eea = β11 ea, ec (ecea) = β9 eceb = β9β10 ea, ⇒ K̃
c,a

c,a(1, b) =
β11

β9β10
,

(3.297)

(ecec) eb = β11 eeb = β11 eb, ec (eceb) = β10 ecea = β9β10 eb, ⇒ K̃
c,b

c,b(1, a) =
β11

β9β10
, (3.298)

(ecec) ec = β11 eec = β11 c, ec (ecec) = β11 ece = β11 ec, ⇒ K̃
c,c

c,c(1, 1) = 1, (3.299)

(ecec) em1 = β11 eem1 = β11 em1, ec (ecem1) = β12ecem2 = −β2
12 em1, ⇒ K̃

c,m

c,m(1,m) = −β11

β2
12

, (3.300)
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(ecem1) ea = β12 em2ea = −β12β13 em2, ec (em1ea) = β13 ecem1 = β12β13em2, ⇒ K̃
c,m

m,a(m,m) = −1,
(3.301)

(ecem1) eb = β12em2 eb = β12β14 em1, ec (em1eb)) = β14 ecem2 = −β12β14 em1, ⇒ K̃
c,m

m,b(m,m) = −1,
(3.302)

(ecem1) ec = β12em2ec = −β12β15 em1, ec (em1ec) = β15ecem2 = −β12β15em1, ⇒ K̃
c,m

m,c(m,m) = 1,

(3.303)

(ecem1) em1 = β12 em2em1 = β12β18 e−β12β19 ea, ec (em1em1) = β16 eceb+β17 ecec = β11β17 e+β10β16 ea,

⇒ K̃
c,1

m,m(m, c) =
β12β18

β11β17
, K̃

c,a

m,m(m, b) = −β12β19

β10β16
,

(ecem1) em2 = β12 em2em2 = β12β16 eb − β12β17 ec, ec (em1em2) = β18 ece+ β19 ecea = β9β19 eb + β18 ec,

⇒ K̃
c,b

m,m(m, a) =
β12β16

β9β19
, K̃

c,c

m,m(m, 1) = −β12β17

β18
,

(em1ea) ea = β13 em1ea = β2
13 em1, em1 (eaea) = β1 em1e = β1 em1, ⇒ K̃

m,m

a,a (m, 1) =
β2
13

β1
,

(3.304)

(em1ea) eb = β13 em1eb = β13β14 em2, em1 (eaeb) = β2 em1ec = β2β15 em2, ⇒ K̃
m,m

a,b (m, c) =
β13β14

β2β15
,

(3.305)

(em1ea) ec = β13 em1ec = β13β15 em2, em1 (eaec) = β3 em1eb = β3β14 em2, ⇒ K̃
m,m

a,c (m, b) =
β13β15

β3β14
,

(3.306)

(em1ea) em1 = β13 em1em1 = β13β16 eb + β13β17 ec, em1 (eaem1) = β4 em1em1 = β4β16 eb + β4β17 ec,

⇒ K̃
m,b

a,m(m,m) =
β13

β4
, K̃

m,c

a,m(m,m) =
β13

β4
,

(em1ea) em2 = β13 em1em2 = β13β18 e+ β13β19 ea, em1 (eaem2) = −β4 em1em2 = −β4β18 e− β4β19 ea,

⇒ K̃
m,1

a,m(m,m) = −β13

β4
, K̃

m,a

a,m(m,m) = −β13

β4
,

(em1eb) ea = β14em2ea = −β13β14em2, em1 (ebea) = β5 em1ec = β5β15 em2, ⇒ K̃
m,m

b,a (m, c) = −β13β14

β5β15
,

(3.307)

(em1eb) eb = β14em2eb = β2
14 em1, em1 (ebeb) = β6 em1e = β6 em1, ⇒ K̃

m,m

b,b (m, 1) =
β2
14

β6
,

(3.308)

(em1eb) ec = β14 em2ec = −β14β15 em1, em1 (ebec) = β7 em1ea = β7β13 em1, ⇒ K̃
m,m

b,c (m, a) = −β14β15

β7β13
,

(3.309)
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(em1eb) em1 = β14 em2em1 = β14β18 e− β14β19 ea, em1 (ebem1) = β8 em1em2 = β8β18 e+ β8β19 ea,

⇒ K̃
m,1

b,m(m,m) =
β14

β8
, K̃

m,a

b,m (m,m) = −β14

β8
,

(em1eb) em2 = β14 , em2em2 = β14β16 eb − β14β17 ec, em1 (ebem2) = β8em1em1 = β8β16 eb + β8β17 ec,

⇒ K̃
m,b

b,m(m,m) =
β14

β8
, K̃

m,c

b,m(m,m) = −β14

β8
,

(em1ec) ea = β15 em2ea = −β13β15 em2, em1 (ecea) = β9 em1eb = β9β14 em2, ⇒ K̃
m,m

c,a (m, b) = −β13β15

β9β14
,

(3.310)

(em1ec) eb = β15 em2eb = β14β15 em1, em1 (eceb) = β10 em1ea = β10β13 em1, ⇒ K̃
m,m

c,b (m, a) =
β14β15

β10β13
,

(3.311)

(em1ec) ec = β15 em2ec = −β2
15em1, em1 (ecec) = β11 em1e = β11 em1, ⇒ K̃

m,m

c,c (m, 1) = −β2
15

β11
,

(3.312)

(em1ec) em1 = β15 em2em1 = β15β18 e− β15β19 ea, em1 (ecem1) = β12 em1em2 = β12β18 e+ β12β19 ea,

⇒ K̃
m,1

c,m(m,m) =
β15

β12
, K̃

m,a

c,m (m,m) = −β15

β12
,

(em1ec) em2 = β15 em2em2 = β15β16 eb−β15β17 ec, em1 (ecem2) = −β12 em1em1 = −β12β16 eb−β12β17 ec,

⇒ K̃
m,b

c,m(m,m) = −β15

β12
, K̃

m,c

c,m(m,m) =
β15

β12
,

(em1em1) ea = β16 ebea+β17 ecea = β9β17 eb+β5β16 ec, em1 (em1ea) = β13 em1em1 = β13β16 eb+β13β17 ec,

⇒ K̃
m,b

m,a(c,m) =
β9β17

β13β16
, K̃

m,c

m,a(b,m) =
β5β16

β13β17
,

(em1em1) eb = β16 ebeb+β17 eceb = β6β16 e+β10β17 ea, em1 (em1eb) = β14 em1em2 = β14β18 e+β14β19 ea,

⇒ K̃
m,1

m,b(b,m) =
β6β16

β14β18
, K̃

m,a

m,b (c,m) =
β10β17

β14β19
,

(em1em1) ec = β16 ebec+β17 ecec = β11β17 e+β7β16 ea, em1 (em1ec) = β15 em1em2 = β15β18 e+β15β19 ea,

⇒ K̃
m,1

m,c(c,m) =
β11β17

β15β18
, K̃

m,a

m,c (b,m) =
β7β16

β15β19
,

(em1em2) ea = β18 eea+β19 eaea = β1β19 e+β18 ea, em1 (em2ea) = −β13 em1em2 = −β13β18 e−β13β19 ea,

⇒ K̃
m,1

m,a(a,m) = − β1β19

β13β18
, K̃

m,a

m,a(1,m) = − β18

β13β19
,

63



(em1em2) eb = β18 eeb + β19 eaeb = β18 eb + β2β19 ec, em1 (em2eb) = β14 em1em1 = β14β16 eb + β14β17 ec,

⇒ K̃
m,b

m,b(1,m) =
β18

β14β16
, K̃

m,c

m,b(a,m) =
β2β19

β14β17
,

(em1em2) ec = β18 eec+β19 eaec = β3β19 eb+β18 ec, em1 (em2ec) = −β15 em1em1 = −β15β16eb−β15β17ec,

⇒ K̃
m,b

m,c(a,m) = − β3β19

β15β16
, K̃

m,c

m,c(1,m) = − β18

β15β17
,

(em1em1) em1 = β16 ebem1 + β17 ecem1 = (β8β16 + β12β17) em2, (3.313)

em1 (em1em1) = β16 em1eb + β17 em1ec = (β14β16 + β15β17) em2,

(em1em1) em2 = β16 ebem2 + β17 ecem2 = (β8β16 − β12β17) em1, (3.314)

em1 (em1em2) = β18 em1e+ β19 em1ea = (β18 + β13β19) em1,

(em1em2) em1 = β18 eem1 + β19 eaem1 = (β18 + β4β19) em1, (3.315)

em1 (em2em1) = β18 em1e− β19 em1ea = (β18 − β13β19) em1,

(em1em2) em2 = β18 eem2 + β19 eaem2 = (β18 − β4β19) em2, (3.316)

em1 (em2em2) = β16 em1eb − β17 em1ec = (β14β16 − β15β17) em2,⎛⎜⎜⎜⎝
K̃

m,m

m,m(1, 1) K̃
m,m

m,m(1, a) K̃
m,m

m,m(1, b) K̃
m,m

m,m(1, c)

K̃
m,m

m,m(a, 1) K̃
m,m

m,m(a, a) K̃
m,m

m,m(a, b) K̃
m,m

m,m(a, c)

K̃
m,m

m,m(b, 1) K̃
m,m

m,m(b, a) K̃
m,m

m,m(b, b) K̃
m,m

m,m(b, c)

K̃
m,m

m,m(c, 1) K̃
m,m

m,m(c, a) K̃
m,m

m,m(c, b) K̃
m,m

m,m(c, c)

⎞⎟⎟⎟⎠ =
1

2

⎛⎜⎜⎜⎝
1 − β18

β13β19

β18

β14β16
− β18

β15β17
β4β19

β18
− β4

β13
− β4β19

β14β16

β4β19

β15β17
β8β16

β18

β8β16

β13β19

β8

β14

β8β16

β15β17

−β12β17

β18
−β12β17

β13β19

β12β17

β14β16

β12

β15

⎞⎟⎟⎟⎠ .

(3.317)

3.2.5 Modular transformations

For D4, equations (2.28) and (2.29) give us (here µ represents any of the irreps)

Zm
1,m(τ + 1) = Zm

1,m(τ), (3.318)

Zm
m,1(τ + 1) = Z1

m,m(τ), (3.319)

Z1
a,a(τ + 1) = Za

a,1(τ), (3.320)
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Zc
a,b(τ + 1) =

β2β9

β3β5
Zb
a,c(τ), (3.321)

Zb
a,c(τ + 1) =

β3β5

β2β9
Zc
a,b(τ), (3.322)

Zm
a,m(τ + 1) = Zm

a,m(τ), (3.323)

Zc
b,a(τ + 1) =

β5β10

β2β7
Za
b,c(τ), (3.324)

Z1
b,b(τ + 1) = Zb

b,1(τ), (3.325)

Za
b,c(τ + 1) =

β2β7

β5β10
Zc
b,a(τ), (3.326)

Zm
b,m(τ + 1) = Zm

b,m(τ), (3.327)

Zb
c,a(τ + 1) =

β7β9

β3β10
Za
c,b(τ), (3.328)

Za
c,b(τ + 1) =

β3β10

β7β9
Zb
c,a(τ), (3.329)

Z1
c,c(τ + 1) = Zc

c,1(τ), (3.330)

Zm
c,m(τ + 1) = Zm

c,m(τ), (3.331)

Zm
m,a(τ + 1) = − β13

β4
Za
m,m(τ), (3.332)

Zm
m,b(τ + 1) =

β14

β8
Zb
m,m(τ), (3.333)

Zm
m,c(τ + 1) =

β15

β12
Zc
m,m(τ), (3.334)

Z1
m,m(τ + 1) =

1

2

(︃
Zm
m,1(τ)−

β18

β13β19
Zm
m,a(τ) +

β18

β14β16
Zm
m,b(τ)−

β18

β15β17
Zm
m,c(τ)

)︃
, (3.335)

Za
m,m(τ + 1) =

1

2

(︃
β4β19

β18
Zm
m,1(τ)−

β4

β13
Zm
m,a(τ)−

β4β19

β14β16
Zm
m,b(τ) +

β4β19

β15β17
Zm
m,c(τ)

)︃
, (3.336)

Zb
m,m(τ + 1) =

1

2

(︃
β8β16

β18
Zm
m,1(τ) +

β8β16

β13β19
Zm
m,a(τ) +

β8

β14
Zm
m,b(τ) +

β8β16

β15β17
Zm
m,c(τ)

)︃
, (3.337)

Zc
m,m(τ + 1) =

1

2

(︃
−β12β17

β18
Zm
m,1(τ)−

β12β17

β13β19
Zm
m,a(τ) +

β12β17

β14β16
Zm
m,b(τ) +

β12

β15
Zm
m,c(τ)

)︃
, (3.338)

Zm
1,m(−1/τ) = Zm

m,1(τ), (3.339)

Zm
m,1(−1/τ) = Zm

1,m(τ), (3.340)

Z1
a,a(−1/τ) = Z1

a,a(τ), (3.341)
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Zc
a,b(−1/τ) =

β2β6β9

β1β5β10
Zc
b,a(τ), (3.342)

Zb
a,c(−1/τ) =

β3β5β11

β1β7β9
Zb
c,a(τ), (3.343)

Zm
a,m(−1/τ) = β4β18

β1β19
Zm
m,a(τ), (3.344)

Zc
b,a(−1/τ) =

β1β5β10

β2β6β9
Zc
a,b(τ), (3.345)

Z1
b,b(−1/τ) = Z1

b,b(τ), (3.346)

Za
b,c(−1/τ) =

β2β7β11

β3β6β10
Za
c,b(τ), (3.347)

Zm
b,m(−1/τ) = β8β18

β6β16
Zm
m,b(τ), (3.348)

Zb
c,a(−1/τ) =

β1β7β9

β3β5β11
Zb
a,c(τ), (3.349)

Za
c,b(−1/τ) =

β3β6β10

β2β7β11
Za
b,c(τ), (3.350)

Z1
c,c(−1/τ) = Z1

c,c(τ), (3.351)

Zm
c,m(−1/τ) = β12β18

β11β17
Zm
m,c(τ), (3.352)

Zm
m,a(−1/τ) =

β1β19

β4β18
Zm
a,m(τ), (3.353)

Zm
m,b(−1/τ) =

β6β16

β8β18
Zm
b,m(τ), (3.354)

Zm
m,c(−1/τ) =

β11β17

β12β18
Zm
c,m(τ), (3.355)

Z1
m,m(−1/τ) = 1

2

(︃
Z1
m,m(τ) +

β18

β4β19
Za
m,m(τ) +

β18

β8β16
Zb
m,m(τ)− β18

β12β17
Zc
m,m(τ)

)︃
, (3.356)

Za
m,m(−1/τ) = 1

2

(︃
β4β19

β18
Z1
m,m(τ) + Za

m,m(τ)− β4β19

β8β16
Zb
m,m(τ) +

β4β19

β12β17
Zc
m,m(τ)

)︃
, (3.357)

Zb
m,m(−1/τ) = 1

2

(︃
β8β16

β18
Z1
m,m(τ)− β8β16

β4β19
Za
m,m(τ) + Zb

m,m(τ) +
β8β16

β12β17
Zc
m,m(τ)

)︃
, (3.358)

Zc
m,m(−1/τ) = 1

2

(︃
−β12β17

β18
Z1
m,m(τ) +

β12β17

β4β19
Za
m,m(τ) +

β12β17

β8β16
Zb
m,m(τ) + Zc

m,m(τ)

)︃
, (3.359)
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We find that the following combinations of partial traces are modular invariant:

Z1
1,1, (3.360)

Za
1,a + Za

a,1 + Z1
a,a, (3.361)

Zb
1,b + Zb

b,1 + Z1
b,b, (3.362)

Zc
1,c + Zc

c,1 + Z1
c,c, (3.363)

Zc
a,b +

β2β9

β3β5
Zb
a,c +

β2β6β9

β1β5β10
Zc
b,a +

β6β9

β1β7
Za
b,c +

β2β11

β1β7
Zb
c,a +

β2β9β11

β1β3β10
Za
c,b, (3.364)

Zm
1,m −

β1

β4β13
Zm
a,m + Zm

m,1 −
β18

β13β19
Zm
m,a + Z1

m,m +
β18

β4β19
Za
m,m, (3.365)

Zm
1,m +

β6

β8β14
Zm
b,m + Zm

m,1 +
β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m, (3.366)

Zm
1,m −

β11

β12β15
Zm
c,m + Zm

m,1 −
β18

β15β17
Zm
m,c + Z1

m,m −
β18

β12β17
Zc
m,m. (3.367)

In the next several subsections, we will compute genus-one partition functions from our general for-
mula (2.91), corresponding to each of the physically-different cosets, and we will see explicitly that the re-
sulting partition functions are linear combinations of the modular-invariant combinations above, and hence
are modular-invariant.

3.2.6 H = Z4: 1 + a orbifold

We pick the Frobenius subalgebra 1 + a, corresponding to H = Z4. From the coset D4/H = {H, yH},
following the general analysis in section 2.5, we define

e1 = vH + vyH , (3.368)

ea = vH − vyH , (3.369)

for e1 the basis element of 1 and ea the basis element of a. Note that e1 and ea are both invariant under
the group action of x. Moreover, only e1 is invariant under the group action of y, while ea is an eigenvector
with eigenvalue −1.

As in the Rep(S3) case, we compute the action of the product and co-product on these basis vectors. As
usual, the multiplications involving e1 are trivial, so we have

µ1
1,1 = µa

1,a = µa
a,1 = 1, (3.370)

while
µ∗(ea ⊗ ea) = vH + vyH = e1 = β−1

1 λ1
a,a(eaea) ⇒ µ1

a,a = β−1
1 , (3.371)

where the coefficient is obtained by comparing the multiplication above with our basis fusion homomorphism
which sends ea ⊗ ea ↦→ β1e.

Similarly we have co-products

∆F (e1) = vHvH + vyHvyH =
1

2
(e1e1 + eaea) , (3.372)

∆F (ea) = vHvH − vyHvyH =
1

2
(e1ea + eae1) , (3.373)
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so

∆1,1
1 = ∆1,a

a = ∆a,1
a =

1

2
, ∆a,a

1 =
1

2
β1. (3.374)

Then including each partial trace ZR3

R1,R2
with a coefficient µR3

R1,R2
∆R2,R1

R3
, we find the partition function

Z1+a = µ1
1,1∆

1,1
1 Z1

1,1 + µa
1,a∆

a,1
a Za

1,a + µa
a,1∆

1,a
a Za

a,1 + µ1
a,a∆

a,a
1 Z1

a,a, (3.375)

=
1

2

(︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a

)︁
, (3.376)

which is a linear combination of two of the modular-invariant combinations given in section 3.2.5, demon-
strating that the expression above is modular-invariant.

Note that a ⊗ a = 1, i.e. a corresponds to a Z2 line defect. The above partition function is thus for
a Z2 orbifold from gauging the Z2 subalgebra generated by {1, a} ⊂ Rep(D4). The resulting Z2 quantum
symmetry is given by the quotient group D4/Z4

∼= Z2.

3.2.7 H = Z2 × Z2: 1 + b orbifold

Consider the Frobenius subalgebra 1 + b. From the coset D4/H = {H,xH}, we define basis vectors as:

e1 = vH + vxH , (3.377)

eb = vH − vxH . (3.378)

It is straightforward to check that the (co)product computation is exactly the as that of the 1 + a orbifold.
For completeness, we sketch the details here. First, using

µ(e1 ⊗ v) = µ(v ⊗ e1) = v, µ(eb ⊗ eb) = e1, (3.379)

and

∆(e1) =
1

2
(e1e1 + ebeb) , (3.380)

∆(eb) =
1

2
(e1eb + ebe1) , (3.381)

and comparing with our established basis, we obtain

µ1
1,1 = µb

1,b = µb
b,1 = 1, µ1

b,b = β−1
6 , (3.382)

∆1,1
1 = ∆1,b

b = ∆b,1
b =

1

2
, ∆b,b

1 =
1

2
β6. (3.383)

The partition function is then

Z1+b =
∑︂
i,j,k

µk
i,j∆

j,i
k Zk

i,j =
1

2

(︁
Z1
1,1 + Zb

1,b + Zb
b,1 + Z1

b,b

)︁
, (3.384)

which is a linear combination of modular-invariant expressions, hence itself modular invariant. It is again a
Z2 orbifold theory as a result of gauging the Z2 subalgebra generated by {1, b} ⊂ Rep(D4). The resulting
quantum symmetry is again Z2, but this time given by a different quotient D4/(Z2 × Z2) ∼= Z2.
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3.2.8 H = Z2 normal: 1 + a+ b+ c orbifold

Consider the Frobenius subalgebra A = 1+ a+ b+ c. From the coset D4/H = {H,xH, yH, xyH}, we define
basis vectors as

e1 = vH + vxH + vyH + vxyH ,

ea = vH + vxH − vyH − vxyH ,

eb = vH − vxH + vyH − vxyH ,

ec = vH − vxH − vyH + vxyH .

(3.385)

The multiplication is

µ∗ (e1 ⊗ e1) = µ∗ (ea ⊗ ea) = µ∗ (eb ⊗ eb) = µ∗ (ec ⊗ ec) = e1,

µ∗ (e1 ⊗ ea) = µ∗ (ea ⊗ e1) = ea, µ∗ (e1eb) = µ∗ (eb ⊗ e1) = eb,

µ∗ (e1 ⊗ ec) = µ∗ (ec ⊗ e1) = ec, µ∗ (ea ⊗ eb) = µ∗ (eb ⊗ ea) = ec,

µ∗ (ea ⊗ ec) = µ∗ (ec ⊗ ea) = eb, µ∗ (eb ⊗ ec) = µ∗ (ec ⊗ eb) = ea,

(3.386)

while the comultiplication reads

∆F (e1) =
1

4
(e1 ⊗ e1 + ea ⊗ ea + eb ⊗ eb + ec ⊗ ec) ,

∆F (ea) =
1

4
(e1 ⊗ ea + ea ⊗ e1 + eb ⊗ ec + ec ⊗ eb) ,

∆F (eb) =
1

4
(e1 ⊗ eb + eb ⊗ e1 + ea ⊗ ec + ec ⊗ ea) ,

∆F (ec) =
1

4
(e1 ⊗ ec + ec ⊗ e1 + ea ⊗ eb + eb ⊗ ea) ,

(3.387)

which was derived using the fact that ∆F is diagonal on the v basis.

