Notes on gauging noninvertible symmetries, part 1: Multiplicity-free cases

A. Perez-Lonal, D. Robbins?, E. Sharpe', T. Vandermeulen?, X. Yu!

! Department of Physics MC 0435
850 West Campus Drive

Virginia Tech

Blacksburg, VA 24061

2 Department of Physics
University at Albany
Albany, NY 12222

3 George P. and Cynthia W. Mitchell Institute
for Fundamental Physics and Astronomy
Texas A&M University

College Station, TX 77843

aperezl@vt.edu, dgrobbins@albany.edu, ersharpe@vt.edu, tvand@tamu.edu, xingyangy@vt.edu

In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize
to certain gaugeable cases, specifically, fusion categories of the form Rep(#) for H a suitable Hopf algebra
(which includes the special case Rep(G) for G a finite group). We also specialize to the case that the fusion
category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a
choice of Frobenius algebra structure on H*. We discuss how ordinary G orbifolds for finite groups G are
a special case of the construction, corresponding to the fusion category Vec(G) = Rep(C[G]*). For the
cases Rep(S3), Rep(Dy), and Rep(Qs), we construct the crossing kernels for general intertwiner maps. We
explicitly compute partition functions in the examples of Rep(Ss), Rep(D4), Rep(Qs), and Rep(Hsg), and
discuss applications in ¢ = 1 CFTs. We also discuss decomposition in the special case that the entire
noninvertible symmetry group acts trivially.
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1 Introduction

Recently, there has been a great deal of interest in noninvertible symmetries, see e.g. [113] for recent reviews,
and see also e.g. [4H8] for related work in for example three-dimensional TFTs, which give conceptual
insights into gaugeability of noninvertible symmetries in physical theories via the ‘sandwich’ construction,
and also see e.g. |9H12]. The purpose of this paper is to explicitly gauge noninvertible global symmetries
in some examples, to construct concrete expressions for partition functions and discuss applications such as
decomposition, following up pioneering papers such as [13},/14] which discuss basics of such gaugings.

As has been discussed elsewhere in the literature, (finite) noninvertible symmetries are described by a
fusion category. We will review later how not every fusion category can be gauged (see e.g. [1518] for other
recent discussions). Gaugeability imposes constraints on the fusion category, and to satisfy those constraints,
we will restrict to fusion categories of the form Rep(G) (the category of representations of a group G), for
finite G, and to generalizations Rep(#) where H will be a semisimple finite-dimensional Hopf algebra (which
we will define later). (See also [19] for a recent discussion of Rep(#) fusion categories.) This will turn out
to include ordinary orbifolds as special cases, for which the fusion category is Vec(G) = Rep(C[G]*), the
category of G-graded vector spaces), for G the (finite) orbifold group, as we shall discuss. (We emphasize
that these are not the most general possible fusion categories arising in two-dimensional theories as describing
global symmetries, as has also been remarked by e.g. [14].)

Now, to gauge the noninvertible symmetry, to construct a modular-invariant partition function, we will
see that we need to specify additional structure, namely a (special, symmetric) Frobenius algebra. Many
choices are possible; we will describe pertinent choices in terms of the regular representation of G or H. In
practice, for categories of representations of finite groups G, the Frobenius algebra is defined on the dual
C[G]* or H* (where we have used the fact that Rep(G) = Rep(C[G]), for C[G] the group algebra of G, to
describe Rep(G) as a special case of Rep(H)).

One can gauge along any number of Frobenius algebras; we emphasize that when we speak of gauging
the (entire) noninvertible symmetry, we mean that we are gauging the Frobenius algebra associated with
the regular representation. Further generalizations may be possible; we do not address the question of
constructing Frobenius algebras from more general fusion categories, or their gauging.

Intuitively, the reader might compare to the case of ordinary group orbifolds, and ask why the additional
step of specifying a Frobenius algebra is required. After all, standard orbifold constructions only require
specifying a group and its action. Our intuition is that in ordinary orbifolds there exists a canonical choice
of Frobenius algebra (as we shall discuss later in section 7 which one works with implicitly. Similarly,
when gauging a (gaugeable) noninvertible symmetry, there exists a canonical choice of Frobenius algebra
structure (constructed on the regular representation of the group G or Hopf algebra H).

The construction of partition functions we describe here is closely related to that described in |13], which
formulated rational conformal field theory in terms of a symmetric special Frobenius algebra.

In this paper, we will focus on gauging noninvertible symmetries in multiplicity-free cases, meaning that
spaces of junction operators are one-dimensional, as we shall explain later. We will describe gauging in more
general cases in our subsequent work [20].

We begin in section [2] by describing the basic principles underlying the gauging of noninvertible sym-
metries. We define partial traces for noninvertible symmetry analogues of orbifolds, the building blocks of
partition functions, and observe in an example that not every noninvertible symmetry can be gauged, as
it is not always possible to construct a modular-invariant partition function. We discuss necessary condi-
tions for gauging, and restrict to a class of gaugeable noninvertible symmetries, defined by fusion categories
of the form Rep(#) for H a finite-dimensional semisimple Hopf algebra. (This includes as special cases



both Rep(G) for G a finite group, as well as ordinary orbifolds, which are described by the fusion category
Vec(G) = Rep(C[G]*).) For simplicity, in this paper we restrict to ‘multiplicity-free’ cases, which we explain.
In order to perform a gauging, in order to construct a modular invariant partition function, one must specify
a special symmetric Frobenius algebra (constructed from the dual of the Hopf algebra H*, as we discuss).
We give formal expressions for partition functions (at genus one and higher), and check modular invariance.
We also discuss in detail how ordinary orbifolds arise as special cases.

In section [3] we compute partition functions for Frobenius algebras arising in several examples, namely
Rep(Ss3), Rep(Dy), Rep(Qs), and Rep(Hs). For the first three, we give first-principles computations, deriving
the general form of associators and crossing kernels / F-symbols for general intertwiner maps, expressions
for modular transformations of partial traces, and compute partition functions for every relevant choice of
Frobenius algebra, checking modular invariance in each case. For the last example, Rep(Hsg), we use standard
results for crossing kernels (for fixed intertwiner values), and only compute the partition function for one
Frobenius algebra (corresponding to the regular representation), and not more general cases. We also briefly
outline analogues of discrete torsion that can arise in these theories.

In section [] we discuss applications. We focus on ¢ = 1 theories which enjoy a rich structure of non-
invertible symmetries. We discuss how to gauge these noninvertible symmetries on certain points of the
orbifold branch. Specifically, we construct noninvertible duality defects arising from gauging noninvertible
symmetries in ¢ = 1 theories.

Finally, in section[5|we discuss decomposition. Recall decomposition is the statement that a d-dimensional
local quantum field theory with a global (d — 1)-form symmetry is equivalent to a disjoint union of theories.
In two dimensions, decomposition often arises in gauge theories in which a subgroup of the gauge group acts
trivially. In this section we discuss what it means for a noninvertible symmetry to act trivially, then make
a proposal for the form of decomposition in gauged noninvertible symmetries, in the special case that the
entire noninvertible symmetry acts trivially. We check this conjecture in details for Rep(S3), Rep(Dy), and

Rep(Qs).

As both Hopf and Frobenius algebras play an important role in this paper, and they may be obscure
to the reader, in appendix [A] we summarize the definitions of both. In appendix [B] we review modular
transformations in Zs x Zg Tambara-Yamagami examples, which include Rep(Dy), Rep(Qs), and Rep(Hs),
albeit in each case for specific choices of intertwiners. In appendix [C] we briefly discuss disjoint unions of
spaces as simple playgrounds for both G orbifolds and Rep(G) quantum symmetries.

Note added: While finalizing this work, [21] appeared, which also discusses gauging noninvertible sym-
metries in general as well as the specific example of gauging Rep(Hg) for ¢ = 1 CFTs. Our work is comple-
mentary to theirs: we provide a first-principle derivation starting from intertwiners, discuss further examples
such as Rep(S3) and Rep(Qs). We also discuss examples where noninvertible self-duality defects can be built
via half-gauging a Frobenius subalgebra of a categorical symmetry, compared to the case in [21] where a
half-gauging is performed for the full categorical symmetry, and we also discuss decomposition arising in
gauging trivially-acting noninvertible symmetries.

As this paper was nearing publication, we were informed that related results will appear in [22].

To assist the reader, we summarize below the notation we use in this paper:

e A denotes algebra objects and Frobenius algebras.
e H denotes a Hopf algebra.
e /i, A denote multiplication, comultiplication, respectively.

e u,u’ denote unit, counit, respectively.



e ¢, denote evaluation, coevaluation, respectively.

e K and F denote associators/crossing kernels

e « denotes an associator.

e L, M, N denote generic lines / simple objects in any fusion category,

e ¢, 7 denote junction operators.

e R denotes a generic irreducible representation of a group.

e For all groups, 1 denotes the trivial irreducible representation. (Some references use 0 instead.)

e cp; (for various integers i) denotes elements of a basis of a vector space on which the representation R
acts.

e a,b,c,m denotes irreducible representations of Dy, Qg, Hs.
e 3 denotes coefficients in intertwiners.

e ¢ denotes an intertwiner map.

e (G denotes a group.

e H denotes a subgroup (not necessarily normal). (Note H # H, the latter of which denotes a Hopf
algebra.)

e K denotes a normal subgroup of a group.
e [ denotes an ideal or coideal of a (Hopf) algebra.

e 7 denotes either (depending upon context) the modular parameter, or a parameter specifying a
Tambara-Yamagami category.

2 Gauging: general principles

In this section we will discuss general aspects of gauging noninvertible zero-form symmetries. In ordinary
orbifolds, much insight can be gleaned from the study of the genus-one partition function, which for an
orbifold by a group G, has the form

1
Z == @Zzg,h, (2.1)
g,h

where we will refer to the Z;; as partial traces. We begin with a discussion of how partial traces are
defined for noninvertible zero-form symmetries in subsection [2.2] and then discuss modular transformations
of those partial traces in subsection Now, in general, for a random fusion category, there may not
exist a modular-invariant combination of partial traces; no partition function may exist, which we discuss in
subsection This has been previously discussed in the literature, see e.g. [13]. A solution is to restrict to
fusion categories from which one can derive a Frobenius algebra, and then that Frobenius algebra is used to
construct partition functions, as we shall describe in subsections [2.5 2:6] Briefly, given a Frobenius algebra
A, the genus-one partition function generalizes to an expression

_ _ L3 L2,Ly r7L3
Z = ZA’A - Z 'uleLzALg, ZL17L2' <2'2)
Ly,La,L3



(The MiiLz’ A]}:g’Ll are derived from the Frobenius algebra A; the partial traces fo,Lz can be constructed
solely from the fusion category.) We demonstrate that the resulting genus one partition functions ([2.2)
are modular-invariant in subsection 2.7] and go on to construct higher-genus partition functions in subsec-
tion 2.8l In subsection we make some formal observations regarding state spaces, and argue formally in
subsection that the partition function encodes a projector, just as happens in ordinary orbifolds. In
subsection [2.11] we verify that all of these formal considerations correctly specialize to ordinary orbifolds by
finite groups.

2.1 Fusion categories, associators, and crossing kernels

Before defining partial traces and orbifold partition functions, we begin with a brief review of some termi-
nology and notation. Our main source for definitions relevant to fusion categories is [23]. Noninvertible
symmetries generalizing finite groups are usuallyﬂ expected to be described by mathematical structures
known as fusion categories. Technically, fusion categories are k-linear semisimple rigid tensor categories with
a finite number of isomorphism classes of simple objects. Unpacking this definition, this means these are
categories such that

1. (linear) the morphisms between any two objects form a k-vector space,

2. (semisimple) all objects are isomorphic to a finite direct sum of distinguished objects called simple
objects,

3. (rigid) every object has a corresponding dual object,

4. (tensor) there is a notion of product between any two objects that distributes over direct sums, in
analogy to the tensor product of vector spaces, and this includes an identity simple object 1 = Ly, and

5. that the simple objects define a finite number n € N of isomorphism classes.

By definition, simple objects {L;}ic{o.1,... ,n—1} (representing distinct isomorphism classes) satisfy the prop-
erty that
dimk(Hom(Li, LJ)) = 6i,j- (23)

Throughout this article, we will exclusively consider the case k = C.

Physically, these axioms are justified by the interpretation that the objects in the category correspond
to topological operators that can be inserted along codimension 1 submanifolds, thus creating defects in the
theory. In particular, the tensor product is interpreted as the fusion of defects. The morphisms will live at
junctions between lines.

An important piece of the structure that comes with a consistent definition of a tensor product and that
will play an important role in this discussion is the associator [24]. The associator « of the tensor product
® of a fusion category C is a natural collection of isomorphisms

Opyr: (TRY Q2 D20 (Y@ 2) (2.4)

for z,y,z € ob(C) objects of the fusion category. In simple terms, the existence of an associator is the
statement that the tensor product ® is associative up to isomorphism. Diagrammatically, the associator is

IFor a slight generalization, see e.g. [25] for a discussion on the role of multi-fusion categories as 2d symmetry categories.



simply a natural isomorphism:

CxCxC—2*® ,cxe

®x1e

CxC——F——C

Associators are required to satisfy an identity known as the pentagon identity. In components, for arbitrary
objects a, b, ¢, d € ob(C), this is the commutative diagram:

(a®b)®(c®d)
(e®b) ® ® (c®d)) (2.6)
aa,b,c®lddj/ Tlda®ab,c,d
(@@ (boc)od a® ((b®c)®d)

Associators are defined for general monoidal categories. However, for fusion categories, this information
can be specified by a generating set called F-symbols. The generating set is obtained by looking at the
hom-spaces of simple objects. Let {L;};cr be the simple objects. Then the associator

becomes a C-linear map of hom-spaces after applying the Hom(—, L;) functor:
ij = Hom(— Ll)(ai7j,k) : Hom((Li & Lj) ® Lg, L;) — Hom(L; ® (Lj ® L), L) (2.8)

which we call the F-matrices. By fixing a basis {/\fja} for Hom(L; ® L;, L), we can obtain the elements of
the F-matrix. To do this, first note

Hom((L; ® L) ® Ly, L) @ Hom(L; ® L;, L,) ® Hom(L, ® Ly, L;) (2.9)

Hom(L; @ (L; ® Ly), L;) = @Hom (L; ® Ly, Ly) ® Hom(L; ® Ly, Ly). (2.10)

q

This refines the F-matrices to linear maps of tensors of hom-spaces of simple objects as

(F;

k) :Hom(L; ® Lj, L,) ® Hom(L, ® Ly, L;) = Hom(L; ® Ly, Ly) ® Hom(L; ® Lq, Ly). (2.11)

We now use the fixed basis to get matrix elements as

5 a6 o !
(szk) ()\Pﬂ )‘iﬂc) (szk)lzyﬁ )‘]qk ® )\z; (212)
for (Fllj k)l;l)% € C. Note that if in particular the fusion category is multiplicity-free, meaning that
dim¢(Hom(L; ® L, Ly)) < 1, (2.13)
then (F, fj %)% in the chosen basis is simply a scalar. Then these coefficients (for which the Greek letter indices

are redundant) are often referred to as 6j-symbols.

A consequence of the definitions above and the pentagon identity (2.6)) of associators is that the F' symbols
obey |26, Lemma 3.4]

dqe s n KS s \O
2 :(ngkl)ﬁix(ng)i%e = E ( ijk)gtn(zﬁ (Fgl)qﬁrg{( jkl)ngi’ (214)
€ t,n,¢K



which in the multiplicity-free case reduces to the more familiar identity for 6j-symbols:

(FTZ:Lkl)'(rIL(‘F‘?Z'q)fn = Z( z?k)iz(Fﬁz)fL(kal)g (2.15)

In the remainder of this paper, we will focus on multiplicity-free fusion categories. We will return to the
general case in our subsequent work [20].

A fusion category, by virtue of having duals, comes with evaluation maps ¢; € Hom(L; ® L;, Ly) and
& € Hom(L; ® L;, Ly), and co-evaluation maps v; € Hom(Lo, L; ® L;) and 7, € Hom(Lg, L; ® L;), for each
simple object L;, and Lo the monoidal unit. Here L mathematically denotes the dual of L (which exist in
any fusion category by definition), and physically represents L with the opposite orientation, where

Li®Ly =116Ly, Li®Ly, = Ly® L. (2.16)

The evaluation and coevaluation homomorphisms should satisfy relations which ensure that a line can be
“unfolded” (see |14]), specifically

@&@lr)oal o, @F(1) =1, (@)oo (n)@ly) =1,  (217)

In many cases (such as when the fusion category comes from representations), as we will see, a choice of the
basis vectors /\fj induces evaluation maps €; and €;, and then the relations above determine the forms of ~;
and 7,.

Now we need to discuss some of our conventions for diagrams, which stand in for correlation functions in
our physical 2D theories. Topological line operators are labeled by objects of the fusion category, and include
an orientation indicated by an arrow on the line. Lines meet at junctions which should have an insertion of
a point operator. For tri-valent junctions of simple lines we’ll include a counter-clockwise blue arrow which
will give an ordering to the three lines, as shown below.

Ly

, L,
L; 7 (2.18)

To such a junction, with the lines in the orientations shown, we will associate the vector space
HOI’H(LZ ® Lj, Lk),

and if we have chosen basis vectors )\fj (since we are restricting to the multiplicity-free case, we can drop the
index «), then unless otherwise noted, that is the vector placed at such a junction in a correlation function.
If any of the lines have their orientation reversed, then we will replace that line by its dual via insertion of
an evaluation or coevaluation map, and then associate the fusion Hom space, so for instance if the L; line
above was outgoing rather than incoming, we would insert a coevaluation map as shown below, and then
associate the space Hom(L; ® L;, L) to the resulting tri-valent junction.

10



LiL
><KL2 L;(L57 Lg)

Figure 1: Defining property of the crossing kernel K, taken from (27, figure 13]. The sum is over simple
objects.

(2.19)

Finally, using the evaluation or coevaluation maps we can construct isomorphisms between the fusion
homomorphisms and co-fusion homomorphisms. Explicitly, define an isomorphism ¢;j, : Hom(L;®Lj, Li) —
Hom(L;, Ly ® L;) by its action on v € Hom(L; ® L;, L),

Pijn(v) = (v@1g ) o <o (1r, ®7;(1)), (2.20)

with inverse
(b;]i(u) = (1, ®e€j)oa,5,0(u®lg,). (2.21)
In particular, to the junction above we can alternatively map the vector space to Hom(L;, Ly ® L; ). If we
have chosen basis vectors /\k for Hom(L; ® Lj, Ly), then we get an associated choice of basis vectors 53 for
Hom(L;, L; ® Ly) by
0" = 0, (Np) = (@ 1n) 0z, o (1, ®(1). (222)

Our notation for fusion categories primarily follows [27]. One particular object which will play a crucial
role for us is the crossing kernel K, which is another notation for F. In the multiplicity-free case, they are
related by _

3

f(gk (p, (J) = ( iTk)Z (2-23)
Graphically, the crossing kernel is deﬁnedﬂ by the relation shown in figure

As previously derived in the language of I symbols, the crossing kernels obey the pentagon identity (2.15),
which for later use we rewrite here in the notation of crossing kernels K, to explicitly]’| match |27, equ'n

(2.9)]:
qu(m ) Ky (n,q) ZK,” (t,q) K (n s) KJ’;(m,t), (2.24)

The admissible crossing kernels are precisely those that obey the pentagon identity above.

2The careful reader will observe a slight issue of notation. Ordinarily, a linear map f : a — b might be said to act by
multiplication by a number ¢ as f : a — b = ac. However, the conventions of |27] instead define ¢ by a = be, as their analysis is
primarily graphical. In any event, we will follow their conventions in this paper.

3To make the relation completely clear, we include the following table to convert to the indices of [27]:

11



T T4+ 1

L,

N

Ly

0 1

Figure 2: Diagrammatic definition of the partial trace zZLs L. L, the noninvertible analogue of the partial trace
Zg4,n appearing in genus one orbifold partition functions [X /G] for G an ordinary group. Our conventions
for partial traces essentially follow 28| appendix A].

2.2 Definition of partial traces for noninvertible symmetries

As reviewed earlier, in an ordinary orbifold by a finite group G, the genus one partition function has the
form

gh=hg

where Z, 5, represents the ‘partial trace,” schematically,
g | (2.26)
h

the contribution to the 72 partition function from a worldsheet with a pair of branch cuts defined by g, h € G.

Now, in the noninvertible case, to make sense of the partial traces Z, 5, one must work harder. If we
proceed naively and consider analogues of Z,; defined by pairs of lines L;, Lo, one problem we quickly
encounter is that the 4-point junction at which a pair of lines intersections is not uniquely defined in the
noninvertible theory, because L1 ® Lo can receive contributions from a linear combination of several lines. To
make the contribution well-defined, we must resolve the 4-valent junction into a pair of 3-valent junctions,
and specify the line joining the two three-point junctions. Instead of Z, j, we have ZLs i 1,» Where Ly and Lo
are simple lines, and L3 is a simple line that appears in the fusion L ® Lo, as is 1llustrated in Figure 2} In
this paper, we will for the most part restrict to the so-called multiplicity-free case, where each simple line in
the fusion product of two simple lines appears at most once.

In principle, the diagram illustrated in Figure [2]does not yet specify a correlation function, since one must
also specify a choice of junction operators at each of the triple intersections above. For example, the junction
operators at the vertex on the right in Figure [2| are elements of Hom(L; ® Lo, L3). (Later in this paper, we
will specialize to fusion categories of the form Rep(G), and for such, these Hom spaces are (projections of)

Here [27] | Here [27] | Here [27]

i 71 m j E 74
j 72 n i3 L k4
q k2 p k1 s k3

t 7’

12



the space of intertwiners.) In any event, in this paper we specialize to multiplicity-free cases, for which those
Hom spaces have dimension either zero or one. If the dimension is zero, the vertex does not exist at all; if
the dimension is one, then up to rescaling there is a single operator that can be placed at the vertex. Thus,
in this paper, the matter of choosing junction operators is moot. We will consider more general cases in our
followup paper [20].

In the special case that the noninvertible symmetry group is an actual group G, in the noninvertible
partial trace Z f: L, for g,h,k € G, the value of Ly (the intermediate line) is uniquely determined by (a
commuting pair) g and h, and is given by k = gh = hg. In this case,

Lgp
Zon = 2%, (2.27)

where the Z;; on the left is the partial trace of the ordinary orbifold, and the ijh’Lh on the right is its
analogue in the noninvertible orbifold. '

Returning to noninvertible cases, it remains to find modular-invariant combinations of the partial traces
7 ff’ L, 1n subsection we shall discuss modular transformations of these partial traces. Later in section
we will discuss systematic computational tools for constructing modular-invariant combinations, to form
physical partition functions, which will turn out to correspond to (special symmetric) Frobenius algebras.

2.3 Modular transformations

In this section we will argue that

Li,L
Zpe (T LT 41) ZKL; 1 (L3, L) 212 (7,7), (2.28)

Ly, L,,L —
280 CUn 1T = 8 K71, (To L) K71 (T, Ta) 25 (7). (2.20)

Note in the above that we are following a variation of the conventions of [28| appendix A], where the modular
transformations of boundary conditions are distinct from those of partial traces. (In the language of the
former, the T' transformation above might instead be interpreted as a relation for 7 — 1 instead of 7 + 1, for
example.)

As a consistency check, let us compare to the group-like case. There, Zy, 1,(7) = fo 1, (7) for Ly =

L1 L, and the associator KL;’Lj (Ls, Lg) is nonzero (and equal to 1) only for

L4 = (L1L2L3)_1, L5 = LlLQ, and L6 = L2L3. (230)

Then, applying the equations above, one finds

Zfllylii (T + 1) = fo,Lfle (7—)7 (231)
-1
Zpke (<1/r) = Zf;LLlj(T). (2.32)

The reader should note that in our conventions for the group-like case, L = L~! (where L denotes the dual
in the fusion category).

The key role in these transformations is played by transforming one figure into another figure, using the
crossing property, shown in figure
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The T transformation is displayed schematically in figure 3| The original Z fi 1, (7) is shown in part (a),
and part (b) shows the T transformation. Part (c) of that figure is equivalent to fo’Lz (7 + 1), which is
related to another partial trace using K, as in equation 1) above.

Before working out the modular S transformation, it will be useful to work out a cyclic transformation
identity. Inserting the identity line 1 and using the crossing identity (figure 7we find

L3
L
L, 2 (2.33)
which yields the cyclic transformation identity
Lg L3
~ L1l — —
= K, 1.(Ls, L1)x
Ly L2 Ly = (2.34)

The S transformation (2.29) is derived schematically in figure

2.4 Gaugeability

So far, we have outlined noninvertible symmetries (defined by fusion categories, which generalize finite
groups), noninvertible analogues of the partial traces used to construct orbifold partition functions, and
also described modular transformations. Clearly, the next step in constructing a noninvertible analogue of
an orbifold is to construct modular-invariant partition functions, built as linear combinations of the partial
traces constructed in section

However, in general, that is not always possible. Only in some cases do modular-invariant partition
functions exist, and as we shall describe later in section their construction will involve specifying a (special
symmetric) Frobenius algebra (which we will define in section [2.5). At least morally, such obstructions
correspond to analogues of gauge anomalies, though that description in the noninvertible context may be
more obscure[]]

4Generally speaking, there can be two notions of anomalies: The obstruction of gauging a symmetry and the obstruction from
a trivially gapped phase. In the group-like case, these two notions coincide. However, in the case of noninvertible symmetries,
symmetries can be gaugeable even if it is incompatible with a trivially gapped phase. We refer the reader to [17}/76] for more
details.
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Ly
L3 L2 /
Vi Vi y)
A) A) A)
/ Ls
Ly

Figure 3: The effect of the modular 7" transformation.

T+1

(c)

Ly

L3 Lo

Vi y)

N h)

1
(a)
T+1 T+ 2
1
(b)
-
Ly
Ly Lo Ly T
= ZL4 ( < ( XKZ;:L?(Z?)’ZLl)

Ly

Diagram (a) displays the original fo,Lz (1); (b)

displays Z ff 1, (7 + 1), which is equivalent to diagram (c). The left- and right-hand sides of diagram (c) are
related using crossing as in figure [1} with L3 as the internal line before crossing.
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~ Ly,Ly
ZL4 KZQ,Ll

Figure 4: Three successive views of fo ,(=1/7). Part (a) shows the original modular transformation.
Part (b) rewrites the result of the modular transformation. The right-hand side of (c) is obtained from the
left-hand side of (b) using the cyclic identity (2.34). Part (c) uses the crossing identity (figure[l) to write the
result in terms of other fo’LQ (7), where we use the abbreviation * = 37, (L3, Ly)

Each part is an equivalent expression for Z ff’ L, (=1/7).

3 Ly
| Lo Ls Lo
| y) y] 2
| A) A) N
| Ly
- 0 1
(a)
.
A L2
Lo
Ly
\\ L3
Ly Ls A = > > >
Ly L
L
L2 A ?
1 1
(b)
T T
Lo Lo
Ly Ly
(Zg, Z4) X ) < 4 (*) X ) < )
Ly 1 Ly L
L
Lo 2
1
(c)
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The purpose of this section is to demonstrate an example in which a modular-invariant partition function
cannot be constructed.

Non-gaugeable example: Ising CFT. The symmetry category for the Ising CFT includes three simple
objects, identity line 1, Zo symmetry line 77, and Kramers-Wannier noninvertible line A/. The fusion rules
are given by

1N =N®1=N,

nON=N®en=N, (2.35)
nen=1,
NN =1dn,

which is also known as the Zs Tambara-Yamagami fusion category [29]. Based on the above fusion rules,
the set of all possible partial traces Z ff 1, from various insertions of topological lines L and L is

1 n
Zl,laZ

"ol N N N N ol n
V> Znvs Ly ZYN SN Ly N ZN s ENN SN (2.36)

The modular transformations of these twisted partition functions follow the rule (2.28) and (£2.29)), where
the K matrix for the Ising model read [30, appendix D]

~ NN ~ NN 1 1
(KN,N(LI) KN,N(LTI)) _ <\/§ 72 )

- NN = NN =% Vi |,

Ky n(m1) Ky a(nn) vz Ve (2.37)

nN

~ 1, ~./\[7
KN,n(N7N) :Kn,./\Z(NaN) = _la

with all other elements equal to 1. We compute the modular S transformation for all twisted partition
functions as

le,l - Z11,17Z{’,7, AN Z;],l’Zrlm - Z7lm’
I & Z0 1, 20 & =2
1 1
Zn = —=Zh o+ —=Z0 o, (2.38)
NN \@ NN \/i NN

1 1
Z — 7 — =770 .
NN \@ N N \/i NN

If the full categorical symmetry is gaugeable, there should exist a set of non-trivial coefficients Af‘:’ L,» €ach
of which for the twisted partition function fo,Ly so that the

_ Ls L3
Zgauged = E ALl,LzthLz (2.39)
L1,La,L3

is modular invariant partition function for the well-defined CFT after gauging. However, from it is easy
to check the coefficients for Z/l\f, A and Z}Z[,  have to be trivial in order to be modular S invariant. Therefore,
there is an obstruction of summing over all twisted sectors with the presence of the Kramers-Wannier line
N, thus the categorical symmetry not gaugeable.

We remark that though one cannot gauge the full categorical symmetry, but the Zs subgroup generated
by the identity 1 and the Zy line 7 is indeed gaugeable. This can be seen by checking Z{ | + 21, +Z, 1 + 2, ,

5The o, ¢ of |30] are denoted A/, i in this paper.
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is indeed modular invariant, which leads to a Zs orbifold partition function

. 1
Z[Ising /7] = 5(211,1 + 2, Zy+ 2y ). (2.40)
One can further check that this gauged partition function is equal to that before the gauging, i.e. Z[Ising/Zs] =

Z1171, which shows the self-duality of the Ising CFT under Z, gauging.

2.5 Formal specification of gauging: algebra objects

Given a fusion category acting as the symmetry category of a two-dimensional theory, we need a systematic
prescription for computing physical partition functions, when they exist — and indeed, as the example in
the previous section illustrates, modular-invariant partition functions will not always exist, not every fusion
category can be gauged.

When a fusion category acting as the symmetry category of a two-dimensional theory can be gauged,
we can gauge by a particular kind of algebra object derived from it, called a special symmetric Frobenius
algebra, which we denote A. Intuitively, we think of A as an identity operator in the gauged theory, and
the operation of gauging involves inserting a sufficiently fine mesh of lines of A. For example, the one-loop
partition function can then, at least formally, be written

Z = Z4 4 (2.41)
We shall elaborate on the precise meaning of this expression later. (See also e.g. [13].)

In the special case of gauging an ordinary (non-anomalous) group G, for example, the corresponding
symmetry category before gauging is the fusion category Vec(G), the category of G-graded vector spaces. In
this category, there is a distinguished collection of objects {L4}4eq, called simple objects, which correspond
to one-dimensional vector spaces labeled by g € GG. These have the special property that any other object
in Vec(G) is isomorphic to a direct sum involving only such simple objects. In this category, a distinguished
symmetric special Frobenius object A is the direct sum of the simple objects L, which in the two-dimensional
system act as line defects:

A= PL, (2.42)

geqG

The corresponding one-loop partition function becomes the familiar orbifold partition function

1
Zha = @ Y Zon (2.43)

gh=hg

For more general noninvertible symmetry groups, the Z; j, of ordinary orbifolds will be replaced by Z iv M
in which the four-point junction at which the g, i lines intersect is resolves into a pair of three-point junctions
joined by a choice of intermediate state ¢, which is no longer uniquely determined by the lines L, M.

Now, not all fusion categories are gaugeable; for example, as we saw in the previous section, one cannot
always construct modular-invariant partition functions from the entire fusion category. At least in general
terms, this issue has been addressed in the language of SymTFTs. Specifically, in [31, Theorem 1], |32], it
was argued that the Turaev-Viro 3d TQFT defined by the symmetry fusion category C admits a gapped,
non-degenerate C-symmetric boundary condition, as needed to describe a Neumann boundary conditiorEI
and hence gauge all of C, if and only if C admits an exact, faithful tensor functor

F :C — Ve, (2.44)

6See [34] for a more general discussion of this fact.
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whose target category in this case is Vec, the category of vector spaces. This functor is known as a fiber
functor. (However, later in this paper we will sometimes only gauge subalgebras, and for those, a fiber
functor is not required. See also [14, section 5.2], [32,/33] for other examples of this form.) Also, in general, a
fusion category can have multiple fiber functors; however, in this paper, we will specialize to fusion categories
of the form Rep(#), for which there is a canonical fiber functor, namely the forgetful functor mapping to
the vector spaces underlying any given representation. Technically, a choice of semisimple Hopf algebra H
is equivalent, by the Tannaka reconstruction theorem, to a fusion category Rep(H) together with a fiber
functor. (For example, H is given by the endomorphisms of the fiber functor.) In particular, there exist
examples of groups G; # G such that Rep(G1) = Rep(G2) as fusion categories, but which have different
fiber functors [35].

It is known (see e.g. [36, Corollary 2.22]) that any fusion category equipped with a fiber functor is
equivalent to the category of representations of a connected semisimple weak Hopf algebra. (A Hopf algebra
‘H is a generalization of a group algebra, defined by both a multiplication p : H @ H — H as well as a
comultiplication A : H — H ® H, plus additional structures, satisfying some conditions. We give a technical
definition in appendix ) For this reason, in this paper we will specialize to fusion categories of the
form Rep(H), for H a connected semisimple finite-dimensional weak Hopf algebra. (In fact, to satisfy an
additional constraint, we will further specialize to semisimple finite-dimensional Hopf algebras, which are
special cases, as we describe momentarily.)