Combining coefficients in the (co)multiplication and the those in the intertwiner yields the components

µ1
1,1 = 1, µ1

a,a = β−1
1 , µc

a,b = β−1
2 , µb

a,c = β−1
3 , (3.388)

µc
b,a = β−1

5 , µ1
b,b = β−1

6 , µa
b,c = β−1

7 , (3.389)

µb
c,a = β−1

9 , µa
c,b = β−1

10 , µ1
c,c = β−1

11 , (3.390)

∆1,1
1 =

1

4
, ∆a,a

1 =
β1

4
, ∆a,b

c =
β6

4β10
, ∆a,c

b =
β11

4β7
, (3.391)

∆b,a
c =

β1

4β9
, ∆b,b

1 =
β6

4
, ∆b,c

a =
β11

4β3
, (3.392)

∆c,a
b =

β1

4β5
, ∆c,b

a =
β6

4β2
, ∆c,c

1 =
β11

4
. (3.393)

Plugging into the general formula (2.91) for one-loop partition functions, we find

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a +
β1

β2β9
Zc
a,b +

β1

β3β5
Zb
a,c

+Zb
b,1 +

β6

β5β10
Zc
b,a + Z1

b,b +
β6

β2β7
Za
b,c + Zc

c,1 +
β11

β7β9
Zb
c,a +

β11

β3β10
Za
c,b + Z1

c,c

]︃
. (3.394)
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This is a Z2×Z2 orbifold theory, the result of gauging the Z2×Z2 subalgebra generated by {1, a, b, c} ⊂
Rep(D4). The resulting quantum symmetry corresponds to the coset D4/Z2

∼= Z2 × Z2.

In passing, the reader might ask, since this is essentially the same as a Z2 × Z2 orbifold, why factors of
β appear here. Technically, this is because the associator in Z2 × Z2 is a pullback from the associator of
Rep(D4), and although this will be anomaly-free, in the language of group cocycles, this formally corresponds
to a trivial element of H3(Z2 ×Z2, U(1)) that is represented by a cocycle that is cohomologically trivial but
not identically 1. This will also arise in other examples.

It will be useful to write the partition function (3.394) in the form

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a + Zb
b,1 + Z1

b,b + Zc
c,1 + Z1

c,c (3.395)

+
β1

β2β9

(︃
Zc
a,b +

β2β9

β3β5
Zb
a,c +

β2β6β9

β1β5β10
Zc
b,a +

β6β9

β1β7
Za
b,c +

β2β11

β1β7
Zb
c,a +

β2β9β11

β1β3β10
Za
c,b

)︃]︃
.

In this expression, the first and second lines are separately modular-invariant, as can be seen from our results
earlier in section 3.2.5.

One implication is that the partition function (3.394) is modular-invariant. A second implication is that,
at least naively, we can construct a second modular-invariant partition function, through an analogue of
discrete torsion. Let ω(g, h) be cocycles representing the nontrivial element of H2(Z2 ×Z2, U(1)) = Z2, and
define

ϵ(g, h) =
ω(g, h)

ω(h, g)
. (3.396)

In an ordinary Z2 × Z2 orbifold, the phases ϵ(g, h) are the discrete torsion phase factors multiplying Zg,h.
Now, it can be shown that

ϵ(g, h) =

{︃
−1 g ̸= h, g ̸= 1, and h ̸= 1,
+1 g = h or g = 1 or h = 1.

(3.397)

With this in mind, we can define a new, explicitly modular-invariant partition function, given by

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a + Zb
b,1 + Z1

b,b + Zc
c,1 + Z1

c,c (3.398)

− β1

β2β9

(︃
Zc
a,b +

β2β9

β3β5
Zb
a,c +

β2β6β9

β1β5β10
Zc
b,a +

β6β9

β1β7
Za
b,c +

β2β11

β1β7
Zb
c,a +

β2β9β11

β1β3β10
Za
c,b

)︃]︃
.

This expression is nearly the same as the previous partition function, except that the second line of terms
are subtracted, rather than added. Because each line is separately modular-invariant, this expression is
manifestly modular-invariant. For suitable intertwiners, this reduces precisely to the partition function of a
Z2 × Z2 orbifold with discrete torsion.

Naively, one would expect that the minus sign on the second line (arising from discrete torsion) could
be absorbed into the intertwiners. However, physics is a bit more subtle: the definition of the partial traces
Zk
i,j depends upon the intertwiners, so changing the intertwiners also changes the partial traces. Later in

section 4.2 we will discuss a close analogue of this choice in a Rep(H8) gauging. In that section, we will give
explicit expressions for the partial traces, and we will see explicitly that the two choices of discrete torsion,
the two choices of sign, are physically distinct. We will see analogous examples in other sections.

This example gives an initial demonstration that there exists some analogue of discrete torsion when
gauging noninvertible symmetries. We leave a first-principles understanding for future work. Furthermore,
as previously discussed, we have not attempted to check e.g. multiloop factorization in such noninvertible
analogues of discrete torsion, hence it is possible that some choices may not be physically sensible. We leave
this also for future work.
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3.2.9 H = Z2 non-normal: 1 + b+m orbifold

Now, we consider the Frobenius subalgebra A = 1+ b+m. From the coset D4/H = {H,xH, x2H,x3H}, we
define the basis vectors as

e1 = vH + vxH + vx2H + vx3H , (3.399)

eb = vH − vxH + vx2H − vx3H . (3.400)

em1 = vH − ivxH − vx2H + ivx3H , (3.401)

em2 = vH + ivxH − vx2H − ivx3H . (3.402)

The non-trivial multiplications are

µ(ebeb) = e1, µ(ebem1) = em2, µ(ebem2) = em1, µ(em1em1) = eb, µ(em1em2) = e1, µ(em2em2) = eb,
(3.403)

while the comultiplication reads

∆F (e1) =
1

4
(e1 ⊗ e1 + eb ⊗ eb + em1 ⊗ em2 + em2 ⊗ em1) , (3.404)

∆F (eb) =
1

4
(e1 ⊗ eb + eb ⊗ e1 + em1 ⊗ em1 + em2 ⊗ em2) , (3.405)

∆F (em1) =
1

4
(e1 ⊗ em1 + em1 ⊗ e1 + eb ⊗ em2 + em2 ⊗ eb) , (3.406)

∆F (em2) =
1

4
(e1 ⊗ em2 + em2 ⊗ e1 + eb ⊗ em1 + em1 ⊗ eb) , (3.407)

which was derived using the fact that ∆F is diagonal on the v basis. Combining coefficients in the
(co)multiplication and the those in the intertwiners, we derive the components below:

µ1
b,b = β−1

6 , µm
b,m = β−1

8 , µm
m,b = β−1

14 , µ1
m,m = β−1

18 , µb
m,m = β−1

16 , (3.408)

∆b,b
1 =

β6

4
, ∆m,m

1 =
β18

4
, ∆m,m

b =
β18

4β8
, ∆b,m

m =
β18

4β16
, ∆m,b

m =
β6

4β14
, (3.409)

thus

Z1+b+m =
1

4

[︃
Z1
1,1 + Zb

1,b + Zm
1,m + Zb

b,1 + Z1
b,b +

β6

β8β14
Zm
b,m (3.410)

+Zm
m,1 +

β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m

]︃

We can write this as

Z1+b+m =
1

4

[︃
Z1
1,1 + Zb

1,b + Zb
b,1 + Z1

b,b (3.411)

+Zm
1,m +

β6

β8β14
Zm
b,m + Zm

m,1 +
β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m

]︃
.

In this expression, each line is separately modular-invariant, using the results of section 3.2.5, hence we see
that Z1+b+m is modular-invariant.
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3.2.10 H = 1: 1 + a+ b+ c+ 2m orbifold

We now consider gauging the regular representation, i.e. A = 1+ a+ b+ c+ 2m = 1+ a+ b+ c+m1 +m2

(where m1
∼= m2

∼= m). The basis vectors for all objects can be defined as

e = v1 + vx + vx2 + vx3 + vy + vxy + vx2y + vx3y, ea = v1 + vx + vx2 + vx3 − vy − vxy − vx2y − vx3y, (3.412)

eb = v1− vx+ vx2 − vx3 + vy − vxy + vx2y − vx3y, ec = v1− vx+ vx2 − vx3 − vy + vxy − vx2y + vx3y, (3.413)

em11 = v1+ ivx−vx2− ivx3 +vy+ ivxy−vx2y− ivx3y, em12 = v1− ivx−vx2 + ivx3 +vy− ivxy−vx2y+ ivx3y,
(3.414)

em21 = v1+ivx−vx2−ivx3−vy−ivxy+vx2y+ivx3y, em22 = −v1+ivx+vx2−ivx3 +vy−ivxy−vx2y+ivx3y.
(3.415)

The multiplication coefficients are µR
1,R = µR

R,1 = 1 along with

µ1
a,a = β−1

1 , µc
a,b = β−1

2 , µb
a,c = β−1

3 , µm2
a,m1

= β−1
4 , µm1

a,m2
= β−1

4 , µc
b,a = β−1

5 , µ1
b,b = β−1

6 ,
(3.416)

µa
b,c = β−1

7 , µm1

b,m1
= β−1

8 , µm2

b,m2
= −β−1

8 , µb
c,a = β−1

9 , µa
c,b = β−1

10 , µ1
c,c = β−1

11 , (3.417)

µm2
c,m1

= −β−1
12 , µm1

c,m2
= β−1

12 , µm2
m1,a = β−1

13 , µm1

m1,b
= β−1

14 , µm2
m1,c = −β

−1
15 , µ1

m1,m1
= β−1

18 , (3.418)

µb
m1,m1

= β−1
16 , µa

m1,m2
= −β−1

19 , µc
m1,m2

= β−1
17 , µm1

m2,a = β−1
13 , µm2

m2,b
= −β−1

14 , µm1
m2,c = β−1

15 ,
(3.419)

µa
m2,m1

= β−1
19 , µc

m2,m1
= β−1

17 , µ1
m2,m2

= −β−1
18 , µb

m2,m2
= β−1

16 , (3.420)

Some multiplication coefficients are zero (e.g. µm1
a,m1

) and we have omitted these.

The co-multiplication coefficients are ∆1,R
R = ∆R,1

R = 1
8 , and

∆a,a
1 =

β1

8
, ∆b,b

1 =
β6

8
, ∆c,c

1 =
β11

8
, ∆m1,m1

1 =
β18

8
, ∆m2,m2

1 = −β18

8
, ∆b,c

a =
β11

8β3
, ∆c,b

a =
β6

8β2
,

(3.421)

∆m1,m2
a = − β18

8β4
, ∆m2,m1

a =
β18

8β4
, ∆a,c

b =
β11

8β7
, ∆c,a

b =
β1

8β5
, ∆m1,m1

b =
β18

8β8
, ∆m2,m2

b =
β18

8β8
,

(3.422)

∆a,b
c =

β6

8β10
, ∆b,a

c =
β1

8β9
, ∆m1,m2

c = − β18

8β12
, ∆m2,m1

c = − β18

8β12
, ∆a,m2

m1
=

β18

8β19
, ∆b,m1

m1
=

β18

8β16
,

(3.423)

∆c,m2
m1

= − β18

8β17
, ∆m1,b

m1
=

β6

8β14
, ∆m2,a

m1
=

β1

8β13
, ∆m2,c

m1
= − β11

8β15
, ∆a,m1

m2
=

β18

8β19
, ∆b,m2

m2
= − β18

8β16
,

(3.424)

∆c,m1
m2

=
β18

8β17
, ∆m1,a

m2
=

β1

8β13
, ∆m1,c

m2
=

β11

8β15
, ∆m2,b

m2
= − β6

8β14
. (3.425)
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The partition function is then

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + 2Zm
1,m + Za

a,1 + Z1
a,a +

β1

β2β9
Zc
a,b +

β1

β3β5
Zb
a,c

+
2β1

β4β13
Zm
a,m + Zb

b,1 +
β6

β5β10
Zc
b,a + Z1

b,b +
β6

β2β7
Za
b,c +

2β6

β8β14
Zm
b,m

+Zc
c,1 +

β11

β7β9
Zb
c,a +

β11

β3β10
Za
c,b + Z1

c,c −
2β11

β12β15
Zm
c,m

+2Zm
m,1 +

2β18

β13β19
Zm
m,a +

2β18

β14β16
Zm
m,b −

2β18

β15β17
Zm
m,c

+2Z1
m,m −

2β18

β4β19
Za
m,m +

2β18

β8β16
Zb
m,m −

2β18

β12β17
Zc
m,m

]︃
. (3.426)

It will be useful to rewrite this expression as follows:

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + Za

1,a ++Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c (3.427)

+
β1

β2β9

(︃
Zc
a,b +

β2β9

β3β5
Zb
a,c +

β2β6β9

β1β5β10
Zc
b,a +

β6β9

β1β7
Za
b,c +

β2β11

β1β7
Zb
c,a +

β2β9β11

β1β3β10
Za
c,b

)︃
−2
(︃
Zm
1,m −

β1

β4β13
Zm
a,m + Zm

m,1 −
β18

β13β19
Zm
m,a + Z1

m,m +
β18

β4β19
Za
m,m

)︃
+2

(︃
Zm
1,m +

β6

β8β14
Zm
b,m + Zm

m,1 +
β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m

)︃
+2

(︃
Z1
1,m −

β11

β12β15
Zm
c,m + Zm

m,1 −
β18

β15β17
Zm
m,c + Z1

m,m −
β18

β12β17
Zc
m,m

)︃]︃
In the expression above, each line is separately modular-invariant, using the results of section 3.2.5, hence
Z1+a+b+c+2m is modular-invariant.

At least naively, we can also turn on discrete torsion in the Z2 × Z2 subalgebra, by adding phases, in
exactly the same fashion as discussed for the 1 + a+ b+ c Frobenius algebra. In the present case, this gives
the modular-invariant partition function

Z1+a+b+c+2m,dt =
1

8

[︃
Z1
1,1 + Za

1,a ++Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c (3.428)

− β1

β2β9

(︃
Zc
a,b +

β2β9

β3β5
Zb
a,c +

β2β6β9

β1β5β10
Zc
b,a +

β6β9

β1β7
Za
b,c +

β2β11

β1β7
Zb
c,a +

β2β9β11

β1β3β10
Za
c,b

)︃
−2
(︃
Zm
1,m −

β1

β4β13
Zm
a,m + Zm

m,1 −
β18

β13β19
Zm
m,a + Z1

m,m +
β18

β4β19
Za
m,m

)︃
+2

(︃
Zm
1,m +

β6

β8β14
Zm
b,m + Zm

m,1 +
β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m

)︃
+2

(︃
Z1
1,m −

β11

β12β15
Zm
c,m + Zm

m,1 −
β18

β15β17
Zm
m,c + Z1

m,m −
β18

β12β17
Zc
m,m

)︃]︃
.

which differs from the first partition function by a sign flip on the second line.

As in the 1 + a + b + c example, naively it appears as if such a sign choice could be absorbed into the
intertwiners β, but changing the β’s also changes the partial traces Zk

i,j , and as the later Rep(H8) example
in section 4.2 demonstrates, the choice of discrete torsion in this context can be meaningful.
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Of course, one could multiply the separate modular-invariant rows by any phase to get a new modular-
invariant result, but to be a well-defined degree of freedom, one must impose, for example, multiloop factor-
ization, which we have not attempted to check. We will not attempt to give a first-principles derivation or
classification in this paper.

3.3 Rep(Q8)

In this section, we study gauging Frobenius algebras derived from Rep(Q8), where Q8 denotes the eight-
element group of unit quaternions

{±1, πi, πj, πk}. (3.429)

We will present this group as ⟨︁
x, y|x2 = y2 = (xy)2, x4 = 1

⟩︁
. (3.430)

In Q8 we have five conjugacy classes, [1] = {1}, [x] = {x, x3}, [x2] = {x2}, [y] = {y, y3}, and [xy] = {xy, x3y},
the same number as for D4.

3.3.1 Representation theory

Just as the group D4, the group Q8 has five irreducible representations which we’ll label 1, a, b, c, and m,
which have the same character table as for D4:

[1] [x2] [x] [y] [xy]
χ1 1 1 1 1 1
χa 1 1 1 −1 −1
χb 1 1 −1 1 −1
χc 1 1 −1 −1 1
χm 2 −2 0 0 0

The fusion rules are the same as for Rep(D4), namely

a⊗ a ∼= b⊗ b ∼= c⊗ c ∼= 1, a⊗ b ∼= c, a⊗ c ∼= b, b⊗ c ∼= a,

a⊗m ∼= b⊗m ∼= c⊗m ∼= m, m⊗m ∼= 1⊕ a⊕ b⊕ c. (3.431)

The one-dimensional irreducible representations are given explicitly by their characters, and are the same
as for D4:

ρ1(x) = ρ1(y) = 1, ρa(x) = 1, ρa(y) = −1,

ρb(x) = −1, ρb(y) = 1, ρc(x) = −1, ρc(y) = −1. (3.432)

The two-dimensional irreducible representation m is different from that of D4, and here is described by

ρ′m(x) =

(︃
i 0
0 −i

)︃
, ρ′m(y) =

(︃
0 1
−1 0

)︃
. (3.433)
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3.3.2 Cosets

We have

• H = Q8, Q8/H = {H}, giving 1.

• H = ⟨x⟩ ∼= Z4, Q8/H = {H, yH}.

ρ(x) =

(︃
1 0
0 1

)︃
, ρ(y) =

(︃
0 1
1 0

)︃
, (3.434)

for 1 + a.

• H = ⟨y⟩ ∼= Z4, Q8/H = {H,xH}.

ρ(x) =

(︃
0 1
1 0

)︃
, ρ(y) =

(︃
1 0
0 1

)︃
, (3.435)

for 1 + b.

• H = ⟨xy⟩ ∼= Z4, Q8/H = {H,xH}.

ρ(x) =

(︃
0 1
1 0

)︃
, ρ(y) =

(︃
0 1
1 0

)︃
, (3.436)

for 1 + c.

• H = ⟨x2⟩ ∼= Z2, Q8/H = {H,xH, yH, xyH}.

ρ(x) =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , ρ(y) =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , (3.437)

for 1 + a+ b+ c.

• H = {1}, Q8/H ∼= Q8 = {1, x, x2, x3, y, xy, x2y, x3y} corresponding to the regular representation
1 + a+ b+ c+ 2m.

In this case all three of the Z4 subgroups are permuted by the S3 outer automorphism group, so the
physically distinct options for Q8 are only 1, 1 + a, 1 + a+ b+ c, and 1 + a+ b+ c+ 2m. We will compute
partition functions for each of these cases later in this section.

3.3.3 Computing the associator

The results for associators and crossing kernels for Q8 will be very similar to those of D4.

Taking basis vectors e, ea, eb, ec, and em1, em2 for 1, a, b, c, and m respectively (such that the irreps
take the form from the previous subsection), we parameterize the most general fusion intertwiners.

75



For Q8 we have

eaea ↦→ β′
1 e, (3.438)

eaeb ↦→ β′
2 ec, (3.439)

eaec ↦→ β′
3 eb, (3.440)

eaem1 ↦→ β′
4 em1, (3.441)

eaem2 ↦→ − β′
4 em2, (3.442)

ebea ↦→ β′
5 ec, (3.443)

ebeb ↦→ β′
6 e, (3.444)

ebec ↦→ β′
7 ea, (3.445)

ebem1 ↦→ β′
8 em2, (3.446)

ebem2 ↦→ − β′
8 em1, (3.447)

ecea ↦→ β′
9 eb, (3.448)

eceb ↦→ β′
10 ea, (3.449)

ecec ↦→ β′
11 e, (3.450)

ecem1 ↦→ β′
12 em2, (3.451)

ecem2 ↦→ β′
12 em1, (3.452)

em1ea ↦→ β′
13 em1, (3.453)

em1eb ↦→ β′
14 em2, (3.454)

em1ec ↦→ β′
15 em2, (3.455)

em1em1 ↦→ β′
16 eb + β′

17 ec, (3.456)

em1em2 ↦→ β′
18 e+ β′

19 ea, (3.457)

em2ea ↦→ − β′
13 em2, (3.458)

em2eb ↦→ − β′
14 em1, (3.459)

em2ec ↦→ β′
15 em1, (3.460)

em2em1 ↦→ − β′
18 e+ β′

19 ea, (3.461)

em2em2 ↦→ β′
16 eb − β′

17 ec. (3.462)

These differ by a few key signs from those for D4, but only in the lines colored red.