We can use this general principle to give a simple characterization of gaugeability of an entire fusion
category. A fiber functor sends every object X to a vector space F(X) whose dimension is the quantum
dimension of X, meaning that, as observed in Theorem 2 in [31], a necessary condition for a fusion category
to admit a fiber functor (and hence be gaugeable) is that all objects have a non-negative integer quantum
dimension. This already characterizes familiar categories, such as the Ising category, as non-gaugeable, and
is a simple way to understand the obstruction we discovered in subsection There, the Kramers-Wannier
line in the Ising model has quantum dimension v/2, which by the arguments here, excludes the existence
of a suitable Frobenius algebra. We repeat that if one is not gauging the entire fusion category (as we will
sometimes do), a fiber functor on the entire category is not required.

We can also obtain a second necessary condition for gaugeability from these considerations. Gauging a
fusion category equiped with a fiber functor is then understood as taking the regular object R defined as

=1

for N; and gauging by it. However, this is possible only as long as R is a symmetric special Frobenius
algebra (which we will define shortly). It is known that not alﬂ weak Hopf algebras admit a Frobenius
algebra structure [37]. Although this situation is somewhat ameliorated for connected semisimple ones,
(see e.g. Prop. 3.1.5 in [38]), for concreteness in the present paper we restrict to working with categories
of representations of finite-dimensional semisimple Hopf algebras, where it was already shown that the
regular object admits a symmetric special Frobenius algebra structure [39]. This class of representation
categories is already quite general and includes many familiar examples, such as Vec(G) = Rep((C[G])*),
and Rep(G) = Rep(C[G]). The process we describe allows not only to gauge the whole fusion category but
also subcategories of it determined by Hopf ideals.

Shortly we will explicitly construct modular-invariant partition functions using a special symmetric Frobe-
nius algebra. Thus, this allows us to see the gaugeability directly at the level of partition function compu-
tations.

Next, we will construct a symmetric special Frobenius algebra in Rep(#). (To be clear, we begin by

"See p. 6 in [37] for an example.

19



picking a finite-dimensional semisimple Hopf algebra #H, which is equivalent t(ﬁ a fusion category Rep(H)
together with a fiber functor.) Before proceeding, we define the lattelﬂ We start with an algebra A, in our
case over k = C, with unit u : A — C and multiplication x4 : A ® A — A. We then endow the algebra A
with a coalgebra structure, with counit u% : A — C and comultiplication A : 4 - A® A. For A to be
a Frobenius algebra, the algebra and coalgebra structures are required to satisfy the following commutative
diagrams, called the Frobenius identities:

Ap®Ida IdAa®AR

A A ADADA, AsA A A A (2.46)
ui iIdA@)u #i l#@IdA
AF AF
A A A A AR A

Next, we recall the definition of symmetric special Frobenius algebras below [13].
Given a Frobenius algebra (A, u, Ap,u,u%), we say it is a special Frobenius algebra if
u®ou=FlIdy; poAp = p4ldy (2.47)
for 81,84 € C*. We normalize A by taking B4 = 1.

A Frobenius algebra is called symmetric if the following equality of morphisms A — A* holds
((uf o p) @Ida+) o (Ida ®74) = (Ida- @ (uf o)) o (Y4 @ 1da) (2.48)

with coevaluation maps 74 : C - A® A*, 74, : C = A* ® A, which exist by definition of A* being a dual
of A.

We are interested in realizing the regular representation of H as a symmetric special Frobenius algebra.
(Later we will also consider quotient algebras.) Realizing the regular representation in this fashion is equiv-
alent to endowing the dual Hopf algebra H* with a symmetric special Frobenius algebra structure [39]. It
is a theorem [40| that any finite-dimensional Hopf algebra can be endowed with a Frobenius algebra struc-
ture. Moreover, H* as a Frobenius algebra is symmetric, special, and has trivial twist if and only if H is
(finite-dimensional) semisimple (see Section 4 of |[39]). It is for this reason that we are mainly interested in
(finite-dimensional) semisimple Hopf algebras. We now walk through how this works, since this process is
leveraged explicitly in computations.

Let us take a moment to review the construction [41, chapter VI] of the dual Hopf algebra H*. Since we
will only be interested in finite-dimensional Hopf algebras, let V, W be a finite-dimensional vector spaces, and
V* = Hom(V, C), W* = Hom(W, C) their corresponding duals. Then any linear map f : V — W induces a
map f* : W* — V* by precomposition. If V furthermore has the structure of a bialgebra (V, uy, Ay, uy, u$,),
then one can show that the dual morphisms

e :=Ay: VIV" 5 VF (2.49)
g = (ug)™ C -V, (2.50)
A" =y %4 - VeV, (2.51)
ug =uy v —C, (2.52)

endow V* with the structure of a bialgebra. For finite-dimensional vector spaces, there is an isomorphism
(VW) 2 V*® W+, so that there are no issues with respect to the domain and images of these maps.

8By the Tannaka reconstruction theorem.
9A more classical definition of a Frobenius algebra is phrased in terms of a non-degenerate bilinear form on A. These
definitions are equivalent.
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Furthermore, if V' is a Hopf algebra, so that it is also equipped with an antipode map S : V — V', then the
corresponding dual
S*VE =V (2.53)

then (V*, iy, g, Ay, ul, Si) is also a Hopf algebra.

Knowing H* as a finite-dimensional Hopf algebra, one can then apply the integral construction of Larson
and Sweedler [40] to produce a Frobenius algebra. In this prescription, adapted in [39] for the present
purposes, one retains the algebra structure (H*, p., u.) and changes coalgebra structure (A, u°). The key
object in this construction is that of (left-)integrals and cointegrals. Given any Hopf algebra H with counit
u® : H — C, a left-integral is an element A € H such that for all h € H it holds that p(h,A) is given by
scalar multiplication:

w(h, A) =u’(h) A. (2.54)

On the other hand, a right-cointegral is an element A € H* such that
AR Idy)(A(R)) = A(h) ® 14, (2.55)
where 19, = u(1) is the unit element of H.

The main result of [40] is that for finite-dimensional Hopf algebras, left-integrals always exist and span a
one-dimensional vector space. The same applies to cointegrals, since in the finite-dimensional setting these
are identified with the integrals of the dual Hopf algebra. We use this to endow H* with the structure of a
Frobenius algebra. Let A be a cointegral of H, that is, an integral of H*, and A an integral of H, with the
normalization condition

AoA=1 (2.56)
as a morphism in Hom(C, C). It is shown in [39] that the tuple (H*, px, us, Ap, u$) with p., u, as above,
up = A%, (2.58)

for k € C* is a symmetric special Frobenius algebra in Rep(?—[ﬂ iff H is semisimple. Thus, H* can be used
to gauge. Throughout this paper we choose k to get the normalization

s © AF = Id;{* . (259)

An important consequence of this process is that it also allows us to identify other suitable objects, or
subcategories, by which we can gauge. It suffices to find a Hopf ideal. It is a well-known fact that Hopf ideal
I — H, that is, a subset I that is both an ideal and coideal closed under the antipode map on H. Since I
is a Hopf ideal, this defines a quotient Hopf algebra H /I, so that we have a Hopf subalgebra (H/I)* < H*.
This in fact induces a functor

1: Rep(H/I) — Rep(H) (2.60)

such that +((H/I)*) is a symmetric special Frobenius algebra, with H-action that factors through #/I. Of
course, we do not obtain all possible Frobenius objects in this way, yet it is a useful criterion.

Now, let us describe some concrete examples. The case of ordinary orbifolds, where the fusion category
is Vec(G) = Rep(C[G]*), will be discussed in detail in section and we will demonstrate there that this
technology does indeed correctly reproduce ordinary orbifolds.

For the rest of this section, we specialize to the case that the fusion category is

Rep(G) = Rep(C[G]) = Rep(H), (2.61)

10Tn fact, it is a Frobenius algebra in the category of (H,H)-bimodules.
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so that H = C[G], for some finite group G. We are then going to build a Frobenius algebra structure on
A = H* = C[G]*. This will correspond to the regular representation of G, and Frobenius structures on
subalgebras of A = H* will correspond to certain other representations of G, as we shall see.

The algebra structure (M, p, u) is a linear extension of the group product,

w: g®h— gh, (2.62)
U 1— 1 (2.63)
The coalgebra structure is
A: g—g®g (2.64)
u’: g1 (2.65)

The antipode map corresponds on the basis elements to the inverse operation
S: g—gt (2.66)
In this case, H* has underlying vector space C[G]*. We will use the dual basis characterized by the equation
vy(h) = 3y (2.67)

We can construct a Frobenius algebra on H* = C[G]*, as follows. Some of the structure is inherited from
the dual Hopf algebra, specifically, the multiplication p, : H* @ H* — H*

pi(vg @ vp) = Og.h Vg, (2.68)
and unit u, : C — H*

ul(1) = > vy, (2.69)

where in each case we have given an action on basis elements, which are extended linearly over C. We now
choose integrals and cointegrals to construct the coalgebra structure. The integral element of C[G] in this

case is
A=>g (2.70)

geG

regarded as a linear function on H*. A cointegral of C[G] is
A= V1. (2.71)
On the basis elements, the counit u$. := A* : H* — C (where we regard A € H as a morphism A : C — H) is

up(vg) = g (Z h) =vg4(9) = 1. (2.72)

heG

The comultiplication is the dual of the composition
gRh = gRgRh = gRg @ h+ g® 6,14 (2.73)
so that
Ap = vy v, Q. (2.74)

It is straightforward to check that p. o Ap = Idgy-, hence it is correctly normalized (following the

discussion after ([2.47)).
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The algebra structures (g, u., Ap,u%) define the Frobenius algebra identified for Rep(G) in |14]. It is
straightforward to check that the (p,us, Ap,u%) defined above satisfy all of the axioms of a symmetric
special Frobenius algebra, as outlined in appendix [A72] We illustrate below the key steps in the verification,

as specialized to (i, s, Ap, u%):

e associativity:
frx (s (Vg @ ) @ V) = (Vg @ pru (Vi @ V),

unit axiom:

(Vg @ ui(1)) = vg = pa(us(1) ® vg),

coassociativity:
((Ida ® Ap) o Ap)(vg) = ((Ap ®1da) 0 Ap)(v),

e counit axiom:

((Ida @ uf) 0 Ap)(vg) = vg = ((up @ Ida) 0 Ar)(vy),

e Frobenius identities (2.46)):
vg®vhw>vg®vg®vh vg®thvg®vh®vh
Mo IdA®p« Hox s ®Id 4
§g7hvg T 5g,h Vg @ vy 5g,h'Uh T (Sg,h Vp, @ v,

e special :
(upow)(1) = A1) = | D v, (Z h) = dim(H") = |G|,
geG heG

pe (Ar(vg)) = pa(vg @ vg) = vy,

e symmetric (2.48]):

Y A®Ida
Vg (ZheGh(th) ® vy
1dA®7A 1d 4+ ®(uGo.)
(g op.)®1d 4=
Vg ® (Xhegvn ®h) 9

using (2.68)), (2.72), and where
ya(l) = D> v ®@h, F401) = > h@wv,

heG heG

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

as follows from the fact that ev4 o y4 = dim(A) = |G|, and that in this basis ev4(vy ® h) = 04, p.
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See e.g. appendix for a general discussion of the key axioms for a special symmetric Frobenius algebra.

Let us now use this explicit formulation to construct Frobenius algebras other than that corresponding
to the regular representation. As explained previously (c.f. Equation ), Hopf ideals of the Hopf algebra
‘H give other Frobenius algebras by which we can gauge. In the special case of H = C[G], the Hopf
ideals correspond precisely to the normal subgroups K < G of G. Concretely, this correspondence is
realized by the fact that the Hopf ideals of C[G] are all of the form of augmentation ideals C[G](C[K])"
of Hopf subalgebras C[K] of normal subgroups, where (C[K])" := ker(u®|c(x) : C[K] — C). Moreover,
C|G]/(C[G](C[K])T) = C|G/K] as Hopf algebras.

In the usual orbifold case, for which the symmetry category is Vec(G), one can actually gauge any
subgroup H < G, not necessarily normal. Since Rep(G) is the corresponding quantum symmetry fusion
category, one would expect that any subgroup H should give a gaugeable Frobenius object in Rep(G) as
well. We now show that this is indeed the case.

Let us start with a Hopf subalgebra of C[G]. It is known that all Hopf subalgebras in this case are of
the form C[H] for H < G a subgroup, not necessarily normal. We again construct the augmentation ideal
C|G)(C[H])™" of the Hopf subalgebra C[H]. This is a left ideal and a coideal of C[H]. Although this is not
a Hopf ideal, such that the coset space does not admit a well-defined Hopf algebra structure, it is still a
coideal, so that at least it gives rise to a coalgebra structure on the quotient. That is, we have a sequence of
coalgebras

C[G)(C[H])" — C[G] & C[G/H] (2.84)

This means that the dual vector space (C[G/H])* is endowed with an algebra structure as

M T Vg Q Vg g > 6gH,g’H VgH, Usx: 1~ Z VgH, (285)
gHeG/H

for {vgr }grea/m the dual basis of the vector space C[G/H]. Moreover, this algebra also carries a C[G]-
action, given on the generators by
PH: g Vg'H "> Un(g)g'H (2.86)
This means that (C[G/H])* is an algebra object in Rep(C[G]).
Let us pause to give a more elementary way to understand how one associates a representation. Given a
subgroup H, build a vector space by associating basis vectors to elements of the coset G/H, and then letting

G act on those basis elements by their action on cosets. In this fashion, given a subgroup H C G, we can
associate a representation of G.

In the table below, we illustrate this in the case of G = Sj:

Coset Subalgebra Representation
G/(b) Span|vk, vek], K = (b) 1+ X
G/{a) Span[vg,vpm,vp2g], H = (a) 1+Y
G/1 C[G]* 1+ X +2Y

(the regular representation)

We will return to this classification in the example of Rep(S3) in section

We can finally realize (C[G/H])* as a symmetric special Frobenius object by endowing it with the obvious

Frobenius coalgebra structure analogous to that of (C[G])*:

Ap : Vg = Vg @ Vg, U% : Vg — 1. (2.87)
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All in all, this allows us to produce a gaugeable object in Rep(G) for any subgroup H < G, just as for the
Vec(G) case. This seems to hint at a correspondence between the gaugeable objects in Rep(#H) and those in
Rep(H*), though it is not obvious how this would work in these more general cases.

To summarize, given a subgroup H < GG, we have constructed a special symmetric Frobenius algebra on

(ClG/H])"

2.6 Genus one partition functions

First, recall that in an ordinary orbifold by a finite group G, the genus one partition function has the form
1

Z([X/G)) = — Zy hs 2.88

([ / ]) |G‘ g};bg g,h ( )

where Z, 5, represents the ‘partial trace,” schematically,
a | (2.89)
h

the contribution to the T2 partition function from a worldsheet with a pair of branch cuts defined by g, h € G.

Given an algebra object A, morally the genus one partition function for a gauged noninvertible 0-form
symmetry has the form
Z = Z4a (2.90)

which (at least formally) closely mirrors the form above.

Given a Frobenius algebra structure, we can now define a modular-invariant combination of partial traces
ZEs . The genus-one partition function is
Li,Lo

L La,Ly L
Z o= Y whL AL, (2.91)
Ly,La,Ls

where ,uff 1, indicates components of 4., and Afz’Ll above indicates components of A, the comultiplication
in the Frobenius algebra. (Higher-genus partition functions are similar; we shall discuss them later in
subsection [2.8]).

The components are defined formally as follows. Given p, : A ® A — A, the components are defined by
corresponding maps

Mé?l@ : HomRep(H)(Ll, A) ® HomRep(H)(Lg, .A) — HomRep(H) (A, Lg). (2.92)

From Schur’s lemma, each Hom will only receive contributions from portions of A in isomorphic repre-
sentations. We can compute these components explicitly from p, by normalizing by the intertwiners in
Hom(L; ® La, L3), as we will discuss later in examples. Similarly, given Ap : A — A ® A, the components
are defined by corresponding maps

AP Hompep(s) (L1, A) — Hompgep(s) (A, L2) ® Hompep(s) (A, L3). (2.93)

These can be obtained from Ap by normalizing by a basis for Hom(L1, Ly ® L3), which can be obtained
from intertwiners using (co)evaluation maps in several possible ways, as we will discuss later in examples.

We can understand expression (2.91)) diagramatically as arising naturally from the description of resolving
four-point junctions of lines in the Frobenius algebra A. Schematically, if we write the resolution in the form
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of figure |5, where we denote the components uffij of p, by

(2.94)
and the components Aéi’Lk of Ag by
(2.95)
then we read off from Figure |5| the
Lo,L
ppt AT (2.96)

factor, and then after removing the Frobenius algebra structures, we are left with the partial trace of figure 2]
which defines Zf?,Lz'

T T4+ 1

L,

N

Ap

Ly

0 1

Figure 5: Resolution of four-point vertex in the Frobenius algebra A into a pair of three-point vertices.
In passing, we note that equation (2.91)) omits the possibility of the junction vector spaces having dimen-

sion greater than one. However, in this paper we are specializing to multiplicity-free fusion categories, and
will return to more general cases in our followup work [20].
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(a)

Figure 6: Three ways to resolve a four-way junction into a multiplication and a comultiplication. All of the
lines pictured are the algebra object A.

In passing, implicit here is a choice of normalization of Ag, which is defined by the ‘special’ part of the
special symmetric Frobenius algebra axioms. This also informs the implicit normalization of the coevaluation
map.

In section we will check that this partition function is always modular invariant.

It is natural to ask whether there exists an analogue of discrete torsion [42,[43] in noninvertible symmetry
gaugings. Recall that in ordinary orbifolds, discrete torsion is a set of modular-invariant phases that can be
added to weight the various partial traces. For ordinary group orbifolds, realized as Vec(G) = Rep(C[G]*)
gaugings for G a finite group, we will discuss how discrete torsion arises later in section[2.11] For noninvertible
symmetries, discrete torsion will arise when there are multiple nonequivalent Frobenius algebra structures
we could choose for a given algebra object. In this case we do not have a first-principles classification (as
we do with second cohomology in the grouplike case), but we will see in examples later in this paper that
there certainly seem to exist modular-invariant phases that can be added to partition functions, forming an
analogue of discrete torsion. (That said, we have not checked e.g. multiloop factorization, so it is possible that
some choices are not physically sensible.) Also, the reference [33, theorem 2] suggests that discrete torsion in
a Rep(G) quotient should match discrete torsion in a G orbifold, which we will find to be consistent with our
examples. We hope to return to questions of discrete torsion in noninvertible symmetry gaugings in future
work.

2.7 Modular invariance

In this section we shall demonstrate that the general expression for partition functions given earlier in
equation is modular-invariant. In order to do this we will need to write out the associativity condition
satisfied by the Frobenius algebra in components. Diagramatically, associativity of the Frobenius algebra
can be expressed as the requirement that Figure Figureand Figureare equivalent |13} (3.29)] (more
generally it is the statement that any such resolution of a four-way junction is equivalent).

In order to write these conditions in a computationally useful form, we break each line (labeled by .A) into
components. This gives a sum over diagrams labeled by simple objects with p and A as coefficients. In order
to relate any of the two resulting expressions we need to apply a swap move, then equate the coefficients of
matching diagrams. Applying the swap shown in Figure [I] to Figure [6a] and equating coefficients with those

of Figure [6d produces

L Lo,L1 -Lli,le = — L Ly,L
ZML?,LQALi 'Kz, 1, (Ls, La) = pi? p ALV (2.97)
L3
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Figure 7: Two ways of resolving a four-way junction of algebra object lines.

We will need one additional relation. Figure [Ta] shows a four-way junction of algebra objects, which can
be broken up into two three-way junctions of simple lines in multiple ways. Two of these ways are shown in
Figures [7D] and As before, breaking the A lines into components yields a sum over diagrams with one
1 and one A as components. In order to match up the diagrams in each sum, we need to apply the cyclic
transformation to the lower junction in Figure Doing so and equating the coefficients of identical
diagrams produces the identity

Ly,1
P L AT KT (s, L) = L A%; €L, VLs- (2.98)

This expression includes coefficients arising from applying the evaluation map e and coevaluation map ~.
Below when we use this equation we will take L1 = L3 and these coefficients will cancel each other.

Now we can apply these relations to modular transformations. The general form of the modular T
transformation of the partition function ([2.91)) is

_ I:.L _
Zr2(T+1,74+1) = Z WE L, APt ZKL; 1 (L3, L) Z12 1 (7, 7), (2.99)
Li,L>,Ls
= AL+l ZL2 7 2.100
/uLl Ly Lo Lq,L4 (T7 T)’ ( . )
Li,Lo,Ly
= Zp(7,7), (2.101)

where we have used (2.97)). Thus, the partition function (2.91)) is invariant under modular T' transformations.

We can check invariance under modular S transformations similarly. The partition function (2.91)) trans-
forms as

Zra(=1/m,=1/7) = Y up AT ZE (<1 —1/7), (2.102)
Li,La,L3
L7 J—

= Z ,ULl,L2 L2 = ZK , L27L1)KL L (LSaL4)Z 431(7'77'% (2.103)

L1,Lo,L3 ’
La,L _

- Z I T LAL 1KL4LQ(L27L1)ZL;31(737)7 (2.104)
L1,La,Ly

= > ARz (n7), (2.105)
L1,Lo,La I

= Zp2(7,T), (2.106)

using and -
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Figure 8: Triangulation of a genus 2 surface [44].

2.8 Higher genus partition functions and change of triangulation

So far we have concentrated on computations pertaining to a genus 1 worldsheet. The formalism used
presently is not exclusive to this but also extends to more general worldsheets. In the present section, we
briefly discuss these computations for a genus 2 worldsheet, and observe how the familiar discrete torsion
factors naturally arise in the special case of a group-like symmetry.

In our language, to compute a partition function, we first need to pick a triangulation of the worldsheet.
(Then, later, we will review how the results are independent of the choice of triangulation.) First, to set the
stage, we briefly recall genus two computations in ordinary orbifolds. One particular choice of triangulation
for a g = 2 surface is given in Figure 2 of |44} figure 2], redrawn here as Figure |8 It consists of an octagon
whose edges are labeled by group elements of the group that is being gauged. This gives rise to the (trivalent)
dual graph shown in Figure [0] where the multiplication and comultiplication morphisms are labeled by red
and blue circles, respectively.

One of the important consistency checks that are satisfied in this perspective is that for the top part of
the graph in Figure[d] which we can regard as a torus, to connect to the bottom part, another torus, it must
hold that

bytay brar = ay tby taghs, (2.107)

which is the familiar commutativity condition of a flat G-bundle on a genus 2 surface. In particular, this
means that the partition function will only sum over those simple objects Lq,, Ly, , Lay, Lp, € 0b(Vec(G))

whose group labels aq, by, a2, by € G satisty Eq.(2.107)).

More generally, such a graph can be used to represent the A-morphism that gives the coefficients the
partition function of the g = 2 surface. Given a Frobenius object A, one such graph is Figure [I0] As in the
genus 1 case, it is often convenient to decompose this diagram into a sum of diagrams involving only simple
lines, as in Figure From this diagram, we can read off the partition function in the multiplicity-free case
for a genus 2 surface as:

_ E Ls Le,L7 A L2,L1 Lg Lo Ly,Ls 7 Ls,Le,L7,Lg, Lo
Zg=z = /”LL17L2AL5 ALG /“LL3,L4/1'L71L8AL9 ZLl,LzyL:37L4 ’ (2.108)
Ly, Lo

where fofgf;fng is the partial trace involving (L, -- , L4) as external simple lines and (Ls,--- , Lg) as
internal simple lines, in the order specified in Figure

As discussed in [13] section 5.1], even though the gauging process of a Frobenius object uses a choice of
worldsheet triangulation, the end result is independent of such a choice. We outline this result below. First,
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-1 _ -1
bl a1 b1a1

—1;—1
a2 b2 a2b2

Figure 9:

Figure 10: Trivalent resolution of genus 2 surface with Frobenius algebra object A defects. Red vertices
indicate multiplications, and blue vertices indicate comultiplications.

Figure 11: Trivalent resolution of genus 2 surface triangulation from Figure [§|in terms of simple lines. This
diagram defines a genus 2 partial trace.
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it is known that all triangulations of a given manifold can be related by a series of moves [45], all of which
are generated by two basic moves [46, fig. 6]: the fusion (F-) or (2,2)-move, and the bubble move.

Next, we outline these two moves and how both are realized by the axioms of a special symmetric
Frobenius algebrd'1]

e Fusion move = Frobenius: In the dual graph, the fusion move is shown in figure This corresponds
to the Frobenius identities ([2.46) for a special symmetric Frobenius algebra, namely

Ap®lda

A® A AQA® A (2.109)
u*l J(IdA(X)/J*
A Ar A® A

as discussed in appendix We have sketched the relation in figure Briefly, the diagram on the
left in figure [13| corresponds to the map

ARA 5 A 25 A A, (2.110)

and the diagram on the right in figure [13| corresponds to the map

dA® s
A A S8 A9 Ag- AU Ag A (2.111)
Equality of these two compositions is precisely the Frobenius identity above.

e Bubble move = special: The bubble move is shown in figure Invariance under the bubble move is
a consequence of the ‘special’ condition (2.47)) in the special symmetric Frobenius algebra, namely

0 Ap = Idy, (2.112)

as discussed in appendix The relation between the diagram [14] and the identity above should be
clear from the labelling.

In this fashion we see that the partition function should be well-defined with respect to different choices of
triangulation, and hence different descriptions as compositions of u, and Ar. An example is illustrated in

figure [15]

Figure 12: Shown is a fusion move.

1150 long as we draw diagrams with the Frobenius algebra A on legs, we can express everything in terms of axioms of the
Frobenius algebra. If we were to write the diagrams in components, then, we would also need to take into account F' symbols
/ crossing kernels K.
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Figure 13: Fusion move reinterpreted as Frobenius identity. The other Frobenius identity gives a very similar
diagram with some arrows reversed.

A | Arp e A _ A A

Figure 14: Shown is a bubble move, with multiplication u, and comultiplication Ag inserted.

2.9 Structure of state spaces for Rep(G)

In this section we will utilize the existence of a noninvertible Rep(G) symmetry in a G orbifold, and the fact
that orbifolding by the quantum symmetry returns the original theory, to compare the organization of the
state spaces arising in orbifolds by a group G and by a noninvertible symmetry Rep(G).

Let us review the structure of the state space of local operators in a 2d theory 7 with an invertible global
symmetry given by an abelian group G. At the broadest level, there will be genuine local operators which can
appear freestanding in correlation functions and twisted local operators which have support only on the end
of TDLs. That is, for each g in G, there is a Hilbert space H, of g-twisted operators living at the endpoint
of a line labeled by g. We can refine this description by noting that the symmetry G naturally acts on the
twist fields, which means that the states in H, further break up into representations of G. Accordingly, we

will write H,y 4 for the Hilbert space of g-twisted states which transform in the g € G representation.

What happens to these states when we gauge G? The resulting theory has a global quantum Rep(G) = G
symmetry, which we can use to organize the result. Those states that transform in the trivial representation
of G are gauge invariant, and become the genuine local (untwisted) states of the gauged theory. More
geometrically, if we think of gauging as flooding the worldsheet with a network of G lines, the gauge-invariant
operators that were previously bound to the end of those lines can move freely along that background network,
making them genuinely local. The states transforming in non-trivial representations of G can be made gauge
invariant by placing them at the end of G lines, so these form the twisted sectors of the gauged theory. Thus
gauging has the effect of taking H, ; to H; 4. The actions of v € G and 4 € G on a state Qg5 in Hy 5 are
given by

7 Og,5 = X3(7)O0g,5 ¥ Og,5 = x5(9)Og,5- (2.113)

When we allow G to be non-abelian, some subtleties creep into the above story. Consider the action of
G on an arbitrary twisted sector state. This is given by the action of G on itself, and the orbits for such
an action are the conjugacy classes of G. Twist fields in this case are thus labeled by conjugacy classes [g]
rather than individual group elements, as conjugate group elements give isomorphic Hilbert spaces. For a
given representative g of [g], the subgroup of G that fixes g is its stabilizer Stab(g)B Any other member
of the conjugacy class has a stabilizer which is conjugate to Stab(g), so if we only care about subgroups of
G up to conjugation (and conjugate subgroups do give equivalent symmetries), we can sensibly talk about

120ne sometimes sees this phrased in terms of centralizers, but for a group acting on itself by conjugation these are equivalent.
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Figure 15: Shown is an example of simplifying a diagram, using, from the left, a fusion move followed by a
bubble move, resulting finally in a diagram given by Ap o pu..

Stab([g]) as the conjugacy class of subgroups which fixes [g]. Thus, twist fields in this theory live in Hilbert
spaces H[g) r labeled by conjugacy classes of G and representations R of Stab([g]).

Let us proceed with an explicit example, with a global S3 symmetry, where S5 is the symmetric group

on three objects. We will use the same notation as in section Here we have three conjugacy classes [1],
[a] and [b] with stabilizers S5, Zo and Zs. Denoting respectively the trivial and non-trivial representations
of Zo by + and —, and the representations of Zs by w?, the local operators in an S3-symmetric theory break
into

Hupn Hiar Hpoo

Hiux  Hia—  Hiplwt (2.114)

Hpy Hppw2
where each column is a twisted sector. We can still leverage to help us determine the fate of the
genuine local operators under gauging Ss or any of its subgroups. S3 has (up to conjugation) three non-trivial
gaugeable subgroups: Zg, Zz and all of S3. The algebra objects for gauging these can be written as [1] + [a]
for Zy, [1] + 2[b] for Z3 and [1] + 3[a] + 2[b] for S3. Using (2.113)), the genuine local operators are acted upon
as

1

S ([ +[a]) - Opya = % D (1) + xa([a))] Oppa = Opya (2.115)

%([1] +[a]) - Oy x = % [xx (1)) + xx([a])] Opyx =0 (2.116)

%([1] +a]) - Oppy = % Iy (1)) + xv ([a])] Opyy = Opyy (2.117)

(2.118)

by Zs,

%([1] +2[b]) - Oy = % Dxa([1) + 2xa (b)) Oy g = Opya (2.119)

%([1] +2[b) - Oppx = % [ex (1)) + 2xx ([B))] Opy,x = Oy x (2.120)

S0+ 20) - Oy = 5 b (1) + 20 ()] Oy v = 0 (2121)

(2.122)
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by Zs and

%([1} + 3[a] +2[b]) - Opy1 = é [x1([1]) + 3xa([a]) + 2x1([6])] Opj1 = Oy (2.123)
00+ 8la] + 280) - Oy = & Dex(2) + 3xx((a]) + 2vx(B)] Oy x = 0 @.121)
%([1] + 3[a] +2[b]) - Opyy = é [xv ([1]) + 3xy ([a]) + 2xv ([B])] Opjy =0 (2.125)

(2.126)

by S3. This gives us an idea of which genuine local operators are gauge-invariant and therefore will appear
in the untwisted sector in an orbifold by any subgroup of S3 above.

Let us focus on the orbifold by the full S3, [7/Ss], which will yield a theory with a global Rep(Ss)
quantum symmetry. The untwisted states in are already labeled by representations of S3, so it is
clear how they transform. What about the twisted states, which are labeled by representations of subgroups?
These turn out to in general be S3 multiplets, instead of singlets — they transform under the S5 representation
induced by the representation of the stabilizier subgroup which labels them, which need not be irreducible.
In the example at hand, rewriting in terms of induced representations gives

Hiupr Hgary  Hpliex
X Max+y Hpy - (2.127)

Concretely, then, we see that both H[,)  and H [} 0 contain states which are Ss-invariant and therefore will
end up in the untwisted sector of the S3 orbifold. The genuine local operators in [T /Ss], then, are made
up of states Oy arising from Hpy) 1, states O, 1 arising from H,) 4 and states Op, 1 arising from H ) 0.
gives us the action of Rep(S3) on these states:

1-Opp1 = xa([1)Opja = Opa (2.128)
1-Oppa = x1([b])Opy1 = Oy (2.129)
1-Op1 = x1([a]) Ol 1 = Ol 1 (2.130)
X O = xx([1])Opj1 = Opya (2.131)
X - Opp1 = xx([b)Op),1 = Opa (2.132)
X - Opgp = xx([a)Olaj1 = =Opaj1 (2.133)
Y Oppa = xy ([1)Opy1 = 20, (2.134)
Y- Op1 = xy (0O = —Opya (2.135)
Y- Ol = xv ([a]) Oy = 0, (2.136)

which agrees with the action given in [47] section 5.2]. The twisted sectors, in general, receive contributions
from multiple ungauged sectors. If we further gauge the regular representation of the Rep(Ss) symmetry to
recover the original S3-symmetric theory, the resulting local operators should once again organize themselves

by ([.114).

2.10 Formal argument for algebra object as projector

Next, we consider gauging a noninvertible symmetry, and discuss how the algebra object A acts as a projector.

As with invertible symmetries, the partition function obtained when gauging noninvertible symmetries
will break into a sum of terms which describe the action of the algebra object on twist fields. The properties
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Figure 16: The algebra object A acts projectively on local states.

of the Frobenius algebra, in particular the fact that the multiplication gives a map A ® A — A, ensure
that A acts projectively on states. Using the diagrammatic properties of the algebra object as given in
e.g. [13, section 3], we can follow [48] in showing that A acts projectively on (twisted) local states — this is
shown in Figure

All of the lines drawn there are the algebra object A, and in the middle we project A onto one of
its constituent simple lines which then ends on a twist field. The junctions contain multiplication or co-
multiplication as necessary. Arrows on lines are omitted for readability. Moving from Figure to Fig-
ure[I6bwe break up the two four-way junctions. Using the equivalence of the configurations shown in Figure|[]
allows us to deform Figure to Figure Applying two swap relations produces Figure which we
can deform to Figure Finally, the condition on composition of multiplication and co-mutiplication given
in allows us to ‘pop’ the bubble, leading to Figure In total, we find that the action of A ® A on
any local operator is equivalent to that of A, as expected.

2.11 Specialization to ordinary orbifolds

Previously in section[2.5|we introduced some abstract machinery to discuss gauging noninvertible symmetries,
e.g. Frobenius structures, Hopf algebras, and so forth. In this section, we will demonstrate that that abstract
machinery correctly reproduces standard results for ordinary orbifolds by (ordinary) groups.

Here, the fusion algebra is Vec(G) = Rep(C[G|*). As this may be a bit obscure, let us take a moment to
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elaborate. First, we describe C[G]* as a vector space with basis elements v, for all g € G, with multiplication
VgUp = 0g nUq. (2.137)

The irreducible representations of C[G]* are one-dimensional, and in one-to-one correspondence with elements
of G. Let such an irreducible representation be denoted Uy, with basis {ey,}, and G-action defined linearly

over
Vh - €Ug = 5g’heUg. (2138)

The tensor product follows naturally from the group law:
U, @ U = Ugp. (2.139)

General representations, sums of irreducible representations, are G-graded vector spaces. See also e.g. [49]
for a (dual) description of G-graded vector spaces as comodules over C[G].

Now, in this case, we do not need to consider nontrivial junction defects, simply because

C gh =k,

0 else. (2.140)

Hom(U, @ Uy, Uy) = {

This is certainly in agreement with standard orbifold constructions, which do not involve junction defects.

We next construct a special symmetric Frobenius algebra on C[G] = C[G]**. Proceeding as before, we
inherit the product and unit structure from Vec(G), namely

We then define a new coproduct Ap and counit u%. The integral element A € C[G]* given by
A=y, (2.142)

and the cointegral is

|G| > g (2.143)

geG
We take u% : C[G] — C to be given by A* : C[G] — C, that is,

up(g) = |G o1, (2.144)
Next we work out the comultiplication. It corresponds to the dual of the map

vg®vhr—>2vgk®vk71 ®UhHZng®Uk Qv > Vgp @1 (2.145)
keG keG

so that on the basis elements and normalizing this is
Ap = ‘G‘ > ghan! (2.146)

It is straightforward to check that this has the desired normalization, p. o Ap = Idy~, using the fact that
e = A* (from (2.49)), and in the present case, A = p* (using the relation between dual bialgebras, as
2.5)

discussed in section [2.5)), hence p, = A* = p** = p. Similarly, the coevaluation maps are dualized relative
to Rep(G):
ya(l) = D> h@vp, F401) = > vn®h (2.147)
heG heG

36



(Compare their expressions (2.83)) for Rep(G).) Altogether, it is also straightforward to check that
(A =H", o, us, Ap, u$) (2.148)
satisfy the axioms to be a special symmetric Frobenius algebra.

Now, let us compute the genus one partition function (2.91)), namely

Z(r) = Z Ml;,hAZ’gZ;h(T), (2.149)
Bk

where A indicates Ap, the comultiplication in the Frobenius algebra. (Since the lines are associated to group
elements, we use g, h, k in the remainder of this section instead of L to denote them.) Expressing (2.141)) in
components, we havdE

Hon = { 0 else, (2.150)

so we see that the only contributions to the sum are from g,h € G such that gh = hg (otherwise one of
the two factors ,u’; s AZ’g vanishes). As a result, we can simplify the expression for the genus-one partition

function and write 1

Z = @ > z9%, (2.151)

gh=hg
which precisely matches the standard expression for genus one orbifold partition functions.
In the special case H = (C[G])*, the Hopf subalgebras of H* = C[G] are all of the form C[H] C C[G] for

H C G asubgroup (see e.g. [50, Prop. 2.1], [51]). This recovers the familiar statement that the subcategories
of Vec(G) which we can gauge are precisely those of the form Vec(H) for H any subgroup of G.

So far we have discussed ordinary orbifolds, as special cases of the technology we have reviewed. Next,
we will describe how one can also describe orbifolds with discrete torsion, in the same language.

Briefly, discrete torsion is encoded in a modification of the multiplication in the Frobenius algebra. (The
starting Hopf algebra is unchanged.) We modify the components of the multiplication u, in the Frobenius
algebra to be given by

k _ Mg.h k= gh7
Hon = { 0 else, (2.152)

for some nonzero complex numbers mg ;. For now we will assume that the G symmetry is non-anomalous,
which means that we can take the associator to be trivialE The associativity constraint (A.7), namely

fac(pe @ Id 4) = pru(Id g ® pus), (2.153)

reduces, in this basis, to
Mg, nMgh,k = Mg hk Mhk (2154)

which we recognize as the 2-cocycle conditiorﬁ (and the normalization condition is indeed the usual cocycle
normalization). The unit axiom (A.8]) requires

mig = mg1 = 1, (2.155)

13In comparison to later computations, in which we will explicitly track intertwiners, here we take all intertwiners to be
trivial.

1n the case of an anomalous group-like symmetry, the associator becomes a non-trivial 3-cocycle w, as described in the
following section. The condition on the discrete torsion 2-cochain m is then that dm = w, rather than closure.

15Changing the 2-cocycles by 2-coboundaries changes the Frobenius algebra, but leaves the partition function invariant.
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which is a normalization condition that can always be imposed, without loss of generality, on a group
2-cocycle.

The unit u, and co-unit u$ in the Frobenius algebra take the form

Us 21— @51,99 up i g — |Glo1 41 (2.156)
geG

The comultiplication Ag is given by

1 1
Ap = g~ —> ——gh@h™* (2.157)
|G‘ hEZG mgh’h—l
which has components
1 -1 —
AR = { a1 (mha) k= hg, (2.158)
0 else.

The coevaluation maps are the same as (2.147)). It is straightforward to check that with these definitions,
(ts, s, A, u$) satisfy the axioms to be a special symmetric Frobenius algebra.

Then, the resulting genus-one partition function is, from (2.91)),

Z o= Y pk AR Z, (2.159)
g,h.k
1 Mg h
= — LN/ 2.160
|G| ghz_:hgmhg g,h ( )

which is the standard result for genus-one partition functions of ordinary orbifolds with discrete torsion.

As a solid consistency check, let us also check the genus 2 partition function, using our general technology,
in the case of Vec(G) with discrete torsion, to compare to existing results for discrete torsion on genus 2
surfaces. As discussed in subsection the genus 2 partition function is the sum over partial traces (2.108]),
namely

_ Ls Le,L7 A L2,L1, Lg Lg L4,L3 ryLs,Le,L7,Lg,Lg
Zg=o = Z HES L AL AL L L L e ALy AL Ly Ly
Ly, ,Lg

In the present case, all the internal simple lines are determined by the external lines, as in Figure 0] Since
this renders the labels by internal lines on the partial traces redundant, we simply denote these as Zp, 4, b5,a2>
much as the familiar Z, ;, expression for genus 1 partial traces in group-like cases. Let v = bflaflblah for
a1,2,b1,2 € G, then the partition function is

Mby,a1 Mby,az My,bras
Zg:2 = E : Zb17a17b27a2' (2161)

m m m
a1,broan,by 0101y TTaiby Thas,ba

We note that
Mby,a1 Mby,az My ,byay

(2.162)

Ma1by,y May,by Mag,by

is precisely the discrete torsion phase for a partial trace of a genus 2 surface [44,52]. Moreover, from the
diagram we observe that for the partial trace coefficients to not vanish, the external lines need to satisfy the
equation

bl_lal_lblal = a;lbglagbg, (2163)

which is the standard condition on genus-two orbifold contributions.
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3 Examples of partition function computations

In this section we will compute genus-one partition functions explicitly in some examples of (multiplicity-
free) fusion categories of the form Rep(#), for H a Hopf algebra. In most of the examples, we will derive
results expressed in terms of a general basis of fusion intertwiners. To compute a partition function, one
must specify a special symmetric Frobenius algebra, as already discussed, and for each fusion category, we
will list all choices and compute partition functions for each choice. In every case, we will see that our general
expression procedure yields a partition function that is a modular-invariant sum of partial traces, which is
a strong check that the procedure is self-consistent.

3.1 Rep(S;)

First, we will consider Rep(S3), where S5 is the symmetric group on three elements, which can be presented
as
Sz = (a,b|a® =1=10% aba = b?). (3.1)

3.1.1 Representation theory

The group S5 has three irreducible representations which we will label 1, X, and Y. The character table is:

(] | [a] | [0]
i | 1] 11
Xx 1 -1 1
Yy | 2] 0 [ =1

Specific realizations of these irreps are given by

)
~
&
|
7N
o
—
N—
)
L<
—
=
Il
/N
Sl
[
N|= w‘a
N———
W@
N

The representations form a fusion algebra under tensor products, with

XoX~1, XYY, YeY~laeXay. (3.5)

~

Additionally, all three of these irreducible representations are self-dual, meaning 1* = 1, X* = X, and
Y*xY.

In our fusion category Rep(Ss) the objects will be labeled by representations of S3, with the irreducible
representations 1, X, and Y being the simple objects. The spaces Hom(R;, Ry) will consist of intertwin-
ers between the representations R; and Rs. Explicitly, if R; consists of a vector space V; and a group
homomorphism p; : S5 — GL(V;), then each element of Hom(Ry, Ry) is a linear map ¢ : V; — Vs satisfying

popi(g) =p2(9)od, Vg€ S (3.6)
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3.1.2 Computing the associator

To do this computation, we first need to pick a basis of Hom(R; ® R;, Ri) for each fusion of irreducible
representations R;, R;j, Ri. For Rep(S3), these spaces fortunately all have dimension zero or one, so the
freedom is just a set of C* parameters (corresponding to intertwiners) which we will leave arbitrary (except
for fusions involving the trivial representation, for which there is a canonical choice). We'll use e as the
basis vectoﬂ for the trivial representation, ex as the basis vector for X, and ey, and ey, to be the basis
vectors for Y which are odd and even respectively under the action of a (i.e. so that py takes the form )

Letting 51, - -

1111117111111

—
[EEN
[EEN

, B be the arbitrary parameters, we have the most general possible intertwiners

67

€x,

ey,

ey,

€x,

Pre,

B2 ey,

— Baeyi,

ey,

B3 ey,

Bae+ Bseya,
Bsex + Ps ey,
ey,

— B3 ey,
—Beex + Bs ey,

Bae — Bseya.

161n doing so, we are using the fact that we have a fiber functor to define a basis on the underlying vector spaces. However,
the maps herein described do exist in the fusion category as they are all equivariant.
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Alternatively, in terms of explicit basis vectors )\ﬁ ; for Hom(R; ® R;, Ry),

Aale®e) =e, (3.23)
My(e®ex) = ex, (3.24)
My(e@ey1) =ey1,  Aly(e®eys) = eys, (3.25)
Mlex ®e) = ex, (3.26)
Ax x(ex ®ex) = pue, (3.27)
Aey(ex ®ey1) = Baeya, A y(ex ®eys) = —faeyt, (3.28)
MNalevi®e) =ey1,  Ayileva®e) = ey, (3.29)
Ay x(ey1 ® ex = Bseya, Ay x(eye ® ex) = —Bseyt, (3.30)
Avy(evi ®@ey1) = Bae,  Ayy(eva ®eya) = fae,

Ayy (ey1 @ eya) =Xy y(eya @ eyz) =0, (3.31)

Ay(evi ®eys) = Beex, Ay (eyva ®ey1) = —fBsex,
Ay (ev1 ® ey1) =Xy (ey2 ® ey2) =0, (3.32)

Ay (evi ®ey1) = Bseya,  Ayy(ey1 ® eye) = Bsey1,

A¥,Y(6Y2 ®ey1) = Bsey, A?y(eyz ® eyz2) = —fseya. (3.33)

Factors such as signs are determined by consistency with the group law. To make this more explicit,
consider the following example. First, from the form of the representation py,

a-ey] = —ey1, a-eyz = +eya, (3.34)

while
a- (eX ® eyl) —ex ®ey1, a- (ex & €Y2) = —ex ® eys. (3.35)

Let )\}/(,Y explicitly denote the intertwiner for the fusion X ® Y = Y. Based on the action of a above, the
most general form of A?Y is

Ay (ex ®ey1) = Baeya, Axy (ex ® eya) = caey, (3.36)
where (5 is as above and ¢y is another constant. We then require
b-Axy (ex ®ey1) = Mxy (ex ® (b-ey1)), (3.37)
and this fixes the value of ¢y. Explicitly, we are given

1 V3

b-eyr = T Y1 T 5 ey, (3.38)

3 1
b-eyy = +£ ey1 — 3 ey, (3.39)

2 2

and we compute
V3 1
b-Ayy (ex @eyr) = 752 eyl — 552 ey, (3.40)
1 V3

Ay (ex @ (b-eyr)) = —552 eya =~ G2 ey, (3.41)
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hence
Cy = —62. (342)

Signs in other cases are determined similarly.

Next we compute the associators, which are elements ag, g, r, € Hom((R; ® R2) ® Rs, R1 ® (R2 ® R3)).

It turns out that as intertwiners, the associators in a representation category like this are canonical, acting
simply as

aRl,Rg,Rs((Ul ® ”UQ) ® Ug) =11 & (”02 ® ”Ug), (343)

for all v; € R;. However, we would like to expand this simple map in terms of components related to the
chosen bases for fusion intertwiners. By taking fusions we can map a vector in (R; ® R2) ® R3 to Ry, using
some Rj as an intermediate channel, by acting with the map )\g‘;’RS ) (/\II%’R2 ®1R,). On the other hand, we

can similarly apply )\gi,Ra o(lp, ® )\gg’RS) to a vector in Ry ® (Re ® R3). The sources of these two maps can

be identified using the canonical associator map arg, r,,rs;, S0 What we are looking for are the coeflicients

~ Ri,R . .
KR:,Ri (Rs, Rg) relating these two, 1.e

R R B, Ra R R
)‘R:,R3 o ()‘RS,RQ ® le) = KR%,Rg (R;’RE) )‘R;L,RG °© (1R1 ® /\RZ,RS) © Ry,R2,R3) (3'44)

1

~ Ri,R :
as intertwiners in Hom((R; ® R2)® R3, R4). The quantities K R; Ri (Rs, Rg) here are just complex number

since we are restricting in this paper to the case where all the fusion and co-fusion Hom spaces have dimension
at most one.

Since fusion involving the trivial representation was canonical (i.e. )\ER(e ®@v) =vand A\§ (v®@e) =0
for all v € R), we have
- 1,R ~ Ri,R ~ Ri,R
Kp r(Ri,Rs) =1,  Kij, (Ri,R)=1 Kp ' (RsRy) =1 (3.47)

So focusing now on the case with only non-trivial representations, we compute

(ex ®ex) ®ex — fre®@ex — Prex,
ex ®(ex ®ex) — frex ®e— Prex,

= Ky x(1,1) =1. (3.48)

Here in the associator component K g;:gi (Rs, Rg), the representations Ry, R, and Rg are the three appearing
in the triple product, and R, is the representation for the final result. The intermediate step when fusing
the first and second vectors appears as Rs, while the intermediate step when fusing the second and third
vectors appears as Rg.

17The reason that dual representations appear in several of the indices is to match with [27], see footnote Since in our
examples we have R = R* for all irreducible representations R, we won’t be bothered by taking the duals.

.. . . . ~ R1,R . .
18 This is a different perspective than in [27], where the K R;, R;‘ (Rs, Rg) are viewed as maps, explicitly

Ri,Rq

KR, rs(Rs, Rs) : Hom(R] ® R3, R:) ® Hom(R: ® R3, R4) — Hom(R5 ® R3, R§) ® Hom(R] ® R§, R4). (3.45)
The quantities here are related by
~ R1,R RE R ~ R1,R R} R
[KR;R;%(REH Rﬁ)the?"@] (AR rz © ARt gz) = K Ry Ry (Rs, R6)here ARS.ry © ARt Re- (3.46)
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Proceeding to other cases,

(ex ®ex)®ey1 — fre®eyr — P1eyr,

ex ®(ex ®ey1) = Prex ey — —53 ey,

~ XY b1
= Kyy(L,Y) = -5 (3.49)
2
(ex ®ex) ®eys — Pre® eya — Bieys,
ex ® (ex ®eya) = — foex @eyr —55 ey2,
= Kyy(1Y) = —%- (3.50)
2

Note that we didn’t really need to compute both of these; the second one didn’t provide us with any new
information. Going forward we won’t compute more than we need.

(ex ®ey1) ®ex +— Paeya @ex — —f283 ey,
ex @ (ey1 ®ex) = Bzex @ eya = —fPafz ey,

= Ky x (V,Y) = 1. (3.51)

(ex ®ey1) ®ey1 = Bareys ®eyr — —B28s ex + 25 ey,

ex @ (ey1 ®ey1) = Biex @ e+ Bsex @ eya > Baex — f2fs ey,

B2
By’

= Kyy (V1) = — Kyy (YY) =—1. (3.52)

(ex ®ey1) ®eya > Paeya @ eya > Pafse — Bafseya,
ex @ (ey1 ®eya) = feex ®ex + fsex ® ey1 — B1fs e + Pa2f5 eya,
= Kyy(V,X) = §2g4, Kyy (V,Y)=—1. (3.53)
186

(ey1®ex) ®ex = Bzeys ®ex —5§ €Y1,
ey1 @ (ex ®ex) — Breyr @e— Bieyr,

B 2
= Ky (V1) = iy (3.54)
’ b1
(ey1 ®ex)®eyr — PBseye ®ey1 — —F38s ex + B30s ey,
ey1 ® (ex ®ey1) = faey1 @ ey = B2fs ex + Pafs ey,
SRy =-B 0 By =2 (3.55)
’ B2 ’ B2
(ey1 ®ex) ® ey — Pyeya @ eya = B3fae — B35 ey,
eyi ® (ex ®eya) = — faey1 ey — —P281e — P25 eva,
:f(f;}(xy):—%, f(fgf/(y,y): % (3.56)
2 2
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(ey1 ®ey1)®ex = fae®@ex + fseya ®ex = Baex — Bafs ey,
ey1 ® (ey1 ® ex) = fzey1 ® ey = B30 ex + B35 ey,

B4
BaBs’

= Kyx(L,Y) = Ky x(Y,Y) = —1. (3.57)

(ey1 ®ey2) ®ex — Bgex ®ex + PBsey1 @ ex — P18 e+ Bafseya,
ev1 ® (eye ®ex) — — fBzey1 ® ey1 — —B301e — B35 eya,
B186

G Kexy)=- (3.58)

= Kyx(X,Y) =

Finally, we have the Y®3 triple products. Three of them are enough to determine the matrix

~ Y)Y ~ Y)Y ~ VY
K}/@/(l»l) K},’},(LX) K%}/(LY)
Kyy = Kyy(X,1) Kyy(X,X) Kyy(X,Y)]- (3.59)

~YY ~YY Y
KY,Y(Ya 1) KY,Y(K X) KY,Y(K Y)

To be systematic, let us choose bases for (Y ® Y)®Y and Y @ (Y ® Y). (Moving forward, we will start
to leave the ® symbol implicit.)

1
E},/ = 745455 ((ey1€y1) eya + (6y1eyz) ey1 + (€Y2€Y1) €y1 — (€Y28Y2) eYQ) (3~60)
1
= > (ey1ey1 + eyaeya) e, (3.61)
264
1
X} = - 1556 ((eyieyi) ey1 — (eyieyz) eya — (eyeey1) eya — (evzeya) ey1) (3.62)
506
1
= 5= (eyeye — eyaey1) = ex, (3.63)
2086
1
Ui = m ((eyiey1) ey + (eyzey2) ey1) — eey1 — ey, (3.64)
1
VLl = m ((eyiey1) eva + (evaey2) eya) = eeya — ey, (3.65)
1 1
Ui( = — 72&&5 ((ey1ey2) eya — (eyaeyq) eya) — _Tﬁz (exey2) — ey, (3.66)
1 1
V= ol ((eyiey2) ey1 — (eyaeyi) ey1) — 25, (exey1) — ey, (3.67)
1
Uy = e ((ey1ey1) ey + (eyieyz) eya + (eyaey1) eya — (ey2ey2) ey1) (3.68)
5
1
= oo (eyieys + eyzeyr) — ey, (3.69)
265
1
ng = — W ((€Y1€Y1) ey — (eYleyz) €y1 — (6Y26’Y1) €y1 — (6Y2€Y2) €Y2) (3~70)
5
1
= 28; (eviey: — eyaeya) = eya. (3.71)
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1

Ep = i (ey1 (eyieyz) + ey (eyaey1) +eva (eviey:) — eya (eyvzeys)) (3.72)
1
— 2, (eyiey1 + eyaeya) = e, (3.73)
1
Xy = 155 (ev1(eyviey1) —eyi (eyaeya) — eya (eyvieyz) — eya (eyaeyr)) (3.74)
1
= 2, (evieya — eyaeyr) — ex, (3.75)
1
Up = 2, (evi(evievi) + ey (eyaey2)) — eyie — ey, (3.76)
1
Vi = 25, (eva (evieyi) + ey (eyaey2)) — eyae — ey, (3.77)
1 1
Uz)%( = - m (ev2 (eyieyz2) — eya (eyaey1)) — —%eyzex — ey, (3.78)
1 1
VRX = m (ey1 (€Y16Y2) — eyl (6y26y1)) — %emex — eya2, (3.79)
1
Uy = 132 (ey1(evieyi) —ey1 (evaeyz) +eya (evieya) + ey (eyaeyi)) (3.80)
5
1
— 25 (evieya + eyaey1) — ey, (3.81)
1
Vi = 132 (evi(evieva) + ey (evaeyt) — eyva (evieyi) + eya (eyaey2)) (3.82)
5
1
— 2 (eviey1 — ey2eyz) — eya. (3.83)

These combinations have been chosen so that both the final vector is one of our basis vectors, and the
intermediate channel is through a single representation, indicated by the superscript.

Then to expand any triple product in this basis, we can compare with the fusions, for example

(evievi)ey1 — Baeey + Bseyaeyt — —BsBsex + (B1+ B2) evi, (3.84)
tells us that
(eviey1)eyi = —Bs8s X} + BaUf + BEUY . (3.85)
Similarly,
evi (eviey1) = BsBeX g + BaUf + BEUY . (3.86)

The ay,y,y associator should map these into each other. Comparing the X} and X}, terms, we conclude
that Cvx
Kyy (YY) =—1 (3.87)

Looking next at the Uy, and Ug terms, we get a vector equation

R B4 Ba
Kyy-[o]=]{o], (3.88)
B2 32

~ Y, X . . ~ Y, X . . . .
where Ky 'y denotes a matrix with components Kyy (R, S) for various irreducible representations R, S.
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- Y)Y .
This isn’t enough to determine the matrix Ky -, but we can continue. We have

(evieyi) eya > Bieeyas + Bseyaeys = BaPs e+ (Bs— B2) eyo

= (eviey1)evae = BuBsE} + BaViE — B2V, (3.89)
evi (eyieys) = Beeyiex + Bseyiey1 — Bafs e+ (Bsfs + B2) eva
= eyi(eyieys) = BiBs B + BB Vi + BEVR (3.90)
translating to
v, Yy 0 Pa
Kyy (YY) =1, Kyy-BBs| =1 0 |. (3.91)
’ ’ B2 — 32

Finally, also considering

(evieyva)ey1 — Beexeyi + Bseyvieyt — Bafs e+ (B2fs + B2) eve
= (evieva) ey = BaBsE] + B2BeVE + BEVY, (3.92)
evi (eyaey1) = —Bseyiex + Bseyiey1 — BaBs e+ (—B3Bs + B3)
= ey1(evaey1) = BuBsEx — B3BeVi + BiVa (3.93)

leading to
~ Y1 . Y)Y 0 0
Kyy(YY)=1 Kyy-|-B386| = |50 |- (3.94)
B3 3
. . . . =YY
These three vector equations uniquely determine the matrix Ky - to be
1 Ba PBa_
o (L TE L
Kyy=|"%n ~25 7% |- (3.95)
B2 B 0
Ba B3Be

We can verify this result by checking the other triple products,

(evieya)eya = BsBsX] — B2BeUr + BEUL , evi(evaeys) — —BsBs Xk + BuUk — BEUE, (3.96)
(evaevi) ey1 — BaBsE] — BaBsVi + BV, eva(evieyi) v BuBsER + B4V — B3Vi (3.97)
(evaey1) eya = BsBeX) + BoBeUL + B2UL, eva (evieya) — —BsBeX) — BsBeUp + BeUY,  (3.98)
(evaeya) ey1 v+ BsBes XL + BaUL — BEUY ., eya (eyaey1) = —BsBs X} + B3BeUs + BUL,  (3.99)
(eyoeya) eya — —5455E{ + BV + ﬁgVLY, eyo (eyseys) — —64B5E§ + BV + ﬁng. (3.100)

There are some other structures we can define on this fusion category, that will be useful once we start
looking at Frobenius algebras. Having established a standard basis for fusion, we then also have a set of
associated evaluation morphisms €7 : L ® L* — C and ¢, : L* ® L — C, by projecting the fusion on to the
identity, e.g. if we define 7 : 1 — C by m(e) = 1, then we have €, = 7oA} 1., €L =m0 AL. ;. Thus,

€1(ee) = e1(ee) =1, ex (exex) = ex (exex) = b, (3.101)
€y (eviey1) = €y (eyzey2) = ey (eyiey1) = ey (eyzeys) = fu, (3.102)
€y (eyieyz) = €y (eyzey1) = €y (eyieyz2) = ey (eyzey1) = 0. (3.103)
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Along with these we have canonically trivial pivotal structures [14] p1, px, and py which act as the identity
intertwiner on 1, X, and Y respectively.

Next, we also have coevaluation morphisms j, : C = L*® L and 77, : C — L® L* which satisfy |14, equ'n
(3.14)]
Er®l)oar. o(l®7,)=1, (1®er)oar-po(y,®1)=1. (3.104)
These fix the coevaluation morphisms to be

71(1) =7(1) =ee, Fx(1)=yx(1) = %exex, (3.105)

and .
Ty (1) =w(l) = B (eviey1 + eyaeya). (3.106)

Finally, by combining coevaluation and fusion, we can establish a basis for the co-fusion intertwiners
51%’R3 € Hom(Ry, R2 ® R3). Explicitly, we’ll construct these a

o™ (01) = [(AF2 s @ 1ry ) © Ol gy | (01 @7, (1). (3.108)

If either of the outputs is the trivial representation, then we simply have 6}€R(v) =e®uor 53’1(1)) =vQe.
For the others, we find (keeping ® symbols implicit)

5% (e) = Brlexex, 6,7 (e) = 81 (eviey1 + eyaeya), 5§’Y(€X) = BB, (eyieya — eyaeyt),
5¥’Y(6Y1) = BeBy ‘exeya, 5;)5’Y(6Y2) = —B6B; 'exeyt,
5y (ey1) = B3B leyaex, 0y (eya) = —Bsfy 'eviex, (3.109)

5¥’Y(€Y1) = 3585 Heyieya + eyaeyt), 5¥’Y(6Y2) = 358, Heyiey1 — eyaeya).

In all of the expressions above, we left the parameters (i, --- , B¢ arbitrary. In the group-like case, this
corresponds to the freedom to choose a representative three-cocycle for our anomaly class in H3(G,U(1)) by
shifting by a coboundary.

In the next several subsections we will apply the computations above to compute partition functions for
various Frobenius algebras, following the procedure described earlier in section [2.5

3.1.3 Modular transformations

Before computing the partition functions, let us take a moment to work out the modular transformations,
following section so that we can check that the partition functions we will derive momentarily, are
modular invariant.

19 Alternatively, we could use
82" (v1) = [(11?2 ®m§2,31> OaRz,R;,Rl] (YR, (1) ®v1), 1 € Ra, (3.107)

resulting in a different basis.
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Using equations (2.28)), (2.29), it is straightforward to compute that

Ziar+1) = 24, (7),

Zix(r+1) = Z1X( )

Ay (r+1) = Zly(7),

ZEa(r+ 1) = Zh x(7)
i x(r+1) = 25,(0)
Zxy(r+1)= ZXY( )

Zya (T +1) = Zyy (1),
Zix(r+1) = - 222,
2
Zhor 1) = 32(0) + o () + S 2 (),
Zyr+1) = = A2~ A ) + R 2 (),
2

Zyy(r+1) = gizﬁl(ﬂ— ﬁf%6Z§X(T).

le,l(_l/T = 211,1(7')7

Zix(1/7) = 25,(7),

Z{Y(_l/T = 21}//,1(7')7

Z5,(1/) = 7).

Z)l(,x(_l/T = Z;(,X(T)a

Z)?Y(_l/T gjgzzxg,x(ﬂa

Zﬁxff,l(_l/,r = Z{Y(T),

Zx(-1/r) = 2 2 (7).

By (1) = 52 (r) = h 2 (1) + S 2y (7).

1
2y (1) =~ R 2 () 4 B (1) + R B (),
2 2
By (1) = 22y () + 55 B ()

Modular-invariant combinations of partial traces are

Ba

Zly+ZY1+ZYY"'25 ZYYv Z};,Y‘f'
5

1 X X 1
ARD Zix+t2Zx1+Zx x;

B2B4 7Y B384 7X B28384
Bife YN BiBs T Y 2182

(3.132)

(3.133)

We will see these combinations reappear later when we compute partition functions corresponding to

various Frobenius algebras.
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3.1.4 Subalgebras

We will study Frobenius algebra structures indexed by Hopf subalgebras C[H] C C[Ss], corresponding to
(not necessarily normal) subgroups H C S3, so let us take a moment to enumerate possible subgroups. Recall
that S5 can be described as

Ss = (a,b|a®* =1=10% aba = V?). (3.134)

In terms of the generators above, the subgroups of Ss3 are
{1}, (a) =Za, (ab) =Zs, (ab®) =17y, (b) =173 (3.135)

Now, a is conjugate to ab and ab?, so there are really only three distinct nontrivial subgroups for which we
should compute corresponding Frobenius algebras and partition functions:

<b>a <a>7 53' (3136)

Indeed, in general, we will find that any two subgroups related by an automorphism will give rise to iso-
morphic Frobenius algebras. For an inner automorphism the representation is the same, while for an outer
automorphism representations may be exchanged (we’ll see this latter possibility in the Dy and Qg cases
below).

Each of these subgroups will correspond to a Frobenius algebra. In addition, since S3 acts on S3/H, if
we construct a vector space with a basis labelled by the distinct cosets of S3/H, that vector space with that
S3 action defines a representation of S3.

We summarize the results in the table below:

Coset Subalgebra Representation Details in subsection
G/(b) Span[vg, vax|, K = (b) 1+ X 3.1.5
G/{a) Span[vy,vpm,v2g], H = (a) 1+Y 3.1.6
G/1 C[G]* 1+X+2Y 317

(the regular representation)

3.1.5 1+ X orbifold

In this subsection, we consider the Frobenius algebra corresponding to the subalgebra C[K] for K = (b). To
proceed further, we need to pick a basis for each case that makes the decomposition into irreps manifest.
We'll start with 1 + X. The full representation has basis vectors vx and v,x, and we can take a new basis
c

e=u(l) =vg + vux, ex = E(vK_vaK), (3.137)
where the notation reflects the fact that the first element is a basis for the vector space associated to 1, and
the second element is a basis for the vector space associated to X. Both vectors are invariant under the
action of b and are eigenvectors of the action of a, with e having eigenvalue 41 and x having eigenvalue —1.
Hence e spans the 1 sub-representation of 1 4+ X, while x spans the X sub-representation. The constant ¢
can be any element of C*.

We also need to specify the multiplication and co-multiplication in this Frobenius algebra (as discussed
in section [2.5)), which acts on the underlying basis vectors of the representation as

;L*(UQK®’UhK) :5gK,hK'UgK7 AF(”UQK) = Vg Q@ VgK - (3.138)
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(This uses the fact that Ag is diagonal on the v basis.) Translating this to an action on our new basis, one
easily obtains

pi(e®e) = e, (3.139)
e (e®ex) = px (ex ®e) = ex, (3.140)
P (ex ®ex) = ée, (3.141)
and
Ap(e) = %e®e+c_2ex®ex, (3.142)
Ap(ex) = %(e@ex+ex®e). (3.143)

Comparing with our standard bases (the )\gf’Rz s l i and 5§f’R3’s (3-109)), we can represent the

components of p,, Ar as coefficients,

c
N’%,l = M{{X = ﬂ§,1 =1L ﬂ%{,X =53 (3.144)
25
1
At A oa¥i=g Al =e (3.149
Here for instance we used ) )
c c
pelex ®ex) = —e= [ — | A\ x(ex ®ex), (3.146)
2 251 ’
giving px x = %, and
1 1 1o B1 ox.x
Ap(e) = §e®e+c—zex®ex = 551 (e)—i—c—Qé1 (e), (3.147)
giving us A%’l = % and Af’X = %

So now the recipe to compute the coefficients of partial traces is simply to assign to each Z gi g, the

coefficient ugf Ro Agi’Rl.