We get evaluation maps ϵL and ϵL by projecting onto the identity line as usual, and then we can determine
the coevaluation maps γR and γR. Here we have to be a bit careful when dealing with the m line. We have

ϵm(em1em1) = ϵm(em2em2) = ϵm(em1em1) = ϵm(em2em2) = 0,

ϵm(em1em2) = ϵm(em1em2) = β′
18, ϵm(em2em1) = ϵm(em2em1) = −β′

18, (3.463)

The coevaluation maps pick up a relative sign,

γm(1) = γm(1) = −β′ −1
18 (em1em2 − em2em1) . (3.464)
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Then using the coevaluation map along with fusion, we can produce a basis for co-fusions,

e ↦→ ee+ β′ −1
1 eaea + β′ −1

6 ebeb + β′ −1
11 ecec − β′ −1

18 (em1em2 − em2em1) , (3.465)

ea ↦→ eea + eae+ β′
3β

′ −1
11 ebec + β′

2β
′ −1
6 eceb − β′

4β
′ −1
18 (em1em2 + em2em1) , (3.466)

eb ↦→ eeb + ebe+ β′
7β

′ −1
11 eaec + β′

5β
′ −1
1 ecea − β′

8β
′ −1
18 (em1em1 + em2em2) , (3.467)

ec ↦→ eec + ece+ β′
10β

′ −1
6 eaeb + β′

9β
′ −1
1 ebea + β′

12β
′ −1
18 (em1em1 − em2em2) , (3.468)

em1 ↦→ eem1 + em1e+ β′
19β

′ −1
18 eaem1 + β′

13β
′ −1
1 em1ea

− β′
16β

′ −1
18 ebem2 + β′

14β
′ −1
6 em2eb − β′

17β
′ −1
18 ecem2 + β′

15β
′ −1
11 em2ec, (3.469)

em2 ↦→ eem2 + em2e− β′
19β

′ −1
18 eaem2 − β′

13β
′ −1
1 em2ea

+ β′
16β

′ −1
18 ebem1 − β′

14β
′ −1
6 em1eb − β′

17β
′ −1
18 ecem1 + β′

15β
′ −1
11 em1ec. (3.470)

Repeating the crossing kernel computation for Q8 just changes some signs relative to D4. We list below
only the components where there are sign changes from D4 results:

(ebeb) em1 = β′
6 eem1 = β′

6em1, eb (ebem1) = β′
8 ebem2 = −(β′

8)
2em1, ⇒ K̃

b,m

b,m(1,m) = − β′
6

(β′
8)

2
,

(3.471)

(ebec) em1 = β′
7 eaem1 = β′

4β
′
7em1, eb (ecem1) = β′

12 ebem2 = −β′
8β

′
12em1, ⇒ K̃

b,m

c,m(a,m) = − β′
4β

′
7

β′
8β

′
12

,

(3.472)

(ebem1) eb = β′
8 em2eb = −β′

8β
′
14 em1, eb (em1eb) = β′

14 ebem2 = −β′
8β

′
14em1, ⇒ K̃

b,m

m,b(m,m) = 1,

(3.473)

(ebem1) ec = β′
8 em2ec = β′

8β
′
15em1, eb (em1ec) = β′

15 ebem2 = −β′
8β

′
15em1, ⇒ K̃

b,m

m,c(m,m) = −1,
(3.474)

(ebem1) em1 = β′
8 em2em1 = −β′

8β
′
18 e+ β′

8β
′
19 ea, eb (em1em1) = β′

16 ebeb + β′
17 ebec = β′

6β
′
16 e+ β′

9β
′
17ea,

⇒ K̃
b,1

m,m(m, b) = −β′
8β

′
18

β′
6β

′
16

, K̃
b,a

m,m(m, c) =
β′
8β

′
19

β′
9β

′
17

,

(eceb) em1 = β′
10 eaem1 = β′

4β
′
10 em1, ec (ebem1) = β′

8 ecem2 = β′
8β

′
12em1, ⇒ K̃

c,m

b,m(a,m) =
β′
4β

′
10

β′
8β

′
12

,

(3.475)

(ecec) em1 = β′
11 eem1 = β′

11 em1, ec (ecem1) = β′
12 ecem2 = (β′

12)
2em1, ⇒ K̃

c,m

c,m(1,m) =
β′
11

(β′
12)

2
,

(3.476)

(ecem1) eb = β′
12 em2eb = −β′

12β
′
14 em1, ec (em1eb) = β′

14 ecem2 = β′
12β

′
14em1, ⇒ K̃

c,m

m,b(m,m) = −1,
(3.477)

(ecem1) ec = β′
12 em2ec = β′

12β
′
15 em1, ec (em1ec) = β′

15 ecem2 = β′
12β

′
15em1, ⇒ K̃

c,m

m,c(m,m) = 1,

(3.478)

(ecem1) em1 = β′
12 em2em1 = −β′

12β
′
18 e+β′

12β
′
19 ea, ec (em1em1) = β′

16 eceb+β′
17 ecec = β′

11β
′
17 e+β′

10β
′
16 ea,

⇒ K̃
c,1

m,m(m, c) = −β′
12β

′
18

β′
11β

′
17

, K̃
c,a

m,m(m, b) =
β′
12β

′
19

β′
10β

′
16

,
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(em1eb) eb = β′
14em2eb = −(β′

14)
2 em1, em1 (ebeb) = β′

6 em1e = β′
6 em1, ⇒ K̃

m,m

b,b (m, 1) = − (β′
14)

2

β′
6

,

(3.479)

(em1eb) ec = β′
14 em2ec = β′

14β
′
15 em1, em1 (ebec) = β′

7 em1ea = β′
7β

′
13 em1, ⇒ K̃

m,m

b,c (m, a) =
β′
14β

′
15

β′
7β

′
13

,

(3.480)

(em1eb) em1 = β′
14 em2em1 = −β′

14β
′
18 e+ β′

14β
′
19 ea, em1 (ebem1) = β′

8 em1em2 = β′
8β

′
18 e+ β′

8β
′
19a,

⇒ K̃
m,1

b,m(m,m) = −β′
14

β′
8

, K̃
m,a

b,m (m,m) =
β′
14

β′
8

,

(em1eb) em2 = β′
14 em2em2 = β′

14β
′
16 eb − β′

14β
′
17 ec, em1 (ebem2) = −β′

8 em1em1 = −β′
8β

′
16 eb − β′

8β
′
17 ec,

⇒ K̃
m,b

b,m(m,m) = −β′
14

β′
8

, K̃
m,c

b,m(m,m) =
β′
14

β′
8

,

(em1ec) eb = β′
15 em2eb = −β′

14β
′
15 em1, em1 (eceb) = β′

10 em1ea = β′
10β

′
13 em1, ⇒ K̃

m,m

c,b (m, a) = −β′
14β

′
15

β′
10β

′
13

,

(3.481)

(em1ec) ec = β′
15 em2ec = (β′

15)
2 em1, em1 (ecec) = β′

11 em1e = β′
11 em1, ⇒ K̃

m,m

c,c (m, 1) =
(β′

15)
2

β′
11

,

(3.482)

(em1ec) em1 = β′
15 em2em1 = −β′

15β
′
18 e+ β′

15β
′
19ea, em1 (ecem1) = β′

12 em1em2 = β′
12β

′
18 e+ β′

12β
′
19 ea,

⇒ K̃
m,1

c,m(m,m) = −β′
15

β′
12

, K̃
m,a

c,m (m,m) =
β′
15

β′
12

,

(em1ec) em2 = β′
15 em2em2 = β′

15β
′
16 eb − β′

15β
′
17 ec, em1 (ecem2) = β′

12 em1em1 = β′
12β

′
16 eb + β′

12β
′
17 ec,

⇒ K̃
m,b

c,m(m,m) =
β′
12

β′
15

, K̃
m,c

c,m(m,m) = −β′
12

β′
15

,

(em1em2) eb = β′
18 eeb+β′

19 eaeb = β′
18 eb+β′

2β
′
19 ec, em1 (em2eb) = −β′

14 em1em1 = −β′
14β

′
16 eb−β′

14β
′
17 ec,

⇒ K̃
m,b

m,b(1,m) = − β′
18

β′
14β

′
16

, K̃
m,c

m,b(a,m) = − β′
2β

′
19

β′
14β

′
17

,

(em1em1) ec = β′
18 eec + β′

19 eaec = β′
3β

′
19 eb + β′

18 ec, em1 (em2ec) = β′
15 em1em1 = β′

15β
′
16 eb + β′

15β
′
17 ec,

⇒ K̃
m,b

m,c(a,m) =
β′
3β

′
19

β′
15β

′
16

, K̃
m,c

m,c(1,m) =
β′
18

β′
15β

′
17

,
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(em1em1) em1 = β′
16 ebem1 + β′

17 ecem1 = (β′
8β

′
16 + β′

12β
′
17) em2,

em1 (em1em1) = β′
16 em1eb + β′

17 em1ec = (β′
14β

′
16 + β′

15β
′
17) v,

(em1em1) em2 = β′
16 ebem2 + β′

17 ecem2 = − (β′
8β

′
16 − β′

12β
′
17) em1,

em1 (em1em2) = β′
18 em1e+ β′

19 em1ea = (β′
18 + β′

13β
′
19) em1,

(em1em2) em1 = β′
18 eem1 + β′

19 eaem1 = (β′
18 + β′

4β
′
19) em1,

em1 (em2em1) = −β′
18 em1e+ β′

19em1ea = − (β′
18 − β′

13β
′
19) em1,

(em1em2) em2 = β′
18 eem2 + β′

19 eaem2 = (β′
18 − β′

4β
′
19) em2,

em1 (em2em2) = β′
16 em1eb − β′

17 em1ec = (β′
14β

′
16 − β′

15β
′
17) em2,⎛⎜⎜⎜⎝

K̃
m,m

m,m(1, 1) K̃
m,m

m,m(1, a) K̃
m,m

m,m(1, b) K̃
m,m

m,m(1, c)

K̃
m,m

m,m(a, 1) K̃
m,m

m,m(a, a) K̃
m,m

m,m(a, b) K̃
m,m

m,m(a, c)

K̃
m,m

m,m(b, 1) K̃
m,m

m,m(b, a) K̃
m,m

m,m(b, b) K̃
m,m

m,m(b, c)

K̃
m,m

m,m(c, 1) K̃
m,m

m,m(c, a) K̃
m,m

m,m(c, b) K̃
m,m

m,m(c, c)

⎞⎟⎟⎟⎠

=
1

2

⎛⎜⎜⎜⎜⎜⎝
−1 β′

18

β′
13β

′
19

β′
18

β′
14β

′
16

− β′
18

β′
15β

′
17

−β′
4β

′
19

β′
18

β′
4

β′
13

− β′
4β

′
19

β′
14β

′
16

β′
4β

′
19

β′
15β

′
17

−β′
8β

′
16

β′
18

− β′
8β

′
16

β′
13β

′
19

β′
8

β′
14

β′
8β

′
16

β′
15β

′
17

β′
12β

′
17

β′
18

β′
12β

′
17

β′
13β

′
19

β′
12β

′
17

β′
14β

′
16

β′
12

β′
15

⎞⎟⎟⎟⎟⎟⎠ .

3.3.4 Modular transformations

For Q8 a few of the modular transformations pick up signs relative to those for D4, specifically

Zm
m,b(τ + 1) = − β′

14

β′
8

Zb
m,m(τ), (3.483)

Zm
m,c(τ + 1) = − β′

15

β′
12

Zc
m,m(τ), (3.484)

Z1
m,m(τ + 1) =

1

2

(︃
−Zm

m,1(τ) +
β′
18

β′
13β

′
19

Zm
m,a(τ) +

β′
18

β′
14β

′
16

Zm
m,b(τ)−

β′
18

β′
15β

′
17

Zm
m,c(τ)

)︃
, (3.485)

Za
m,m(τ + 1) =

1

2

(︃
−β′

4β
′
19

β′
18

Zm
m,1(τ) +

β′
4

β′
13

Zm
m,a(τ)−

β′
4β

′
19

β′
14β

′
16

Zm
m,b(τ) +

β′
4β

′
19

β′
15β

′
17

Zm
m,c(τ)

)︃
, (3.486)

Zb
m,m(τ + 1) =

1

2

(︃
−β′

8β
′
16

β′
18

Zm
m,1(τ)−

β′
8β

′
16

β′
13β

′
19

Zm
m,a(τ) +

β′
8

β′
14

Zm
m,b(τ) +

β′
8β

′
16

β′
15β

′
17

Zm
m,c(τ)

)︃
, (3.487)

Zc
m,m(τ + 1) =

1

2

(︃
β′
12β

′
17

β′
18

Zm
m,1(τ) +

β′
12β

′
17

β′
13β

′
19

Zm
m,a(τ) +

β′
12β

′
17

β′
14β

′
16

Zm
m,b(τ) +

β′
12

β′
15

Zm
m,c(τ)

)︃
, (3.488)

Zm
b,m(−1/τ) = − β′

8β
′
18

β′
6β

′
16

Zm
m,b(τ), (3.489)

Zm
c,m(−1/τ) = − β′

12β
′
18

β′
11β

′
17

Zm
m,c(τ), (3.490)

Zm
m,b(−1/τ) = −

β′
6β

′
16

β′
8β

′
!8

Zm
b,m(τ), (3.491)

Zm
m,c(−1/τ) = −

β′
11β

′
17

β′
12β

′
18

Zm
c,m(τ), (3.492)
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Z1
m,m(−1/τ) = 1

2

(︃
−Z1

m,m(τ)− β′
18

β′
4β

′
19

Za
m,m(τ)− β′

18

β′
8β

′
16

Zb
m,m(τ) +

β′
18

β′
12β

′
17

Zc
m,m(τ)

)︃
, (3.493)

Za
m,m(−1/τ) = 1

2

(︃
−β′

4β
′
19

β′
18

Z1
m,m(τ)− Za

m,m(τ) +
β′
4β

′
19

β′
8β

′
16

Zb
m,m(τ)− β′

4β
′
19

β′
12β

′
17

Zc
m,m(τ)

)︃
, (3.494)

Zb
m,m(−1/τ) = 1

2

(︃
−β′

8β
′
16

β′
18

Z1
m,m(τ) +

β′
8β

′
16

β′
4β

′
19

Za
m,m(τ)− Zb

m,m(τ)− β′
8β

′
16

β′
12β

′
17

Zc
m,m(τ)

)︃
, (3.495)

Zc
m,m(−1/τ) = 1

2

(︃
β′
12β

′
17

β′
18

Z1
m,m(τ)− β′

12β
′
17

β′
4β

′
19

Za
m,m(τ)− β′

12β
′
17

β′
8β

′
16

Zb
m,m(τ)− Zc

m,m(τ)

)︃
. (3.496)

The rest of the modular transformations are the same as for D4 but with β′ instead of β.

There are then fewer modular invariant combinations than existed in the D4 case, which we list below:

Z1
1,1, (3.497)

Za
1,a + Za

a,1 + Z1
a,a, (3.498)

Zb
1,b + Zb

b,1 + Z1
b,b, (3.499)

Zc
1,c + Zc

c,1 + Z1
c,c, (3.500)

Zc
a,b +

β′
2β

′
9

β′
3β

′
5

Zb
a,c +

β′
2β

′
6β

′
9

β′
1β

′
5β

′
10

Zc
b,a +

β′
6β

′
9

β′
1β

′
7

Za
b,c +

β′
2β

′
11

β′
1β

′
7

Zb
c,a +

β′
2β

′
9β

′
11

β′
1β

′
3β

′
10

Za
c,b, (3.501)

Zm
1,m +

β′
1

β′
4β

′
13

Zm
a,m −

β′
6

β′
8β

′
14

Zm
b,m +

β′
11

β′
12β

′
15

Zm
c,m + Zm

m,1 +
β′
18

β′
13β

′
19

Zm
m,a +

β′
18

β′
14β

′
16

Zm
m,b −

β′
18

β′
15β

′
17

Zm
m,c

+ Z1
m,m −

β′
18

β′
4β

′
19

Za
m,m −

β′
18

β′
8β

′
16

Zb
m,m +

β′
18

β′
12β

′
17

Zc
m,m. (3.502)

3.3.5 H = Z4: 1 + a orbifold

We have basis vectors for the trivial and a-representation:

e1 = vH + vyH , ea = vH − vyH , (3.503)

The multiplication with e1 acts as identity, and the multiplication of ea with itself is

µ∗(ea ⊗ ea) = e1, (3.504)

as expected from the fact that a⊗ a ∼= 1. We can compute the comultiplication as

∆F (e1) = vHvH + vyHvyH = 1
2 (e1e1 + eaea), (3.505)

∆F (ea) = vHvH − vyHvyH = 1
2 (e1ea + eae1). (3.506)

Expanding this in the (co-)fusion basis gives the coefficients

µ1
1,1 = µa

1,a = µa
a,1 = 1, µ1

a,a = β′ −1
1 , (3.507)

∆1
1,1 = ∆1,a

a = ∆a,1
a = 1

2 , ∆a,a
1 =

β′
1

2
. (3.508)

As we have seen, these coefficients can be used to compute the partition function as Z =
∑︁

i,j,k µ
k
i,j∆

j,i
k Zk

i,j .
Then the partition function is

Z1+a =
1

2

[︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a

]︁
. (3.509)

This expression for the partition function is a linear combination of the modular invariants computed in
section 3.3.4, hence Z1+a is modular-invariant.
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3.3.6 H = Z2: 1 + a+ b+ c orbifold

We first define basis vectors for the representations {1, a, b, c}

e1 = vH + vxH + vyH + vxyH , ea = vH + vxH − vyH − vxyH , (3.510)

eb = vH − vxH + vyH − vxyH , ec = vH − vxH − vyH + vxyH , (3.511)

The multiplication is

µ∗ (e1 ⊗ e1) = µ∗ (ea ⊗ ea) = µ∗ (eb ⊗ eb) = µ∗ (ec ⊗ ec) = e1,

µ∗ (e1 ⊗ ea) = µ∗ (ea ⊗ e1) = ea, µ∗ (e1eb) = µ∗ (eb ⊗ e1) = eb,

µ∗ (e1 ⊗ ec) = µ∗ (ec ⊗ e1) = ec, µ∗ (ea ⊗ eb) = µ∗ (eb ⊗ ea) = ec,

µ∗ (ea ⊗ ec) = µ∗ (ec ⊗ ea) = eb, µ∗ (eb ⊗ ec) = µ∗ (ec ⊗ eb) = ea,

(3.512)

while the comultiplication reads

∆F (e1) =
1

4
(e1 ⊗ e1 + ea ⊗ ea + eb ⊗ eb + ec ⊗ ec) ,

∆F (ea) =
1

4
(e1 ⊗ ea + ea ⊗ e1 + eb ⊗ ec + ec ⊗ eb) ,

∆F (eb) =
1

4
(e1 ⊗ eb + eb ⊗ e1 + ea ⊗ ec + ec ⊗ ea) ,

∆F (ec) =
1

4
(e1 ⊗ ec + ec ⊗ e1 + ea ⊗ eb + eb ⊗ ea) ,

(3.513)

which was derived using the fact that ∆F is diagonal on the v basis. We can then expand this in the
(co-)fusion basis to compute the relevant coefficients as

µ1
1,1 = 1, µ1

a,a = β′ −1
1 , µc

a,b = β′ −1
2 , µb

a,c = β′ −1
3 , (3.514)

µc
b,a = β′ −1

5 , µ1
b,b = β′ −1

6 , µa
b,c = β′ −1

7 , (3.515)

µb
c,a = β′ −1

9 , µa
c,b = β′ −1

10 , µ1
c,c = β′ −1

11 , (3.516)

∆1,1
1 = 1

4 , ∆a,a
1 =

β′
1

4
, ∆b,a

c =
β′
1

4β′
9

, ∆c,a
b =

β′
1

4β′
5

, (3.517)

∆a,b
c =

β′
6

4β′
10

, ∆b,b
1 =

β′
6

4
, ∆c,b

a =
β′
6

4β′
2

, (3.518)

∆a,c
b =

β′
11

4β′
7

, ∆b,c
a =

β′
11

β′
3

, ∆c,c
1 =

β′
11

4
, (3.519)

thus giving the partition function

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a +
β′
1

β′
2β

′
9

Zc
a,b +

β′
1

β′
3β

′
5

Zb
a,c (3.520)

+Zb
b,1 +

β′
6

β′
5β

′
10

Zc
b,a + Z1

b,b +
β′
6

β′
2β

′
7

Za
b,c + Zc

c,1 +
β′
11

β′
7β

′
9

Zb
c,a +

β′
11

β′
3β

′
10

Za
c,b + Z1

c,c

]︃
.

We can rewrite the partition function as

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c (3.521)

+
β′
1

β′
2β

′
9

(︃
Zc
a,b +

β′
2β

′
9

β′
3β

′
5

Zb
a,c +

β′
2β

′
6β

′
9

β′
1β

′
5β

′
10

Zc
b,a +

β′
6β

′
9

β′
1β

′
7

Za
b,c +

β′
2β

′
11

β′
1β

′
7

Zb
c,a +

β′
2β

′
9β

′
11

β′
1β

′
3β

′
10

Za
c,b

)︃]︃
.
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Each line above is separately modular invariant, using the results computed in section 3.3.4, and so Z1+a+b+c

is manifestly modular-invariant.

Just as in the Rep(D4) cases, we can formally turn on an analogue of discrete torsion, which results in
the modular-invariant partition function

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c (3.522)

− β′
1

β′
2β

′
9

(︃
Zc
a,b +

β′
2β

′
9

β′
3β

′
5

Zb
a,c +

β′
2β

′
6β

′
9

β′
1β

′
5β

′
10

Zc
b,a +

β′
6β

′
9

β′
1β

′
7

Za
b,c +

β′
2β

′
11

β′
1β

′
7

Zb
c,a +

β′
2β

′
9β

′
11

β′
1β

′
3β

′
10

Za
c,b

)︃]︃
.

This differs from the previous partition function by a sign on the second line. As before, one cannot merely
absorb the sign into the β′’s, as this also changes the partial traces Zk

i,j . Also as before, we do not claim
to have checked multiloop factorization, so it is entirely possible that some choices of discrete torsion do
not yield physically-sensible theories. We leave a detailed analysis and first-principles understanding of such
phases for future work.

3.3.7 H = 1: 1 + a+ b+ c+ 2m orbifold

Finally, we gauge the regular representation 1 + a+ b+ c+ 2m = 1+ a+ b+ c+m1 +m2. We choose basis
vectors for these irreps, where the basis vectors emij carry two indices 1 ≤ i, j ≤ 2 to denote the ith basis
vector of the jth copy of m appearing in the regular representation.

e = v1 + vx + vx2 + vx3 + vy + vxy + vx2y + vx3y, ea = v1 + vx + vx2 + vx3 − vy − vxy − vx2y − vx3y, (3.523)

eb = v1− vx+ vx2 − vx3 + vy − vxy + vx2y − vx3y, ec = v1− vx+ vx2 − vx3 − vy + vxy − vx2y + vx3y, (3.524)

em11 = v1+ ivx−vx2− ivx3 +vy+ ivxy−vx2y− ivx3y, em12 = v1− ivx−vx2 + ivx3−vy+ ivxy+vx2y− ivx3y,
(3.525)

em21 = v1+ivx−vx2−ivx3−vy−ivxy+vx2y+ivx3y, em22 = −v1+ivx+vx2−ivx3−vy+ivxy+vx2y−ivx3y.
(3.526)

By first computing the (co-)multiplications and then expanding in terms of the (co-)fusion basis as before,
we compute the coefficients as

µR
1,R = µR

R,1 = 1, ∆1,R
R = ∆1,R

R = 1
8 , (3.527)

µ1
a,a = β′ −1

1 , µc
a,b = β′ −1

2 , µb
a,c = β′ −1

3 , µm2
a,m1

= β′ −1
4 , µm1

a,m2
= β′ −1

4 , µc
b,a = β′ −1

5 , µ1
b,b = β′ −1

6 ,
(3.528)

µa
b,c = β′ −1

7 , µm2

b,m1
= −β′ −1

8 , µm1

b,m2
= β′ −1

8 , µb
c,a = β′ −1

9 , µa
c,b = β′ −1

10 , µ1
c,c = β′ −1

11 , (3.529)

µm1
c,m1

= β′ −1
12 , µm2

c,m2
= −β′ −1

12 , µm2
m1,a = β′ −1

13 , µm2

m1,b
= −β′ −1

14 , µm1
m1,c = β′ −1

15 , µa
m1,m1

= β′ −1
19 ,
(3.530)

µb
m1,m1

= β′ −1
16 , µ1

m1,m2
= −β′ −1

18 , µc
m1,m2

= β′ −1
17 , µm1

m2,a = β′ −1
13 , µm1

m2,b
= β′ −1

14 , µm2
m2,c = −β

′ −1
15 ,

(3.531)
µ1
m2,m1

= β′ −1
18 , µc

m2,m1
= β′ −1

17 , µa
m2,m2

= −β′ −1
19 , µb

m2,m2
= β′ −1

16 , (3.532)

∆a,a
1 =

β′
1

8
, ∆b,a

c =
β′
1

8β′
9

, ∆c,a
b =

β′
1

8β′
5

, ∆m1,a
m2

=
β′
1

8β′
13

, ∆m2,a
m1

=
β′
1

8β′
13

, ∆a,b
c =

β′
6

8β′
10

, ∆b,b
1 =

β′
6

8
(3.533)

∆c,b
a =

β′
6

8β′
2

, ∆m1,b
m2

=
β′
6

8β′
14

, ∆m2,b
m1

= − β′
6

8β′
14

, ∆a,c
b =

β′
11

8β′
7

, ∆b,c
a =

β′
11

8β′
3

, ∆c,c
1 =

β′
11

8,
(3.534)

∆m1,c
m1

=
β′
11

8β′
15

, ∆m2,c
m2

= − β′
11

8β′
15

, ∆a,m1
m2

=
β′
18

8β′
19

, ∆b,m1
m2

= − β′
18

8β′
16

, ∆c,m1
m1

= − β′
18

8β′
17

, ∆m1,m1
a = − β′

18

8β′
4

,

(3.535)
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∆m1,m1

b = − β′
18

8β8
, ∆m2,m1

1 = −β′
18

8
, ∆m2,m1

c =
β′
18

8β′
12

, ∆a,m2
m1

=
β′
18

8β′
19

, ∆b,m1
m1

=
β′
18

8β′
16

, ∆c,m2
m2

=
β′
18

8β′
17

,

(3.536)

∆m1,m2

1 =
β′
18

8
, ∆m1,m2

c =
β′
18

8β′
12

, ∆m2,m2
a =

β′
18

8β′
4

, ∆m2,m2

b = − β′
18

8β′
8

. (3.537)

Some multiplication coefficients are zero (e.g. µm1
a,m1

) and we have omitted these. Note also that a difference
in this example is that the identity occurs in the multiplication of m1 with m2, not in multiplication of m1

with m1 or m2 with m2. The partition function is then

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + 2Zm
1,m + Za

a,1 + Z1
a,a +

β′
1

β′
2β

′
9

Zc
a,b +

β′
1

β′
3β

′
5

Zb
a,c

+
2β′

1

β′
4β

′
13

Zm
a,m + Zb

b,1 +
β′
6

β′
5β

′
10

Zc
b,a + Z1

b,b +
β′
6

β′
2β

′
7

Za
b,c −

2β′
6

β′
8β

′
14

Zm
b,m

+Zc
c,1 +

β′
11

β′
7β

′
9

Zb
c,a +

β′
11

β′
3β

′
10

Za
c,b + Z1

c,c +
2β′

11

β′
12β

′
15

Zm
c,m

+2Zm
m,1 +

2β′
18

β′
13β

′
19

Zm
m,a +

2β′
18

β′
14β

′
16

Zm
m,b −

2β′
18

β′
15β

′
17

Zm
m,c

+2Z1
m,m −

2β′
18

β′
4β

′
19

Za
m,m −

2β′
18

β′
8β

′
16

Zb
m,m +

2β′
18

β′
12β

′
17

Zc
m,m

]︃
. (3.538)

To check modular invariance, we rewrite the partition function above in the form

Z1+a+b+c+2m =
1

8

[︃(︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c

)︁
(3.539)

+
β′
1

β′
2β

′
9

(︃
Zc
a,b +

β′
2β

′
9

β′
3β

′
5

Zb
a,c +

β′
2β

′
6β

′
9

β′
1β

′
5β

′
10

Zc
b,a +

β′
6β

′
9

β′
1β

′
7

Za
b,c +

β′
2β

′
11

β′
1β

′
7

Zb
c,a +

β′
2β

′
9β

′
11

β′
1β

′
3β

′
10

Za
c,b

)︃
+2

(︃
Zm
1,m +

β′
1

β′
4β

′
13

Zm
a,m −

β′
6

β′
8β

′
14

Zm
b,m +

β′
11

β′
12β

′
15

Zm
c,m + Zm

m,1 +
β′
18

β′
13β

′
19

Zm
m,a

+
β′
18

β′
14β

′
16

Zm
m,b −

β′
18

β′
15β

′
17

Zm
m,c + Z1

m,m −
β′
18

β′
4β

′
19

Za
m,m −

β′
18

β′
8β

′
16

Zb
m,m

+
β′
18

β′
12β

′
17

Zc
m,m

)︃]︃
.

Each of the three quantities enclosed in parantheses above is separately modular-invariant, from the results
of section 3.3.4, hence Z1+a+b+c+2m is explicitly modular-invariant.

As in the Rep(D4) case, we can turn on an analogue of discrete torsion in the Z2 × Z2 subalgebra,
essentially by multiplying the second line of modular invariants by −1, resulting in the modular-invariant
partition function

Z1+a+b+c+2m,dt =
1

8

[︃(︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a + Zb
1,b + Zb

b,1 + Z1
b,b + Zc

1,c + Zc
c,1 + Z1

c,c

)︁
(3.540)

− β′
1

β′
2β

′
9

(︃
Zc
a,b +

β′
2β

′
9

β′
3β

′
5

Zb
a,c +

β′
2β

′
6β

′
9

β′
1β

′
5β

′
10

Zc
b,a +

β′
6β

′
9

β′
1β

′
7

Za
b,c +

β′
2β

′
11

β′
1β

′
7

Zb
c,a +

β′
2β

′
9β

′
11

β′
1β

′
3β

′
10

Za
c,b

)︃
+2

(︃
Zm
1,m +

β′
1

β′
4β

′
13

Zm
a,m −

β′
6

β′
8β

′
14

Zm
b,m +

β′
11

β′
12β

′
15

Zm
c,m + Zm

m,1 +
β′
18

β′
13β

′
19

Zm
m,a

+
β′
18

β′
14β

′
16

Zm
m,b −

β′
18

β′
15β

′
17

Zm
m,c + Z1

m,m −
β′
18

β′
4β

′
19

Za
m,m −

β′
18

β′
8β

′
16

Zb
m,m

+
β′
18

β′
12β

′
17

Zc
m,m

)︃]︃
.
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As before, such a sign cannot be simply absorbed into the β′’s without also modifying the partial traces Zk
i,j .

A closely related choice will also appear in the Rep(H8) analysis in section 4.2, which will make it clear that
there really does exist a physically-distinct discrete-torsion-like degree of freedom here. As noted earlier, we
have not checked e.g. multiloop factorization, so not all choices of discrete torsion may be sensible. We leave
a detailed first-principles analysis for the future.

3.4 Rep(H8)

In this subsection, we gauge a Rep(H8) symmetry, the remaining TY (Z2 × Z2) category, where H8 is the
eight-dimensional Kac-Paljutkin Hopf algebra [57]. Unlike the previous examples, in this example we will
not compute the most intertwiners and so forth, but rather will use existing relations for crossing kernels.
(See appendix B for a summary of existing results and implied modular transformations.)

The Hopf algebra H8 has generators {x, y, z} satisfying the relations

x2 = y2 = z2 = 1; xz = zx; zy = yz; (3.541)

xyz = yx (3.542)

so that H8 is spanned by basis elements

H8 = Span(1, x, y, z, xy, xz, yz, yx). (3.543)

The comultiplication is

∆(x) = xe0 ⊗ x+ xe1 ⊗ y =
1

2
(x⊗ x+ xz ⊗ x+ x⊗ y − xz ⊗ y) (3.544)

∆(y) = ye1 ⊗ x+ ye0 ⊗ y =
1

2
(y ⊗ x− yz ⊗ x+ y ⊗ y + yz ⊗ y) (3.545)

∆(z) = z ⊗ z (3.546)

∆(xy) = xye0 ⊗ xy + xye1 ⊗ yx =
1

2
(xy ⊗ xy + yx⊗ xy + xy ⊗ yx− yx⊗ yx) (3.547)

∆(xz) = xe0 ⊗ xz − xe1 ⊗ yz =
1

2
(x⊗ xz + xz ⊗ xz − x⊗ yz + xz ⊗ yz) (3.548)

∆(yz) = ye0 ⊗ yz − ye1 ⊗ xz =
1

2
(y ⊗ yz + yz ⊗ yz − y ⊗ xz + yz ⊗ xz) (3.549)

∆(yx) = yxe0 ⊗ yx+ yxe1 ⊗ xy =
1

2
(yx⊗ yx+ xy ⊗ yx+ yx⊗ xy − xy ⊗ xy) (3.550)

where the elements e0, e1 are two central orthogonal idempotents defined as

e0 =
1

2
(1 + z) (3.551)

e1 =
1

2
(1− z) (3.552)
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and counit uo(x) = uo(y) = uo(z) = 1. There is also an antipode map defined as

S(x) = xe0 + ye1 =
1

2
(x+ xz + y − yz), (3.553)

S(y) = xe1 + ye0 =
1

2
(x− xz + y + yz), (3.554)

S(z) = z, (3.555)

S(xy) = yx, (3.556)

S(xz) =
1

2
(xz + yz + x− y), (3.557)

S(yz) =
1

2
(−x+ y + yz + xz), (3.558)

S(yx) = xy. (3.559)

We now want to endow H∗
8 with the structure of a symmetric special Frobenius algebra. In principle, we

use a multiplication µ∗ and unit u∗ inherited from H∗
8, and then add a comultiplication ∆F (not directly

inherited from the Hopf algebra) and counit uo
F (also not directly inherited). It is important to note that

H8 is a self-dual algebra [58], and a basis is given by linear functions va(b) = δa,b where a, b are elements of
the basis from Equation (3.543).

First, we describe the algebra structure (µ∗, u∗) onH∗
8 with such a basis. It is inherited from the coalgebra

structure on H8. The unit u∗ : C→ H∗
8 is

u∗(1) = v1 + vx + vy + vz + vxy + vxz + vyz + vyx. (3.560)

The Frobenius product µ∗(va ⊗ vb) = ∆∗(va ⊗ vb):

µ∗(v1 ⊗ vb) = δ1,bv1, (3.561)

µ∗(vx ⊗ vb) =
1

2
(δx,bvx + δy,bvx + δxz,bvxz − δyz,bvxz) , (3.562)

µ∗(vy ⊗ vb) =
1

2
(δx,bvy + δy,bvy + δyz,bvyz − δxz,bvyz) , (3.563)

µ∗(vz ⊗ vb) = δz,bvz, (3.564)

µ∗(vxy ⊗ vb) =
1

2
(δxy,bvxy + δyx,bvxy + δyx,bvyx − δxy,bvyx) , (3.565)

µ∗(vxz ⊗ vb) =
1

2
(δxz,bvxz + δyz,bvxz + δx,bvx − δy,bvx) , (3.566)

µ∗(vyz ⊗ vb) =
1

2
(−δx,bvy + δy,bvy + δyz,bvyz + δxz,bvyz) , (3.567)

µ∗(vyx ⊗ vb) =
1

2
(δxy,bvxy − δyx,bvxy + δyx,bvyx + δxy,bvyx) . (3.568)

As described in Section 2, any finite-dimensional Hopf algebraH can be endowed with a Frobenius algebra
structure (µ∗, u∗,∆F , u

o
F ) by using integral elements of H and H∗. An integral element of H8 is [59]

Λ = 1 + x+ y + z + xy + xz + yz + yx, (3.569)

which serves as the counit via evaluation. An integral element of H∗
8 is simply

λ = v1. (3.570)

Then, in terms of the present basis, the counit is

uo
F : H∗ → C (3.571)

va ↦→ va(Λ) = 1 (3.572)
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The comultiplication is computed as the dual map (2.57), namely

∆F := (IdH ⊗ (λ ◦ µ) ◦ (IdH ⊗ S ⊗ IdH) ◦ (∆ ◦ IdH))∗. (3.573)

For the dual basis, this comultiplication is

∆F (v1) = v1 ⊗ v1, (3.574)

∆F (vx) =
1

2
(vx ⊗ vx + vx ⊗ vy − vxz ⊗ vy + vxz ⊗ vx), (3.575)

∆F (vy) =
1

2
(vy ⊗ vx + vy ⊗ vy − vyz ⊗ vx + vyz ⊗ vy), (3.576)

∆F (vz) = vz ⊗ vz (3.577)

∆F (vxy) =
1

2
(vxy ⊗ vxy + vxy ⊗ vyx + vyx ⊗ vxy − vyx ⊗ vyx), (3.578)

∆F (vxz) =
1

2
(vx ⊗ vxz − vx ⊗ vyz + vxz ⊗ vxz + vxz ⊗ vyz), (3.579)

∆F (vyz) =
1

2
(vy ⊗ vyz − vy ⊗ vxz + vyz ⊗ vyz + vyz ⊗ vxz), (3.580)

∆F (vyx) =
1

2
(−vxy ⊗ vxy + vxy ⊗ vyx + vyx ⊗ vxy + vyx ⊗ vyx), (3.581)

reflecting the fact that ∆F is diagonal on the v basis. One can readily check that

µ∗ ◦∆F = IdH∗ , (3.582)

uo
∗ ◦ u∗ = dim(H∗

8) IdC = 8 IdC. (3.583)

The Hopf algebra H8 has five irreducible representations [59], four of which are one-dimensional. The
trivial representation 1 has actions

ρ1(x)v = ρ1(y)v = ρ1(z)v = v. (3.584)

The other three one-dimensional irreps are labeled as a, b, c and form a Klein group. The actions are defined
as

ρa(x)v = −v; ρa(y)v = v; ρa(z)v = v, (3.585)

ρb(x)v = v; ρb(y)v = −v; ρb(z)v = v, (3.586)

ρc(x)v = −v; ρc(y)v = −v; ρc(z)v = v. (3.587)

There is also a two-dimensional irreducible representation, which we denote as m. For v1, v2 the generators
of the underlying vector space, the actions are defined as follows

ρa(x)v1 = v1; ρa(y)v1 = v2; ρa(z)v1 = −v1, (3.588)

ρa(x)v2 = −v2; ρa(y)v2 = v1; ρa(z)v2 = −v2. (3.589)

Gauging the whole category corresponds to gauging by the regular representation R = 1+a+ b+ c+2m.
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As before, we choose a suitable basis in H∗
8:

e1 = v1 + vz + vx + vy + vxy + vxz + vyz + vyx, (3.590)

ea = v1 + vz − vx + vy − vxy − vxz + vyz − vyx, (3.591)

eb = v1 + vz + vx − vy − vxy + vxz − vyz − vyx, (3.592)

ec = v1 + vz − vx − vy + vxy − vxz − vyz + vyx, (3.593)

em11 = v1 − vz + vx + vy + vxy − vyx − vxz − vyz, (3.594)

em12 = v1 − vz − vx + vy − vxy + vyx + vxz − vyz, (3.595)

em21 = v1 − vz + vx − vy − vxy + vyx − vxz + vyz, (3.596)

em22 = −v1 + vz + vx + vy − vxy + vyx − vxz − vyz. (3.597)

As expected, the products of {ea, eb, ec} are cyclic. The product table is

ea eb ec em11 em12 em21 em22

ea e1 ec eb em12 em11 −em22 −em21

eb ec e1 ea em21 −em22 em11 −em12

ec eb ea e1 −em22 em21 em12 −em11

em11 em21 em12 −em22 e1 eb ea −ec
em12 −em22 em11 em21 ea ec e1 −eb
em21 em11 −em22 em12 eb e1 ec −ea
em22 −em12 −em21 −em11 −ec −ea −eb e1

where the row elements multiply from the left and the column elements multiply from the right. Notice that,
unlike the other examples considered so far, this algebra is non-commutative. For example, from the table
above we have

µ∗(ea ⊗ em11) = em12

µ∗(em11 ⊗ ea) = em21.

As described below, this becomes important when computing the partial traces appearing in the partition
function of the regular representation, since, just as for group-like orbifolds, this non-commutativity does
not allow a consistent insertion of a and m defects on the nontrivial 2-torus cycles.

We can also compute the coproduct of the unit as

∆F (u(1)) =
1

8

(︁
e1 ⊗ e1 + ea ⊗ ea + eb ⊗ eb + ec ⊗ ec + em11 ⊗ em11 + em12 ⊗ em21 (3.598)

+em21 ⊗ em12 + em22 ⊗ em22

)︁
. (3.599)

Next, we briefly discuss the intertwiners relating basis elements for the representations 1, a, b, c,m, which
we will denote e1, ea, eb, ec, em1, em2. The intertwiners are listed

ea eb ec em1 em2

ea e1 ec eb em1 −em2

eb ec e1 ea em2 em1

ec eb ea e1 −em2 em1

em1 em1 em2 em2 e1 + eb ea + ec
em2 −em2 em1 −em1 ea − ec e1 − eb
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which are to be read in the same order as the product table, for example

em1 ⊗ em2 = ea + ec,

em2 ⊗ em1 = ea − ec.

For this example, we do not try to compute general intertwiners.

We now gauge the regular representation, the symmetric special Frobenius algebra corresponding to
1 + a+ b+ c+ 2m.

An important difference between this case and the other two gaugeable Z2 × Z2 TY fusion categories
analyzed previously is that in this case this algebra object is non-commutative, hence on general grounds we
do not expect all the partial traces that appeared previously to be admissible here.

This is indeed the case for the partial traces involving the noninvertible object m together with a or b.
Notice for example that eaem11 = em12, so that we would expect a partial trace Zm1

a,m1
. However, one has

that

a⊗m1
µ∗−→ m1

∆F−−→ m2 ⊗ a (3.600)

eaem11 ↦→ em12 ↦→ −em22ea (3.601)

and similarly

b⊗m1
µ∗−→ m2

∆F−−→ m2 ⊗ b (3.602)

eb ⊗ em11 ↦→ em21 ↦→ −em22eb, (3.603)

which suggests that the partial traces involving a or b along with m do not appear this time, in contrast
with Rep(D4) and Rep(Q8). Indeed, one can proceed as before and compute the coefficients µL3

L1,L2
,∆L2,L1

L3
:

µc
a,b = 1 (cyclic), µm1

1,m1
= 1, µm2

1,m2
= 1, µm1

m1,1
= 1, µm2

m2,1
= 1, µ1

m1,m1
= 1, µ1

m2,m2
= 1, (3.604)

µm2
c,m1

= 1, µm1
c,m2

= 1, µm2
m1,c = −1, µm1

m2,c = 1, µc
m1,m2

= −1, µc
m2,m1

= 1, (3.605)

∆b,c
a = 1

8 (cyclic), ∆m1,1
m1

= 1
8 , ∆m2,1

m2
= 1

8 , ∆1,m1
m1

= 1
8 , ∆1,m2

m2
= 1

8 ,∆
m1,m1

1 = 1
8 , ∆m2,m2

1 = 1
8 ,

(3.606)
∆m1,c

m2
= 1

8 , ∆m2,c
m1

= 1
8 , ∆c,m1

m2
= − 1

8 , ∆c,m2
m1

= 1
8 , ∆m2,m1

c = − 1
8 , ∆m1,m2

c = 1
8 , (3.607)

where all others vanish. In particular, this confirms that the partial traces Zm
a,m, Zm

m,a, Z
m
m,b, Z

m
b,m, Za

m,m,

and Zb
m,m do not appear in the partition function.

With these coefficients, we get the partition function

Z =
1

8

⎛⎝⎛⎝ ∑︂
g,h∈{1,a,b,c}

Zgh
g,h

⎞⎠+ 2
(︁
Zm
1,m + Zm

m,1 + Zm
c,m + Zm

m,c + Z1
m,m + Zc

m,m

)︁⎞⎠ . (3.608)

This result of the torus partition function for gauging the whole Rep(H8) symmetry appeared in [21, Eq.
3.15] while the present paper was in preparation.

In principle one can also construct Frobenius algebras associated with other Hopf ideals, which correspond
to [60, appendix D.2]

1, 1 + a, 1 + b, 1 + c, 1 + a+ b+ c, (3.609)

just as we did for Rep(S3), Rep(D4), and Rep(Q8) in previous sections. However, for reasons of brevity, we
defer such discussions in Rep(H8) to future work.
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In passing, just as we have seen in previous examples, it is also possible to create a new theory by turning
on an analogue of discrete torsion, which specifically will be determined by the discrete torsion in an ordinary
Z2×Z2 orbifold. If we let ω denote a cocycle representing the nontrivial element of H2(Z2×Z2, U(1)) = Z2,
and define

ϵ(g, h) =
ω(g, h)

ω(h, g)
, (3.610)

then the second theory has partition function

Z =
1

8

⎛⎝⎛⎝ ∑︂
g,h∈{1,a,b,c}

ϵ(g, h)Zgh
g,h

⎞⎠+ 2
(︁
Zm
1,m + Zm

m,1 + Zm
c,m + Zm

m,c + Z1
m,m + Zc

m,m

)︁⎞⎠ . (3.611)

Later in section 4.2, we will see that these two gauged Rep(H8) theories, with and without this analogue of
discrete torsion, are physically distinct. As noted earlier, we have not checked e.g. multiloop factorization,
so it is possible that some choices of discrete torsion in some theories may not be physically consistent.
Furthermore, and also as noted earlier, we do not have a first-principles understanding of analogues of
discrete torsion in gauged noninvertible symmetries. We hope to return to this topic in future work.

3.5 Summary of results

Here, for ease of reference, we will compile the partition functions computed in this section. While most
of these computations were done with arbitrary coefficients βi appearing in the intertwinters, here we will
specialize to the choices which appear most often in the literature.