Ziy o, At =1 % = % (3.148)
Z¥x mix A =1 % = %, (3.149)
ZX, pX Ay =1- % = % (3.150)
Zk x ik xASY = ;;1 . % = % (3.151)
The full partition function is then simply
Ziyx = % [Z11+ Z38%x + Zx 1+ Zx x] » (3.152)

which is a sum of modular invariants in (3.132)), and also matches the standard form of a Zy orbifold.
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3.1.6 1+Y orbifold

In this section we consider the Frobenius algebra and partition function corresponding to the subalgebra
C[H] for H = (a). Here we have a basis {vg, vpm, vp2 g } the complex vector space over S3/H and we identify

Cc

c
€ =0 +UpH + Vp2H, €yl = 2 (b — vp2H),  ey2 = 76 (—2vg + v + vp2m) -

2
Then

pi(e®e) =
ps (e @ey1) = pix (ey1 ®e) =
p (e ® eya) = ps (ey2 ®e) =

e (ey1 @ ey1) =
Ls (6y1 ® eyz) = [y (6Y2 X eYl) =
L (ey2 ® eya) =

and (using the fact that Ap is diagonal on the v basis)

€,
€y,

€y 2,

2 N c
- €y2,
6

c
%eyl’

C c

- & €y 2,

36
C
2

37 6

1
Ap(e) = 3¢ ®e+c 2 (ey1 ®ey1 +eyr ®eya),

1 1
AF(ey1) = = (6 Xeyr +ey1 ® 6) + — (6y1 ®eys2 +eya ® 6y1) s

3 \/éc
Ar(eys) = 2 (e ® eya + eys ® €) + —— (ey1 ® ® eva)
e =—-(e®e e e)+— (e ey1 — e eya).
rleya 3 Y2 Y2 Joc Y1 Y1 Y2 Y2
So we have )
1 Y Y 1 c
H1,1:H1,Y:HY,1:17 #Y,Y:%a

1 15}
A 1,1 ALY A Y1 A }/,Y 4
Then for coefficients, we get

1
1,1
Z11,1 : M:11,1A1 = 3

Cc

myy =

Y V6Bs
vy _ P
Y V6eBs

ZIY,Y : M{YA%;’I = %a
Z}?l : M§,1A;Y = %,
Zsl/,y : M%/,YA}/’Y = %7
Yy myy Ay = Gﬂigz’
5

and the partition function is
1
Zl+Y - g Zil + Z%/;Y + Z;l + Z}l/7

which is a sum of modular invariants given in (3.132)), (3.133)).
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2ﬁ§ Y)Y
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(3.153)

(3.154)
(3.155)
(3.156)

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)
(3.166)
(3.167)
(3.168)

(3.169)

(3.170)



3.1.7 1+ X 4+ 2Y orbifold

In this section, we consider the Frobenius algebra and partition function corresponding to C[S3]. Here, we
have A =1+ X +2Y, corresponding to the regular representation of Ss.

This is slightly different since we have two copies of the Y representation occurring in our algebra object,
which we will denote Y7 and Y5 and keep separate until the end. We start by picking a basis for the regular
representation,

€= 01 + Vp + Vp2 + Vg + Vap + VUgp2, (3.171)
Cx

ex = %(vl + vp + Vpz — Vg — Vb — Vap2) (3.172)

c

ey;1 = 51 ('Ub — Vp2 — Ugp + ’Uabz) R (3173)
c

ey, 2 = 2—\;3 (—2v1 + vp + Vpz — 204 + Vap + Vap2) | (3.174)
c

ey,1 = 2—\;3 (—2v1 + vp + Vp2 + 204 — Vap — Vap2) s (3.175)

€y,2 = %2 (—vp + vp2 — Vap + Vap2) - (3.176)

Multiplication here is given by p.(vy ® vy) = g nve. Note that p, is symmetric by construction, so we do
not have to compute both p.(w; ® we) and . (we @ wy) separately. Also, p.(e @ w) = ps(w ®e) = w for all
vectors w, so we omit those as well. For the remaining ones, we have

2
Py (ex @ex) = %67 (3.177)
CzC
s (ex ® 6y11) = — \chleyzg, (3.178)
2
CyC1
o (EX (9 6Y12) = W@)@l, (3179)
2
CypC2
s (ex & €Y21) = ﬁeylg, (3180)
1
CC
p (ex ® eyy2) = — \}Tjenh (3.181)
1
C% C1
L+ (eyll ® €Y11) = ge + ﬁeylg, (3182)
c
e (ev11 © eyy2) = —%}geylh (3.183)
C% C1
L (evi2 ® ey,2) = 5¢” m@ylg, (3.184)
c
fis (eyi1 ® eyz1) = — ﬁem, (3.185)
crce c
P (evi1 ® €yy2) = — \/16(:2 ex — —2\}563@, (3.186)
c1e c
L (evy2 ® eyy1) = ﬁex — ﬁe}@l, (3.187)
X
c
s (evi2 @ eyya) = 72\}§6Y227 (3.188)
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c c
i (y,1 ® €y,1) = EQe - 72\/%1 ey,2, (3.189)
c
px (€51 ® €yy2) = — Tgcl@lﬁh (3.190)
(eva2 @ €v;2) e + L (3.191)
« (e e = —Ze ey,2. .
M (EY52 Y22 6 /3er Y12

Using the fact that Ap is diagonal on the v basis, we find

1 1 1 1
Ap(e) = —e®Qe+ szex ®ex + =2 (evy1 ® eyy1 + eyy2 ® eyy2) + 2 (ey,1 ® eyy1 + €v,2 ® €y,2)

6 T 1 2
(3.192)
1 Cx
Ar(ex) = G (e®ex +ex ®e) + Toors (—evi1 @ eyy2 +eyi2 @ ey,1 + eyl @ eyy2 — evpe @ ey1),
1C2
(3.193)
1 c
AF(eYll) = 6 (e R ey;1 +ey1 ® e) — \/67010 (EX & ey,2 + €y,2 & 6X)
xC2
1 c
+ W (ev;1 ®ey,2 +ey,2 @eyy1) — 7;62 (ev,1 ® ey,2 + eyvy2 @ €ey,1) , (3.194)
1 2
1 c
Arp(ey,2) = 6 (e®@ey2 +ey2®e)+ 76 : (ex ®eyy1 +eyy1 ®ex)
CypC2
1 c
+ W (evi1 ®eyy1 — evi2 ® eyya) — T;CQ (eva1 @ eyvy1 — evy2 ® evya2) , (3.195)
1 2
1 c
Ap(ey,1) = 6 (e®ey,1 +ev,1®e)+ \/672 (ex ®ey,2+ey,2 @ex)
CyC1
1
- W (evi1 @ eyy2 + ey,2 ® ey,1 + evy1 @ eyy2 + evy2 R eyy1) (3.196)
C1
1 c
Ar(eyy2) = 6 (e®ey,2 +eya®e) — \/6c2 ; (ex ®eyy1 +ey1 ®ex)
xC1
1
T 3o (evi1 @ eyy1 — ey;2 @ evy2 + ey,1 ® ey;1 — €yy2 @ €y,2) . (3.197)
1
This gives non-vanishing coefficients (apart from ufR = ugl =1, A}%’R = Ag’l = %)
= i O CxC1 . CxCo P CxCl e CyCo
BT ep TAM V6o By’ oY V6e1 8o viX V6285 Y2 V61 B3’
2 2
1 il 1 ) X C1C2 X c1C2
My, v, = %, My, y, = 6764’ My, v, = —\/6%56, My, v, = \/6%567
2
Y C1 Y- C1 Y: 1 Y; 2
N T S RE, e T oy M T Tagmg M T oy (3199
Ai{,X — ﬁ A}/hYl — & A?Q,YQ — é A?}?,Yg — Cl’/84 ?,Yl — Cl’ﬁ‘l
cz C% C% V6 ey c232 V6 ey c232
AXYe 154 ALY = Ba A o c1/ AR 0153 (3.199)
V6 26 2v/3 ¢1 85 V6 o33 2v/3 ¢35
X,Y1 254 Yi,X c21 AYl,YQ - B4 Ayz,yl o Ba

= Begei ] 2 VBegeifs Y2 __2\/§C1ﬂ5, Y2 __2\/30135.

53



Now we put it together, keeping in mind that Y; and Y5 both just become the simple line Y when we
talk about partial traces.

Ziy s pia At = é (3.200)

Z¥  pi AR = é, (3.201)

2y s Ay + i3, A7 = év (3.202)

Z% 1 mxa AR = é (3.203)

Zx x Ik, KATY = é’ (3.204)

Z}?,Y C iy ylAQ’ + px YQA%’ = _3521537 (3.205)
Zya iy Ay s Ay = é (3.206)
ZY x 2 x Ayt (AR = —353456, (3.207)
DYy iy AT+ uh,ygAlY”z = % (3.208)
Ly 1 A+ AR = 5 ;2 466’ (3.209)
Zyy iy AV iy, AR g2y A 4 pgh AP = 3%%' (3.210)

This gives the partition function

2
Zl+X+2Y—6 [Z11+ZlX+2Z1Y+ZX1+ZXX 5551 ZXY

20, 284 x 254 ]
427y — = ZY 427  + Z =zy .
Y, 1 /8 /8 Y, X Y)Y 5 ﬁG Y,Y /85 Y)Y

This can also be written as

1
Zi4x+2y = 5 [Z11,1 + (Zl),(X + Z§,1 + Z}(,X) + 2 <ZKY + Z)}f/,1 + lef,y + 2%2 ZYY)
243, ( y B2B4 B384 B2384 vy )]
— A 4 22 7Y zX VA 3.211
BaBs \ XY T BB TN BB Y 26132 ( )

in which form it is explicitly a sum of the modular invariants listed in equations (3.132)), (3.133]).

3.2 Rep(D,)
3.2.1 Overview of Dy, Qg, Hs

In Sections we describe the gauging of Rep(Dy), Rep(Qs), and Rep(Hs), respectively, where Dy
i@ the eight-element dihedral group, Qg is the eight-element group of unit quaternions, and Hg is a Hopf

20The eight-element dihedral group is also often denoted Dg. Our notation was chosen to be consistent with previous works
on decomposition, see e.g. [541}55].
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algebra. These correspond to the three Zy x Zy Tambara-Yamagami categories that admit a fiber functor@
Given that they are closely related, we first describe the general aspects of such categories and specialize
afterwards.

A G Tambara-Yamagami category [29] for G a finite group can be thought of as a categorical extension of
the fusion category Vec(G) by Zs. For any such category TY (G), the simple objects are labeled by elements
g € G, with an additional element m. The fusion rules are

gRh=gh, gam=Zm®®g=m, m®m%@g (3.212)
geG

The fusion rules do not uniquely characterize a fusion category, one also needs to provide associators, or
F-symbols. For a fixed G, there may exist different choices of F-symbols that lead to inequivalent fusion
categories. The equivalence classes of TY (G) categories are characterized by two pieces of information: a
square root, conventionally denoted 7 (not to be confused with the modular parameter), of the reciprocal of
the order of the group, .
2
T = ek (3.213)

and a class of bicharacter x : G x G — k* (here k = C). These two are used to compute the F-symbols.

We are interested in the case G = Zy x Zs = {1,a,b,c}, where ab = ¢ (cyclically). (See appendix
for a summary of F' symbols and modular transformations in these fusion categories.) Here, there are two
choices of square roots 7 = +1/2, and two choices of classes of characters: the trivial one, whose only
nontrivial values are x1(a,b) = x1(a,c) = x1(b,¢) = —1 (symmetrically), and the nontrivial class generated
by xc(a,a) = x.(b,b) = —1, for which in particular x.(a,b) = 1. This gives rise to four inequivalent classes of
fusion categories TY (Za X Zs). If we let n = 27, the different choices lead to the following fusion categories

‘ X1 ‘ Xec
n=1 | Rep(Ds) | Rep(Hs)
n=—1 | Rep(Qs) -

where the fourth category is omitted as it is not a representation category.

These TY (Zs X Z2) categories have the following associatorﬁ

Foiririar = Faliiim = Fiilapg = Fpamia = Fpalpim = 1 (3.214)
b = Fimim = x(,q); (3.215)
Frd = 5nx(p, q)- (3.216)

for p,q,r € {1,a,b,c}. The reader should note that for all simple objects L in these categories, L = L, so
we will often omit the duals in computations.

Over the next several sections, we will discuss Frobenius algebras constructed in each of the fusion
categories Rep(Dy), Rep(Qs), and Rep(Hsg). For the first two, we will compute F' symbols (crossing kernels)
for more general intertwiner maps than described above. For Rep(Hsg), we will use only the F symbols above.

In this section we will focus on Rep(Dy), where Dy can be presented as
(z,ylz* =y* = (zy)* = 1). (3.217)
In D, there are five conjugacy classes, [1] = {1}, [z] = {z,23}, [2?] = {22}, [y] = {y, 2%y}, and [2y] =
{zy, 2%y}

21For a 3D TFT approach to the Zs X Zo Tambara-Yamagami fusion category, see, e.g., |15}/56].
22For certain choices of associator maps. Later in this section we will compute F symbols (crossing kernels) for more general
intertwiners.
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3.2.2 Representation theory

The group D4 has five irreducible representations which we’ll label 1, a, b, ¢, and m, and character table

(1 | (2% | [=] | [v] | [2y]
i | 1] 1 [ 1[1]1
Ye | 1| 1 | 1 [-1] -1
v | L | 1 [—-1] 1 | -1
Ye | 1| 1 | 1| -1] 1
Ym | 2| -=2]0]0] 0

From the character table we can determine the fusion rules as
AaRa=ZbRbZcRc=21, a®bXec, a®c=b, b®ca,
a@MmEbdMEc@mEm, mm=1&adbdec. (3.218)

The one-dimensional irreps 1, a, b, ¢ are given explicitly by their characters as,
pi(x) =pi(y) =1, pa(z) =1, paly) = -1,
po(x) =1, pp(y) =1,  pelz) =—1, pe(y) = -1, (3.219)

and the two-dimensional irrep m is given by
i 0 0 1

3.2.3 Cosets
We have the following subgroups, and the corresponding coset representations:

e H=D,, Dy/H = {H}, which transforms simply as the trivial irrep 1.

o H={(x) =74, Dy/H ={H,yH}. The corresponding representation has
1 0 0 1
o =(y 9) = (] 5). (3:221)

o H = (22 y) = (Z)?, Dy/H = {H,xH}. The representation is

o =(1 o) r=(o 1) (3.222)

o H = (22 zy) = (Zy)? Dy/H = {H,zH}. The representation is

o =(1 o) = (] o). (3.229)

corresponding to 1 + c. Note that the two (Z3)? subgroups (and their cosets) are exchanged under an
outer automorphism of Dy.

and this decomposes into 1 + a.

corresponding to 1 + b.
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o H= (2?27, Dy/H ={H,zH,yH,2zyH}. We have

01 0 0 0 010
s =lo 00 M. ww=|0 00 ol (3.224)
0 010 01 00
forl+a+b+c
o H=(y)~Zy, Dsy/H ={H,zH,2*H, 2°H}.
01 00 10 0 0
s =10 0 o il ew={0 03 ol (3.225)
1 0 0 O 01 00
giving 1 + b+ m.
o H=(1y) =7, Dy/H = {H,zH,22H,H).
01 0 0 0 0 0 1
s =10 oo 1l ew=1{0 Lo ol (3.226)
1 0 0 O 1 0 0 O
resulting in 1 4 ¢ + m.
o H=(2?y) =7y, Dy/H={H,2H,2*>H,23H}.
01 00 0 010
e =10 0o 1l ew=1{ 5 0ol (3.227)
10 0 0 0 0 0 1
sol+b+m.
o H=(a3y) =27y, Dy/H ={H,2H,2*>H,x3H}.
01 0 0 01 00
f@=10 00 1]° P®=|00 0 1] (3.228)
1 0 0 0 0 010

resulting in 1 4+ ¢+ m.
e Finally, H = {1}, D4/H = Dy = {1, 2, 2% 23, y, vy, 2%y, 23y} corresponding to the regular representa-
tion 1+a+ b+ c+ 2m.

The two cases corresponding to 1 + b + m are conjugate subgroups, as are the pair corresponding to
1 + ¢ + m. Furthermore, an outer automorphism exchanges these two cases. So there are six physically
distinct options for Dy: 1, 1+a, 1+b,14+a+b+c¢,1+b+m,and 1 +a+ b+ c+ 2m.

Next, we will compute associators, crossing kernels, and modular transformations, and compute modular-
invariant partition functions for each of the six options above.
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3.2.4 Computing the associator

In this section we will describe the computation of the associator and crossing kernels with general coefficients
in D4.

Taking basis vectors e, e4, €p, €., and €1, eme for 1, a, b, ¢, and m respectively (such that the irreps
take the form from the previous subsection), we parameterize the most general basis for fusion intertwiners.
In the expressions below, we omit the tensor product symbol ® to make expressions more compact, and we
also omit trivial cases such as e ® e, — e,.

€ala > Pre, ( )
eath = P2 €, ( )
€atc — B3 ep, (3.231)
€alm1 = P1emi, ( )
( )

€alm2 > — 64 €m2,

eveq — Ps e, (3.234)
evepr > Bg €, (3.235)
epec = Pr €aq, (3.236)
evem1 + Ps €ma, (3.237)
€pem2 = B8 m1, (3.238)
ecea > Py €y, (3.239)
ecey = B0 €a, (3.240)
ecec = Pire, (3.241)
€cemi1 — P12 €ma, (3.242)
€cem2 — — P12 €m1, (3.243)

€m1€a — P13 €m1, (
em1ey — B14 €ma2, (
emi1€c = Bisema, (
em1€m1 — Big €p + P17 €c, (

em1€m2 — Bis e+ Big €q, (3.248
em2€q — — P13 €m2, (
em2eb — Praema, (
em2€c = — P15 €mi, (
em2em1 — Bis e — Big €q, (
(

emaema — Bis ey — P17 ec.

This also gives rise to associated evaluation and coevaluation maps €gr, €r, Yr, and Jp, and then to an
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associated basis for co-fusion homomorphisms which can be read off from

e ee+ B Teqeq + Bg lever + 811 ecee + Big (€m1€m2 + €maemi)
€q F eeq + eqe + B3Bi1 evec + BofBs ecer + BaBry (Emi€mz — emaemi)
ep > eey + eve + BrBi1 eate + B5B7 ecea + BsBis (Emi€m1 + Emzema)
ec > eec + ece + BroBg Teaes + BoBr 'evea — Br2Brs (Em1€m1 — Em2em2)
em1 > €em1 + emie + BroBig alm1 + B13B1 'emiea
+ B16815 €vem2 + B14Bs ' emaes + B1781g €cema + BisBi1 emace,
em2 F €ema + emae — 51951_81€a6m2 - 51351_16m26a

+ 51651_81€b6m1 + ﬂ1456_16m16b - 51751_81€c€m1 - 51551_11€m16c-

Now we compute the crossing kernels.

(€ata) €a = Preeq = 1 €a, €a (€ata) = P1eae = P1eq, = Ky o(1,1) =1,
~ a,b
(eata) €r = B1eey, = B ey, €q (eaet) = P2 eqec = PaPsep, = Kqp(1,0) = ﬁv
B283
(eaea) ec = Preec = Preg, e (eaeC) = Bz eqep = Bafzec, = ff;:z(la b) = A )
B283
(eaea) €ml = 61 €em1 = 61 €ml, €a (eaeml) = ﬁ4ea€ml = BZ €ml, = RZ:Z(L’I’TL> = %a
4
~ a,b
(eatt) ea = P2 ecea = P20 b, €q (epea) = Bs €atc = B3fs ey, = Ky ,(cc) = 62&’,
B3Bs
(eats) er = Paecer = P20 €a, €a (ever) = Bs €at = Poa, = KZ:;(Q 1) = 6256610’
~ a,l
(eaeb) ec = Baecec = afiie, eq (ebec) = freqeq = P1Pre, = Kb,c (07 a) =
(eatd) em1 = B2 ecem1 = B2f12 em2, €q (€vem1) = PBs €abmz = —Bafs ema, = RZ:Z(Q m) =
(eaec) €q = 63 €p€q = 5355 €cy €q (ecea) = 59 €aph = 5259 €cy = K?;(bv b) = ﬁ355,
' B289
B B B B ~ a1 ~ Baps
(eaec) er = B3 ever = B3f6 €, ea (ecey) = Bro €ata = Bi1fr0e, = Kc,b (b,a) = )
B1B10
(€qtc) ec = P epec = B3P7 €q, €q (€cec) = P11 €ae = P11 €q, = RZ::(b, 1) = 5557’
11

59
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(eaec) €ml1 = 53 €pem1 = ﬂBﬁS €m2, €q (eceml) = 512 €a€m2 = _54512 €m2, =

(€atm1) €a = Baemieq = PaPisemi, €a (Emi€a) = P13 €abm1 = BaPizem1, =
(€am1) ey = Baemiey = Baf1a em2, €a (emies) = P14 €alma = —P1B14 €m2, =

(€am1) €c = Baemiec = Bafis €m2, €a (emiec) = Bis €abma = —Baf15 €ma, =

(ea€m1) €m1 = Baemiem1 = Bafis b + BaPir ec,

~a,m 308

K b,m)=— ,

em (b,m) BaBi2
(3.271)

f(if;(m,m) =1,
(3.272)

kiﬁ(m,m) = -1,
(3.273)

R?Y;TZ(m7m) = _1a
(3.274)

eq (em1em1) = Pre€aes + P17 €aec = B3fir ey + P26 ec,

- Km0 K2
(€abm1) em2 = Baemiema = Bafis e+ BaPro€a, €a(Emiem2) = Biseae + Pig €aa = B1519 € + Pis €a,
- Kt =5 =
(ebea) €0 = B ccea = BB er, o (eaca) = B che = By ey, = Rien="2 o)
(evea) ey = Bs ecer = B5510 €a, € (€aty) = B2 epec = Pafir €a, = f(l;’;(c, c) = %Z%:, (3.276)
(evea) ec = B ecec = BsPrie, ey (eate) = B3 ever = P36 €, = I?Z’,lc(a b) = ﬂ;g%;, (3.277)
(evea) €m1 = B5 ecem1 = B5P12 €m2, €b (€am1) = Baepem1 = Bafs €ma, = RZ:ZI(C, y) = %4%82, (3.278)
(even) ea = B eea = Bo €as €p (evea) = P5 evec = B5P7 €q, = f(ZjZ(l, c) = ﬂf%f (3.279)
(evew) e = B eer, = Bg €, ep (enen) = Bs eve = B er, = .f(l;z(l, 1)=1, (3.280)
(even) ec = B eec = Pe ec, ey (evec) = Brepeq = Bsfrec, = IN(ZE(L )= 6627, (3.281)
(epes) em1 = B €emi = B6 €m1s €b (€pem1) = Ps €pema = B em1, = KZ:z(l, m) = ﬁg, (3.282)
(evec) €a = Breaca = P1Bre, ey (ecea) = Boever, = BoPoe, = Koo(a,b) = gégg (3.283)
(epec) eb = Breqey = Bafr e, ep (eces) = Proevea = BsProec, = K.5(a,a) = ﬁ%ﬁ’i?o’
(3.284)
(evec) em1 = Br €aem1 = BaBr em1, ey (ecem1) = Bia evema = BsPia em1, = ffi’ﬁ( ;m) = 584572,
(3.285)
(evem1) €a = Bs emaea = —P313€m2, € (em1€a) = P13 €pem1 = B3 f13 €m2, = Kfrﬁ(mvm) = (*L :
3.286
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(evem1) eb = Bs emzes = BsPra emi, eb (emies) = Bra €yema = BsPraemt, = K, (m,m) =1, (3.287)

~ b,m
(ebeml) €c = ﬁS €m2€c = _58515 €m1, €b (emlec) = ﬂlS €pem2 = 58515677117 = Km,c(mvm) = _17 (3288)

(epem1) em1 = Bs emaem1 = Psfise — fsfioea, €y (emiem1) = Pis ever + Bi7 epec = PoBis e + PoSi7 €a,

~ b1 BsBis  zba BsBi9
K _ —
m.b) BsB16’ Ko m(m, ) Bofir’

m,m(

(epem1) €m2 = Bs €maema = PP er — BsPirec, eb(emiema) = Piseve + Prg eveq = P1s b+ PsPig ¢,
Pis Rb,c _ 768517

ﬁSﬁlG ? m,m (m? a’) /85/819 bl

~ b,
= K (m1) =

(ec€a) €a = Py esea = P50 €c, €c (€ata) = P1ece = Prec, = K, (b1) = ﬁ;ﬂ9, (3.289)
1
(ecea) €p = f = = = K (b,e) = Bobs
cea) € = Po ever, = BsPo e, e (eaey) = Paecec = fafiie, = ap(b,c) = NN (3.290)
(ecea) ec = Po evee = BrfBo €as c (€ate) = B3 ecer = B310 €a, = ff;li(ba b) = §7ﬁ9 ) (3.291)
3510
(ec€a) em1 = Bo epem1 = BsPBo em2, €c (€abm1) = Baecemi = BaPi2 ema, = RZ,Z(b’ m) = 5859 , (3.292)
4012
~ c,1
(eceb> €q = ﬁlO €a€a = 51510 €, €c (ebea) = 65 €cCe = 65611 e, = Kb,a(aac) = 222127 (3293)
(ecep) e = Bro eats = B2P10 €c, ec (€ves) = Bs ece = B ec, = Kyy(a,1) = 62;10, (3.294)
6
~ c,b
(eceb) €c = ﬂlO €a€c = /83ﬁ10 €p, €c (ebec) = ﬁ? €c€q = ﬁ?/B.‘) €y, = Kb,c(a’ CL) = %%07
7M9
(3.295)
(ecey) em1 = B1o €abm1 = Bafroem1 €c(evem1) = Bs ecema = —BsP12 €m1, = fﬂfﬁ( ,m) = —24?07
8M12
(3.296)
(ecec) €q = /811 €Eq = 611 €a, €c (ecea) = 69 €c€ph = ﬁQ/BlO €q; = R?Z(l’ b) = 511 y
’ B9 B1o
(3.297)
~ c,b
(ecec) €p = 611 eep = ﬁll €y, €c (eceb) - ﬁlO €cCq = 69510 €y, = Kc,b(la a) = 6521 ) (3298)
910
(ecec) €c = ﬁll €€c = ﬁll ¢, €c (eCeC) = 511 €c€ = 611 €c, = kz:z(la 1) = 17 (3299)
(ecec) €m1 = 511 €em1 = 511 €m1l, €c (eceml) = 512606m2 = _B%2 €ml, = RZ:Z(lam) = _ﬁi;lv (3300)
12
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(ecem1) €a = P12 emaeqa = —P12513 €m2, €c (Em1€a) = P13 €cem1 = B12513€m2, = RZZ(W, m) = —1,
(3.301)

(ecem1) b = Br2ema eb = B12B14 €m1, €c (emrey)) = Pra eclmz = —P12814 €m1, = IN(;’:;(m, m) = —1,
(3.302)

(ectm1) €c = Braemaee = —P12015 €m1, €c (em1€c) = Bisecema = —P12fi5em1, = k:‘;:lz(m7m) =54
(3.303)

(ecem1) €m1 = P12 €maem1 = Pr12B1s €—P12019 €a,  €c(emi€m1) = Big €cer+Pi7 ecec = 11517 e+510P16 €as

g _ Biafis  rea __Pabo
mom (7€) B11Bi7’ Komm (m, ) B1oBie’

(ecm1) em2 = P12 €m2ema = P12816 €s — B12f17 €cr  €c (€miem2) = Pisece + Big eceqa = PoPig ey + Pis ec,

N f(;bm(m, a) = 512616, RS (m,1) =  Prabar
' BoB1og ’ Bis
~_m.m 2
(emlea) €q = 613 €m1€q = ﬂ123 €ml, Eml (eaea) = ﬂl €m1€ = 61 eml, = Ka,:z (ma 1) = %a
1
(3.304)
(em1€a) € = P13 emies = P13014 €m2, em1 (€as) = B2 emiec = P2P15 €ma, = f(;nz;m(m, c) = 613514,
’ B2B15
(3.305)
(em1€a) €c = P13 emiec = B13515 m2, €m1 (€a€c) = B3 emies = B3514 €ma, = f(;ncm( b)) = %,
’ B3B14
(3.306)

(em1€a) €m1 = Bz emiem1 = B13fis € + B13f17€cs  €m1 (€abm1) = Ba emiem1 = BaPis €p + Bafir €c,

~ m,b ~ m,c
= Ka,m(mvm): @7 Ka;n(mam): @’
Ba ’ Ba
(€m1€a) em2 = B13 emiem2 = B13fis e+ P13B19€a, em1 (6a6m2) = —Baemiems = —Pafi1s e — P19 €,
~ m,1 ~ m
= Ka,m(mvm):_@v Ka:(m’m):_@a
Ba ’ B
(emleb) €a = 51467112611 - _B136146m27 €m1 (ebea) = 55 €m1€c = 55615 €m2, = K;;n:lm(m,c) = _5135147
’ Bs5 P15
(3.307)
B 2
(em1€v) € = Praemaes = Biyem1, €m1 (epes) = Bsemie = Bsem1, = Kyp'(m,1) = %7
’ 6
(3.308)
(emleb) €c = 514 €Em2€c = _514615 €ml, Eml (ebec) = 67 €m1€a = 57613 eml, = f{;nc’m(m, a) = _5145157
’ B7B13
(3.309)
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(em16€b) €m1 = Pra emaem1 = PraPis e — 14P1g €as

(em1€p) €m2 = P14 , €m2ema = B14f16 € — S14517 €,

~ m,1
= Kb,m (mvm)

em1 (evem1) = Bs emiema = Psfis € + BsPiog €a,

_ ﬁ14

~ m,a
2 Kb,m (m,m) =

Ps

Bu
Bs’

em1 (epem2) = Bsemieml = PBgPig e + PP e,

7-mm,b =,
= KZ?m(m,m) = @, K,T,:(m,m) = —%,
~_m,m ﬂ
(em1ec) s = P15 emaea = —P13615 €m2; em1 (€c€a) = Bo emies = BoS14 €m2, = Kc,a (m,b) = — 535157
9014
(3.310)
B B B B = m,m _ BuaPis
(em1ec) € = Bis em2es = B14B15 €m1, em1 (ecey) = Bioemiea = Prof1z em1, = K. (m,a) = ——,
B1ob13
(3.311)
_ _ 2 _ _ [T _ 5%5
(emlec) €c = 615 Em2€c = _5156m17 €ml (ecec) - 611 €m1€ = ﬁll €ml, = ch (ma 1) - _677
11
(3.312)

(€m1€c) em1 = P15 €m2em1 = Bi5P1s € — B15519 €q,

em1 (ecem1) = P12 émi1ema = Pr12f1s e+ B12P19 €q,

~m,1 Bis ~.m,a Bis
= Kc,m(mvm)ziv Kc,m(m’m):_77
Bi2 P12
(em1€c) em2 = Bis emaemz = BisPis €b — B15017 €cs  em1 (eclmz) = —Pi2 em1em1 = —P12P16 € — P12517 €c,
~m.b Bis  —me B1s
= Kc,m(m7m> = T2 Kc,m(m’ m) = 5
Bi2 Bi2

(em1€m1) €a = P16 €vea+Pi7 eceq = PoS17 er+P5016 €cs

=

(em1€m1) er = P16 even+ P17 ecer, = P S €+ 510517 €as

=

(em1€m1) €c = Pi6 evec+Pir ecec = P11 P17 e+ P76 €a,

em1 (em1€a) = P13 €miem1 = P13516 ev+B13017 €cs
BoB17 B5B16
K c,m) = , = ,
m.a (€M) Bi3Bis BiaBir

~ m,b ~ m,c

Km,a(b7 m)

em1 (emi1€p) = Bra emiema = Pr1aPis e+ P1aPig €q,
_ BeBie _ BioBir
Brafis’ Brafro’

~ m,1

Km,b (b’ m)

~ m,a

Km,b (C7 m)

em1 (emi€c) = Bis €m1ema = Bi15P1s e+ B15519 €a,

~ m,1 Bi1Bir  sma B7P16
= K c,m) = K b,m) =
moe(e;m) Bi5P1s’ moe(b;m) Bi5B19”
(em1em2) €a = Pig eeqa+PBig eaea = B1P1g e+ Pigeas  €m1 (€maea) = —F13emiemz = —P13P18 e—F13P19 €as
=~ m,1 B1Bi9 ~ m.a Bis
= K, .(a,m)=— , 1,m)=— ,
m’a( ) B13P1s m’a( ) B13P19
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(em1em2) er = Pis eep + Big eaey, = Pig ey + P2fig e,

em1 (em2€p) = Bra €miem1 = Brafie ev + PraPir ec,

~ m.b B1s = m,c B2B19
= K 1, m) = 3 Km a,m) = )
my(1,m) B1aBi6 ol B1aBrr
(emi1€m2) ec = Pig eec+Pig eaee = B3Pig er+Pis e,  em1 (Emaee) = —Fis emiem1 = —PisPicer—PisPirec,
N f(m’b(a m) = — B3f19 R (1, m) = — Bis
e Bi5P16’ e BisP17’
(em1m1) €m1 = P16 €vem1 + Pirecemr = (B3P + F12517) €ma, (3.313)
em1 (em1€m1) = Bis emi€s + Br7emiec = (Biafre + B15517) €ma,
(emi€m1) em2 = Bi6 €vem2 + Bi7ecema = (Bsf16 — B12017) €mi, (3.314)
em1 (emi€m2) = Pisemie+ Broemiea = (Bis+ S13519) ema,
(em1€mz2) €m1 = Big €em1 + fro€aemi = (Bis + Baf19) €ma, (3.315)
emi1 (em2em1) = Bigemie — Broemiea = (Bis — P13B19) €m1,
(em1€m2) em2 = Big €ema + fro€aema = (Bis — Baf19) €ma, (3.316)
em1 (em2em2) = Bis emies — Brremiec = (B1afre — B15517) ema,
Kom1,1) Kom(l,a) Koem(1,b) Ko (1,¢) 1 gl A P
DRI Pt ROt Boo  DHC PHBN ABET
Ig%’%(a’ 1) Ig%’%(a’ a’) [5%’%(&, b) [5%7%(0" C) _ 1 318 " Bis " BraBis Bis P17
Kpm(b1) Koo(boa) Koo (bb) Koon(be) | 2| e gege fe Qe
- o - mm FTm 581128517 BiaBir 12B17 Bia
Km,m(cv 1) Km,m(cv a’) Km,m(c7 b) Km,m(cv C) - B1s - B1sB1o B14PB1s m
(3.317)
3.2.5 Modular transformations
For Dy, equations (2.28) and (2.29) give us (here p represents any of the irreps)
Z{rfm(T + 1) = me(T), (3.318)
Zh (T4 1) = Zp n(7), (3.319)
Z(;a(T +1) = Zgyl(T), (3.320)
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Zap(T+1) =
belr+1) =
o (T +1

Zb a(

be(T+1

Zb c(

Zb ’H'L(T + 1

Calm+

Zep(r+1) =

)=
1) =
)=
1) =
)=
1) =

B2B9
B3Ps
B35
5 5

Zg o(7),

Zap(T),

o (T)s
55/310
526 Zbc( )
Zp (1),
Ba2B7
55ﬁ1ozba( ™,
Zb m( )
BB 4
ﬂ?ﬁloZCb( ™),
Bsp10
B89

22 4(7),

ch,c(T + 1) = ZS,I(T)v

Z0n (T + 1) =27, (1),
Zp )= =g (o),
’ B4

Zia(r+ 1) = G2 (1),

2+ 1) = 2 25,7,
m oy P18 m Bis Lm o Pis m
Zm.1 B13Bio Zma(T) + B1aBi6 Zinp(T) BisBi7 Zm’C(T)> ’
Babr9 m Ba o m BaB19 m BaBr9 m
Bis Zm’ () - B13 Zma( )= ﬁ14516Zm’b(T)+ 515517Zm6( )>’
BsB16 m BsBi6 m Bs m BsB16 m
B1s Zm ()+513ﬂ192 ()+51Z ()+515517Zm6( )>7
~ Brbir m ~ Bubir m B12817 om B2 m

Bis Zma(7) ﬁ13ﬁ19Zm’a(T)+ B14Pie Zinp(T) B1s Zm.e(T)
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(3.335)
(3.336)
(3.337)
(3.338)
(3.339)

(3.340)
(3.341)



Zp,
Zp,
Z8 (-1
L (=1/7) =

wl=1/7) =
wl=1/7) =

~
y

N N~ N= N

7 N T N N N

B28659

Zial-Ur) = S50 25 (o),
Zb, 1) = 222 (o),
2217 = 5552 o),
Zial-1/r) = S50 7 o),
Zha(-1/7) = Zia(),
- S
Zin(-1jr) = 282 ),
ZE (1) = S 28 (1),
22y(-1/7) = 520 75, (o),
ZL(-1/r) = ZL.(0),
ZEn(-1/7) = G220 (),
Za(-1/7) = 32 20,(7),
Za(-1/7) = G2,
Z3 (-1 = 20 7 o),
S+ B0 80
2 B 7) + Zi7) = 5228, 7) +
e () = 828, (7) + 2 () +
f%zgn,mm + %425197 78 (1) + 561:5 167
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B1s e
Bi2B17 m’m

")
Babro , )
),

512517
ﬂsﬁw
/312517

Zy (D) + Zy T)),

(3.342)
(3.343)
(3.344)

(3.345)
(3.346)

(3.347)
(3.348)
(3.349)

(3.350)

(3.351)

(3.352)
(3.353)
(3.354)

(3.355)

(3.356)
(3.357)
(3.358)

(3.359)



We find that the following combinations of partial traces are modular invariant:

714, (3.360)
ZY o+ 23+ Zg g (3.361)
Z%,b + Zb L Zy s (3.362)
Z5 4+ Zi + Z (3.363)
e, 52ﬁ9 z, /825669 Z 4 Jeyery 7z 4 B2B11 z. 3259511 70, (3.364)
/335 ﬁlﬁ5ﬂ10 ba T BB T T BBy 5153510 ’
B1 B1s 1 Bis
z, — Plgm yogm - zm .+ 7L, 28 3.365
b BaB13 1 BiaBio ﬁ4ﬁ19 ( )
Bs B1g 1 Big b
zm 4 Zm o y7m g zZm. + 7 zt 3.366
b BsBra 1T BraBie TP 58516 ( )
Zinm - ﬁll o + Zz 1 618 Zrnrz c + Zrln m ﬁlg Zﬁn m (3367)
' Bi2815 = PisPir ’ Bi2Bir

In the next several subsections, we will compute genus-one partition functions from our general for-
mula , corresponding to each of the physically-different cosets, and we will see explicitly that the re-
sulting partition functions are linear combinations of the modular-invariant combinations above, and hence
are modular-invariant.

3.2.6 H =Z4: 1+ a orbifold

We pick the Frobenius subalgebra 1 + a, corresponding to H = Z,4. From the coset Dy/H = {H,yH},
following the general analysis in section [2.5] we define

e1 = vg -+ vyH, (3368)
€ = UH — UyH, (3.369)
for e; the basis element of 1 and e, the basis element of a. Note that e; and e, are both invariant under

the group action of x. Moreover, only e; is invariant under the group action of y, while e, is an eigenvector
with eigenvalue —1.

As in the Rep(S3) case, we compute the action of the product and co-product on these basis vectors. As
usual, the multiplications involving e; are trivial, so we have

Hi1 = /J’(ll,a = NZ,1 =1, (3.370)

)

while
:u*(ea ® ea) = UVH + UyH =61 = 61_1/\}17(1(6@60«) = /J’llz,a = 61_15 (3371)

where the coefficient is obtained by comparing the multiplication above with our basis fusion homomorphism
which sends e, ® e, — Bie.

Similarly we have co-products

1

Ap(e1) = vuvy + VyaVyH = B (e1e1 + eqeq) s (3.372)
1

Ap(eq) = VHVE — VypVyH = 3 (e1eq + eq€1) s (3.373)
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SO
1 1
At = ALY = AB = 3 A=35 (3.374)

Then including each partial trace Z gf’ r, With a coefficient ﬂgf Ro Agz’Rl, we find the partition function

Ziva = MaAV ZEy 4 JASZE A s AV TS+ i (A, (3.375)
1
= G+ 2L+ Zii+ Z54), (3.376)

which is a linear combination of two of the modular-invariant combinations given in section demon-
strating that the expression above is modular-invariant.

Note that a ® a = 1, i.e. a corresponds to a Zs line defect. The above partition function is thus for
a Zso orbifold from gauging the Zs subalgebra generated by {1,a} C Rep(Dy). The resulting Z, quantum
symmetry is given by the quotient group Dy/Z4 = Zs.

3.2.7 H =79 x Zo: 1+ b orbifold

Consider the Frobenius subalgebra 1 + b. From the coset Dy/H = {H,xH}, we define basis vectors as:

er = UH+ UgH, (3.377)
€p = Vg — VUrH. (3378)

It is straightforward to check that the (co)product computation is exactly the as that of the 1 + a orbifold.
For completeness, we sketch the details here. First, using

pler®@v) = plv@er) =v,  ples ®ep) = e, (3.379)
and
1
Aler) = 3 (erer + epes), (3.380)
1
Alep) = 3 (erep + eper) , (3.381)

and comparing with our established basis, we obtain

pa =iy =pa =1 py=>05" (3.382)
AL _ Al _ abl _ 1 APD _ 15 (3.383)
1 = b T b 27 1 2 6 .
The partition function is then
. 1
Ziwp =D D 2l =5 (200 + 20+ 2y + Zyp) (3.384)

.3,k

which is a linear combination of modular-invariant expressions, hence itself modular invariant. It is again a
Zs orbifold theory as a result of gauging the Z, subalgebra generated by {1,b} C Rep(Dy). The resulting
quantum symmetry is again Zs, but this time given by a different quotient Dy/(Zo X Zg) = Zs.
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3.2.8 H =75 normal: 1+ a+ b+ ¢ orbifold

Consider the Frobenius subalgebra A =1+ a+ b+ c¢. From the coset Dy/H = {H,xH,yH,xyH }, we define

basis vectors as
e1 =9y +VzH + Yy + VayH,
€q =V + VgH — UyH — UzyH,
€y = VH — VUgH + UyH — UzyH,

€c =VH — UzgH — UyH + VgyH -

The multiplication is

( ) (€a ® eq) = s (€5 D €p) = s (ec @ €c) = €1,

( ) ( ) =ea, fix(e1ep) = ps (ep @ €1) = ey,
s (€1 @ €c) = s (ec @ €1) = €c, fix (€0 @ €5) = px (€6 @ €4) = €,

( ) ( ) =€, s (e @ ec) = iy (€ ® €p) = €q,

while the comultiplication reads

Ap(el):7(61®e1+6a®6a+€b®€b+€c®€c)a

— ] e

Ap(ea) == (e1®eq+eaQer+epDec+e.Rep),

—

Ap(ep) =—-(e1@ep+ep@er +eaQec+e.®eg),

—

AF((EC):1(61®€c+ec®el+ea®eb+eb®ea)a

which was derived using the fact that Ap is diagonal on the v basis.

(3.385)

(3.386)

(3.387)

Combining coefficients in the (co)multiplication and the those in the intertwiner yields the components

1 1 —1 —1 b —1
Hi1 = 1, Ha,a = /Bl ) /U'Z,b = /82 )y Mae = 63 s
> —1 1 —1 -1
Mi,a =B, Hpp = Be s Mg,c =067,

b —1 —1 1 —1
Hea = By Mib = B1o > He,e = Bi1 s

1 b1 Bs B11
Al,l _ Aa,a 1 Aa7b _ Aa,c _
! 4’ ! 4’ ¢ 4B10 b 467
Aba _ P abe _Ps abe _ Pu
© T TU T 1 T Ty
A?a Bl Ac’b _ 66 Ac,c _ 611 '

T Mo AT
Plugging into the general formula (2.91]) for one-loop partition functions, we find

1 B1 B1
Z = |\ZI, + 28 20 ¥ 28 .+ 2%+ 22+ zb.
1+a+b+c 4 1,1 1, 1,b 1, ,1 ) 5259 5355 )
Bs Bs

Bi1 Bi1
V2o A T+ T+ 2+ ZE + Zb .+
. Bs P10 b b.b Ba7 b’ -

Zapt+

BBy " BaPro
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a 1
c,b + Zc7c .

(3.388)

(3.389)
(3.390)

(3.391)
(3.392)

(3.393)

(3.394)



This is a Zy x Zg orbifold theory, the result of gauging the Zs x Zo subalgebra generated by {1,a,b,c} C
Rep(D4). The resulting quantum symmetry corresponds to the coset Dy/Zo = Zo X Zs.

In passing, the reader might ask, since this is essentially the same as a Zy X Zo orbifold, why factors of
B appear here. Technically, this is because the associator in Zs X Zs is a pullback from the associator of
Rep(Dy), and although this will be anomaly-free, in the language of group cocycles, this formally corresponds
to a trivial element of H3(Zs x Zo,U(1)) that is represented by a cocycle that is cohomologically trivial but
not identically 1. This will also arise in other examples.

It will be useful to write the partition function (3.394)) in the form

1
Ditatbre = 7§ [Z%,l V2 o+ Dy + 25 251+ Zao+ Zyy + Doyt Zin + Ze (3.395)
n B1 <Z§ - B2B9 7+ B23639 Z 4 Be P9 Ze 4 B2611 7+ B2 11 Zgb)]'
B2B9 P B3fs Y BiBsPe Y BiBr 7 BiBr % BiB3fio ©

In this expression, the first and second lines are separately modular-invariant, as can be seen from our results
earlier in section [3.2.5

One implication is that the partition function is modular-invariant. A second implication is that,
at least naively, we can construct a second modular-invariant partition function, through an analogue of
discrete torsion. Let w(g, h) be cocycles representing the nontrivial element of H?(Zy x Za,U(1)) = Zo, and
define (0. 1)

wg,
e(g, h) olhg) (3.396)
In an ordinary Zy x Zg orbifold, the phases €(g, h) are the discrete torsion phase factors multiplying Z, j,.
Now, it can be shown that

_ -1 g#hag#lv andh?élv
elg:h) = { +1 g=horg=1lorh=1. (3.397)

With this in mind, we can define a new, explicitly modular-invariant partition function, given by
1
Ditatbre = 7 {Zil V2L Dy 25+ Lo+ Do+ Dy + Ty + 2y + Zee (3.398)

A ¢ B2Bo b | B2Bebo L. | BePo o | B2br1 | P2Pofun a)]
B2 (Za’b+ fact ot Goet B1Br Zea ™t B1BsB10 Zew ) |

B3Bs ¢ B1PsSio ba B157

This expression is nearly the same as the previous partition function, except that the second line of terms
are subtracted, rather than added. Because each line is separately modular-invariant, this expression is
manifestly modular-invariant. For suitable intertwiners, this reduces precisely to the partition function of a
Zo X 7o orbifold with discrete torsion.

Naively, one would expect that the minus sign on the second line (arising from discrete torsion) could
be absorbed into the intertwiners. However, physics is a bit more subtle: the definition of the partial traces
Z{fj depends upon the intertwiners, so changing the intertwiners also changes the partial traces. Later in
section we will discuss a close analogue of this choice in a Rep(Hg) gauging. In that section, we will give
explicit expressions for the partial traces, and we will see explicitly that the two choices of discrete torsion,
the two choices of sign, are physically distinct. We will see analogous examples in other sections.

This example gives an initial demonstration that there exists some analogue of discrete torsion when
gauging noninvertible symmetries. We leave a first-principles understanding for future work. Furthermore,
as previously discussed, we have not attempted to check e.g. multiloop factorization in such noninvertible
analogues of discrete torsion, hence it is possible that some choices may not be physically sensible. We leave
this also for future work.

70



3.2.9 H =75 non-normal: 1+ b+ m orbifold

Now, we consider the Frobenius subalgebra A = 1+b+m. From the coset Dy/H = {H,xH,2*H,23H}, we
define the basis vectors as

€1 = VUH +Uzg + U2 + Upsy, (3.399)
€y = UH — UgH + Up2g — Ugsp. (3.400)
eml = Vg — iUz — Ug2g + U3, (3.401)
em2 = UVH + iUz —Ug2g — 1U35. (3.402)

The non-trivial multiplications are

N(Gbeb) = €1, ,u(ebeml) = €m2, /L(eb@mz) = €ml, H(Bmleml) = €p, .u(emlem2) = eé1, ﬂ(emzemz) = €p,

(3.403)
while the comultiplication reads
Ap(e1) = % (e1®@e1+ep® ey + emi ®ema + ema ® €m1), (3.404)
Ap(ep) = % (e1®@ep+ e, ®er+ em1 ® em1 + em2 ® €m2) (3.405)
Ap(em1) = % (1 ®em1 +em ®er+ep®ema+ emaRep), (3.406)
Ap (em2) = i (e1®emz +ema®er+ e, @emt +emt @ep), (3.407)

which was derived using the fact that Ap is diagonal on the v basis. Combining coefficients in the
(co)multiplication and the those in the intertwiners, we derive the components below:

:ug,b = B6_17 :ug?m = 58_1’ #Z;,b = 51_417 :uin,m = 61_81’ ul:n,m = Bl_ﬁlv (3'408)
Be Bis Bis Bis Be
Ab’b S AT £ AT — == Alf;{” = — A:;i’b = , 3.409
! 4 ! 4 b 48 4816 4314 ( )
thus
7 _ 1 Zl b m b 1 56 m
Vtbtm = 7 |Z1a+ Zip + 2170 + 2y + Zpp + Zym (3.410)
417 ’ ’ ’ 7 BePua
B1s 1 Bis ]
+ZM .+ Zm. +Z + Z
™l BB ™ e Befre ™
We can write this as
1
Zivorm = 7 [le’l + 20+ Doy + Zyy (3.411)
Bs Bis 1 Big }
b BsBra I ’ BsBis

In this expression, each line is separately modular-invariant, using the results of section hence we see
that Z14p4+m is modular-invariant.
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3.2.10 H=1: 1+a-+ b+ c+ 2m orbifold

We now consider gauging the regular representation, i.e. A=1+a+b+c+2m=1+a+b+c+ms+mq
(where my 2 mg = m). The basis vectors for all objects can be defined as

€ =01+ Uy +VUp2 + Vg3 + 0y +Vpy + Vg2y +Vpsy, €q = V1 + Vg + Vg2 + Uy — Uy — Uy — U2y — Ugsyy, (3.412)

eh = V1 — Up + Up2 — Ups + Uy — Uy + Vg2 — Ugsy, €c = U1 — Vg + Vg2 — Ups — Uy + Uy — U2y + Ugsyy, (3.413)
€my1 = V1 + 10z — Vg2 — 1W0g3 + Uy + 10y — U2y — WWs3y, Cmy2 = V1 — WWg — Vg2 + 1053 + Uy — Way — Vg2y +10z3,,
(3.414)
Emyl = V110 — Vg2 — U8 — Uy — WUy T Vp2y +10z3y, Cmu2 = —V1 10z +Up2 — 1053 + Uy — 1Wgy — U2y + 1Ug3y.
(3.415)

The multiplication coefficients are u{'p = pfi | = 1 along with

1 -1 —1 b —1 —1 —1 —1 1 —1
,ua@ = /61 ’ Mg,b = /82 ’ /J'(LC = 53 ) ,U/Z?Enl = ﬁ4 ) Mam,ylnz = /64 ) /-Lb a — ﬂs ’ ,ub7b = ﬁ(} ’

(3.416)
_ _ _ b _ _ _
:U'ba,c = 57 1’ “nylnl = 58 1a N}T))?yz@ = *ﬂs 1a Heq = 59 1’ :U'g,b = 51()1’ :U’i,c = 61117 (3'417)
1 -1 -1 -1 -1 1 -1

Hem, = —Bias  Hem, =Bi2s Hmia =B85+ My =01, Hmie="Bi5, Hmim =DPis, (3.418)

b —1 —1 —1 —1 —1 —1

Hmymy = B16 ’ “%hmz = _B19 ’ anl,mz = B17 ) /Lz;,a = ﬁl:} ’ Nz;b = _ﬁ14 ’ Nnml;c = 515 )
(3.419)

a _ n—1 c _ n—1 1 o —1 b _ n—1

/J’mg,ml - 519 ) :u’mg,ml - ﬁl? ) Mm2,m2 - _518 ) :U’mg,mg - ﬂ16 ’ (3420)

Some multiplication coefficients are zero (e.g. P, ) and we have omitted these.

The co-multiplication coefficients are A}Q’R = Ag’l = %, and

aza =Bl pbe P pce Pu o pmm % amama — P18 zbe  Bu o pen . Bo

87 ga ) ] ) a 7863’ a 78ﬁ2’
(3.421)
Amime _bis AMm2mi Bis N Bu AGY — B AMLmL Bis AMm2mz _ Pis
“ 88 ¢ 88 U 887 TP 8B TP 80s" TP 808’
(3.422)
Ab Bs ba _ P1 Amima _ B1s Amzmi _ Bis Aamz _ Bis Abmi _ B1s
8510’ c 83y’ N 8312’ c 8312’ m 8619’ ml 8016’
(3.423)
cme ﬂlS Amhb _ 56 , A™M2,0 — 51 , A2 — ﬁll , A% — ﬂ18 Ab,mz — _ 518
m 8017’ m 8514 m 8513 i 8015 2 8519’ 2 8516’
(3.424)
B1s B1 Bi1 b Be
Agmi = P18 amia_ BL 0 amie o P Amab PG 3.425
e 8817 2 80813 2 8015 e 8514 ( )
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The partition function is then

1 a C m a ﬂ C /8
Zl+a+b+c+2m = é le,l + Zl,a + Zib + Zl,c + 2Zl,m + Za,l + Z;,a + ﬁQ;Q Za,b 53; Zb

2/ Be Be A 2036 m

+ 2+ 2o+ = —Zfa+ Zyy +

BaPrs ™ b BsBro” T TP BaB TP BgfBra”
2

YZE 1+ Pu_go | Pu Z8,+ 27}, — i ym

BBy “* " BsPio Br2f1s ™
2618 om | 2018 w2818 o
Biafro” ™ Bubis ™ Bisbir ™C
2 2 2
P18 ,a Pis o 2P1s e | (3.426)

+ Z71n m m,m + m,m m,m
Bafre " Bsbis " Br2f1r "

+2Z5 1 +

It will be useful to rewrite this expression as follows:

1
3 {Zlﬁl 2y A A A D A D A D+ D+ 2+ ZE + ZL (3.427)

B1 e . B2Ba B2B6P9 ¢ ﬁﬁﬂg 52511 y  B2Bef11 )
B289 <Za o ¥ B3Bs Zae ¥ 8185810 Zhat B1B7 Zhe B1B7 Zeat 5153ﬁ10Z
_|_

B1 B1s Bis )
21z — Zm +zZm Z Z m 7e
( b By Bis ™1 81361 Bafrg ™™

4o (Z]T_?m Be Zr I+ Bis a2k - Bis Z%m)

Zl+a+b+c+2m

+

B P14 B14P1e BsBie
1 Au m Pis 1 Bis e )]
2 (Zl’m B12P15 Zem + Zm  BisBir e+ Im " BraPir Zmm

In the expression above, each line is separately modular-invariant, using the results of section hence
Z1 +at+b+ct+2m 1s modular-invariant.

At least naively, we can also turn on discrete torsion in the Zs X Zy subalgebra, by adding phases, in
exactly the same fashion as discussed for the 1 4+ a + b+ ¢ Frobenius algebra. In the present case, this gives
the modular-invariant partition function

Zivarbreromds = é {Zil F 2y A AL A Ty A DY+ T+ Dy + 25+ ZE + 2L, (3.428)
o (Zha B ts R i G2 Gt s S )
(me B 5465113 Zaim + Zmy = 515315819 Zmat Z;’m * 55;819 ZglM)
2 (Z{”m 55514 Zbm I ¥ 515415816 Zino* Znin ﬂf;sw )
2 (lem - Blﬂzlﬁlls ZZLm * Zgll’l - 516515817 Z:Z’C * Zyln’m a 51@15817 an’m)} '

which differs from the first partition function by a sign flip on the second line.

As in the 1+ a + b + ¢ example, naively it appears as if such a sign choice could be absorbed into the
intertwiners 3, but changing the 3’s also changes the partial traces ZF ';» and as the later Rep(Hs) example
in section demonstrates, the choice of discrete torsion in this context can be meaningful.
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Of course, one could multiply the separate modular-invariant rows by any phase to get a new modular-
invariant result, but to be a well-defined degree of freedom, one must impose, for example, multiloop factor-
ization, which we have not attempted to check. We will not attempt to give a first-principles derivation or
classification in this paper.

3.3 Rep(Qs)

In this section, we study gauging Frobenius algebras derived from Rep(Qs), where Qg denotes the eight-
element group of unit quaternions
{1, 7, 7j, wk}. (3.429)

We will present this group as
(w,yla® =y = (wy)?,z* =1). (3.430)

In Qs we have five conjugacy classes, [1] = {1}, [z] = {z,2%}, [2?] = {22}, [y] = {y,y"}, and [wy] = {2y, 2%y},
the same number as for Dy.

3.3.1 Representation theory

Just as the group Dy, the group Qg has five irreducible representations which we’ll label 1, a, b, ¢, and m,
which have the same character table as for Dy:

] 22 | 1 | lo) | fes]
1 T 111
o | T 1T 1 =1 =1
o |1 1 | 1] 1| =1
e |1 1 | =1 =1] 1
Xm | 2| -2 0 0 0

The fusion rules are the same as for Rep(D,), namely
aRaZbRb=EcRc=1, a®bX=ec, a®c=b, b®ca,

a@mEb@m=c®m=m, mIm=1adbdec. (3.431)

The one-dimensional irreducible representations are given explicitly by their characters, and are the same
as for Dy:

pi(x) =pily) =1, pa(x) =1, paly) = —1,
pb(CC) =-1, pb(y) =1, pc(.’L') =-1, pc(y) =-1 (3432)

The two-dimensional irreducible representation m is different from that of Dy, and here is described by

@ =5 %) =" o) (3.433)
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3.3.2 Cosets

We have

° H=Qs, Qs/H = {H}, giving 1.
H = <.’E> = Z4, Qg/H = {H,yH}

p(x)=<é (1)> p(y):G é) (3.434)

for 1+ a.
o H=(y) =74 Qg/H ={H,zH}.

(? (1)) p(y)(é ‘f) (3.435)

for 1 +b.
o H=(uy)=Zi Qs/H = {H,zH}.

o= (1 o) s=(7 ). (3.430)

for 1+ c.
e H= <I2> gZ27 QS/H = {H@H,ZJH,JTZ/H}

o

p(x) = (3.437)

S O =

O O O
_ o O O
O = O O
o~ oo
_o O O
O O O
OO = O

forl+a+b+ec.

H = {1}, Qs/H = Qs = {1,z,2% 23y, 2y, 2y, 23y} corresponding to the regular representation
1+a+b+c+2m.

In this case all three of the Z, subgroups are permuted by the S3 outer automorphism group, so the
physically distinct options for Qg are only 1, 1 +a, 1 +a+b+c, and 1 +a+ b+ ¢+ 2m. We will compute
partition functions for each of these cases later in this section.

3.3.3 Computing the associator

The results for associators and crossing kernels for Qg will be very similar to those of Dy.

Taking basis vectors e, eq, €p, €., and em1, eme for 1, a, b, ¢, and m respectively (such that the irreps
take the form from the previous subsection), we parameterize the most general fusion intertwiners.
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For Qg we have

eata — P16, (3.438)
eat = B e, (3.439)
eate — 35 €p, ( )
€almi — B emi, ( )
€alma — — B ema, ( )
epea > B €cy ( )
ever — Bg €, ( )
epee — B ea, ( )
€pem1 5§ €m2, ( )
€pema — — % €m1, ( )
eca 34 €p, ( )
ecer = Pio €as (3.449)
ecee — P11 €, (3.450)
ecem1 — Bl €ma, ( )
ecema — Bla €m1, ( )
€m1€q 513 €m1, ( )
€m1€p — 514 €m2, ( )
€m1€c — 615 €m2; ( )
em1€m1 = Biges + Bz ec, ( )
em1€m2 = Big e+ Big €a, ( )
em2€a = — P13 €ma, (3.458)
em2ey = — B4 €m1, ( )
em26c = Bls em1, ( )
€m2em1 > — /518 e+ 5319 €a, ( )
(3.462)

€m2em2 516 €y — Bi? €c.
These differ by a few key signs from those for Dy, but only in the lines colored red.

We get evaluation maps €, and €;, by projecting onto the identity line as usual, and then we can determine
the coevaluation maps vr and 7. Here we have to be a bit careful when dealing with the m line. We have

Em(emleml) = em(em2€m2) = Em(emleml) = Em(emQBmZ) =0,

67n(€7nlem2) = E171(6171167712) = Biga 6171(6171267711) = E7’11(67’112€7n1) = _5387 (3463)

The coevaluation maps pick up a relative sign,

(1) =T (1) = =15 " (€m1€mz — emaem) - (3.464)
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Then using the coevaluation map along with fusion, we can produce a basis for co-fusions,

e ee+ B teqeq + B tever + 817 tecee — Big ' (€m1€m2 — emaem) s (3.465)
Ca > €q + eqe + ByB11 tevee + BoBE tecer — BiBig ! (em1€ma + €maem1) s (3.466)
ep > eey + epe + BLBYT eaee + BEB  ecea — BiB1E " (emiem1 + €maema) ( )
ec  eec+ece + BloBs ety + BoBL  evea + BlaBls "t (Emiem1 — €mzem2) (3.468)

/ /—1 / /—1
€ml > €em1 + €m1€ + ﬁ19518 €a€ml + 51361 €m1€a

—1 -1 — -1
- ﬁi(}ﬁig €bEm2 + ﬂi4ﬁé €m2€y — 517ﬁ13 1ecemQ + 515511 €m2€c, (3469)
1 _
em2 > €em2 + €m2€ — ﬁigﬁig €a€m2 — 61361 16m26a
-1 _ _ _
+ ﬁ16518 €bEm1 — ﬂiélﬂé 16mleb - 517ﬁ£8 1eceml + ﬁiSﬁil 16mlec~ (3470)

Repeating the crossing kernel computation for Qg just changes some signs relative to D4. We list below
only the components where there are sign changes from D, results:

~ bm ﬂ/
(eves) em1 = B eem1 = Bgema, € (evem1) = By epema = —(Bg)’em1, = Ky, (1,m) = — (5,6)2,
8
(3.471)
/ Y I ! =-b,m ﬁzliﬂé
(ebec) €ml = 67 €abml = 64676777,17 €y (eceml) = 612 €pEm2 = _68512em17 = Kc,m(aam) = _ﬂ/ 7
812
(3.472)
~ bm
(evem1) eb = Bg emaes = —B3f14 €m1, € (emies) = Bl evema = —Bsf14€m1, = K, p(m,ym) =1,
(3.473)
~ bm
(ebeml) €c = Bé E€m2€c = Bé/@15emla €y (emlec) = 615 €pEm2 = _ﬁéﬁifyemlv = Km,c(m7m) = _17
(3.474)
(ebem1) em1 = B emaem1 = —Psfig € + B3Big ar b (emrem1) = Big eves + Bir evee = BsBis € + Bybireas
b1 BsBis ba BsBig
= Km,m(mab) = _ﬁ/ ) Km,m( 7C) = /3/ 7
6~16 917
! Y / ! ol -G 64/1510
(ecep) em1 = Blo €abm1 = Bif1o €m1, €c (epem1) = Bg ecema = ByB12em1, = Ky (a,m) = BLE
8M12
(3.475)
/ ’ ’ /7 \2 -G 611
(ecec) €m1 = 511 €Em1 = Bll €m1, €c (eceml) = 612 €cm2 = (/812) €ml, = Kgm(lvm) = (5/ )27
12
(3.476)
~ c,m
(ecem1) eb = Bia emaes = —B12B14€m1; €c (emies) = Bl ecema = Biafraemi, = K, p(m,m) = —1,
(3.477)
~ c,m
(eceml) €c = 512 €m2€c = ﬁiQﬁiE, €m1, €c (emlec) = 615 €cm2 = ﬁi2ﬁ{56m17 = Km’c(m, m) = 17
(3.478)
(ecem1> €ml1 = ﬁiz €m26m1 = _ﬁizﬂig 6+512619 €a, €c (emleml) = ﬁi(; eceb+/817 €c€e = 611617 e+6£0ﬁ16 €a,
7-Cl B12Bis 70 Bi2Bie
e BB, T BloBls’
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o, BI 2
(em1ep) €y = 514€m2€b = —(514)2 em1, em1 (epep) = 56 €m1€ = 5(/3 €ml, = K:?bm(m» 1) = —@

Bs
(3.479)
/ Y / !l 11,1 514Bi5
(emleb) €c = /814 €m26€c = /814615 €ml, Emil (ebec) = ﬁ? €m1€a = ﬁ?ﬂls €ml, = Kb,c (m7 a) = ﬂ/ﬂ/ s
7M13
(3.480)
(emleb) €m1 = /8£4 Em2€m1 = _/8£4618 e+ /814B£9 €ay €Emil (ebeml) = ﬁé Em1Em2 = /Bé,;ﬂis e+ ﬁéﬁigaa
’ /
, 14 m,a 14
= Kbm(mam)zii/a Kb,m(mam)i 7
8 8
(emleb) €m2 = B£4 E€m2€m2 = 614/616 €p — 514/617 €c, €m1 (ebemZ) = 76é €m1€ml = 7ﬂé/616 €p — Bé617 €c,
7-1m,b Bla Pl Bla
= Kb,m(mam) = T Kb,m(mam) = o
8 8
1 Y] ’ /ol -1, ﬁ14515
(em1ec) ev = Bis emaey, = —B14B15 €m1, em1 (€cey) = Blg emiea = B1oBi3 €m1, = Kc,b (m,a) = *B, Bl
10713
(3.481)
’ /2 ! / -1, (ﬁi5)2
(emlec) €c = 615 €m2€c = (615) €mly €ml (ecec) - 511 E€m1€ = 511 €ml, = Kg,g (ma 1) = ,6/ ’
11
(3.482)
(em1€c) €m1 = P15 emaem1 = —BisBis € + B15019€as  €m1 (€clm1) = Blg emiema = B1afis e + P12 €as
~ m,1 ﬂ/ ~ m,a BI
= Kc,m(mvm):_¥7 Kc’m(m,m)zﬁ,
12 12

(emlec) €m2 = 515 Cm26m2 = 515516 €y — 515517 €c, €m1 (ecemQ) - ﬂiQ €m1bml = BiQﬂiG ep + 5i2ﬁ17 Ce,

~ m,b 512 ~.m,c 612
= Kc,m(m7m): F’ Kc,m(m7m):_f’
15 15
(em1em2) €p = Big eep+B1g €att = Big €v+B2B19 €cr  €mi (€m26s) = — B4 €m1€m1 = —B14B16 €b—B14817 €cs
= f(m’b(l m) = Bis f(m’c(a m) = Pabi
,b - ,b -
o Bubis’ ™ BBz’