3.5.1 Rep(S3) partition functions

We can match conventions in the existing literature for Rep(S3) by choosing

β2 = β4 = β5 = 1, β1 = β3 = β6 = −1 (3.612)

for the coefficients appearing in (3.7)-(3.22). Then all components of the associator are trivial except for

K̃
X,Y

Y,Y (Y, Y ) = K̃
Y,Y

X,Y (Y, Y ) = K̃
Y,Y

Y,X(Y, Y ) = K̃
Y,X

Y,Y (Y, Y ) = −1. (3.613)

and

K̃
Y,Y

Y,Y =

⎛⎝ 1
2

1
2

1
2

1
2

1
2 − 1

2
1 −1 0

⎞⎠ . (3.614)

Comparing with [27, (6.17)], this matches their ω = 1 result except for the components in (3.613) which they
don’t mention as differing from one. These signs do appear in [53], in which the calculation is also done in
a general gauge.
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With such a choice, the Rep(S3) partition functions of section 3.1 are

Z1+X =
1

2

[︃
Z1
1,1 + (ZX

1,X + ZX
X,1 + Z1

X,X)

]︃
, (3.615)

Z1+Y =
1

3

[︃
Z1
1,1 +

(︃
ZY
1,Y + ZY

Y,1 + Z1
Y,Y +

1

2
ZY
Y,Y

)︃]︃
, (3.616)

Z1+X+2Y =
1

6

[︃
Z1
1,1 +

(︁
ZX
1,X + ZX

X,1 + Z1
X,X

)︁
+ 2

(︃
ZY
1,Y + ZY

Y,1 + Z1
Y,Y +

1

2
ZY
Y,Y

)︃
(3.617)

− 2

(︃
ZY
X,Y + ZY

Y,X + ZX
Y,Y −

1

2
ZY
Y,Y

)︃]︃
.

3.5.2 Rep(D4) partition functions

We will choose the intertwiner coefficients appearing in (3.229)-(3.253) to be

β1 = β2
4 , β3 =

β2
4

β2
, β5 = −β2, β6 = β2

4 , β7 = −β2
4

β2
, β8 = ±β4, β9 = −β2

4

β2
,

β10 =
β2
4

β2
, β11 = −β4

4

β2
2

, β12 = ∓β2
4

β2
, β13 = −β4, β14 = ±β4, β15 = ∓β2

4

β2
,

β17 =
β2β16

β4
, β18 = ±β4β16, β19 = ±β16. (3.618)

Then all components of the associator are equal to +1 except for

K̃
m,i

j,m(m,m) = K̃
i,m

m,j(m,m) = χ(i, j), K̃
m,m

m,m(i, j) =
1

2
χ(i, j), (3.619)

where i and j run over 1, a, b, c and

χ(i, j) =

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠ , (3.620)

is the non-trivial bi-character for Z2
2. This matches the standard Tambara-Yamagami associator [29].
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The various Rep(D4) partition functions from section 3.2 are then

Z1+a =
1

2

[︃
Z1
1,1 + (Za

1,a + Za
a,1 + Z1

a,a)

]︃
, (3.621)

Z1+b =
1

2

[︃
Z1
1,1 + (Zb

1,b + Zb
b,1 + Z1

b,b)

]︃
, (3.622)

Z1+a+b+c =
1

4

[︃
Z1
1,1 + (Za

1,a + Za
a,1 + Z1

a,a) + (Zb
1,b + Zb

b,1 + Z1
b,b) + (Zc

1,c + Zc
c,1 + Z1

c,c) (3.623)

+
(︁
Zc
a,b + Zb

a,c + Zc
b,a + Za

b,c + Zb
c,a + Za

c,b

)︁]︃
,

Z1+b+m =
1

4

[︃
Z1
1,1 + (Zb

1,b + Zb
b,1 + Z1

b,b) + (Zm
1,m ++Zm

m,1 + Z1
m,m + Zm

b,m + Zm
m,b + Zb

m,m)

]︃
, (3.624)

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + (Za

1,a ++Za
a,1 + Z1

a,a) + (Zb
1,b + Zb

b,1 + Z1
b,b) + (Zc

1,c + Zc
c,1 + Z1

c,c) (3.625)

+
(︁
Zc
a,b + Zb

a,c + Zc
b,a + Za

b,c + Zb
c,a + Za

c,b

)︁
− 2

(︁
Zm
1,m + Zm

m,1 + Z1
m,m + Zm

a,m + Zm
m,a + Za

m,m

)︁
+ 2

(︁
Zm
1,m + Zm

m,1 + Z1
m,m + Zm

b,m + Zm
m,b + Zb

m,m

)︁
+ 2

(︁
Z1
1,m + Zm

m,1 + Z1
m,m + Zm

c,m + Zm
m,c + Zc

m,m

)︁]︃
.

3.5.3 Rep(Q8) partition functions

This time we can set (highlighting the differences from Rep(D4) in red) the coefficients of (3.438)-(3.462) to

β′
1 = (β′

4)
2, β′

3 =
(β′

4)
2

β′
2

, β′
5 = −β′

2, β′
6 = (β′

4)
2, β′

7 = − (β′
4)

2

β′
2

, β′
8 = ±iβ′

4, β′
9 = − (β′

4)
2

a′2
,

β′
10 =

(β′
4)

2

β′
2

, β′
11 = − (β′

4)
4

(β′
2)

2
, β′

12 = ∓i (β
′
4)

2

β′
2

, β′
13 = −β′

4, β′
14 = ∓iβ′

4, β′
15 = ±i (β

′
4)

2

β′
2

,

β′
17 =

β′
2β

′
16

β′
4

, β′
18 = ±iβ′

4β
′
16, β′

19 = ±iβ′
16, (3.626)

with the result that the only non-trivial components of the Rep(Q8) associator are

K̃
m,i

j,m(m,m) = K̃
i,m

m,j(m,m) = χ(i, j), K̃
m,m

m,m(i, j) = −1

2
χ(i, j). (3.627)
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With such choices, the Rep(Q8) partition functions appearing in section 3.3 become

Z1+a =
1

2

[︃
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a

]︃
, (3.628)

Z1+a+b+c =
1

4

[︃
Z1
1,1 + (Za

1,a + Za
a,1 + Z1

a,a) + (Zb
1,b + Zb

b,1 + Z1
b,b) + (Zc

1,c + Zc
c,1 + Z1

c,c) (3.629)

+
(︁
Zc
a,b + Zb

a,c + Zc
b,a + Za

b,c + Zb
c,a + Za

c,b

)︁]︃
,

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + (Za

1,a + Za
a,1 + Z1

a,a) + (Zb
1,b + Zb

b,1 + Z1
b,b) + (Zc

1,c + Zc
c,1 + Z1

c,c) (3.630)

+(Zc
a,b + Zb

a,c + Zc
b,a + Za

b,c + Zb
c,a + Za

c,b)

+2(Zm
1,m + Zm

m,1 + Z1
m,m − Zm

a,m − Zm
m,a − Za

m,m

−Zm
b,m − Zm

m,b − Zb
m,m − Zm

c,m − Zm
m,c − Zc

m,m)

]︃
.

3.5.4 Rep(H8) partition function

In section 3.4 we computed only the partition function for the regular representation of Rep(H8), with
coefficients already chosen to match the usual Tambara-Yamagami setup. The result was

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + (Za

1,a ++Za
a,1 + Z1

a,a) + (Zb
1,b + Zb

b,1 + Z1
b,b) + (Zc

1,c + Zc
c,1 + Z1

c,c) (3.631)

+
(︁
Zc
a,b + Zb

a,c + Zc
b,a + Za

b,c + Zb
c,a + Za

c,b

)︁
+ 2

(︁
Z1
1,m + Zm

m,1 + Z1
m,m + Zm

c,m + Zm
m,c + Zc

m,m

)︁]︃
.

3.6 Existence of non-multiplicity-free examples

The examples we have studied in this paper all have the property that all spaces of junction operators are at
most one dimensional (equivalently, the fusion categories are multiplicity-free). Concretely, this means that
in all examples studied in this paper, for all irreducible representations R, S, T ,

dimHom(R⊗ S, T ) ∈ {0, 1}. (3.632)

In this section, we will observe that Rep(A4), where A4 = (Z2 × Z2)⋊ Z3 the alternating group on four
elements, is a non-multiplicity-free23 example.

In A4, let m denote the irreducible three-dimensional representation. Then, the tensor product m⊗m⊗m
has multiple singlets. This is an example to illustrate the necessity of keeping track of more than just simple
objects in multiplications and comultiplications. We can see this as follows.

m⊗m = 1 + a+ b+ 2m, a⊗ a = b, b⊗ b = a, a⊗ b = 1, a⊗m = m, b⊗m = m. (3.633)

As a result,

m⊗m⊗m = m⊗ (1 + a+ b+ 2m) = m+m+m+ 2(1 + a+ b+ 2m), (3.634)

= 2(1) + 2a+ 2b+ 7m. (3.635)

23In fact, this seems to be the simplest such example. The next largest finite nonabelian group beyond those we have described
so far is the ten-element dihedral group D5. However, this does not happen in that example, see e.g. [66, p. 6].

92



A presentation of A4 in terms of four generators is [61]

A4 := ⟨w, x, y, z | w2 = x2 = y2 = z2 = 1; (xixj)
2 = 1⟩ (3.636)

where xi, xj ∈ {w, x, y, z} and xi ̸= xj .

We will not describe the partition function of a theory with a gauged Rep(A4) symmetry here, but instead
will return to non-multiplicity-free examples in our followup paper [20].

4 Applications: Duality defects from gauging noninvertible sym-
metries

In this section, we present several explicit examples of gauging noninvertible symmetries in c = 1 CFTs as
Z2 orbifold of the compact boson [62–64]. In [65], a large class of topological defects were written down. This
paper constructed more general conformal interfaces between c = 1 theories using the folding trick (finding
conformal boundaries in the tensor product theory) and computed their fusions. Among these, the interfaces
which were actually topological were identified, and by specializing to cases with the same theory on either
side of the interface, one obtains a large set of topological defects. For the case of defects in the free boson
theories, at generic radius R the only identified topological defects were invertible, generating the symmetry
group GR defined below. At non-generic radii (rational R2) more possibilities appear, including noninvertible
topological defects, but the constructive methods of [65] are also not exhaustive, missing some defects. For
the orbifold branch at a generic radius, the identified topological defects included eight invertible defects,

labeled I(+)OO
1,1 (α0;β0; ϵ), where α0, β0 ∈ {0, π} and ϵ ∈ {±1}. These defects generate a D4 symmetry under

fusion,

I(+)OO
1,1 (α0;β0; ϵ)× I(+)OO

1,1 (α′
0;β

′
0; ϵ

′) = I(+)OO
1,1 (α0 + α′

0;β0 + β′
0; (−1)β0α

′
0/π

2

ϵϵ′). (4.1)

Additionally, there is an infinite family of simple noninvertible defects

I(+)OO
1,1 (α, β), (α, β) /∈ {(0, 0), (0, π), (π, 0), (π, π)} (4.2)

with fusions

I(+)OO
1,1 (α;β)× I(+)OO

1,1 (α0;β0; ϵ) = I(+)OO
1,1 (α0;β0; ϵ)× I(+)OO

1,1 (α;β) = I(+)OO
1,1 (α+ α0;β + β0), (4.3)

I(+)OO
1,1 (α;β)× I(+)OO

1,1 (α′;β′) = I(+)OO
1,1 (α+ α′;β + β′)⊕ I(+)OO

1,1 (α− α′;β − β′), (4.4)

where on the right-hand side of the second line when both arguments of either defect land in the set {0, π},
then that defect should be understood to decompose as

I(+)OO
1,1 (α0;β0) = I(+)OO

1,1 (α0;β0; +)⊕ I(+)OO
1,1 (α0;β0;−). (4.5)

Again, at non-generic radii more topological defects were identified, but the methods of [65] also miss some
defects.

These structures were rediscovered in [67] and embedded in a larger structure including also the missing
defects, and was explored in great detail using more modern methods.

We will show that there exist self-dualities under gauging noninvertible symmetries. In particular, this
self-duality can happen via gauging a full fusion category or a Frobenius subalgebra. We present and discuss
both cases with concrete examples and build duality defects with specific fusion rules via performing half-
space gauging.
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Our starting point is the 2D compact boson with radius R. Using 2πR-periodic left- and right-moving
fields XL and XR, we define U(1)-valued fields as

θm =
XL +XR

R
, θw = R(XL −XR) (4.6)

where subindices m and w denote momentum and winding, respectively. The celebrated (invertible) T-
duality is given by

R→ 1

R
,

θm ↔ θw,

XR → −XR

(4.7)

The global symmetry at generic R reads

GR = (U(1)m × U(1)w)⋊ Zr
2 (4.8)

where the two U(1)’s denote the obvious shifting for θm and θw, while the Z2 extension arises from the
reflection (sometimes also referred to as “charge conjugation”):

Zr
2 : (θm, θw)→ (−θm,−θw). (4.9)

Let us denote the compact boson CFT at radius R with its target space [S1
R]. As systematically inves-

tigated in [65,67], a large class of noninvertible symmetries arise in the Zr
2 orbifold theory, which we denote

as [S1
R/Zr

2]. Briefly speaking, one can focus on various subgroups of U(1)m × U(1)w and its associated Zr
2

extension to a non-abelian group G, then gauging the non-abelian group or its non-normal Zr
2 subgroup [14],

lead to noninvertible symmetries in the orbifold theory [S1
R/G] 24.

A natural question is: starting with a given noninvertible symmetry in [S1
R/G], what can we learn from

gauging part of (i.e., Frobenius subalgebra) or the full noninvertible symmetry? Below, we will show that
one can build new noninvertible defects via gauging noninvertible symmetries.25

4.1 Gauging Frobenius subalgebra

4.1.1 Gauging 1 + Y of Rep(S3) in SU(2)4/U(1)

Let us start with the Rep(S3) symmetry. This noninvertible symmetry can be realized via considering a
Z3(m) subgroup of U(1)m:

Z3(m) : θ → θ +
2π

3
. (4.10)

Extended by Zr
2 symmetry, this gives rise to a

S3 = Z3(m) ⋊ Zr
2 (4.11)

symmetry in the compact boson CFT [S1
R]. A Rep(S3) noninvertible symmetry is then realized via gauging

the S3, leading to the orbifold theory [S1
R/S3]. Alternatively, one can think of this S3 orbifolding as first

gauging the Z3(m) symmetry and then gauging the Zr
2 symmetry. Notice that the Z3(m) symmetry is a 3-fold

24Although in this section we mainly focus on c = 1 CFTs, and in particular, rational CFTs, there are also cases where one
can build non-invertible symmetries for c > 1 irrational CFTs, see e.g. [14,68,69]

25For generic discussions on building topological interfaces via gauging noninvertible symmetries, we refer the reader to [22,70].
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rotation symmetry of the target space circle S1. Thus, gauging this symmetry is performing a quotient of
the target space as R→ R/3. Therefore we have

[S1
R/S3] = [S1

R
3
/Zr

2]. (4.12)

In the notation of [65], the Rep(S3) symmetry is generated by

1 = I(+)OO
1,1 (0; 0;+), X = I(+)OO

1,1 (0; 0;−), Y = I(+)OO
1,1

(︃
2π

3
; 0

)︃
. (4.13)

As we discussed in Section 3.1.6, for theories with Rep(S3) global symmetry, in addition to gauging the
full Rep(S3) or its Z2 subgroup, it is also possible to gauge its Frobenius subalgebra, corresponding to the
algebra objects 1 + Y . Furthermore, if the theory itself is an orbifold theory as [T /S3], then gauging 1 + Y
ends up with the Z2 orbifold of the theory [T ], namely

[T /Z2] = [(T /S3) /(1 + Y )]. (4.14)

Coming back to our case of interest where [T ] = [S1
R] and Z2 = Zr

2, we obtain

[S1
R/Zr

2] = [(S1
R/S3)/(1 + Y )] = [(S1

R
3
/Zr

2)/(1 + Y )], (4.15)

where in the second step we use (4.12). With the T-duality

[S1
R] = [S1

1
R
], (4.16)

we conclude at R =
√
3,

[S1√
3
/Zr

2] = [(S1√
3
/Zr

2)/(1 + Y )], (4.17)

namely the orbifold theory [S1√
3
/Zr

2] is self-dual under gauging Frobenius subalgebra 1 + Y . In fact, at this

special radius, the c = 1 CFT is rational and enjoys a coset description as SU(2)4/U(1) with the diagonal
modular invariant [67, 71]. According to the above self-duality under gauging Frobenius algebra 1 + Y , we
can build a duality defect in this theory via gauging 1+ Y in half of the spacetime and imposing a Dirichlet
boundary on the resulting interface, as in [72]. Let us denote the resulting duality defect as D, and its fusion
can then be expressed as

D ⊗D = 1⊕ Y,

D ⊗ Y = Y ⊗D = 2D.
(4.18)

From the fusion rule, one can see this is indeed a new noninvertible defect line, whose quantum dimension is√
3. This non-integer quantum dimension implies the whole fusion category containing D is not gaugeable,

though there could exist a gaugeable Frobenius algebra containing D. The defect D does not appear among
those studied in [65], which is not surprising since it only exists at a particular value of the radius.

4.1.2 Gauging 1 + b+m of Rep(D4) in SU(2)1/(Z2 × Z2)

Similarly, one can consider Rep(D4) symmetry of the orbifold theory

[S1
R/D4] = [S1

R
4
/Zr

2], (4.19)

and gauging its Frobenius subalgebra associated with the algebra objects 1+ b+m as in Section 3.2. In the
notation of [65], we identify

1 = I(+)OO
1,1 (0; 0;+), b = I(+)OO

1,1 (0; 0;−), m = I(+)OO
1,1

(︂π
2
; 0
)︂
. (4.20)
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We obtain the relation similar to the Rep(S3) case

[S1
R/Zr

2] = [(S1
R/D4)/(1 + b+m)] = [(S1

R
4
/Zr

2)/(1 + b+m)]. (4.21)

At R = 2 , we have the self-duality

[S1
2/Zr

2] = [(S1
2/Zr

2)/(1 + b+m)] (4.22)

for [S1
2/Zr

2] theory under gauging 1+b+m Frobenius subalgebra. At this special radius, the theory is rational
and enjoys a coset description as SU(2)1/(Z2 × Z2) [67], which also corresponds to the continuum limit of
the 4-state Potts model [73–75]. The resulting duality defect D via half-space gauging of this Frobenius
subalgebra enjoys the fusion rule

D ⊗D = 1⊕ b⊕m,

D ⊗ b = b⊗D = D,
D ⊗m = m⊗D = 2D

(4.23)

which is another new noninvertible defect line, with quantum dimension 2 (though not among the defects
identified in [65], which all exist for generic radii). This integer quantum dimension implies the possibility
of further gauging the noninvertible symmetry category containing D, which we leave for future work.

4.2 Gauging Rep(H8) in (Ising ⊗ Ising) CFT

At radius R =
√
2, the Zr

2 orbifold theory of c = 1 compact boson is isomorphic to the tensor product of two
Ising CFTs, which we denote as (Ising ⊗ Ising) CFT [67]:

[S1√
2
/Zr

2]
∼= [Ising⊗ Ising]. (4.24)

The noninvertible symmetry this theory enjoys is the Rep(H8) symmetry. The simple objects of Rep(H8)
are composed of topological lines in Ising CFT as

1 = 11 ⊗ 12,

a = η1 ⊗ 12, b = 11 ⊗ η2, c = η1 ⊗ η2,

m = N1 ⊗N2,

(4.25)

where 1i, ηi and Ni are the identity line, the Z2 defect and the Kramers-Wannier duality defect for the i-th
Ising CFT, respectively. The fusion rules for Rep(H8) are determined by

ηi ⊗ ηi = 1i, ηi ⊗Ni = Ni ⊗ ηi = Ni, Ni ⊗Ni = 1i ⊕ ηi. (4.26)

It was argued in [76] the Rep(H8) categorical symmetry in (Ising ⊗ Ising) CFT is gaugeable, due to the
fact that it admits a boundary state which is invariant under the action of all topological defects. Here we
review the proposal briefly. Start with a critial Ising CFT, with three Kramers-Wannier duality line defects
inserted. In order to build a (Ising ⊗ Ising) CFT, one can consider two alternative ways as follows

• Fold the worldsheet along the middle defect, as shown in the top picture in Figure 17. The middle
defect after folding becomes a N interface between the (Ising ⊗ Ising) CFT and a trivial theory, thus
realizing a boundary state denoted as |N ⟩. Notice that the left and the right N defects fuse into the
m defect line after the folding. Therefore, the whole configuration is exactly the noninvertible line m
acting on the boundary state |N ⟩ in the (Ising ⊗ Ising) CFT

m|N ⟩. (4.27)
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Figure 17: Top: Folding Ising CFT along the middle Kramers-Wannier line gives rise to m line acting on
the boundary state |N ⟩ in the (Ising ⊗ Ising) CFT. Bottom: Fusing the three Kramers-Wannier lines and
then folding the Ising CFT along the 2N line give rise to boundary state 2|N ⟩ in the (Ising ⊗ Ising) CFT.

• Fuse the left two N defects into 1 ⊕ η, then fuse them with the rightmost N line (1 ⊕ η) ⊗N = 2N .
Fold the worldsheet along the resulting 2N defect, as shown in the bottom picture in Figure 17. Now,
the folding manipulation gives rise to a 2|N ⟩ boundary state for the (Ising ⊗ Ising) CFT.

The equivalence of these two folding steps give rise to

m|N ⟩ = 2|N ⟩, (4.28)

which is a strongly symmetric condition for the boundary state due to the quantum dimension ⟨m⟩ = 2. We
then conclude the categorical symmetry Rep(H8) is gaugeable.

Partition functions and self-duality via gauging Rep(H8). The folding method discussed above
makes it possible to write a closed form for various twisted partition functions ZL3

L1,L2
for (Ising ⊗ Ising)

CFT. Let us start with the simple cases where L1 or L2 is the identity line defect 1. Recall in the Ising CFT,
there are three primary operators whose characters are given by

χ0 =
1

2

[︄(︃
θ3
η

)︃ 1
2

+

(︃
θ4
η

)︃ 1
2

]︄
, χ 1

2
=

1

2

[︄(︃
θ3
η

)︃ 1
2

−
(︃
θ4
η

)︃ 1
2

]︄
, χ 1

16
=

1√
2

(︃
θ2
η

)︃1/2

,

χ̄h ≡ χh(τ̄), |χh|2 ≡ χhχ̄h.