(emleml) €c = ﬁiS ee. + 519 €a€c = Béﬁig ep + 518 €c, €m1l (em2€c) = 615 €m1€ml = 515616 ep + 515617 €c,

b BLB! o B!
= KZ,C a, ): s ) Km7c 1, ): = )
( BBl el = Brar
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(em1em1) €m1 = Blg €pem1 + Bi7 €clm1 =
! /
€m1 (emleml) = 616 em1€p + 517 E€m1€c =
(emleml) E€m2 = 516 €pema + ﬂ17 €cbm2 =
em1 (Emim2) = Bigemie+ Blgemieq =
(em1€m2) em1 = B1g €em1 + Blg Cabm1 =
em1 (em2em1) = —Bigemie + Blgemics =
(emlemZ) €m2 = /818 €€m2 + 619 €abm2 =

em1 (em2em2) = B €mi€s — Bi7 €miec =

K,o(1,1) Koo(la) Koow(1,b) Koo(lc)
Kov(al) Kooo(aa) Kooo(ab) Ko (a,c)
Km:m(c’ 1) Km,m(c’ a’) Km7m (C, b) Km’m(c7 C)

3.3.4 Modular transformations

(B3B16 + Pr2Biz) ema,
(B1aBie + B15P17) v,

— (BsB16 — B12P17) emi,
(B1s + B13Bio) ema,
(B1s + B1P1g) €mi,

— (B1s — B13B1o) €ma,
(B1s — B1B19) ema,
(B14B16 — B1sP17) €m2;

| e B B
) P1aPro Prafis BisPir
_ 54519 ﬁ4 _ B4519 54519
el Fe TP mhe
_BsBis _ BsBis Bg BgBig
vl v A v (o
B12817 B12817 B12817 Pra
Bis B13B10 B14B16 Bis

For Qg a few of the modular transformations pick up signs relative to those for Dy, specifically

mp(T+1) = — %%4 mem(r), (3.483)
8
1) = - Dz (o), (3.484)
5 /812 5
1 m /B/ m 5/ m 5/ m )

Z} N==|(-Z 18 18 - 18 , 3.485
74 1) = 5 (< Z0a(0) + 5 Z00) + 5 () = 5 2 () (3.485)
a 1 ﬂzllﬂig m ﬁz/l m B:LB&Q m ﬂaﬂig m )

Z == (- z D1 g _ Z Z 3.486
mm(T+ ) 2( 518 m,1(7)+613 m,a(T) 514516 mjb(T)JrﬁisBi'? m,c(T) ) ( )

1 B3 Bs3 s B

Zb 1 _ _ 816 Z’m _ 8M16 Zm 8 m 8M16 Zm )7 3487
m,m(T+ ) 2( ﬂis m,l(T) /613519 m,a(T)+ ﬂi4 m,b(7)+ Bisﬂi? m,c(T) ( )
c 1 512 17 m 612517 m 512517 m ﬂi2 m >

7z 1) == 7z Z Z P12 4 3.488
(1) = 5 (2222, )+ B 1+ B2 0 + B2 ) ()

Zp(~1/7) = - gzggz zn (1), (3.489)
m 512518 m

Zm (—1/7) = — z 3.490
em(=1/7) BBl me(T)s ( )
™ (1) = — gzg?: Z(). (3.491)

zZn(-1/7)= — 611%727" (1), (3.492)

BiaBis O™
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Z;mx1ﬁq_.;(zﬁmxf)ﬁiigZ&mxf)BZ§6Z&mxﬂ%ﬁiﬁw Zynm(T
T 4/7) = 5 (5 Zh)~ Zinlr) + G2 ) = G
1101 = (014 STl Zht) “
Zomttjr) = 3 (228t ) - S ) - St

The rest of the modular transformations are the same as for D4 but with 8’ instead of 3.

n). (am
).
i)

) (3.496)

(3.494)

(3.495)

There are then fewer modular invariant combinations than existed in the D, case, which we list below:

le,la
280+ Zis+ Zaas
Zf,b + Zb 1+ Zb bs
Zf e+ Zi + Ze
g B L BSOS S BB BB g BB
“ BBy ¢ ﬂiﬁéﬂio BBy ¢ Bibr BiBsB ¢
B B B11 Bis Bis
me Z;nmi me Z;nm,+Znnzl ZrTga nnzl
b BiBis BsBia b Bi2B15 't BisBi19 B14Bi16 b
Bis Bis b Bis
+Z71nm_ Zrilm_ Z’mm+ Zﬁ@
BiBro ™™ BgBie ™ BlBir ™
3.3.5 H =7Z4: 1+ a orbifold
We have basis vectors for the trivial and a-representation:
61:UH+’UyH7 €q = VH — VUyH,

The multiplication with e; acts as identity, and the multiplication of e, with itself is
,U*(ea ® ea) = €1,
as expected from the fact that a ® a = 1. We can compute the comultiplication as

Ar(er)
AF(ea) =

Expanding this in the (co-)fusion basis gives the coefficients

1
VHVE + vyrVyH = (€161 + €ata),

1
VHVH — UyHVyH = (€164 + €q€1).

1 _ ,a _ ,a __ _ -1
:Ll‘l,l - N’l,a - Ma,l - 17 :U‘a a 6 )

1 _ l,a __ al 1 a,a __ ﬂl
Afy =2t =A =4, A=

(3.503)

(3.504)

(3.505)
(3.506)

(3.507)

(3.508)

As we have seen, these coefficients can be used to compute the partition function as Z =}, ik uﬁin’iijj.

Then the partition function is

1
Z1+a = 5 [le,l + Zil,a + Zt(zl,l + Z;,a] ’

(3.509)

This expression for the partition function is a linear combination of the modular invariants computed in

section hence 714, is modular-invariant.
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3.3.6 H =175: 1+ a+ b+ c orbifold

We first define basis vectors for the representations {1,a,b,c}
e1 = Vg + Vg + VyH + VgyH, €q = VH + UgH — VyH — UgyH, (3.510)
e = Vg — Vol + UyH — VgyH, €c = VH — VeH — UyH + VgyH, (3.511)

The multiplication is

® €q) = fx (eb ®ep) = i« (ec ® ) = e,

=eq, fx(e1ep) = s (€p @ e€1) = €5,

) = i (€a
€a) = s (€q )

c) ps (e ®@€1) = s (€a @ €p) = s (€5 @ €q) = €,
) = s (ec )= f (€1 ® €c) = ps (€c ® €5) = €q,

(3.512)

while the comultiplication reads
Ap(er)=-(e1Qe1+e, Qe +epyRep+e.Dee),

AF(ea)_ (el®€a+€a®€1+eb®ec+ec®eb)

(3.513)

AF(eb) (61®eb+eb®€1+ea®ec+ec®ea)a

Ap(e)==(e1®e.+e.Qer+e,Qep+ep®eq),

»Jk\»—wk\»—wk — | =

which was derived using the fact that Ap is diagonal on the v basis. We can then expand this in the
(co-)fusion basis to compute the relevant coefficients as

ﬂi,l =1, Ma a = i 17 /~La b= /717 Mg,c = il’,ilv (3'514)
Mlc;,a = Béilv ,U'll;,b = ﬁéila :U'IC)LC = 517717 (3'515)
H“Z,a = Bﬁl)_lv :ug,b = 10_17 :Uc c = /811 ’ (3'516)
/ !
ALl 1 A®e _ & Abe — B G — ) 3.517
1 4 1 4 ’ c 4ﬂé7 b 46é7 ( )
5& b _ B6 b Bs
A% b _ Al 6 Ach 3.518
45 1 4 ? a 4ﬁé’ ( )
Bia b B Bix
AGC — Abe — Z1L - Acce Pl 3.519
b 4B'/7, a é ) 1 4 ) ( )
thus giving the partition function
Zl+a+b+C: 1 |:Z111+Zila+Z%b+ch+Zgl+Z;a Bl Zab 61 ch (3520)
41" ’ ’ ’ ’ Byl Bs05
5& BG Bl 511 1 ]
+Z, + Zg o+ Zpy+ Z + Z¢ z zZ8 + 7|
b,1 65/3610 b,a b,b 2 b,c c,l 57ﬁ9 c,a 53ﬁ10 c,b c,c
We can rewrite the partition function as
1
Zitatbre = § {Zil + 200t Zos+ Zaa+ Zly+ Zon+ Doy + 25 o+ 280+ Ze, (3.521)
A1 e, PabBs B3B654 BB B35 B3BaB11 a
+ﬁ/;/ Za,b+ 6269ZZC 6256 > Zba 6 9Zbc B%ﬂlllzga+ B?ﬁ?ﬂ}lzc,b .
2179 3095 185810 157 177 1P3P10
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Each line above is separately modular invariant, using the results computed in section and 80 Z14q+btc
is manifestly modular-invariant.

Just as in the Rep(D4) cases, we can formally turn on an analogue of discrete torsion, which results in
the modular-invariant partition function

1
Zipatbre = 7 {Zil V200t Zas+ Zaa+ 2y + Ziy + Doy + 250+ ZE0 + Ze, (3.522)

4
_ B (ZC L BBy gy BABeBy ye | PoPy ya | BaBi | BaBoPin e )}
By \ "0 T B e T G, e B e B e B,

This differs from the previous partition function by a sign on the second line. As before, one cannot merely
absorb the sign into the s, as this also changes the partial traces Zf,j. Also as before, we do not claim
to have checked multiloop factorization, so it is entirely possible that some choices of discrete torsion do
not yield physically-sensible theories. We leave a detailed analysis and first-principles understanding of such

phases for future work.

3.3.7 H=1:1+a+b+ c+ 2m orbifold

Finally, we gauge the regular representation 1 +a+b+c+2m =1+a+ b+ c+my +mo. We choose basis
vectors for these irreps, where the basis vectors e,,; carry two indices 1 < 4,j < 2 to denote the ith basis
vector of the jth copy of m appearing in the regular representation.

€ =01+ Uy +VUp2 + Vg8 + Uy +Vpy + Vg2y +Vp3y, €q = V1 + Vg + Vg2 4 Vg3 — Uy — Uy — U2y — Ugsyy, (3.523)

€p = V1 — Up + Vg2 — Vg3 + Uy — Uy + Vg2 — VUgsy, €c = V1 — Vg + Vg2 — Ugd — Uy + Uy — U2y + Ugsyy, (3.524)

Emi1 = V1 10 — Vg2 — 103 + Uy +10sy — Ug2y — Wy3y, Em 2 = V1 — 10z — Vg2 + 108 — Uy +10sy + Vg2y — 1043y,

(3.525)

€myl = V110 — Vg2 — U8 — Uy — Wy T Vp2y +10z3y, Cmp2 = —V1 10z +Up2 — 103 — Uy +i0gy + U2y — 1Us3y.

(3.526)

By first computing the (co-)multiplications and then expanding in terms of the (co-)fusion basis as before,
we compute the coefficients as

R _ , R __ LR _ ALR _ 1
Mg =pr1 =1 A =ApT =35, (3.527)
1 _ —1 c _ pl—1 b _ pr—1 mo _ -1 mi _ pl—1 c —1 1 —1
N’a,a - 51 ’ /‘La,b - M2 ) Ma,c - 53 ’ /j‘a,ml — M4 > Ma,mg - ﬁ4 ’ /U'b,a - 65 ’ /~Lb,b - 56 ’
(3.528)
a _ -1 mo r—1 my  __ pr—1 b _ -1 a _ /-1 1 _ pr—1
:ub,c - 67 ) /’(’b,ml - _68 ) /j/b,fm2 - 68 ) /j’c,a - ﬁg ) I'Lc,b — 610 9 Mc,c - 611 5 (3529)
mi _ nr—1 mo o /7 —1 mo _ -1 mao _ /—1 mi _ nl—1 a _ nl—1
1u‘c,m1 - 512 I /j‘c,mg - _ﬁ12 ) /J’ml,a - 513 ’ lj’ml,b - _514 ’ ﬂml,c - ﬁ15 ) Mml,ml - ﬂ19 )
(3.530)
b _ -1 1 _ r—1 c _ -1 m1  __ Ql—1 my  __ pl—1 mo /-1
Ky my = Bis Pmyme = 7P18 3 Hmgme = P17 5 Mmga = Bis e b = P14 5 Hmye = P15
(3.531)
1 _ -1 c _ -1 a _ /-1 b _ nr—1
Hmg,m, = 518 o Pmamy = P17 0 Bmg,mo — 7ﬂ19 y Mmg,me = ﬂlg s (3532)

! / / / / / /
Aclz,a _ & Al;’a o ﬁl Ag,a 61 AT — Bl Azf,a _ Bl Aa,b _ ﬁﬁ Alli,b _ &

8, *86{)7 *8637 mo 78ﬁi3’ 78ﬂ13’ c 786107 8
(3.533)
B b B b B B be _ Bl A
Ac’b = Aml’ = AmQ’ = — Aa7c = A ¢ = AC)C = = 3534

Cwmp S Tagy S TRy M Ty S Tayp ATy O
mi,c Bil AM2.C — ﬁil AGM — 618 Ab,ml — _ 618 ACG™ML — 618 JANAE R a— 18
mUTRE T T TRE T TR T T URR T T eRy e 55,
(3.535)
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A _518 A2 _ﬂiiS A2 M ﬂiS a,ma _ ﬂiS bmi _ 518 AGM2 — ﬂiS
b 86" ! A 8/, ™ 80y ™ 80 "™ 8p1;
3.536
A A B Bl ( !
A’Thm? — % Amime _ P18 A™Mmzym2 _ [718 AM2mz 718 (3.537)

A 88
Some multiplication coefficients are zero (e.g. p's, ) and we have omitted these. Note also that a difference
in this example is that the identity occurs in the multiplication of my with ms, not in multiplication of m,
with my or mg with mo. The partition function is then

1 / /
Zitatbtetam = g le,l + Zia + Zi),b + Zlc,c + QZI’?m + Zg,l + Z;,a + B/ﬁé/ Zg,b + ﬁlﬁgl Zg c
2~9 3~5
261 b Bs v, B 285
+ Zm 4zb 48 ge Lozl 4 6 ga 26 gm .
BiBis @ nl BsBio . b 557 . BsBia >
ﬂil b 611 1 2ﬂ11
+Z5, + zb .+ 7%+ ZL + zm
c,1 Béﬁé c,a Béﬁio c,b c,c Bi2ﬁ{[5 c,m
4o7m L+ 2618 zm 4 2618 mb _ 2618 gm
T BisBle Y Buble T BisBir
203 203 203
+2Z}, 0 — 6,551,8 Z m — 6,%1,8 zb, .+ ﬁ/ﬂgj Zeml- (3.538)
4~19 8M16 1217

To check modular invariance, we rewrite the partition function above in the form

(3.539)

1
Ditatreram = 3 {(Zil + 20t Doyt Zaa Do+ Zin+ 2oy + 25+ 20+ 22

/ ! Q! ! 3l 3 ! 3/ ! ! 21 3/
vty (204 502t + SO 2 B 4 B B, )
ﬁQﬁQ 5355 5155 10 51 7 Blﬁ’? ﬁ153510

+2(Z}”+ b zm  — 5 "+ B Zm 77"+ fis zm
B B Bl e T T g e
Bis Bis 1 Bis Bis b
+ Zm . — zm 4+ Z — zZe = Z
BlaBis™ ™" BisBis ™ BBl ™ BeBe ™
Bis )]
+ YA :
BiaBir T
Each of the three quantities enclosed in parantheses above is separately modular-invariant, from the results
of section |3.3.4] hence Z11q1ptcrom is explicitly modular-invariant.
+atbtct p y

As in the Rep(Dy) case, we can turn on an analogue of discrete torsion in the Zs x Zs subalgebra,
essentially by multiplying the second line of modular invariants by —1, resulting in the modular-invariant

partition function
(3.540)

ol —

Zitatbtet2amdt = {(211,1 + 21, + Zgq + Z;,a + Zi),b + Zz?@ + Zl},b +Zi.+ 21+ Zi,c)

(s B By B By B0 )
Zg, J’» Zﬂ (6] J’» chl + ZaF J’» ZC a + Zg
T T AT A TR

B35
B B A Bis
+2(me+ ;nm_ me+ Zng—i_Z:rrlL + Z:rzna
N BB T BaBla T BlaBs T 1 BBl ™
518 gm. ﬂiS gm + Zl _ ﬁi8 za o 618 Zb

+ b !
B1aBie ™ BisBir ™ T BB T BeBe T
Bis )]
+ zZ¢ .
BBz ™
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As before, such a sign cannot be simply absorbed into the 3’s without also modifying the partial traces Zi’f -
A closely related choice will also appear in the Rep(Hsg) analysis in section which will make it clear that
there really does exist a physically-distinct discrete-torsion-like degree of freedom here. As noted earlier, we
have not checked e.g. multiloop factorization, so not all choices of discrete torsion may be sensible. We leave

a detailed first-principles analysis for the future.

3.4 Rep(’Hg)

In this subsection, we gauge a Rep(Hs) symmetry, the remaining TY (Zs X Zs) category, where Hg is the
eight-dimensional Kac-Paljutkin Hopf algebra [57]. Unlike the previous examples, in this example we will
not compute the most intertwiners and so forth, but rather will use existing relations for crossing kernels.

(See appendix [B| for a summary of existing results and implied modular transformations.)

The Hopf algebra Hg has generators {x,y, z} satisfying the relations

2 2 2 1

Tt =y = ;T2 =2x; 2Y = Y2

TYZ = Yr
so that Hg is spanned by basis elements
H8 = Span(l, Z,Y,2, Y, T2, Yz, yl‘)

The comultiplication is

1
Az) = I€0®I+l’61®y:§(x®z+xz®:z:+:c®y—xz®y)
1
Aly) = ya®r+ye®@y=(yRr-y20r+y@y+yzQy)
Alz) = 2®z2
1
Alzy) = zyeo @y +ayer @yz = 5(zy @2y +yz @y + 1y @ yr — yz ® yo)
1
Azz) = a:eo®:czfa:el®yz:§(x®xz+xz®xzfz®yz+xz®yz)
1
Ayz) = yeo®yz—yel®xz:§(y®yz+yz®yz—y®xz+yz®xz)
1
Ayz) = yxeo®yx+yxel®xy=§(yﬂc®yw+wy®yw+yw®xy—xy®xy)

where the elements eg, e; are two central orthogonal idempotents defined as
1
ey = 5(1 +2)

1
e = 5(1—2’)
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(3.544)

(3.545)
(3.546)
(3.547)

(3.548)
(3.549)

(3.550)

(3.551)

(3.552)



and counit u°(z) = u°(y) = u®(z) = 1. There is also an antipode map defined as

1
S(z) = meg+yer = §(x+:cz+y—yz)7 (3.553)
1
Sly) = wer+yeo = (@ — 224y +y2), (3.554)
S(z) = = (3.555)
S(zy) = ya, (3.556)
S(xz) = %(xz—l—yz—l—x —y), (3.557)
1
Slyz) = -z +y+yz+az), (3.558)
S(yz) = wy. (3.559)

We now want to endow Hg with the structure of a symmetric special Frobenius algebra. In principle, we
use a multiplication p, and unit u, inherited from Hg, and then add a comultiplication Ap (not directly
inherited from the Hopf algebra) and counit u% (also not directly inherited). It is important to note that
Hs is a self-dual algebra [58], and a basis is given by linear functions v, (b) = d4,5 where a, b are elements of

the basis from Equation (|3.543)).

First, we describe the algebra structure (g, u.) on H§ with such a basis. It is inherited from the coalgebra
structure on Hg. The unit u, : C — Hg is

Us(l) = 01+ + 0y Vs + Ugy + Vg + Uy + Vyge (3.560)
The Frobenius product . (v, ® vp) = A* (v ® vp):

e(vr @up) = 101, (3.561)
1

Mok ('Um & Ub) = 5 (5z,bvm + 6y,bvx + Szz,bvxz - 5yz,bvmz) ) (3562)
1

ti(vy @ vp) = 5 (02,6Vy + Oy pUy + Oy pVys — 022 bVyz) , (3.563)

e (Vz @ Up) = 0,0z, (3.564)
1

o (U:L-y & Ub) = 5 (5wy,bva + 5yw,bva + 5ya:,bvya: - 5wy,bvyw) s (3565)
1

Mo (Uafz & Ub) = 5 (5acz,b'Uacz + 5yz,bvxz + 695,mb - 5y,b'Uac) 5 (3566)
1

s ('Uyz & Ub) = 5 (76x,bvy + 5y,bvy + 5yz,bvyz + 6wz,bvyz) y (3567)
1

P (Vyp @up) = 3 (0zy,bVsy — Oyz,pVsy + Oyz,bVyz + Ozy bVyz) - (3.568)

As described in Section[2] any finite-dimensional Hopf algebra H can be endowed with a Frobenius algebra
structure (ps, us, Ap,u%) by using integral elements of H and H*. An integral element of Hg is [59]

A = 1+zx+y+zt+aoy+az+yz+yr, (3.569)
which serves as the counit via evaluation. An integral element of H3 is simply
A= . (3.570)
Then, in terms of the present basis, the counit is
up H* — C (3.571)
Vg > Vg (A) =1 (3.572)
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The comultiplication is computed as the dual map (2.57)), namely
Ap = (Idy @ (Aopu)o (Idy ® S®Idy) o (Aoldy))*. (3.573)

For the dual basis, this comultiplication is

Ap(v1) = v ®u, (3.574)
Ap(vy) = %(Ux(g”]:c + Vg @ Uy — Vpz @ Vy + Vg2 @ V), (3.575)
Ap(vy) = %(vy@)vx—kvy@vy — Uy @ Vg + Uy @ vy), (3.576)
Arp(v,) = v, Qu, (3.577)
Ap(vgy) = %(vw ® Vgy + Uy @ Uyg + Vyg ® Uy — Vyz @ Uy, (3.578)
Ap(vzz) = %(vz ® Vgz — Vg @ Vyz + Vzz ® Vg + Voz ® Vy2), (3.579)
Ap(vy,) = %(vy ® Vyz — Uy @ Ugz + Uy @ Uy + Vyy ® Ugz), (3.580)
Ap(vyz) = %(—vxy ® Uy + Uy @ Vya + Uyg ® Ugy + Vyz @ Vya), (3.581)

reflecting the fact that Ap is diagonal on the v basis. One can readily check that

Mx © AF = Idy*, (3582)
u o u, = dim(H3) Ide = 8 Ide. (3.583)

The Hopf algebra Hg has five irreducible representations [59], four of which are one-dimensional. The
trivial representation 1 has actions

p1(z)v = p1(y)v = p1(2)v = v. (3.584)

The other three one-dimensional irreps are labeled as a, b, ¢ and form a Klein group. The actions are defined
as

pa(®)v =—v;  pa(y)v=2v; pa(2)v =", (3.585)
pp(X)v=v; pp(y)v =—v; pp(z)v =, (3.586)
pe(T)v = —v;  pe(y)v =—v; pe(z)v =w0. (3.587)

There is also a two-dimensional irreducible representation, which we denote as m. For vy, vy the generators
of the underlying vector space, the actions are defined as follows

pa(z)v1 =015 pa(y)vr = v2; pa(z)v1 = —v1, (3.588)
Pa(ﬂﬁ)vz = —U2; Pa(y)v2 =v1; pa(2)va = —va. (3-589)

Gauging the whole category corresponds to gauging by the regular representation R = 14+a+ b+ c+ 2m.
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As before, we choose a suitable basis in Hg:

er = U1+ U+ Vg + Uy + Ugy + Vg + Uy + Uy, (3.590)
€ = U1+ U, —Up+ Uy — Upy — Uy + Vyr — Uya, (3.591)
ey = V1 + U+ Uy — Uy — Vgy + Vs — Uy — Vya, (3.592)
€c = U1+ U, — Vg — Uy + Upy — Vzz — Uyz + Vya, (3.593)
€myl = U1 — Vs + Uy + Uy + Ugy — Vyz — Ugz — Uyz, (3.594)
Emi2 = V1 — Uy — Uy + Uy — Ugy + Uyg + Vg — Vs, (3.595)
Emal = U1 — Uy + Uy — Uy — Uy + Vyz — Vgz + Vyzs (3.596)
€my2 = —ULF Vs + Uy + Uy — Ugy + Uyg — Ugz — Uy (3.597)

As expected, the products of {e,, ey, e.} are cyclic. The product table is

€a €y €c €mq1 €m,2 €mol €mo2
€a €1 €c €p €m,2 €ma1 —€ms2 —€msl
€p €c €1 €q €mo1 —€ms2 €mq1 —€m,2
€c €p €q €1 —Cmy2 €mo1l €m,2 —€m,1
€mi1 €mol €m.2 —€my2 €1 €p €aq —€¢
€m.2 —€moy2 €mal €mo1 €a €c €1 —€p
€mo1 €mi1 —€mo2 €m,2 €p €1 €c —€q
€mo2 —€m,2 —€mo1l —€m,1 —€¢ —€q —€p €1

where the row elements multiply from the left and the column elements multiply from the right. Notice that,
unlike the other examples considered so far, this algebra is non-commutative. For example, from the table
above we have

ﬂ*(€a®em11) = €m,2

M*(emll ®ea) = €Emyl-

As described below, this becomes important when computing the partial traces appearing in the partition
function of the regular representation, since, just as for group-like orbifolds, this non-commutativity does
not allow a consistent insertion of a and m defects on the nontrivial 2-torus cycles.

We can also compute the coproduct of the unit as

Ap(u(l)) = (e1®e1+ e ®eq+ep@ep+ec®ec+ emy1 @ €yl + Emy2 ® Emy1 (3.598)

ol

+ema1 ® €my2 + €my2 @ €my2). (3.599)

Next, we briefly discuss the intertwiners relating basis elements for the representations 1, a, b, ¢, m, which
we will denote e, eq, €p, €c, €m1, €ma. The intertwiners are listed

€a €bh €c €m1 €m2
€a €1 €c €b €ml —€m2
€b €c €1 €a €m2 €m1
€c €b €a €1 —€m2 €m1
€m1 €m1 €m2 €m2 e1+ep €q + €c
€m2 —€m2 €m1 —€m1 €a — €c €1 — 6
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which are to be read in the same order as the product table, for example
eml Qema2 = €g T €,
em2®em1 = €eqg— €c.

For this example, we do not try to compute general intertwiners.

We now gauge the regular representation, the symmetric special Frobenius algebra corresponding to
l1+a+b+c+2m.

An important difference between this case and the other two gaugeable Zs x Zy TY fusion categories
analyzed previously is that in this case this algebra object is non-commutative, hence on general grounds we
do not expect all the partial traces that appeared previously to be admissible here.

This is indeed the case for the partial traces involving the noninvertible object m together with a or b.
Notice for example that esem,1 = em,2, so that we would expect a partial trace Z;’};“. However, one has
that

a®@my 25 my Ar, mo @ a (3.600)
€almyl 7 Emy2 7 —€my2€4 (3601)
and similarly
b mi 25 my 25 my @ b (3.602)
€p & Emy1 > Emyl > —Emy2€0, (3.603)

which suggests that the partial traces involving a or b along with m do not appear this time, in contrast

with Rep(D4) and Rep(Qs). Indeed, one can proceed as before and compute the coefficients uff Lo Aéi’Ll:

poy =1 (cyclic), pi"h =1, pi"2 =1, prt =1, pr =1 o =1, iy m, =1, (3.604)

:u‘??fnl = 1a #Z?ran = 17 sz,c = 715 ﬂm;,c = 17 :LL’IC”I’“,TYLQ = 717 :ufng,ml = 17 (3605)
be _ 1 . A _ 1 11 1,my _ 1 ms _ 1 mi 1 mz _ 1
Aa(. =3 (C’yChC)7 Ami =3 Amg =3 AmTl =3 Amfzn2 = g,A;nl mi— 3 A;’W m2— 3
(3.606)
e _ 1 e _ 1 om1 1 me _ 1 omy o _ 1 ma _ 1
A:’THL; ‘= 8 Aﬁf ‘= 87 Afnzn K A(;n,Tz -8 A?cn2 ™= 8 A?Cn1 "= 8 (3607)
where all others vanish. In particular, this confirms that the partial traces Z;",,, Z7} ,, b Lo Lmms
and Z,Z;L,m do not appear in the partition function.
With these coefficients, we get the partition function
1
zZ = = Szl 422 A I 2 A D A D+ 2 ) | (3.608)

g,h€{1,a,b,c}

This result of the torus partition function for gauging the whole Rep(Hsg) symmetry appeared in |21}, Eq.
3.15] while the present paper was in preparation.

In principle one can also construct Frobenius algebras associated with other Hopf ideals, which correspond
to [60, appendix D.2]

1, 1+a, 14+0b, 1+¢c, 14+a+b+e, (3.609)

just as we did for Rep(Ss3), Rep(Dy), and Rep(Qsg) in previous sections. However, for reasons of brevity, we
defer such discussions in Rep(Hs) to future work.
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In passing, just as we have seen in previous examples, it is also possible to create a new theory by turning
on an analogue of discrete torsion, which specifically will be determined by the discrete torsion in an ordinary
Zo x L orbifold. If we let w denote a cocycle representing the nontrivial element of H?(Zy X Za, U (1)) = Zo,
and define

w(g,h)
(g, h) = ) 3.610
91 = o) (3010
then the second theory has partition function
1 m m m m (&
7= S g WZ | 220 2+ 2 A T+ T+ D) | - (3.611)

g,he{l,a,b,c}

Later in section we will see that these two gauged Rep(Hs) theories, with and without this analogue of
discrete torsion, are physically distinct. As noted earlier, we have not checked e.g. multiloop factorization,
so it is possible that some choices of discrete torsion in some theories may not be physically consistent.
Furthermore, and also as noted earlier, we do not have a first-principles understanding of analogues of
discrete torsion in gauged noninvertible symmetries. We hope to return to this topic in future work.

3.5 Summary of results

Here, for ease of reference, we will compile the partition functions computed in this section. While most
of these computations were done with arbitrary coefficients 3; appearing in the intertwinters, here we will
specialize to the choices which appear most often in the literature.

3.5.1 Rep(S3) partition functions

We can match conventions in the existing literature for Rep(S3) by choosing
Bo=PBs=Ps=1 P1=P3=0s=—1 (3.612)

for the coefficients appearing in (3.7)-(3.22). Then all components of the associator are trivial except for

- XY - Y)Y A -V, X
Kyy (YY) = KX,Y(Y7 Y) = KY,X(Y7 Y) = Kyy (YY) =-1 (3.613)
and ) ) .
A% 2 2 2
Kyy = g % _% (3.614)
1 -1 0

Comparing with |27} (6.17)], this matches their w = 1 result except for the components in (3.613]) which they
don’t mention as differing from one. These signs do appear in [53], in which the calculation is also done in
a general gauge.
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With such a choice, the Rep(S3) partition functions of section are

1
Ziyx = 3 {211,1 + (Zf,(x + Z})((,l + Z}(,X):| ) (3.615)
1 1
Ziyy = 3 |:le,1 + (Z{Y +Zy1+ Zyy + QZ}’ZY)] , (3.616)
1 1
Ziyxqoy = 5 {Zil + (Z¥% +Z% 1+ Zx x) + 2 <Z{Y +Zy1+ Zyy + 22{,/) (3.617)

1
_ 2<Z§7Y—|—Z{X—&-Z§)Y—2 {Y)].

3.5.2 Rep(D,) partition functions

We will choose the intertwiner coefficients appearing in (3.229))-(3.253) to be

g g P g g o P _ _ B
Br=01, B3=—, Bs=-P2, Bs=p8i Br= , Bs==xBs, Bo= ,
B2 B2 B2
2 4 2 2
Bio = &7 Bi1 = —%’ P12 = :Fﬁv B3 = —B4, Pra==xPs, P15= :Fﬂ*‘l’
B2 5 B2 B2
Bir = %7 Big = £B4B16, Bio = £Pi6- (3.618)

Then all components of the associator are equal to +1 except for
~ mi ~ im o = m,m . .
Kj,m(ma m) = Km,j(m’ m) = x(i,7), Km,m(lvj) = §X(7’7])7 (3.619)

where ¢ and j run over 1,a,b,c and

1 1 1 1
o 1 1 -1 -1
xih=1; 1 1 _i|° (3.620)
1 -1 -1 1

is the non-trivial bi-character for Z2. This matches the standard Tambara-Yamagami associator [29).
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The various Rep(D4) partition functions from section are then

Zita = % :Z%,l +(Zla+ 200+ Z;,a)} : (3.621)

Zisp = % :le,l + (204 + Zgy + zg,bﬂ : (3.622)

Zitatbye = i :Z11,1 + (21, + Zg1 + chn,a) + (Zf,b + le;,1 + Zl},b) + (21 .+ Zcq + ch,c) (3.623)
F(Zov+ 20+ Z5 o+ 28+ 20+ Z;b)} ,

Zivotm = i :Zl{l (21 + 2oy + Zyy) + (2 + + 201+ Ziy + Zhfon + Ziny + Zon) | (3.624)

Zitatvteram = % :Z%,l (20t 4250+ Zaw) + (Dl + Zoa + Zig) + (ZEc+ 280+ Z2,) (3.625)

F(Zoy+ 20+ Z5 o+ Zif o+ ZE o+ ZE)
-2 (Z{?m + Z;"Ln,l + Zil,m + Z;r,tm + Z:rrLL,a + Z’?n,m)
+2(Z0 + 20+ o + D+ Ty + 2o )

+2 (le,m + Zﬁ,l + Z71n,m + Z:,lm + Z:Z,c + Zﬁ@,m) .

3.5.3 Rep(Qs) partition functions

This time we can set (highlighting the differences from Rep(Dy) in red) the coefficients of (3.438)-(3.462)) to

B/ 2 ﬁ/ 2 ) B ﬁ/ 2
g=@ B=L g g g m=-U g, g
62 ﬁ2 Ay
/ (5411)2 / (ﬂi})él / (34/1)2 ’ / ol Y / (34/1)2
= = — = F = — B4 = Fif =
610 ﬁé ) ﬂll (6&)27 512 +e f‘% ’ ﬂ13 ﬂ4a H14 F104, ﬁ15 g ﬁé ’
! ﬂéﬁiﬁ ! :t" ! ! ! :‘:5’ 2
Bir = 8, Bis = £ifyBies  Bro = TiPies (3.626)
4
with the result that the only non-trivial components of the Rep(Qsg) associator are
~ m,i ~ i,m - ~mm ., . 1 .o
Kj’m(m, m) = Km’j(m, m) = x(i,7), Km’m(l,]) = —§X(l,j). (3.627)
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With such choices, the Rep(Qsg) partition functions appearing in section become

1
Zita =5 {Zil + 210+ Zia Zi,a] : (3.628)
1
Zitatbte = 7 |:Z11,1 F (28t Zas+ Zao) + (214 + Zia + Zyy) + (Z5 o+ 280 + 20 ) (3.629)
F(Zop+ Za o+ Zia+ Zio+ 2o + Z?,b)} 7

1
Disatbroram =g [Zil (2L 0+ 251+ Zaa) + (20 + Zin + Zyp) + (25 o+ Zo1 + Z2e)  (3.630)
2+ 2L e+ 2 a+ 2+ 200+ Z8y)
+2(Z{7}m + Z:;Ll,l + Zrln,m - Zg,lm - Z;?,a - Z:“ln,m
7Zle —Zmy— an,m - Z(Tm - Zrnr:b,c - an,m) :| .

m,b

3.5.4 Rep(Hs) partition function

In section we computed only the partition function for the regular representation of Rep(Hsg), with
coeflicients already chosen to match the usual Tambara-Yamagami setup. The result was

1
Ditatvreram = g | Zia+ (Zla+ +200+ Zoa) + (2o + 2y + Zoy) + (Z1e + ZEa + Ze) (3.631)
+ (Ziw+ Zdet Zia+ Zie+ Zla+ Zi)

F2( 2+ 20+ g+ Z e+ 20+ Zh) |-

3.6 Existence of non-multiplicity-free examples

The examples we have studied in this paper all have the property that all spaces of junction operators are at
most one dimensional (equivalently, the fusion categories are multiplicity-free). Concretely, this means that
in all examples studied in this paper, for all irreducible representations R, S, T,

dimHom(R® S,T) € {0,1}. (3.632)

In this section, we will observe that Rep(A4), where Ay = (Zy X Z3) x Zg the alternating group on four
elements, is a non—multiplicity-freﬂ example.

In Ay, let m denote the irreducible three-dimensional representation. Then, the tensor product m@mem
has multiple singlets. This is an example to illustrate the necessity of keeping track of more than just simple
objects in multiplications and comultiplications. We can see this as follows.

mm=1+a+b+2m, a®Ra=>b, bR®b=a, a®b=1, a@m=m, b@m=m. (3.633)

As a result,

memem m(1+a+b+2m) = m+m+m-+2(1+a+b+2m), (3.634)

2(1) + 2a + 2b + Tm. (3.635)

23n fact, this seems to be the simplest such example. The next largest finite nonabelian group beyond those we have described
so far is the ten-element dihedral group Ds. However, this does not happen in that example, see e.g. |66} p. 6].
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A presentation of A4 in terms of four generators is [61]
Ay = {(w,m,y, 2 | w? =22 =y? = 2% = 15 (z25)% = 1) (3.636)
where z;,z; € {w,z,y,z} and x; # ;.

We will not describe the partition function of a theory with a gauged Rep(A4) symmetry here, but instead
will return to non-multiplicity-free examples in our followup paper [20].

4 Applications: Duality defects from gauging noninvertible sym-
metries

In this section, we present several explicit examples of gauging noninvertible symmetries in ¢ = 1 CFTs as
Zs orbifold of the compact boson [62H64]. In [65], a large class of topological defects were written down. This
paper constructed more general conformal interfaces between ¢ = 1 theories using the folding trick (finding
conformal boundaries in the tensor product theory) and computed their fusions. Among these, the interfaces
which were actually topological were identified, and by specializing to cases with the same theory on either
side of the interface, one obtains a large set of topological defects. For the case of defects in the free boson
theories, at generic radius R the only identified topological defects were invertible, generating the symmetry
group G defined below. At non-generic radii (rational R?) more possibilities appear, including noninvertible
topological defects, but the constructive methods of [65] are also not exhaustive, missing some defects. For
the orbifold branch at a generic radius, the identified topological defects included eight invertible defects,
labeled Il(?q)oo (aw; Bo; €), where ag, Bp € {0, 7} and € € {£1}. These defects generate a D4 symmetry under
fusion,

1179 (ao; Bos€) x TL 70 (s B €) = TLH O (a0 + s Bo + B3 (—1)700/ " ee!). (4.1)
Additionally, there is an infinite family of simple noninvertible defects
00
Y% 8),  (a,8) ¢1{(0,0),(0,7), (,0), (r,m)} (42)
with fusions
Ifﬁ)oo(a; B) x Ifﬁ)oo(ao; Bos€) = Iﬁ)oo(ao; Bos €) x Ifﬁ)oo(a; B) = Ifﬁ)oo(a +ao; B+ Bo), (4.3)

IHa; 8) x TV 8) = T (a + o' 8+ 8) @ TV (a — o3 8 - B), (4.4)

where on the right-hand side of the second line when both arguments of either defect land in the set {0, 7},
then that defect should be understood to decompose as

9% (a0; Bo) = TV (03 Bos +) @ T (w3 Bo; —).- (4.5)

Again, at non-generic radii more topological defects were identified, but the methods of [65] also miss some
defects.

These structures were rediscovered in [67] and embedded in a larger structure including also the missing
defects, and was explored in great detail using more modern methods.

We will show that there exist self-dualities under gauging noninvertible symmetries. In particular, this
self-duality can happen via gauging a full fusion category or a Frobenius subalgebra. We present and discuss
both cases with concrete examples and build duality defects with specific fusion rules via performing half-
space gauging.
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Our starting point is the 2D compact boson with radius R. Using 27 R-periodic left- and right-moving
fields X, and Xg, we define U(1)-valued fields as

X+ Xr

O
R

, 0w = R(XL — XR) (4.6)

where subindices m and w denote momentum and winding, respectively. The celebrated (invertible) T-
duality is given by

1
R— —
— 7
Oun > O, (4.7)
Xp — —Xgr
The global symmetry at generic R reads
Gr=(U(1)y, xU(1)w) % Zj (4.8)

where the two U(1)’s denote the obvious shifting for 6,, and 6,,, while the Z, extension arises from the
reflection (sometimes also referred to as “charge conjugation”):

Z; : (owuew) — (_oma _ow)- (49)

Let us denote the compact boson CFT at radius R with its target space [Sk]. As systematically inves-
tigated in [6567], a large class of noninvertible symmetries arise in the Z3 orbifold theory, which we denote
as [Sk/Z5). Briefly speaking, one can focus on various subgroups of U(1),, x U(1),, and its associated Zj5
extension to a non-abelian group G, then gauging the non-abelian group or its non-normal Z} subgroup [14],
lead to noninvertible symmetries in the orbifold theory [Sk/G] E

A natural question is: starting with a given noninvertible symmetry in [S}/G], what can we learn from
gauging part of (i.e., Frobenius subalgebra) or the full noninvertible symmetry? Below, we will show that
one can build new noninvertible defects via gauging noninvertible symmetriesﬁ

4.1 Gauging Frobenius subalgebra
4.1.1 Gauging 1+Y of Rep(S3) in SU(2)4/U(1)

Let us start with the Rep(S3) symmetry. This noninvertible symmetry can be realized via considering a
Z3(ymy subgroup of U(1)y:

2
Loy 10— 0+ - (4.10)
Extended by Z5 symmetry, this gives rise to a
5’3 = ZB(m) Pl Z; (4.11)

symmetry in the compact boson CFT [Sk]. A Rep(S3) noninvertible symmetry is then realized via gauging
the S5, leading to the orbifold theory [S}/S3]. Alternatively, one can think of this S5 orbifolding as first
gauging the Zs(,,) symmetry and then gauging the Z; symmetry. Notice that the Zs(,,) symmetry is a 3-fold

24 Although in this section we mainly focus on ¢ = 1 CFTs, and in particular, rational CFTs, there are also cases where one
can build non-invertible symmetries for ¢ > 1 irrational CFTs, see e.g. |14}/68/69)
25For generic discussions on building topological interfaces via gauging noninvertible symmetries, we refer the reader to [22}[70].
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rotation symmetry of the target space circle S'. Thus, gauging this symmetry is performing a quotient of
the target space as R — R/3. Therefore we have

[Sh/5:] = [} /23] (112
In the notation of [65], the Rep(S3) symmetry is generated by
2
1=20990;0;4), X =2(P°0;0,-), v =1} <; 0) . (4.13)

As we discussed in Section for theories with Rep(S3) global symmetry, in addition to gauging the
full Rep(S3) or its Zy subgroup, it is also possible to gauge its Frobenius subalgebra, corresponding to the
algebra objects 1 + Y. Furthermore, if the theory itself is an orbifold theory as [7/S3], then gauging 1 +Y
ends up with the Z, orbifold of the theory [T], namely

(T/Z2) = [(T/S3) /(1 +Y)]. (4.14)
Coming back to our case of interest where [T] = [Sk] and Zy = Z%, we obtain
[Sk/Z5) = [(Sk/Ss)/(L+Y)] = [(Sk/Z3)/ (L +Y)), (4.15)
where in the second step we use . With the T-duality
1S3 = 15}, (1.16)
we conclude at R = \/g,
11/ = [(S'5/25)/(1 + V)], (4.17)

namely the orbifold theory [Si/g/ 7% is self-dual under gauging Frobenius subalgebra 1+ Y. In fact, at this
special radius, the ¢ = 1 CFT is rational and enjoys a coset description as SU(2)4/U(1) with the diagonal
modular invariant [67,71]. According to the above self-duality under gauging Frobenius algebra 1 + Y, we
can build a duality defect in this theory via gauging 1+ Y in half of the spacetime and imposing a Dirichlet
boundary on the resulting interface, as in [72]. Let us denote the resulting duality defect as D, and its fusion
can then be expressed as

DD=1aY,

(4.18)
DY =Y @D = 2D.

From the fusion rule, one can see this is indeed a new noninvertible defect line, whose quantum dimension is
V/3. This non-integer quantum dimension implies the whole fusion category containing D is not gaugeable,
though there could exist a gaugeable Frobenius algebra containing D. The defect D does not appear among
those studied in [65], which is not surprising since it only exists at a particular value of the radius.

4.1.2 Gauging 1+ b+ m of Rep(D,) in SU(2)1/(Zs x Zs2)
Similarly, one can consider Rep(Dy4) symmetry of the orbifold theory
(Sk/Ds] =[5} /23], (119)

and gauging its Frobenius subalgebra associated with the algebra objects 1+ b+ m as in Section In the
notation of [65], we identify

1=2{7°0:0:4), b=T{P°(0;0,-), m =T} (5:0). (4.20)
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We obtain the relation similar to the Rep(S5) case
[Sk/Z5] = [(Sk/Da)/ (1 +b+m)] = [(S&/Z5)/ (1 + b+ m)]. (4.21)
At R =2, we have the self-duality
[52/Z5) = [(S2/23)/ (1 + b+ m)] (4.22)

for [S3/Z5] theory under gauging 1+b-+m Frobenius subalgebra. At this special radius, the theory is rational
and enjoys a coset description as SU(2)1/(Za X Z2) |67], which also corresponds to the continuum limit of
the 4-state Potts model [73H75]. The resulting duality defect D via half-space gauging of this Frobenius
subalgebra enjoys the fusion rule
DD=1®bdm,
DRb=bRD =D, (4.23)
Deom=mxD=2D
which is another new noninvertible defect line, with quantum dimension 2 (though not among the defects

identified in [65], which all exist for generic radii). This integer quantum dimension implies the possibility
of further gauging the noninvertible symmetry category containing D, which we leave for future work.

4.2 Gauging Rep(Hs) in (Ising ® Ising) CFT
At radius R = v/2, the Z} orbifold theory of ¢ = 1 compact boson is isomorphic to the tensor product of two
Ising CFTs, which we denote as (Ising ® Ising) CFT [67]:

[S!5/2Z5) = [Ising @ Tsing]. (4.24)

The noninvertible symmetry this theory enjoys is the Rep(#Hg) symmetry. The simple objects of Rep(Hs)
are composed of topological lines in Ising CFT as

1=1,®1,
a=m®ly, b=11®n2, c=m @, (4.25)
m = N1 ®@ Nz,

where 1;,1; and N; are the identity line, the Z, defect and the Kramers-Wannier duality defect for the i-th
Ising CFT, respectively. The fusion rules for Rep(Hs) are determined by

i@ =1, n,ON;=N;@n=N;, Ni@N;=1,®n;. (4.26)

It was argued in [76] the Rep(Hsg) categorical symmetry in (Ising ® Ising) CFT is gaugeable, due to the
fact that it admits a boundary state which is invariant under the action of all topological defects. Here we
review the proposal briefly. Start with a critial Ising CFT, with three Kramers-Wannier duality line defects
inserted. In order to build a (Ising ® Ising) CFT, one can consider two alternative ways as follows

e Fold the worldsheet along the middle defect, as shown in the top picture in Figure The middle
defect after folding becomes a N interface between the (Ising @ Ising) CFT and a trivial theory, thus
realizing a boundary state denoted as |[N'). Notice that the left and the right A/ defects fuse into the
m defect line after the folding. Therefore, the whole configuration is exactly the noninvertible line m
acting on the boundary state |A) in the (Ising ® Ising) CFT

mIN). (4.27)
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Figure 17: Top: Folding Ising CFT along the middle Kramers-Wannier line gives rise to m line acting on
the boundary state |A) in the (Ising ® Ising) CFT. Bottom: Fusing the three Kramers-Wannier lines and
then folding the Ising CFT along the 2N line give rise to boundary state 2|A/) in the (Ising ® Ising) CFT.

e Fuse the left two A defects into 1 @ 7, then fuse them with the rightmost A line (1®n) @ N' = 2N.
Fold the worldsheet along the resulting 2 defect, as shown in the bottom picture in Figure [I7} Now,
the folding manipulation gives rise to a 2|JN') boundary state for the (Ising ® Ising) CFT.

The equivalence of these two folding steps give rise to
m|N) = 2|N), (4.28)

which is a strongly symmetric condition for the boundary state due to the quantum dimension (m) = 2. We
then conclude the categorical symmetry Rep(Hsg) is gaugeable.

Partition functions and self-duality via gauging Rep(#s). The folding method discussed above
makes it possible to write a closed form for various twisted partition functions Z L3 L, for (Ising ® Ising)
CFT. Let us start with the simple cases where Ly or Lo is the identity line defect 1. Recall in the Ising CFT,
there are three primary operators whose characters are given by

e (ORI (I O N R O R

Xn = xn(7), Ixnl* = X0 Xn-
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Partition functions for the Ising CFT with various line insertions read (see, e.g., [31L77./78|)

Z11[Ising] = [xol® + [x 3 I + Ix 1 |%,

Z7 ,[lsing] = [xol? + Ix1* = [x 1 1%,

Z,) [Ising] = xoX1 + X1 X0 + [x2 %

2%717[151“%] = —XOX% - X%Xo + |X1%|2’ (4.30)
Z{lIsing] = V2(Ixol* = I3 ),

Z%I[Ising] ﬁ (xo + X1)+cc.,

Zﬁm[lsing] iXL (xo + X%) + c.c.

We can then readily obtain various twisted partition functions for (Ising ® Ising) CFT. With invertible lines
inserted, we have

1 1[Ising ® Ising] = ( 71 1 [Ising])?,
[

Z7 ,[lsing ® Ising] = [Ismg ® Ising] = Z} , [Ising] x le)l [Ising],
Z3 .[Ising ® Ising] = ( [Ismg])

1[Ising ® Ising] = [Ibll’lg ® Ising] = Z,! | [Ising] x ZII,1 [Ising],

ze
Z¢  [Ising ® Ising] = ( 4 [Ising])?, (4.31)
“ .

a[Ising ® Ising] = Zl}’b[ISing ® Ising] = n y[Ising] x 71 1 [Ising],
bb [Ising ® Ising] = ngl [Ising ® Ising] = Z, , [Ising] x Z7, [Ising],
[Ising ® Ising] = 7y [Ising ® Ising] = Z,ll [Ising] x Z7, [Ising],
[Ising ® Ising] = Z¢, [Ising ® Ising] = 717 [Ising] x Z,', [Ising],

cm[Ismg ® Ising] = (Z] [Ismg])

Recall that in gauging Rep(Hs), not all twisted partition functions with noninvertible line m insertions are
included, but only

s Lo A 2y Zat s Zo s Lvom (4.32)
are present. Thus, we need to obtain their expressions, three of which can be derived from products of Ising

CFT partition functions

Z1" [Ising ® Ising] = (Z{YN [Ising])?,
Zp 1 [Ising ® Ising] = (ZJ/\\//’l[Ising])Q, (4.33)
Zp o[Ising ® Ising] = (ZN [Ising])?,

while the other three partition functions can in turn be derived from the Rep(Hs) modular transformation

1
Z. [Ising ® Ising](7) = Z; [Ising ® Ising] (—) )
’ T

Z m|Ising @ Ising](7) = Z7" ; [Ising ® Ising] (7 + 1), (4.34)

an m|Ising @ Ising|(7) = Z}; . [Ising ® Ising](7 + 1),
The sum over twisted partition functions present in gauging Rep(Hsg) can then be computed as

2
g(Z;’jm + 220 A L A Ly + Zy ) [Ising @ Tsing]
(4.35)

= 2l g o+ x)P” + 5 (bl + g~ (roxy)” — (X3 x0)?)
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Recall that the (Ising ® Ising) CFT is self-dual under gauging Zs x Zy symmetry without discrete torsion,
whose half-space gauging shows the presence of the noninvertible duality defect m m Thus, we conclude
the sum over twisted partition function with invertible line insertions as

1 . . 1 . . 1
s O Zhlsing@lsing] = D 7]\ [Ising @ Ising] = (Ixol® + [z > + [x g )% (436)
g,h€{1,a,b,c}

The resulting partition function after gauging Rep(#Hsg), which can be computed straightforwardly using
(4.30), (4.35), and (4.36)), interestingly, is the same as that of the (Ising ® Ising) CFT (see also [21]):
Z[(Ising ® Ising)/Rep(Hs)]

S g2 | 227 2+ 20 A L0t Lyt D) (4.37)
g,he{l,a,b,c}

= (Ixol® + Ixa1* + Ix 1 [%)%,

ool =

The self-duality of (Ising ® Ising) CFT under this gauging E implies a new duality defect D, which can be
built by performing a half-space gauging. The associated fusion rule is similar to (4.18]) and (4.23)

DxD=14a+b+c+2m,
Dxm=mxD=2D, (4.38)
Dxg=gxD=D,ge€{a,b,c},

from which one reads the quantum dimension of D is v/8. This non-integer quantum dimension implies
the whole fusion category containing D is not gaugeabl@, though there might exist a gaugeable Frobenius
algebra containing D.

We conclude this section by embedding the new self-dualities we find via gauging the noninvertible
symmetries in the moduli space of ¢ =1 CFTs [79] (see also [67]), as shown in Figure

5 Decomposition

Briefly, decomposition is the statement that a local quantum field theory in d dimensions with a global
(d — 1)-form symmetry is equivalent to a disjoint union of local quantum field theories, see e.g. [54L55]. In
two dimensions, standard examples involving gauge theories in which a subgroup of the (zero-form) gauge
group acts trivially. The resulting theory has a global one-form symmetry, and so is equivalent to a disjoint
union.

In this section, we will discuss simple prototypical examples of decomposition arising when gauging a
trivially-acting noninvertible zero-form symmetry. We begin by defining what it means for a noninvertible
symmetry group to act trivially, state a conjecture for the form of the result, and then compute some
examples.

261t is also possible to gauge Za x Zo with discrete torsion turned on. This is equivalent to gauging the diagonal Za of the
two Ising CFTs, leading to the compact boson at radius R = v/2 180,/81].

27Naively, one can also try summing over the twisted partition function without any minus signs in front of Zgh , as in (3.608)).
However, the resulting partition function will be ill-defined, implying it is not an admitted gauging. In fact’7 in the case of
gauging Rep(#sg), the expression of summing over twisted partition functions is dependent on whether the theory is self-dual
under gauging Zs X Zo with/without discrete torsion. See, e.g. [21]. We thank Yifan Wang for the discussions on this point.

28While finishing this paper, the reference [21] appeared, which includes a systematic study of this new duality defect in
(Ising ® Ising) CFT. We refer the reader to that reference for more details.
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Figure 18: Self-dualities for several ¢ = 1 CFTs from gauging. The horizontal and vertical axes denote the
compact boson’s radius and its Z% orbifold theory, respectively. These two branches meet at [Sa] = [S}/Z5],
which corresponds to the Kosterlitz-Thouless transition point of the XY-model . Loops colored in blue
denote self-dualities under gauging noninvertible symmetries, whose associated duality defects enjoy the
fusion rules presented in , and . Lines colored in red denote the previously known cases
that (Ising ® Ising) CFT is self-dual under gauging Zs x Zo without discrete torsion and transformed to the
diagonal bosonization of the Dirac fermion with discrete torsion.

5.1 Definition of trivially-acting noninvertible 0-form symmetry

For an element of an ordinary, invertible 0-form symmetry to act trivially means, for example, that it leaves
invariant all local operators. If g denotes a symmetry operator, then,

g-0 = 0. (5.1)

In terms of line operators, we can describe the action of g on a local operator O as (see e.g. |83, section 1])
where we imagine the line collapsing onto the local operator O to form the local operator O, and where, for
a trivial action, @’ = . This is illustrated schematically in figures

k

(b)
(a)
For an invertible 0-form symmetry, associated to some group G, abstractly one can always declare that

the entire group acts trivially. Indeed, gauging such trivially-acting symmetry groups is at the heart of both
pure gauge theories as well as Dijkgraaf-Witten theory .

For noninvertible symmetries, this is often not possible. For a simple example, consider Rep(Ss3). Ex-
plicitly, there are three irreducible representations:

e the trivial representation, which we denote 1,
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e the sign representation, a one-dimensional representation we denote X,

e a two-dimensional representation we denote Y.

The nontrivial products are as follows:

X2 =1 XY =Y, Y? =1+X+Y. (5.2)

In this example, we see that the best we can hope for is for the subgroup {1, X} to act trivially on local
operators. The action of Y is then constrained to obey

Y2.0=(14+X+Y)-0, (5.3)
so if 1 and X both act trivially, in the sense that e.g. X - O = O, then
Y2.0 = (2+Y)-0. (5.4)
This will be satisfied if Y - O = 20, but not if Y acts trivially.

In passing, the reader should note that {1, X} generate an invertible 0-form symmetry, namely Zs. Only
when we extend to the full noninvertible case do we find that not all of the line operators can act trivially.

With this example in mind, we define a line L in a fusion category to act trivially if, for any local operator
0,
|L]
L-0= Y 8,0=|L|O. (5.5)

i,j=1

We motivate this definition below.

Assume we have a 2d QFT with symmetry given by a fusion category C. We also assume that the
there exists a fiber functor F' : C — Vec to the category Vec of vector spaces, such that F(L) = |L|1,
(meaning technically that the direct sum of the monoidal unit in Vec |L| times, which clearly requires |L| to
be a nonnegative natural number). (As remarked earlier, gaugeable noninvertible symmetry categories will
always admit a fiber functor.) One way of understanding is via the fiber functor, which maps L to |L|
times the identity.

When that symmetry acts trivially, dim(Homve(F'(1),F(L))) = dim(Homvec(F (L), F(1))) = |L| for
each simple object L of C, where |L| is the quantum dimension of L. Physically this means that there are
(non-trivial) topological operators that sit at two-way junctions between lines. These operators can be used
to ‘unwrap’ TDLs. This was used in [85] in the group-like case. For instance 85 Figure 6], reproduced here
as Figure 20] illustrates this visually.

We can extend this calculation to noninvertible lines. Let us again take a simple object L. Pick a basis

¢% for Homyee(F(1), F(L)) and ZiL for Homyec (F(L), F(l)) We take this basis to be orthonormal in the

sense that
|L|

1= 607, P ool =51, (5.6)
Q=1

where 1 is the local identity operator. These two conditions are pictured in Figure [2Ia] and 21b]

29Tn the group-like case we are able to identify £, with £,—1, which was done implicitly in Figure In the more general

case the starting point operator for a line L should be isomorphic to the endpoint operator for its orientation reversal L, with
the isomorphism determined by (co)evaluation.
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Figure 21: Relations for topological twist fields in a trivially-acting symmetry.

Using this setup to repeat the calculation in Figure 20} we find that a trivially-acting (in general nonin-
vertible) line L acts on a local operator O to give

L]
L-0=Y6;0=]L|O, (5.7)

ij=1

which is the behavior we would expect. This matches our definition (5.5) of a trivially-acting noninvertible
symmetry.

These local operators should also have a fusion operation inherited from the lines on which they live.
For instance, we ought to be able to deform Figure to Figure In the case of Rep(G), this map
{1 ® b5 — l3 is given by the intertwiners.

The difference between ¢ and ¢ is essentially the same as a choice of orientation for a TDL. Note that
we could choose to work only with the ¢, establishing our conventions such that all lines were outgoing from
these operators (physically, there is indeed only one set of topological twist fields labeled by C). Doing so
would require using evaluation to reverse the orientation of any ingoing line, at the cost of dualizing it. We
can instead choose (as we will) to work with both ¢ and ¢, which are not independent of each other. That
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Figure 22: Fusion of twist fields on which TDLs begin/end.

is, /7 and {;, are isomorphic but not necessarily equal, in exactly the same way as L and L with opposite
orientation. To translate back to the opposite convention, we can regard ¢ as ¢ with a nearby insertion of
the image of the evaluation map F'(e) € Homye.(F(L ® L), F(1)):

L L € L

———<¢— = 0—)—@—(—
_ - !

lL L (5.8)
Similarly, the coevaluation map ~ allows us to mapZL to {7. (Given lp:L—1,notel, ®L:L®L— L,
and composing with coevaluation gives a map 1 — L, giving an (7.)

We can check that the above formulation of trivially-acting noninvertible symmetries is consistent with
the action of noninvertible symmetries on boundaries. The paper |76] considers the related question of what
it means for a boundary to be invariant under the action of a noninvertible symmetry. For an ordinary,
invertible, symmetry, defined by a collection of lines L, associated to elements g € G in some finite group,
for a boundary state |B) to be invarianﬂ means

LB) = |B). (5.10)

The reference [76] section 2.3] provides two generalizations of this notion to to noninvertible symmetries.
Briefly,

e A boundary |B) is defined to be weakly symmetric under a fusion category symmetry C if for every
simple line L € C,
LB) = |B) + -, (5.11)

(see |76} equ’n (2.17)]).

e A boundary |B) is defined to be strongly symmetric under a fusion category symmetry C if for every
simple line L € C,
L|B) = (L)|B) (5.12)

(see 76} equ'n (2.20)]) where (L) is the quantum dimension of L.

30The language of boundary states glosses over the distinction between ‘invariant’ and ‘equivariant.” For example, because
of the existence of gauge transformations on worldvolume gauge fields, it is not quite right to speak of a D-brane B being
‘invariant’ under a group G, only ‘equivariant,” which means that there are isomorphisms

Yy B — B (5.9)

associated to group elements g € G, which respect the group law: gy = ¥g,. This structure is not visible in the language
of boundary states for two reasons: (1) Boundary states are constructed from e.g. Chern classes, for which there are no gauge
transformations, so ‘invariant’ is well defined, and (2) as states, they are elements of some vector space, which does not admit
the requisite higher categorical morphisms.
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They also note that a strongly symmetric boundary condition cannot exist unless every topological
line in C has an integer quantum dimension, which is not true in general (see e.g. the minimal models
discussed in [76) section 4.2.1]).

It is observed in |76] that strongly symmetric implies weakly symmetric; however, not all weakly symmetric
boundaries are strongly symmetric. Further, in the special case of invertible lines, these two notions are
equivalent: L ® |B) = |B), reflecting both the indecomposability of the product, and the fact that the
quantum dimension of an invertible line is 1.

The second of these two boundary conditions, the strongly symmetric condition in equation (5.12]), is
clearly consistent with our definition (5.5|) of trivial actions above. This confirms that our definition (5.5]) is
sensible.

5.2 Decomposition conjecture

In two-dimensional (ordinary) gauge theories in which a subgroup of the gauge group acts trivially, it is by
now well-known that the theory is equivalent to a disjoint union of effectively-acting gauge theories (see [54]
for the original statement, and [55] for a recent review). In this section, we will propose a similar phenomenon
when gauging a trivially-acting noninvertible symmetry.

Let us briefly review the ordinary case. Suppose for simplicity G is a finite group, with central subgroup
K C @G acting trivially. Then, as discussed in [54],

QFT ([X/G)) = QFT | [TIX/(G/K)L. |, (5.13)

K

where the disjoint union is over irreducible representations of K, and w denotes discrete torsion factors
described in [54]. A special case of this is two-dimensional Dijkgraaf-Witten theory, which is the orbifold
[point/G], for G a group (possibly twisted by discrete torsion). It decomposes into a string on a disjoint union
of points, as many copies as irreducible (projective) representations of G. (See e.g. [86] for the extension of
decomposition to include discrete torsion in the original orbifold.) Formally, we could write this aﬂ

QFT ([point/G]) = QFT Hpoint , (5.14)
G

where, since all of the orbifold group G acts trivially, the disjoint union on the right is indexed by irreducible
(projective) representations of G, here denoted G.

In this section we will consider the noninvertible analogue of Dijkgraaf-Witten theory, meaning a gauge
theory in which one gauges a trivially-acting noninvertible symmetry, in the sense that all of the noninvertible
symmetry acts trivially. (More general actions of noninvertible symmetries should also exist, in which only
a subcategory acts trivially; we leave such cases for future work.) This might also be described as a two-
dimensional analogue of Turaev-Viro theory [87] (which is a noninvertible generalization of three-dimensional
Dijkgraaf-Witten theory [84]).

Here we consider gauging a Frobenius algebra A in a trivially-acting Rep(G) symmetry, meaning the
orbifolﬂ [point/.A]. We assume the theory does not have any analogue of discrete torsion.

310ur notation glosses over extended objects, which can distinguish the ‘points’ on the right-hand side as SPT phases. The
intent of the notation is to emphasize that a local QFT can be a disjoint union.

32To be clear, by ‘orbifold’ we mean the result of gauging the noninvertible symmetry with the Frobenius algebra A. The
notation is not intended to indicate an ordinary quotient stack.
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We conjecture that this theory is equivalent to a disjoint union of trivial theories (or SPT phases), as
many as |A|, and hence obeys an analogue of decomposition, using the fact that

Al =l (5.15)

where the sum is over simple objects p, counted with multiplicity. (Recall in Rep(G), the simple objects
are the irreducible representations p, and |p| is the dimension of the representation p. The reader should
also recall that we only define trivial actions in cases where fiber functors exist, and leave a more general
definition for future work.) In terms of partition functions, we are predicting that

Zaa = |AZ1;. (5.16)
We will check this proposal in detail in examples later in this section.
Now, this proposal is incomplete:
e For one, ideally one would like to understand decomposition not just in cases in which all of the simple

objects act trivially, but also in cases in which only a subset of the simple objects act trivially. We
leave that for future work.

e Another issue is that the proposal above does not simply generalize to include ordinary orbifolds, for
which the fusion category is Vec(G) = Rep(C[G]*). The issue is that the number of simple objects is
|G|, whereas in the decomposition of Dijkgraaf-Witten theory, the universes are counted by irreducible
representations of G.

We leave these issues for future work.

In the remainder of this section, we will compute some examples.

5.3 Computation of partial traces

In this subsection, we will make a proposal for the computation of partial traces Z ff 1, in the special case
that the noninvertible symmetry acts completely trivially. This will be an analogue of two-dimensional
Dijkgraaf-Witten theory, which describes the orbifold [point/G].

A generic torus partial trace will have the form shown in Figure We propose to evaluate it as follows.
Formally, we can rewrite this as a diagram involving two fusion operations by inserting a map v : £ — ¢,
induced by the coevaluation map, along one of the lines, leading to Figure[23b] We can simplify this diagram

using equation (5.6)). This allows us to deform Figure to Figure

Compressing both halves of the resulting diagram, we are left only with multiples of the local identity
operator. This diagrammatic argument implies that we can write

fo,L2 = Cf,z Z11,1 (5~17)

where Ciz is a constant which we propose is formally given by

Cly = Y [Bo W d)] [Boe@). (5.18)

.3,k
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()

Figure 23: Mapping fo’ L, to a multiple of le,l- Each of these diagrams should be understood as living

on T2, so that lines wrap around the edges. Note that in diagram [23c| all three of the lines L; have been
broken in half. The L; and Lo lines wrap around the edges of the figure, and their breaking is indicated by
the vertices e at the edges. In each case, ¢; denote operators inserted at the endpoints at the breaks.

As a quick consistency check, for an untwisted sector partial trace Zf 5, the coefficient is

|L| ) IL]
Ctr=Y [eed)] [Bo@or@)] = Y dindey = LI (5.19)
J k=1 j,k=1

which is what we expect from a single trivially-acting L line wrapping a cycle of the torus.