(4.29)
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Partition functions for the Ising CFT with various line insertions read (see, e.g., [31, 77,78])

Z1
1,1[Ising] = |χ0|2 + |χ 1

2
|2 + |χ 1

16
|2,

Zη
1,η[Ising] = |χ0|2 + |χ 1

2
|2 − |χ 1

16
|2,

Zη
η,1[Ising] = χ0χ̄ 1

2
+ χ 1

2
χ̄0 + |χ 1

16
|2,

Z1
η,η[Ising] = −χ0χ̄ 1

2
− χ 1

2
χ̄0 + |χ 1

16
|2,

ZN
1,N [Ising] =

√
2(|χ0|2 − |χ 1

2
|2),

ZN
N ,1[Ising] = χ̄ 1

16
(χ0 + χ 1

2
) + c.c.,

ZN
N ,η[Ising] = iχ̄ 1

16
(χ0 + χ 1

2
) + c.c.

(4.30)

We can then readily obtain various twisted partition functions for (Ising ⊗ Ising) CFT. With invertible lines
inserted, we have

Z1
1,1[Ising⊗ Ising] = (Z1

1,1[Ising])
2,

Za
1,a[Ising⊗ Ising] = Zb

1,b[Ising⊗ Ising] = Zη
1,η[Ising]× Z1

1,1[Ising],

Zc
1,c[Ising⊗ Ising] = (Zη

1,η[Ising])
2,

Za
a,1[Ising⊗ Ising] = Zb

b,1[Ising⊗ Ising] = Zη
η,1[Ising]× Z1

1,1[Ising],

Zc
c,1[Ising⊗ Ising] = (Zη

η,1[Ising])
2,

Z1
a,a[Ising⊗ Ising] = Z1

b,b[Ising⊗ Ising] = Z1
η,η[Ising]× Z1

1,1[Ising],

Zab
a,b[Ising⊗ Ising] = Zab

b,a[Ising⊗ Ising] = Zη
η,1[Ising]× Zη

1,η[Ising],

Zb
a,c[Ising⊗ Ising] = Za

b,c[Ising⊗ Ising] = Z1
η,η[Ising]× Zη

1,η[Ising],

Zb
c,a[Ising⊗ Ising] = Za

c,b[Ising⊗ Ising] = Z1
η,η[Ising]× Zη

η,1[Ising],

Z1
c,c[Ising⊗ Ising] = (Zη

η,η[Ising])
2,

(4.31)

Recall that in gauging Rep(H8), not all twisted partition functions with noninvertible line m insertions are
included, but only

Zm
1,m, Z,

m,1Z
m
c,m, Zm

m,c, Z
1
m,m, Zc

m,m (4.32)

are present. Thus, we need to obtain their expressions, three of which can be derived from products of Ising
CFT partition functions

Zm
1,m[Ising⊗ Ising] = (ZN

1,N [Ising])2,

Zm
m,1[Ising⊗ Ising] = (ZN

N ,1[Ising])
2,

Zm
m,c[Ising⊗ Ising] = (ZN

N ,η[Ising])
2,

(4.33)

while the other three partition functions can in turn be derived from the Rep(H8) modular transformation

Zm
c,m[Ising⊗ Ising](τ) = Zm

m,c[Ising⊗ Ising]

(︃
−1

τ

)︃
,

Z1
m,m[Ising⊗ Ising](τ) = Zm

m,1[Ising⊗ Ising](τ + 1),

Zc
m,m[Ising⊗ Ising](τ) = Zm

m,c[Ising⊗ Ising](τ + 1),

(4.34)

The sum over twisted partition functions present in gauging Rep(H8) can then be computed as

2

8
(Zm

1,m + Z+
m,1Z

m
c,m + Zm

m,c + Z1
m,m + Zc

m,m)[Ising⊗ Ising]

= 2|χ̄ 1
16
(χ0 + χ 1

2
)|2 + 1

2
(|χ0|4 + |χ 1

2
|4 − (χ̄0χ 1

2
)2 − (χ̄ 1

2
χ0)

2)

(4.35)
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Recall that the (Ising ⊗ Ising) CFT is self-dual under gauging Z2×Z2 symmetry without discrete torsion,
whose half-space gauging shows the presence of the noninvertible duality defect m 26. Thus, we conclude
the sum over twisted partition function with invertible line insertions as

1

8

∑︂
g,h∈{1,a,b,c}

Zgh
g,h[Ising⊗ Ising] =

1

2
Z1
1,1[Ising⊗ Ising] =

1

2
(|χ0|2 + |χ 1

2
|2 + |χ 1

16
|2)2. (4.36)

The resulting partition function after gauging Rep(H8), which can be computed straightforwardly using
(4.30), (4.35), and (4.36), interestingly, is the same as that of the (Ising ⊗ Ising) CFT (see also [21]):

Z[(Ising⊗ Ising)/Rep(H8)]

=
1

8

⎛⎝⎛⎝ ∑︂
g,h∈{1,a,b,c}

ϵ(g, h)Zgh
g,h

⎞⎠+ 2
(︁
Zm
1,m + Zm

m,1 + Zm
c,m + Zm

m,c + Z1
m,m + Zc

m,m

)︁⎞⎠
= (|χ0|2 + |χ 1

2
|2 + |χ 1

16
|2)2,

(4.37)

The self-duality of (Ising ⊗ Ising) CFT under this gauging 27 implies a new duality defect D, which can be
built by performing a half-space gauging. The associated fusion rule is similar to (4.18) and (4.23)

D ×D = 1 + a+ b+ c+ 2m,

D ×m = m×D = 2D,
D × g = g ×D = D, g ∈ {a, b, c},

(4.38)

from which one reads the quantum dimension of D is
√
8. This non-integer quantum dimension implies

the whole fusion category containing D is not gaugeable28, though there might exist a gaugeable Frobenius
algebra containing D.

We conclude this section by embedding the new self-dualities we find via gauging the noninvertible
symmetries in the moduli space of c = 1 CFTs [79] (see also [67]), as shown in Figure 18.

5 Decomposition

Briefly, decomposition is the statement that a local quantum field theory in d dimensions with a global
(d − 1)-form symmetry is equivalent to a disjoint union of local quantum field theories, see e.g. [54, 55]. In
two dimensions, standard examples involving gauge theories in which a subgroup of the (zero-form) gauge
group acts trivially. The resulting theory has a global one-form symmetry, and so is equivalent to a disjoint
union.

In this section, we will discuss simple prototypical examples of decomposition arising when gauging a
trivially-acting noninvertible zero-form symmetry. We begin by defining what it means for a noninvertible
symmetry group to act trivially, state a conjecture for the form of the result, and then compute some
examples.

26It is also possible to gauge Z2 × Z2 with discrete torsion turned on. This is equivalent to gauging the diagonal Z2 of the
two Ising CFTs, leading to the compact boson at radius R =

√
2 [80,81].

27Naively, one can also try summing over the twisted partition function without any minus signs in front of Zgh
g,h, as in (3.608).

However, the resulting partition function will be ill-defined, implying it is not an admitted gauging. In fact, in the case of
gauging Rep(H8), the expression of summing over twisted partition functions is dependent on whether the theory is self-dual
under gauging Z2 × Z2 with/without discrete torsion. See, e.g. [21]. We thank Yifan Wang for the discussions on this point.

28While finishing this paper, the reference [21] appeared, which includes a systematic study of this new duality defect in
(Ising ⊗ Ising) CFT. We refer the reader to that reference for more details.
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Figure 18: Self-dualities for several c = 1 CFTs from gauging. The horizontal and vertical axes denote the
compact boson’s radius and its Zr

2 orbifold theory, respectively. These two branches meet at [S1
2 ] = [S1

1/Zr
2],

which corresponds to the Kosterlitz-Thouless transition point of the XY-model [82]. Loops colored in blue
denote self-dualities under gauging noninvertible symmetries, whose associated duality defects enjoy the
fusion rules presented in (4.18), (4.23) and (4.38). Lines colored in red denote the previously known cases
that (Ising ⊗ Ising) CFT is self-dual under gauging Z2×Z2 without discrete torsion and transformed to the
diagonal bosonization of the Dirac fermion with discrete torsion.

5.1 Definition of trivially-acting noninvertible 0-form symmetry

For an element of an ordinary, invertible 0-form symmetry to act trivially means, for example, that it leaves
invariant all local operators. If g denotes a symmetry operator, then,

g · O = O. (5.1)

In terms of line operators, we can describe the action of g on a local operator O as (see e.g. [83, section 1])
where we imagine the line collapsing onto the local operator O to form the local operator O′, and where, for
a trivial action, O′ = O. This is illustrated schematically in figures 19a, 19b.

O
k

(a)

O′

(b)

For an invertible 0-form symmetry, associated to some group G, abstractly one can always declare that
the entire group acts trivially. Indeed, gauging such trivially-acting symmetry groups is at the heart of both
pure gauge theories as well as Dijkgraaf-Witten theory [84].

For noninvertible symmetries, this is often not possible. For a simple example, consider Rep(S3). Ex-
plicitly, there are three irreducible representations:

• the trivial representation, which we denote 1,
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• the sign representation, a one-dimensional representation we denote X,

• a two-dimensional representation we denote Y .

The nontrivial products are as follows:

X2 = 1, X ⊗ Y = Y, Y 2 = 1 +X + Y. (5.2)

In this example, we see that the best we can hope for is for the subgroup {1, X} to act trivially on local
operators. The action of Y is then constrained to obey

Y 2 · O = (1 +X + Y ) · O, (5.3)

so if 1 and X both act trivially, in the sense that e.g. X · O = O, then

Y 2 · O = (2 + Y ) · O. (5.4)

This will be satisfied if Y · O = 2O, but not if Y acts trivially.

In passing, the reader should note that {1, X} generate an invertible 0-form symmetry, namely Z2. Only
when we extend to the full noninvertible case do we find that not all of the line operators can act trivially.

With this example in mind, we define a line L in a fusion category to act trivially if, for any local operator
O,

L · O =

|L|∑︂
i,j=1

δi,jO = |L| O. (5.5)

We motivate this definition below.

Assume we have a 2d QFT with symmetry given by a fusion category C. We also assume that the
there exists a fiber functor F : C → Vec to the category Vec of vector spaces, such that F (L) = |L|1,
(meaning technically that the direct sum of the monoidal unit in Vec |L| times, which clearly requires |L| to
be a nonnegative natural number). (As remarked earlier, gaugeable noninvertible symmetry categories will
always admit a fiber functor.) One way of understanding (5.5) is via the fiber functor, which maps L to |L|
times the identity.

When that symmetry acts trivially, dim(HomVec(F (1), F (L))) = dim(HomVec(F (L), F (1))) = |L| for
each simple object L of C, where |L| is the quantum dimension of L. Physically this means that there are
(non-trivial) topological operators that sit at two-way junctions between lines. These operators can be used
to ‘unwrap’ TDLs. This was used in [85] in the group-like case. For instance [85, Figure 6], reproduced here
as Figure 20, illustrates this visually.

We can extend this calculation to noninvertible lines. Let us again take a simple object L. Pick a basis

ℓiL for HomVec(F (1), F (L)) and ℓ
i

L for HomVec(F (L), F (1)).29 We take this basis to be orthonormal in the
sense that

1 =

|L|∑︂
i,j=1

ℓjL ◦ ℓ
i

L, ℓ
j

L ◦ ℓiL = δi,j1, (5.6)

where 1 is the local identity operator. These two conditions are pictured in Figure 21a and 21b.

29In the group-like case we are able to identify ℓ̄g with ℓg−1 , which was done implicitly in Figure 20. In the more general

case the starting point operator for a line L should be isomorphic to the endpoint operator for its orientation reversal L̄, with
the isomorphism determined by (co)evaluation.
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O
k

(a)

O
k

ℓ1

(b)

O
k

ℓk−1

1

ℓk

(c)

O
k

ℓk−1

1

ℓk

(d)

O
ℓ1

(e)

Figure 20

L

=
∑︁|L|

i,j=1

L

ℓ̄
i
L ℓjL

L

(a)

ℓiL ℓ̄
j
L

=

δi,j1

(b)

Figure 21: Relations for topological twist fields in a trivially-acting symmetry.

Using this setup to repeat the calculation in Figure 20, we find that a trivially-acting (in general nonin-
vertible) line L acts on a local operator O to give

L · O =

|L|∑︂
i,j=1

δi,jO = |L|O, (5.7)

which is the behavior we would expect. This matches our definition (5.5) of a trivially-acting noninvertible
symmetry.

These local operators should also have a fusion operation inherited from the lines on which they live.
For instance, we ought to be able to deform Figure 22a to Figure 22b. In the case of Rep(G), this map
ℓ1 ⊗ ℓ2 → ℓ3 is given by the intertwiners.

The difference between ℓ and ℓ is essentially the same as a choice of orientation for a TDL. Note that
we could choose to work only with the ℓ, establishing our conventions such that all lines were outgoing from
these operators (physically, there is indeed only one set of topological twist fields labeled by C). Doing so
would require using evaluation to reverse the orientation of any ingoing line, at the cost of dualizing it. We
can instead choose (as we will) to work with both ℓ and ℓ, which are not independent of each other. That
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L1
ℓ1

L2
ℓ2

L3

(a)

ℓ3 L3

(b)

Figure 22: Fusion of twist fields on which TDLs begin/end.

is, ℓL and ℓL are isomorphic but not necessarily equal, in exactly the same way as L and L with opposite
orientation. To translate back to the opposite convention, we can regard ℓ as ℓ with a nearby insertion of
the image of the evaluation map F (ϵ) ∈ HomVec(F (L⊗ L), F (1)):

ℓL

L

≡
ℓL

L ϵ L

. (5.8)

Similarly, the coevaluation map γ allows us to map ℓL to ℓL. (Given ℓL : L→ 1, note ℓL ⊗ L : L⊗ L→ L,
and composing with coevaluation gives a map 1→ L, giving an ℓL.)

We can check that the above formulation of trivially-acting noninvertible symmetries is consistent with
the action of noninvertible symmetries on boundaries. The paper [76] considers the related question of what
it means for a boundary to be invariant under the action of a noninvertible symmetry. For an ordinary,
invertible, symmetry, defined by a collection of lines Lg associated to elements g ∈ G in some finite group,
for a boundary state |B⟩ to be invariant30 means

L|B⟩ = |B⟩. (5.10)

The reference [76, section 2.3] provides two generalizations of this notion to to noninvertible symmetries.
Briefly,

• A boundary |B⟩ is defined to be weakly symmetric under a fusion category symmetry C if for every
simple line L ∈ C,

L|B⟩ = |B⟩ + · · · , (5.11)

(see [76, equ’n (2.17)]).

• A boundary |B⟩ is defined to be strongly symmetric under a fusion category symmetry C if for every
simple line L ∈ C,

L|B⟩ = ⟨L⟩|B⟩ (5.12)

(see [76, equ’n (2.20)]) where ⟨L⟩ is the quantum dimension of L.

30The language of boundary states glosses over the distinction between ‘invariant’ and ‘equivariant.’ For example, because
of the existence of gauge transformations on worldvolume gauge fields, it is not quite right to speak of a D-brane B being
‘invariant’ under a group G, only ‘equivariant,’ which means that there are isomorphisms

ψg : B −→ B (5.9)

associated to group elements g ∈ G, which respect the group law: ψgψh = ψgh. This structure is not visible in the language
of boundary states for two reasons: (1) Boundary states are constructed from e.g. Chern classes, for which there are no gauge
transformations, so ‘invariant’ is well defined, and (2) as states, they are elements of some vector space, which does not admit
the requisite higher categorical morphisms.
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They also note that a strongly symmetric boundary condition cannot exist unless every topological
line in C has an integer quantum dimension, which is not true in general (see e.g. the minimal models
discussed in [76, section 4.2.1]).

It is observed in [76] that strongly symmetric implies weakly symmetric; however, not all weakly symmetric
boundaries are strongly symmetric. Further, in the special case of invertible lines, these two notions are
equivalent: L ⊗ |B⟩ = |B⟩, reflecting both the indecomposability of the product, and the fact that the
quantum dimension of an invertible line is 1.

The second of these two boundary conditions, the strongly symmetric condition in equation (5.12), is
clearly consistent with our definition (5.5) of trivial actions above. This confirms that our definition (5.5) is
sensible.

5.2 Decomposition conjecture

In two-dimensional (ordinary) gauge theories in which a subgroup of the gauge group acts trivially, it is by
now well-known that the theory is equivalent to a disjoint union of effectively-acting gauge theories (see [54]
for the original statement, and [55] for a recent review). In this section, we will propose a similar phenomenon
when gauging a trivially-acting noninvertible symmetry.

Let us briefly review the ordinary case. Suppose for simplicity G is a finite group, with central subgroup
K ⊂ G acting trivially. Then, as discussed in [54],

QFT ([X/G]) = QFT

⎛⎝∐︂
K̂

[X/(G/K)]ω

⎞⎠ , (5.13)

where the disjoint union is over irreducible representations of K, and ω denotes discrete torsion factors
described in [54]. A special case of this is two-dimensional Dijkgraaf-Witten theory, which is the orbifold
[point/G], for G a group (possibly twisted by discrete torsion). It decomposes into a string on a disjoint union
of points, as many copies as irreducible (projective) representations of G. (See e.g. [86] for the extension of
decomposition to include discrete torsion in the original orbifold.) Formally, we could write this as31

QFT ([point/G]) = QFT

⎛⎝∐︂
Ĝ

point

⎞⎠ , (5.14)

where, since all of the orbifold group G acts trivially, the disjoint union on the right is indexed by irreducible
(projective) representations of G, here denoted Ĝ.

In this section we will consider the noninvertible analogue of Dijkgraaf-Witten theory, meaning a gauge
theory in which one gauges a trivially-acting noninvertible symmetry, in the sense that all of the noninvertible
symmetry acts trivially. (More general actions of noninvertible symmetries should also exist, in which only
a subcategory acts trivially; we leave such cases for future work.) This might also be described as a two-
dimensional analogue of Turaev-Viro theory [87] (which is a noninvertible generalization of three-dimensional
Dijkgraaf-Witten theory [84]).

Here we consider gauging a Frobenius algebra A in a trivially-acting Rep(G) symmetry, meaning the
orbifold32 [point/A]. We assume the theory does not have any analogue of discrete torsion.

31Our notation glosses over extended objects, which can distinguish the ‘points’ on the right-hand side as SPT phases. The
intent of the notation is to emphasize that a local QFT can be a disjoint union.

32To be clear, by ‘orbifold’ we mean the result of gauging the noninvertible symmetry with the Frobenius algebra A. The
notation is not intended to indicate an ordinary quotient stack.
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We conjecture that this theory is equivalent to a disjoint union of trivial theories (or SPT phases), as
many as |A|, and hence obeys an analogue of decomposition, using the fact that

|A| =
∑︂
ρ

|ρ|, (5.15)

where the sum is over simple objects ρ, counted with multiplicity. (Recall in Rep(G), the simple objects
are the irreducible representations ρ, and |ρ| is the dimension of the representation ρ. The reader should
also recall that we only define trivial actions in cases where fiber functors exist, and leave a more general
definition for future work.) In terms of partition functions, we are predicting that

ZA,A = |A|Z1
1,1. (5.16)

We will check this proposal in detail in examples later in this section.

Now, this proposal is incomplete:

• For one, ideally one would like to understand decomposition not just in cases in which all of the simple
objects act trivially, but also in cases in which only a subset of the simple objects act trivially. We
leave that for future work.

• Another issue is that the proposal above does not simply generalize to include ordinary orbifolds, for
which the fusion category is Vec(G) = Rep(C[G]∗). The issue is that the number of simple objects is
|G|, whereas in the decomposition of Dijkgraaf-Witten theory, the universes are counted by irreducible
representations of G.

We leave these issues for future work.

In the remainder of this section, we will compute some examples.

5.3 Computation of partial traces

In this subsection, we will make a proposal for the computation of partial traces ZL3

L1,L2
in the special case

that the noninvertible symmetry acts completely trivially. This will be an analogue of two-dimensional
Dijkgraaf-Witten theory, which describes the orbifold [point/G].

A generic torus partial trace will have the form shown in Figure 23a. We propose to evaluate it as follows.
Formally, we can rewrite this as a diagram involving two fusion operations by inserting a map γ : ℓ → ℓ,
induced by the coevaluation map, along one of the lines, leading to Figure 23b. We can simplify this diagram
using equation (5.6). This allows us to deform Figure 23b to Figure 23c.

Compressing both halves of the resulting diagram, we are left only with multiples of the local identity
operator. This diagrammatic argument implies that we can write

ZL3

L1,L2
= C3

1,2 Z
1
1,1 (5.17)

where C3
1,2 is a constant which we propose is formally given by

C3
1,2 =

∑︂
i,j,k

[︂
ℓ
k

3 ◦ (ℓi1 ⊗ ℓj2)]
]︂ [︂

ℓ
j

2 ◦ (ℓk3 ⊗ γ(ℓ
i

1))
]︂
. (5.18)
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L1

L2

L3
L2

L1

(a)

γ

L1

L̄1

L2

L3
L2

L1

(b)

γ

ℓ
i

1

ℓ̄
j
2

ℓk3 ℓ̄
k
3

ℓj2

ℓi1

(c)

Figure 23: Mapping ZL3

L1,L2
to a multiple of Z1

1,1. Each of these diagrams should be understood as living

on T 2, so that lines wrap around the edges. Note that in diagram 23c, all three of the lines Li have been
broken in half. The L1 and L2 lines wrap around the edges of the figure, and their breaking is indicated by
the vertices • at the edges. In each case, ℓi denote operators inserted at the endpoints at the breaks.

As a quick consistency check, for an untwisted sector partial trace ZL
1,L the coefficient is

CL
1,L =

|L|∑︂
j,k=1

[︂
ℓ
k

3 ◦ (1⊗ ℓj2)
]︂ [︂

ℓ
j

2 ◦ (ℓk3 ⊗ γ(1))
]︂
=

|L|∑︂
j,k=1

δj,kδk,j = |L|, (5.19)

which is what we expect from a single trivially-acting L line wrapping a cycle of the torus.

The formula above represents our physically-motivated proposal for the relation between ZL3

L1,L2
and Z1

1,1

in the special case of a completely-trivially-acting noninvertible symmetry. We leave a detailed mathematical
understanding for future work.