The formula above represents our physically-motivated proposal for the relation between zE .1, and Z1 1
in the special case of a completely-trivially-acting noninvertible symmetry. We leave a detailed mathematlcal
understanding for future work.

In the case that the fusion category is group-like, the C} o should reproduce known results for decompo-
sition. In this case all of the lines have dimension 1, which means that (| no longer contains any sums
and becomes

C = [lgn o (Lg ® th)] [On 0 (Lgn @ 7(Zy))] - (5.20)
Here coevaluation is trivial, so 'y(zg) = {,-1. Fusion follows the group law, so we have
Og,};z = @gh © fgh] [Zh °© Eghgfl] = 0p,ghg—1 (5.21)

where the last equality follows from the orthonormality (5.6]) of composition. This reproduces the expected
result for decomposition in a group-like orbifold, and in particular matches the topological operator-based
formulation of decomposition given in [85].

5.4 Examples

In this section we will compute partition functions for gauged trivially-acting Rep(G) for the groups Ss,
Dy, and Qg, for all Frobenius algebras discussed earlier, and compare to the decomposition conjecture. In
principle we expect that the same methods should also apply to Rep(#Hs) and other more general fusion
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categories of the form Rep(#) for H any suitable Hopf algebra; however, as a practical matter, we do not
have sufficient information about e.g. coevaluation maps to perform the computation in that case, and so it
is left for future work.

5.4.1 Rep(Ss3)

In this section we will work through the prediction for the case of the Rep(S3) fusion category. This will be
an exercise in computing the constants CfQ described in the previous section, and then applying to simplify
partition functions.

Let us work through a simple example of a computation of the constants Cf , from their definition (5.18)).
Consider for example CY . From the definition,

Chy = [lro(ted)][6 o (4 2v)]., (5.22)
0,5,k

where i, j, k run over the dimensions of the corresponding vector spaces. (For example, since X is a
one-dimensional representation, ¢ = 1 only, but since Y is a two-dimensional representation, j, k € {1,2}.)

Using the Rep(Ss) intertwiners (3.7))-(3.22), the coevaluation maps induce

21 — 61,
Z)( — 5;1€Xa
—1 _
EY = ﬂ4 16%’7

7o B2

(5.23)

(In principle, the £’s on the right-hand side are computed with respect to L, not L, but we are using the fact
that in Ss, all representations obey L = L.)

The intertwiners (3.13)), (3.14)) induce

1 J _ +62£2Y j = la
@b, = { _Ball =2, (5.24)
k S\ BB k=1,
boy(ly) = { MRy (5.25)
Then, using the orthogonality relations (5.6[), we see
k . +/82 .] = 1a k= 27
7o (@( ® @) = { By j=2k=1, (5.26)
0 else.
ooltbon (7)) - J BB G=1k=2
eyo(ey®7(zx)) - { ok (5.27)
so plugging into equation (5.22), we have
C)?Y = —2B283p; . (5.28)

Mapping the partial traces to the parent theory partition function is now a straightforward application
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of (5.18). We list here the results for the constants C7 ,:

X
Cix

Y
Cl,Y

Y
Cxy

Y
Cy x

X
Cyy

Y
Cyy

We can now apply this result to the various Rep(S3) gaugings.

e 1+ X: The 1+ X partition function (3.152) becomes

Z1tx

= 1=0Cx, = Ckx, 5.29)
= 2 =Cf, = Cty, 5.30)
= fz%, (5.31)
= fzﬂgfﬁ, (5.32)
- o2, (5.33)
B3
= 45. (5.34)
1
5 A+ Zix + 230+ Zx x| (5.35)
1
3 (1+Cfx + Cx1+Cx.x) Z1 1, (5.36)
1
5(1+1+1+1)Z1171 = 27{,, (5.37)

exactly as we would expect for a trivially-acting Zs orbifold. Comparing to the conjecture (5.16)), there
are two simple objects (1, X), each of quantum dimension one, so indeed |A| = 2, and so our our
prediction (5.16]) matches the computation.

e 1+Y: The 14 Y partition function (3.170) becomes

Zity

Wl W= Wl

Ba
Ziy+Zly + Zyy + Zyy + ﬁzxg,y ; (5.38)
5
1+Cly +Cy, +Cyy + 2%20{5,] 71, (5.39)
5
2
1+2+2+2+<ﬁ42) <4ﬁ5)] =37, (5.40)
L 203 B ’

Comparing to the conjecture (5.16)), there are two simple objects (1, V). Of these, |1| =1 but |Y| = 2,
so our conjecture predicts a factor of |A] =14 2 = 3, and so our prediction (5.16) matches the result

here.
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e 1+ X +2Y: Finally the regular representation orbifold partition function (3.211)) becomes

S| =

B4
Ziyx+2y = [211,1 (Z1x+ZX1+ZXX) + 2<Z1Y+ZY1+ZYY+252ZYY

26, PP BsPa ,x  B2b3Pa v )]
ﬁgﬁg <ZXY ﬁlﬁ ZYX B ﬁ Zyyy 25163 ZY,Y R

= é[1+(1+1+1)+2(2+2+2+(ﬂ ( ))
25 <_252/33 (ﬂ254) ( 5356) (6354) <2 5256)
B2Ps f1 B1Bs $1Bs Ba
Ps

253
() (03] 642

= 6277, (5.43)

(5.41)

This is again in line with expectation, as we could have constructed the trivially-acting Rep(Ss)
symmetry from the free action of S3 on six universes, and gauging the regular representation should
undo the original S3 orbifold. In terms of the conjecture, there are four simple objects (1, X, and two
copies of V), and taking into account their quantum dimensions,

Al = 1|+ |X|+|Y]|+]Y] =14+14+2+2 = 6, (5.44)

and so our prediction (5.16]) matches the result here.

We also note that the fact that the result is independent of the 3’s is highly nontrivial in this case,
requiring intricate cancellations between different factors, which is in itself a nontrivial consistency
check on our methods.

5.4.2 Rep(D,)

In Rep(Dy), the constants C} , relating the partial traces to Z{ ; (for trivially-acting noninvertible symmetry)
are given by

Cil,a =1= Cg,l = C;,a = C%,b = Cll)),l = Cl},b = Clc,c = cl = Cclcv (545)
<, = % (5.46)
cs, = DPo (5.47)
’ Be
ct = W“”, (5.48)
’ B1
e, = 5759, (5.49)
’ Bi1
cp, = 2% (5.50)
’ Be
¢, = 200 (5:51)
’ Bi1
Crh, =2=0Cny = Chs (5.52)

109



B4f13

Cim = 2757, (5.53)
Cna = 2761;’158 =, (5.54)
Covm = 725;? 819, (5.55)
cr, = Qﬁsﬁi“‘, (5.56)
m— 2%, (5.57)
Crim = 2%516, (5.58)
18

cr, = —261;ﬁ15, (5.59)
e = —2751;12 =, (5.60)
Crnm = —261;12", (5.61)

(5.62)

We now calculate the partition functions of the various Rep(Dy,) orbifolds when the entire Rep(Dy)
symmetry acts trivially, and compare to the decomposition prediction [5.16]).

e 1+ a: The 1+ a partition function (3.376)) becomes

1 a a
Zita = 5 (21171 + 27+ Zg oy + Zé,a) , (5.63)
1 a a 1 1
= 5 (1 + Cl,a + Ca,l + Ca,a) Zl,la (564)
1
= 5(1+1+1+1)Zl{1 =271, (5.65)

exactly as we would expect for a trivially-acting Zo orbifold. Comparing to the conjecture (5.16]),
there are two simple objects (1, a), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16) matches the computation.

e 1 +b: The 1+ b partition function (3.384)) becomes

1
Zivp = B (le,l + Zi),b + ZII;,l + Zl},b) ) (5.66)
1
= S (L+Cl+ G+ Cy) Ziy, (5.67)
1
= 5(1+1+1+1)Zl{1 =271, (5.68)

again exactly as we would expect for a trivially-acting Zs orbifold. Comparing to the conjecture (5.16]),
there are two simple objects (1, b), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16|) matches the computation.
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e l4+a+b+c Thel+ b+ b+ c partition function (3.394)) becomes
Divasvre = S|Z 420,420+ 25 420, + 20, + Lo, 4 Zo 42y (5.69)
410~ ’ ’ ’ ’ @ B2f 5 Bs ’
56 1 56 511 b 511 :|
Zyot Zpyt+ Zyet 2oy + Ze o+ Zy+ Z |,
5551 b PO ByBy 1 BrBe T T Bafro P
17
= Z|[14+Cf, +Ch,+Cf +Co+Ch,+ Bf;g Cey+ ﬁf; ch.+Cpy (5.70)
ﬂ6 1 ﬁ6 511 b ﬁll 1 :| 1
Cf ot Chy+ 208, + 08y + b co, +CL| 7,
55ﬁ b bb T Bopy P 1T BrBo 5351 b ]It
[ Br B2By Br B3Bs
= —(1+14+1+14+14+1+ + +1 5.71
1| Babo B | Befs B (5.71)
. Be  BsB10 Tiq Bs B287 T4 Bi1 BrP B11 BaPo n 1] 7,
BsB10  Bs B2B7  Bs B7By P11 B3Bio Pu '
— 47, (5.72)

again exactly as we would expect for a trivially-acting Zs x Zs orbifold. Comparing to the conjec-
ture ((5.16)), there are four simple objects (1, a, b, ¢), each of quantum dimension one, so indeed |A| = 4,

and so our prediction (5.16]) matches the computation.

e 1+ b+ m: The 1 4+ b+ m partition function (3.410) becomes

T
Zivprm = | %10+ 20+ D + Zia + Zyy + ﬁf 5y 2o (5.73)
Bis 1 Bis }
+Zmq + Zoo t L + Zpm |
! B14P1s N BsPis
1[
= 71+c“,+c +cb1+0bb+5656 cr, (5.74)
Bis 1 Big8 ] 1
+Cn + Coip +Cr C ol Z1 1,
1 BiaPis ﬁsﬁls b
1 Be < 58514)
= —|14+14+2+1+1+ 2 5.75
4 [ BsB1a Be (5.75)
Bis ( 514516) Bis ( 58516)] 1
124 124 7!, 5.76
B14P16 B1s Bs P16 B1s b ( )
= 477,. (5.77)

Comparing to the conjecture 7 there are three simple objects (1,
1, 1, 2, respectively, so |A| = 14+ 142 = 4, and so our prediction
also observe that the factor of 4 is consistent with the fact that this is
the original Dy.
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e 1+a+ b+ c+ 2m: The partition function (3.426f for the regular representation becomes

1 B e B1

Zitatbrotam = 2 I+ 2+ 2+ 25+ 227 + 28+ 2+ By 2o + Bihn Zt,
gy B+ A G Bt Bk g Bt g i
Oy g Bt g Tt DL g,
R R T g e T b
N N T e ] 67
_ é[1+1+1+1+2(2)+1+1+ﬂf;9 (ﬁ;?’) +ﬂf;5 <’8;f5>
s (P50) 1 s (O22) + 1 s (50)
tn (00 1 (G )+ (G20 +1
i (275 ) e g () ()
oo (5 ) o - 2 (250 ) + 2 (252)
“ain (2752 @79
_ 87, (5.80)

Comparing to the conjecture , there are six simple objects (1, a, b, ¢, and two copies of m), four
of which (1, a, b, ¢) have quantum dimension one, and two of which (the copies of m) have quantum
dimension two, so

Al = 1+1+14+1+2+2 = §, (5.81)

and so our prediction (5.16)) matches the computation. This also reflects the fact that we could have
constructed the theory with trivially-acting Rep(D4) symmetry from the free action of D4 on eight
trivial theories — gauging the regular representation returns us to this disjoint union of eight objects.

We also observe that the fact that the intertwiner 5’s all cancel out, in a rather intricate fashion, is a
strong consistency check on our methods.

5.4.3 Rep(Qs)

The results for Rep(Qsg) will of course closely mirror those of Rep(Dy4). We find

(5.82)
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e _ Daby

ab T VAR (583)
1
c BsB1
Csa = =2, (5.84)
6
Bs%
Covc = 315, (5.85)
P78
Coa = : 5.86
. = 3 (5.56)
! Q!
Cp. = 52,57, (5.87)
) 66
B3B10
@, = 3010 5.88
b 8, ( )
Clm =2 =Cny = Cps (5.89)
BiBis
cr. o= 2 , 5.90
, 5 (590
/ !
Cha = 27613/519, (5.91)
’ Bis
! !
Crim = 7264/5197 (5.92)
’ Bis
! Q!
cr, o= —2768;,147 (5.93)
6
B1aBis
mp = 2 ; 5.94
b 618 ( )
Ch = —200, (5.9)
7 Bis
/ !
Clh = 27512? =, (5.96)
' A
!/ /
Che = —gPisPi (5.97)
Bis
! !
ce .. = 2512,5”7 (5.98)
' Bis
where the only change relative to Rep(Dy) is that the coefficients C7, C’f;%m, Cd, and Cp, ) have flipped

sign.

We now calculate the partition functions of the various Rep(Qsg) orbifolds when the entire Rep(Qs)
symmetry acts trivially, and in each case compare to the decomposition prediction ([5.16)).

e 1+ a: The 1+ a partition function (3.509)) becomes

1

Ziva = 5 (Z10+ 2t Zin+ Zaa (5.99)
1

= 5 (1 + Cil,a + Cg,l + C;,a) le,la (5100)

= 27y, (5.101)
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exactly as we would expect for a trivially-acting Zs orbifold. Comparing to the conjecture (5.16)),
there are two simple objects (1, a), each of quantum dimension one, so indeed |A| = 2, and so our
prediction (5.16) matches the computation.

e l+a+b+c Thel+ a+ b+ c partition function [3.520)) becomes

B A

1
Zivasbre = |2, 428, + 20, + 28 . +2°% +2)  + ZE, + zb, 5.102
1+a+b+ 4 1,1 1, 1,b 1, )1 R Béﬁé b 5{/>,ﬂé s ( )
Bs e 1 B : Bl b B 1]
+Z0, + ZEa+ Zhy + Ze 78+ Zb o+ Zo + 7L |,
BT BB, T Y A BBy T By, ’
= 1_1+ca +C,+C8,+C% +CL, + fce + S (5.103)
4_ 1,a 1,b 1,c a,l a,a Béﬁé a,b Béﬁé a,c
ﬁé 1 /Bé /611 b /831 1:| 1
+Cia+ 55 Cra+ Coo+ 5rarCre + Con+ 5757 Cou + Cot Zec| 210,
T Y e T T ]
[ B (ﬂéﬁé) B (/J’éﬁé)
= “14+1+1+14+1+1+ + 5.104
il e\ o ) T EE (5104
14 Bs <ﬂéﬂio)“+ B <ﬁé6’7>+1+ B (54%)
BsBio \ B BsBz \ B BBy \ B
B (6§,Bio> ] 1
+ +1|Zz,
BB \ B bt
— 4211)1, (5.105)

exactly as we would expect for a trivially-acting Zs X Zs orbifold. Comparing to the conjecture (5.16)),
there are four simple objects (1, a, b, ¢), each of quantum dimension one, so indeed |A| = 4, and so
our prediction ([5.16|) matches the computation.
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e l+a+b+c+2m: The 1+ a+ b+ ¢+ 2m partition function (3.538)) becomes

1 . / ) /
Z1+a+b+c+2m g Z11’1 + Zia, + Z{),b + Zic + 2Z{nm + Zg,l + Z;,a + 5/6;/ Z;,b + Blﬁél Zg,c
29 375
Qﬁ, m 5, c ﬂ/ a 2B/ m
+B/B} Za,m, + ZPZJ),l + / 6/ Zb,a + Zl},b + /g/ Zb,c - ﬁ/ﬂf/j Zb,m,
4M~13 5~10 287 814
/ / 2 /
I+ G2 4 24 2k 2T,
79 3~10 12~15
2015 215 2815
+2Z7 + VAL Zm e — zm.
L BB B14B16 o BisBiz ™
2018 2B1s b 2818 ]
+2Z11nm_ Zgam_ Z7nm+ anm ’ (5106)
' BiBlo " BsBie BBz ™
1 / ! Q! / ! t/'
SRR R R CERRRt! s (5¢)+ s (%)
2 ! ! Q! ! ! Q! / ! Q!
+ /5} <264ﬁ/13> +1+ ,56, (655/1()) +1+ ,ﬂ6, (52/67)
64613 61 /85ﬁ10 66 6267 66
2 ! ! Q! / ! Q! / ! Q!
. /5(/; (_2/38/5:14) 11+ ﬁln/ (57?9) " /511/ (53/510) +1
58614 BG 5759 511 53510 Bll
2 ! ! /r 2 / / ! 2 / / !
+ /61% (2ﬂ12/ﬂ10> +2(2)+ /51% (2613/619> 4 ,51§ (2B14/616)
/612ﬂ15 /811 /613B19 ﬂ18 /Bl4ﬂ16 ﬂ18
2 ! ! / 2 / a1 2 / ! Q!
() - () (5
15~17 18 4M~19 18 816 18
2 / ! /
+ﬁ,ﬂ;§ (Qﬁlﬁ%ﬁ”)] VARY (5.107)
12717 18
— 8Z1171. (5.108)

Comparing to the conjecture (|5.16)), there are six simple objects (1, a, b, ¢, and two copies of m), four
of which (1, a, b, ¢) have quantum dimension one, and two of which (the copies of m) have quantum

dimension two, so indeed
Al = 14+1+14+1+24+2 = 8, (5.109)

and so our prediction ([5.16|) matches the computation.

As in previous examples, the fact that all of the 8’ cancel out, often in a rather intricate fashion, is a
solid self-consistency test of our methods.

5.5 TQFT interpretation

The field theory of a trivially-acting symmetry is a symmetry-protected topological (SPT) phase, so we
can regard the above results as gauging SPTs for Rep(G) symmetries. More specifically, the coefficients we
obtain when applying decomposition to the genus one partition function tell us the ground state degeneracy
of the resulting theory. Below we give slightly more detail on some of the theories appearing in the above
examples:

e SPT(Rep(S3))/(1+ X), 2 ground states. We expect that gauging the Zy subgroup generated by X of
a theory with Rep(S3) symmetry will produce a theory with S3 symmetry, so we can identify this as
the Ss-symmetic Zg SSB phase discussed in [47, section 4.6.3].
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e SPT(Rep(S5))/(14Y), 3 ground states. If we present our Rep(S5)-symmetric theory as an Ss orbifold,
gauging the 14+Y subsymmetry should return the Z, orbifold of the S3-symmetric theory. In particular
this means that the resulting theory still carries Rep(S3) symmetry. We can identify this theory as the
Rep(S3)/Zs SSB phase of [47, section 5.3.3].

e SPT(Rep(Ss))/(1+ X +2Y), 6 ground states. This is Rep(S3) gauge theory, also known as Rep(Ss)
Dijkgraaf-Witten theory. The six ground states carry a freely-acting S5 symmetry that is the quantum
dual to the original Rep(S3). This is the S35 SSB phase of [47} section 4.6.1].

e SPT(Rep(D4))/(1 +a+ b+ c+ 2m) and SPT(Rep(Qs))/(1 + a+ b+ ¢+ 2m), 8 ground states each.
These are the gauge theories for Rep(D4) and Rep(Qs), and the story is similar to Rep(S;3) gauge
theory. In both cases the resulting theories consist of eight copies of the trivial theory (i.e. an SPT for
the trivial group) with a free action of D4 or Qs, respectively.

6 Conclusions

In this paper we have explicitly gauged some examples of multiplicity-free noninvertible symmetries in two
dimensions. We began with a general overview of the procedure. For a noninvertible symmetry defined by
a fusion category of the form Rep(H), for H a Hopf algebra, we put the structure of a special symmetric
Frobenius algebra on H* in order to construct modular-invariant partition functions. We checked that the
general procedure correctly reproduced results for ordinary group orbifolds, described in present language
by the fusion category Vec(G) = Rep(C[G]*). We then did explicit computations in Rep(S3), Rep(D4),
Rep(Qs), and Rep(Hs), and discussed applications in ¢ = 1 CFTs. We also discussed decomposition arising
in cases in which the gauged noninvertible symmetry acts trivially.

We intend to return to these matters in upcoming work [20], for example generalizing to non-multiplicity-
free cases.
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A Algebras

This paper will frequently make use of both Hopf algebras and Frobenius algebras — representations of Hopf
algebras will arise when describing pertinent noninvertible symmetries, and Frobenius algebras will be used
to define their gauging. To make this paper self-contained, we outline their definitions in this appendix.

A.1 Definition of Hopf algebra

A Hopf algebra (H, pp,um, Am,uyy, S) is defined by
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a multiplication pug : H @ H — H,

e a unit uy : C — H,

a comultiplication Ag : H - HRH,

e a counit uy : H = C,

an antipode S : H — H
satisfying several identities, of which we list the key ones below:

e associativity:

por o (g @1dy) = pg o (Idy ® pa), (A1)
e unit axiom:
pr o (Idy ®up(l)) = Idy = pgo(up(l) ®1dy), (A.2)
e coassociativity:
(IdH®AH)OAH=(AH®Id7{)OAH, (AS)
e counit axiom:
(Id’H ® UOH) o AH = Id’H = (UOH ® qu.[) ] AH7 (A4)
e antipode axiom:
S®1
HOH———HROH (A.5)
v X
M - C o M
k %
HoH—2% ~HeoH

More formally, this means that a Hopf algebra is an associative and coassociative bialgebra, together with a
compatible antipode map. In this paper we also take H to be finite-dimensional and semisimple.

A common example is the special case H = C[G], the group algebra of a finite group G, for which the
algebra structure is a linear extension of the product on G, and where the co-algebra structure, as well as
the antipode map, is given by

Anlg) = g®g, uy(g) =1, Slg) = g7, (A.6)
for g € G, and extended linearly over C[G], where Ay is the comultiplication and u% the counit.
Because group algebras are a special case, Hopf algebras generalize group algebras.
A.2 Definition of Frobenius algebra
Briefly, a Frobenius algebra (A, pp, ur, Ap,u%) is defined by

e a multiplication pup: A® A — A,
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e aunit up : C — A,
e a comultiplication Arp : 4 - A® A,

e a counit u% : A — C,
satisfying several identities, of which we list the key ones below:

e associativity:

pr o (pp ®Ida) = ppo (Ida ® pr), (A7)
e unit axiom:
pro(lda®up(l)) = Ida = ppo(ur(l) ®1da), (A.8)
e coassociativity:
(IdA@AF)OAF:(AF‘@IdA)OAF, (Ag)
e counit axiom:
(Idga®@up)oAp = Idy = (uf®1Idy) o Ap, (A.10)
e Frobenius identities (2.46]):
A9 A28 oA Ad |, AA—14E2T A9 A0 A (A.11)
MF\L iIdA[@/LF MFi iILF®IdA
AF AF
A A A A A® A

In this paper we usually work with special symmetric Frobenius algebras. These satisfy the following
additional key axioms:

e special (2.47):

upoup < Idy, prpoAp =1Idy, (A.12)
e symmetric ([2.48]):
A2 L Ao Ae A
IdA®v.a Td_g= ® (1% 0t ) (A.13)
A Ag Ar —LEor)OA g

where ¥4 : C - A*® A and v4 : C = A® A" are coevaluation maps that exist by definition of A*
being dual to A (and vice-versa) as vector spaces.

B 7, X Zy, Tambara-Yamagami modular transformations

We compute the relevant transformations with p,q € {1,a,b,c}, and = € {a,b,c}. We will drop the bars
since all objects are self-dual.
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The associators are listed at [29, def’n (3.1)] as F-symbols. They are related to the K’s we primarily use
in this paper by B
F238 = Ky4(5,6). (B.1)
The reader may also consult [88] fig. 7], which lists slightly different F' symbols for D, and Qs, corresponding
to the matrix elements of the a of [29].

In this paper we give first-principles derivations of associators for Rep(D4) and Rep(Qs), listing results
for general intertwiners. A standard result for associators for a fixed choice of intertwiners, for all of Rep(Dy),
Rep(Qs), and Rep(Hs), can be found in [88, fig. 7], which lists

Foprd = FIRP4 — FPmm _ pmpm _ pmmg ] (B.2)
Epigm = Fonin = x(p.9), (B.3)
Fomg = nx(p:q)/2, (B.4)

where p, ¢, 7 index one-dimensional representations, and m is the two-dimensional representation.

1. For Dy, n = +1, x(1,p) = x(p,1) = +1, x(z,z) = +1, x(z,y) = —1, for © # y corresponding to
nontrivial one-dimensional irreps.

2. For Qs, n = —1, x(1,p) = x(p,1) = +1, x(z,z) = +1, x(z,y) = —1, for © # y corresponding to
nontrivial one-dimensional irreps.

3. For Hg, n = +1, x(1,p) = x(p, 1) = x(c,¢) = +1, x(a,a) = x(b,b) = x(a,c) = x(b,c) = —1

where a,b not arbitrary irreps but are the particular one-dimensional irreps that generate the Klein group.

In the sums below, p,q € {1, a,b,c}, whereas the index L € {1,a,b,c,m}.

ZP(r+1,7+1) = Kyo(pg.pa)ZL,,(r,7) = FiPrize  (7,7) =22 (1,7) (B.5)
Zr (1,7 +1) = Kpo(m, m)Zm ( ?):Fmﬁﬁz;"m( 7) = x(p,p) 2, (7,7) (B.6)

Zh (T + 1,7+ 1)

Z K m(p.a ZFQZ,?Z"ZT" 7) (B.7)

= - ZHX p,q T, ) (BS)

Zmp (T 17 +1) = k;“"’i(m M) 28, (7, 7) = FRn 28, 1 (7,7) = X(p.0) 25, 1 (1,7)  (B.9)
_ ~.p,1 =D,
2 (A7, -17) = KO0 p) K g, pa) 28 (r,7) = FYTTAESDIIZm (2 ) (B.10)
~ g (T 7) (B.11)
Zym(=1/7,=1/7) = () K (mym) 20 (v, 7) = FY! Lo Emrom Zp(T,7)  (B.12)
= ( P) 2y (7,7 ) (B.13)
m = I m 1 m = m,m, SmLm rzm =

Zm,p(_l/T’_l/T) = ( ) ( )Zp,m(TvT) = Fl,p mpr%)mmZp m( T) (B14)
= x(p,p)Z (T T) (B.15)

_ m, 1 m m,m pm,m,
Z’ﬁL m( 1/7—’_1/7—) = ZK(] m mm(p7Q)Z;1n,m ZFqlmmmefzvlnm (BIG)

q

= 72”){ b, q mm (B17)
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We now show that the partition functions previously obtained are indeed modular invariant. This serves as
a useful consistency check. In all cases, the sum

h
Zzox7, = Z Z;h
g,he{1,a,b,c}

always appears, which corresponds to gauging a non-anomalous Zy X Zy group. This is known to be modular
invariant, so we will only focus on the part of the partition functions that involve the noninvertible object
m.

For D,, we have the combination
I/Z{ep(D4) = ZIr,Lm - Z(;r,Lm + Zle + Z(Tm + Z’ZLL,I - Z’erzl,a + Z:Z,b + Z::zl,c
b
+Z71n,m - Zg’b,m + Zm,m + Zrcn,m
Under T-transformation this becomes
Zl%ep(Dzl)(T + 1) - Z?,Lm - erzrfm + Zle + Z(’Tm + Zvln,m - Z;In,m + an,m + Zrcn,m

1 1

+5 (Zna+ Zia + 2o+ Zine) — 5 (Zina+ Zia = Zils — Ziile)
1 1

+§ (Zx,l - Zﬂ,a + Z;rzl,b - Zr’rrgl,c) + 5 (Zr’rg,l - Zr’rrgl,a - Zﬂ,b + Zﬁ,c)

= ZRep(na)(7);

while under S-transformation it becomes

Z]/:{ep(D4)(_1/T) = Z:‘rrll,l - Z:‘r’ll,a + Z’:ﬂn,b + Z;”Ln,c + Z{Y,L'm - ZZLr,Lm + Zle + chj’m
1 1
~(z} ze zb ze ) — = (2} ze =z 7
+2 ( m,m + m,m + m,m + m,m) 92 ( m,m + m,m m,m m7m>
1 1
- Zl _ Za Zb _ ZC - Zl _ Za. _ Zb ZC
+2 ( m,m m,m + m,m m,m) + 2 ( m,m m,m m,m + m;rn)
= Zﬁep(D4)(7—)’

both of which match the original term Zﬁep( D)

For Qg the relevant term is

Zﬁep(Qg) = Zln,Lm - Z(Tm - Zle - Zgbm + Z:;:,l - Z:)nq,a - nTCLL,b - Znnfz’,c
+Zrln,m - Zgn,m - an,m - Zrcn,m
Under T-transformation this becomes
1 b
leitep(Qs)(T + 1) = ZTm - Zg?m - ZITm - Zg,lm + Zm,m - Z;ln,m - Zm,m - Zﬁ@,m

1 m m m m 1 m m m m
_5 (Zm,l + Zm,a + Zm,b + Zm,c) + 5 (Zm,l + Zm,a — “mb Zm,c)

1 1
+§ (Z:nn,l —Zmat Zimp— ZZLL,C) + 5 (Z::LL,l —Zma— Zmpt Z:fnL,C)

- Zﬁep(Qg) (T)?

while under S-transformation it becomes

Zrepe) “UT) = Zna = Zya = Zye = Zome + 2 = Zilim = Zion = Dl

—% (Zn + Zapn + Zinn + Ziom) + % (Zom + Zimn = Zonn = Zim)
1 1
2 2
= Zﬁep(Qs)(T)a

+ (Z;"L,m - Zg@,m + Zgw,m - Z’fﬂ,m) + (Z71n,m - ZzL,m - an,m + Zrcn,m)
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both of which match the original term lertep( Da)-

Finally, for Hg, the combination is
Rep(Hs) = Ziom + Z0m + 2+ 2t oA Zyn + Ly
Under T-transformation this becomes
Zepin) T+ = 20+ 20+ 2y i+ D
% (Zia+Ziat Zip+ Ziie) + % (Zha = Zia = Zip+ Zile)
ll:{ep(Hg)(T )s

and under S-transformation one gets

m m m m 1 a (&
ZI/:{ep(Hg)(_l/T) = Zm,l + Zm,c + Zl,m + Zc,m + 5 (Z}n,m + Zm,m + ZZ@,m + Zm,m)
1 a C
+§ (Z}n,m - Zm,m - Zvlzn,m + Zm,m) )
= Zl/:{ep(Hg)(T)’

matching the original expression lech( He)' Note that modular invariance provides a further consistency check
for the absence of partial traces involving the noninvertible object along with either a or b. For example,
under T-transformation one has that

Z(Tm — —Z;’?m,

Z,Tm — fZ{,’fm,
and since no other partial traces map to Z;",, or Z;",,, they cannot be present in the gauged theory partition
function. Furthermore, under S-transformation the partial traces

Zam > —Zi o

2y < —Zg s
are interchanged, meaning the partial traces Z;; , and Z} , should also be absent. But the latter implies
that the partial traces Zy, ,,, and qu’%m vanish by T-transformation. Thus, modular invariance confirms that
partial traces involving m with a or b must vanish, precisely as what was obtained.

C Gauging actions on disjoint unions

Disjoint unions of spaces can be simple playgrounds for actions of both abelian and nonabelian symmetry
groups, as well as simple examples in which to see quantum symmetries of the form Rep(G) at work. In this
section we will give an overview of orbifolds [X/G] in which X is a disjoint union of copies of some other
space Y,

x =]Iv. (C.1)

and the group G acts by interchanging copies.

Let us begin with a few examples of this form. Suppose first that X is a disjoint union of three copies of
Y, and G = Zs, acting by interchanging those copies. In this case, G acts transitively on X, and [X/G] =Y.
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Ordinarily, in an orbifold, there are twisted sectors. If the orbifold group acts freely, those twisted sectors
may only encode massive states, but they are still present. One way to see this is the existence of the
quantum symmetry: in order for an orbifold by the quantum symmetry to return the original theory, all of
the information of the original theory must be present in the orbifold.

Here, by contrast, since the group Zj3 interchanges elements of a disjoint union, no twisted sectors can
exist — there are no (connected) string worldsheets that start on one element of a disjoint union, and end on
a different element of the disjoint union.

Nevertheless, orbifolding by the quantum symmetry does restore the original theory in this case. This
is a result of decomposition (see e.g. [541/55]). Because there are no twisted sectors at all, the quantum
symmetry (here, Z3) acts trivially, hence when we orbifold by the trivially-acting quantum symmetry, we
get three copies. In other words,

X/Zs] = Y, (C.2)

and since the quantum symmetry Zs3 acts trivially,

(X/Z3)/Zs) = H[X/Z?)L (C.3)
3

= [Iv (C.4)
3

- X (C.5)

Now, let us compare the orbifold [X/S3], where S3 is the symmetric group on three objects, interchanging
the three copies of Y. In this case, Z3 is a normal subgroup of S3, with quotient Zy = S3/Z3. In particular,
Zo = S3/Z3 acts (trivially) on Y = [X/Zs], with quotient

([X/Z3]/Zs] = [X/Ss]. (C.6)

Furthermore, since Zo acts trivially, we see that [X/S3] is a trivial Zs gerbe on Y = [X/Z3], and hence from
decomposition,

[x/85] = []v- (C.7)
2

Let us generalize from three objects to n objects. Define

x =]Iv (C.8)

The group Z, acts transitively on X, hence [X/Z,] =Y. For n > 3, Z, is not a normal subgroup of S,,.
Technically, [X/S,,] is a non-banded S,,—1 gerbe on Y. The space Y is an atlas for that gerbe, but the gerbe
is not a quotient [Y/Sy,_1].
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