In the case that the fusion category is group-like, the C3
1,2 should reproduce known results for decompo-

sition. In this case all of the lines have dimension 1, which means that (5.18) no longer contains any sums
and becomes

Cgh
g,h =

[︁
ℓgh ◦ (ℓg ⊗ ℓh)

]︁ [︁
ℓh ◦ (ℓgh ⊗ γ(ℓg))

]︁
. (5.20)

Here coevaluation is trivial, so γ(ℓg) = ℓg−1 . Fusion follows the group law, so we have

Cgh
g,h =

[︁
ℓgh ◦ ℓgh

]︁ [︁
ℓh ◦ ℓghg−1

]︁
= δh,ghg−1 (5.21)

where the last equality follows from the orthonormality (5.6) of composition. This reproduces the expected
result for decomposition in a group-like orbifold, and in particular matches the topological operator-based
formulation of decomposition given in [85].

5.4 Examples

In this section we will compute partition functions for gauged trivially-acting Rep(G) for the groups S3,
D4, and Q8, for all Frobenius algebras discussed earlier, and compare to the decomposition conjecture. In
principle we expect that the same methods should also apply to Rep(H8) and other more general fusion
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categories of the form Rep(H) for H any suitable Hopf algebra; however, as a practical matter, we do not
have sufficient information about e.g. coevaluation maps to perform the computation in that case, and so it
is left for future work.

5.4.1 Rep(S3)

In this section we will work through the prediction for the case of the Rep(S3) fusion category. This will be
an exercise in computing the constants C3

1,2 described in the previous section, and then applying to simplify
partition functions.

Let us work through a simple example of a computation of the constants C3
1,2 from their definition (5.18).

Consider for example CY
X,Y . From the definition,

CY
X,Y =

∑︂
i,j,k

[︂
ℓ
k

Y ◦
(︂
ℓiX ⊗ ℓjY

)︂]︂ [︂
ℓ
j

Y ◦
(︂
ℓkY ⊗ γ(ℓ

i

X)
)︂]︂

, (5.22)

where i, j, k run over the dimensions of the corresponding vector spaces. (For example, since X is a
one-dimensional representation, i = 1 only, but since Y is a two-dimensional representation, j, k ∈ {1, 2}.)

Using the Rep(S3) intertwiners (3.7)-(3.22), the coevaluation maps induce

γ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℓ1 ↦→ ℓ1,

ℓX ↦→ β−1
1 ℓX ,

ℓ
1

Y ↦→ β−1
4 ℓ1Y ,

ℓ
2

Y ↦→ β−1
4 ℓ2Y .

(5.23)

(In principle, the ℓ’s on the right-hand side are computed with respect to L, not L, but we are using the fact
that in S3, all representations obey L = L.)

The intertwiners (3.13), (3.14) induce

ℓ1X ⊗ ℓjY =

{︃
+β2ℓ

2
Y j = 1,

−β2ℓ
1
Y j = 2,

(5.24)

ℓkY ⊗ γ
(︂
ℓ
1

X

)︂
=

{︃
+β3β

−1
1 ℓ2Y k = 1,

−β3β
−1
1 ℓ1Y k = 2.

(5.25)

Then, using the orthogonality relations (5.6), we see

ℓ
k

Y ◦
(︂
ℓ1X ⊗ ℓjY

)︂
=

⎧⎨⎩ +β2 j = 1, k = 2,
−β2 j = 2, k = 1,
0 else.

(5.26)

ℓ
j

Y ◦
(︂
ℓkY ⊗ γ

(︂
ℓ
i

X

)︂)︂
=

{︃
−β3β

−1
1 j = 1, k = 2

+β3β
−1
1 j = 2, k = 1

(5.27)

so plugging into equation (5.22), we have

CY
X,Y = −2β2β3β

−1
1 . (5.28)

Mapping the partial traces to the parent theory partition function is now a straightforward application
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of (5.18). We list here the results for the constants C3
1,2:

CX
1,X = 1 = CX

X,1 = C1
X,X , (5.29)

CY
1,Y = 2 = CY

Y,1 = C1
Y,Y , (5.30)

CY
X,Y = −2β2β3

β1
, (5.31)

CY
Y,X = −2β3β6

β4
, (5.32)

CX
Y,Y = 2

β2β6

β4
, (5.33)

CY
Y,Y = 4

β2
5

β4
. (5.34)

We can now apply this result to the various Rep(S3) gaugings.

• 1 +X: The 1 +X partition function (3.152) becomes

Z1+X =
1

2

[︁
Z1
1,1 + ZX

1,X + ZX
X,1 + Z1

X,X

]︁
, (5.35)

=
1

2

(︁
1 + CX

1,X + CX
X,1 + C1

X,X

)︁
Z1
1,1, (5.36)

=
1

2
(1 + 1 + 1 + 1)Z1

1,1 = 2Z1
1,1, (5.37)

exactly as we would expect for a trivially-acting Z2 orbifold. Comparing to the conjecture (5.16), there
are two simple objects (1, X), each of quantum dimension one, so indeed |A| = 2, and so our our
prediction (5.16) matches the computation.

• 1 + Y : The 1 + Y partition function (3.170) becomes

Z1+Y =
1

3

[︃
Z1
1,1 + ZY

1,Y + ZY
Y,1 + Z1

Y,Y +
β4

2β2
5

ZY
Y,Y

]︃
, (5.38)

=
1

3

[︃
1 + CY

1,Y + CY
Y,1 + C1

Y,Y +
β4

2β2
5

CY
Y,Y

]︃
Z1
1,1, (5.39)

=
1

3

[︃
1 + 2 + 2 + 2 +

(︃
β4

2β2
5

)︃(︃
4
β2
5

β4

)︃]︃
= 3Z1

1,1. (5.40)

Comparing to the conjecture (5.16), there are two simple objects (1, Y ). Of these, |1| = 1 but |Y | = 2,
so our conjecture predicts a factor of |A| = 1 + 2 = 3, and so our prediction (5.16) matches the result
here.
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• 1 +X + 2Y : Finally the regular representation orbifold partition function (3.211) becomes

Z1+X+2Y =
1

6

[︃
Z1
1,1 +

(︁
ZX
1,X + ZX

X,1 + Z1
X,X

)︁
+ 2

(︃
ZY
1,Y + ZY

Y,1 + Z1
Y,Y +

β4

2β2
5

ZY
Y,Y

)︃
− 2β1

β2β3

(︃
ZY
X,Y +

β2β4

β1β6
ZY
Y,X −

β3β4

β1β6
ZX
Y,Y −

β2β3β4

2β1β2
5

ZY
Y,Y

)︃]︃
, (5.41)

=
1

6

[︃
1 + (1 + 1 + 1) + 2

(︃
2 + 2 + 2 +

(︃
β4

2β2
5

)︃(︃
4
β2
5

β4

)︃)︃
− 2β1

β2β3

(︃
−2β2β3

β1
+

(︃
β2β4

β1β6

)︃(︃
−2β3β6

β4

)︃
−
(︃
β3β4

β1β6

)︃(︃
2
β2β6

β4

)︃
−
(︃
β2β3β4

2β1β2
5

)︃(︃
4
β2
5

β4

)︃)︃]︃
Z1
1,1, (5.42)

= 6Z1
1,1. (5.43)

This is again in line with expectation, as we could have constructed the trivially-acting Rep(S3)
symmetry from the free action of S3 on six universes, and gauging the regular representation should
undo the original S3 orbifold. In terms of the conjecture, there are four simple objects (1, X, and two
copies of Y ), and taking into account their quantum dimensions,

|A| = |1|+ |X|+ |Y |+ |Y | = 1 + 1 + 2 + 2 = 6, (5.44)

and so our prediction (5.16) matches the result here.

We also note that the fact that the result is independent of the β’s is highly nontrivial in this case,
requiring intricate cancellations between different factors, which is in itself a nontrivial consistency
check on our methods.

5.4.2 Rep(D4)

In Rep(D4), the constants C
3
1,2 relating the partial traces to Z

1
1,1 (for trivially-acting noninvertible symmetry)

are given by

Ca
1,a = 1 = Ca

a,1 = C1
a,a = Cb

1,b = Cb
b,1 = C1

b,b = Cc
1,c = Cc

c,1 = C1
c,c, (5.45)

Cc
a,b =

β2β9

β1
, (5.46)

Cc
b,a =

β5β10

β6
, (5.47)

Cb
a,c =

β3β5

β1
, (5.48)

Cb
c,a =

β7β9

β11
, (5.49)

Ca
b,c =

β2β7

β6
, (5.50)

Ca
c,b =

β3β10

β11
, (5.51)

Cm
1,m = 2 = Cm

m,1 = C1
m,m, (5.52)
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Cm
a,m = 2

β4β13

β1
, (5.53)

Cm
m,a = 2

β13β19

β18
, (5.54)

Ca
m,m = −2β4β19

β18
, (5.55)

Cm
b,m = 2

β8β14

β6
, (5.56)

Cm
m,b = 2

β14β16

β18
, (5.57)

Cb
m,m = 2

β8β16

β18
, (5.58)

Cm
c,m = −2β12β15

β11
, (5.59)

Cm
m,c = −2β15β17

β18
, (5.60)

Cc
m,m = −2β12β17

β18
, (5.61)

(5.62)

We now calculate the partition functions of the various Rep(D4) orbifolds when the entire Rep(D4)
symmetry acts trivially, and compare to the decomposition prediction 5.16).

• 1 + a: The 1 + a partition function (3.376) becomes

Z1+a =
1

2

(︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a

)︁
, (5.63)

=
1

2

(︁
1 + Ca

1,a + Ca
a,1 + C1

a,a

)︁
Z1
1,1, (5.64)

=
1

2
(1 + 1 + 1 + 1)Z1

1,1 = 2Z1
1,1, (5.65)

exactly as we would expect for a trivially-acting Z2 orbifold. Comparing to the conjecture (5.16),
there are two simple objects (1, a), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16) matches the computation.

• 1 + b: The 1 + b partition function (3.384) becomes

Z1+b =
1

2

(︁
Z1
1,1 + Zb

1,b + Zb
b,1 + Z1

b,b

)︁
, (5.66)

=
1

2

(︁
1 + Cb

1,b + Cb
b,1 + C1

b,b

)︁
Z1
1,1, (5.67)

=
1

2
(1 + 1 + 1 + 1)Z1

1,1 = 2Z1
1,1, (5.68)

again exactly as we would expect for a trivially-acting Z2 orbifold. Comparing to the conjecture (5.16),
there are two simple objects (1, b), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16) matches the computation.
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• 1 + a+ b+ c: The 1 + b+ b+ c partition function (3.394) becomes

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a +
β1

β2β9
Zc
a,b +

β1

β3β5
Zb
a,c + Zb

b,1 (5.69)

+
β6

β5β10
Zc
b,a + Z1

b,b +
β6

β2β7
Za
b,c + Zc

c,1 +
β11

β7β9
Zb
c,a +

β11

β3β10
Za
c,b + Z1

c,c

]︃
,

=
1

4

[︃
1 + Ca

1,a + Cb
1,b + Cc

1,c + Ca
a,1 + C1

a,a +
β1

β2β9
Cc

a,b +
β1

β3β5
Cb

a,c + Cb
b,1 (5.70)

+
β6

β5β10
Cc

b,a + C1
b,b +

β6

β2β7
Ca

b,c + Cc
c,1 +

β11

β7β9
Cb

c,a +
β11

β3β10
Ca

c,b + C1
c,c

]︃
Z1
1,1,

=
1

4

[︃
1 + 1 + 1 + 1 + 1 + 1 +

β1

β2β9

β2β9

β1
+

β1

β3β5

β3β5

β1
+ 1 (5.71)

+
β6

β5β10

β5β10

β6
+ 1 +

β6

β2β7

β2β7

β6
+ 1 +

β11

β7β9

β7β9

β11
+

β11

β3β10

β3β10

β11
+ 1

]︃
Z1
1,1,

= 4Z1,1, (5.72)

again exactly as we would expect for a trivially-acting Z2 × Z2 orbifold. Comparing to the conjec-
ture (5.16), there are four simple objects (1, a, b, c), each of quantum dimension one, so indeed |A| = 4,
and so our prediction (5.16) matches the computation.

• 1 + b+m: The 1 + b+m partition function (3.410) becomes

Z1+b+m =
1

4

[︃
Z1
1,1 + Zb

1,b + Zm
1,m + Zb

b,1 + Z1
b,b +

β6

β8β14
Zm
b,m (5.73)

+Zm
m,1 +

β18

β14β16
Zm
m,b + Z1

m,m +
β18

β8β16
Zb
m,m

]︃
,

=
1

4

[︃
1 + Cb

1,b + Cm
1,m + Cb

b,1 + C1
b,b +

β6

β8β14
Cm

b,m (5.74)

+Cm
m,1 +

β18

β14β16
Cm

m,b + C1
m,m +

β18

β8β16
Cb

m,m

]︃
Z1
1,1,

=
1

4

[︃
1 + 1 + 2 + 1 + 1 +

β6

β8β14

(︃
2
β8β14

β6

)︃
(5.75)

+2 +
β18

β14β16

(︃
2
β14β16

β18

)︃
+ 2 +

β18

β8β16

(︃
2
β8β16

β18

)︃]︃
Z1
1,1, (5.76)

= 4Z1
1,1. (5.77)

Comparing to the conjecture (5.16), there are three simple objects (1, b, m), of quantum dimensions
1, 1, 2, respectively, so |A| = 1+1+2 = 4, and so our prediction (5.16) matches the computation. We
also observe that the factor of 4 is consistent with the fact that this is dual to a Z2 × Z2 subgroup of
the original D4.
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• 1 + a+ b+ c+ 2m: The partition function (3.426) for the regular representation becomes

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + 2Zm
1,m + Za

a,1 + Z1
a,a +

β1

β2β9
Zc
a,b +

β1

β3β5
Zb
a,c

+
2β1

β4β13
Zm
a,m + Zb

b,1 +
β6

β5β10
Zc
b,a + Z1

b,b +
β6

β2β7
Za
b,c +

2β6

β8β14
Zm
b,m

+Zc
c,1 +

β11

β7β9
Zb
c,a +

β11

β3β10
Za
c,b + Z1

c,c −
2β11

β12β15
Zm
c,m

+2Zm
m,1 +

2β18

β13β19
Zm
m,a +

2β18

β14β16
Zm
m,b −

2β18

β15β17
Zm
m,c

+2Z1
m,m −

2β18

β4β19
Za
m,m +

2β18

β8β16
Zb
m,m −

2β18

β12β17
Zc
m,m

]︃
, (5.78)

=
1

8

[︃
1 + 1 + 1 + 1 + 2(2) + 1 + 1 +

β1

β2β9

(︃
β2β9

β1

)︃
+

β1

β3β5

(︃
β3β5

β1

)︃
+

2β1

β4β13

(︃
2
β4β13

β1

)︃
+ 1 +

β6

β5β10

(︃
β5β10

β6

)︃
+ 1 +

β6

β2β7

(︃
β2β7

β6

)︃
+

2β6

β8β14

(︃
2
β8β14

β6

)︃
+ 1 +

β11

β7β9

(︃
β7β9

β11

)︃
+

β11

β3β10

(︃
β3β10

β11

)︃
+ 1

− 2β11

β12β15

(︃
−2β12β15

β11

)︃
+ 2 (2) +

2β18

β13β19

(︃
2
β13β19

β18

)︃
+

2β18

β14β16

(︃
2
β14β16

β18

)︃
− 2β18

β15β17

(︃
−2β15β17

β18

)︃
+ 2(2)− 2β18

β4β19

(︃
−2β4β19

β18

)︃
+

2β18

β8β16

(︃
2
β8β16

β18

)︃
− 2β18

β12β17

(︃
−2β12β17

β18

)︃]︃
Z1
1,1, (5.79)

= 8Z1
1,1. (5.80)

Comparing to the conjecture (5.16), there are six simple objects (1, a, b, c, and two copies of m), four
of which (1, a, b, c) have quantum dimension one, and two of which (the copies of m) have quantum
dimension two, so

|A| = 1 + 1 + 1 + 1 + 2 + 2 = 8, (5.81)

and so our prediction (5.16) matches the computation. This also reflects the fact that we could have
constructed the theory with trivially-acting Rep(D4) symmetry from the free action of D4 on eight
trivial theories – gauging the regular representation returns us to this disjoint union of eight objects.

We also observe that the fact that the intertwiner β’s all cancel out, in a rather intricate fashion, is a
strong consistency check on our methods.

5.4.3 Rep(Q8)

The results for Rep(Q8) will of course closely mirror those of Rep(D4). We find

Ca
1,a = 1 = Ca

a,1 = C1
a,a = Cb

1,b = Cb
b,1 = C1

b,b = Cc
1,c = Cc

c,1 = C1
c,c, (5.82)
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Cc
a,b =

β′
2β

′
9

β′
1

, (5.83)

Cc
b,a =

β′
5β

′
10

β′
6

, (5.84)

Cb
a,c =

β′
3β

′
5

β′
1

, (5.85)

Cb
c,a =

β′
7β

′
9

β′
11

, (5.86)

Ca
b,c =

β′
2β

′
7

β′
6

, (5.87)

Ca
c,b =

β′
3β

′
10

β′
11

, (5.88)

Cm
1,m = 2 = Cm

m,1 = C1
m,m, (5.89)

Cm
a,m = 2

β′
4β

′
13

β′
1

, (5.90)

Cm
m,a = 2

β′
13β

′
19

β′
18

, (5.91)

Ca
m,m = −2β

′
4β

′
19

β′
18

, (5.92)

Cm
b,m = −2β

′
8β

′
14

β′
6

, (5.93)

Cm
m,b = 2

β′
14β

′
16

β′
18

, (5.94)

Cb
m,m = −2β

′
8β

′
16

β′
18

, (5.95)

Cm
c,m = 2

β′
12β

′
15

β′
11

, (5.96)

Cm
m,c = −2β

′
15β

′
17

β′
18

, (5.97)

Cc
m,m = 2

β′
12β

′
17

β′
18

, (5.98)

where the only change relative to Rep(D4) is that the coefficients Cm
b,m, Cb

m,m, Cm
c,m and Cc

m,m have flipped
sign.

We now calculate the partition functions of the various Rep(Q8) orbifolds when the entire Rep(Q8)
symmetry acts trivially, and in each case compare to the decomposition prediction (5.16).

• 1 + a: The 1 + a partition function (3.509) becomes

Z1+a =
1

2

(︁
Z1
1,1 + Za

1,a + Za
a,1 + Z1

a,a

]︁
, (5.99)

=
1

2

(︁
1 + Ca

1,a + Ca
a,1 + C1

a,a

)︁
Z1
1,1, (5.100)

= 2Z1
1,1, (5.101)
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exactly as we would expect for a trivially-acting Z2 orbifold. Comparing to the conjecture (5.16),
there are two simple objects (1, a), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16) matches the computation.

• 1 + a+ b+ c: The 1 + a+ b+ c partition function 3.520) becomes

Z1+a+b+c =
1

4

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + Za
a,1 + Z1

a,a +
β′
1

β′
2β

′
9

Zc
a,b +

β′
1

β′
3β

′
5

Zb
a,c (5.102)

+Zb
b,1 +

β′
6

β′
5β

′
10

Zc
b,a + Z1

b,b +
β′
6

β′
2β

′
7

Za
b,c + Zc

c,1 +
β′
11

β′
7β

′
9

Zb
c,a +

β′
11

β′
3β

′
10

Za
c,b + Z1

c,c

]︃
,

=
1

4

[︃
1 + Ca

1,a + Cb
1,b + Cc

1,c + Ca
a,1 + C1

a,a +
β′
1

β′
2β

′
9

Cc
a,b +

β′
1

β′
3β

′
5

Cb
a,c (5.103)

+Cb
b,1 +

β′
6

β′
5β

′
10

Cc
b,a + C1

b,b +
β′
6

β′
2β

′
7

Ca
b,c + Cc

c,1 +
β′
11

β′
7β

′
9

Cb
c,a +

β′
11

β′
3β

′
10

Ca
c,b + Z1

c,c

]︃
Z1
1,1,

=
1

4

[︃
1 + 1 + 1 + 1 + 1 + 1 +

β′
1

β′
2β

′
9

(︃
β′
2β

′
9

β′
1

)︃
+

β′
1

β′
3β

′
5

(︃
β′
3β

′
5

β′
1

)︃
(5.104)

+1 +
β′
6

β′
5β

′
10

(︃
β′
5β

′
10

β′
6

)︃
+ 1 +

β′
6

β′
2β

′
7

(︃
β′
2β

′
7

β′
6

)︃
+ 1 +

β′
11

β′
7β

′
9

(︃
β′
7β

′
9

β′
11

)︃
+

β′
11

β′
3β

′
10

(︃
β′
3β

′
10

β′
11

)︃
+ 1

]︃
Z1
1,1,

= 4Z1
1,1, (5.105)

exactly as we would expect for a trivially-acting Z2×Z2 orbifold. Comparing to the conjecture (5.16),
there are four simple objects (1, a, b, c), each of quantum dimension one, so indeed |A| = 4, and so
our prediction (5.16) matches the computation.
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• 1 + a+ b+ c+ 2m: The 1 + a+ b+ c+ 2m partition function (3.538) becomes

Z1+a+b+c+2m =
1

8

[︃
Z1
1,1 + Za

1,a + Zb
1,b + Zc

1,c + 2Zm
1,m + Za

a,1 + Z1
a,a +

β′
1

β′
2β

′
9

Zc
a,b +

β′
1

β′
3β

′
5

Zb
a,c

+
2β′

1

β′
4β

′
13

Zm
a,m + Zb

b,1 +
β′
6

β′
5β

′
10

Zc
b,a + Z1

b,b +
β′
6

β′
2β

′
7

Za
b,c −

2β′
6

β′
8β

′
14

Zm
b,m

+Zc
c,1 +

β′
11

β′
7β

′
9

Zb
c,a +

β′
11

β′
3β

′
10

Za
c,b + Z1

c,c +
2β′

11

β′
12β

′
15

Zm
c,m

+2Zm
m,1 +

2β′
18

β′
13β

′
19

Zm
m,a +

2β′
18

β′
14β

′
16

Zm
m,b −

2β′
18

β′
15β

′
17

Zm
m,c

+2Z1
m,m −

2β′
18

β′
4β

′
19

Za
m,m −

2β′
18

β′
8β

′
16

Zb
m,m +

2β′
18

β′
12β

′
17

Zc
m,m

]︃
, (5.106)

=
1

8

[︃
1 + 1 + 1 + 1 + 2(2) + 1 + 1 +

β′
1

β′
2β

′
9

(︃
β′
2β

′
9

β′
1

)︃
+

β′
1

β′
3β

′
5

(︃
β′
3β

′
5

β′
1

)︃
+

2β′
1

β′
4β

′
13

(︃
2
β′
4β

′
13

β′
1

)︃
+ 1 +

β′
6

β′
5β

′
10

(︃
β′
5β

′
10

β′
6

)︃
+ 1 +

β′
6

β′
2β

′
7

(︃
β′
2β

′
7

β′
6

)︃
− 2β′

6

β′
8β

′
14

(︃
−2β

′
8β

′
14

β′
6

)︃
+ 1 +

β′
11

β′
7β

′
9

(︃
β′
7β

′
9

β′
11

)︃
+

β′
11

β′
3β

′
10

(︃
β′
3β

′
10

β′
11

)︃
+ 1

+
2β′

11

β′
12β

′
15

(︃
2
β′
12β

′
15

β′
11

)︃
+ 2(2) +

2β′
18

β′
13β

′
19

(︃
2
β′
13β

′
19

β′
18

)︃
+

2β′
18

β′
14β

′
16

(︃
2
β′
14β

′
16

β′
18

)︃
− 2β′

18

β′
15β

′
17

(︃
−2β

′
15β

′
17

β′
18

)︃
+ 2(2)− 2β′

18

β′
4β

′
19

(︃
−2β

′
4β

′
19

β′
18

)︃
− 2β′

18

β′
8β

′
16

(︃
−2β

′
8β

′
16

β′
18

)︃
+

2β′
18

β′
12β

′
17

(︃
2
β′
12β

′
17

β′
18

)︃]︃
Z1
1,1, (5.107)

= 8Z1
1,1. (5.108)

Comparing to the conjecture (5.16), there are six simple objects (1, a, b, c, and two copies of m), four
of which (1, a, b, c) have quantum dimension one, and two of which (the copies of m) have quantum
dimension two, so indeed

|A| = 1 + 1 + 1 + 1 + 2 + 2 = 8, (5.109)

and so our prediction (5.16) matches the computation.

As in previous examples, the fact that all of the β′ cancel out, often in a rather intricate fashion, is a
solid self-consistency test of our methods.

5.5 TQFT interpretation

The field theory of a trivially-acting symmetry is a symmetry-protected topological (SPT) phase, so we
can regard the above results as gauging SPTs for Rep(G) symmetries. More specifically, the coefficients we
obtain when applying decomposition to the genus one partition function tell us the ground state degeneracy
of the resulting theory. Below we give slightly more detail on some of the theories appearing in the above
examples:

• SPT(Rep(S3))/(1 +X), 2 ground states. We expect that gauging the Z2 subgroup generated by X of
a theory with Rep(S3) symmetry will produce a theory with S3 symmetry, so we can identify this as
the S3-symmetic Z2 SSB phase discussed in [47, section 4.6.3].
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• SPT(Rep(S3))/(1+Y ), 3 ground states. If we present our Rep(S3)-symmetric theory as an S3 orbifold,
gauging the 1+Y subsymmetry should return the Z2 orbifold of the S3-symmetric theory. In particular
this means that the resulting theory still carries Rep(S3) symmetry. We can identify this theory as the
Rep(S3)/Z2 SSB phase of [47, section 5.3.3].

• SPT(Rep(S3))/(1 +X + 2Y ), 6 ground states. This is Rep(S3) gauge theory, also known as Rep(S3)
Dijkgraaf-Witten theory. The six ground states carry a freely-acting S3 symmetry that is the quantum
dual to the original Rep(S3). This is the S3 SSB phase of [47, section 4.6.1].

• SPT(Rep(D4))/(1 + a + b + c + 2m) and SPT(Rep(Q8))/(1 + a + b + c + 2m), 8 ground states each.
These are the gauge theories for Rep(D4) and Rep(Q8), and the story is similar to Rep(S3) gauge
theory. In both cases the resulting theories consist of eight copies of the trivial theory (i.e. an SPT for
the trivial group) with a free action of D4 or Q8, respectively.

6 Conclusions

In this paper we have explicitly gauged some examples of multiplicity-free noninvertible symmetries in two
dimensions. We began with a general overview of the procedure. For a noninvertible symmetry defined by
a fusion category of the form Rep(H), for H a Hopf algebra, we put the structure of a special symmetric
Frobenius algebra on H∗ in order to construct modular-invariant partition functions. We checked that the
general procedure correctly reproduced results for ordinary group orbifolds, described in present language
by the fusion category Vec(G) = Rep(C[G]∗). We then did explicit computations in Rep(S3), Rep(D4),
Rep(Q8), and Rep(H8), and discussed applications in c = 1 CFTs. We also discussed decomposition arising
in cases in which the gauged noninvertible symmetry acts trivially.

We intend to return to these matters in upcoming work [20], for example generalizing to non-multiplicity-
free cases.
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A Algebras

This paper will frequently make use of both Hopf algebras and Frobenius algebras – representations of Hopf
algebras will arise when describing pertinent noninvertible symmetries, and Frobenius algebras will be used
to define their gauging. To make this paper self-contained, we outline their definitions in this appendix.

A.1 Definition of Hopf algebra

A Hopf algebra (H, µH , uH ,∆H , uo
H , S) is defined by
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• a multiplication µH : H⊗H → H,

• a unit uH : C→ H,

• a comultiplication ∆H : H → H⊗H,

• a counit uo
H : H → C,

• an antipode S : H → H

satisfying several identities, of which we list the key ones below:

• associativity:
µH ◦ (µH ⊗ IdH) = µH ◦ (IdH ⊗ µH) , (A.1)

• unit axiom:
µH ◦ (IdH ⊗ uH(1)) = IdH = µH ◦ (uH(1)⊗ IdH) , (A.2)

• coassociativity:
(IdH ⊗∆H) ◦∆H = (∆H ⊗ IdH) ◦∆H , (A.3)

• counit axiom:
(IdH ⊗ uo

H) ◦∆H = IdH = (uo
H ⊗ IdH) ◦∆H , (A.4)

• antipode axiom:

H⊗H S⊗1 →→ H⊗H
µH

↘↘G
GG

GG
GG

GG

H

∆H

↗↗wwwwwwwww uo
H →→

∆H ↘↘G
GG

GG
GG

GG
C uH →→ H

H⊗H 1⊗S →→ H⊗H
µH

↗↗wwwwwwwww

(A.5)

More formally, this means that a Hopf algebra is an associative and coassociative bialgebra, together with a
compatible antipode map. In this paper we also take H to be finite-dimensional and semisimple.

A common example is the special case H = C[G], the group algebra of a finite group G, for which the
algebra structure is a linear extension of the product on G, and where the co-algebra structure, as well as
the antipode map, is given by

∆H(g) = g ⊗ g, uo
H(g) = 1, S(g) = g−1, (A.6)

for g ∈ G, and extended linearly over C[G], where ∆H is the comultiplication and uo
H the counit.

Because group algebras are a special case, Hopf algebras generalize group algebras.

A.2 Definition of Frobenius algebra

Briefly, a Frobenius algebra (A, µF , uF ,∆F , u
o
F ) is defined by

• a multiplication µF : A⊗A → A,
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• a unit uF : C→ A,

• a comultiplication ∆F : A → A⊗A,

• a counit uo
F : A → C,

satisfying several identities, of which we list the key ones below:

• associativity:
µF ◦ (µF ⊗ IdA) = µF ◦ (IdA ⊗ µF ) , (A.7)

• unit axiom:
µF ◦ (IdA ⊗ uF (1)) = IdA = µF ◦ (uF (1)⊗ IdA) , (A.8)

• coassociativity:
(IdA ⊗∆F ) ◦∆F = (∆F ⊗ IdA) ◦∆F , (A.9)

• counit axiom:
(IdA ⊗ uo

F ) ◦∆F = IdA = (uo
F ⊗ IdA) ◦∆F , (A.10)

• Frobenius identities (2.46):

A⊗A ∆F⊗IdA →→

µF

↓↓

A⊗A⊗A

IdA⊗µF

↓↓
A ∆F →→ A⊗A

, A⊗A IdA⊗∆F →→

µF

↓↓

A⊗A⊗A

µF⊗IdA

↓↓
A ∆F →→ A⊗A

(A.11)

In this paper we usually work with special symmetric Frobenius algebras. These satisfy the following
additional key axioms:

• special (2.47):
uo
F ◦ uF ∝ Id1, µF ◦∆F = IdA, (A.12)

• symmetric (2.48):

A A∗ ⊗A⊗A

A⊗A⊗A∗ A∗

γ̃A⊗IdA

IdA⊗γA IdA∗⊗(uo
F ◦µ∗)

(uo
F ◦µ∗)⊗IdA∗

(A.13)

where γ̃A : C → A∗ ⊗ A and γA : C → A⊗A∗ are coevaluation maps that exist by definition of A∗

being dual to A (and vice-versa) as vector spaces.

B Z2 × Z2 Tambara-Yamagami modular transformations

We compute the relevant transformations with p, q ∈ {1, a, b, c}, and x ∈ {a, b, c}. We will drop the bars
since all objects are self-dual.
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The associators are listed at [29, def’n (3.1)] as F-symbols. They are related to the K̃’s we primarily use
in this paper by

F 2,1,5
4,3,6 = K̃

1,4

2,3(5, 6). (B.1)

The reader may also consult [88, fig. 7], which lists slightly different F symbols for D4 and Q8, corresponding
to the matrix elements of the a of [29].

In this paper we give first-principles derivations of associators for Rep(D4) and Rep(Q8), listing results
for general intertwiners. A standard result for associators for a fixed choice of intertwiners, for all of Rep(D4),
Rep(Q8), and Rep(H8), can be found in [88, fig. 7], which lists

F q,p,pq
pqr,r,qr = F q,p,pq

m,m,m = F p,m,m
m,q,pq = Fm,p,m

pq,m,q = Fm,m,q
pq,p,m = 1, (B.2)

Fm,p,m
m,q,m = F p,m,m

q,m,m = χ(p, q), (B.3)

Fm,m,p
m,m,q = nχ(p, q)/2, (B.4)

where p, q, r index one-dimensional representations, and m is the two-dimensional representation.

1. For D4, n = +1, χ(1, p) = χ(p, 1) = +1, χ(x, x) = +1, χ(x, y) = −1, for x ̸= y corresponding to
nontrivial one-dimensional irreps.

2. For Q8, n = −1, χ(1, p) = χ(p, 1) = +1, χ(x, x) = +1, χ(x, y) = −1, for x ̸= y corresponding to
nontrivial one-dimensional irreps.

3. For H8, n = +1, χ(1, p) = χ(p, 1) = χ(c, c) = +1, χ(a, a) = χ(b, b) = χ(a, c) = χ(b, c) = −1

where a, b not arbitrary irreps but are the particular one-dimensional irreps that generate the Klein group.

In the sums below, p, q ∈ {1, a, b, c}, whereas the index L ∈ {1, a, b, c,m}.

Zpq
p,q(τ + 1, τ̄ + 1) = K̃

p,q

q,p(pq, pq)Z
q
p,pq(τ, τ̄) = F q,p,pq

q,p,pq Z
q
p,pq(τ, τ̄) = Zq

p,pq(τ, τ̄) (B.5)

Zm
p,m(τ + 1, τ̄ + 1) = K̃

p,m

m,p(m,m)Zm
p,m(τ, τ̄) = Fm,p,m

m,p,mZm
p,m(τ, τ̄) = χ(p, p)Zm

p,m(τ, τ̄) (B.6)

Zp
m,m(τ + 1, τ̄ + 1) =

∑︂
q

K̃
m,m

m,m(p, q)Zm
m,q(τ, τ̄) =

∑︂
q

Fm,m,p
m,m,q Z

m
m,q(τ, τ̄) (B.7)

=
1

2

∑︂
q

nχ(p, q)Zm
m,q(τ, τ̄) (B.8)

Zm
m,p(τ + 1, τ̄ + 1) = K̃

m,p

p,m(m,m)Zp
m,m(τ, τ̄) = F p,m,m

p,m,mZp
m,m(τ, τ̄) = χ(p, p)Zp

m,m(τ, τ̄) (B.9)

Zpq
p,q(−1/τ,−1/τ̄) = K̃

p,1

pq,q(q, p)K̃
p,q

q,p(pq, pq)Z
pq
q,p(τ, τ̄) = F pq,p,q

1,q,p F q,p,pq
q,p,pq Z

pq
q,p(τ, τ̄) (B.10)

= Zpq
q,p(τ, τ̄) (B.11)

Zm
p,m(−1/τ,−1/τ̄) = K̃

p,1

m,m(m, p)K̃
p,m

m,p(m,m)Zm
m,p(τ, τ̄) = Fm,p,m

1,m,p Fm,p,m
m,p,mZm

m,p(τ, τ̄) (B.12)

= χ(p, p)Zm
m,p(τ, τ̄) (B.13)

Zm
m,p(−1/τ,−1/τ̄) = K̃

m,1

m,p(p,m)K̃
m,p

p,m(m,m)Zm
p,m(τ, τ̄) = Fm,m,p

1,p,m F p,m,m
p,m,mZm

p,m(τ, τ̄) (B.14)

= χ(p, p)Zm
p,m(τ, τ̄) (B.15)

Zp
m,m(−1/τ,−1/τ̄) =

∑︂
q

K̃
m,1

q,m(m,m)K̃
m,m

m,m(p, q)Zq
m,m =

∑︂
q

F 1,m,m
q,m,m Fm,m,p

m,m,1Z
1
m,m (B.16)

=
1

2

∑︂
q

nχ(p, q)Zq
m,m (B.17)
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We now show that the partition functions previously obtained are indeed modular invariant. This serves as
a useful consistency check. In all cases, the sum

ZZ2×Z2 =
∑︂

g,h∈{1,a,b,c}

Zgh
g,h

always appears, which corresponds to gauging a non-anomalous Z2×Z2 group. This is known to be modular
invariant, so we will only focus on the part of the partition functions that involve the noninvertible object
m.

For D4, we have the combination

Z ′
Rep(D4)

:= Zm
1,m − Zm

a,m + Zm
b,m + Zm

c,m + Zm
m,1 − Zm

m,a + Zm
m,b + Zm

m,c

+Z1
m,m − Za

m,m + Zb
m,m + Zc

m,m

Under T -transformation this becomes

Z ′
Rep(D4)

(τ + 1) = Zm
1,m − Zm

a,m + Zm
b,m + Zm

c,m + Z1
m,m − Za

m,m + Zb
m,m + Zc

m,m

+
1

2

(︁
Zm
m,1 + Zm

m,a + Zm
m,b + Zm

m,c

)︁
− 1

2

(︁
Zm
m,1 + Zm

m,a − Zm
m,b − Zm

m,c

)︁
+
1

2

(︁
Zm
m,1 − Zm

m,a + Zm
m,b − Zm

m,c

)︁
+

1

2

(︁
Zm
m,1 − Zm

m,a − Zm
m,b + Zm

m,c

)︁
= Z ′

Rep(D4)
(τ),

while under S-transformation it becomes

Z ′
Rep(D4)

(−1/τ) = Zm
m,1 − Zm

m,a + Zm
m,b + Zm

m,c + Zm
1,m − Zm

a,m + Zm
b,m + Zm

c,m

+
1

2

(︁
Z1
m,m + Za

m,m + Zb
m,m + Zc

m,m

)︁
− 1

2

(︁
Z1
m,m + Za

m,m − Zb
m,m − Zc

m,m

)︁
+
1

2

(︁
Z1
m,m − Za

m,m + Zb
m,m − Zc

m,m

)︁
+

1

2

(︁
Z1
m,m − Za

m,m − Zb
m,m + Zc

m,m

)︁
= Z ′

Rep(D4)
(τ),

both of which match the original term Z ′
Rep(D4)

.

For Q8 the relevant term is

Z ′
Rep(Q8)

:= Zm
1,m − Zm

a,m − Zm
b,m − Zm

c,m + Zm
m,1 − Zm

m,a − Zm
m,b − Zm

m,c

+Z1
m,m − Za

m,m − Zb
m,m − Zc

m,m

Under T -transformation this becomes

Z ′
Rep(Q8)

(τ + 1) = Zm
1,m − Zm

a,m − Zm
b,m − Zm

c,m + Z1
m,m − Za

m,m − Zb
m,m − Zc

m,m

−1

2

(︁
Zm
m,1 + Zm

m,a + Zm
m,b + Zm

m,c

)︁
+

1

2

(︁
Zm
m,1 + Zm

m,a − Zm
m,b − Zm

m,c

)︁
+
1

2

(︁
Zm
m,1 − Zm

m,a + Zm
m,b − Zm

m,c

)︁
+

1

2

(︁
Zm
m,1 − Zm

m,a − Zm
m,b + Zm

m,c

)︁
= Z ′

Rep(Q8)
(τ),

while under S-transformation it becomes

Z ′
Rep(Q8)

(−1/τ) = Zm
m,1 − Zm

m,a − Zm
m,b − Zm

m,c + Zm
1,m − Zm

a,m − Zm
b,m − Zm

c,m

−1

2

(︁
Z1
m,m + Za

m,m + Zb
m,m + Zc

m,m

)︁
+

1

2

(︁
Z1
m,m + Za

m,m − Zb
m,m − Zc

m,m

)︁
+
1

2

(︁
Z1
m,m − Za

m,m + Zb
m,m − Zc

m,m

)︁
+

1

2

(︁
Z1
m,m − Za

m,m − Zb
m,m + Zc

m,m

)︁
= Z ′

Rep(Q8)
(τ),
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both of which match the original term Z ′
Rep(D4)

.

Finally, for H8, the combination is

Z ′
Rep(H8)

:= Zm
1,m + Zm

c,m + Zm
m,1 + Zm

m,c + Z1
m,m + Zc

m,m.

Under T -transformation this becomes

Z ′
Rep(H8)

(τ + 1) = Zm
1,m + Zm

c,m + Z1
m,m + Zc

m,m

+
1

2

(︁
Zm
m,1 + Zm

m,a + Zm
m,b + Zm

m,c

)︁
+

1

2

(︁
Zm
m,1 − Zm

m,a − Zm
m,b + Zm

m,c

)︁
,

= Z ′
Rep(H8)

(τ),

and under S-transformation one gets

Z ′
Rep(H8)

(−1/τ) = Zm
m,1 + Zm

m,c + Zm
1,m + Zm

c,m +
1

2

(︁
Z1
m,m + Za

m,m + Zb
m,m + Zc

m,m

)︁
+
1

2

(︁
Z1
m,m − Za

m,m − Zb
m,m + Zc

m,m

)︁
,

= Z ′
Rep(H8)

(τ),

matching the original expression Z ′
Rep(H8)

. Note that modular invariance provides a further consistency check
for the absence of partial traces involving the noninvertible object along with either a or b. For example,
under T -transformation one has that

Zm
a,m ↦−→ −Zm

a,m,

Zm
b,m ↦−→ −Zm

b,m,

and since no other partial traces map to Zm
a,m or Zm

a,m, they cannot be present in the gauged theory partition
function. Furthermore, under S-transformation the partial traces

Zm
a,m ←→ −Zm

m,a,

Zm
b,m ←→ −Zm

m,b,

are interchanged, meaning the partial traces Zm
m,a and Zm

m,a should also be absent. But the latter implies

that the partial traces Za
m,m and Zb

m,m vanish by T -transformation. Thus, modular invariance confirms that
partial traces involving m with a or b must vanish, precisely as what was obtained.

C Gauging actions on disjoint unions

Disjoint unions of spaces can be simple playgrounds for actions of both abelian and nonabelian symmetry
groups, as well as simple examples in which to see quantum symmetries of the form Rep(G) at work. In this
section we will give an overview of orbifolds [X/G] in which X is a disjoint union of copies of some other
space Y ,

X =
∐︂
i

Y, (C.1)

and the group G acts by interchanging copies.

Let us begin with a few examples of this form. Suppose first that X is a disjoint union of three copies of
Y , and G = Z3, acting by interchanging those copies. In this case, G acts transitively on X, and [X/G] = Y .
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Ordinarily, in an orbifold, there are twisted sectors. If the orbifold group acts freely, those twisted sectors
may only encode massive states, but they are still present. One way to see this is the existence of the
quantum symmetry: in order for an orbifold by the quantum symmetry to return the original theory, all of
the information of the original theory must be present in the orbifold.

Here, by contrast, since the group Z3 interchanges elements of a disjoint union, no twisted sectors can
exist – there are no (connected) string worldsheets that start on one element of a disjoint union, and end on
a different element of the disjoint union.

Nevertheless, orbifolding by the quantum symmetry does restore the original theory in this case. This
is a result of decomposition (see e.g. [54, 55]). Because there are no twisted sectors at all, the quantum
symmetry (here, Z3) acts trivially, hence when we orbifold by the trivially-acting quantum symmetry, we
get three copies. In other words,

[X/Z3] = Y, (C.2)

and since the quantum symmetry Ẑ3 acts trivially,

[[X/Z3]/Ẑ3] =
∐︂
3

[X/Z3], (C.3)

=
∐︂
3

Y, (C.4)

= X. (C.5)

Now, let us compare the orbifold [X/S3], where S3 is the symmetric group on three objects, interchanging
the three copies of Y . In this case, Z3 is a normal subgroup of S3, with quotient Z2 = S3/Z3. In particular,
Z2 = S3/Z3 acts (trivially) on Y = [X/Z3], with quotient

[[X/Z3]/Z2] = [X/S3]. (C.6)

Furthermore, since Z2 acts trivially, we see that [X/S3] is a trivial Z2 gerbe on Y = [X/Z3], and hence from
decomposition,

[X/S3] =
∐︂
2

Y. (C.7)

Let us generalize from three objects to n objects. Define

X =
∐︂
n

Y. (C.8)

The group Zn acts transitively on X, hence [X/Zn] = Y . For n > 3, Zn is not a normal subgroup of Sn.
Technically, [X/Sn] is a non-banded Sn−1 gerbe on Y . The space Y is an atlas for that gerbe, but the gerbe
is not a quotient [Y/Sn−1].
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